WorldWideScience

Sample records for active fabry-perot semiconductor

  1. General Method for Calculating the Response and Noise Spectra of Active Fabry-Perot Semiconductor Waveguides With External Optical Injection

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present a theoretical method for calculating small-signal modulation responses and noise spectra of active Fabry-Perot semiconductor waveguides with external light injection. Small-signal responses due to either a modulation of the pump current or due to an optical amplitude or phase modulation...

  2. Single-SectionFabry-Perot Mode-Locked Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Weiguo Yang

    2011-01-01

    Full Text Available We present a review of the theoretical models and experimental verification of the single-section Fabry-Perot mode-locked semiconductor lasers based on multiple-spatial-mode (MSM coupling. The mode-locked operation at the repetition rates of 40 GHz and higher and the pulse width of a few picoseconds are confirmed by the intensity autocorrelation, the fast photo detection and RF spectrum, and the optical spectral interference measurement of ultrafast pulse. The spatial mode coupling theory of single-section Fabry-Perot mode-locked semiconductor lasers is also reviewed, and the results are compared with the experimental observations. The small signal modulation response of these lasers, which exhibits high-frequency responses well beyond the relaxation oscillation resonance limit, is also modeled theoretically, and the simulation is verified by the experimental measurements.

  3. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser

    International Nuclear Information System (INIS)

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  4. An analytical study on bistability of Fabry-Perot semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Gang; Chen, Shuqiang; Yang, Huajun

    2016-09-01

    Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.

  5. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    Science.gov (United States)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  6. A novel scheme of label abstraction and erasion based on Fabry-Perot semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Kun Qiu; Yun Ling; Ying Pang

    2007-01-01

    A novel label abstraction and erasion scheme based on a Fabry-Perot semiconductor optical amplifier (FP-SOA) is proposed for all-optical separation of the bit-serial label from payload and its performance is investigated by simulation. Important features of this scheme are that it does not make use of any high-speed electronics and only one device is needed. Using this scheme, label abstraction and erasion can be realized with the extinction ratio of 9.72 and 7.05 dB, respectively.

  7. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser; Construccion de un amplificador optico de semiconductor a partir de un laser de semiconductor Fabry-Perot

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N. [Departamento de Electronica y Telecomunicaciones, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico)

    2000-07-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  8. A novel time-to-live countdown scheme based on asymmetric Mach-Zehnder interferometer and Fabry-Perot semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Ying Pang; Kun Qiu; Yun Ling; Wei Zhang

    2007-01-01

    We propose a novel optical time-to-live (TTL) processing scheme using asymmetric Mech-Zehnder interferometer (AMZI) and Fabry-Perot semiconductor optical amplifier (FP-SOA). AMZI transfers M TTL pulses into M - 1 pulses and two residual pulses with 6-dB power difference. FP-SOA enhances the power difference between the M- 1 pulses to the residual pulses to more than 10 dB. A numerical model is established for verifying the feasibility of this scheme.

  9. Holographic Fabry-Perot spectrometer.

    Science.gov (United States)

    Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L

    2011-02-15

    We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.

  10. Active Q-switching of a fiber laser using a modulated fiber Fabry-Perot filter and a fiber Bragg grating

    Science.gov (United States)

    Martínez Manuel, Rodolfo; Kaboko, J. J. M.; Shlyagin, M. G.

    2016-02-01

    We propose and demonstrate a simple and robust actively Q-switched erbium-doped fiber ring cavity laser. The Q-switching is based on dynamic spectral overlapping of two filters, namely a fiber Bragg grating-based filter and a fiber Fabry-Perot tunable filter. Using 3.5 m of erbium-doped fiber and a pump power of only 60 mW, Q-switched pulses with a peak power of 9.7 W and a pulse duration of 500 ns were obtained. A pulse repetition rate can be continuously varied from a single shot to a few KHz.

  11. Fabry-Perot-like interference security image structures: From passive to active

    Energy Technology Data Exchange (ETDEWEB)

    Baloukas, B., E-mail: bill.baloukas@polymtl.ca; Trottier-Lapointe, W.; Martinu, L., E-mail: ludvik.martinu@polymtl.ca

    2014-05-30

    Counterfeiting of products and important documents is at an all-time high and is costing the world economy hundreds of billions of dollars yearly as well as posing significant safety and health hazards through the production of uncertified goods, e.g., pharmaceutical products. To limit these effects, interference-based optical security devices offering an angular color shift are still widely in use. Unfortunately, commercial iridescent materials are now readily available and represent a potential source of counterfeiting. In this short review, we first describe the basic principles behind passive interference security image structures (ISIS) and the qualities which have resulted in their integration into most important documents. Various features which have been added to ISIS in order to make them harder to duplicate yet simpler to authenticate are also presented (metamerism, magnetic materials, diffraction, etc.). We then address the implementation of active materials, mainly electrochromic WO{sub 3} as a means of generating two-level authentication devices. Finally, we discuss some general considerations to keep in mind when developing features for security applications. - Highlights: • We review Fabry–Perot-like metal-dielectric filters used in optical security. • We discuss/demonstrate recent additions: metamerism, magnetism and diffraction. • We demonstrate a feature based on the use of thin metallic mirrors. • We cover recent developments in the use of active materials. • We demonstrate an electrochromic feature with two levels of authentication.

  12. Fabry-Perot-like interference security image structures: From passive to active

    International Nuclear Information System (INIS)

    Counterfeiting of products and important documents is at an all-time high and is costing the world economy hundreds of billions of dollars yearly as well as posing significant safety and health hazards through the production of uncertified goods, e.g., pharmaceutical products. To limit these effects, interference-based optical security devices offering an angular color shift are still widely in use. Unfortunately, commercial iridescent materials are now readily available and represent a potential source of counterfeiting. In this short review, we first describe the basic principles behind passive interference security image structures (ISIS) and the qualities which have resulted in their integration into most important documents. Various features which have been added to ISIS in order to make them harder to duplicate yet simpler to authenticate are also presented (metamerism, magnetic materials, diffraction, etc.). We then address the implementation of active materials, mainly electrochromic WO3 as a means of generating two-level authentication devices. Finally, we discuss some general considerations to keep in mind when developing features for security applications. - Highlights: • We review Fabry–Perot-like metal-dielectric filters used in optical security. • We discuss/demonstrate recent additions: metamerism, magnetism and diffraction. • We demonstrate a feature based on the use of thin metallic mirrors. • We cover recent developments in the use of active materials. • We demonstrate an electrochromic feature with two levels of authentication

  13. Distributed Fabry-Perot Measurement System

    Institute of Scientific and Technical Information of China (English)

    WENG Jian-hua

    2003-01-01

    The theoretic analysis indicates that if the lengths of the cascaded and paralleled Fabry-Perot sensors are properly selected, the crosstalk can be well restricted.And the experiment simulation results agree with that of the theoretic analysis.

  14. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...

  15. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors.

    Science.gov (United States)

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C

    1997-11-01

    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators.

  16. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    Science.gov (United States)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  17. A high resolution scanning fabry-perot for OSIRIS

    Directory of Open Access Journals (Sweden)

    A. Bernal

    2007-01-01

    Full Text Available Following the directives of the workshop on the interferometric mode of OSIRIS, the Mexican team has received support to ac- quire a scanning Fabry-Perot interferometer for OSIRIS. In this presentation we will try to define which Fabry-Perot will be selected as well as which filters need to be acquired. We will also discuss the acquisition software

  18. The many facets of the Fabry-Perot

    CERN Document Server

    Sanchez-Soto, Luis L; Leuchs, Gerd

    2016-01-01

    We address the response, both in amplitude and intensity, of a Fabry-Perot from a variety of viewpoints. These complementary pictures conspire to achieve a comprehensive and consistent theory of the operation of this system.

  19. Mode-resolved Fabry-Perot experiment in low-loss Bragg-reflection waveguides.

    Science.gov (United States)

    Pressl, B; Günthner, T; Laiho, K; Geßler, J; Kamp, M; Höfling, S; Schneider, C; Weihs, G

    2015-12-28

    Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides (BRWs) provide a highly functional platform for non-linear optics. For achieving any desired quantum optical functionality, we must control and engineer the properties of each spatial mode. To reach this purpose we extend the Fabry-Perot technique and achieve a detailed linear optical characterization of dispersive multimode semiconductor waveguides. With this efficient broadband spectral method we gain direct experimental access to the relevant modes of our BRWs and determine their group velocities. Furthermore, we show that our waveguides have lower than expected loss coefficients. This renders them suitable for integrated quantum optics applications.

  20. Calibrating echelle spectrographs with Fabry-Perot etalons

    CERN Document Server

    Bauer, Florian F; Reiners, Ansgar

    2015-01-01

    Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and less dynamic range problems. Fabry-Perot interferometers provide a regular and dense grid of lines and homogeneous amplitudes making them good candidates for next generation calibrators. We investigate the usefulness of Fabry-Perot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution and examine potential problems. The quasi periodic pattern of Fabry-Perot lines is used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We test our method with the HARPS spectrograph and compare our wavelength solution to the one derived from a laser frequency comb. The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelengt...

  1. Atmospheric temperature sensing with a multiorder Fabry-Perot interferometer.

    Science.gov (United States)

    Wang, J; Drayson, S R; Hayes, P B

    1989-12-01

    A Fabry-Perot interferometer has a periodic response. By matching the free spectral range of a Fabry-Perot interferometer (FPI) with the period of the CO(2) spectrum, considerable advantages of throughput and spectral resolution can be achieved, leading to high spectral resolution and vertical resolution for atmospheric temperature sounders. In this paper, the concept of a high resolution multiorder Fabry-Perot interferometer using portions of the 15-microm and 4.3-microm bands of CO(2)for the purpose of atmospheric temperature sounding is discussed. Suitable sounding spectral positions, FPI free spectral range, and weighting functions are calculated. An effective spectral resolution of 0.02 cm(-1) can be achieved by the proposed sounder with a FPI finess of ~100 which is within the present state-of-the-art technology in the infrared region, leading to considerable improvement in the vertical resolution of the atmospheric temperature sounder. PMID:20555996

  2. Time Delay Properties of a Fabry-Perot Interferometer

    Institute of Scientific and Technical Information of China (English)

    YUAN Shi; MAN Wei-Ning; YU Jin; GAO Jin-Yue

    2001-01-01

    The time delay properties of a Fabry-Perot interferometer are investigated. We found that the group velocity of light through a Fabry-Perot interferometer can be reduced to 10-4 of the light speed in vacuum and the time delay is 210ns, when the reflectivity is 0.999 and the distance between two mirrors is 1 cm. The system is analogous to the recently proposed one-dimensional photonic band-gap structures with a defect [Zhu et al. Opt.Commun. 174(2000)139].

  3. A Fabry-Perot Solid Etalon for Teaching.

    Science.gov (United States)

    Bruce, P. J.; And Others

    1986-01-01

    Describes a solid etalon Fabry-Perot interferometer, discussing free spectral range, instrumental finesse, and temperature effects. Provides schematic of temperature control/display circuit. Explains use of 100 millimeter camera lens and 10 power micrometer eyepiece for resolving rings and measure diameters. (JM)

  4. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2013-11-01

    Full Text Available This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.

  5. Variable Free Spectral Range Spherical Mirror Fabry-Perot Interferometer

    CERN Document Server

    Kerner, K; Yashchuk, V V; Budker, D; Kerner, Katherine; Rochester, Simon M.; Yashchuk, Valeriy V.

    2003-01-01

    A spherical Fabry-Perot interferometer with adjustable mirror spacing is used to produce interference fringes with frequency separation (c/2L)/N, N=2-15. The conditions for observation of these fringes are derived from the consideration of the eigenmodes of the cavity with high transverse indices.

  6. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    OpenAIRE

    E. A. K. Ford; A. L. Aruliah; Griffin, E. M.; I. McWhirter

    2008-01-01

    Data from the Fabry-Perot Interferometers at KEOPS (Sweden), Sodankyla (Finland), and Svalbard (Norway), have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankyla and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the...

  7. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    OpenAIRE

    E. A. K. Ford; A. L. Aruliah; Griffin, E. M.; I. McWhirter

    2008-01-01

    Data from the Fabry-Perot Interferometers at KEOPS (Sweden), Sodankylä (Finland), and Svalbard (Norway), have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general char...

  8. Dynamic Gain-Clamped Amplifier with Backward-Injection of a Fabry-Perot Laser

    Institute of Scientific and Technical Information of China (English)

    Chien-Hung; Yeh; Chih-Yang; Chen; Chien-Chung; Lee; Sien; Chi

    2003-01-01

    We have been experimentally demonstrated an active control technique of dynamic gain-clamped spectra for theerbium-doped fiber amplifiers (EDFA's) by a backward-injected Fabry-Perot (F-P) laser into this EDFA. In addition, employing a short length erbium-doped fiber (EDF) that not cause any gain saturation for preamplification in front of this amplifier module, it can reduce the noise figure degradation and simultaneously achieve gain variation from 11.1 dB to 0.5 dB for 10 dB input power level change.

  9. Hollow-core fiber Fabry-Perot photothermal gas sensor.

    Science.gov (United States)

    Yang, Fan; Tan, Yanzhen; Jin, Wei; Lin, Yuechuan; Qi, Yun; Ho, Hoi Lut

    2016-07-01

    A highly sensitive, compact, and low-cost trace gas sensor based on photothermal effect in a hollow-core fiber Fabry-Perot interferometer (FPI) is described. The Fabry-Perot sensor is fabricated by splicing a piece of hollow-core photonic bandgap fiber (HC-PBF) to single-mode fiber pigtails at both ends. The absorption of a pump beam in the hollow core results in phase modulation of probe beam, which is detected by the FPI. Experiments with a 2 cm long HC-PBF with femtosecond laser drilled side-holes demonstrated a response time of less than 19 s and noise equivalent concentration (NEC) of 440 parts-per-billion (ppb) using a 1 s lock-in time constant, and the NEC goes down to 117 ppb (2.7×10-7 in absorbance) by using 77 s averaging time. PMID:27367092

  10. Fiber optic, Fabry-Perot high temperature sensor

    Science.gov (United States)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  11. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  12. Dual-band Fabry-Perot lasing from single ZnO microbelt

    Science.gov (United States)

    Zhu, Qiuxiang; Qin, Feifei; Lu, Junfeng; Zhu, Zhu; Shi, Zengliang; Xu, Chunxiang

    2016-10-01

    Dual-band semiconductor microbelt lasing are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we demonstrated a dual-band Fabry-Perot (F-P) lasing from both length and width directions in a single ZnO microbelt. The lasing performance, spectral variation and mode structure significantly depended on the cavity size, which corresponded to the length and width of the ZnO microbelts. The resonant process and mechanism were investigated systematically through the experimental analysis and numerically FDTD simulation. The results of the dual-band F-P lasing modes and wide lasing wavelength are helpful to design the dual-wavelength electronic and optoelectronic devices.

  13. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    Science.gov (United States)

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.

  14. A stable fiber-based Fabry-Perot cavity

    CERN Document Server

    Steinmetz, T; Colombe, Y; Hunger, D; Hänsch, T W; Warburton, R J; Reichel, J

    2006-01-01

    We report the development of a fiber-based, tunable optical cavity with open access. The cavity is of the Fabry-Perot type and is formed with miniature spherical mirrors positioned on the end of single- or multi-mode optical fibers by a transfer technique which involves lifting a high-quality mirror from a smooth convex substrate, either a ball lens or micro-lens. The cavities typically have a finesse of $\\sim 1,000$ and a mode volume of 600 $\\mu$m$^3$. We demonstrate the detection of small ensembles of cold Rb atoms guided through such a cavity on an atom chip.

  15. Hydrocarbon gas detection with microelectromechanical Fabry-Perot interferometer

    Science.gov (United States)

    Mannila, Rami; Tuohiniemi, Mikko; Mäkynen, Jussi; Näkki, Ismo; Antila, Jarkko

    2013-05-01

    VTT Technical Research Centre of Finland has developed microelectromechanical (MEMS) Fabry-Perot interferometer (FPI) for hydrocarbon measurements. Fabry-Perot interferometer is a structure where is two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. The manufactured MEMS FPIs have been characterized. The tuning wavelength range of the MEMS FPI is 2.8-3.5 μm and its spectral resolution is 50-60 nm. VTT has designed and manufactured a handheld size demonstrator device based on the technology presented in this abstract. This device demonstrates gas detecting by measuring cigarette lighter gas and various plastic materials transmission spectra. The demonstrator contains light source, gas cell, MEMS FPI, detector and control electronics. It is connected to a laptop by USB connection, additional power supply or connection is not needed.

  16. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    Science.gov (United States)

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

  17. A novel Michelson Fabry-Perot hybrid interference sensor based on the micro-structured fiber

    Science.gov (United States)

    Zhang, Yaxun; Zhang, Yu; Wang, Zhenzhen; Liu, Zhihai; Wei, Yong; Zhao, Enming; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo

    2016-09-01

    We propose and demonstrate a novel Michelson Fabry-Perot hybrid fiber interference sensor. By integrating a Michelson interferometer in a two-core fiber and a Fabry-Perot interferometer in a micro silica-capillary, we produce the Michelson Fabry-Perot hybrid interference sensor. Owing to the structure characteristic of the micro-structured fiber, this hybrid fiber interference sensor can achieve the measurement of the axial strain and radial bending simultaneously. The measurement sensitivity of the axial train is 0.015 nm/με and the measurement sensitivity of the radial bending is 1.393 nm/m-1.

  18. Photoacoustic imaging using an 8-beam Fabry-Perot scanner

    Science.gov (United States)

    Huynh, Nam; Ogunlade, Olumide; Zhang, Edward; Cox, Ben; Beard, Paul

    2016-03-01

    The planar Fabry Perot (FP) photoacoustic scanner has been shown to provide exquisite high resolution 3D images of soft tissue structures in vivo to depths up to approximately 10mm. However a significant limitation of current embodiments of the concept is low image acquisition speed. To increase acquisition speed, a novel multi-beam scanner architecture has been developed. This enables a line of equally spaced 8 interrogation beams to be scanned simultaneously across the FP sensor and the photoacoustic signals detected in parallel. In addition, an excitation laser operating at 200Hz was used. The combination of parallelising the detection and the high pulse repetition frequency (PRF) of the excitation laser has enabled dramatic reductions in image acquisition time to be achieved. A 3D image can now be acquired in 10 seconds and 2D images at video rates are now possible.

  19. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    Science.gov (United States)

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  20. Mode switching of Fabry-Perot laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Herre, P.J.; Barabas, U.

    1989-08-01

    The mode switching process of a Fabry-Perot laser diode with low spontaneous input is analyzed. For understanding the transients, an additional mode competition is required. The analysis of this enhanced mode competition is presented. Its model is based on standing waves of the longitudinal laser modes burning in a spatial carrier corrugation which modulates the gain. Internal reflections by the gain corrugations always fulfill the resonance condition at the wavelength of the mirror resonances. In this way, each laser mode decreases slightly its own losses with increased photon density. With this, the total gain (inclusive of all losses) of the dominant laser mode is increased to a value > 0 during nearly the whole time of the switching process. Therefore, the photon density can increase exponentially in a rise time of about 1 ns.

  1. Fabry-Perot Observations of HH 1/2

    Directory of Open Access Journals (Sweden)

    A. Riera

    2005-01-01

    Full Text Available Presentamos nuevas observaciones Fabry-Perot del sistema HH1/2 en la l nea de H. Se han obtenidos los perfiles de las l neas, y los mapas de velocidad radial y de dispersi n de velocidades a partir de los canales de velocidad de los objetos HH 1 y HH 2. La distribuci on espacial de la velocidad radial de ambos objetos (HH 1, HH 2 presenta material desplazado al rojo hacia la fuente, y material desplazado al azul alej ndose de la fuente. Un modelo que contempla la presencia de emisi n directa+dispersada con tres condensaciones emisoras reproduce cualitativamente la distribuci n espacial de la velocidad radial y de la dispersi n de velocidades de HH 2.

  2. Millimeter-long fiber Fabry-Perot cavities.

    Science.gov (United States)

    Ott, Konstantin; Garcia, Sebastien; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-05-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

  3. Fiber Fabry-Perot interferometer for curvature sensing

    Science.gov (United States)

    Monteiro, Catarina S.; Ferreira, Marta S.; Silva, Susana O.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando

    2016-07-01

    A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.

  4. Fourier transform spectrometer based on Fabry-Perot interferometer.

    Science.gov (United States)

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap.

  5. Millimeter-long Fiber Fabry-Perot cavities

    CERN Document Server

    Ott, Konstantin; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-01-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

  6. Fiber Fabry-Perot cavity with high finesse

    CERN Document Server

    Hunger, David; Colombe, Yves; Deutsch, Christian; Hänsch, Theodor W; Reichel, Jakob

    2010-01-01

    We have realized a fiber-based Fabry-Perot cavity with CO2 laser-machined mirrors. It combines very small size, high finesse F>=130000, small waist and mode volume, and good mode matching between the fiber and cavity modes. This combination of features is a major advance for cavity quantum electrodynamics (CQED), as shown in recent CQED experiments with Bose-Einstein condensates enabled by this cavity [Y. Colombe et al., Nature 450, 272 (2007)]. It should also be suitable for a wide range of other applications, including coupling to solid-state emitters, gas detection at the single-particle level, fiber-coupled single-photon sources and high-resolution optical filters with large stopband.

  7. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    Science.gov (United States)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  8. Fabry-Perot Based Ranging Interferometer Receiver for High Spectral Resolution Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation (MAC) is pleased to present the following Phase II proposal for a Fabry-Perot Based Interferometer Receiver for the High Spectral...

  9. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    Science.gov (United States)

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  10. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    Caini Zhang; Xiangzhao Wang

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement.The usefulness of the interferometer is demonstrated by simulations and experiments.

  11. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During our Phase I SBIR research, we propose to integrate a novel low-temperature large-strain actuator technology into Fabry-Perot optical filters. The resulting...

  12. Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.

  13. Compact High-Resolution Broad-Band Terahertz Fabry-Perot Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our objective is to develop a compact scanning Fabry-Perot spectrometer, for satellite far-infrared astronomy and Earth remote sensing, that operates at wavelengths...

  14. Fabry-Perot observations of [FeX] in the Cygnus Loop and IC443

    International Nuclear Information System (INIS)

    The authors present the first results of an observational program of SNRs in the coronal lines of [FeX] and [FeXIV] using Fabry--Perot spectrophotometer. These support previously published brightnesses

  15. Engineering-reflected phase in Fabry-Perot sensors with resonant mirrors.

    Science.gov (United States)

    Gellineau, Antonio; Wong, Yu-Po; Solgaard, Olav

    2013-12-01

    Fabry-Perot cavities made with photonic crystal (PC) mirrors and other resonant structures exhibit nontraditional characteristics due to the strong wavelength dependence of their reflected phase. This Letter describes how engineering the phase of PC mirrors enables sensors that are tolerant to variations in laser center frequency and line width. Reflection spectra measurements of Fabry-Perot cavities made with PC mirrors were collected as a function of wavelength and cavity length, providing experimental verification of theory and simulations.

  16. Tunable Fabry-Perot filter and grating hybrid modulator to improve dispersive spectrometer resolution

    Science.gov (United States)

    Fang, Liang; Li, Guojun; Yang, Huan; Zhou, Chongxi

    2016-05-01

    We describe a tunable Fabry-Perot filter and grating hybrid modulator to achieve a higher spectral resolution compared with that produced by a single grating with the same period. In the hybrid modulator, a tunable Fabry-Perot filter is designed with a long cavity to accommodate a multi-order narrowband pre-filter. A grating is then utilized to separate these multi-orders spatially. Scanning the air gap of the tunable Fabry-Perot filter within 1/2 wavelength, the entire spectrogram can be achieved by compositing each group of transmitted multi-orders. Light passes first through the Fabry-Perot cavity and then into the grating. Thus, all of the light is incident on the Fabry-Perot cavity at a given angle, which can reduce the requirement for incident beam alignment and simplify the operation of the hybrid modulator. The structural matching conditions of the tunable Fabry-Perot filter and grating were presented based on the operating law of the hybrid modulator. In terms of the Rayleigh criterion, the practical spectral resolution of the hybrid modulator can be increased by at least twice that of the single grating. Experiments with a neon lamp revealed that the spectral resolution of the hybrid modulator was nearly double that of a single grating.

  17. Influence of intensity loss in the cavity of a folded Fabry-Perot interferometer on interferometric signals.

    Science.gov (United States)

    Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng

    2011-06-01

    Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, the intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.

  18. Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires.

    Science.gov (United States)

    Dobrovolsky, Alexander; Stehr, Jan E; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2015-12-16

    Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (μ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry.

  19. Performance of a dual Fabry-Perot cavity refractometer.

    Science.gov (United States)

    Egan, Patrick F; Stone, Jack A; Hendricks, Jay H; Ricker, Jacob E; Scace, Gregory E; Strouse, Gregory F

    2015-09-01

    We have built and characterized a refractometer that utilizes two Fabry-Perot cavities formed on a dimensionally stable spacer. In the typical mode of operation, one cavity is held at vacuum, and the other cavity is filled with nitrogen gas. The differential change in length between the cavities is measured as the difference in frequency between two helium-neon lasers, one locked to the resonance of each cavity. This differential change in optical length is a measure of the gas refractivity. Using the known values for the molar refractivity and virial coefficients of nitrogen, and accounting for cavity length distortions, the device can be used as a high-resolution, multi-decade pressure sensor. We define a reference value for nitrogen refractivity as n-1=(26485.28±0.3)×10(-8) at p=100.0000  kPa, T=302.9190  K, and λ(vac)=632.9908  nm. We compare pressure determinations via the refractometer and the reference value to a mercury manometer.

  20. Optical fiber Fabry-Perot interferometer for microorganism growth detection

    Science.gov (United States)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Luo, Shuyang; Geng, Xiangyi

    2016-07-01

    An optical fiber Fabry-Perot interferometer (FPI) based on hollow-core photonic crystal fiber (HCPCF) for microorganism growth detection is proposed and demonstrated. The FPI is formed by splicing both ends of a short section of HCPCF to SMFs and cleaving the SMF pigtail to a proper length. By measuring the fringe contrast of interference pattern, the refractive index (RI) changes of analyte during microorganism growth can be obtained. RI response of the sensor was investigated theoretically and experimentally. It shows linear response with sensitivity of -136 dB/RIU and good repeatability. Temperature response was also tested and the result confirms the low temperature cross-sensitivity of the sensor. Detection of yeast growth in liquid medium by the FPI sensor was conducted and the result shows the characteristic of typical yeast growth curve. With its advantages of high RI sensitivity, low temperature cross-sensitivity, capability for real-time measurement and so on, this FPI sensor has great potential in biosensing.

  1. Fiber-coupled short Fabry-Perot resonators

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.; Marcuse, D. (AT and T Bell Labs., Holmdel, NJ (USA))

    1989-05-01

    Fabry-Perot resonators intended as filters in wavelength-multiplexed optical communications systems may have to be very short (on the order of 10 {mu}m) in order to increase their free spectral range. Short, yet tunable cavities can be designed as air gaps between two fibers placed in close proximity with highly reflecting mirrors deposited on their ends. However, an air-gap resonator with plane mirrors between closely spaced fiber ends may yield low throughout because of the poor match between the modes of typical single-mode fibers and the resonant mode in the air-gap cavity. The throughput can be improved by confining the resonant mode by means of a hollow dielectric tube placed inside the resonator. This paper compares short fiber-coupled Fabry-Parot resonators with and without an inserted hollow dielectric waveguide and derives expressions for their transmission losses. The authors show that the throughput of both types of resonator can be improved significantly by using a special fiber with large mode size to couple to the resonator. The special fiber is then spliced to a conventional single-mode fiber. They conclude that the resonator with an inserted hollow dielectric waveguide offers increased throughput for resonators with high finesse.

  2. Demonstration of Fabry-Perot interferometric spectrometry technology

    Science.gov (United States)

    Petersen, T. V.; Makel, D. B.; Thurman, C.

    1993-01-01

    As rocket engine components experience wear or failure, anomalous materials may be entrained in the plume. Historically, visible plume anomalies have preceded many rocket engine failures, some of which have been catastrophic. Development of a small, rugged, high-speed, high resolution Fabry-Perot interferometer (FPI) based spectrometer capable of detecting the spectral signatures of eroding engine components during rocket engine test and/or flight operations is described. An operational plume spectrometer fabricated with miniaturized optics has been successfully tested. An extensive test series was conducted to define the limits of the spectrometer with respect to time-response and resolution. The data collected during testing were correlated with measurements obtained using sensitive ground equipment in order to benchmark the spectrometer's performance against a known device. The FPI demonstrated the reliability required for a flight instrument by functioning satisfactorily at or near the rocket engine test stand environment. Several of the optical components are interchangeable, allowing collection of a greater variety of plume signals. Also, the FPI's high resolution capabilities suggest it is suitable for application to both absorption and emission spectroscopy.

  3. Resolution improvement of grating spectrometer by using a tunable Fabry-Perot filter

    Science.gov (United States)

    Fang, Liang; Shi, Zhendong; Qiu, Chuankai; Zhou, Chongxi

    2015-10-01

    Aiming at the problem of the resolution reduction in a miniaturized grating spectrometer, we presented a method to improve its spectral resolution by inserting a tunable Fabry-Perot filter into its optical path before the grating. The Fabry-Perot filter was designed to filter out a partial spectrogram and separate the original undistinguishable spectral lines so as to make their actual wavelengths can be detected. The different cavity length of the Fabry-Perot filter is corresponding to the different separated partial spectrogram. Combining all the separated partial spectrograms, an entire spectrogram with improved resolution can be achieved. Experimentally, the spectral resolution of a grating dispersive system was improved from 2 nm to 1.2nm in a broad spectral range by insetting a homemade tunable Fabry-Perot filter, which demonstrated the feasibility of this scheme. The tunable Fabry-Perot filter is fit for miniaturization by using MEMS technology and is able to work as an independent module. The method proposed provides a potential way to improve the spectral resolution without reducing the spectral range of the existing miniaturized grating spectrometers.

  4. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy.

    Science.gov (United States)

    Drouin, Brian J; Tang, Adrian; Schlecht, Erich; Brageot, Emily; Gu, Q Jane; Ye, Y; Shu, R; Frank Chang, Mau-Chung; Kim, Y

    2016-08-21

    The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps. PMID:27544098

  5. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy

    Science.gov (United States)

    Drouin, Brian J.; Tang, Adrian; Schlecht, Erich; Brageot, Emily; Gu, Q. Jane; Ye, Y.; Shu, R.; Frank Chang, Mau-chung; Kim, Y.

    2016-08-01

    The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps.

  6. Selective excitation of Fabry-Perot or whispering-gallery mode-type lasing in GaN microrods

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyeonjun; Hyun, Jerome K.; Chung, Kunook; Oh, Hongseok; Yi, Gyu-Chul, E-mail: gcyi@snu.ac.kr [Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-11-17

    Lasing from long semiconductor nanorods is dictated by Fabry-Perot (FP) resonances whereas that from large-diameter microrods is determined by whispering gallery modes (WGMs). Lengths and diameters intermediate between the two systems represent an important size regime for photonics and electronics, but have not been studied in detail. Here, we report on the detection of FP and WGM lasing emissions from a single GaN microrod, and demonstrate the ability to switch between the two lasing mechanisms by translating the excitation beam along the microrod. The competition between FP and WGM-type lasing was studied by finite-difference time-domain simulation and statistical analysis by measuring microrods of various diameters. Finally, control over the relative lasing intensities originating from either FPs or WGMs was demonstrated by tuning the polarization of the emission.

  7. Distributed torsion sensor based on cascaded coaxial cable Fabry-Perot interferometers

    Science.gov (United States)

    Cheng, Baokai; Zhu, Wenge; Hua, Liwei; Liu, Jie; Li, Yurong; Nygaard, Runar; Xiao, Hai

    2016-07-01

    Cascaded coaxial cable Fabry-Perot interferometers (FPI) are studied and demonstrated for distributed torsion measurement. Multiple weak reflectors are implemented on a coaxial cable so that any two consecutive reflectors can form a Fabry-Perot cavity. By fixing the cable sensor in a helical form on a shaft, the distributed torsion of the shaft can be measured by the cascaded Fabry-Perot cavities. A test on a single section shows that the sensor has a linear response with a sensitivity of 1.834 MHz (rad/m)-1 in the range of twisted rate from 0 to 8.726 rad m-1. The distributed torsion sensing capability is useful in drilling process monitoring, structure health monitoring and machine failure detection.

  8. Improved spectral characteristics of 980 nm broad area slotted Fabry-Perot diode lasers

    Institute of Scientific and Technical Information of China (English)

    Gao Zhuo; Wang Jun; Xiong Cong; Liu Yuanyuan; Liu Suping; Ma Xiaoyu

    2012-01-01

    A novel broad area slotted Fabry-Perot diode laser is designed and fabricated.Using a new semianalytical method,we introduce effective refractive index perturbations in the form of etched slot features into a conventional 980 nm broad area Fabry-Perot cavity,and the spectral characteristics of the device are expected to be noticeably improved.A low density of slot features is formed by using standard optical lithography and inductively coupled plasma dry etching.The experimental results show that the full spectral width at half-maximum is less than 0.4 nm,meanwhile,the thermal shift of the emission spectrum is decreased from 0.26 to 0.07 nm/℃ over a temperature range of 10 to 60 ℃.The improved spectral characteristics of the device are proved to be attributed to such slotted Fabry-Perot laser structures.

  9. Two-dimensional photonic-crystal-based Fabry-Perot etalon.

    Science.gov (United States)

    Ho, Chong Pei; Pitchappa, Prakash; Kropelnicki, Piotr; Wang, Jian; Cai, Hong; Gu, Yuandong; Lee, Chengkuo

    2015-06-15

    We demonstrate the design, fabrication, and characterization of a polycrystalline-silicon-based photonic crystal Fabry-Perot etalon, which is aimed to work in the mid-infrared wavelengths. The highly reflective mirrors required in a Fabry-Perot etalon are realized by freestanding polycrystalline-silicon-based photonic crystal membranes with etched circular air holes. A peak reflection of 96.4% is observed at 3.60 μm. We propose a monolithic CMOS-compatible fabrication process to configure two such photonic crystal mirrors to be in parallel to form a Fabry-Perot etalon; a filtered transmission centered at 3.51 μm is observed. The quality factor measured is around 300, which is significantly higher than in existing works. This creates the possibility of using such devices for high-resolution applications such as gas sensing and hyperspectral imaging.

  10. Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance.

    Science.gov (United States)

    Chen, Yungting; Chen, Yangfang

    2011-04-25

    The ultraviolet random lasing behavior of an ensemble of ZnO nanocombs has been demonstrated. It is found that the Fabry-Perot resonance induced by nanocomb geometry can greatly enhance random lasing action with a low threshold condition. Besides, the emission spectra exhibit few sharp lasing peaks with a full width at half maximum (FWHM) of less than 0.3 nm and a narrow background emission with a FWHM of about 5 nm. Cathodoluminescence mapping images are utilized to analyze the Fabry-Perot resonance phenomenon. The resonant effect on the lasing system is further confirmed by nanocombs with different resonant cavity lengths. The unique lasing behavior induced by the simultaneous occurrence of Fabry-Perot resonance and random laser action shown here may open up a new possibility for the creation of highly efficient light emitting devices.

  11. High Finesse Fiber Fabry-Perot Cavities: Stabilization and Mode Matching Analysis

    CERN Document Server

    Gallego, Jose; Alavi, Seyed Khalil; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter; Ratschbacher, Lothar

    2015-01-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background ph...

  12. Gamma radiation resistant Fabry-Perot fiber optic sensors

    Science.gov (United States)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  13. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  14. Wavelength calibration with Fabry Perot Interferometers - yes we can!

    Science.gov (United States)

    Franziskus Bauer, Florian; Zechmeister, Mathias; Reiners, Ansgar

    2015-08-01

    Hollow-cathode lamps (HCLs) are used as default wavelength standard for spectroscopic measurements but have a number of well-known shortcomings. Advancing to cm/s precision in radial velocity experiments requires more stable calibration sources with more uniform line distributions. Fabry Perot Interferometers (FPI) are a practical alternative with a well-suited line distribution at relatively low cost. We present a simple method to characterize FPIs using standard HCLs and including the FPI spectrum in the wavelength calibration process. We propose to use the HCL wavelength solution to define a rough wavelength scale that is used to approximate the FPI peak positions. We assume that the FPI mirror distance is a smooth function of wavelength and utilize the large number of FPI peaks (typically 10^4) to consistently model all FPI peak wavelengths. With this approach, we anchor the dense FPI lines with the absolute HCL-scale combining their precision and accuracy. We test our method with the HARPS spectrograph and compare our wavelength calibration to one derived from a laser frequency comb (LFC) spectrum. Our combined HCL/FPI wavelength calibration removes the known, large-amplitude distortions of 50 m/s that occur in the HCL solution. Direct comparison with the LFC solution bears only small differences between the LFC and the HCL/FPI solutions and demonstrates that the HCL/FPI solution can overcome the most important shortcomings in HCL wavelength solutions. An FPI can provide an economical alternative to LFCs in particular for smaller projects.

  15. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity. PMID:26625075

  16. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  17. Negative Goos-H(a)nchen Effect in Thin-Film Fabry-Perot Filter

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Yu; LIU Xu; MA Xin; LI Yi-Yu; GU Pei-Fu

    2007-01-01

    We investigate the Goos-Hanchen effect of a Gaussian light beam reflected by the thin-film Fabry-Perot filter. It is shown that the Goos-Hanchen shift can be either negative or positive. The Gaussian-beam analysis and stationary phase method are introduced to calculate the lateral shift between the incident beam and the reflected beam at different wavelengths and to analyse the Goos-Hanchen effect in the thin-film Fabry-Perot filter. The effect of the incident beam diameter is also discussed.

  18. Period Doubling in a Fabry-Perot Laser Diode Subject to Optical Pulse Injection

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yue-Peng; WANG Yun-Cai; ZHANG Ming-Jiang; AN Yi; WANG Ji-Long

    2007-01-01

    Experimental study and numerical simulations of the period doubling of injected optical pulses in Fabry-Perot laser diodes are presented. In our experiments, the period doubling is achieved within a wide input frequency range and the period doubling of the injected optical pulses with 6.32 GHz repetition rate is investigated in detail. The obtained experimental results indicate that period doubling occurs at an appropriate injected optical power level when the bias current of the Fabry-Perot laser diode is located in lower ranges. Moreover, the experimental observed features have been numerically demonstrated by using a coupled rate-equation model. Numerical simulations are consistent with the experimental results.

  19. High-temperature fiber-optic Fabry-Perot interferometric sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenhui; Jiang, Yi; Gao, Ran, E-mail: bitjy@bit.edu.cn [School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 (China); Liu, Yuewu [Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Science, Beijing 100190 (China)

    2015-05-15

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  20. Decreased vibrational susceptibility of Fabry-Perot cavities via designs of geometry and structural support

    Institute of Scientific and Technical Information of China (English)

    Yang Tao; Li Wen-Bo; Zang Er-Jun; Chen Li-Sheng

    2007-01-01

    Ultra-stable optical cavities are widely used for laser frequency stabilization. In these experiments the laser performance relies on the length stability of the Fabry-Perot cavities. Vibration-induced deformation is one of the dominant factors that affect the stability of ultra-stable optical cavities. We have quantitatively analysed the elastic deformation of Fabry-Perot cavities with various shapes and mounting configurations. Our numerical result facilitates a novel approach for the design of ultra-stable cavities that are insensitive to vibrational perturbations. This approach can be applied to many experiments such as laser frequency stabilization, high-precision laser spectroscopy, and optical frequency standards.

  1. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    Science.gov (United States)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  2. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    Science.gov (United States)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  3. Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor.

    Science.gov (United States)

    Cheng, Linghao; Wang, Cengzhong; Huang, Yunyun; Liang, Hao; Guan, Bai-Ou

    2016-08-22

    A miniature fiber-optic Fabry-Perot is built on the tip of a single mode fiber with a thin silk fibroin film as the diaphragm for pressure measurement. The silk fibroin film is regenerated from aqueous silk fibroin solution obtained by an environmentally benign fabrication process, which exhibits excellent optical and physicochemical properties, such as transparency in visible and near infrared region, membrane-forming ability, good adhesion, and high mechanical strength. The resulted Fabry-Perot pressure sensor is therefore highly biocompatible and shows good airtightness with a response of 12.3 nm/kPa in terms of cavity length change. PMID:27557238

  4. Semiconductor devices incorporating multilayer interference regions

    Science.gov (United States)

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  5. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis

    Science.gov (United States)

    Gallego, J.; Ghosh, S.; Alavi, S. K.; Alt, W.; Martinez-Dorantes, M.; Meschede, D.; Ratschbacher, L.

    2016-03-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background photons. We expect that our results contribute toward the integration of high-finesse fiber Fabry-Perot cavities into compact and robust quantum-enabled devices in the future.

  6. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  7. A Lossy Fabry-perot Based Optical Filter for Natural Gas Analysis

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2014-01-01

    A set-up for optical gas composition measurement based on absorption spectroscopy is composed of a white light source, a gas cell and a spectrometer. The Fabry-Perot optical filter is suitable for miniaturization of this system, as it is composed of only two reflectors with a transparent layer in-be

  8. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth;

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  9. High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity

    DEFF Research Database (Denmark)

    Feuchter, Thomas; Thirstrup, Carsten

    1994-01-01

    A high precision measurement technique for characterizing the propagation loss in silica low-loss optical waveguides, based on measuring the contrast of a Fabry-Perot cavity, is demonstrated. The cavity consists of the waveguide coupled to two polarization-maintaining fibers, each end facet coated...

  10. All-Optical Switching Using Fabry-Perot Laser Diodes(Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P. K. A. Wai; L. Y. Chan; H. Y. Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  11. A Ray-tracing Method to Analyzing Modulated Planar Fabry-Perot Antennas

    DEFF Research Database (Denmark)

    Hougs, Mikkel Dahl; Kim, Oleksiy S.; Breinbjerg, Olav

    2015-01-01

    A new approach for fast modelling of Fabry-Perot antennas with modulated partially reflective surfaces (PRS) using ray-tracing is proposed. For validation of the method, a configuration is introduced which consists of a cavity with a modulated PRS, fed internally by a magnetic dipole. The PRS...

  12. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    Yun-Jiang Rao; Jian Jiang; Zheng-Lin Ran

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  13. Development of tunable Fabry-Perot spectral camera and light source for medical applications

    Science.gov (United States)

    Kaarre, M.; Kivi, S.; Panouillot, P. E.; Saari, H.; Mäkynen, J.; Sorri, I.; Juuti, M.

    2013-05-01

    VTT has developed a fast, tunable Fabry-Perot (FP) filter component and applied it in making small, lightweight spectral cameras and light sources. One application field where this novel technology is now tested is medical field. A demonstrator has been made to test the applicability of FP based spectral filtering in the imaging of retina in visible light wavelength area.

  14. APPLICATION OF A FABRY-PEROT INTERFEROMETRY TO REMOTE SENSING OF GASEOUS POLLUTANTS

    Science.gov (United States)

    A method for the remote sensing of molecular species via the rotational Raman effect was developed. The method uses the properties of a scanning Fabry-Perot interferometer to multiplex the spectra in a manner specific for a given species. Furthermore, the method allows the 'in pr...

  15. Optical Bistability by Using a Tunable Fibre Laser with Fibre Fabry-Perot

    Institute of Scientific and Technical Information of China (English)

    L(U) Guo-Hui; YE Hong-An; LI Jun-Qing; SUN Xiu-Dong; ZHANG Xin-Ming

    2004-01-01

    @@ We observe a novel hybrid optical bistability by using an electro-optically tuned cw fibre laser with a fibre FabryPerot filter. The principles of the opticalbistable device in two operation manners are analysed. The applications in monitoring the wavelength shift of a tunable fibre laser and fibre sensor of digital type are also discussed.

  16. A new fiber-tip Fabry-Perot interferometer and its application for pressure measurement

    Science.gov (United States)

    Wang, Guanjun; Liu, Shen; Zhao, Jing; Liao, Changrui; Xu, Xizhen; Wang, Yiping

    2015-07-01

    This paper reports a new silica fiber-tip Fabry-Perot interferometer with thin film and large surface area characteristic for high pressure and vacuum degree detection simultaneously, which is fabricated by etching a flat fiber tip into concave surface firstly, with subsequent arc jointing the concave fiber into a inline Fabry-Perot cavity, then drawing one surface of the F-P cavity into several micrometers scale by arc discharge and finally etching the surface into sub-micrometer scale integrally. As the silica fiber-tip Fabry-Perot interferometer film thickness could be tailored very thinly by HF acid solution, plus the surface area of thin film could be expanded during the chemical etching process, the variation of the bubble cavity length is very sensitive to the inner/outer pressure difference of the fiber-tip Fabry-Perot interferometer. Experimental result shows an high sensitivity of 780nm/MPa is feasible. Such configuration has the advantages of lowcost, ease of fabrication and compact size, which make it a promising candidate for pressure and vacuum measurement.

  17. H-ALPHA FABRY-PEROT OBSERVATIONS OF THE DENSITY-WAVE PATTERN IN M51

    NARCIS (Netherlands)

    VOGEL, SN; RAND, RJ; GRUENDL, RA; TEUBEN, PJ

    1993-01-01

    The Maryland-Caltech wide-field Fabry-Perot camera has been used to image Ha emission in the grand design spiral galaxy M51. The velocity field of the ionized gas has been determined over most of the optical disk at an angular resolution of 2''-8'' and a relative velocity accuracy of 1-2 km s-1 rms.

  18. All-Optical Switching Using Fabry-Perot Laser Diodes (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai; L.; Y.; Chan; H.; Y.; Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  19. Fast charge exchange spectroscopy using a Fabry-Perot spectrometer in the JIPP TII-U tokamak

    International Nuclear Information System (INIS)

    A new charge exchange spectroscopic technique using a Fabry-Perot spectrometer has been developed to increase the photon flux at the detector and improve the time resolution of ion temperature and plasma rotation velocity measurements. The spectral resolution is obtained by arranging two dimensional fiber optics and a two dimensional detector at the focal plane of a coupled lens located on both sides of a Fabry-Perot spectrometer. The effective finesse of the Fabry-Perot interferometer in this system is 14. The time evolution of the ion temperature is obtained with a time resolution of 125 μs and with the spatial resolution of 3 cm (8 channels). (author)

  20. A laser-lock concept to reach cm/s-precision in Doppler experiments with Fabry-Perot wavelength calibrators

    CERN Document Server

    Reiners, A; Ulbrich, R G

    2014-01-01

    State-of-the-art Doppler experiments require wavelength calibration with precision at the cm/s level. A low-finesse Fabry-Perot interferometer (FPI) can provide a wavelength comb with a very large bandwidth as required for astronomical experiments, but unavoidable spectral drifts are difficult to control. Instead of actively controlling the FPI cavity, we propose to passively stabilize the interferometer and track the time-dependent cavity length drift externally. A dual-finesse cavity allows drift tracking during observation. The drift of the cavity length is monitored in the high-finesse range relative to an external standard: a single narrow transmission peak is locked to an external cavity diode laser and compared to an atomic frequency. Following standard locking schemes, tracking at sub-mm/s precision can be achieved. This is several orders of magnitude better than currently planned high-precision Doppler experiments. It allows freedom for relaxed designs rendering this approach particularly interesting...

  1. High Resolution Fabry-Perot Spectroscopy Of Comet Fragments 73P/ Schwassmann-Wachmann 3-B,C

    Science.gov (United States)

    Oliversen, Ronald J.; Mierkiewicz, E. J.; Morgenthaler, J. P.; Harris, W. M.; Kokorowski, M.; Kidder, A.; Schnackenberg, T.; Carpena Nunez, J.; Hall, T.; Haffner, L.

    2006-09-01

    In May 2006, comet 73P/Schwassmann-Wachmann 3 (SW3) made a spectacular close approach to the Earth. During its 1995 apparition, the comet fragmented into several pieces. One of the brighter components, SW3-B, fragmented into dozens of pieces during the 2006 apparition while another bright fragment, SW3-C did not. Understanding the difference between these two fragments will contribute significantly to our understanding of cometary interiors. We performed observations of SW3-B and SW3-C from Kitt Peak using the Fabry-Perot spectrometers at the McMath-Pierce (MMP) telescope from April 29 - May 10 and at the Wisconsin Hydrogen Alpha Mapper (WHαM) from May 1 - 6, 2006. This period is significant due to its proximity to perigee, overlap with complementary observations, and coincidence with the onset and decline-phase of a major outburst/fragmentation event from SW3-B. The MMP and WHAM Fabry-Perot spectrometers made high resolution measurements of [O I] and NH2 emissions near 6300 Å at δV = 5 km/s and 12 km/s with 4.5 arcmin and 1 degree fields of view, respectively. Many of the spectra separate the cometary and terrestrial [O I] lines and allow determination of water production rates. We report the preliminary analysis of these data, including discussion of the radial distribution of emissions, a comparison activity levels between the two fragments, and a comparison with complementary production rate measurements made over the same period. In addition, following the SW3-B May 9 outburst, H20+ measurements near 6200 Å were made to map the acceleration of water ions near the head and down the tail.

  2. Recent Progress in Multiparameter Measurement Based on Extrinsic Fiber-Optic Fabry-Perot Interferometers and Fiber Gratings

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a review of recent progress in simultaneous measurement of multiparameters including strain, temperature, vibration, transverse load, based on the combinations of extrinsic fiber-optic Fabry-Perot interferometers and fiber gratings.

  3. Determination of Absolute Plate Spacing for the Fabry-Perot Subassembly of the Thermosphere Imager for Global Observations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Task 1: rad test AD7746 component for failure dosage for use in GEO Task 2: Algorithm for determining absolute plate spacing of the TIGO Fabry-Perot plates,...

  4. Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet.

    Science.gov (United States)

    Sun, Bing; Wang, Yiping; Qu, Junle; Liao, Changrui; Yin, Guolu; He, Jun; Zhou, Jiangtao; Tang, Jian; Liu, Shen; Li, Zhengyong; Liu, Yingjie

    2015-02-01

    We investigated a novel and ultracompact polymer-capped Fabry-Perot interferometer, which is based on a polymer capped on the endface of a single mode fiber (SMF). The proposed Fabry-Perot interferometer has advantages of easy fabrication, low cost, and high sensitivity. The variation of the Fabry-Perot cavity length can be easily controlled by using the motors of a normal arc fusion splicer. Moreover, the enhanced mechanical strength of the Fabry-Perot interferometer makes it suitable for high sensitivity pressure and temperature sensing in harsh environments. The proposed interferometer exhibits a wavelength shift of the interference fringes that corresponds to a temperature sensitivity of 249 pm/°C and a pressure sensitivity of 1130 pm/MPa, respectively, around the wavelength of 1560 nm.

  5. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    OpenAIRE

    Ji Xia; Qi Wang; Xu Liu; Hong Luo

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power o...

  6. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  7. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    Science.gov (United States)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  8. Fabry-Perot Study in the Orion Nebula (M 42: Protoplanetary Disks

    Directory of Open Access Journals (Sweden)

    Eduardo de la Fuente

    2003-01-01

    Full Text Available Se presenta un resumen de los resultados cinemáticas obtenidos del estudio Fabry-Perot en Hα de algunos proplyds en la nebulosa de Orión. Estos resultados se presentan en detalle en de la Fuente et al. (2003 a,b. Se obtienen velocidades sistémicas, tasas de perdida de masa, edad de los discos y perfiles de velocidad radial. Encontramos que la interferometria Fabry-Perot constituye una técnica efectiva para la detección de proplyds. Se discuten algunos aspectos astrobiológicos de estos resultados que ilustramos usando los proplyds 168-326, 167-317, 163-317, 158-323, 158-327 y 161-314.

  9. Understanding the concept of resolving power in the Fabry-Perot interferometer using a digital simulation

    Energy Technology Data Exchange (ETDEWEB)

    Juvells, I [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Carnicer, A [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Ferre-Borrull, J [Departament d' Enginyeria Electronica, Universitat Rovira i Virgili, Electrica i Automatica. Av. Paisos Catalans 26, Campus Sescelades 43007 Tarragona (Spain); MartIn-Badosa, E [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Montes-Usategui, M [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2006-09-01

    The resolution concept in connection with the Fabry-Perot interferometer is difficult to understand for undergraduate students enrolled in physical optics courses. The resolution criterion proposed in textbooks for distinguishing equal intensity maxima and the deduction of the resolving power equation is formal and non-intuitive. In this paper, we study the practical meaning of the resolution criterion and resolution power using a computer simulation of a Fabry-Perot interferometer. The light source in the program has two monochromatic components, the wavelength difference being tunable by the user. The student can also adjust other physical parameters so as to obtain different simulation results. By analysing the images and graphics of the simulation, the resolving power concept becomes intuitive and understandable.

  10. Photonic crystal fibre Brillouin laser based on Bragg grating Fabry-Perot cavity

    Institute of Scientific and Technical Information of China (English)

    Geng Dan; Yang Dong-Xiao; Shen Guo-Feng; Zhang Xian-Min

    2008-01-01

    A photonic crystal fibre Brillouin laser based on fibre Bragg grating Fabry-Perot cavity is presented. A highly nonlinear photonic crystal fibre 25 m in length is used as Brillouin gain medium and fibre Bragg grating Fabry-Perot cavity is chosen in order to enhance the laser conversion efficiency and suppress the higher-order Stokes waves. The laser reaches the threshold at input power of 35 mW, and the experimental laser conversion efficiency achieves 18% of the input power of 140 mW and does not show higher-order Stokes waves. A photonic crystal fibre BriUouin laser withshorter fibre length and lower threshold is experimentally realized.

  11. Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Polemi

    2012-01-01

    Full Text Available We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arranged in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.

  12. Coherent electron transparent tunneling through a single barrier within a Fabry-Perot cavity

    Science.gov (United States)

    Stolle, Jason; Baum, Chaz; Amann, Ryan; Haman, Ryan; Call, Tanner; Li, Wei

    2016-07-01

    Electromagnetic wave and quantum DeBroglie wave have many parallels between each other. We investigate the quantum mechanical counterpart of electromagnetic resonant tunneling through a non-absorbing metal layer. It is confirmed that an electron also has transparent transmission through a single barrier within a Fabry-Perot like cavity. This tunneling structure is actually a distortion of the Fabry-Perot echelon. We find that for a specific resonant electron energy, the cavity length is related to the electron's DeBroglie wavelength; and the single barrier can be located at a series positions with an interval equal to a half of the DeBroglie wavelength, not just at the center of the cavity. This tunneling phenomenon will have novel applications in quantum devices such as the resonant tunneling diode and scanning tunneling microscope. The results of this paper should also have impact on related electromagnetic research and application.

  13. Design and Fabrication of Integrated Fabry-Perot Type Color Reflector for Reflective Displays.

    Science.gov (United States)

    Cho, Seong M; Cheon, Sang Hoon; Kim, Tae-Youb; Ah, Chil Seong; Song, Juhee; Ryu, Hojun; Chu, Hye Yong

    2016-05-01

    A Fabry-Perot type integrated color reflector, with red/blue/green colors as subpixels, was designed and fabricated with Si substrate. Ag films were used as reflective mirror layers, SiO2 films were used as Fabry-Perot cavity layers and W films were used as partially reflective layers for the cavity. To minimize the effects of the thickness variation of the oxide cavity layers, the structure of the color reflector was optimized, and the differential deposition scheme was devised and applied in the fabrication process. The integrated color reflector was successfully fabricated with the proposed fabrication scheme. The measured white reflectance was > 45% in the visible spectrum range and -49% at 550 nm wavelength. The fabricated reflector had moderate color gamut of 17% of the National Television System Committee (NTSC) standard and it showed very high white reflectivity. The fabricated color reflector is expected to be applicable to reflective displays.

  14. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review.

    Science.gov (United States)

    Islam, Md Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-04-24

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

  15. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator.

    Science.gov (United States)

    Wieduwilt, T; Dellith, J; Talkenberg, F; Bartelt, H; Schmidt, M A

    2014-10-20

    We discuss a fiber-integrated refractive index sensor with strongly improved detection performance. The resonator has been implemented by means of focused-ion beam milling of a step index fiber and shows a sensitivity of about 1.15µm/RIU. Coating the resonator walls led to a strongly improved mirror reflectivity by a factor of about 26. Design rules for device optimization and a detailed mathematical analysis are discussed, revealing that the sensor operates as an optimized Fabry-Perot resonator. We also show that the performance of such kind of Fabry-Perot sensors is, in general, limited by the detection limit function - a quantity depending on the cavitiy's finesse and on the measurement capabilities used.

  16. High Gain Slot Array with Fabry-Perot Cavity Feeding Circuit

    Directory of Open Access Journals (Sweden)

    Halim Boutayeb

    2016-01-01

    Full Text Available A new approach for designing slot arrays using a Fabry-Perot cavity for the feeding circuit is presented. The proposed array has simpler and smaller feeding circuit compared to conventional feeding networks that have multiple dividers or combiners. The dividers and combiners are usually sources of losses. In addition, the profile of the proposed array is not limited by the half-wavelength resonance condition that exists for Fabry-Perot resonator antennas based on partially reflecting surfaces. The operating frequency is not sensitive to the profile of the antenna. A small profile can be achieved without the utilization of an artificial magnetic conductor or a substrate with high dielectric constant. To validate the proposed approach, full-wave numerical results are presented at 5.8 GHz showing good impedance matching, a high gain of about 22 dB, and an efficiency of 76%.

  17. Optical Analog-to-digital Conversion Scheme Based on Tunable Fabry-Perot Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Zheng

    2007-01-01

    Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.

  18. Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter.

    Science.gov (United States)

    Zhang, Weifeng; Ehteshami, Nasrin; Liu, Weilin; Yao, Jianping

    2015-07-01

    We report the design, fabrication, and testing of a silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter. Spectral measurement shows that the filter has a narrow notch in reflection of approximately 46 pm, a Q-factor of 33,500, and an extinction ratio of 16.4 dB. DC measurement shows that the average central wavelength shift rates with forward and reverse bias are -1.15  nm/V and 4.2  pm/V, respectively. Due to strong light confinement in the Fabry-Perot cavity, the electro-optic frequency response shows that the filter has a 3-dB modulation bandwidth of ∼5.6  GHz. The performance of using the filter to perform modulation of a 3.5  Gb/s2(7)-1 nonreturn-to-zero pseudorandom binary sequence is evaluated.

  19. Resolution limits of extrinsic Fabry-Perot interferometric displacement sensors utilizing wavelength scanning interrogation.

    Science.gov (United States)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-08-10

    The factors limiting the resolution of displacement sensors based on the extrinsic Fabry-Perot interferometer were studied. An analytical model giving the dependency of extrinsic Fabry-Perot interferometric (EFPI) resolution on the parameters of an optical setup and a sensor interrogator was developed. The proposed model enables one to either estimate the limit of possible resolution achievable with a given setup, or derive the requirements for optical elements and/or a sensor interrogator necessary for attaining the desired sensor resolution. An experiment supporting the analytical derivations was performed, demonstrating a large dynamic measurement range (with cavity length from tens of microns to 5 mm), a high baseline resolution (from 14 pm), and good agreement with the model.

  20. Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm.

    Science.gov (United States)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2015-10-19

    A miniature Fabry-Perot interferometric sensor with an ultra-high temperature sensitivity was constructed by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μm, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse Fabry-Perot interferometer with a cavity length of 42.86 μm. Temperature testing demonstrated a temperature-induced cavity length change of 352 nm/°C with a good linearity in the range of 20-60 °C. The result conformed well to the proposed analytical models relating to thermal expansion of trapped gas, thermal-optical property of graphene diaphragm and deflection behavior of bulged graphene blister. However, the ultra-thin diaphragm exhibited a small deflection deformation characteristic due to the applied higher loads.

  1. Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene.

    Science.gov (United States)

    Jiang, Leyong; Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang

    2015-11-30

    We investigate theoretically the optical bistability from a Fabry-Perot cavity with graphene in the terahertz (THz) frequency. It is demonstrated that the optical bistablility in this cavity can be realized due to the electric field enhancement and the giant third-order nonlinear conductivity of graphene. The optical bistable behavior is strongly dependent on the transmission amplitude of the mirror and the position of the graphene in the cavity. It is especially important that the hysterical behaviors of the transmitted light rely on the optical conductivity of graphene, making the Fabry-Perot cavity to be a good candidate for dynamic tunable optical bistable device in the THz frequencies, owing to the possibility of high tunability of graphene conductivity by means of external electrostatic or magnetostatic field.

  2. Electric field sensor based on cholesteric liquid crystal Fabry-Perot etalon

    Science.gov (United States)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Lee, Bong Wan; Jeon, Min Yong

    2015-09-01

    We propose an electric field sensor using a cholesteric liquid crystal (CLC) Fabry-Perot etalon and a broadband optical source. The CLC cell consists of glass substrates, polyimide layers, electrodes, and CLC layer. There is a threshold behavior for CLC cell and no change in the transmitted wavelength occurs until a threshold value. The threshold value is 0.8 V/μm for fabricated CLC cell in this experiment. The transmitted or reflected wavelength from the CLC Fabry-Perot etalon depends on the applied electric field. The valley wavelengths of the transmitted light from the CLC device are linearly increased from 1303 nm to 1317 nm as the applied electric field to the CLC device is increased from 0.8 V/μm to 1.9 V/μm.

  3. Phase Space of Tristability in Dual Injection-Locked Fabry-Perot Laser Diodes

    OpenAIRE

    R. V. Pajković; M. M. Krstić; J. V. Crnjanski; A. R. Totović; D. M. Gvozdić

    2015-01-01

    We investigate theoretically the case of dual injection-locking, in which the two light signals are simultaneously externally injected into the cavity of a slave Fabry-Perot laser diode. We show that dual injection-locking leads to formation of new stationary points, and potentially to optical tristability of the slave laser. We show that a region in which the slave laser exhibits three stable steady-states occurs only for sufficiently different frequency detunings of the two injection signal...

  4. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    OpenAIRE

    Minho Song; Hyoung-Jun Park

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of th...

  5. Interrogation of a fiber Fabry-Perot sensor by current modulation of a diode laser

    CERN Document Server

    Chow, J H; Littler, I C M; McClelland, D E; Gray, M B; Chow, Jong H.; Cumpston, Jeff S.; Littler, Ian C.M.; Clelland, David E. Mc; Gray, Malcolm B.

    2004-01-01

    We present a method for remote interrogation of passive fiber Bragg grating Fabry-Perot resonators, employing current modulation of the diode laser source. With the presence of both RF amplitude and frequency modulation, it is a variant of the ultra-sensitive Pound-Drever-Hall laser frequency locking technique. We demonstrate that current modulation and interferometric demodulation removes the need for a phase modulator in the sensing architecture.

  6. Topological Boundary States in 1D: An Effective Fabry-Perot Model

    CERN Document Server

    Levy, Eli

    2016-01-01

    We present a general and useful method to predict the existence, frequency, and spatial properties of gap states in photonic (and other) structures with a gapped spectrum. This method is established using the scattering approach. It offers a viewpoint based on a geometrical Fabry-Perot model. We demonstrate the capabilities of this model by predicting the behaviour of topological edge states in quasi-periodic structures. A proposition to use this model in Casimir physics is presented.

  7. Analysis of a Piezo Electric Driver Circuit for Use in a Fabry-Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Maithya J. Mutuku

    2013-09-01

    Full Text Available The design and fabrication of piezo electric driver circuit is presented and analysed. The output voltage which is a triangular wave voltage and frequency of the driver circuit were measured and set at 80 V peak to peak and an output frequency of 1 KHz. A photo detector circuit which receives the output beam from the confocal Fabry- perot interferometer (CFPI through the photodiode is as well presented

  8. Reduction of CCD observations made with a scanning Fabry--Perot interferometer. III. Wavelength scale refinement

    CERN Document Server

    Moiseev, A V

    2015-01-01

    We describe the recent modifications to the data reduction technique for observations acquired with the scanning Fabry-Perot interferometer (FPI) mounted on the 6-m telescope of the Special Astrophysical Observatory that allow the wavelength scale to be correctly computed in the case of large mutual offsets of studied objects in interferograms. Also the parameters of the scanning FPIs used in the SCORPIO-2 multimode focal reducer are considered.

  9. Optical Fiber Fabry-Perot Interferometer based Sensor Instrumentation System for Low Magnetic Field Measurement

    OpenAIRE

    Oh, Ki Dong

    1997-01-01

    This dissertation proposes a miniaturized optical fiber based sensor system for the measurement of 3-dimensional vector magnetic fields. The operation of the sensor system is based on the detection of magnetostrictive dimensional changes in the sensor gage using a modified extrinsic Fabry-Perot Interferometer configuration. Because of the magnetostrictive reflector the gap length depends on the magnetic fields applied to the sensor. Since the diameter of the magnetostrictive sensor gage is...

  10. Comparing Finesse simulations, analytical solutions and OSCAR simulations of Fabry-Perot alignment signals

    CERN Document Server

    Ballmer, Stefan; Freise, Andreas; Fulda, Paul

    2014-01-01

    This document records the results of a comparison of the interferometer simulation Finesse against an analytic (MATLAB based) calculation of the alignment sensing signals of a Fabry Perot cavity. This task was started during the commissioning workshop at the LIGO Livingston site between the 28.1. and 1.02 2013 with the aim of creating a reference example for validating numerical simulation tools. The FFT based simulation OSCAR joined the battle later.

  11. A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot interferometer

    Science.gov (United States)

    Lucey, Paul G.; Akagi, Jason; Bingham, Adam L.; Hinrichs, John L.; Knobbe, Edward T.

    2014-05-01

    Fourier transform spectroscopy is a widely employed method for obtaining visible and infrared spectral imagery, with applications ranging from the desktop to remote sensing. Most fielded Fourier transform spectrometers (FTS) employ the Michelson interferometer and measure the spectrum encoded in a time-varying signal imposed by the source spectrum interaction with the interferometer. A second, less widely used form of FTS is the spatial FTS, where the spectrum is encoded in a pattern sampled by a detector array. Recently we described using a Fabry-Perot interferometer, with a deliberately wedged gap geometry and engineered surface reflectivities, to produce an imaging spatial FTS. The Fabry-Perot interferometer can be much lighter and more compact than a conventional interferometer configuration, thereby making them suitable for portable and handheld applications. This approach is suitable for use over many spectral regimes of interest, including visible and infrared regions. Primary efforts to date have focused on development and demonstration of long wave infrared (LWIR) spectral imagers. The LWIR version of the miniaturized Fabry-Perot has been shown to be effective for various applications including spectral imaging-based chemical detection. The compact LWIR spectral imager employs uncooled optics and a microbolometer camera; a handheld version is envisioned for future development. Recent advancements associated with the spatial Fourier Transform imaging spectrometer system are described.

  12. Polymer waveguide Fabry-Perot resonator for high-frequency ultrasound detection.

    Science.gov (United States)

    Tadayon, Mohammad Amin; Baylor, Martha-Elizabeth; Ashkenazi, Shai

    2014-12-01

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays; however, signal transduction efficiency severely deteriorates in scaling the technology to element size smaller than 0.1 mm, often required for high-frequency operation (>20 MHz). Optical sensing and generation of ultrasound has been proposed and studied as an alternative technology for implementing sub-millimeter size arrays with element size down to 10 μm. The application of thin polymer film Fabry-Perot resonators has been demonstrated for high-frequency ultrasound detection; however, their sensitivity is limited by light diffraction loss. Here, we introduce a new method to increase the sensitivity of an optical ultrasound receiver by utilizing a waveguide between the mirrors of the Fabry-Perot resonator. This approach eliminates diffraction loss from the cavity, and therefore the finesse is only limited by mirror loss and absorption. By applying this method, we have achieved noise equivalent pressure of 178 Pa over a bandwidth of 30 MHz or 0.03 Pa/Hz1/2, which is about 20-fold better than a similar device without a waveguide. The finesse of the tested Fabry-Perot resonator was around 200. This result is 5 times higher than the finesse measured in the same device outside the waveguide region.

  13. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  14. FABSOAR--A Fabry-Perot Spectrometer for Oxygen A-band Research Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Watchorn, Steven

    2010-09-10

    Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalons into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.

  15. Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

    Directory of Open Access Journals (Sweden)

    A. J. Gerrard

    2011-09-01

    Full Text Available In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI, a novel triple-etalon Fabry-Perot interferometer (FPI designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at Huancayo, Peru and demonstrate the current instrument capability for measurements of Doppler shifts for either night or day. We found the uncertainties in the measurements agree with expected values based upon forward modeling calculations; nighttime wind components having an uncertainty of ~20-m s−1 at 30-min resolution and daytime wind components having an uncertainty of ~70-m s−1 at 20-min resolution. The nighttime uncertainties are typically larger than those seen with traditional single-etalon FPIs, which occur at the cost of being able to achieve daytime measurements. The thermospheric wind measurements from Huancayo replicate recently reported CHAMP zonal winds and are in disagreement with current empirical wind climatologies. In addition, we discuss the incorporation of how multiple point heads in the SOFDI instrument will allow for unique studies of gravity wave activity in future measurements.

  16. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  17. Fabry-Perot interferometer-based remote sensing of SO2

    Science.gov (United States)

    Kuhn, Jonas; Bobrowski, Nicole; Lübcke, Peter; Pöhler, Denis; Tirpitz, Jan-Lukas; Vogel, Leif; Platt, Ulrich

    2015-04-01

    We studied SO2 degassing from volcanoes and monitored the corresponding SO2 fluxes. Besides the effect on climate and the hazardous effects at a local scale, the absolute magnitude of SO2 fluxes or ratios of SO2 with other volcanic gases can be an indicator for volcanic activity and even help to understand and model processes in the interior of volcanoes. Due to its characteristic absorption structure, high abundance in the volcanic plume and low atmospheric background, SO2 can be easily identified and quantified by remote sensing techniques. DOAS and FTIR became standard techniques for volcanic SO2 measurements. Along with the development of portable devices they offer the advantage of simultaneous measurements of multiple gas species. However, both techniques often need complex data evaluation and observations are usually limited to a single viewing direction. Spatially resolved measurements, which are for instance required to determine gas fluxes, frequently have to be obtained sequentially leading to a relatively low time resolution. A further, today nearly established method to determine SO2 emission fluxes is the "SO2 camera". The SO2 camera has the advantage of a high spatial and temporal resolution, but is very limited in spectral information using only two wavelength channels and thus being less selective. Cross-interferences with volcanic plume aerosol, the ozone background, and other trace gases frequently cause problems in SO2 camera measurements. Here we introduce a novel passive remote sensing method for SO2 measurements in the atmosphere using a Fabry-Perot interferometer (FPI) setup. The transmission profile of this FPI consists of periodic transmission peaks that match the periodic SO2 absorption bands in the UV. In principle, this method allows imaging of two-dimensional SO2 distributions similarly to SO2 cameras. Interferences of standard SO2 cameras are greatly reduced with the FPI method. In addition, this technique can also be applied to other

  18. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity.

    Science.gov (United States)

    Wei, Fang; Yang, Fei; Zhang, Xi; Xu, Dan; Ding, Meng; Zhang, Li; Chen, Dijun; Cai, Haiwen; Fang, Zujie; Xijia, Gu

    2016-07-25

    A simple and low-cost 1550 nm semiconductor laser with subkilohertz intrinsic linewidth is experimentally demonstrated. A commercial distributed feedback diode laser is self-injection locked to the resonance transmission peaks of a fiber Bragg grating Fabry-Perot cavity through a polarization-maintaining fiber ring with the optical path length of 4 m, with the laser frequency noise suppressed by over 70 dB in the Fourier frequency band from 5 Hz and 1 kHz. The laser features an intrinsic Lorentzian linewidth of 125 Hz as well as a relative intensity noise of continuous tunability, which is suitable for advanced applications requiring a narrow linewidth laser with ultralow frequency noise. PMID:27464187

  19. Gain-guided index-antiguided fiber with a Fabry-Perot layer for large mode area laser amplifiers.

    Science.gov (United States)

    Lai, Chih-Hsien; Chen, Hsuan-Yu; Du, Cheng-Han; Chiou, Yih-Peng

    2015-02-23

    We propose a modified gain-guided index-antiguided (GGIAG) fiber structure for large mode area laser amplifiers, in which a thin dielectric layer is placed between the low-index core and the high-index cladding. The introduced dielectric layer functions as a Fabry-Perot etalon. By letting the resonant wavelength of the Fabry-Perot layer coincide with the signal wavelength, the signal is gain-guided in the fiber core. Moreover, the pump is confined in the low-index core owing to the antiresonant reflection originated from the Fabry-Perot layer. Numerical results indicate that the leakage loss of the pump can be minified over two orders of magnitude in the proposed structure, and thus the end-pumping efficiency could be enhanced significantly.

  20. Dynamic model and stability analysis of a laser using a nonlinear Fabry-Perot etalon as a cavity mirror

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.; Pons, R. (Autonoma de Barcelona (Spain). Dept. of Fisica); Zhang, Y. (Chongqing Inst. of Posts and Telecommunications, Sichuan (China). Telecommunications Engineering Dept.)

    1994-08-01

    In this paper, the authors study a laser using a nonlinear Fabry-Perot etalon as a cavity mirror. First, using the semiclassical laser theory and the differential equation for the lossy nonlinear Fabry-Perot etalon, they develop dynamic equations describing this system for single-mode operation. In this model, the frequency-pulling effect, a finite response time of the nonlinear medium, and a finite-cavity round-trip time of the Fabry-Perot etalon are included. Second, based on this model, they analyze the stability of this laser and give some numerical results. The results show that (1) this system can exist in the stable state and in the unstable state; (2) there are not only saddle-node bifurcations but also Hopf bifurcations; (3) the detuning parameter will effect the characteristics of the bistability and the number and distribution of Hopf bifurcation points.

  1. Internally coupled Fabry-Perot interferometer for high precision wavelength control of tunable diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M.; Schieder, R.; Clar, H.J.; Winnewisser, G.

    1986-01-01

    An internally coupled confocal Fabry-Perot interferometer (FPI) has been developed for both high precision wavelength calibration and stabilization of tunable diode lasers (TDL). Our FPI is tunable and thermally stable and works over a large wavelength range (0.6--30 ..mu..m)-characteristics that cannot be simultaneously realized with conventional etalons. As part of a versatile wavelength control system the instrument has already considerably improved the quality of our diode laser spectra and will facilitate the use of TDLs in sub-Doppler spectroscopy and as local oscillators in heterodyne radiometers.

  2. Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    CERN Document Server

    Wuttke, C; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-01-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.

  3. A Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification

    CERN Document Server

    Fratini, F; Safari, L; Poizat, J-Ph; Valente, D; Auffèves, A; Gerace, D; Santos, M F

    2014-01-01

    Optical transport represents a natural route towards fast communications, and it is currently used in large scale data transfer. The progressive miniaturization of devices for information processing calls for the microscopic tailoring of light transport and confinement at length scales appropriate for the upcoming technologies. With this goal in mind, we present a theoretical analysis of a one-dimensional Fabry-Perot interferometer built with two highly saturable nonlinear mirrors: a pair of two-level systems. Our approach captures non-linear and non-reciprocal effects of light transport that were not reported previously. Remarkably, we show that such an elementary device can operate as a microscopic integrated optical rectifier.

  4. Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube

    Science.gov (United States)

    Jia, Pinggang; Fang, Guocheng; Wang, Daihua

    2016-06-01

    A miniature fiber-optic Fabry-Perot interferometer (MOFPI) fabricated by splicing a hollow silica tube (HST) with inner diameter of 4 µm to the end of a single-mode fiber is investigated and experimentally demonstrated. The theoretical relationship between the free spectrum range and the length of HST is verified by fabricating several MOFPIs with different lengths. We characterize the MOFPIs for temperature, liquid refractive index, and strain. Experimental results show that the sensitivities of the temperature, liquid refractive index, and strain are 16.42 pm/℃,-118.56 dB/RIU, and 1.21 pm/µɛ, respectively.

  5. Low-profile Circularly Polarized Antenna Exploiting Fabry-Perot Resonator Principle

    OpenAIRE

    Pitra, K.; Z. Raida; J. Lacik

    2015-01-01

    We designed a patch antenna surrounded by a mushroom-like electromagnetic band-gap (EBG) structure and completed it by a partially reflective surface (PRS). EBG suppresses surface waves and creates the bottom wall of the Fabry-Perot (FP) resonator. PRS plays the role of a planar lens and forms the top wall of the FP resonator. The novel PRS consists of a two-layer grid exhibiting inductive and capacitive (LC) behavior which allows us to obtain a reflection phase between –108 and +180 degrees....

  6. The GREGOR Fabry Perot Interferometer (GFPI), Technical Innovations and Results achieved in 2013

    CERN Document Server

    Puschmann, Klaus Gerhard

    2016-01-01

    This paper shall provide a summary of not yet published technical innovations to the GREGOR Fabry-Perot Interferometer (GFPI) at the 1.5m GREGOR Solar Telescope (Europe's largest solar telescope) that I implemented in 2013 as the Instrument Scientist of the GFPI. It also represents an overview of important and not yet published observational results that I achieved with the GFPI in 2013. The results and achievements can be considered a milestone in the further development, scientific verification and final acceptance of this instrument. The instrument is now in operation and employed by the international scientific community.

  7. Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons

    CERN Document Server

    Voytova, Tanya; Yulin, Alexey; Driben, Rodislav

    2016-01-01

    The scattering of weak dispersive waves (DW) on several equally spaced temporal solitons is studied. It is shown by systematic numerical simulations that the reflection of the DWs from the soliton trains strongly depends on the distance between the solitons. The dependence of the reflection and transmission coefficients on the inter-soliton distance and the frequency of the incident waves is studied in detail, revealing fascinating quasi-periodic behavior. The analogy between the observed nonlinear phenomena in temporal domain and usual Fabry-Perot and Bragg resonators is discussed.

  8. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing.

    Science.gov (United States)

    Costa, Greice K B; Gouvêa, Paula M P; Soares, Larissa M B; Pereira, João M B; Favero, Fernando; Braga, Arthur M B; Palffy-Muhoray, Peter; Bruno, Antonio C; Carvalho, Isabel C S

    2016-06-27

    In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG).

  9. An All Fiber Intrinsic Fabry-Perot Interferometer Based on an Air-Microcavity

    Directory of Open Access Journals (Sweden)

    Ruth I. Mata-Chávez

    2013-05-01

    Full Text Available In this work an Intrinsic Fabry-Perot Interferometer (IFPI based on an air-microcavity is presented. Here the air microcavity, with silica walls, is formed at a segment of a hollow core photonic crystal fiber (HCPCF, which is fusion spliced with a single mode fiber (SMF. Moreover, the spectral response of the IFPI is experimentally characterized and some results are provided. Finally, the viability to use the IFPI to implement a simple, compact size, and low cost refractive index sensor is briefly analyzed.

  10. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    Directory of Open Access Journals (Sweden)

    Minho Song

    2008-10-01

    Full Text Available The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  11. Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons.

    Science.gov (United States)

    Voytova, T; Oreshnikov, I; Yulin, A V; Driben, R

    2016-06-01

    The scattering of weak dispersive waves (DWs) on several equally spaced temporal solitons is studied. It is shown by systematic numerical simulations that the reflection of the DWs from the soliton trains strongly depends on the distance between the solitons. The dependence of the reflection and transmission coefficients on the inter-soliton distance and the frequency of the incident waves are studied in detail, revealing fascinating quasi-periodic behavior. The analogy between the observed nonlinear phenomena in the temporal domain and the usual Fabry-Perot and Bragg resonators is discussed.

  12. Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube

    Science.gov (United States)

    Jia, Pinggang; Fang, Guocheng; Wang, Daihua

    2016-09-01

    A miniature fiber-optic Fabry-Perot interferometer (MOFPI) fabricated by splicing a hollow silica tube (HST) with inner diameter of 4 µm to the end of a single-mode fiber is investigated and experimentally demonstrated. The theoretical relationship between the free spectrum range and the length of HST is verified by fabricating several MOFPIs with different lengths. We characterize the MOFPIs for temperature, liquid refractive index, and strain. Experimental results show that the sensitivities of the temperature, liquid refractive index, and strain are 16.42 pm/°C,-118.56 dB/RIU, and 1.21 pm/µɛ, respectively.

  13. Simulation experiments to generate broadband chaos using dual-wavelength optically injected Fabry-Perot laser

    Science.gov (United States)

    Obaid, Hafiz Muhammad; Khawar Islam, Muhammad; Obaid Ullah, Muhammad

    2016-08-01

    Broadband chaos can be generated by beating two wavelengths in a hybrid arrangement of Fabry-Perot (FP) Laser and Fiber ring cavity by injecting dual wavelengths. The bandwidth of generated chaos can be controlled by detuning different modes of FP Laser for beating. The bandwidth of generated chaos increased to many folds depending upon the injected strength and wavelength spacing matched to FP laser modes. The bandwidth enhancement in different simulation experiments conducted is optimized by varying different parameters of FP laser and cavity. The waveforms are analyzed and Lyapunov exponents are calculated in order to validate the existence of high bandwidth non-pulsating chaos.

  14. Intrinsic Fabry-Perot Interferometeric Sensor Based on Microfiber Created by Chemical Etching

    Directory of Open Access Journals (Sweden)

    Ruohui Wang

    2014-09-01

    Full Text Available An intrinsic Fabry-Perot interferometeric sensor based on a microfiber has been demonstrated. The micro-size suspended core is created by chemical etching a photonics crystal fiber, of which the cladding has a micrometer-spaced, hexagonal array of air holes. The sensing head is fabricated by chemical etching a short section of photonics crystal fiber spliced with a single mode fiber. The temperature sensing characteristic of the interferometer has also been demonstrated and a sensitivity 14.3 pm/°C is obtained.

  15. Single-mode tunable erbium:ytterbium fibre Fabry-Perot laser

    OpenAIRE

    Hsu, K; Miller, C M; Kringlebotn, J.T.; Townsend, J.E.; Payne, D. N.

    1994-01-01

    A compact tunable single-mode fiber laser is developed by using a novel combination of high-gain erbium: ytterbium (Er:Yb) phosphate fiber and fiber Fabry-Perot (FFP) cavity configurations. Experiments demonstrate the shortest Er:Yb phosphate FFP laser ever reported, which has a 100µm cavity length with a continuous wavelength tuning range over 4.52nm, as limited by the sharp fiber gain peak. In addition, an alternative 3-mirror laser design has also demonstrated single-mode lasing operation.

  16. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    Science.gov (United States)

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications.

  17. Mesa Diaphragm-Based Fabry-Perot Optical MEMS Pressure Sensor

    Institute of Scientific and Technical Information of China (English)

    Yi-Xian Ge; Ming Wang; Hai-Tao Yan

    2008-01-01

    An optical micro electron mechanical system (MEMS) pressure sensor with a mesa membrane is presented. The operating principle of the MEMS pressure sensor is expatiated by the Fabry-Perot (F-P) interference and the relation between deflection and pressure is analyzed. Both the mechanical model of the mesa structure diaphragm and the signal averaging effect is validated by simulation, which declares that the mesa structure diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.

  18. A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer

    Science.gov (United States)

    Watarai, H.; Chaen, K.; Matsuhara, H.; Matsumoto, T.; Takahashi, H.

    1994-03-01

    A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer has been under development. A Si:P 5x5 detector array is used for this instrument. Although the array system has small format, but combination with junction field effect transistor (JFET) array will provide noise equivalent line flux of 1.0 x 10-21 w/sq cm(1000 sec, 10 sigma). This sensitivity is comparable with the short wavelength spectrometer (SWS) of the Infrared Space Observatory (ISO).

  19. Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons.

    Science.gov (United States)

    Voytova, T; Oreshnikov, I; Yulin, A V; Driben, R

    2016-06-01

    The scattering of weak dispersive waves (DWs) on several equally spaced temporal solitons is studied. It is shown by systematic numerical simulations that the reflection of the DWs from the soliton trains strongly depends on the distance between the solitons. The dependence of the reflection and transmission coefficients on the inter-soliton distance and the frequency of the incident waves are studied in detail, revealing fascinating quasi-periodic behavior. The analogy between the observed nonlinear phenomena in the temporal domain and the usual Fabry-Perot and Bragg resonators is discussed. PMID:27244384

  20. Generation of millimeter-wave sub-carrier optical pulse by using a Fabry-Perot interferometer

    Institute of Scientific and Technical Information of China (English)

    Qing Ye; Ronghui Qu; Zujie Fang

    2007-01-01

    A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system.It is shown that modulation frequency of mm-wave is determined by the optical path of the Fabry-Perot (F-P) cavity, and amplitude decay time and energy transfer efficiency are related to the reflectivity of the F-P cavity mirror. The effect of pulse train extension on inter-symbol interference is also discussed.

  1. Correction of Thermal Deviations of Fabry-Perot Resonator Based Measurements of Specific Gases in Millimeter Wave Bands

    Directory of Open Access Journals (Sweden)

    J. Libich

    2012-04-01

    Full Text Available Due to the thermal expansivity of the material used in the Fabry-Perot resonator mirrors, the resonator cavity length can change and this might therefore have an impact on the resonant frequency during high-resolution spectroscopy measurements. Based on measurements and simulations, this paper discusses the influences of temperature on the precise determination of gas attenuation measured in a Fabry-Perot resonator. Several measures to mitigate such influence and to correct the measured results were tested. A correction method for the measured data was proposed.

  2. Proposal for the negotiation of a contract for the supply of Fabry-Perot laser diodes for the LHC

    CERN Document Server

    2004-01-01

    This document concerns the award of a contract for the supply of Fabry-Perot laser diodes for the LHC beam position monitoring system. For the reasons set out in this document, the Finance Committee is invited to agree to the negotiation of a contract for the supply of 2600 Fabry-Perot laser diodes with MUNICOM (DE), for a total amount of 253 500 euros (405 600 Swiss francs), not subject to revision. The amount in Swiss francs has been calculated using the present rate of exchange. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: JP - 81%; DE - 19%.

  3. Optical Gain in MoS2 via Coupling with Nanostructured Substrate: Fabry-Perot Interference and Plasmonic Excitation.

    Science.gov (United States)

    Jeong, Hye Yun; Kim, Un Jeong; Kim, Hyun; Han, Gang Hee; Lee, Hyangsook; Kim, Min Su; Jin, Youngjo; Ly, Thuc Hue; Lee, Si Young; Roh, Young-Geun; Joo, Won-Jae; Hwang, Sung Woo; Park, Yeonsang; Lee, Young Hee

    2016-09-27

    Despite the direct band gap of monolayer transition metal dichalcogenides (TMDs), their optical gain remains limited because of the poor light absorption in atomically thin, layered materials. Most approaches to improve the optical gain of TMDs mainly involve modulation of the active materials or multilayer stacking. Here, we report a method to enhance the optical absorption and emission in MoS2 simply through the design of a nanostructured substrate. The substrate consisted of a dielectric nanofilm spacer (TiO2) and metal film. The overall photoluminescence intensity from monolayer MoS2 on the nanostructured substrate was engineered based on the TiO2 thickness and amplified by Fabry-Perot interference. In addition, the neutral exciton emission was selectively amplified by plasmonic excitations from the local field originating from the surface roughness of the metal film with spacer thicknesses of less than 10 nm. We further demonstrate that the quality factor of the device can also be engineered by selecting a spacer material with a different refractive index.

  4. Star formation in NGC 4449: MAMA-detector UV imagery and Fabry-Perot Balmer-line imagery

    Science.gov (United States)

    Hill, Robert S.; Home, Allen T.; Smith, Andrew M.; Bruhweiler, Fred C.; Cheng, K.P.; Hintzen, Paul M. N.; Oliversen, Ronald J.

    1994-01-01

    Using far-ultraviolet (FUV) and Balmer-line imagery, we investigate the star formation history of 22 large OB complexes in the Magellanic irregular galaxy NGC 4449. The FUV luminosity of NGC 4449 is comparable to those of late-type spirals and is greater than that of the LMC by approximately 2.4 mag, indicating substantial star formation in the last 10(exp 8) yr. FUV data were taken using a sounding-rocket telescope with a Multianode Microchannel Array (MAMA) detector, and Balmer-line data were taken using the Goddard Fabry-Perot Imager. The resulting imagery shows bright, roughly coincident FUV and H alpha sources throughout the extent of the visible galaxy. We model these sources using cluster-evolution codes. Although all sources are a few Myr old, clear age differences are found. In particular, several of the most recently active star formation regions are located together in the galaxy's northern periphery, which is apparently coincident with a large H I reservoir. The brightest and most massive OB complexes are found along the northeast-southwest surface brightness ridgeline (the 'bar'). Over the entire galaxy, star formation rates are consistent on timescales of 10(exp 6), 10(exp 8), and 10(exp 9) yr. A history of recent star formation is suggested with two main episodes, one predominantly in the bar ending approximately 5 Myr ago, and an ongoing one associated with an observed H I cloud.

  5. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    Science.gov (United States)

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.

  6. [Quartz-enhanced photoacoustic spectroscopy trace gas detection system based on the Fabry-Perot demodulation].

    Science.gov (United States)

    Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen

    2013-05-01

    An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.

  7. Formation of super-resolution spot through nonlinear Fabry-Perot cavity structures: theory and simulation.

    Science.gov (United States)

    Wei, Jingsong; Wang, Rui; Yan, Hui; Fan, Yongtao

    2014-04-01

    This study explores how interference manipulation breaks through the diffraction limit and induces super-resolution nano-optical hot spots through the nonlinear Fabry-Perot cavity structure. The theoretical analytical model is established, and the numerical simulation results show that when the thickness of the nonlinear thin film inside the nonlinear Fabry-Perot cavity structure is adjusted to centain value, the constructive interference effect can be formed in the central point of the spot, which causes the nanoscale optical hot spot in the central region to be produced. The simulation results also tell us that the hot spot size is sensitive to nonlinear thin film thickness, and the accuracy is required to be up to nanometer or even subnanometer scale, which is very large challenging for thin film deposition technique, however, slightly changing the incident laser power can compensate for drawbacks of low thickness accuracy of nonlinear thin films. Taking As(2)S(3) as the nonlinear thin film, the central hot spot with a size of 40nm is obtained at suitable nonlinear thin film thickness and incident laser power. The central hot spot size is only about λ/16, which is very useful in super-high density optical recording, nanolithography, and high-resolving optical surface imaging.

  8. Contact grating device with Fabry-Perot resonator for effective terahertz light generation.

    Science.gov (United States)

    Tsubouchi, Masaaki; Nagashima, Keisuke; Yoshida, Fumiko; Ochi, Yoshihiro; Maruyama, Momoko

    2014-09-15

    A novel design for a contact grating device with an incorporated Fabry-Perot resonator is proposed for high-power terahertz (THz) light generation. We deposited a multilayer consisting of Ta(2)O(5) and Al(2)O(3) on a magnesium-doped stoichiometric LiNbO(3) substrate and fabricated grating grooves on the outermost layer. The multilayer was designed such that conditions for a Fabry-Perot resonator were satisfied for light diffracted by the grating. Consequently, the fraction of light transmitted into the LiNbO(3) substrate, i.e., the diffraction efficiency, was enhanced by the resonator. The diffraction efficiency of the fabricated device was 71%, which is close to the calculated value of 78% from the optimized design. THz light generation was also demonstrated with the contact grating device. The THz output of 0.41 μJ was obtained using near-infrared pump light of 2.7 mJ.

  9. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range.

    Science.gov (United States)

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-05-01

    Laser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications. To minimize the environmental and mechanical effects, a new interferometric displacement measuring system with the common-optical-path structure and the resistance to tilt-angle is proposed. With the integration of optomechatronic modules in the novel interferometric system, the resolution up to picometer order, high precision, and ultra large measuring range have been realized. For the signal stabilization of displacement measurement, an automatic gain control module has been proposed. A self-developed interpolation model has been employed for enhancing the resolution. The novel interferometer can hold the advantage of high resolution and large measuring range simultaneously. By the experimental verifications, it has been proven that the actual resolution of 2.5 nm can be achieved in the measuring range of 500 mm. According to the comparison experiments, the maximal standard deviation of the difference between the self-developed Fabry-Perot interferometer and the reference commercial Michelson interferometer is 0.146 μm in the traveling range of 500 mm. With the prominent measuring characteristics, this should be the largest dynamic measurement range of a Fabry-Perot interferometer up till now.

  10. Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer.

    Science.gov (United States)

    Gong, Yuan; Yu, Cai-Bin; Wang, Ting-Ting; Liu, Xiu-Ping; Wu, Yu; Rao, Yun-Jiang; Zhang, Ming-Lei; Wu, Hui-Juan; Chen, Xiao-Xiao; Peng, Gang-Ding

    2014-02-10

    An asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221 pm/μN with a tapered microfiber of 40 mm length and 6.1 μm waist diameter. Compared with similar AFPI structure in 125 μm-diameter single mode fiber, the force sensitivity of the microfiber AFPI structure is greatly enhanced due to its smaller diameter and can be optimized for different force scales by controlling the diameter. The fabrication process of the AFPI sensor is simple and cost-effective. The AFPI sensor has better multiplexing capacity than conventional extrinsic fiber-optic Fabry-Perot sensors, while it also release the requirement on the wavelength matching of the FBG-pair-based FPI.

  11. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    Science.gov (United States)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  12. Electrically tunable liquid-crystal Fabry-Perot device for terahertz radiation

    Science.gov (United States)

    Li, Hui; Pan, Fan; Liu, Kan; Wu, Yuntao; Zhang, Yanduo; Xie, Xiaolin

    2015-11-01

    In this paper, we will present a smart structure based on an electrically controlled liquid crystal (LC) Fabry-Perot to achieve terahertz (THz) filter, which has extremely potential in THz communication. This proposed structure doesn't need any mechanical movements because of adapting LC as a key material to compose the Fabry-Perot device. The THz filter based on LC, which is smart, light and cheap, can be realized to solve that common problem of short of tunable devices in THz radiation. The chosen LC material is E7, which has very stable and good transmissions in THz range. Under the external applied voltage, the alignment of the nematic LC allows the refractive index of the device to be tuned. Because of this feature, the resonant peaks could be shifted by changing the applied voltage. Especially, when the alignment is changed from planar to phototropic, the maximum value of the shift could be realized. The simulation result of the proposed device could be got. And the optimal structural parameters could be also got. Numerical analyses results have shown that the proposed structure has a high narrow transmission band and very sharp edges. This THz filter is novel for compact and smart features, so this kind of proposed THz filter is very attractive in many applications, such as THz communication, and THz spectral imaging.

  13. Fabry-Perot Temperature Sensor for Quasi-Distributed Measurement Utilizing OTDR

    Institute of Scientific and Technical Information of China (English)

    Ping Xu; Fu-Fei Pang; Na Chen; Zhen-Yi Chen; Ting-Yun Wang

    2008-01-01

    A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using two-beam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was eaught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.

  14. Blood pressure manometer using a twin Bragg grating Fabry-Perot interferometer

    Science.gov (United States)

    van Brakel, Adriaan; Swart, Pieter L.; Chtcherbakov, Anatoli A.; Shlyagin, Mikhail G.

    2005-02-01

    We propose the use of optical fiber Bragg gratings in a non-invasive blood pressure waveform monitor. Bragg gratings can be written in a Fabry-Perot interferometric configuration to yield a method of strain measurement that has both a high resolution and a wide unambiguous range. This fiber Bragg grating Fabry-Perot interferometer (FBGI) can be used as a sensor to detect strain resulting from blood pressure applied to the walls of an artery situated near the patient"s skin. Strain measurements taken on the skin surface, typically over the radial artery at the wrist, are encoded as phase shifts of the FBGI signal. These phase shifts may be obtained by the analytic representation of the interferometer signal in the wavelength domain or by Fourier analysis in the frequency domain. For the proof of concept a realistic physical model was constructed to simulate pressure conditions at the actual sensor location. The operation of the device is demonstrated by measurements of pressure-pulse waveforms obtained in real-time. This sensor was also successfully tested on human patients, and these results are also presented. Since it yields continuous readings of blood pressure non-invasively, further application of the optical manometer may yield an alternative to conventional sphygmomanometry.

  15. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily A.

    2012-11-10

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  16. Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2013-01-01

    We present a laser Doppler velocimeter (LDV) in monostatic coaxial arrangement consisting of off-the-shelf telecom-grade components: a single frequency laser (wavelength λ = 1.5 μm) and a high-finesse scanning Fabry-Perot interferometer (sFPI). In contrast to previous 1.5 μm LDV systems based...

  17. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement.

    Science.gov (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  18. Long-term instrumental parameter investigation of a Fabry-Perot spectrometer at an isolated field station.

    Science.gov (United States)

    Hernandez, G; McCarthy, M P

    2011-05-01

    To insure that long-term determinations of Doppler width and shift--derived from observations of atmospheric emissions--are internally consistent and reliable, we have developed a method to both continuously and nonintrusively determine and monitor the instrumental constants of the Fabry-Perot spectrometer making the observations. We have used this method at our isolated field experiment at South Pole, Antarctica, because the instrument is only accessible to us for a few days every year. Here we report both the method and the Fabry-Perot stability results for the past 22 years of operation. The method involves the description of real Fabry-Perot instrumental constants as a small departure from those of an ideal Fabry-Perot. In general, this model is applicable for most observations. However, experimentally, there are times when the small-departure model is not applicable, thus indicating how to best reduce the observations into physical quantities for the utmost consistency in the geophysical results.

  19. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    Science.gov (United States)

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  20. Reduce of the Linewidth of a Diode Laser by Locking to a High-Finesse Fabry-Perot Cavity

    Institute of Scientific and Technical Information of China (English)

    HUANG Kai-Kai; ZHANG Jian-Wei; CHEN Jing-Biao; YANG Dong-Hai

    2006-01-01

    @@ We report frequency locking of a commercial 657nm diode laser to a high finesse Fabry-Perot cavity by the Pound-Drever-Hall method. The laser linewidth relative to the cavity is estimated to be about 6 kHz.

  1. The technique of detecting the laser-ultrasonic vector displacement with a confocal Fabry-Perot interferometer waves in a plate

    Institute of Scientific and Technical Information of China (English)

    PAN Yongdong; QIAN Menglu

    2003-01-01

    Generally, a confocal Fabry-Perot interferometer is only able to detect the out-of-plane component of a displacement field; while the in-plane component often has the information about the material which cannot be found in this out-of-plane component. In this paper, based on a confocal Fabry-Perot interferometer set-up for detecting the out-of-plane component of a laser generated acoustic field, a technique is developed to detect both the out-of-plane and inplane displacement components simultaneously with a novel two-channel confocal Fabry-Perot interferometer.

  2. Zodiacal light dynamics experiment: A wideband imaging Fabry-Perot interferometer

    Science.gov (United States)

    Torr, D. G.; Young, E.; Torr, M. R.; Nagy, A. F.

    1978-01-01

    The Solar Probe will provide an ideal platform from which to study dynamics of dust particles near the sun by measuring the detailed character of the Fraunhofer structure of the zodiacal light. The suggested instrument is a wideband imaging Fabry-Perot interferometer with state of the art technology in both the optics and the detector. The instrument would function as a high-resolution imaging device providing wavelength resolution of 0.03 A over about a 20 A range. The wideband imaging capability would provide sky maps of the zodiacal light on a despun spacecraft without mechanical scanning. The Solar Probe mission would allow the velocity distribution of the dust to be mapped along most of the trajectory of the spacecraft.

  3. Colloidal pattern replication through contact photolithography operated in a "Talbot-Fabry-Perot" regime

    CERN Document Server

    Emplit, Aline; Huynen, Isabelle; Vlad, Alexandru; Sarrazin, Michael

    2014-01-01

    We detail on a continuous colloidal pattern replication by using contact photolithography. Chrome on quartz masks are fabricated using colloidal nanosphere lithography and subsequently used as photolithography stamps. Hexagonal pattern arrangements with different dimensions (980, 620 and 480 nm, using colloidal particles with respective diameters) have been studied. When the mask and the imaged resist layer were in intimate contact, a high fidelity pattern replica was obtained after photolithography exposure and processing. In turn, the presence of an air-gap in between has been found to affect the projected image onto the photoresist layer, strongly dependent on the mask feature size and air-gap height. Pattern replication, inversion and hybridization was achieved for 980 nm-period mask; no hybridization for the 620 nm; and only pattern replication for the 480 nm. These results are interpreted in the framework of a "Talbot-Fabry-Perot" effect. Numerical simulations corroborate with the experimental findings ...

  4. Optical design and characterization of a gas filled MEMS Fabry-Perot filter

    Science.gov (United States)

    Ayerden, N. Pelin; Ghaderi, Mohammadamir; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2015-05-01

    A concept for a highly integrated and miniaturized gas sensor based on infrared absorption, a Fabry-Perot type linear variable optical filter with integrated gas cell, is presented. The sample chamber takes up most of the space in a conventional spectrometer and is the only component that has so far not been miniaturized. In this concept the gas cell is combined with the resonator cavity of the filter. The optical design, fabrication, and characterization results on a MEMSbased realization are reported for a 24-25.5 μm long tapered resonator cavity. Multiple reflections from highly reflective mirrors enable this optical cavity to also act as a gas cell with an equivalent optical absorption path length of 8 mm. Wideband operation of the filter is ensured by fabrication of a tapered mirror. In addition to the functional integration and significant size reduction, the filter contains no moving parts, thus enables the fabrication of a robust microspectrometer

  5. Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity

    CERN Document Server

    Friedrich, Daniel; Brückner, Frank; Hild, Stefan; Nelson, John; Mcarthur, John; Plissi, Michael V; Edgar, Matthew P; Huttner, Sabina H; Sorazu, Borja; Kroker, Stefanie; Britzger, Michael; Kley, Ernst-Bernhard; Danzmann, Karsten; Tünnermann, Andreas; Strain, Ken A; Schnabel, Roman

    2011-01-01

    We report on the first demonstration of a fully suspended 10m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and employing feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.2% at the laser wavelength of 1064\\,nm, which is in good agreement with rigorous simulations. Our waveguide grating design was based on tantala and fused silica and included a ~20nm thin etch stop layer made of Al2O3 that allowed us to define the grating depth accurately during the fabrication process. Demonstrating stable operation of a waveguide grating featuring high reflectivity in a suspended low-noise cavity, our work paves the way for the potential application of waveguide gratings as mirrors in high-precision interferometry, for instance in future gravitational wave observatories.

  6. Fabry-Perot microcavity sensor for H2-breath-test analysis

    Science.gov (United States)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  7. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation

    Science.gov (United States)

    Hu, Pan; Tong, Xinglin; Zhao, Minli; Deng, Chengwei; Guo, Qian; Mao, Yan; Wang, Kun

    2015-09-01

    A Fabry-Perot (F-P) fiber acoustic sensor, which can work under high-temperature harsh environment with temperature self-compensation, is designed and prepared. A condenser was used to maintain the sensor to work in a stable temperature environment. Because of the special structure of the sensor and the function of the condenser, the cavity variation of the sensor caused by changes of external temperature from -10°C to 500°C would not exceed 8 nm. The experimental results show that the sensor has a good frequency response in a range of 1 to 5 kHz and the field experiment results show that it could be used for hydraulic decoking online monitoring by judging the acoustic frequency spectrum.

  8. Asymmetric Fabry-Perot-inspired subwavelength phase shifters for tunable metasurfaces

    CERN Document Server

    Colburn, Shane; Majumdar, Arka

    2016-01-01

    Metasurfaces with tunable spatial phase functions could benefit numerous applications. Currently, most approaches to tuning rely on mechanical stretching which cannot control phase locally, or by modulating the refractive index to exploit rapid phase changes with the drawback of also modulating amplitude. Here, we propose a method to realize phase modulation at subwavelength length scales while maintaining unity amplitude. Our device is inspired by an asymmetric Fabry-Perot resonator, with pixels comprising a scattering nanopost on top of a distributed Bragg reflector, capable of providing a nearly 2{\\pi} nonlinear phase shift with less than 2% refractive index modulation. Using the designed pixels, we simulate a tunable metasurface composed of an array of moderately coupled nanopost resonators, realizing axicons, vortex beam generators, and aspherical lenses with both variable focal length and in-plane scanning capability, achieving nearly diffraction-limited performance. The experimental feasibility of the ...

  9. Design of a reconfigurable optical add/drop multiplexer based on tunable Fabry-Perot array

    Science.gov (United States)

    Ye, Jiansen; Wang, Xin; Li, Zhuo; Yang, Yang; Xu, Rui; Shi, Rui

    2015-08-01

    With the development of optical fiber communication, dense wavelength division multiplexing (DWDM) system is important for the rapid management of multi-wavelength in the core node of the optical transmission network. In this paper, a reconfigurable optical add-drop multiplexer (ROADM) based on the tunable Fabry-Perot (F-P) array is proposed. An optical switch with high isolation and low crosstalk is designed by using the characteristics of filtering and tuning for the F-P array. The principle, structure, and function of the tunable F-P array are introduced. The characteristics of filtering and tuning for the F-P filter are also calculated, and the factor for the isolation, crosstalk, response time and insertion loss are analyzed. A single physical channel ROADM with 16 signal channels, which operates in C-band, is designed and optimized by simulation.

  10. Measurement of reflection phase using thick-gap Fabry-Perot etalon.

    Science.gov (United States)

    Yung, Tsz Kit; Gao, Wensheng; Leung, Ho Ming; Zhao, Qiuling; Wang, Xia; Tam, Wing Yim

    2016-09-10

    We report measurement of the reflection phase of a dielectric (glass)/titanium (Ti) surface in the visible wavelength using a thick-gap Fabry-Perot (FP) interferometry technique. Using a two-beam interference model for the reflection peaks and troughs of the FP etalon, we obtain the air-gap spacing of the etalon and, more importantly, the reflection phase of the etalon substrate. We find systematic dependence of the as-measured reflection phase on the air-gap spacing due to the numerical aperture effect of the measuring objective. However, the relative reflection phase of Ti with respect to glass is independent of the air-gap spacing. As a demonstration of our approach in the optical characterization of small metamaterial samples, we also measure the reflection phase of a micron-sized 2D Au sawtooth nanoarray. The experiment is in good agreement with the model simulation.

  11. Striped-double cavity fabry-perot interferometers using both glass and air cavities

    Energy Technology Data Exchange (ETDEWEB)

    Perry, S; Steinmetz, L

    1998-07-08

    We have used piezo-driven Fabry-Perot interferometers in the past far many continuous velocity-time measurements of fast moving surfaces. In order to avoid the annoying drift of some of these devices, we have developed and used inexpensive, solid glass, striped etalons with lengths up to 64 mm. Usable apertures are 35 mm by 80 mm with a finess of 25. A roundabout technique was devised for double cavity operation. We built a passive thermal housing for temperature stability, with tilt and height adjustments. We have also developed and used our first fixed etalon air-spaced cavity with a rotatable glass double- cavity insert. The rotation allows the referee cavity fractional order to be adjusted separately from that of the main cavity. It needs very little thermal protection, and eliminates the need for a roundabout scheme for double cavity operation, but is more costly than the solid glass version I

  12. BUBBLY: A method for detecting and characterizing interstellar bubbles using Fabry-Perot spectroscopy

    CERN Document Server

    Camps-Fariña, Artemi; Beckman, John E; Font, Joan; García-Lorenzo, Begoña; Erroz-Ferrer, Santiago; Amram, Philippe

    2014-01-01

    We present a new method for the detection and characterization of expansion in galaxy discs based on H{\\alpha} Fabry-Perot spectroscopy, taking advantage of the high spatial and velocity resolution of our instrument (GH{\\alpha}FaS). The method analyses multi-peaked emission line profiles to find expansion along the line of sight on a point-by-point basis. At this stage we have centred our attention on the large scale structures of expanding gas associated with HII regions which show a characteristic pattern of expansion velocities, of order 100 km/s, as a result of both bubble shape and projection effects. We show an example of the expansion map obtained with our method from a superbubble detected in the Antennae galaxies. We use the information obtained from the method to measure the relevant physical parameters of the superbubbles, including their ages which can be used to date young star clusters.

  13. Embedded intrinsic Fabry-Perot optical fiber sensors in cement concrete structures

    Science.gov (United States)

    Kim, Ki S.; Yoo, Jae-Wook; Kim, Seung Kwan; Kim, Byoung Yoon

    1996-05-01

    Intrinsic Fabry-Perot optical fiber sensors were embedded to the tensile side of the 20 cm by 20 cm by 150 cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by a universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up to 2000 microstrain. The optical fiber sensors showed good response after yielding of the structure while embedded metal film strain gauges did not show any response. We also investigated the behavior of the optical fiber sensor when the specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  14. Fabry-Perot based metal-dielectric multilayered filters and metamaterials.

    Science.gov (United States)

    Jen, Yi-Jun; Lee, Cheng-Chung; Lu, Kun-Han; Jheng, Ci-Yao; Chen, Yu-Jen

    2015-12-28

    The traditional three-layered metal-dielectric-metal Fabry-Perot filter is developed as a new metal-dielectric multilayered band-pass filter. Our design method allows metal and dielectric films to be alternatively arranged to achieve a narrow and high transmission peak and the peak height remains unchanged for any number of metal films arranged in the multilayer. Furthermore, the equivalent refractive index of a subwavelength metal-dielectric multilayer could be negative real at the passband of the filter and such metamaterial exhibits stronger figure of merit than a previous result. By choosing a material with high refractive index as the dielectric film, such metamaterial exhibits a pass band that depends weakly on the angle of incidence.

  15. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.

    Science.gov (United States)

    Zhuang, Huawei; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-08-20

    We investigate the plasmonic analog of electromagnetically induced transparency (EIT) using two adjacent graphene-based Fabry-Perot (F-P) resonators side coupling to a nanoribbon waveguide. By the coupling mode theory in time and F-P resonant model, the destructive interference from the coupling of the two F-P resonators results in the EIT-like optical response. The induced peak and width of the transparency window can be dynamically manipulated by varying the coupling distance of the two resonators, and the transparent window is easily shifted by tuning the resonator length or the chemical potential of the graphene nanoribbon. In order to verify the characteristics of slow light, the group index profile is analyzed at different coupling distances. The proposed graphene-based EIT-like system could open up new opportunities for potential applications in plasmonic slow light and optical information buffering devices.

  16. Study of Antenna Superstrates Using Metamaterials for Directivity Enhancement Based on Fabry-Perot Resonant Cavity

    Directory of Open Access Journals (Sweden)

    Haixia Liu

    2013-01-01

    Full Text Available Metamaterial superstrate is a significant method to obtain high directivity of one or a few antennas. In this paper, the characteristics of directivity enhancement using different metamaterial structures as antenna superstrates, such as electromagnetic bandgap (EBG structures, frequency selective surface (FSS, and left-handed material (LHM, are unifiedly studied by applying the theory of Fabry-Perot (F-P resonant cavity. Focusing on the analysis of reflection phase and magnitude of superstrates in presently proposed designs, the essential reason for high-directivity antenna with different superstrates can be revealed in terms of the F-P resonant theory. Furthermore, a new design of the optimum reflection coefficient of superstrates for the maximum antenna directivity is proposed and validated. The optimum location of the LHM superstrate which is based on a refractive lens model can be determined by the F-P resonant distance.

  17. Light trapping in an ensemble of pointlike impurity centers in a Fabry-Perot cavity

    Science.gov (United States)

    Kuraptsev, A. S.; Sokolov, I. M.

    2016-08-01

    We report the development of quantum microscopic theory of quasiresonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located in a Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on rms deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  18. Phase Space of Tristability in Dual Injection-Locked Fabry-Perot Laser Diodes

    Directory of Open Access Journals (Sweden)

    R. V. Pajković

    2015-06-01

    Full Text Available We investigate theoretically the case of dual injection-locking, in which the two light signals are simultaneously externally injected into the cavity of a slave Fabry-Perot laser diode. We show that dual injection-locking leads to formation of new stationary points, and potentially to optical tristability of the slave laser. We show that a region in which the slave laser exhibits three stable steady-states occurs only for sufficiently different frequency detunings of the two injection signals. Moreover, the slave laser tunability depends on the choice of injection modes, and strongly depends on the slave laser bias current, with an optimal value around 2 times threshold current.

  19. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    CERN Document Server

    Della Valle, F; Ejlli, A; Gastaldi, U; Messineo, G; Zavattini, G; Pengo, R; Ruoso, G

    2015-01-01

    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides the limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge.

  20. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.

    Science.gov (United States)

    Tsai, Yi Wei; Wu, Yu Hsin; Chang, Ying Yi; Liu, Wen Chung; Liu, Hong Lin; Chu, Chia Hong; Chen, Pei Chi; Lin, Pao Te; Fu, Chien Chung; Chang, Shih Lin

    2016-05-01

    Hard X-ray Fabry-Perot resonators (FPRs) made from sapphire crystals were constructed and characterized. The FPRs consisted of two crystal plates, part of a monolithic crystal structure of Al2O3, acting as a pair of mirrors, for the backward reflection (0 0 0 30) of hard X-rays at 14.3147 keV. The dimensional accuracy during manufacturing and the defect density in the crystal in relation to the resonance efficiency of sapphire FPRs were analyzed from a theoretical standpoint based on X-ray cavity resonance and measurements using scanning electron microscopic and X-ray topographic techniques for crystal defects. Well defined resonance spectra of sapphire FPRs were successfully obtained, and were comparable with the theoretical predictions.

  1. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    Science.gov (United States)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  2. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    Science.gov (United States)

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding.

  3. Light trapping in an ensemble of point-like impurity centers in Fabry-Perot cavity

    CERN Document Server

    Kuraptsev, A S

    2016-01-01

    We report the development of quantum microscopic theory of quasi-resonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located into Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on r.m.s. deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  4. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-10-01

    Full Text Available The Karhunen-Loeve Transform (KLT is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1 demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs and Fabry-Perot Interferometers (FPIs; (2 demodulation of dual (FBG/FPI sensors; (3 application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  5. The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity

    Energy Technology Data Exchange (ETDEWEB)

    Della Valle, Federico; Milotti, Edoardo [INFN, Trieste (Italy); Universita di Trieste, Dipt. di Fisica, Trieste (Italy); Ejlli, Aldo; Messineo, Giuseppe; Zavattini, Guido [INFN, Ferrara (Italy); Universita di Ferrara, Dipt. di Fisica e Scienze della Terra, Ferrara (Italy); Gastaldi, Ugo [INFN, Ferrara (Italy); Pengo, Ruggero; Ruoso, Giuseppe [INFN, Lab. Nazionale di Legnaro, Legnaro (Italy)

    2016-01-15

    Vacuum magnetic birefringence was predicted long time ago and is still lacking a direct experimental confirmation. Several experimental efforts are striving to reach this goal, and the sequence of results promises a success in the next few years. This measurement generally is accompanied by the search for hypothetical light particles that couple to two photons. The PVLAS experiment employs a sensitive polarimeter based on a high finesse Fabry-Perot cavity. In this paper we report on the latest experimental results of this experiment. The data are analysed taking into account the intrinsic birefringence of the dielectric mirrors of the cavity. Besides a new limit on the vacuum magnetic birefringence, the measurements also allow the model-independent exclusion of new regions in the parameter space of axion-like and milli-charged particles. In particular, these last limits hold also for all types of neutrinos, resulting in a laboratory limit on their charge. (orig.)

  6. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  7. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    Science.gov (United States)

    Tosi, Daniele

    2015-10-29

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  8. Surface-Plasmon-Polariton Laser based on an Open-Cavity Fabry-Perot Resonator

    CERN Document Server

    Zhu, Wenqi; Agrawal, Amit; Lezec, Henri J

    2016-01-01

    Recent years have witnessed growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface-plasmons, electromagnetic modes evanescently confined to metal-dielectric interfaces, offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain-medium. Here, we achieve visible frequency ultra-narrow linewidth lasing at room-temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically-pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. Low perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high-figure-of-merit refractive-index sensing of analytes interacting with the open cavity.

  9. Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Asticio [Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco (Chile); Center for Optics and Photonics, Universidad de Concepción, Casilla 4016, Concepción (Chile); Mar Sánchez-López, María del [Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche (Spain); García-Martínez, Pascuala [Departament d' Òptica, Universitat de València, 45100 Burjassot (Spain); Arias, Julia; Moreno, Ignacio [Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, 03202 Elche (Spain)

    2014-01-21

    Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by means of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.

  10. Measurement of reflection phase using thick-gap Fabry-Perot etalon.

    Science.gov (United States)

    Yung, Tsz Kit; Gao, Wensheng; Leung, Ho Ming; Zhao, Qiuling; Wang, Xia; Tam, Wing Yim

    2016-09-10

    We report measurement of the reflection phase of a dielectric (glass)/titanium (Ti) surface in the visible wavelength using a thick-gap Fabry-Perot (FP) interferometry technique. Using a two-beam interference model for the reflection peaks and troughs of the FP etalon, we obtain the air-gap spacing of the etalon and, more importantly, the reflection phase of the etalon substrate. We find systematic dependence of the as-measured reflection phase on the air-gap spacing due to the numerical aperture effect of the measuring objective. However, the relative reflection phase of Ti with respect to glass is independent of the air-gap spacing. As a demonstration of our approach in the optical characterization of small metamaterial samples, we also measure the reflection phase of a micron-sized 2D Au sawtooth nanoarray. The experiment is in good agreement with the model simulation. PMID:27661366

  11. An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter

    Science.gov (United States)

    Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning

    2015-08-01

    An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.

  12. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    Science.gov (United States)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  13. Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities

    CERN Document Server

    Uphoff, Manuel; Rempe, Gerhard; Ritter, Stephan

    2014-01-01

    We study the frequency splitting of the polarization eigenmodes of the fundamental transverse mode in CO2 laser-machined, high-finesse optical Fabry-Perot cavities and investigate the influence of the geometry of the cavity mirrors. Their highly reflective surfaces are typically not rotationally symmetric, but have slightly different radii of curvature along two principal axes. We observe that the eccentricity of such elliptical mirrors lifts the degeneracy of the polarization eigenmodes. The impact of the eccentricity increases for smaller radii of curvature. A model derived from corrections to the paraxial resonator theory is in excellent agreement with measurements, showing that geometric effects are the main source of the frequency splitting of polarization modes for the studied type of microscopic cavity. By rotation of one of the mirrors around the cavity axis, the splitting can be tuned. In the case of an identical differential phase shift per mirror it can even be eliminated, despite a nonvanishing ec...

  14. A Novel Technique to Measure Gain Spectrum for Fabry-Pérot Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel gain measurement technique based on the integration of the measured amplified spontaneous emission spectrum multiplying a phase function over one longitudinal mode interval is proposed for Fabry-Perot semiconductor lasers.

  15. Influence of cavity loss on an extrinsic Fabry-Perot cavity intensity-based pressure sensor.

    Science.gov (United States)

    Lű, Tao

    2015-09-01

    We present an extrinsic Fabry-Perot cavity intensity-based pressure sensor that mainly comprises a single-mode fiber end and an elastic monocrystalline silicon layer bonded to a silicon diaphragm. We investigated the influence of cavity loss on the performance indexes (PIS) of the intensity-based extrinsic Fabry-Perot cavity optical fiber pressure sensor. A buffer unit made of three incompressible oil cavities attenuated outside pressure and transformed pressure information into cavity length microchange information. Experimental results indicated that, under center quadrature-points within the linear regions of adjacent fringes, for an applied 40 kPa external pressure, cavity length was modulated by pressures of 69.9 kPa-109.9 kPa, 150.1 kPa-190 kPa, 220.1 kPa-259.9 kPa, and 279.9 kPa-319.9 kPa, output intensity ranges increased as 1 μW, 1.02 μW, 1.03 μW, and 1.05 μW, sensitivity increased as 0.01909 μW/kPa, 0.01986 μW/kPa, 0.02127 μW/kPa, and 0.02387 μW/kPa, but linearity degraded, as indicated by the standard deviation of linear fits of 0.02607, 0.02664, 0.02935, and 0.04879 due to cavity loss. Furthermore, the pressure ranges within the same quarter period decreased as 40 kPa, 37.45 kPa, 32.4 kPa, and 30.15 kPa. Consequently, the same lengths of linear regions within adjacent fringes of an approximately sinusoidal curve corresponded to different measurement ranges, linearities, and sensitivities. Initial cavity length must be chosen to optimize both signal strength and the PIS studied here in manufacturing this type sensor.

  16. Simplified Reflection Fabry-Perot Method for Determination of Electro-Optic Coefficients of Poled Polymer Thin Films

    Directory of Open Access Journals (Sweden)

    Warren N. Herman

    2011-08-01

    Full Text Available We report a simplified reflection mode Fabry-Perot interferometry method for determination of electro-optic (EO coefficients of poled polymer thin films. Rather than fitting the detailed shape of the Fabry-Perot resonance curve, our simplification involves a technique to experimentally determine the voltage-induced shift in the angular position of the resonance minimum. Rigorous analysis based on optical properties of individual layers of the multilayer structure is not necessary in the data analysis. Although angle scans are involved, the experimental setup does not require a θ-2θ rotation stage and the simplified analysis is an advantage for polymer synthetic efforts requiring quick and reliable screening of new materials. Numerical and experimental results show that our proposed method can determine EO coefficients to within an error of ~8% if poled values for the refractive indices are used.

  17. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    Science.gov (United States)

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  18. A compact frequency selective stop-band splitter by using Fabry-Perot nanocavity in a T-shaped waveguide

    Institute of Scientific and Technical Information of China (English)

    M Afshari Bavil; Sun Xiu-Dong

    2013-01-01

    By utilizing a Fabry-Perot (FP) nanocavity adjacent to T-shaped gap waveguide ports,spectrally selective filtering is realized.When the wavelength of incident light corresponds to the resonance wavelength of the FP nanocavity,the surface plasmons are captured inside the nanocavity,and light is highly reflected from this port.The resonance wavelength is determined by using Fabry-Perot resonance condition for the nanocavity.For any desired filtering frequency the dimension of the nanocavity can be tailored.The numerical results are based on the two-dimensional finite difference time domain simulation under a perfectly matched layer absorbing boundary condition.The analytical and simulation results indicate that the proposed structure can be utilized for filtering and splitting applications.

  19. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement.

    Science.gov (United States)

    Liao, Changrui; Liu, Shen; Xu, Lei; Wang, Chao; Wang, Yiping; Li, Zhengyong; Wang, Qiao; Wang, D N

    2014-05-15

    We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of ∼320  nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional all-silica Fabry-Perot interferometric pressure sensors and, as a result, a high pressure sensitivity of ∼1036  pm/MPa at 1550 nm and a low temperature cross-sensitivity of ∼960  Pa/°C are achieved when a silica diaphragm of ∼500  nm in thickness is used. Moreover, the all-silica spherical structure enhanced the mechanical strength of the micro-cavity sensor, making it suitable for high sensitivity pressure sensing in harsh environments.

  20. An ultrahigh Finesse Fabry-Perot superconducting resonator as a photon box for cavity-QED experiments

    CERN Document Server

    Kuhr, S; Guerlin, C; Bernu, J; Hoff, U B; Del'eglise, S; Brune, M; Raimond, J M; Haroche, S; Osnaghi, S; Jacques, E; Bosland, P; Visentin, B; Kuhr, Stefan; Guerlin, Christine; Bernu, Julien; Hoff, Ulrich Busk; Del\\'{e}glise, Samuel; Brune, Michel; Raimond, Jean-Michel; Haroche, Serge; Osnaghi, Stefano

    2006-01-01

    We have built a microwave Fabry-Perot resonator made of diamond-machined copper mirrors coated with superconducting niobium. Its damping time (Tc = 130 ms at 51 GHz and 0.8 K) corresponds to a finesse of 4.6 e9, the highest ever reached for a Fabry-Perot in any frequency range. We have tested this resonator by sending across it two circular Rydberg atoms, the first emitting a photon and the second absorbing it after a delay of 1/10 s. This long storage time photon box opens novel perspectives for quantum information. It can be used to perform sequences of hundreds of gate operations on individual atomic qubits. A set-up with one or two photon boxes can store mesoscopic fields made of hundreds of photons for decoherence and non-locality studies.

  1. Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer

    CERN Document Server

    Halverson, Samuel; Ramsey, Lawrence; Redman, Stephen; Nave, Gillian; Wilson, John C; Hearty, Fred; Holtzman, Jon

    2012-01-01

    We present the ongoing development of a commercially available Micron Optics fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and economic spectrograph reference with the goal of achieving <1 m/s long term stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns by combining light traversing different delay paths. The interference creates a rich spectrum of narrow emission lines, ideal for use as a precise Doppler reference. This fully photonic reference could easily be installed in existing NIR spectrographs, turning high resolution fiber-fed spectrographs into precise Doppler velocimeters. First light results on the Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph and several tests of major support instruments are also presented. These instruments include a SuperK Photonics fiber supercontinuum laser source and precise temperature controller. A high resolution spectrum obtained using the NIST 2-m...

  2. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Abudureyimu, Reheman [ORNL; Huang, Chunning [ORNL; Liu, Yun [ORNL

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  3. Fabry-Perot腔滤波器的数学模型%The Mathematical Model of the Fabry-Perot Filter

    Institute of Scientific and Technical Information of China (English)

    齐永兴; 陈树强; 刘元安; 钱宗珏; 赵国谦

    2004-01-01

    将信号与系统的知识应用于Fabry-Perot(FP)腔滤波器的分析和设计中,避免了繁琐的矩阵运算,而且FP腔滤波器同整个系统紧密地联系在一起,使其成为一个以传递函数为特征的器件,更易于理解和优化设计.

  4. Response of a new low-coherence Fabry-Perot sensor to hematocrit levels in human blood.

    Science.gov (United States)

    Jędrzejewska-Szczerska, Małgorzata

    2014-04-21

    In this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing interferometer. The first step in the research on such sensor is the assessment of its performance under favorable conditions, i.e., using blood samples from healthy volunteers tested in vitro. Such an experiment was conducted using a sensor comprising a superluminescent diode source, an optical spectrum analyzer working as the detection setup and a sensing Fabry-Perot interferometer providing high interference contrast. The response of this sensor was recorded for several samples and compared with the reference laboratory method. The coefficient of determination (R²) for a linear relationship between the results given by both methods was 0.978 and the difference between these results was less than 1%. The presented results suggest that further research into the performance of the sensor is merited.

  5. Response of a New Low-Coherence Fabry-Perot Sensor to Hematocrit Levels in Human Blood

    Directory of Open Access Journals (Sweden)

    Małgorzata Jędrzejewska-Szczerska

    2014-04-01

    Full Text Available In this paper, a low-coherence Fabry-Perot sensor with a spectrally measured signal processing response to the refractive index of liquids is presented. Optical fiber sensors are potentially capable of continuous measuring hematocrit levels in blood. Low-coherence Fabry-Perot interferometric sensors offer a robust solution, where information about the measurand is encoded in the full spectrum of light reflected from the sensing interferometer. The first step in the research on such sensor is the assessment of its performance under favorable conditions, i.e., using blood samples from healthy volunteers tested in vitro. Such an experiment was conducted using a sensor comprising a superluminescent diode source, an optical spectrum analyzer working as the detection setup and a sensing Fabry-Perot interferometer providing high interference contrast. The response of this sensor was recorded for several samples and compared with the reference laboratory method. The coefficient of determination (R2 for a linear relationship between the results given by both methods was 0.978 and the difference between these results was less than 1%. The presented results suggest that further research into the performance of the sensor is merited.

  6. Hot-wire sandwiched Fabry-Perot interferometer for microfluidic flow rate sensing

    Science.gov (United States)

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-08-01

    We present a Fabry-Perot interferometer for microfluidic flow rate sensing. The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a "hot-wire" sensor. A microfluidic channel made from commercial silica capillary was integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system.

  7. High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Li Yigang; Fortes, Luis M; Almeida, Rui M [Departamento de Engenharia de Materiais/ICEMS, Instituto Superior Tecnico/TULisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Chiappini, Andrea; Ferrari, Maurizio, E-mail: yigang.li@ist.utl.p, E-mail: rui.almeida@ist.utl.p [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab., Via alla Cascata 56/C, Povo, 38123 Trento (Italy)

    2009-10-21

    An optimized sol-gel process was developed to fabricate 1D photonic bandgap structures. Several erbium-doped Fabry-Perot microcavities were prepared and characterized. The thickest sample contained two Bragg mirrors, each having 12 distributed Bragg reflector periods of alternating silicate glass and titania layers. The total thickness of this sample reached {approx}12 {mu}m. The Er{sup 3+} photoluminescence spectra at 1.5 {mu}m were measured for the microcavities. A quality factor of 250 and an Er{sup 3+} photoluminescence enhancement of 96 times at 1.5 {mu}m have been reached. The sol-gel processing details, the crystallization of the titania films and the refractive index of the deposited materials are discussed in detail. The simulated optical spectra of the microcavities were found to agree well with the actually measured curves. These results demonstrate that the present sol-gel processing technique is of potential interest for low cost fabrication of 1D photonic bandgap devices.

  8. Demodulation of a fiber Fabry-Perot strain rosette using white light interferometry

    Science.gov (United States)

    Zuliani, Gary Louis

    Fiber optic sensors are starting to be used in specialty application areas where electrical sensors are usually found, such as in aircraft and spacecraft. Fiber optic sensor technology has advantages over its electronic counterparts including small size and weight, immunity to electromagnetic interference, and ruggedness. The use of fiber interferometers as sensors is reviewed along with methods for demodulating their signals. The principles of path-matched differential interferometry and coherence multiplexing are demonstrated and applied to the design and construction of a system that simultaneously demodulates three fiber Fabry-Perot (FFP) interferometers. The FFP's formed the arms of a delta rosette which were bonded to the surface of an aluminum cantilevered beam and were illuminated with one broadband light source. The receiving interferometer consisted of a bulk Michelson interferometer with three distinct optical paths. A charge coupled device array was used as the detector allowing fringe shifts to be counted on a television monitor. Tensor measurements were made and found to be in good agreement when compared to those obtained from electrical strain gages.

  9. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity.

    Science.gov (United States)

    Wang, Junjie; Wang, Meng; Xu, Jian; Peng, Li; Yang, Minghong; Xia, Minghe; Jiang, Desheng

    2014-10-01

    This paper describes the theoretical and experimental aspects of an optical underwater shock wave sensor based on a polymer film optical fiber Fabry-Perot cavity manufactured by vacuum deposition technology. The transduction mechanism of the sensor involves a normally incident acoustic stress wave that changes the thickness of the polymer film, thereby giving rise to a phase shift. This transient interferometric phase is interrogated by a three-phase-step algorithm. Theoretically, the sensor-acoustic-field interaction principle is analyzed, and the phase modulation sensitivity based on the theory of waves in the layered media is calculated. Experimentally, a static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electromagnetic shock wave. Results indicate that the repeatability, hysteresis, nonlinearity, and the overall measurement accuracy of the sensor within the full pressure range of 55 MPa are 1.82%, 0.86%, 1.81%, and 4.49%, respectively. The dynamic response time is less than 0.767 μs. Finally, three aspects that need further study for practical use are pointed out. PMID:25322237

  10. Si-based tunable flattop photodetector with a stepped Fabry-Perot cavity.

    Science.gov (United States)

    Wang, Wei; Huang, Yongqing; Duan, Xiaofeng; Tian, Jia; Guo, Jingwei; Ren, Xiaomin

    2012-04-01

    This paper presents the design and analysis of a Si-based tunable flattop photodetector realized by the introduction of a stepped Fabry-Perot cavity, which can be thermally tuned via applying tuning power on its tuning electrode. By using a transfer matrix method, the spectral response of the photodetector is simulated in detail, indicating a flattop line shape can be achieved with an optimum step height. A trade-off residing in this device between the free spectrum range and the ease of fabrication of step height is also revealed and analyzed. In the final design of the photodetector, 1 dB linewidth of 0.5 nm, 3 dB linewidth of 0.8 nm, 6 dB linewidth of 1.2 nm, peak quantum efficiency of 40%, tuning efficiency of 91 mW/nm are theoretically obtained. We discuss the epitaxial growth and fabrication of the photodetector in the end, exhibiting the mature technique available for this device.

  11. A novel fiber optic Fabry-Perot structure with a micrometric diameter tip

    Science.gov (United States)

    Wang, Xingwei; Xu, Juncheng; Wang, Zhuang; Cooper, Kristie L.; Wang, Anbo

    2006-08-01

    This paper presents a novel fiber optic Fabry-Perot (FP) structure with a micrometric diameter tip. The fabrication of micro scale probes has become essential in intracellular surgery, in cell sensing, manipulation, and injection. It is of great importance in many fields, such as genetics, pathology, criminology, pharmacogenetics, and food safety. With such a tiny protrusion, the sensor can be inserted into micron size cells, say, for DNA analysis. With the FP cavity inside the fiber, the change of optical path difference (OPD) caused by the environment can be demodulated. In addition, the structure is intrinsically capable of temperature compensation. What's more, it is simple, cost-efficient, and compact. Last but not the least, the structure shows promise for nanometric protrusion. Once this goal is achieved, the sensor can be inserted into most cells. The sensor could pave the way for faster, more accurate medical diagnostic tests for countless conditions and may ultimately save lives by allowing earlier disease detection and intervention.

  12. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer.

    Science.gov (United States)

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2016-08-22

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km. PMID:27557211

  13. Low-profile Circularly Polarized Antenna Exploiting Fabry-Perot Resonator Principle

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2015-12-01

    Full Text Available We designed a patch antenna surrounded by a mushroom-like electromagnetic band-gap (EBG structure and completed it by a partially reflective surface (PRS. EBG suppresses surface waves and creates the bottom wall of the Fabry-Perot (FP resonator. PRS plays the role of a planar lens and forms the top wall of the FP resonator. The novel PRS consists of a two-layer grid exhibiting inductive and capacitive (LC behavior which allows us to obtain a reflection phase between –108 and +180 degrees. Thanks to this PRS, we can control the height of the cavity in the range from lambda/2 to lambda/300. Obtained results show that the FP resonator antenna enables us to achieve a low profile and a high-gain. The patch is excited by a microstrip transmission line via the cross-slot aperture generating the circular polarization. Functionality of the described concept of the FP antenna was verified at 10 GHz. The antenna gain was 15 dBi, the impedance bandwidth 2.3% for |S11| less than –10 dB, and the axial ratio bandwidth 0.6% for AR less than 3.0 dB. Hence, the antenna is suitable for narrowband applications. Computer simulations show that the microwave FP antenna can be simply redesigned to serve as a source of circularly polarized terahertz waves.

  14. Evaluation of Fabry-Perot polymer film sensors made using hard dielectric mirror deposition

    Science.gov (United States)

    Buchmann, Jens; Zhang, Edward; Scharfenorth, Chris; Spannekrebs, Bastian; Villringer, Claus; Laufer, Jan

    2016-03-01

    Fabry-Perot (FP) polymer film sensors offer high acoustic sensitivity, small element sizes, broadband frequency response and optical transmission to enable high resolution, backward mode photoacoustic (PA) imaging. Typical approaches to sensor fabrication involve the deposition of stacks of alternating dielectric materials to form interferometer mirrors, which are separated by a polymer spacer. If hygroscopic soft dielectric materials are used, a protective polymer layer is typically required. In this study, methods for the deposition of water-resistant, hard dielectric materials onto polymers were explored to improve the robustness and performance of the sensors. This involved the optimisation of the fabrication process, the optical and acoustic characterisation of the sensors, and a comparison of the frequency response with the output of an acoustic forward model. The mirrors, which were separated by a 20 μm Parylene spacer, consisted of eight double layers of Ta2O5 and SiO2 deposited onto polymer substrates using temperature-optimised electron vapour deposition. The free spectral range of the interferometer was 32 nm, its finesse FR = 91, and its visibility V = 0.72. The noise-equivalent pressure was 0.3 kPa (20 MHz bandwidth). The measured frequency response was found to be more resonant at 25 MHz compared to sensors with soft dielectric mirrors, which was also in good agreement with the output of a forward model of the sensor. The sensors were used in a PA scanner to acquire 3-D images in tissue phantoms.

  15. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Everardo Vargas-Rodriguez

    2015-10-01

    Full Text Available In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS and the Tunable Laser Spectroscopy (TLS principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors.

  16. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    Science.gov (United States)

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance.

  17. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    Science.gov (United States)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  18. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

    CERN Document Server

    Shangguan, Mingjia; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-wei

    2016-01-01

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center fr...

  19. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    Science.gov (United States)

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-10-15

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

  20. Measurement of thermal expansion coefficient of graphene diaphragm using optical fiber Fabry-Perot interference

    Science.gov (United States)

    Li, Cheng; Liu, Qianwen; Peng, Xiaobin; Fan, Shangchun

    2016-07-01

    Application of the Fabry-Perot (FP) interference method for determining the coefficient of thermal expansion (CTE) of a graphene diaphragm is investigated in this paper. A miniature extrinsic FP interferometric (EFPI) sensor was fabricated by using an approximate 8-layer graphene diaphragm. The extremely thin diaphragm was transferred onto the endface of a ferrule with an inner diameter of 125 μm, and van der Waals interactions between the graphene diaphragm and its substrate created a low finesse FP interferometer with a cavity length of 36.13 μm. Double reference FP cavities using two cleaved optical fibers as reflectors were also constructed to differentially cancel the thermal expansion effects of the trapped gas and adhesive material. A temperature test demonstrated an approximate cavity length change of 166.1 nm °C-1 caused by film thermal expansion in the range of 20-60 °C. Then along with the established thermal deformation model of the suspended circular diaphragm, the calculated CTE ranging from  -9.98  ×  10-6 K-1 to  -2.09  ×  10-6 K-1 conformed well to the previously measured results. The proposed method would be applicable in other types of elastic materials as the sensitive diaphragm of an EFPI sensor over a wide temperature range.

  1. Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

    Directory of Open Access Journals (Sweden)

    Xue-Xia Yang

    2016-01-01

    Full Text Available A novel millimeter wave coplanar waveguide (CPW fed Fabry-Perot (F-P antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth of S11 less than −10 dB is from 34 to 37.7 GHz (10.5%, and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.

  2. Optical fibre Fabry-Perot relative humidity sensor based on HCPCF and chitosan film

    Science.gov (United States)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi

    2016-09-01

    An optical fibre Fabry-Perot interferometer (FPI) sensor for relative humidity (RH) measurement is proposed. The FPI is formed by splicing a short section of hollow-core photonic crystal fibre(HCPCF) to single mode fibre and covering a chitosan film at the end of HCPCF. The refractive index of chitosan and film thickness will change with ambient RH, leading to the change in the reflected interference spectrum of FPI. RH response of the FPI sensor is analysed theoretically and demonstrated experimentally. It shows nonlinear response to RH values from 35 to 95%RH. The interference fringe shifts to shorter wavelength as RH increases with a maximum sensitivity of 0.28 nm/%RH at high RH level. And the fringe contrast also decreases as RH increases with an available maximum sensitivity of 0.5 dB/%RH. The sensor shows good stability and fast response time less than 1 min. With its advantages of compact structure, good performance, simple and safe fabrication, the proposed optical fibre FPI sensor has great potential for RH sensing.

  3. Fabry-Perot Absorption Line Spectroscopy of the Galactic Bar. I. Kinematics

    CERN Document Server

    Rangwala, Naseem; Stanek, K Z

    2008-01-01

    We use Fabry-Perot absorption line imaging spectroscopy to measure radial velocities using the Ca II 8542 line in 3360 stars towards three lines of sight in the Milky Way's bar: Baade's Window and offset position at (l,b) ~ (+-5.0, -3.5). This sample includes 2488 bar red clump giants, 339 bar M/K-giants, and 318 disk main sequence stars. We measure the first four moments of the stellar velocity distribution of the red clump giants, and find it to be symmetric and flat-topped. We also measure the line-of-sight average velocity and dispersion of the red clump giants as a function of distance in the bar. We detect stellar streams at the near and far side of the bar with velocity difference > 30 km/s at l = +-5, but we do not detect two separate streams in Baade's Window. Our M-giants kinematics agree well with previous studies, but have dispersions systematically lower than those of the red clump giants by ~ 10 km/s. For the disk main sequence stars we measure a velocity dispersion of ~ 45 km/s for all three li...

  4. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite

    Science.gov (United States)

    Mannila, Rami; Näsilä, Antti; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Saari, Heikki

    2013-09-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. The Aalto-1 is planned to launch on 2014. VTT Technical Research Centre of Finland is developing the main Earth observation payload, a miniaturized spectral imager unit, for the satellite. The spectral imager unit contains a spectral imager, a visible RGB-camera and control electronics of the cameras. Detailed design of the spectral imager unit has been completed and assembly of the spectral imager unit will be done in the autumn 2013. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based on a piezo-actuated structure. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The spectral resolution of the imager will be 8-15 nm at full width at half maximum and it will operate in the wavelength range 500-900 nm. Imaging resolution of the spectral imager is 1024x1024 pixels and the focal length of the optics is 32 mm and F-number is 3.4. Mass of the spectral imager unit is approximately 600 grams, and dimensions are 97 mm x 97 mm x 48 mm.

  5. Tunable MOEMS Fabry-Perot interferometer for miniaturized spectral sensing in near-infrared

    Science.gov (United States)

    Rissanen, A.; Mannila, R.; Tuohiniemi, M.; Akujärvi, A.; Antila, J.

    2014-03-01

    This paper presents a novel MOEMS Fabry-Perot interferometer (FPI) process platform for the range of 800 - 1050 nm. Simulation results including design and optimization of device properties in terms of transmission peak width, tuning range and electrical properties are discussed. Process flow for the device fabrication is presented, with overall process integration and backend dicing steps resulting in successful fabrication yield. The mirrors of the FPI consist of LPCVD (low-pressure chemical vapor) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapor. Silicon substrate below the optical aperture is removed by inductively coupled plasma (ICP) etching to ensure transmission in the visible - near infra-red (NIR), which is below silicon transmission range. The characterized optical properties of the chips are compared to the simulated values. Achieved optical aperture diameter size enables utilization of the chips in both imaging as well as single-point spectral sensors.

  6. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    Science.gov (United States)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  7. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    Science.gov (United States)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  8. Fabry-Perot observations of the ionized gas in NGC 3938

    CERN Document Server

    Jiménez-Vicente, J; Rozas, M; Castaneda, H O; Porcel, C

    1999-01-01

    The nearly face-on spiral galaxy NGC 3938 has been observed in the $H_\\alpha$ line with the TAURUS II Fabry-Perot interferometer at the William Herschel Telescope in order to study the kinematics of the ionized gas. We are able to construct intensity, velocity and velocity dispersion maps for this galaxy. The rotation curve of the galaxy is calculated up to 4.5 radial scale lengths from the galactic centre. The residual velocity field shows very small values with no systematic pattern. The mean velocity dispersion is approximately constant with radius at about 11 km/s as previously reported for the neutral and molecular gas. We have also studied the relation between intensity and velocity dispersion for the ionized gas. We have found that this distribution is compatible with a turbulent gas relaxing to a Kolmogorov type turbulence as the stationary regime. The average dispersion varies with intensity as $\\sigma which the dispersion is kept almost constant at a value of about 19 km/s.

  9. Thermospheric winds and temperatures above Mawson, Antarctica, observed with an all-sky imaging, Fabry-Perot spectrometer

    Directory of Open Access Journals (Sweden)

    C. Anderson

    2009-05-01

    Full Text Available A new all-sky imaging Fabry-Perot spectrometer has been installed at Mawson station (67°36' S, 62°52' E, Antarctica. This instrument is capable of recording independent spectra from many tens of locations across the sky simultaneously. Useful operation began in March 2007, with spectra recorded on a total of 186 nights. Initial analysis has focused on the large-scale daily and average behavior of winds and temperatures derived from observations of the 630.0 nm airglow line of atomic oxygen, originating from a broad layer centered around 240 km altitude, in the ionospheric F-region.

    The 1993 Horizontal Wind Model (HWM93, NRLMSISE-00 atmospheric model, and the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP model were used for comparison. During the geomagnetically quiet period studied, observed winds and temperatures were generally well modelled, although temperatures were consistently higher than NRLMSISE-00 predicted, by up to 100 K. CTIP temperatures better matched our data, particularly later in the night, but predicted zonal winds which were offset from those observed by 70–180 ms−1 westward. During periods of increased activity both winds and temperatures showed much greater variability over time-scales of less than an hour. For the active night presented here, a period of 45 min saw wind speeds decrease by around 180 ms−1, and temperatures increase by approximately 100 K. Active-period winds were poorly modelled by HWM93 and CTIP, although observed median temperatures were in better agreement with NRLMSISE-00 during such periods.

    Average behavior was found to be generally consistent with previous studies of thermospheric winds above Mawson. The collected data set was representative of quiet geomagnetic and solar conditions. Geographic eastward winds in the afternoon/evening generally continued until around local midnight, when winds turned equatorward. Geographic meridional and

  10. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法∗%Metho de of phase correction of displacement measurement using Fabry-Perot interferometer in calculable capacitor

    Institute of Scientific and Technical Information of China (English)

    王建波; 钱进; 刘忠有; 陆祖良; 黄璐; 杨雁; 殷聪; 李同保

    2016-01-01

    obtained, and its phase versus the longitude propagation distance is analyzed. The amplitude and phase of the total transmitted beam, which is the coherent superposition of all the partial beams, are presented. Since the Fabry-Perot interferometer in the calculable capacitor is actively locked to a stabilized laser at two different cavity lengths, the phase of the transmitted beam at each cavity length is calculated individually. The phase difference between the two transmitted beams versus the longitude propagation distance is also analyzed numerically. The simulation result demonstrates that the minimum value of the displacement correction can be obtained by actively detecting the laser light at a distance of 560 mm from output mirror, when the Fabry-Perot interferometer moves from the cavity length of 111.3 mm to 316.3 mm, and it means that a displacement correction value of 0.7 nm, with a relative value of|δL|/|∆L|=3.4 × 10−9, should be added to the measured displacement of the guard electrode.

  11. Performance Evaluation of Fabry-Perot Temperature Sensors in Nuclear Power Plant Measurements

    International Nuclear Information System (INIS)

    The Fiso Fabry-Perot fiber-optic temperature sensor was selected for performance evaluation and for potential application in nuclear power plants because of its unique interferometric sensing mechanism and data-processing technique, and its commercial availability. It employs a Fizeau interferometer and a charge-coupled device array to locate the position of the maximum interference fringe intensity, which is directly related to the environmental temperature. Consequently, the basic sensing mechanism is independent of the absolute transmitted light intensity, which is the most likely parameter to be affected by external harsh environments such as nuclear irradiation, high pressure/temperature, and cyclical vibration.This paper reports research on the performance of two Fiso Fabry-Perot temperature sensors in environmental conditions expected in nuclear power plants during both normal and abnormal (i.e., accident) conditions. The environmental conditions simulated in this paper include gamma-only (60Co) irradiation, pressure/temperature environmental transient, and mixed neutron/gamma field, respectively.The first sensor exhibited no failure or degradation in performance during and following gamma-only irradiation in which a total dose of 15 kGy was delivered at a dose rate of 2.5 kGy/h. Following gamma irradiation, this sensor was then tested for 10.75 days in a thermohydraulic environment prescribed by the Institute of Electrical and Electronics Engineers IEEE323-1983. Intermittent behavior was observed throughout the latter portions of this test, and degradation in performance occurred after the test. Visual evaluation after opening the sensor head indicated that the internal welding methodology was the primary contributor to the observed behavior during this test. Further consultation with the vendor shows that the robustness and reliability of Fiso sensors can be substantially improved by modifying the internal welding methods.The second Fiso temperature sensor

  12. Dual-frequency comb generation with differing GHz repetition rates by parallel Fabry-Perot cavity filtering of a single broadband frequency comb source

    Science.gov (United States)

    Mildner, Jutta; Meiners-Hagen, Karl; Pollinger, Florian

    2016-07-01

    We present a dual-comb-generator based on a coupled Fabry-Perot filtering cavity doublet and a single seed laser source. By filtering a commercial erbium-doped fiber-based optical frequency comb with CEO-stabilisation and 250 MHz repetition rate, two broadband coherent combs of different repetition rates in the GHz range are generated. The filtering doublet consists of two Fabry-Perot cavities with a tunable spacing and Pound-Drever-Hall stabilisation scheme. As a prerequisite for the development of such a filtering unit, we present a method to determine the actual free spectral range and transmission bandwidth of a Fabry-Perot cavity in situ. The transmitted beat signal of two diode lasers is measured as a function of their tunable frequency difference. Finally, the filtering performance and resulting beat signals of the heterodyned combs are discussed as well as the optimisation measures of the whole system.

  13. Locking IR and UV diode lasers to a visible laser using a LabVIEW PID controller on a Fabry-Perot signal

    CERN Document Server

    Kwolek, J M; Goodman, D S; Smith, W W

    2015-01-01

    Simultaneous laser locking of IR and UV lasers to a visible reference laser is demonstrated via a Fabry-Perot cavity. LabVIEW is used to analyze the input and an internal PID algorithm converts the Fabry-Perot signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of less than 12 MHz, with the lab-built IR laser undergoing signi?cant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple computer-controlled, non temperature-stabilized Fabry-Perot locking scheme for our applications, laser cooling of Ca+ ions, and its use in other applications with similar modest frequency stabilization requirements.

  14. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    Science.gov (United States)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  15. Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces

    Science.gov (United States)

    Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong

    2016-08-01

    The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).

  16. Short-wave infrared (SWIR) spectral imager based on Fabry-Perot interferometer for remote sensing

    Science.gov (United States)

    Mannila, Rami; Holmlund, Christer; Ojanen, Harri J.; Näsilä, Antti; Saari, Heikki

    2014-10-01

    VTT Technical Research Centre of Finland has developed a spectral imager for short-wave infrared (SWIR) wavelength range. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by a commercial InGaAs Camera. The FPI consists of two dielectric coated mirrors separated by a tunable air gap. Tuning of the air gap tunes also transmitted wavelength and therefore FPI acts as a tunable band bass filter. The FPI is piezo-actuated and it uses three piezo-actuators in a closed capacitive feedback loop for air gap tuning. The FPI has multiple order transmission bands, which limit free spectral range. Therefore spectral imager contains two FPI in a stack, to make possible to cover spectral range of 1000 - 1700 nm. However, in the first tests imager was used with one FPI and spectral range was limited to 1100-1600 nm. The spectral resolution of the imager is approximately 15 nm (FWHM). Field of view (FOV) across the flight direction is 30 deg. Imaging resolution of the spectral imager is 256 x 320 pixels. The focal length of the optics is 12 mm and F-number is 3.2. This imager was tested in summer 2014 in an unmanned aerial vehicle (UAV) and therefore a size and a mass of the imager were critical. Total mass of the imager is approximately 1200 grams. In test campaign the spectral imager will be used for forest and agricultural imaging. In future, because results of the UAV test flights are promising, this technology can be applied to satellite applications also.

  17. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    Science.gov (United States)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  18. High precision frequency calibration of tunable diode lasers stabilized on an internally coupled Fabry-Perot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Clar, H.; Schieder, R.; Reich, M.; Winnewisser, G.

    1989-05-01

    For very high precision molecular spectroscopy we use a tunable diode laser which is frequency locked to an internally coupled Fabry-Perot interferometer (icFPI). The spectra are calibratd by means of the interference pattern of an iodine stabilized He--Ne reference laser which is simultaneously coupled into the icFPI. In this paper the exact relation between the diode laser frequency and the He--Ne fringe number is derived and a convenient calibration procedure yielding a frequency accuracy of 5 x 10/sup -5/ cm/sup -1/ at 10 ..mu..m is described.

  19. High precision frequency calibration of tunable diode lasers stabilized on an internally coupled Fabry-Perot interferometer.

    Science.gov (United States)

    Clar, H J; Schieder, R; Reich, M; Winnewisser, G

    1989-05-01

    For very high precision molecular spectroscopy we use a tunable diode laser which is frequency locked to an internally coupled Fabry-Perot interferometer (icFPI). The spectra are calibrated by means of the interference pattern of an iodine stabilized He-Ne reference laser which is simultaneously coupled into the icFPI. In this paper the exact relation between the diode laser frequency and the He-Ne fringe number is derived and a convenient calibration procedure yielding a frequency accuracy of 5 x 10(-5) cm(-1) at 10 microm is described.

  20. Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub.

    Science.gov (United States)

    Kim, Kyung-Su; Mizuno, Yosuke; Nakamura, Kentaro

    2014-04-01

    A fiber-optic probe with dielectric multilayer films deposited on a small stub is studied for mega-hertz ultrasonic-wave detection in water. The small stub with a short Fabry-Perot cavity and distributed reflectors is attached on the fiber end. The structure is mechanically strong and withstands intense ultrasonic pressure. Ultrasonic waves at 1.56MHz are successfully detected in water with a good signal-to-noise ratio. The working principle and the characteristics are studied by comparing the ultrasonic sensitivity with that of a conventional piezoelectric hydrophone. The distance response and directional response are also investigated.

  1. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    Science.gov (United States)

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  2. Ion-neutral coupling in the high-latitude F-layer from incoherent scatter and Fabry-Perot interferometer measurements

    Directory of Open Access Journals (Sweden)

    K. Cierpka

    Full Text Available Since the auroral ionosphere provides an important energy sink for the magnetosphere, ionosphere-thermosphere coupling must be investigated when considering the energy budget of the ionosphere-magnetosphere coupling. We present the first Scandinavian ground-based study of high-latitude F-region ion-neutral frictional heating where ion velocity and temperature are measured by the EISCAT incoherent scatter radar as well as neutral wind and temperature being measured simultaneously by a Fabry-Perot interferometer. A geomagnetically active period (Kp = 7 – 5 and quiet period (Kp = 0+ – 0 were studied. Neglecting the neutral wind can result in errors of frictional heating estimates of 60% or more in the F-layer. About 96% of the local ion temperature enhancement over the neutral temperature is accounted for by ion-neutral frictional heating.

    Key words: Ionosphere (auroral ionosphere; ionosphere-atmosphere interactions

  3. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    Directory of Open Access Journals (Sweden)

    Ji Xia

    2015-07-01

    Full Text Available An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  4. Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region.

    Science.gov (United States)

    Shu, Shiwei; Li, Yang Yang

    2015-03-15

    We report a theoretical study on a novel type of absorber that can achieve near perfect absorption in the visible and near-infrared regions by utilizing the Fabry-Perot and the surface plasmon polariton (SPP) effects. The absorber consists of an Al/dielectric/Al triple-layered structure with the top Al layer consisting of an array of holes. The absorption features can be easily controlled by tuning the structural parameters, particularly the porous features of the top Al layer. When the porous features in the top Al layer are significantly smaller than the wavelength, light absorption is enabled through the Fabry-Perot effect. On the other hand, when the porous features in the top layer are at the subwavelength scale, new absorption peaks emerge due to the SPP effect. Furthermore, when the top Al layer consists of an array of hollow rings, the electric field at the interface between the top Al layer and the middle dielectric layer is greatly enhanced due to the plasmonic effect, indicating that the absorber reported here may be suitable for novel applications, e.g., the surface-enhanced Raman spectroscopy (SERS) substrates.

  5. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

    Science.gov (United States)

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-wei

    2016-08-01

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center frequencies and the bandwidths are obtained simultaneously. And then the Doppler shifts are determined relative to the center frequency of the reference signal. To eliminate the influence of temperature fluctuations on the FFP-SI, the FFP-SI is cased in a chamber with temperature stability of 0.001 during the measurement. Continuous LOS wind observations are carried out on two days at Hefei (31.843 N, 117.265 E), China. In the meantime, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). Due to the computational expensive of the convolution operation of the Q function, an empirical method is adopted to evaluate the quality of the measurements. The standard deviation of the wind speed is 0.76 m/s at the 1.8 km. The standard deviation of the retrieved bandwidth variation is 2.07 MHz at the 1.8 km.

  6. Frequency stabilization based on high finesse glass-ceramic Fabry-Perot cavity for a 632.8-nm He-Ne laser

    Science.gov (United States)

    Fu, Tingting; Yang, Kaiyong; Tan, Zhongqi; Luo, Zhifu; Wu, Suyong

    2014-12-01

    A frequency stabilization technique for a 632.8nm He-Ne laser with a high finesse Fabry-Perot cavity is introduced in this paper. The resonant frequency of the cavity is taken as the frequency standard .In this system the Fabry-Perot cavity is composed of a glass-ceramic spacer, with thermal expansion coefficient smaller than 2×10-8/°C , which means an excellent thermal stabilization which greatly decreases the thermal impacts on the cavity length in the desired constant-temperature environment.The intra-cavity spherical mirror is specially designed, which makes the Fabry-cavity a sensor element in our subsequent experiments for a new practical optical accelerometer .Both cavity mirrors were custom made in our laboratory which have reflectivities greater than 99.995% at 632.8nm, so the Fabry-Perot cavity has a finesse of about 62830. The half-maximum transmission line width is about 55.48 KHz and the free spectral range is 3.5GHz .In the experimental setup, we adopt the frequency stabilization circuit with small dithering .With proper dithering voltage, the laser can be precisely locked to the Fabry-Perot cavity minimum reflection point. Theoretically the frequency stability can reach 10-10 order.

  7. A Tunable Dual-Wavelength Fiber Ring Laser with a Fabry-Perot Laser Diode in an External Injection Seeding Scheme

    Institute of Scientific and Technical Information of China (English)

    Peng-Chun Peng; Hong-Yih Tseng; Sien Chi

    2003-01-01

    A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 nm.

  8. Fabry-perot kinematics of hh 202-204 in the orion nebula: are they part of a big bipolar outflow?

    Directory of Open Access Journals (Sweden)

    M. Rosado

    2002-01-01

    Full Text Available Se presenta un estudio cinem atico de los objetos HH 202, 203 y 204 usando mapas de velocidad Fabry-Perot en H y [N II]. En el caso de HH 202 se encuentran nebulosidades que podr an estar asociadas a este objeto o bien, dada sus altas velocidades (superiores a 100 km s

  9. A Tunable Dual-Wavelength Fiber Ring Laser with a Fabry-Perot Laser Diode in an External Injection Seeding Scheme

    Institute of Scientific and Technical Information of China (English)

    Hong-Yih; Tseng; Sien; Chi

    2003-01-01

    A tunable dual-wavelength fiber ring laser with a Fabry-Perot laser diode is proposed and demonstrated. The dual-wavelength outputs have the optical side-mode-suppression-ratio (SMSR) over 31 dB. The wavelength tuning range can be up to 9 run.

  10. Theoretical and experimental investigation of the mode-spacing of fiber Bragg grating Fabry-Perot cavity

    Institute of Scientific and Technical Information of China (English)

    Wenhua Ren; Peilin Tao; Zhongwei Tan; Yan Liu; Shuisheng Jian

    2009-01-01

    The mode-spacing of the fiber Bragg grating Fabry-Perot(FBG F-P)cavity is calculated by using the effective cavity length which contains the effective length of the FBG.The expression of the effective length,defined by using the phase-time delay,is obtained and simplified as a function of the peak reflectivity at the Bragg wavelength,the band edges,and the first zero-reflectivity wavelength.The effective length is discussed from the energy penetration depth point of view.Three FBG F-P cavities are fabricated in order to validate the effective length approach.The experimental data fits well with the theoretical predictions.The limitation of this method is also pointed out and the improved approach is proposed.

  11. An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity.

    Science.gov (United States)

    Wu, Haibo; Huang, Hui; Bai, Min; Liu, Pengbo; Chao, Ming; Hu, Jie; Hao, Jian; Cao, Tun

    2014-12-29

    An all glass optofludic biosensor with high quality-factor Fabry-Perot cavity (FPC) channel was reported. The all glass sandwich structure can completely eliminate the etching roughness of the channel surface, and can extend the operating wavelength to visible and ultraviolet regions compared with that of Si-based sensor. The quality-factor of the FPC channel is 875, and the system noise can be reduced to 1.2 nV by combining optical differential detection with phase lock-in detection. A detection limit of 15ng/mL for glucose solution, which corresponds to a refractive index unit of 2.0 × 10-9, was experimentally demonstrated. The all glass FPC sensor features low cost and robust compared with surface-plasmon-resonance sensor and ring-resonator sensor. PMID:25607165

  12. Large field enhancement obtained by combining Fabry-Perot resonance and Rayleigh anomaly in photonic crystal slabs

    CERN Document Server

    Dossou, Kokou B

    2016-01-01

    By applying the properties of Fabry-Perot resonance and Rayleigh anomaly, we have showed that a photonic crystal slab can scatter the light from an incident plane wave into a diffracted light with a very large reflection or transmission coefficient. The enhanced field is either a propagating diffraction order (with a grazing angle of diffraction) or a weakly evanescent order, so it can be particularly useful for applications requiring an enhanced propagating field (or an enhanced field with a low attenuation). An efficient effective medium technique is developed for the design of the resonant photonic crystal slabs. Numerical simulations have shown that photonic crystal slabs with low index contrast, such as the ones found in the cell wall of diatoms, can enhance the intensity of the incident light by four orders of magnitude.

  13. An in-situ method for measuring the non-linear response of a Fabry-Perot cavity

    CERN Document Server

    Bu, Wenhao; Xie, Dizhou; Yan, Bo

    2016-01-01

    High finesse Fabry-Perot(FP) cavity is a very important frequency reference for laser stabiliza- tion, and is widely used for applications such as precision measurement, laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the FP cav- ity limits the performance of the laser stabilization. Measuring and controlling such non-linearity are important. Here we report an in-situ, optical method to characterize this non-linearity by measuring the resonance signals of a dual-frequency laser. The di?erential measurement makes it insensitive to laser and cavity drifting, and has a very high sensitivity. It can be applied for various applications with PZT, especially in an optical lab.

  14. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    Directory of Open Access Journals (Sweden)

    Meng-Chang Hsieh

    2015-02-01

    Full Text Available Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector.

  15. Microscopic theory of dipole-dipole interaction in ensembles of impurity atoms in a Fabry-Perot cavity

    Science.gov (United States)

    Kuraptsev, A. S.; Sokolov, I. M.

    2016-08-01

    We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry-Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity can affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.

  16. A multi-wavelength erbium-doped fiber ring laser using an intrinsic Fabry-Perot interferometer

    Science.gov (United States)

    Jauregui-Vazquez, D.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Lopez-Dieguez, Y.; Sierra-Hernandez, J. M.

    2016-10-01

    In this experimental paper, a multi-wavelength erbium-doped ring fiber laser based on an all fiber intrinsic Fabry-Perot interferometer is presented and demonstrated. The interferometer was fabricated by an arc and splicing technique using hollow core photonic crystal fiber (HCPCF) and conventional single mode fiber (SMF28). The fiber laser can be operated in single, dual and triple lasing mode by applying a transversal load over the all fiber interferometer. The laser spectrums present minimal mode spacing of 1 nm, high wavelength stability and power fluctuations around 0.5 dB. The average signal to noise ratio (SNR) of the laser emissions spectrum is around 35 dB. This fiber laser offers low cost, compactness and high wavelength stability.

  17. Note: An in situ method for measuring the non-linear response of a Fabry-Perot cavity

    Science.gov (United States)

    Bu, Wenhao; Liu, Mengke; Xie, Dizhou; Yan, Bo

    2016-09-01

    The transfer cavity is a very important frequency reference for laser stabilization and is widely used for applications such as precision measurements and laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the Fabry-Perot cavity limits the performance of the laser stabilization. Thus, measuring and controlling such non-linearity is essential. Here we report an in situ, optical method to characterize this non-linearity by measuring the resonant signals of a dual-frequency laser. The differential measurement makes it insensitive to the laser and cavity drifts, while maintaining a very high sensitivity. It can be applied for various applications with PZTs, especially in an optical lab.

  18. Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter

    Science.gov (United States)

    Yun-Long, Li; Bing-Chu, Yang; Xue-Mei, Xu

    2016-02-01

    Sensitive detection of acetylene (C2H2) is performed by absorption spectroscopy and wavelength modulation spectroscopy (WMS) based on Fiber Fabry-Perot tunable filter (FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating (FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv-400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C2H2 detection can be applied in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).

  19. A 2 by 2 wavelength tunable Fabry-Perot filter by using an electro-optic polymer film

    Institute of Scientific and Technical Information of China (English)

    Xinwan Li(李新碗); Ailun Ye(叶爱伦); Jianping Chen(陈建平); Guiling Wu(吴龟灵)

    2004-01-01

    A tunable Fabry-Perot (F-P) filter by using electro-optic polymer film is proposed. The electro-optic polymer is alkoxysilane dye (ASD)/SiO2-TiO2 hybrid material, whose electro-optic coefficient γ33 is about 5 pm/V. The wavelength tuning range of 3.8 nm under 400-V DC voltage and the nonlinear characteristic with the electric field have been obtained via electro-optical properties of polymer. Both of polymer film fabrication and F-P filter design have been introduced. The tunable F-P filter is designed for the application of two-input/two-output port wavelength-selective optical switch. Also, some problems have been discussed in this letter.

  20. Coupling of a T12Ba2CaCu2O8 Thin Film Intrinsic Josephson Junction and a Fabry-Perot Resonator

    Institute of Scientific and Technical Information of China (English)

    FAN Bin; WANG Zheng; YUE Hong-Wei; YAN Shao-Lin; JI Lu; HE Ming; SONG Feng-Bin; FANG Lan; ZHAO Xin-Jie

    2011-01-01

    We study the electromagnetic coupling mechanism of a T12Ba2CaCu2O8(TI-2212)thin film intrinsic Josephson junction to a hemispherical Fabry-Perot resonator. An effective model to analyze coupling mechanism is put forward. The dielectric substrate is used as a dielectric resonator antenna and the Josephson junction, and a superconducting film is used as the feed line to excite a resonance mode inside the dielectric resonator antenna.To confirm this method, two Josephson junction samples with different dimensions of substrate and shapes of superconducting film are fabricated and tested under microwave irradiations. At the same time, numerical simulations of the antenna characteristics and the field distribution of these samples are performed by numerical simulation. The different coupling intensities of the two samples with the Fabry Perot resonator fit well with the numerical simulation results. The proposed model is important for Josephson junctions used in the microwave field.

  1. Development of a six channel Fabry-Perot interferometer for continuous measurement of electron temperature of Tokamak plasma. Application to current diffusion study

    International Nuclear Information System (INIS)

    It is shown how the properties of the electron cyclotron emission of a tokamak plasma can be used to measure the electron temperature. The design of a six channel Fabry-Perot interferometer is then described. This interferometer allows the measurement of the time evolution of the electron temperature profile of the plasma in the TFR tokamak. Using this technique interesting results have been obtained concerning the current penetration during the start up phase of a tokamak discharge

  2. Passive amplification of a fiber laser in a Fabry-Perot cavity: application to gamma-ray production by Compton backscattering

    International Nuclear Information System (INIS)

    One of the critical points of the International Linear Collider (ILC) is the polarized positrons source. Without going through further explanation on the physical process of polarized positrons production, we point out that they are produced when circularly polarized gamma rays interact with mater. Thus, the critical point is the circularly polarized gamma-ray source. A technical solution for this source is the Compton backscattering and in the end, this thesis takes place in the framework for the design of a high average power laser systems enslaved to Fabry-Perot cavities for polarized gamma-ray production by Compton backscattering. In the first part, we present this thesis context, the Compton backscattering principle and the choice for an optical architecture based on a fiber laser and a Fabry-Perot cavity. We finish by enumerating several possible applications for Compton backscattering which shows that the work presented here might benefits from technology transfer through others research fields. In the second part, we present the different fiber laser architecture studied as well as the results obtained. In the third part, we remind the operating principle of a Fabry-Perot cavity and present the one used for our experiment as well as its specificities. In the fourth part, we address the Compton backscattering experiment which enables us to present the joint utilization of a fiber laser and a Fabry-Perot cavity in a particles accelerator to generate gamma rays for the first time to our knowledge. This experiment took place in the Accelerator Test Facility (ATF). The experimental apparatus as well as the results obtained are thus presented. In the end, we summarize the results presented in this manuscript and propose different evolution possibilities for the system in a general conclusion. (author)

  3. Continuous-Wave Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking Using Feedback from a Fiber Bragg Grating

    Science.gov (United States)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.

  4. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2016-04-01

    Full Text Available We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm. Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies.

  5. Sub-Hz line width diode lasers by stabilization to vibrationally and thermally compensated ULE Fabry-Perot cavities

    CERN Document Server

    Alnis, J; Kolachevsky, N; Wilken, T; Udem, Th; Hänsch, T W

    2008-01-01

    We achieved a 0.5 Hz optical beat note line width with ~ 0.1 Hz/s frequency drift at 972 nm between two external cavity diode lasers independently stabilized to two vertically mounted Fabry-Perot (FP) reference cavities. Vertical FP reference cavities are suspended in mid-plane such that the influence of vertical vibrations to the mirror separation is significantly suppressed. This makes the setup virtually immune for vertical vibrations that are more difficult to isolate than the horizontal vibrations. To compensate for thermal drifts the FP spacers are made from Ultra-Low-Expansion (ULE) glass which possesses a zero linear expansion coefficient. A new design using Peltier elements in vacuum allows operation at an optimal temperature where the quadratic temperature expansion of the ULE could be eliminated as well. The measured linear drift of such ULE FP cavity of 63 mHz/s was due to material aging and the residual frequency fluctuations were less than 40 Hz during 16 hours of measurement. Some part of the t...

  6. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    Science.gov (United States)

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-01

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication. PMID:27607621

  7. Theoretical analysis of transmission characteristics for all fiber, multi-cavity Fabry-Perot filters based on fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    XU OU; LU ShaoHua; DONG XiaoWei; LI Bin; NING TiGang; JIAN ShuiSheng

    2008-01-01

    The characteristics of transmission spectra for the all fiber, multi-cavity FabryPerot (FP) configuration based on fiber Bragg gratings (FBG) are theoretically analyzed and modeled. The general transmission matrix function for the structure with any number of cavities is derived, and explicit expression of the power trans-mission coefficient for symmetrical two-cavity FP is presented. The general condi-tions for flat-top single resonant peak at the central wavelength in FBG stop band are derived and verified in the numerical simulation section. The transmission peaks of single-cavity and two-cavity FP structures are compared and discussed, and results show that compared to the single-cavity FP, flatness of the top and steepness at the edge of transmission peak can be improved by introducing one more cavity. The resonant transmission peak properties of two-cavity structure are investigated in detail for various values of cavity length and FBGs with different reflection characteristics, and the design guidelines for transmission-type filters are presented. The results show that the steepness of peak slope can be improved by increase of FBG reflectivities, and these kinds of filters can be used as nar-row-band single-channel selectors and multi-channel wavelength de-multiplexing by properly choosing the length of cavities and reflectivities of FBGs.

  8. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    Science.gov (United States)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  9. Nanoantenna-induced fringe splitting of Fabry-Perot interferometer: a model study of plasmonic/photonic coupling.

    Science.gov (United States)

    Liu, Huanhuan; Erouel, Mohsen; Gerelli, Emmanuel; Harouri, Abdelmounaim; Benyattou, Taha; Orobtchouk, Régis; Milord, Laurent; Belarouci, Ali; Letartre, Xavier; Jamois, Cécile

    2015-11-30

    In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.

  10. A Highly Sensitive Fiber-Optic Fabry-Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement.

    Science.gov (United States)

    Li, Xuefeng; Shao, Yujiao; Yu, Yuan; Zhang, Yin; Wei, Shaowen

    2016-05-31

    In this study, a new type of highly sensitive fiber-optic Fabry-Perot interferometer (FFPI) is proposed with a high sensitivity on a wide refractive index (RI) measurement range based on internal reflection mirrors of micro-cavity. The sensor head consists of a single-mode fiber (SMF) with an open micro-cavity. Since light reflections of gold thin films are not affected by the RI of different measuring mediums, the sensor is designed to improve the fringe visibility of optical interference through sputtering the gold films of various thicknesses on the inner surfaces of the micro-cavity, as a semi-transparent mirror (STM) and a total-reflection mirror (TRM). Experiments have been carried out to verify the feasibility of the sensor's design. It is shown that the fabricated sensor has strong interference visibility exceeding 15 dB over a wide measurement range of RI, and the sensor sensitivity is higher than 1160 nm/RIU, and RI resolution is better than 1.0 × 10(-6) RIU.

  11. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe.

    Science.gov (United States)

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh Babu; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2016-04-15

    We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA) of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI) miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm). Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies.

  12. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement.

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S

    2013-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0-10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation.

  13. Measurement of Microvibration by Using Dual-Cavity Fiber Fabry-Perot Interferometer for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Dae-Hyun Kim

    2014-01-01

    Full Text Available Extensive researches have recently been performed to study structural integrity using structural vibration data measured by in-structure sensors. A fiber optic sensor is one of candidates for the in-structure sensors because it is low in cost, light in weight, small in size, resistant to EM interference, long in service life, and so forth. Especially, an interferometric fiber optic sensor is very useful to measure vibrations with high resolution and accuracy. In this paper, a dual-cavity fiber Fabry-Perot interferometer was proposed with a phase-compensating algorithm for measuring micro-vibration. The interferometer has structurally two arbitrary cavities; therefore the initial phase difference between two sinusoidal signals induced from the interferometer was also arbitrary. In order to do signal processing including an arc-tangent method, a random value of the initial phase difference is automatically adjusted to the exact 90 degrees in the phase-compensating algorithm part. For the verification of the performance of the interferometer, a simple vibration-test was performed to measure micro-vibration caused by piezoelectric transducer (PZT. As an experimental result, the interferometer attached on the PZT successfully measured the 50 Hz-vibration of which the absolute displacement oscillated between −424 nm and +424 nm.

  14. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    CERN Document Server

    Halverson, Samuel; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-01-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astro-photonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics. Our development path is targeted towards a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observato...

  15. Synchronization scenario of two distant mutually coupled semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mirasso, Claudio; Heil, Tilmann;

    2004-01-01

    We present numerical and experimental investigations of the synchronization of the coupling-induced instabilities in two distant mutually coupled semiconductor lasers. In our experiments, two similar Fabry-Perot lasers are coupled via their coherent optical fields. Our theoretical framework...

  16. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    Science.gov (United States)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  17. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    Science.gov (United States)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  18. An arrayed infrared filter based on liquid crystal Fabry-Perot effect for electrically tunable spectral imaging detection

    Science.gov (United States)

    Lin, Jiuning; Tong, Qing; Luo, Jun; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    An arrayed electrically tunable infrared (IR) filter based on the key structure of liquid crystal Fabry-Perot (LC-FP) working in the wavelength range from 2.5 to 12 μm, is designed and fabricated successfully. According to the electrically controlled birefringence characteristics of nematic LC molecules, the refractive index of LC materials filled into a prefabricated microcavity can be adjusted by the spatial electric field stimulated between the top aluminum electrode patterned by conventional UV-photolithography and the bottom aluminum electrode in the LC-FP. The particular functions including key spectral selection and spectral adjustment, can be performed by the developed LC-FP filter driven and controlled electrically. Our experiments show that the maximum transmittance of the transmission peaks is ~24% and the peaks of transmission spectrum shift through applying different voltage signals with a root mean square (RMS) value ranging from 0 to ~21.7Vrms. The experimental results are consistent with the simulation according to the model constructed by us. As a 4-channel array-type IR filter, the top electrode of the device is composed of four same sub-electrodes, which is powered, respectively, to select desired transmission spectrum. Each of the units in the device is operated separately and synchronously, which means that spectral images of the same object can be obtained with different wavelengths in one shot. Without any mechanical parts, the developed LC-FP filter exhibits several advantages including ultra-small size, low cost, high reliability, high spectral selectivity, and compact integration.

  19. A high power Fabry-Perot resonator for precision Compton polarimetry with the longitudinally polarised lepton beams at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zomer, F

    2003-12-01

    The new polarimeter, currently installed at HERA and waiting for its commissioning, is the main topic of this document. In the first chapter, studies of the impact of the polarization measurement accuracy on 3 observables, the right-handed and the standard charged current cross-sections and the determination of the light quark couplings to the Z{sup 0} are presented. The main point is that, unlike small polarisation asymmetry measurements, absolute cross section measurements are very sensitive to the polarization uncertainties. In the second chapter, the beam polarization built up and the Compton polarimetry are presented. Compton polarimetry consists in measuring and analysing the energy spectrum of photons backscattered after laser-electron interactions. The proposed polarimeter upgrade is described in chapter 3. The core of this polarimeter is a high finesse Fabry-Perot cavity filled by a 750 mW ND:YaG laser. This optical resonator, made up of 2 super-mirrors located around the electron beam, provides a few kilo Watt laser beam. The mechanical implementation at HERA and the conditions to maintain the optical resonance are discussed. The chapter 4 is dedicated to the control and measurement of the laser light polarisation. This is a very important aspect of our polarimeter since the determination of the electron beam polarization depends directly on the level of the laser circular polarisation. Before reaching the final design of the cavity installed at HERA, a prototype cavity has been built and operated at Orsay. Results of the laser/cavity alignments and performances of the laser power amplification with this prototype are described in chapter 5. (A.C.)

  20. Commissioning MOS and Fabry-Perot modes for the Robert Stobie Spectrograph on the Southern African Large Telescope

    Science.gov (United States)

    Koeslag, A. R.; Williams, T. B.; Nordsieck, K. H.; Romero-Colmenero, E.; Vaisanen, P. H.; Maartens, D. S.

    2014-07-01

    The Southern African Large Telescope (SALT) currently has three instruments: the imaging SALTICAM, the new High Resolution Spectrograph (HRS) which is in the process of being commissioned and the Robert Stobie Spectrograph (RSS). RSS has multiple science modes, of which long slit spectroscopy was originally commissioned; We have commissioned two new science modes: Multi Object Spectroscopy (MOS) and Fabry-Perot (FP). Due to the short track times available on SALT it is vital that acquisition is as efficient as possible. This paper will discuss how we implemented these modes in software and some of the challenges we had to overcome. MOS requires a slit-mask to be aligned with a number of stars. This is done in two phases: in MOS calibration the positions of the slits are detected using a through-slit image and RA/DEC database information, and in MOS acquisition the detector sends commands to the telescope control system (TCS) in an iterative and interactive fashion for fine mask/detector alignment to get the desired targets on the slits. There were several challenges involved with this system, and the user interface evolved to make the process as efficient as possible. We also had to overcome problems with the manufacturing process of the slit-masks. FP requires the precise alignment each of the two etalons installed on RSS. The software makes use of calibration tables to get the etalons into roughly aligned starting positions. An exposure is then done using a calibration arc lamp, producing a ring pattern. Measurement of the rings allows the determination of the adjustments needed to properly align the etalons. The software has been developed to optimize this process, along with software tools that allow us to fine tune the calibration tables. The software architecture allows the complexity of automating the FP calibration and procedures to be easily managed.

  1. Extrinsic Fabry-Perot interferometry for noncontact temperature control of nanoliter-volume enzymatic reactions in glass microchips.

    Science.gov (United States)

    Easley, Christopher J; Legendre, Lindsay A; Roper, Michael G; Wavering, Thomas A; Ferrance, Jerome P; Landers, James P

    2005-02-15

    Optical fiber extrinsic Fabry-Perot interferometry (EFPI) was investigated as a noncontact temperature sensor and utilized for regulating the temperature of small-volume solutions in microchips. Interference pattern analysis determined the optical path lengths (OPL) associated with reflections from various surfaces on or in the microchip, in particular, from gold sputtered on the bottom of a microchannel. Since OPL is directly proportional to refractive index, which is dependent on solution temperature, the EFPI sensor was capable of noncontact monitoring of solution temperature simply from alterations in the measured path length. Calibration of the sensor against a thermocouple was performed while heating the microchip in a noncontact manner with an IR lamp. The combination of EFPI temperature sensor, IR-mediated heating, and air cooling allowed a fully noncontact system for small-volume temperature control in microchip structures, and its utility was illustrated by optimal digestion of DNA by a temperature-dependent restriction endonuclease in 320 nL. The functionality and simplicity of the microchip EFPI temperature sensor was enhanced by replacing the prebonding sputtered gold with a tunable, chemically plated semireflective silver coating created in situ after chip fabrication. This provided an 8-fold improvement in the lowest detectable temperature change (deltaT = 0.1 degrees C), facilitated primarily by enhanced reflection from both the bottom and top surfaces of the microchannel. This approach for controlling micro- and nanoscale reactions--with heating, cooling, and temperature control being carried out in a completely noncontact fashion--provides an accurate and sensitive method for executing chemical and biochemical reactions in microchips. PMID:15858983

  2. Observations of storm time midlatitude ion-neutral coupling using SuperDARN radars and NATION Fabry-Perot interferometers

    Science.gov (United States)

    Joshi, P. P.; H. Baker, J. B.; Ruohoniemi, J. M.; Makela, J. J.; Fisher, D. J.; Harding, B. J.; Frissell, N. A.; Thomas, E. G.

    2015-10-01

    Ion drag is known to play an important role in driving neutral thermosphere circulation at auroral latitudes, especially during the main phase of geomagnetic storms. During the recovery phase, the neutrals are known to drive the ions and generate ionospheric electric fields and currents via the disturbance dynamo mechanism. At midlatitudes, the precise interplay between ions and neutrals is less understood largely because of the paucity of measurements that have been available. In this work, we investigate ion-neutral coupling at middle latitudes using colocated ion drift velocity measurements obtained from Super Dual Auroral Radar Network radars and neutral wind velocity and temperature measurements obtained from the North American Thermosphere Ionosphere Observing Network (NATION) Fabry-Perot interferometers. We examine one recent storm period on 2-3 October 2013 during both the main phase and late recovery phase. By using ion-neutral momentum exchange theory and a time-lagged correlation analysis, we analyze the coupling time scales and dominant driving mechanisms. We observe that during the main phase the neutrals respond to the ion convection on a time scale of ˜84 min which is significantly faster than what would be expected from local ion drag momentum forcing alone. This suggests that other storm time influences are important for driving the neutrals during the main phase, such as Joule heating. During the late recovery phase, the neutrals are observed to drive the ion convection without any significant time delay, consistent with the so-called "neutral fly wheel effect" or disturbance dynamo persisting well into the late recovery phase.

  3. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo-Rodriguez, G; Zaldivar-Huerta, I E [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Sta. Maria Tonantzintla, Pue. Mexico (Mexico); GarcIa-Juarez, A [Depto. de Investigacion en Fisica, Universidad de Sonora (UNISON) Hermosillo, Son. Mexico (Mexico); Rodriguez-Asomoza, J [Depto. de Ingenieria Electronica, Universidad de las Americas-Puebla (UDLA). San Andres Cholula, Pue. Mexico (Mexico); Larger, L; Courjal, N [Laboratoire d' Optique P. M. Duffieux, UMR 6603 CNRS, Institut des Microtechiques de Franche-Comte, FRW 0067, UFR Sciences et Techniques, Universite de Franche-Comte (UFC), Besancon cedex (France)

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  4. Generation of tunable multi-wavelength optical short pulses using self-seeded Fabry-Perot laser diode and tilted multimode fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Tongjian Cai; Yunqi Liu; Xiaobei Zhang; Tingyun Wang

    2011-01-01

    We experimentally demonstrate the simultaneous generation of tunable multi-wavelength picosecond laser pulses using a self-seeding configuration that consists of a gain-switched Fabry-Perot laser diode (FPLD)with an external cavity formed by a tilted multimode fiber Bragg grating.Dual- and triple-wavelength pulses are obtained and tuned in a flexible manner by changing the temperature of the FPLD.The side mode suppression ratio larger than 25 dB is achieved at different dual- and triple-wavelengths and the typical pulsewidth of the output pulses is ~70 ps.In the experiment, the wavelength separation can be narrowed to 0.57 nm.%@@ We experimentally demonstrate the simultaneous generation of tunable multi-wavelength picosecond laser pulses using a self-seeding configuration that consists of a gain-switched Fabry-Perot laser diode (FPLD)with an external cavity formed by a tilted multimode fiber Bragg grating.Dual-and triple-wavelength pulses are obtained and tuned in a flexible manner by changing the temperature of the FPLD.The side mode suppression ratio larger than 25 dB is achieved at different dual-and triple-wavelength8 and the typical pulsewidth of the output pulses is~70 ps.In the experiment, the wavelength separation can be narrowed to 0.57 nm.

  5. Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5.

    Science.gov (United States)

    Goto, Hayato; Nakamura, Satoshi; Ichimura, Kouichi

    2010-11-01

    We propose an experimental method with which all the following quantities can be determined separately: the intracavity loss and individual cavity-mirror transmittances of a monolithic Fabry-Perot cavity and furthermore the coupling efficiency between the cavity mode and the incident light. It is notable that the modified version of this method can also be applied to whispering-gallery-mode cavities. Using this method, we measured the intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5 at room temperature. The knowledge of the intracavity losses is very important for applications of such cavities, e.g., to quantum information technologies. It turns out that fairly high losses (about 0.1%) exist even for a sample with extremely low dopant concentration (2×10(-5) at. %). The experimental results also indicate that the loss may be mainly due to the bulk loss of Y2SiO5 crystal. The bulk loss is estimated to be 7×10(-4) cm(-1) (0.003 dB/cm) or lower. PMID:21164720

  6. All-glass extrinsic Fabry-Perot interferometer thermo-optic coefficient sensor based on a capillary bridged two fiber ends.

    Science.gov (United States)

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Da; Wang, Peng; Zhang, Fei; Lu, Yongfeng

    2015-03-20

    An all-glass extrinsic Fabry-Perot interferometer (EFPI) is demonstrated for thermal-optic coefficient (TOC) of water, glycerol, and their mixture (volume ratio of 1:1). The compensation for the thermal expansion of Fabry-Perot (FP) cavity is realized by assembling a glass capillary and optical fibers through a CO2 laser welding. The thermal responses of EFPIs are tested in air at different cavity lengths of 578.6 μm, 911.7 μm, and 1520.3 μm, respectively. The corresponding refractive index errors induced by thermal expansion of FP cavity are negligible, which are demonstrated to be 4.33×10-6  RIU/°C, 4.13×10-6  RIU/°C, and 3.45×10-6  RIU/°C when temperature increases from 20.03°C to 60.78°C. The thermal-optic coefficients of water, glycerol, and their mixture are measured to be -1.5×10-4  RIU/°C, -2.3×10-4  RIU/°C, and -2.0×10-4  RIU/°C, respectively. Our study suggests a potential use of this sensor for TOC measurements of liquids with the advantages of low costs and robustness.

  7. MWIR/LWIR filter based on Liquid-Crystal Fabry-Perot structure for tunable spectral imaging detection

    Science.gov (United States)

    Zhang, Huaidong; Muhammad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-03-01

    An electrically tunable medium-wave infrared (MWIR)/long-wave infrared (LWIR) filter based on the key structure of Liquid-Crystal (LC) Fabry-Perot (FP), which works in the wavelength range from 2.5 μm to 12 μm, is designed and fabricated successfully in this paper. According to the optical interference principle of the FP cavity and electrically controlled birefringence of nematic LC molecules, the particular functions including spectral selection and spectral staring and spectral adjustment, can be realized by the developed MWIR/LWIR filter driven and controlled electrically. As to the LC-FP filter, both planar reflective mirrors are shaped by depositing a layer of aluminum (Al) film (∼60 nm) over one side of double-side polished Zinc Selenide (ZnSe) wafer (∼1 mm), and then polyimide (PI) layer with the thickness of ∼100 nm is coated directly on Al film. With typical sandwich architecture, the depth of the cavity with nematic LC molecules sealed in is ∼7.5 μm. To make sure the LC molecules parallel aligned and twist regularly under voltage driving signal applied on Al film, which also acts as electrode, the V-grooves are formed in PI layer with the depth of ∼90 nm and the width of ∼350 nm at average by strong rubbing. The typical transmission spectrum in MWIR&LWIR wavelength range and several spectral images in MWIR wavelength range based on the fabricated LC-FP filter, have been obtained through applying a voltage driving-signal with different root-means-square (RMS) value over the electrodes of LC-FP filter in the selected voltage range from 0VRMS to 19.8VRMS. The testing result demonstrates a prospect of realization smart spectral imaging and further integrating the LC-FP filter with infrared focal plane arrays (FPAs) to achieve the purpose infrared multispectral imaging. The developed MWIR&LWIR LC-FP filters show some obvious advantages such as wide working wavelength range, electrically tunable spectral selection, ultra-compact, low cost, being

  8. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.

    Science.gov (United States)

    Zhang, Huaidong; Muhammmad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2014-09-01

    An electrically tunable infrared (IR) filter based on the liquid crystal (LC) Fabry-Perot (FP) key structure, which works in the wavelength range from 5.5 to 12 μm, is designed and fabricated successfully. Both planar reflective mirrors with a very high reflectivity of ∼95%, which are shaped by depositing a layer of aluminum (Al) film over one side of a double-sided polished zinc selenide wafer, are coupled into a dual-mirror FP cavity. The LC materials are filled into the FP cavity with a thickness of ∼7.5  μm for constructing the LC-FP filter, which is a typical type of sandwich architecture. The top and bottom mirrors of the FP cavity are further coated by an alignment layer with a thickness of ∼100  nm over Al film. The formed alignment layer is rubbed strongly to shape relatively deep V-grooves to anchor LC molecules effectively. Common optical tests show some particular properties; for instance, the existing three transmission peaks in the measured wavelength range, the minimum full width at half-maximum being ∼120  nm, and the maximum adjustment extent of the imaging wavelength being ∼500  nm through applying the voltage driving signal with a root mean square (RMS) value ranging from 0 to ∼19.8  V. The experiment results are consistent with the simulation, according to our model setup. The spectral images obtained in the long-wavelength IR range, through the LC-FP device driven by the voltage signal with a different RMS value, demonstrates the prospect of the realization of smart spectral imaging and further integrating the LC-FP filter with IR focal plane arrays. The developed LC-FP filters show some advantages, such as electrically tunable imaging wavelength, very high structural and photoelectronic response stability, small size and low power consumption, and a very high filling factor of more than 95% compared with common MEMS-FP spectral imaging approaches. PMID:25321356

  9. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal

    Science.gov (United States)

    Kwolek, J. M.; Wells, J. E.; Goodman, D. S.; Smith, W. W.

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca+ ions, and its use in other applications with similar modest frequency stabilization requirements.

  10. Ultra-low sensitivity to temperature low-cost optical fiber Fabry-Perot micro pressure sensor with a chitosan diaphragm

    Science.gov (United States)

    Wang, Wenhua; Li, Sidong; Wen, Lili

    2013-11-01

    In this paper, a low-cost CDEFPI (chitosan diaphragm-based extrinsic Fabry-Perot interferometer) micro pressure sensor with high sensitivity and ultra-low temperature dependence is proposed. The chitosan diaphragm is achieved through crosslinking method via glutaraldehyde which reduces extremely the water swelling property of chitosan and improves greatly the performance of sensor. A vent hole leaving during laser heating fusion bonding process guarantees the ultra-low temperature sensitivity of the sensor. The CDEFPI pressure sensor with a sensitivity of 25.65 nm/kPa (176.86 nm/psi), a resolution of 7.8 Pa (0.001 psi), temperature sensitivity of 0.015 nm/°C, and a thermal induced pressure measurement error limited within 0.0005 kPa/°C (0.00007 psi/°C) has been demonstrated.

  11. A wavelength tunable ONU transmitter based on multi-mode Fabry-Perot laser and micro-ring resonator for bandwidth symmetric TWDM-PON

    Science.gov (United States)

    Gao, Zhensen; Sun, Xiao; Zhang, Kaibin

    2016-02-01

    Wavelength tunable optical transmitter is an essential component for the newly standardized time and wavelength division multiplexed passive optical network (TWDM-PON), where tunable ONU with 10Gb/s bit rate is desired to provide 40Gb/s symmetric bandwidth. In this paper, a novel wavelength tunable optical transmitter is proposed by reusing legacy low speed multi-mode Fabry-Perot laser and connecting it with an integrated photonic chip with two coupled micro-ring resonators to generate a tunable single mode signal based on Vernier effect for 10Gb/s high speed modulation, which makes it as a promising solution for colorless ONU in future symmetric TWDM-PON.

  12. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    Science.gov (United States)

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring. PMID:26512476

  13. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O [Institute for Automation and Control Processes, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2011-09-30

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  14. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    Science.gov (United States)

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.

  15. Hydrogen-doping stabilized metallic VO{sub 2} (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong; Pan, Xuan; Bernussi, Ayrton A.; Fan, Zhaoyang, E-mail: Zhaoyang.Fan@ttu.edu [Department of Electrical and Computer Engineering and Nano Tech Center, Lubbock, Texas 79409 (United States); Karaoglan-Bebek, Gulten [Department of Physics and Nano Tech Center, Lubbock, Texas 79409 (United States); Holtz, Mark [Department of Physics and MSEC, Texas State University, San Marcos, Texas 78666 (United States)

    2014-06-16

    We demonstrate that catalyst-assisted hydrogen spillover doping of VO{sub 2} thin films significantly alters the metal-insulator transition characteristics and stabilizes the metallic rutile phase at room temperature. With hydrogen inserted into the VO{sub 2} lattice, high resolution X-ray diffraction reveals expansion of the V-V chain separation when compared to the VO{sub 2}(R) phase. The donated free electrons, possibly from O-H bond formation, stabilize the VO{sub 2}(R) to low temperatures. By controlling the amount of dopants to obtain mixed insulating and metallic phases, VO{sub 2} resistivity can be continuously tuned until a critical condition is achieved that suppresses Fabry-Perot resonances. Our results demonstrate that hydrogen spillover is an effective technique to tune the electrical and optical properties of VO{sub 2} thin films.

  16. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  17. Multi-physics simulation and fabrication of a compact 128 × 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager.

    Science.gov (United States)

    Meng, Qinghua; Chen, Sihai; Lai, Jianjun; Huang, Ying; Sun, Zhenjun

    2015-08-01

    This paper demonstrates the design and fabrication of a 128×128 micro-electro-mechanical systems Fabry-Perot (F-P) cavity filter array, which can be applied for the hyperspectral imager. To obtain better mechanical performance of the filters, F-P cavity supporting structures are analyzed by multi-physics finite element modeling. The simulation results indicate that Z-arm is the key component of the structure. The F-P cavity array with Z-arm structures was also fabricated. The experimental results show excellent parallelism of the bridge deck, which agree with the simulation results. A conclusion is drawn that Z-arm supporting structures are important to hyperspectral imaging system, which can achieve a large tuning range and high fill factor compared to straight arm structures. The filter arrays have the potential to replace the traditional dispersive element.

  18. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    Science.gov (United States)

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively.

  19. Experimental research on modulation degree of refractive index in the SCLP/E7/C60 polymer using a fiber Fabry-Perot Interferometer

    Institute of Scientific and Technical Information of China (English)

    HAN Ren-xue

    2006-01-01

    Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengthsof laser and the order of interference, we introduce a new method to measure the modulation degree of refractive index in photorefractive materials through detecting the shift of the interference fringe in a fiber Fabry-Perot interferometer with a CCD.The measurement precision is also analyzed. With this method, the modulation degree of refractive index in our prepared SCLP/E7/C60 photorefractive polymer is measured for different external voltages and the external voltage corresponding to the maximal modulation degree of refractive index is reported. The dynamic change of refractive index in the SCLP/E7/C60is also studied, which will be helpful to understand the reaction mechanism of photochemistry in the material.

  20. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    Science.gov (United States)

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field. PMID:20411021

  1. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection.

    Science.gov (United States)

    Pan, Shilong; Yao, Jianping

    2010-06-01

    Wideband and frequency-tunable microwave signal generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode (FP-LD) with external optical injection is proposed and demonstrated. Through external injection, the FP-LD functions as a tunable high-Q photonic microwave filter, and the frequency tuning is realized by either tuning the wavelength of the externally injected optical light or changing the temperature to adjust the longitudinal modes of the FP-LD. An experiment is performed; a microwave signal with a frequency tunable from 6.41 to 10.85 GHz is generated. The phase noise performance of the generated microwave signal is also investigated. PMID:20517459

  2. MEMS Fabry-Perot interferometer-based spectrometer demonstrator for 7.5 μm to 9.5 μm wavelength range

    Science.gov (United States)

    Mäkynen, Jussi H.; Tuohiniemi, Mikko; Näsilä, Antti; Mannila, Rami; Antila, Jarkko E.

    2014-03-01

    VTT Technical research centre of Finland has developed a MEMS Fabry-Perot interferometer (FPI) for the wavelength range from 7.5 μm to 9.5 μm. The device consists of two Distributed Bragg Reflectors (DBR) manufactured with MEMS processing techniques. The full width half maximum of the transmission peak is 150nm. This transmission peak can be tuned from 7.5 μm to 9.5 μm by applying a control voltage from 0 V to 30 V. A laboratory demonstrator has been put together to show the use of this module as a part of a spectral measurement setup. Several gas samples have been measured with the setup and compared against measurement results found in literature.

  3. Photon-counting Brillouin optical time-domain reflectometry based on up-conversion detector and fiber Fabry-Perot scanning interferometer

    CERN Document Server

    Xia, Haiyun; Shentu, Guoliang; Wang, Chong; Qiu, Jiawei; Xia, Xiuxiu; Chen, Chao; Zheng, Mingyang; Xie, Xiuping; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2015-01-01

    A direct-detection Brillouin optical time-domain reflectometry (BOTDR) is proposed and demonstrated by using an up-conversion single-photon detector and a fiber Fabry-Perot scanning interferometer (FFP-SI). Taking advantage of high signal-to-noise ratio of the detector and high spectrum resolution of the FFP-SI, the Brillouin spectrum along a polarization maintaining fiber (PMF) is recorded on a multiscaler with a small data size directly. In contrast with conventional BOTDR adopting coherent detection, photon-counting BOTDR is simpler in structure and easier in data processing. In the demonstration experiment, characteristic parameters of the Brillouin spectrum including its power, spectral width and frequency center are analyzed simultaneously along a 10 km PMF at different temperature and stain conditions.

  4. A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferomete

    International Nuclear Information System (INIS)

    A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasonics by using laser beam. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this study, galvanic corrosion phenomenon was measured by non-destructive and non-contact method using the laser. The case of mixed foreign material on the part of corrosion was assumed and laser ultrasonic experiment was conducted. Ultrasonic was generated by pulse laser from the back side of the specimen and ultrasonic signal was acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer(CFPI). The characteristic of the ultrasonic signal of exist foreign material part was analyzed and the location and size of foreign material was measured.

  5. Precision measurements of gas refractivity by means of a Fabry-Perot interferometer illustrated by the monitoring of radiator refractivity in the DELPHI RICH detectors

    CERN Document Server

    Filippas-Tassos, A; Fokitis, E; Maltezos, S; Patrinos, K

    2002-01-01

    With an updated, flexible, highly efficient and easily installed system we obtained accurate refractivity (n-1) values. This system is a refractometer based on a Fabry-Perot interferometer and was used to monitor the refractivity of DELPHI RICH Cherenkov radiators near the VUV region. By using a Pt-Ne spectral lamp and improved alignment and temperature control, the refractivities of C//5F//1//2 and C//4F//1 //0 have been monitored since 1996. With this light source, selected to have large coherence lengths, we can extract the refractivity at several wavelengths from one data set only. The estimated errors of the refractivity measurements are less than 1.2%, and depend on wavelength and the type of gas used. The various parameters affecting the accuracy of the refractometer are also discussed. Finally, results from special sample refractivity measurements of the liquid radiator (C//6F//1//4) in its gas phase, are presented.

  6. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    Science.gov (United States)

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  7. Electron density and temperature study of plasmas using a millimeter-wave Fabry-Perot interferometer; Etude de la densite electronique et de la temperature de plasmas a l'aide d'un interferometre Fabry-Perot en ondes millimetriques

    Energy Technology Data Exchange (ETDEWEB)

    Bize, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The contents of this article, which have been used as a basis for a State doctorate thesis, deal with research into focussing systems of the Fabry-Perot, millimetre wave type. With the help of this equipment, measurements have been made of the electronic density using interferometry in the range from 10{sup 9} to 10{sup 14} electrons/cm{sup 3}, and of the electron temperature by Thomson diffusion, of plasmas formed by laser ionisation and by high frequency. (author) [French] Le contenu de cet article, qui a fait l'objet d'une these d'Etat, se rapporte a l'etude des systemes focalisant de type Fabry-Perot en ondes millimetriques. A l'aide de ces dispositifs, on mesure la densite electronique par interferometrie dans la gamme de densites de 10{sup 9} a 10{sup 14} e/cm{sup 3} et la temperature electronique par diffusion Thomson de plasmas crees par ionisation laser et par haute frequence. (auteur)

  8. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer.

    Science.gov (United States)

    Jiang, Yajun; Yang, Dexing; Yuan, Yuan; Xu, Jian; Li, Dong; Zhao, Jianlin

    2016-08-10

    A novel method for simultaneous measurement of strain and high temperature using a Type II fiber Bragg grating (FBG) and a miniature fiber Fabry-Perot interferometer (MFFPI) is proposed. The MFFPI is produced by fusion splicing a short section of quartz capillary tube with two single-mode fibers, and then it is exposed by a focused femtosecond laser and a phase mask to inscribe a Type II FBG nearby. The reflection spectrum of this sensor is the superposition of the reflection spectrum of the FBG and the interference fringe of the MFFPI. This sensor shows perfect high-temperature and strain responses. Because of the different responses to the uniform variations of strain and temperature, by measuring the reflection peak of FBG and one of the interference dips of the MFFPI, strain and temperature can be simultaneously determined. The resolutions of this particular sensor in measuring strain and temperature are estimated to be ±8.4  μϵ and ±3.3°C, respectively, in the range from 0 to 1122 μϵ and from 23°C to 600°C. PMID:27534477

  9. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

    Science.gov (United States)

    Emmert, J. T.; Faivre, M. L.; Hernandez, G.; Jarvis, M. J.; Meriwether, J. W.; Niciejewski, R. J.; Sipler, D. P.; Tepley, C. A.

    2006-12-01

    We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (˜250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.

  10. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    CERN Document Server

    Rakhman, A; Nanda, S; Benmokhtar, F; Camsonne, A; Cates, G D; Dalton, M M; Franklin, G B; Friend, M; Michaels, R W; Nelyubin, V; Parno, D S; Paschke, K D; Quinn, B P; Souder, P A; Tobias, W A

    2016-01-01

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~$\\mu$A.

  11. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-01

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range. PMID:27607711

  12. Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas

    Science.gov (United States)

    Afzal, Muhammad U.; Esselle, Karu P.

    2015-06-01

    This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results that a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency.

  13. Applications of absolute extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensing system for measurement of strain in pre-tensioned tendons for prestrained concrete

    Science.gov (United States)

    de Vries, Marten J.; Bhatia, Vikram; Claus, Richard O.; Murphy, Kent A.; Tran, Tuan A.

    1995-04-01

    The application of a state-of-the-art fiber optic sensing system for the quantitative analysis of strain in strands used in prestressed concrete is proposed. Compressive stress in concrete is used to counterbalance any tensile force due to loading, which might lead to cracking or deflection. In pre-tensioning prestressed concrete, a tendon is tensioned before concrete is placed and the prestress is transferred to the concrete after it has cured by releasing the tension on the tendon. In linear prestressing it is often required to determine the axial strain on the tendon during the initial procedure of pre-tensioning, so that the required longitudinal force to achieve maximum concrete strength, can be accurately determined. Conventional techniques for this purpose involve the use of conventional foil strain gages, which are not only expensive to use, but are also known for their failure rate in high strain environments. We discuss the absolute extrinsic Fabry-Perot interferometer (AEFPI) fiber optic sensing system for monitoring strain in pretensioned tendons while this tendon is being loaded. The experiments performed at the Turner Fairbanks Federal Highway Administration at McLean, Virginia exhibit the survivability of the EFPI sensor at strain in excess of 12,000 (mu) (epsilon) while being attached to the tendon surface. The results are compared to those obtained from a collocated foil strain gage and excellent correlation is obtained. Applications of the AEFPI system to high performance smart materials and structures are analyzed and future work in this area is discussed.

  14. A New Method of processing the Fabry-Perot Interference Fringes%一种新的Fabry-Perot干涉条纹处理方法

    Institute of Scientific and Technical Information of China (English)

    鄂非; 高秋艳; 艾勇

    2009-01-01

    介绍了一种提取Fabry-Perot(法布里-帕罗)干涉条纹圆心点坐标和条纹半径的新方法.首先对干涉图像依次进行二值化处理,对所得到的条纹强度曲线进行均平滤波和自适应滤波,根据条纹灰度值强度余弦函数分布的特点,对条纹灰度值数据进行最小二乘法拟合,获得条纹强度峰值坐标,通过精确的迭代算法,进而获得Fabry-Perot干涉条纹圆心点的坐标;然后再对干涉条纹进行圆周积分,从而可以确定每级Fabry-Perot干涉条纹的半径长度.该方法可提高计算精度,减小计算误差.

  15. Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Muhammad U., E-mail: muhammad.afzal@mq.edu.au; Esselle, Karu P. [Department of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 (Australia)

    2015-06-07

    This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results that a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency.

  16. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.

    Science.gov (United States)

    Zhang, Weifeng; Li, Wangzhe; Yao, Jianping

    2016-06-01

    A grating-based Fabry-Perot (FP) cavity-coupled microring resonator on a silicon chip is reported to demonstrate an all-optically tunable Fano resonance. In the device, an add-drop microring resonator (MRR) is employed, and one of the two bus waveguides is replaced by an FP cavity consisting of two sidewall Bragg gratings. By choosing the parameters of the gratings, the resonant mode of the FP cavity is coupled to one of the resonant modes of the MRR. Due to the coupling between the resonant modes, a Fano resonance with an asymmetric line shape resulted. Measurement results show a Fano resonance with an extinction ratio of 22.54 dB, and a slope rate of 250.4 dB/nm is achieved. A further study of the effect of the coupling on the Fano resonance is performed numerically and experimentally. Thanks to the strong light-confinement capacity of the MRR and the FP cavity, a strong two-photon absorption induced nonlinear thermal-optic effect resulted, which is used to tune the Fano resonance optically.

  17. The Effect of Viscous Air Damping on an Optically Actuated Multilayer MoS2 Nanomechanical Resonator Using Fabry-Perot Interference

    Directory of Open Access Journals (Sweden)

    Yumei She

    2016-09-01

    Full Text Available We demonstrated a multilayer molybdenum disulfide (MoS2 nanomechanical resonator by using optical Fabry-Perot (F-P interferometric excitation and detection. The thin circular MoS2 nanomembrane with an approximate 8-nm thickness was transferred onto the endface of a ferrule with an inner diameter of 125 μm, which created a low finesse F-P interferometer with a cavity length of 39.92 μm. The effects of temperature and viscous air damping on resonance behavior of the resonator were investigated in the range of −10–80 °C. Along with the optomechanical behavior of the resonator in air, the measured resonance frequencies ranged from 36 kHz to 73 kHz with an extremely low inflection point at 20 °C, which conformed reasonably to those solved by previously obtained thermal expansion coefficients of MoS2. Further, a maximum quality (Q factor of 1.35 for the resonator was observed at 0 °C due to viscous dissipation, in relation to the lower Knudsen number of 0.0025~0.0034 in the tested temperature range. Moreover, measurements of Q factor revealed little dependence of Q on resonance frequency and temperature. These measurements shed light on the mechanisms behind viscous air damping in MoS2, graphene, and other 2D resonators.

  18. Optical simulation of three-dimensional x-ray diffraction using two-dimensional lattices and a Fabry-Perot etalon

    Science.gov (United States)

    Sommer, W.

    2013-03-01

    The basic experimental setup of a Fabry-Perot etalon between a collimating and a focusing lens is modified by introducing 2D rectangular lattices between the etalon and the collimating lens. Consequently, the irradiance of the interference fringes on a screen in the focal plane of the focusing lens changes and is modified by the diffraction pattern of the 2D lattice. The constructive interference directions resulting from both the etalon and the diffraction by the 2D lattice have to correlate in order to obtain maximum irradiance. Considering this experiment in a didactical context and analysing how a 2D rectangular lattice is seen through the etalon, the investigation provides us with the concept of an optical space containing a row of virtual 2D lattices. Due to the partially reflecting plane surfaces of the etalon, different virtual images of the 2D lattice form a 3D lattice with a tetragonal or orthorhombic structure. As an optical interface, the simple setup with a 2D lattice and an etalon models a 3D lattice. Using a laser, the diffraction pattern of a 2D lattice and etalon can be used to optically simulate 3D x-ray diffraction. The experiments can be included wherever undergraduate or graduate students have to follow up Laue's formulation of x-ray diffraction.

  19. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Science.gov (United States)

    Rakhman, A.; Hafez, M.; Nanda, S.; Benmokhtar, F.; Camsonne, A.; Cates, G. D.; Dalton, M. M.; Franklin, G. B.; Friend, M.; Michaels, R. W.; Nelyubin, V.; Parno, D. S.; Paschke, K. D.; Quinn, B. P.; Souder, P. A.; Tobias, W. A.

    2016-06-01

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  20. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    Science.gov (United States)

    Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav

    2012-06-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.

  1. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-01

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range.

  2. Fabry-Perot versus slit spectropolarimetry of pores and active network. Analysis of IBIS and Hinode data

    CERN Document Server

    Judge, P G; Uitenbroek, H; Cauzzi, G; Reardon, K; de Wijn, A

    2010-01-01

    We discuss spectropolarimetric measurements of photospheric (Fe I 630.25 nm) and chromospheric (Ca II 854.21 nm) spectral lines. Our long-term goal is to diagnose properties of the magnetic field near the base of the corona. We compare ground-based two-dimensional spectropolarimetric measurements with (almost) simultaneous space-based slit spectropolarimetry. The ground-based observations were obtained May 20, 2008, with IBIS in spectropolarimetric mode, The space observations were obtained with the Spectro-Polarimeter aboard the HINODE satellite. The agreement between the near-simultaneous co-spatial IBIS and HINODE Stokes-V profiles at 630.25 nm is excellent, with V/I amplitudes compatible with to within 1 %. IBIS QU measurements are affected by residual crosstalk from V, arising from calibration inaccuracies, not from any inherent limitation of imaging spectroscopy. We use a PCA analysis to quantify the detected cross talk. Chromospheric magnetic fields are difficult to constrain by polarization of Ca II l...

  3. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein. PMID:24216746

  4. Application analysis of angular dispersion Fabry-Perot velocity interferometry%角色散FP干涉测速技术应用与分析

    Institute of Scientific and Technical Information of China (English)

    陈光华; 刘寿先; 李泽仁; 李涛; 蒙建华; 郭江建; 刘乔

    2011-01-01

    A fixed-cavity angular dispersion Fabry-Perot velocity interferometer was developed by applying a solid etalon to realize that this interferometer's structure was compact, the interference fringes obtained by it were adjustment-free and its fringe constant could be easily and accurately calibrated. This interferometer was used in the experiment with an electric gun to accelerate a 10-mm-diame-ter, 0. 25-mm-thick Mylar flyer. The interferometer gave good results even when the intensity of light reflected from the target changed 100 times. The measurement accuracy of the system was analyzed by taking account of etalon thickness error, unparallel etalon surfaces, fringe broadening, image aberration, and so on. And the velocity resolution and the temporal resolution were also analyzed.%发展了固定腔结构的角色散FP干涉测速系统,干涉仪结构紧凑,采用固定腔标准具,实现了干涉条纹永久免调,并且条纹常数的标定非常简单.该系统可用于靶面反射光强动态变化很大的场合,在电炮驱动Mylar膜飞片实验中,光强变化达100倍时仍然获得了很好的结果.分析了标准具厚度误差、标准具端面不平行、干涉条纹动态展宽和扫描图像畸变等因素对系统测量精度的影响以及系统的速度和时间分辨能力.

  5. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser.

    Science.gov (United States)

    Wang, Xiaozhen; Zhu, Tao; Chen, Liang; Bao, Xiaoyi

    2011-05-01

    A novel tunable fiber Fabry-Perot (FP) filter is proposed and demonstrated by using a hollow-core photonic bandgap fiber (HC-PBF) and a micro-fiber. The interference cavity is a hollow core of HC-PBF. One of the reflection mirrors is the splicing point between a section of HC-PBF and a single mode fiber. The other reflection mirror is a gold-coated end of micro-fiber that uses chemical etching process to obtain the similar diameter as the core of HC-PBF. Hence the movable mirror can be adjusted with long distance inside the hollow core of HC-PBF. Tunable FP filter is used as a mode selecting component in the reflection mode to implement stable single longitudinal mode (SLM) operation in a ring laser. With FP cavity length of 0.25 ± 0.14 mm, the wavelength of SLM laser can be tuned over 1554-1562 nm with a tuning step of 0.2-0.3 nm, a side-mode suppression ratio (SMSR) of 32-36 dB and a linewidth of 3.0-5.1 kHz. With FP cavity length of 2.37 ± 0.37 mm, the SLM laser can be tuned over 1557.3-1560.2 nm with a tuning step of 0.06-0.1 nm, a SMSR of 44-51 dB and a linewidth of 1.8-3.0 kHz. PMID:21643220

  6. Image Data Processing of Spaceborne Fabry-Perot Interferometer Prototype%?abry—Perot测风干涉仪数据处理

    Institute of Scientific and Technical Information of China (English)

    韩威华; 吕建工; 王咏梅; 杜述松

    2011-01-01

    Fabry-Perot Interferometer (FPI) is one of the best detectors to explore the middle and upper atmosphere wind. A spaceborne FPI prototype with a large diameter telescope was designed and constructed and the image of interference fringe was acquired. This paper introduces the princi- ple of FPI and a feasible inversion algorithm of the wind velocity in the middle and upper atmosphere. A technique for F-P interference fringe auto-processing is developed. The technique includes filtering, segmentation, thinning, and extracting of interferogram characteristic data. Filtering is composed of median filtering and background compensation. Binary fringe is obtained through selecting the area mean gray scale as threshold for segmentation. Mathematical morphology is fitting for restoring rupture and burr. As thinning is essential for the accuracy of inverting middle and upper atmosphere wind, thinning is discussed in details. Skeletonization thinning is put into practice. At last, characteristic data such as center of circle and radius are extracted. Visual C++ is adopted to develop the FPI interference fringe image process software, and the technique mentioned above has good performance in experimental practice.%针对自主研制的星载法布里一珀罗干涉仪(Fabry—Perot Interferometer,FPI)样机,介绍了Fabry—Perot(F—P)的测风原理和风速反演算法,阐述了F—P测风干涉数据的自动化处理方法,包括干涉条纹图像滤波、分割、细化和特征数据的提取.滤波包括中值滤波和背景补偿,分割采用区域平均灰度值阈值法,借助数学形态学计算填充和消除二值化条纹的断裂点和毛刺.最后,按照骨架提取思想细化成干涉条纹线条,提取其特征数据.应用VC++编程语言开发软件平台,对上述F—P测风仪数据自动化处理方法进行了验证,结果表明其可行性高、适应性强.

  7. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  8. 初级馈源位置对Fabry-Perot谐振天线性能的影响%Effect of Location of Primary Source on Fabry-Perot Resonator Antenna

    Institute of Scientific and Technical Information of China (English)

    刘震国

    2011-01-01

    通过平面波叠加法,分析了初级馈源位置对PEC和PMC作为接地板的2类Fabry-Perot谐振天线的最大方向性系数及其带宽的影响.分析表明初级馈源位置在满足特定条件取值时,Fabry-Perot谐振天线将获得最大的定向性,但其定向性带宽并不随馈源位置有明显改变.同时,首先指出定向性与其带宽的乘积仅是Fabry-Perot谐振天线的反射盖板其反射系数模的函数,并随着反射系数模的增加而趋于某一定值.最后进行了仿真验证,仿真结果与理论计算具有很好的一致性,对Fabry-Perot谐振天线的设计具有很好的理论指导意义.%The directivity and its bandwidth properties of Fabry-Perot resonator antennas made of two different ground pWe covered with a pautially-reflecting surface are studied theoretically, respectively. The relationship between the directivity and the primary source location is also obtained. It is shown that the directivity of Fabry-Perot resonator will obtain its maximum when primary source is located吐 certain of position for different type of ground plate. But the directivity bandwidth will not very obviously with the source location. At the same time the normalized product of maxium of directivity and its handwidth is a function of reflection coefficient of partially reflective 8Urface, which trends to certain constant with increase of reflection coefficient. Finally the simulated results of planar Fabry-Perot resonator antenna are validated to have good agreement with the calculated theoretically.

  9. Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry-Perot filter and an YDFA-based booster amplifier

    DEFF Research Database (Denmark)

    Nielsen, Frederik Donbæk; Thrane, Lars; Hsu, Kevin;

    2007-01-01

    We demonstrate a tuneable laser operating in the 1–1.1 lm wavelength region with a tuning range of 43 nm (FWHM), an output power of 19 mW and coherence length of 14 mm. The source is based on a master laser consisting of a cavity tuned ring configuration with a fibre Fabry–Perot filter used...

  10. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  11. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    International Nuclear Information System (INIS)

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered

  12. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  13. Climatology and IMF By dependence of quiet-time high-latitude upper thermospheric winds measured by ground-based Fabry-Perot Interferometers in the northern and southern hemispheres

    Science.gov (United States)

    Emmert, J. T.; Hernandez, G.; Jarvis, M. J.; Niciejewski, R. J.; Sipler, D. P.; Vennerstrom, S.

    2006-05-01

    We analyze ground-based Fabry-Perot interferometer observations, obtained from the CEDAR database, of upper thermospheric (~250 km) horizontal winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90S), Halley (76S, 27W), Millstone Hill (43N, 72W), Sondre Stromfjord (67N, 51W), and Thule (77N, 68W). We derive climatological quiet-time (Kp irradiation. Within the limited seasonal coverage afforded by the nighttime (mostly winter) data, the day-of-year dependence is generally weak. IMF By exerts a strong influence on the wind patterns, particularly in the midnight sector. During winter, positive-By winds around midnight in the northern (southern) hemisphere are directed more toward the dusk (dawn) sector, compared to corresponding negative-By winds; this behavior is consistent with the By-dependence of statistical ionospheric convection patterns The strength of the wind response to IMF By tends to increase with increasing solar EUV irradiation, roughly in proportion to the increased wind speeds. Quiet-time IMF By effects are detectable at latitudes as low as that of Millstone Hill (magnetic latitude 53N).

  14. Application of Distributed Optical Fiber Fabry-Perot Sensor in Aerocraft Intelligent Skin%分布式光纤法布里-帕罗传感器在飞行器智能蒙皮中的应用

    Institute of Scientific and Technical Information of China (English)

    杨林

    2016-01-01

    According to the concept of intelligent skin, this article analyzed the fundamental principle of optical fiber Fabry-Perot structure, and focused on implemention method to mount the distributed optical fiber sensors for pressure and temperature real-time monitoring on aircraft. The technological advantages and development trend of the topic were also briefly discussed. For solving the problems, e.g., avionics integration, anti-electromagnetic interference, and compaction, this kind of sensing system’s framework can be well established and embedded into intelligent skin.%从智能蒙皮的概念出发,分析了光纤法布里-帕罗式结构的传感技术的技术原理,研究了在飞行器上装载分布式光纤传感器进行压力、温度等的实时传感、动态测量的工程实现方法,并探讨了其技术优势与发展方向。应用分布式光纤法布里-帕罗传感器可解决航电集成化、抗电磁干扰、减少负载等问题。

  15. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-01

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  16. DEVELOPMENT OF EXTRINSIC FABRY-PEROT FIBER SENSOR AND ITS APPLICATION TO SMART MATERIALS%外腔式Fabry-Perot光纤传感器的研制及其在智能材料中的应用

    Institute of Scientific and Technical Information of China (English)

    黄民双; 梁大开; 邱浩; 陶宝祺

    2000-01-01

    In the work of developing extrinsic fabry-perot interferometric (EFPI), the key technology of polishing fiber optic endfaces and coating the multilayer of dielectric films on them is raised and resolved to settle the disturbance and stability problem of EFPI, which simplifies the sensing system, improves the sensor performance and reduces the cost. In this paper, the relations between the output interferential light intensity and the F-P cavity length are calculated based on the theory of mode field coupling. The EFPI fiber optic sensor is adhered to a distributed smart laminate beam to detect vibration frequency and axial strain value, the results coincident with the results tested by PZT.%在制作外腔式Fabry-Perot干涉 (FPEI) 光纤传感器中,提出并解决了基于抛光光纤端面并在其上镀上多层介质膜的关键技术,从而解决了外腔式Fabry-Perot干涉光纤传感器的干扰和稳定性问题.使探测系统大大简化,传感器性能显著增加,成本下降.本文还首次用模式理论计算了两波的干涉输出光强与位移的关系.最后将FPEI应变传感器贴附在一个分布式智能悬臂梁上,检测到振动频率及轴向应变值,其结果与用压电片监测到的结果完全一致.

  17. 对F-P腔式气体光纤传感器信号解调方法的研究%Study on Signal Demodulation Methods for Fabry-Perot Cavity Fiber-Optic Gas Sensor

    Institute of Scientific and Technical Information of China (English)

    黄政; 白忠臣

    2011-01-01

    This paper study on signal demodulation methods for a novel fabry-perot cavity fiber-optic gas sensor. The mathematical model for detection is set up by applying the multiple-beam interference principle and lambert-beer's law. Simulation analyzes the influence of effective optical path on detected gas concentration and the various factors of affecting detection accuracy. Moreover, analyzing how to choose the variation range of cavity length to make sure the frequency intervals are fit for actual measurement. This method will have extensive application in biological detection,aviation and environmental monitoring.%研究了一种新型的基于法-珀(F-P)腔式气体光纤传感器信号解调的方法.应用F-P腔的多光束干涉原理和气体吸收的朗-比定律建立起检测的数学模型,在理论上设计了其信号的解调方法,模拟分析了有效光程对待测气体浓度的影响及影响该方法检测精度的因素,从模拟结果分析了如何选择腔长的变化范围以确保频率间隔适用于实际测量.该法可在生物检测、航空航天、环境监测等许多领域中广泛应用.

  18. 基于光纤F-P可调谐滤波器的有害气体检测方法%Research on Detection Method of Harmful Gas Based on Optical Fiber Fabry-Perot Tunable Filter

    Institute of Scientific and Technical Information of China (English)

    于国良; 刘波; 刘伟伟; 连航; 陆星; 石俊峰; 张宇涵; 龚欣; 沈贺; 徐圣奇; 赵佳宇

    2013-01-01

    光谱分析法在气体成分监测领域有着广泛的应用,实现小型紧凑高分辨率的光谱测量装置是热门的研究课题。文章创造性的提出了基于光纤法布里-帕罗(F-P)的可调谐滤波器提高吸收光谱分辨率,为构建紧凑高分辨率的光谱仪提供了一种新的方案。基于光纤F-P的可调谐滤波器成功实现了微型光栅光谱仪(分辨率约1nm)对甲烷吸收光谱的测量,对比无光纤F-P可调谐滤波器直接测量的结果,该方法测得的吸收光谱强度至少提高了一个数量级。此研究成果可用于紧凑高分辨率的星载气体检测仪的研制。%Spectrum analysis has a broad prospect of application in gas composition monitoring field. The compact high-resolution gas composition monitoring device has become a subject under intensive investigation. This paper propose a novel solution based on optical fiber Fabry-Perot(F-P) tunable filter in building a compact and high resolution free space optical spectrometer. By using the fiber F-P tunable filter, the absorption spec-trum of CH4 is successfully obtained with a miniature grating spectrometer (resolution of about 1nm). Com-pared with the directly measured results without the optical fiber F-P tunable filter, the intensity of the absorp-tion spectrum has been increased at least an order of magnitude. This research can be used in the development of the compact high-resolution spaceborne gas detector.

  19. Doppler wind lidar with dual Fabry-Perot interferometer%基于双F-P干涉仪的多普勒测风激光雷达的性能分析

    Institute of Scientific and Technical Information of China (English)

    迟如利; 封素敏; 钟志庆; 孙东松; 周军; 胡欢陵

    2006-01-01

    自行研制了一台基于双边缘技术的多普勒激光雷达,用于测量对流层大气风场.该雷达采用具有高光谱分辨率的双Fabry-Perot干涉仪来检测气溶胶后向散射的多普勒频移量.给出了多普勒测风激光雷达的结构和参数.利用干涉仪参数讨论了雷达系统的测量精度.实验测定了双干涉仪的频谱曲线.通过计算和分析,由测量的干涉仪频谱曲线的的标准偏差引起的系统测量误差为0.5 m/s.系统的测量误差随着测量的高度和所测速度的增加在增大,在高度10 km测量50 m/s的风速时系统的测量误差小于2 m/s.%The 1 064 nm Doppler wind lidar with a dual Fabry-Perot interferometer based on the edge technique has been developed to measure the wind profile in the troposphere. The construction of the lidar system is described. The dual interferometer with high-spectral resolution is used to discriminate the Doppler shift from the aerosol backscattering. The accuracy of the lidar system is analyzed and discussed especially for the interferometer parameters. The transmittance curve of the interferometer is measured and the standard deviation of the transmittance will cause a velocity error of 0.5 m/s. The result of the analysis show that the error of the lidar measurement ranges from less than 2 m/s up to 10 km for the wind velocity of 50 m/s and the error increases with the increase of the radial velocity and the detection distance.

  20. Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks

    Energy Technology Data Exchange (ETDEWEB)

    Mollet, O., E-mail: oriane.mollet@lpn.cnrs.fr; Martinez, A.; Merghem, K.; Ramdane, A. [CNRS, Laboratory for Photonics and Nanostructures, Route de Nozay, 91460 Marcoussis (France); Joshi, S.; Provost, J.-G.; Lelarge, F. [III-V Lab, A Joint Laboratory of Alcatel Lucent Bell Laboratories, Thales Research and Technology and CEA-LETI, Route de Nozay, 91460 Marcoussis (France)

    2014-10-06

    In this paper, we report the characteristics of InAs/InP quantum dashes (QDash) based lasers emitting around 1.55 μm. An unprecedented high modal gain of ∼100 cm{sup −1} is obtained for an optimized active structure by stacking 12 QDash layers. Directly modulated lasers allowed achieving a modulation bandwidth of ∼10 GHz and a Henry factor around 5. Thanks to p-type doping, the Henry factor value is reduced down to 2.7 while the modulation bandwidth still amounts to ∼10 GHz. This shows that doping of the active region is important to improve the dynamic characteristics of QDash lasers.

  1. Fabry-Perot resonance of water waves.

    Science.gov (United States)

    Couston, Louis-Alexandre; Guo, Qiuchen; Chamanzar, Maysamreza; Alam, Mohammad-Reza

    2015-10-01

    We show that significant water wave amplification is obtained in a water resonator consisting of two spatially separated patches of small-amplitude sinusoidal corrugations on an otherwise flat seabed. The corrugations reflect the incident waves according to the so-called Bragg reflection mechanism, and the distance between the two sets controls whether the trapped reflected waves experience constructive or destructive interference within the resonator. The resulting amplification or suppression is enhanced with increasing number of ripples and is most effective for specific resonator lengths and at the Bragg frequency, which is determined by the corrugation period. Our analysis draws on the analogous mechanism that occurs between two partially reflecting mirrors in optics, a phenomenon named after its discoverers Charles Fabry and Alfred Perot.

  2. Three Cavity Tunable MEMS Fabry Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Narayanswamy Sivakumar

    2007-12-01

    Full Text Available In this paper a four-mirror tunable micro electro-mechanical systems (MEMSFabry Perot Interferometer (FPI concept is proposed with the mathematical model. Thespectral range of the proposed FPI lies in the infrared spectrum ranging from 2400 to 4018(nm. FPI can be finely tuned by deflecting the two middle mirrors (or by changing the threecavity lengths. Two different cases were separately considered for the tuning. In case one,tuning was achieved by deflecting mirror 2 only and in case two, both mirrors 2 and 3 weredeflected for the tuning of the FPI.

  3. Experimental Sensing Study of a Certain Fabry-Perot Fiber Optic Strain Gauge%某型Fabry-Perot光纤应变计的传感特性试验

    Institute of Scientific and Technical Information of China (English)

    肖邵予; 汪浩

    2014-01-01

    Internationally, the fiber optic strain sensing technology has been widely applied to the hull structure health monitoring. However, such technology is rarely used in domestic engineering applications for the reason that the structural package of fiber optic sensors, one of the main factor that impacts the per⁃formance of the fiber-optic sensing technology, is still unclear. In this paper, a certain type of Fabry-Perot fiber optic strain gauge is selected by a prototype hull structure stress monitoring system, and the corre⁃sponding principle of the fiber optic strain gauge is introduced. Meanwhile, a structure test model is con⁃structed, an experimental study on static strain tests, dynamic strain tests, and temperature characteristics is carried out. The results show that the static and dynamic strain measurement error induced by the two methods (the one based on the fiber-optic strain gauge and the one based on the electrical resistance strain gauge) is less than 2%, which verifies the accuracy of the fiber-optic strain gauge measurement data;in ad⁃dition, strain-temperature curves reveal decent linearity and consistency, indicating that the structural package of the fiber optic strain gauge successfully meets the ship ambient temperature conditions.%光纤应变传感技术在国外已广泛应用于船体结构健康监测之中,而在国内鲜有工程实际应用的尝试,究其原因,光纤传感器的结构封装是影响光纤传感技术工程化应用的重要因素。针对某船体结构应力监测系统原理样机所选型的Fabry-Perot光纤应变计,介绍其测量原理,建立封装结构试验模型,并对该结构开展了静态应变传感特性、动态应变传感特性以及温度特性的试验研究。分析结果表明,该型光纤应变计静态、动态应变测量结果与基于电阻应变片的电测法结果偏差小于2%,从而验证了光纤应变计测量数据的准确性。同时,应变—温度的

  4. Narrow linewidth broadband tunable semiconductor laser at 840 nm with dual acousto-optic tunable configuration for OCT applications

    Science.gov (United States)

    Chamorovskiy, Alexander; Shramenko, Mikhail V.; Lobintsov, Andrei A.; Yakubovich, Sergei D.

    2016-03-01

    We demonstrate a tunable narrow linewidth semiconductor laser for the 840 nm spectral range. The laser has a linear cavity comprised of polarization maintaining (PM) fiber. A broadband semiconductor optical amplifier (SOA) in in-line fiber-coupled configuration acts as a gain element. It is based on InGaAs quantum-well (QW) active layer. SOA allows for tuning bandwidth exceeding 25 nm around 840 nm. Small-signal fiber-to-fiber gain of SOA is around 30 dB. A pair of acousto-optic tunable filters (AOTF) with a quasi-collinear interaction of optical and acoustic waves are utilized as spectrally selective elements. AOTF technology benefits in continuous tuning, broadband operation, excellent reproducibility and stability of the signal, as well as a high accuracy of wavelength selectivity due to the absence of mechanically moving components. A single AOTF configuration has typical linewidth in 0.05-0.15 nm range due to a frequency shift obtained during each roundtrip. A sequential AOTF arrangement enables instantaneous linewidth generation of <0.01 nm by compensating for this shift. Linewidth as narrow as 0.0036 nm is observed at 846 nm wavelength using a scanning Fabry-Perot interferometer with 50 MHz spectral resolution. Output power is in the range of 1 mW. While the majority of commercial tunable sources operate in 1060-1550 nm spectral ranges, the 840 nm spectral range is beneficial for optical coherence tomography (OCT). The developed narrow linewidth laser can be relevant for OCT with extended imaging depth, as well as spectroscopy, non-destructive testing and other applications.

  5. Influence of a tilted cavity on quantum-dot optoelectronic active devices

    International Nuclear Information System (INIS)

    Quantum-dot laser diodes (QD-LDs) with a Fabry-Perot cavity and quantum-dot semiconductor optical amplifiers (QD-SOAs) with 70 tilted cavity were fabricated. The influence of a tilted cavity on optoelectronic active devices was also investigated. For the QD-LD, high performance was observed at room temperature. The threshold current was below 30 mA and the slope efficiency was 0.36 W/A. In contrast, the threshold current of the QD-SOA approached 1000 mA, which indicated that low facet reflectivity was obtained due to the tilted cavity design. A much more inverted carrier population was found in the QD-SOA active region at high operating current, thus offering a large optical gain and preserving the advantages of quantum dots in optical amplification and processing applications. Due to the inhomogeneity and excited state transition of quantum dots, the full width at half maximum of the electroluminescence spectrum of the QD-SOA was 81.6 nm at the injection current of 120 mA, which was ideal for broad bandwidth application in a wavelength division multiplexing system. In addition, there was more than one lasing peak in the lasing spectra of both devices and the separation of these peak positions was 6-8 nm, which is approximately equal to the homogeneous broadening of quantum dots.

  6. 基于法布里-珀罗干涉仪的大气风场及温度场探测理论研究及仿真%Theoretical Research and Simulation of the Atmospheric Wind Field and Temperature Based on the Fabry-Perot Interferometer

    Institute of Scientific and Technical Information of China (English)

    汪丽; 周毅; 华灯鑫; 王萌

    2011-01-01

    To counter atmospheric wind-field detection system based on Fabry-Perot interferometer the model of retrieval of wind velocity and temperature is deduced. Using Zemax software, the configuration of the system is numerical simulated, and interference fringes corresponding to two wavelengths are produced. Combined with the method of the least squares fitting a round image, data processing and the wind velocity inversion are completed. And by the comparison of the theoretical values, the accuracy of fringe movement is obtained, and wind velocity error is less than 4.2%. According to temperature detection theory, the reasonable specturm files are built and ideal simulated interference rings are obtained. Atmospheric temperture can be retrieved, and the error is less than 7. 5% . Results show that simulation model, retrieval theory, data analysis and processing method are feasible.%针对基于法布里-珀罗干涉仪的大气风场探测系统,推导了进行风速、温度反演的理论模型并在理论上进行了模拟验证.利用光学设计软件Zemax完成了法布里-珀罗干涉仪系统结构的仿真.通过设定不同波长入射系统,得到对应干涉条纹,利用最小二乘拟合圆方法从条纹峰值移动距离可反演出风速,与理论值进行比对,得到风速仿真误差小于4.2%.针对温度探测理论建立了合理的光源光谱文件,给出理想仿真干涉圆环,进行数据分析完成温度反演,计算出温度的仿真误差小于7.5%.结果表明,仿真模型、反演理论、数据分析和处理方法是可行的.

  7. AC transport in graphene-based Fabry-Perot devices

    OpenAIRE

    Rocha, Claudia G; Torres, Luis E. F. Foa; Cuniberti, Gianaurelio

    2009-01-01

    We report on a theoretical study of the effects of time-dependent fields on electronic transport through graphene nanoribbon devices. The Fabry-P\\'{e}rot interference pattern is modified by an ac gating in a way that depends strongly on the shape of the graphene edges. While for armchair edges the patterns are found to be regular and can be controlled very efficiently by tuning the ac field, samples with zigzag edges exhibit a much more complex interference pattern due to their peculiar elect...

  8. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chisum, Brad [Lumedyne Technologies Incorporated, San Diego, CA (United States)

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  9. Enhancement of UV Excited Photoluminescence by Fabry-Perot Microcavity

    Directory of Open Access Journals (Sweden)

    Chunxian Tao

    2015-01-01

    Full Text Available A light-emitting microcavity with the structure of dielectric mirror/phosphor coating/dielectric mirror for the enhancement of PL efficiency excited under UV light was designed and fabricated. The fluorescence emission of Lumogen S0795 coating within microcavity structure is significantly enhanced compared with the coating on bare substrate. The measurement results indicate the possibility of developing front illuminated CCD based on optical resonant cavity for UV-visible imaging with higher sensitivity.

  10. Applet de interferómetro de Fabry-Perot

    OpenAIRE

    Andilla i Salla, Jordi; Carnicer González, Arturo; Ferrer Borrull, Josep; Francisco Moneo, J. Ramón de; Juvells Prades, Ignacio; Martín Badosa, Estela; Pleguezuelos Aguilera, Encarnación; Tudela Fernández, Raúl; Mas Soler, Josep; Universitat de Barcelona. Grup d'Innovació Docent en Òptica Física i Fotònica

    2010-01-01

    Pertenece a JOptics, un conjunto de recursos docentes dirigidos al aprendizaje de la Óptica Física a nivel universitario en el marco de la licenciatura de Física o la titulación en Óptica y Optometría. http://www.ub.edu/javaoptics/index-es.html

  11. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems

    Directory of Open Access Journals (Sweden)

    Faten A. Chaqmaqchee

    2016-04-01

    Full Text Available III-V semiconductors components such as Gallium Arsenic (GaAs, Indium Antimony (InSb, Aluminum Arsenic (AlAs and Indium Arsenic (InAs have high carrier mobilities and direct energy gaps. This is making them indispensable for today’s optoelectronic devices such as semiconductor lasers and optical amplifiers at 1.3 μm wavelength operation. In fact, these elements are led to the invention of the Gallium Indium Nitride Arsenic (GaInNAs, where the lattice is matched to GaAs for such applications. This article is aimed to design dilute nitride GaInNAs quantum wells (QWs enclosed between top and bottom of Aluminum (Gallium Arsenic Al(GaAs distributed bragg mirrors (DBRs using MATLAB® program. Vertical cavity semiconductor optical amplifiers (VCSOAs structures are based on Fabry Perot (FP method to design optical gain and bandwidth gain to be operated in reflection and transmission modes. The optical model gives access to the contact layer of epitaxial structure and the reflectivity for successive radiative modes, their lasing thresholds, emission wavelengths and optical field distributions in the laser cavity.

  12. Active stabilization of a diode laser injection lock.

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed. PMID:27370428

  13. Active Stabilization of a Diode Laser Injection Lock

    CERN Document Server

    Saxberg, Brendan; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  14. Active stabilization of a diode laser injection lock

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  15. 78 FR 68814 - Subzone 183B; Authorization of Production Activity; Samsung Austin Semiconductor, LLC...

    Science.gov (United States)

    2013-11-15

    ... (78 FR 40427, 7-5-2013). The FTZ Board has determined that no further review of the activity is... Foreign-Trade Zones Board Subzone 183B; Authorization of Production Activity; Samsung Austin Semiconductor, LLC (Semiconductors); Austin, Texas On June 26, 2013, Samsung Austin Semiconductor, LLC submitted...

  16. 星载激光多普勒测风雷达鉴频系统仿真(II):基于Fabry-Perot标准具的Rayleigh通道大气风速反演研究%Simulation of frequency discrimination for spaceb orne Doppler wind lidar (I I):Study on the retrieval of atmospheric wind sp eed for Rayleigh channel based on Fabry-Perot interferometer

    Institute of Scientific and Technical Information of China (English)

    张日伟; 孙学金; 严卫; 赵剑; 刘磊; 李岩; 张传亮; 周俊浩

    2014-01-01

    Based on the principle of spaceborne Doppler wind lidar, a simulation system of frequency discrimination is built based on the double sequential Fabry-Perot (F-P) interferometer. The wind retrieval algorithm of Rayleigh channel is simulated and studied. The influence on the retrieved atmospheric line-of-sight (LOS) wind speed in Rayleigh channel by the Rayleigh-Brillouin effect and Mie contamination is systematically analyzed. The horizontal line-of-sight (HLOS) wind error is analysed using the simulated result of the radiosonde dataset. The results show that the wind speeds of the middle and upper atmosphere can be retrieved in Rayleigh channel based on the double sequential F-P interferometer;the Rayleigh-Brillouin effect and Mie contamination influence the accuracy of LOS wind speed retrieval in Rayleigh channel;the Rayleigh channel requires more accurate temperature;Mie contamination can be ignored in clear atmosphere;when Brillouin effect is not considered, below 2 km, the HLOS wind speed cannot be retrieved in Rayleigh channel, and above 2 km, the HLOS wind speed error in Rayleigh channel is less than 0.4 m·s-1 and its standard deviation is 1-4 m·s-1. Just as the Mie channel, distributions of aerosol and cloud have an influence on wind error for spaceborne Doppler wind lidar in Rayleigh channel. The research results have an important reference value for the development of spaceborne lidar wind technology.%基于星载激光多普勒测风雷达工作原理,构建了基于连续双通道Fabry-Perot (F-P)标准具的鉴频仿真系统,仿真研究了Rayleigh通道大气风速反演算法,系统分析了Rayleigh-Brillouin效应和Mie干扰信号对Rayleigh通道反演大气视线(LOS)风速的影响,并利用无线电探空数据集仿真结果统计分析了Rayleigh通道大气水平视线(HLOS)风速反演误差.结果表明,基于连续双通道F-P标准具的Rayleigh通道可反演中高层大气风速;Rayleigh-Brillouin效应和Mie干扰信号影

  17. Properties of Optical Resonant Modes in Ⅲ-Nitride Semiconductor Micro-Cone Cavities

    Institute of Scientific and Technical Information of China (English)

    DAI Lun; ZHANG Bei; LIN Jing-Yu; JIANG Hong-Xing

    2001-01-01

    Arrays of Ⅲ-nitride semiconductor micro-cone cavities with a base diameter of 3.3μm were fabricated by ion beam etching. The micro-cones consisted of 58 nm thick multiple quantum wells of ln0.22Ga0.78N/In0.06Ga0.94N as well as a 1.5μm thick epilayer of GaN. Optical resonant modes from a single micro-cone could be clearly observed in the photoluminescence spectra at temperatures up to 200K under a pumping power density two orders of magnitude lower than that for the Ⅲ-nitride semiconductor micro-disk or micro-ring cavity. Using a novel optical ray tracing method, we have figured out four main types of optical resonant cavities inside the three-dimensional micro-cone, including two Fabry-Perot (F-P) mode types as well as two Whispering Gallery mode types. The three corresponding mode spacings among the four agree perfectly with the experimental results. The advantages of this new class of micro-cavity over the other micro-cavities are discussed. These findings are expected to have an impact on the design of the ultraviolet/blue micro-cavity laser diodes.

  18. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  19. Preprocessing-free all-optical clock recovery from NRZ and NRZ-DPSK signals using an FP-SOA based active filter

    International Nuclear Information System (INIS)

    We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any preprocessing measures. A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device. Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data. This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength operation, free preprocessing and convenient tuning. Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats. (authors)

  20. Raman spectra of semiconductor nanoparticles: Disorder-activated phonons

    Science.gov (United States)

    Ingale, Alka; Rustagi, K. C.

    1998-09-01

    We present Raman spectra of four semiconductor doped glasses and a single crystal of CdS0.55Se0.45 in the range 30-800 cm-1 in the backscattering geometry. This includes the first-order Raman scattering from the disorder-activated zone-edge phonons and the LO phonons. TO phonon modes are not observed, as in bulk CdS, for the excitation well above the lowest gap. We show that the asymmetric line profile of the LO phonon structure can be understood as a composite of two phonon modes: the zone center and the zone edge phonons. Disorder-activated modes in the (30-130)-cm-1 range and the higher-order Raman spectra are also observed and found to be consistent with this assignment.

  1. All-optical active switching in individual semiconductor nanowires

    Science.gov (United States)

    Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.; Agarwal, Ritesh

    2012-10-01

    The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

  2. Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; ZHANG Xin-Liang; YU Yu; XU En-Ming

    2011-01-01

    @@ We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any pre- processing measures.A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device.Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data.This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength opera- tion, free preprocessing and convenient tuning.Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.%We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any preprocessing measures. A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device. Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data. This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength operation, free preprocessing and convenient tuning. Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.

  3. Spectroscopy of semiconductor meta-device building blocks (Presentation Recording)

    Science.gov (United States)

    Butakov, Nikita A.; Schuller, Jon A.

    2015-09-01

    Inspired by the potential of designing highly efficient nanophotonic optical elements, numerous researchers are currently exploring the use of dielectric resonators in constructing meta-devices. A wide range of optical components have been demonstrated, including metasurfaces that act as two-dimensional lenses, gratings, and axicons. At the core of these devices is a dielectric building block, typically a Silicon nano-disk or nano-rod, that supports Mie-like leaky mode excitations with a geometrically tunable amplitude and phase response. Here we present a comprehensive experimental characterization of these building blocks. We elucidate their multipolar mode structure, and explain the dependence on the underlying substrate. We find that fundamentally new buried magnetic modes emerge in high-index substrates, and that Fabry-Perot effects in silicon-on-insulator platforms can be utilized to enhance or suppress specific modes. When individual resonators are arranged into arrays with sub-wavelength periodicities, inter-particle coupling leads to a shift in the resonant response. When the periodicities are on the same order as the operating wavelength, the localized resonances may couple with the global diffraction modes, leading to the possible formation of distinct high-quality-factor surface-lattice-resonant modes, similar to those encountered in plasmonic gratings. We conclude by exploring the behavior of resonators constructed out of active materials, such as polar materials that support phonon-polariton excitations, and phase-change materials with tunable dielectric constants.

  4. Active III-V Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Schubert, Martin;

    2011-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in a quantum well III-V semiconductor photonic crystal waveguide slab. The effect is described by enhanced light matter interaction with the decrease of the group velocity. These are promising results for future compact devices...... for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  5. BPM simulator for active and passive semiconductor IOC

    Science.gov (United States)

    Perrone, Guido; Petazzi, Diego; Gulisano, A.; Montrosset, Ivo

    1994-05-01

    We have added to our very general, user friendly simulator for integrated optical circuits the capability to analyze structures made with semiconductor materials whose characteristics are controlled with current injection. The simulator is interfaced with the optical layout generator SIGRAPHTM-Optik (by Siemens-Nixdorf) and it is based on a finite difference BPM with transparent boundary conditions. Some examples of applications are presented; they show the agreement with the results reported in the literature and the potentiality of the simulator.

  6. Surface Properties and Photocatalytic Activity of KTaO3, CdS, MoS2 Semiconductors and Their Binary and Ternary Semiconductor Composites

    OpenAIRE

    Beata Bajorowicz; Anna Cybula; Winiarski, Michał J.; Tomasz Klimczuk; Adriana Zaleska

    2014-01-01

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary a...

  7. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  8. General and efficient method for calculating modulation ressponses and noise spectra of active semiconductor waveguides

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We present a theoretical method for obtaining small-signal responses in a spatially resolved active semiconductor waveguide including finite end-facet reflectivities and amplified spontaneous emission. RF-modulation responses and output noise spectra of an SOA are shown....

  9. Modeling of gain saturation effects in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on carrier-depletion-induced modal gain saturation is investigated....

  10. Distributed Feedback Effects in Active Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields.......We present a rigorous coupled-wave analysis of slow-light effects in active photonic crystal waveguides. The presence of active material leads to coherent distributed feedback effects that significantly alter the magnitude and phase of output fields....

  11. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    Science.gov (United States)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  12. Passivation of electrically active centers by Hydrogen and Lithium in Semiconductors

    CERN Multimedia

    2002-01-01

    The hyperfine technique of Perturbed Angular Correlation Spectroscopy (PAC) has proven to be excellently suited for the microscopic investigation of impurity complexes in semiconductors. But this method is seriously limited by the small number of chemically different isotopes which are suitable for PAC measurements and represent electrically active centers in semiconductors. This bottleneck can be widely overcome by the ISOLDE facility which provides a great variety of shortliving PAC isotopes. The probe atom $^{111m}$Cd, provided by ISOLDE opened the first successful access to PAC investigations of III-V compounds and enabled also the first PAC experiments on double acceptors in silicon and germamum. \\\\ \\\\ At the new ISOLDE facility our experiments were concentrated on the passivation of electrically active centres by hydrogen and lithium in Si, Ge and III-V compounds. Experiments on $^{111m}$Cd in Ge revealed the formation of two different acceptor hydrogen and two different acceptor lithium complexes respe...

  13. Active RF Pulse Compression Using Electrically Controlled Semiconductor Switches

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Tantawi, S.; /SLAC

    2007-03-21

    In this paper, we present the recent results of our research on the ultra-high power fast silicon RF switch and its application on active X-Band RF pulse compression systems. This switch is composed of a group of PIN diodes on a high purity silicon wafer and has achieved a switching time of 300ns. The wafer is inserted into a cylindrical waveguide operating in the TE01 mode. Switching is performed by injecting carriers into the bulk silicon through a high current pulse. The RF energy is stored in a room-temperature, high-Q 375 ns delay line; it is then extracted out of the line in a short time using the switch. The pulse compression system has achieved a gain of 8, which is the ratio between output and input power.

  14. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites.

    Science.gov (United States)

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana

    2014-01-01

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  15. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  16. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  17. The Fabry-Perot interferometer prototype for the ADAHELI solar small mission

    Science.gov (United States)

    Berrilli, Francesco; Cocciolo, Martina; Giovannelli, Luca; Del Moro, Dario; Giannattasio, Fabio; Piazzesi, Roberto; Stangalini, Marco; Egidi, Alberto; Cavallini, Fabio; Greco, Vincenzo; Selci, Stefano

    2011-10-01

    ADAHELI ADvanced Astronomy for HELIophysics is a solar satellite designed to investigate the fast dynamics of the solar photosphere and chromosphere performing visible and NIR broad-band and monochromatic observations of selected atomic lines. ADAHELI is an Italian Space Agency (ASI) project, approved for a feasibility study within the ASI Small Missions call. ISODY Interferometer for SOlar DYnamics is a Gregorian telescope and its focal plane suite (FPS). The FPS is composed of a high-resolution fast acquisition system, based upon a tandem of Fabry-Pérot interferometers operating in the visible and NIR regions on selected solar atmospheric lines, a broad band channel, and a correlation tracker used as image stabilization system. In this contribution we describe the Fabry-Pérot étalon prototype, based on the capacitance-stabilised concept, realized in our laboratory to perform preliminary mechanical and optical tests with a view to a future Fabry-Pérot étalon prototype for space application.

  18. Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter.

    Science.gov (United States)

    Paul, Sujoy; Lyubopytov, Vladimir S; Schumann, Martin F; Cesar, Julijan; Chipouline, Arkadi; Wegener, Martin; Küppers, Franko

    2016-07-15

    We demonstrate an on-chip device capable of wavelength-selective generation of vortex beams, which is realized by a spiral phase plate integrated onto a microelectromechanical system (MEMS) tunable filter. This vortex MEMS filter, being capable of functioning simultaneously in both wavelength and orbital-angular-momentum (OAM) domains at the 1550 nm wavelength regime, is considered as a compact, robust, and cost-effective solution for simultaneous OAM- and wavelength-division multiplexed optical communications. The experimental OAM spectra for azimuthal orders 1, 2, and 3 show an OAM state purity >92% across a wavelength range of more than 30 nm. PMID:27420507

  19. Single-mode and multimode Fabry-Perot interference in suspended graphene

    OpenAIRE

    Oksanen, Mika; Uppstu, Andreas; Laitinen, Antti; Cox, Daniel J.; Craciun, Monica F.; Russo, Saverio; Harju, Ari; Hakonen, Pertti J.

    2014-01-01

    We have achieved high-quality Fabry-Pérot interference in a suspended graphene device both in conductance and in shot noise. A Fourier analysis of these reveals two sets of overlapping, coexisting interference patterns, with the ratios of the resonance intervals being equal to the width to length ratio of the device. We show that these sets originate from the unique coexistence of longitudinal and transverse resonances, with the longitudinal resonances occurring due to bunching of modes with ...

  20. Fabry-Perot micro-structured polymer optical fibre sensors for opto-acoustic endoscopy

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet;

    2015-01-01

    a structure profile characterisation setup to analyse tune the fibre sensors in preparation for ultrasonic detection. We evaluate the suitability of the different structures and grating parameters for ultrasonic sensing. By analysing the prepared gratings, we enable the optimisation of the profile...

  1. Fabry-Perot Laser Ultrasonic Elastic Anisotropy Measurements on a Moving Paper Web

    Energy Technology Data Exchange (ETDEWEB)

    Walter, John Bradley; Telschow, Kenneth Louis; Gerhardstein, J. P.; Pufahl, B. M.; Habeger, C. C; Lafond, E. M.; Brodeur, P. H.

    1999-07-01

    On-line measurement of material properties is a goal of many manufacturers to improve production and quality. The elastic stiffness of paper is important for the paper industry. Currently, the elastic constants of paper are measured offline with contact ultrasonic methods [1-4]. Piezoelectric transducers are placed in contact with the paper surface to generate and detect plate wave modes, known as Lamb wave modes [5-7]. At low frequencies, where the wavelength of the elastic wave is larger than the paper thickness, two wave modes dominate in the paper, an anti-symmetric or flexural mode and a symmetric or thickness mode. Measurements of the phase velocities of these modes along both the machine direction (MD) and the perpendicular cross direction (CD) of the paper web provide an important parameter revealing the increased stiffness in the paper along the MD direction.

  2. Application of a fiber Fabry-Perot interferometer sensor for receiving SH-EMAT signals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk; Kim, Dae Hyun; Park, Ik Keun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-04-15

    Shear horizontal (SH) waves propagate as a type of plate wave in a thin sheet. The dispersion characteristics of SH waves can be used for signal analysis. Therefore, SH-waves are useful for monitoring the structural health of a thin-sheet-structure. An electromagnetic acoustic transducer (EMAT), which is a non-contact ultrasonic transducer, can generate SH-waves easily by varying the shape and array of magnets and coils. Therefore, an EMAT can be applied to an automated ultrasonic testing system for structural health monitoring. When used as a sensor, however, the EMAT has a weakness in that electromagnetic interference (EMI) noise can occur easily in the automated system because of motors and electric devices. Alternatively, a fiber optic sensor works well in the same environment with EMI noise because it uses a light signal instead of an electric signal. In this paper, a fiber Fabry-Prot interferometer (FFPI) was proposed as a sensor to receive the SH-waves generated by an EMAT. A simple test was performed to verify the performance of the FFPI sensor. It is thus shown that the FFPI can receive SH-wave signals clearly.

  3. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Why are rugged, low temperature actuator materials important? By themselves, they are useless; however, when fabricated into thin films and integrated into optical...

  4. A SENSITIVE AND STABLE CONFOCAL FABRY-PEROT INTERFEROMETER FOR SURFACE ULTRASONIC VIBRATION DETECTION

    Institute of Scientific and Technical Information of China (English)

    DING HONG-SHENG; TONG LI-GE; CHEN GENG-HUA

    2001-01-01

    A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays,the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.

  5. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  6. Self-induced light trapping in nonlinear Fabry-Perot resonators

    Science.gov (United States)

    Pichugin, K. N.; Sadreev, A. F.

    2016-10-01

    In the framework of the coupled mode theory we consider light trapping between two off-channel resonators which serve as self-adjusted Fano mirrors due to the Kerr effect. By inserting an auxiliary nonlinear resonator between the mirrors we achieve self-tuning of phase shift between the mirrors. That allows for the light trapping for arbitrary distance between the mirrors.

  7. Fabry-Perot for the Integrated Direct Detection Lidar (FIDDL) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an etalon front end receiver (FIDDL) and combine it with the Optical Autocovariance Wind Lidar (OAWL) for an integrated direct detection (IDD) wind lidar....

  8. Wide-angle spectral imaging using a Fabry-Perot interferometer

    NARCIS (Netherlands)

    Strauch, M.; Livshits, I.L.; Bociort, F.; Urbach, H.P.

    2015-01-01

    We show that wide-angle spectral imaging can be achieved with compact and cost-effective devices using Fabry-Pérot interferometers. Designs with a full field of view of 90°, in which the Fabry-Pérot interferometer is mounted either in front of an imaging lens system or behind a telecentric lens syst

  9. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    Science.gov (United States)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  10. Quasi-Distributed Intrinsic Fabry-Perot Interferometric Fiber Sensor for Temperature and Strain Sensing

    OpenAIRE

    Huang, Zhengyu

    2006-01-01

    The motivation of this research is to meet the growing demand for the measurand high-resolution, high-spatial resolution, attenuation insensitive and low-cost quasi-distributed temperature and strain sensors that can reliably work under harsh environment or in extended structures. There are two main drives for distributed fiber sensor research. The first is to lower cost-per-sensor so that the fiber sensors may become price-competitive against electrical sensors in order to gain widespread ac...

  11. Wavelength Self-Calibration and Sky Subtraction for Fabry-Perot Interferometers: Applications to OSIRIS

    CERN Document Server

    Weinzirl, Tim; Bamford, Steven P; del Pino, Bruno Rodriguez; Gray, Meghan E; Chies-Santos, Ana L

    2015-01-01

    We describe techniques concerning wavelength calibration and sky subtraction to maximise the scientific utility of data from tunable filter instruments. While we specifically address data from the Optical System for Imaging and low Resolution Integrated Spectroscopy instrument (OSIRIS) on the 10.4~m Gran Telescopio Canarias telescope, our discussion is generalisable to data from other tunable filter instruments. A key aspect of our methodology is a coordinate transformation to polar coordinates, which simplifies matters when the tunable filter data is circularly symmetric around the optical centre. First, we present a method for rectifying inaccuracies in the wavelength calibration using OH sky emission rings. Using this technique, we improve the absolute wavelength calibration from an accuracy of 5 Angstroms to 1 Angstrom, equivalent to ~7% of our instrumental resolution, for 95% of our data. Then, we discuss a new way to estimate the background sky emission by median filtering in polar coordinates. This met...

  12. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    OpenAIRE

    Daniele Tosi

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are pr...

  13. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites.

    Science.gov (United States)

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana

    2014-01-01

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst. PMID:25255249

  14. Surface Properties and Photocatalytic Activity of KTaO3, CdS, MoS2 Semiconductors and Their Binary and Ternary Semiconductor Composites

    Directory of Open Access Journals (Sweden)

    Beata Bajorowicz

    2014-09-01

    Full Text Available Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, scanning electron microscopy (SEM, Brunauer–Emmett–Teller (BET specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  15. Improving the catalytic activity of semiconductor nanocrystals through selective domain etching.

    Science.gov (United States)

    Khon, Elena; Lambright, Kelly; Khnayzer, Rony S; Moroz, Pavel; Perera, Dimuthu; Butaeva, Evgeniia; Lambright, Scott; Castellano, Felix N; Zamkov, Mikhail

    2013-05-01

    Colloidal chemistry offers an assortment of synthetic tools for tuning the shape of semiconductor nanocrystals. While many nanocrystal architectures can be obtained directly via colloidal growth, other nanoparticle morphologies require alternative processing strategies. Here, we show that chemical etching of colloidal nanoparticles can facilitate the realization of nanocrystal shapes that are topologically inaccessible by hot-injection techniques alone. The present methodology is demonstrated by synthesizing a two-component CdSe/CdS nanoparticle dimer, constructed in a way that both CdSe and CdS semiconductor domains are exposed to the external environment. This structural morphology is highly desirable for catalytic applications as it enables both reductive and oxidative reactions to occur simultaneously on dissimilar nanoparticle surfaces. Hydrogen production tests confirmed the improved catalytic activity of CdSe/CdS dimers, which was enhanced 3-4 times upon etching treatment. We expect that the demonstrated application of etching to shaping of colloidal heteronanocrystals can become a common methodology in the synthesis of charge-separating nanocrystals, leading to advanced nanoparticles architectures for applications in areas of photocatalysis, photovoltaics, and light detection.

  16. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  17. Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites

    Indian Academy of Sciences (India)

    K K R Datta; B Srinivasan; H Balaram; M Eswaramoorthy

    2008-11-01

    Agarose, a naturally occurring biopolymer is used for the stabilization of metal, semiconductor nanoparticles. Ag and Cu nanoparticles stabilized in agarose matrix show excellent antibacterial activity against E. coli bacteria. The well dispersed metal nanoparticles within the agarose composite films can be readily converted to carbon-metal composites of catalytic importance.

  18. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    Science.gov (United States)

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-03-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  19. Photo-catalytic activities of plant hormones on semiconductor nanoparticles by laser-activated electron tunneling and emitting.

    Science.gov (United States)

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-01-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO₂), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi₂O₃)₀.₀₇(CoO)₀.₀₃(ZnO)₀.₉ semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  20. Rare earth ion implantation and optical activation in nitride semiconductors for multicolor emission

    International Nuclear Information System (INIS)

    In order to understand the behavior of nitride semiconductors when submitted to ion implantation, we have used 300 keV europium at fluences from 1012 to above 1017 ions cm−2. Subsequently, Rutherford backscattering (RBS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to investigate the evolution of damage. The optical properties were investigated prior to and after annealing. It was found that the behavior of the three compounds (AlN, GaN InN) under ion implantation is rather different: whereas InN breaks down at very low fluences (∼1012 ions cm−2), the damage formation mechanisms are similar in AlN and GaN. In both compounds, extended defects such as stacking faults play a critical role. However, they exhibit different stability, as a consequence, GaN transforms to nanocrystalline state from the surface at a fluence of around 2.5 × 1015 ions cm−2, whereas AlN undergoes a chemical amorphization starting at the projected range (Rp), when implanted to extremely high Eu fluences >1017 ionscm−2. As for the optical activation, the formation of highly stable extended defects in these compounds constitutes a real challenge for the annealing of heavily doped layers, and it was noticed that for a substantial optical activation, the implantation fluences should be kept low (<1015 Eu at cm−2). (invited article)

  1. Oscillatory behavior of chromospheric fine structures in a network and a semi-active regions

    CERN Document Server

    Bostanci, Z F; Al, N

    2014-01-01

    In the present work, we study the periodicities of oscillations in dark fine structures using observations of a network and a semi-active region close to the solar disk center. We simultaneously obtained spatially high resolution time series of white light images and narrow band images in the H$\\alpha$ line using the 2D G\\"ottingen spectrometer, which were based on two Fabry-Perot interferometers and mounted in the VTT/Observatorio del Teide/Tenerife. During the observations, the H$\\alpha$ line was scanned at 18 wavelength positions with steps of 125 m\\AA. We computed series of Doppler and intensity images by subtraction and addition of the H$\\alpha$ $\\pm$ 0.3 \\AA\\ and $\\pm$ 0.7 \\AA\\ pairs, sampling the upper chromosphere and the upper photosphere, respectively. Then we obtained power, coherence and phase difference spectra by performing a wavelet analysis to the Doppler fluctuations. Here, we present comparative results of oscillatory properties of dark fine structures seen in a network and a semi-active reg...

  2. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    Science.gov (United States)

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  3. III-V semiconductor nano-resonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    CERN Document Server

    Liu, Sheng; Reno, John L; Sinclair, Michael B; Brener, Igal

    2016-01-01

    Metamaterials comprising assemblies of dielectric resonators have attracted much attention due to their low intrinsic loss and isotropic optical response. In particular, metasurfaces made from silicon dielectric resonators have shown desirable behaviors such as efficient nonlinear optical conversion, spectral filtering and advanced wave-front engineering. To further explore the potential of dielectric metamaterials, we present all-dielectric metamaterials fabricated from epitaxially grown III-V semiconductors that can exploit the high second-order optical susceptibilities of III-V semiconductors, as well as the ease of monolithically integrating active/gain media. Specifically, we create GaAs nano-resonators using a selective wet oxidation process that forms a low refractive index AlGaO (n~1.6) under layer similar to silicon dielectric resonators formed using silicon-on-insulator wafers. We further use the same fabrication processes to demonstrate multilayer III-V dielectric resonator arrays that provide us w...

  4. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    Science.gov (United States)

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  5. On a chaotic potential at the surface of a compensated semiconductor under conditions of the self-assembly of electrically active defects

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, V. B., E-mail: enter@spbstu.ru; Filimonov, A. V. [St. Petersburg State Polytechnic University (Russian Federation)

    2015-09-15

    Natural irregularities of the electric potential on the surface of a semiconductor under conditions of the partial self-assembly of electrically active defects, i.e., on the formation of donor–acceptor pairs in depletion layers, are studied. The amplitude and character of the spatial distribution of the chaotic potential on the surface of a semiconductor in the cases of localized and delocalized states are determined. The dependence of the amplitude of the chaotic potential on the degree of compensation of the semiconductor is obtained.

  6. Micromachining of an in-fiber extrinsic Fabry-Perot interferometric sensor by using a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y J [Key Lab of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044 (China); Deng, M [Key Lab of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044 (China); Zhu, T [Key Lab of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044 (China); Tang, Q T [Key Lab of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044 (China); Cheng, G H [State Key Lab of Transient Optics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an, Shanxi, 710068 (China)

    2007-07-15

    In this paper, the fabrication of an in-fiber micro extrinsic F-P interferometric (MEFPI) sensor is reported, for the first time to the best of our knowledge. A micro-rectangular notch within a conventional single-mode fiber (Corning SMF-28) is ablated by using a near-infrared femtosecond laser and the two surfaces of such a micro notch across the fiber forms a MEFPI cavity. Such a MEFPI sensor has a number of outstanding advantages, such as high integration degree, good reliability, very low temperature sensitivity, easy fabrication, capability of mass-production, low cost, etc, offering great potential for sensing applications.

  7. Fiber Current Sensor Based on Fabry-Perot%基于光纤Fabry-Perot的电流传感器

    Institute of Scientific and Technical Information of China (English)

    刘京诚; 姚小芳; 陈小强; 刘俊

    2007-01-01

    利用光纤抗电磁干扰、绝缘性好, 体积小等特性,提出一种新型的光纤电流传感器. 该传感器将悬臂梁结构和光纤Fabry-Perot相结合,基于材料力学理论和电磁感应原理,利用Fabry-Perot干涉仪原理来实现对电流的测量. 在解调方式上采用了相位解调法,分析了该传感器的工作原理及光纤F-P的测量原理,建立了光纤F-P腔的数学模型,推导出电流检测理论公式,并进行了相关实验,证明该电流传感器具有绝缘性好、结构简单、灵敏度高等优点.

  8. 可调Fabry-Perot腔滤波器结构%On the Structure of Fabry-Perot Tunable Optical Filter

    Institute of Scientific and Technical Information of China (English)

    于多多

    2006-01-01

    设计了C波段可调光纤Fabry-Perot腔光滤波器,并对其进行了参数特性及影响因素的分析.器件在较宽的自由光谱区内有良好的滤光特性,可调谐范围广,优于绝大部分其他类型的光滤波器,并且具有较高的精细度特性.

  9. A Concept of a Hybrid WDM/TDM Topology Using the Fabry-Perot Laser in the Optiwave Simulation Environment

    Directory of Open Access Journals (Sweden)

    Jan Skapa

    2011-01-01

    Full Text Available The aim of this article is to point out the possibility of solving problems related to a concept of a flexible hybrid optical access network. The entire topology design was realized using the OPTIWAVE development environment in which particular test measurements were carried out as well. Therefore, in the following chapters, we will subsequently focus on individual parts of the proposed topology and will give reasons for their functions whilst the last part of the article consists of values measured in the topology and their overall evaluation.

  10. 光纤Fabry-Perot腔振动传感器%Fiber Optical Fabry-Perot Vibration Sensor

    Institute of Scientific and Technical Information of China (English)

    江毅; 刘莉

    2003-01-01

    用频谱分析的方法对光纤Fabry-Perot腔传感器的输出信号进行解调.在正弦振动条件下,用干涉信号的3次谐波与基次波的功率比直接计算出振动幅度,可以简单地解调出信号.这一技术能够满足工程中精度要求不是很高的场合应用.

  11. Error analysis of Fabry-Perot Filter%Fabry-Perot滤光器的误差分析

    Institute of Scientific and Technical Information of China (English)

    常亮; 刘忠

    2007-01-01

    本文介绍了影响Fabry-Perot滤光器性能的几个重要因素,并对其产生的误差进行了分析,主要有相位误差,温度变化对系统产生的误差,光线入射角度偏移所带来的误差以及平板平行度误差和平板面形精度对系统的影响等.

  12. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    Science.gov (United States)

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  13. Quantitative optical coherence elastography based on fiber-optic probe with integrated Fabry-Perot force sensor

    Science.gov (United States)

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J.; Liu, Xuan

    2016-03-01

    Optical coherence tomography (OCT) is a versatile imaging technique and has great potential in tissue characterization for breast cancer diagnosis and surgical guidance. In addition to structural difference, cancerous breast tissue is usually stiffer compared to normal adipose breast tissue. However, previous studies on compression optical coherence elastography (OCE) are qualitative rather than quantitative. It is challenging to identify the cancerous status of tissue based on qualitative OCE results obtained from different measurement sessions or from different patients. Therefore, it is critical to develop technique that integrates structural imaging and force sensing, for quantitative elasticity characterization of breast tissue. In this work, we demonstrate a quantitative OCE (qOCE) microsurgery device which simultaneously quantifies force exerted to tissue and measures the resultant tissue deformation. The qOCE system is based on a spectral domain OCT engine operated at 1300 nm and a probe with an integrated Febry-Perot (FP) interferometric cavity at its distal end. The FP cavity is formed by the cleaved end of the lead-in fiber and the end surface of a GRIN lens which allows light to incident into tissue for structural imaging. The force exerted to tissue is quantified by the change of FP cavity length which is interrogated by a fiber-optic common-paths phase resolved OCT system with sub-nanometer sensitivity. Simultaneously, image of the tissue structure is acquired from photons returned from tissue through the GRIN lens. Tissue deformation is obtained through Doppler analysis. Tissue elasticity can be quantified by comparing the force exerted and tissue deformation.

  14. All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging

    OpenAIRE

    Jun, Changsu; Villiger, Martin; Oh, Wang-Yuhl; Bouma, Brett E.

    2014-01-01

    Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available m...

  15. Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams

    Science.gov (United States)

    Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean

    2004-07-01

    There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.

  16. Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation

    CERN Document Server

    Laiho, K; Schlager, A; Suchomel, H; Höfling, S; Kamp, M; Schneider, C; Weihs, G

    2016-01-01

    We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain and provide an important feedback for designing such sources, especially in the broadband case.

  17. Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation

    Science.gov (United States)

    Laiho, K.; Pressl, B.; Schlager, A.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.

    2016-10-01

    We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons, we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain, and provide important feedback for designing such sources, especially in the broadband case.

  18. Highly fluorescent semiconductor core-shell CdTe-CdS nanocrystals for monitoring living yeast cells activity

    Energy Technology Data Exchange (ETDEWEB)

    Farias, P.M.A. de; Motta, M.A.; Castro-Neto, A.G.; Vieira, A.A.S.; Silva, D.C.N.; Fontes, A. [Universidade Federal de Pernambuco, Departamento de Biofisica e Radiobiologia, Recife, PE (Brazil); Santos, B.S.; Brasil, A.G. Jr. [Universidade Federal de Pernambuco, Departamento de Ciencias Farmaceuticas, Recife, PE (Brazil); Menezes, F.D.; Ferreira, R. [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental, Recife, PE (Brazil); Cesar, C.L. [Universidade Estadual de Campinas, Departamento de Eletronica Quantica, Campinas, SP (Brazil)

    2007-12-15

    Fluorescent semiconductor nanocrystals in quantum confinement regime (quantum dots) present several well-known features which make them very useful tools for biological labeling purposes. Low photobleaching rates, high chemical stability and active surface allowing conjugation to living cells explain the success of this labeling procedure over the commonly used fluorescent dyes. In this paper we report the results obtained with highly fluorescent core-shell CdTe-CdS (diameter=3-7 nm) colloidal nanocrystals synthesized in aqueous medium and conjugated to glucose molecules. The conjugated nanocrystals were incubated with living yeast cells, in order to investigate their glucose up-take activity in real time, by confocal microscopy analysis. (orig.)

  19. Amplified detection of protease activity using porous silicon nanostructures

    Science.gov (United States)

    Orosco, Manuel

    This dissertation will focus on harnessing the optical properties of porous silicon to sense protease activity. Electrochemical etching of polished silicon wafers produces porous silicon with unique optical properties such as Fabry-Perot fringes or a dielectric mirror reflecting specific wavelengths. Porous silicon optical transducers are coupled to a biochemical reaction (protease activity) and optically measured in a label-free manner. The first chapter is an introductory chapter discussing the current methods of detecting protease activity. Also discussed is the use of porous silicon for label-free sensing. The second chapter discusses the use of thin protein layers that are spin coated on the surface of a porous silicon film and excluded from the porous matrix based on size. When active proteases are introduced to the protein layer, small peptide fragments are generated, causing a change in refractive index from low to high. This can be used as a tool to monitor protease activity and amplify the signal to the naked eye. To extend on the second chapter, a double layered porous silicon film with the first layer have large pores and the second layer etched below having small pores was used for sensing protease activity. Proteases are adsorbed into the first layer and introduction of whole protein substrate produces small peptide fragments that can enter the second layer (changing the effective optical thickness). The fourth chapter describes a method of using luminescent transducers coupled to protein films. An "on-off" sensor using protein coated luminescent porous silicon was used to detect a decrease in the intensity of luminescence due to degradation of the protein film. An "off-on" sensor involved a fluorescent dye housed in the porous film and capped with a protein coating. The release of the dye is caused by the action of a protease causing an increase in fluorescent intensity from the dye.

  20. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  1. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L

    1974-01-01

    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  2. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection

    Energy Technology Data Exchange (ETDEWEB)

    Vitiello, Miriam S., E-mail: miriam.vitiello@sns.it; Viti, Leonardo; Ercolani, Daniele; Sorba, Lucia [NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127 (Italy); Coquillat, Dominique; Knap, Wojciech [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-University Montpellier 2, Montpellier (France)

    2015-02-01

    One-dimensional (1D) nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW)-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz), thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of material-related parameters (NW doping concentration, geometry, and/or material choice) and antenna-related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

  3. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection

    Directory of Open Access Journals (Sweden)

    Miriam S. Vitiello

    2015-02-01

    Full Text Available One-dimensional (1D nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz, thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of material-related parameters (NW doping concentration, geometry, and/or material choice and antenna-related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

  4. Applications of mesoscopic physics

    International Nuclear Information System (INIS)

    Research activities in the area ''applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves'' are briefly summarized. The main thrust in fundamental research is in the general areas of mesoscopic effects in disordered semiconductors and metals and the related field of applications of mesoscopic physics to the subject matter of classical wave propagation through disordered scattering media. Specific topics are Fabry-Perot interferometer with disorder: correlations and light localization; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; and transmission and reflection correlations of second harmonic waves in nonlinear random media. Research in applied physics centered on far infrared photon-assisted transport through quantum point contact devices and photon migration distributions in multiple scattering media. 7 refs

  5. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    Directory of Open Access Journals (Sweden)

    L. Jumpertz

    2016-01-01

    Full Text Available Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10∘C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results are consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.

  6. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); MirSense, 8 avenue de la Vauve, F-91120 Palaiseau (France); Michel, F.; Pawlus, R.; Elsässer, W. [Technische Universität Darmstadt, Schlossgartenstr. 7, D-64289 Darmstadt (Germany); Schires, K. [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); Carras, M. [MirSense, 8 avenue de la Vauve, F-91120 Palaiseau (France); Grillot, F. [Université Paris-Saclay, Télécom ParisTech, CNRS LTCI, 46 rue Barrault, F-75013 Paris (France); also with Center for High Technology Materials, University of New-Mexico, 1313 Goddard SE, Albuquerque, NM (United States)

    2016-01-15

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results are consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.

  7. Photonic quantum-corral ring laser A fermionic phase transition

    CERN Document Server

    Kwon, O D; Kim, J Y; Bae, J; Kim, M J; Ahn, J C; Kwon, O H

    2002-01-01

    Extensive Bose-Einstein condensation research activities have recently led to studies of fermionic atoms and optical confinements. Here we present a case of micro-optical fermionic electron phase transition. Optically confined ordering and phase transitions of a fermionic cloud in dynamic steady state are associated with Rayleigh emissions from photonic quantum ring manifold which are generated by nature without any ring lithography. The whispering gallery modes, produced in a semiconductor Rayleigh-Fabry-Perot toroidal cavity at room temperature, exhibit novel properties of ultralow thresholds open to nano-ampere regime, thermal stabilities from square-root-T-dependent spectral shift, and angularly varying intermode spacings. The photonic quantum ring phenomena are associated with a photonic field-driven phase transition of quantum-well-to-quantum-wire and hence the photonic (non-de Broglie) quantum corral effect on the Rayleigh cavity-confined carriers in dynamic steady state. Based upon the intra-cavity fe...

  8. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  9. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  10. Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization

    DEFF Research Database (Denmark)

    Chen, Yaohui; Wang, Fengwen; Ek, Sara;

    2011-01-01

    of the Lorentz reciprocity theorem. We highlight topology optimization as a systematic and robust design methodology considering manufacturing imperfections in optimizing active photonic crystal device performances, and compare the performance of standard photonic crystal waveguides with optimized structures....

  11. Semiconductor electrode with improved photostability characteristics

    Science.gov (United States)

    Frank, Arthur J.

    1987-01-01

    An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  12. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, H; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-22

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  13. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    Science.gov (United States)

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  14. Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2.

    Science.gov (United States)

    Liu, Hongfang; Dao, Anh Quang; Fu, Chaoyang

    2016-04-01

    The materials based on TiO2 semiconductors are a promising option for electro-photocatalytic systems working as solar energy low-carbon fuels exchanger. These materials' structures are modified by doping metals and metal oxides, by metal sulfides sensitization, or by graphene supported membrane, enhancing their catalytic activity. The basic phenomenon of CO2 reduction to CH4 on Pd modified TiO2 under UV irradiation could be enhanced by Pd, or RuO2 co-doped TiO2. Sensitization with metal sulfide QDs is effective by moving of photo-excited electron from QDs to TiO2 particles. Based on characteristics of the catalysts various combinations of catalysts are proposed in order to creat catalyst systems with good CO2 reduction efficiency. From this critical review of the CO2 reduction to organic compounds by converting solar light and CO2 to storable fuels it is clear that more studies are still attractive and needed. PMID:27451648

  15. Semiconductor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank, E-mail: frank.hartmann@cern.c [Institut fuer Experimentelle Kernphysik, KIT, Wolfgang-Gaede-Str. 1, Karlsruhe 76131 (Germany)

    2011-02-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  16. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  17. Semiconductor Spintronics

    OpenAIRE

    Fabian, J.; Matos-Abiague, A.; Ertler, C.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge ...

  18. Semiconductor Thermistors

    OpenAIRE

    McCammon, Dan

    2005-01-01

    Semiconductor thermistors operating in the variable range hopping conduction regime have been used in thermal detectors of all kinds for more than fifty years. Their use in sensitive bolometers for infrared astronomy was a highly developed empirical art even before the basic physics of the conduction mechanism was understood. Today we are gradually obtaining a better understanding of these devices, and with improvements in fabrication technologies thermometers can now be designed and built wi...

  19. Enhanced Photocatalytic Activity of BiOBr/ZnO Heterojunction Semiconductors Prepared by Facile Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Xiangchao Meng

    2015-01-01

    Full Text Available Hexagonal wurtzite pure ZnO and BiOBr-ZnO composites were synthesized by facile hydrothermal method. The amount of BiOBr as dopant was adjusted from 5 wt.% to 75 wt.%, and correspondingly the morphologies and crystal structures of the as-prepared composites were measured and discussed. Specifically, according to XRD patterns and SEM images, the main crystalline structure of ZnO was not destroyed after doping, but growth of ZnO crystals was inhibited by doping BiOBr. Meanwhile, the optical properties of the composites were measured by the diffuse reflectance spectra (DRS. The band gap of composites was also calculated using the classical Tauc equation and it was found to be around 3.0 eV. In the test of photocatalytic activation, the ZnO-BiOBr photocatalysts exhibited high photocatalytic efficiencies in the degradation of Rhodamine B (RhB under visible-light irradiation. It was ascribed to not only the small size of crystalline, but also the reduction in the recombination rate of the photogenerated carriers for the enhancement effect of p-n heterojunction. This work sheds light on improving the photocatalytic performance by establishing the heterojunction and contributes to the development of a commercially competitive photocatalyst.

  20. Semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Shyuue, M.

    1982-09-25

    A distributed feedback semiconductor laser is proposed which generates several beams with equal wavelengths in different directions. For this purpose, 1 millimeter grooves are cut into the surface of an n-type conductance GaAs plate in three different directions; these grooves form a diffraction grating. The center of this plate has no grooves and is bombarded by an He/Ne laser beam. The diffraction gratings provide resonance properties and generate laser beams with wavelengths of 8850, 9000 and 9200 angstroms.

  1. Power semiconductors

    CERN Document Server

    Kubát, M

    1984-01-01

    The book contains a summary of our knowledge of power semiconductor structures. It presents first a short historic introduction (Chap. I) as well as a brief selection of facts from solid state physics, in particular those related to power semiconductors (Chap. 2). The book deals with diode structures in Chap. 3. In addition to fundamental facts in pn-junction theory, the book covers mainly the important processes of power structures. It describes the emitter efficiency and function of microleaks (shunts). the p +p and n + n junctions, and in particular the recent theory of the pin, pvn and p1tn junctions, whose role appears to be decisive for the forward mode not only of diode structures but also of more complex ones. For power diode structures the reverse mode is the decisive factor in pn-junction breakdown theory. The presentation given here uses engineering features (the multiplication factor M and the experimentally detected laws for the volume and surface of crystals), which condenses the presentation an...

  2. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  3. Semiconductor laser. Halbleiterlaser

    Energy Technology Data Exchange (ETDEWEB)

    Wuenstel, K.; Gohla, B.; Tegude, F.; Luz, G.; Hildebrand, O.

    1987-08-27

    A highly modulable semiconductor laser and a process for its manufacture are described. The semiconductor laser has a substrate, a stack of semiconductor layers and electrical contacts. To reduce the capacity, the width of the stack of semiconductor layers is reduced at the sides by anisotropic etching. The electrical contacts are situated on the same side of the substrate and are applied in the same stage of the process. The semiconductor laser is suitable for monolithic integration in other components.

  4. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  5. Semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Marstein Erik Stensrud

    2003-07-01

    This thesis presents a study of two material systems containing semiconductor nanocrystals, namely porous silicon (PSi) films and germanium (Ge) nanocrystals embedded in silicon dioxide (SiO2) films. The PSi films were made by anodic etching of silicon (Si) substrates in an electrolyte containing hydrofluoric acid. The PSi films were doped with erbium (Er) using two different doping methods. electrochemical doping and doping by immersing the PSi films in a solution containing Er. The resulting Er concentration profiles were investigated using scanning electron microscopy (SEN1) combined with energy dispersive X-ray analysis (EDS). The main subject of the work on PSi presented in this thesis was investigating and comparing these two doping methods. Ge nanocrystals were made by implanting Ge ions into Si02 films that were subsequently annealed. However. nanocrystal formation occurred only for certain sets of processing parameters. The dependence of the microstructure of the Ge implanted Si02 films on the processing parameters were therefore investigated. A range of methods were employed for these investigations, including transmission electron microscopy (TEM) combined with EDS, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The observed structures, ranging from Ge nanocrystals to voids with diameters of several tens of nanometers and Ge rich Si02 films without any nanocrystals is described. A model explaining the void formation is also presented. For certain sets of processing parameters. An accumulation of Ge at the Si-Si02 interface was observed. The effect of this accumulation on the electrical properties of MOS structures made from Ge implanted SiO2 films was investigated using CV-measurements. (Author)

  6. Generation of a CW local oscillator signal using a stabilized injection locked semiconductor laser

    Science.gov (United States)

    Pezeshki, Jonah Massih

    In high speed-communications, it is desirable to be able to detect small signals while maintaining a low bit-error rate. Conventional receivers for high-speed fiber optic networks are Amplified Direct Detectors (ADDs) that use erbium-doped fiber amplifiers (EDFAs) before the detector to achieve a suitable sensitivity. In principle, a better method for obtaining the maximum possible signal to noise ratio is through the use of homodyne detection. The major difficulty in implementing a homodyne detection system is the generation of a suitable local oscillator signal. This local oscillator signal must be at the same frequency as the received data signal, as well as be phase coherent with it. To accomplish this, a variety of synchronization techniques have been explored, including Optical Phase-Lock Loops (OPLL), Optical Injection Locking (OIL) with both Fabry-Perot and DFB lasers, and an Optical Injection Phase-Lock Loop (OIPLL). For this project I have implemented a method for regenerating a local oscillator from a portion of the received optical signal. This regenerated local oscillator is at the same frequency, and is phase coherent with, the received optical signal. In addition, we show that the injection locking process can be electronically stabilized by using the modulation transfer ratio of the slave laser as a monitor, given either a DFB or Fabry-Perot slave laser. We show that this stabilization technique maintains injection lock (given a locking range of ˜1GHz) for laser drift much greater than what is expected in a typical transmission system. In addition, we explore the quality of the output of the slave laser, and analyze its suitability as a local oscillator signal for a homodyne receiver.

  7. Semiconductor microcavity polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Evgenii A [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region (Russian Federation)

    2002-12-31

    The optical properties of wide-gap semiconductor films on metal substrates were investigated experimentally by infrared spectroscopy, Raman scattering, and femtosecond spectroscopy techniques as well as theoretically in the framework of linear crystal optics. The optical spectra of such planar structures (microresonators) were shown to bear information on electromagnetic excitations of both the surface and the volume of the structure. The optical spectra are determined by the interaction of all dipole-active excitations of the component materials with the electromagnetic modes of the microresonator, which in turn are determined by the permittivities of each component material, microcavity (microresonator) thickness, and the experimental conditions. (reviews of topical problems)

  8. Semiconductor switch geometry with electric field shaping

    Science.gov (United States)

    Booth, Rex; Pocha, Michael D.

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  9. Dispersion-induced nonlinearities in semiconductors

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.

    2002-01-01

    A dispersive and saturable medium is shown, under very general conditions, to possess ultrafast dynamic behaviour due to non-adiabatic polarisation dynamics. Simple analytical expressions relating the effect to the refractive index dispersion of a semiconductor ire derived and the magnitude of the...... equivalent Kerr coefficient is shown to be in qualitative agreement with measurements on active semiconductor waveguides....

  10. Characteristics of flexographic printed indium–zinc-oxide thin films as an active semiconductor layer in thin film field-effect transistors

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We prepared IZO thin film transistors (TFTs) by flexographic printing technique. • The performances of printed TFTs were compared with spin coated TFTs. • For printed IZO films, the risk of defects increases with the layer thickness. • The electrical efficiency of printed TFTs is depending on the IZO wetting properties. • The study shows flexo printing is a suitable method for preparing IZO semiconductor layers. - Abstract: Characteristics of oxide semiconductor thin film transistors prepared by flexographic printing technique have been studied. The device was a field-effect transistor substrate (15 mm × 15 mm, n-doped silicon, 90 nm SiO2 layer) with pre-structured gold electrodes and a printed active layer. The active layer was printed with a indium–zinc-oxide precursor solution and then annealed at 450 °C for 4 min on a hotplate. Influences of typographical parameters, i.e. printing pressure, anilox roller pressure, ink supply rate, printing velocity and printing plate (cliché) properties were studied. Reference active layers were produced by spin coating. The printed IZO ceramic layer with a dry film thickness between 3 and 8 nm, deposited onto the substrate for field-effect transistors provided a good performance with charge carrier mobilities (μ) up to 2.4 cm2 V−1 s−1, on/off current ratios (Ion/off ratio) up to 5.2 × 107 and mean threshold voltages (Vth) of +4 V. The characterization of the printed and annealed IZO layer by AFM revealed the amorphous nature of the printed active layer films with a root-mean square roughness of 0.8 nm

  11. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Science.gov (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  12. Novel approach to reduce the pattern effect in 10-Gb/s clock recovery

    Institute of Scientific and Technical Information of China (English)

    Tong Wang(王桐); Caiyun Lou(娄采云); Li Huo(霍力); Yizhi Gao(高以智)

    2004-01-01

    @@ A Fabry-Perot(F-P)etalon and a semiconductor optical amplifier(SOA)were combined to preprocess thedata signals before clock recovery.With this technology in the 10-Gb/s clock recovery utilizing injectionmode-locked laser(IMLL)based on SOA,the amplitude fluctuation and timing jitters caused by thepattern effect in recovered clock pulses were greatly reduced,experimentally.It also demonstrated thatclock could be recovered from the very degraded signals.

  13. Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques

    OpenAIRE

    L. Jumpertz; Michel, F; R. Pawlus; Elsässer, W; Schires, K.; Carras, M.; Grillot, F

    2016-01-01

    Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10∘C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback qua...

  14. A variable frequency semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Tosikhiro, F.; Khiromoto, S.

    1984-03-27

    A variable frequency, power stabilized semiconductor laser is patented. This laser includes, in addition to an active layer, a photoconducting channel layer and a layer made from a material manifesting a Pockels effect. A voltage is injected between these two layers to vary the emission frequency. The laser pumping voltage is stabilized.

  15. Handbook of spintronic semiconductors

    CERN Document Server

    Chen, Weimin

    2010-01-01

    Offers a review of the field of spintronic semiconductors. This book covers a range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, developments in theory and experimental techniques and potential device applications.

  16. Photoelectrosynthesis at semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  17. Exciton Transport in Organic Semiconductors

    Science.gov (United States)

    Menke, Stephen Matthew

    Photovoltaic cells based on organic semiconductors are attractive for their use as a renewable energy source owing to their abundant feedstock and compatibility with low-cost coating techniques on flexible substrates. In contrast to photovoltaic cells based traditional inorganic semiconductors, photon absorption in an organic semiconductor results in the formation of a coulombically bound electron-hole pair, or exciton. The transport of excitons, consequently, is of critical importance as excitons mediate the interaction between charge and light in organic photovoltaic cells (OPVs). In this dissertation, a strong connection between the fundamental photophysical parameters that control nanoscopic exciton energy transfer and the mesoscopic exciton transport is established. With this connection in place, strategies for enhancing the typically short length scale for exciton diffusion (L D) can be developed. Dilution of the organic semiconductor boron subphthalocyanine chloride (SubPc) is found to increase the LD for SubPc by 50%. In turn, OPVs based on dilute layers of SubPc exhibit a 30% enhancement in power conversion efficiency. The enhancement in power conversion efficiency is realized via enhancements in LD, optimized optical spacing, and directed exciton transport at an exciton permeable interface. The role of spin, energetic disorder, and thermal activation on L D are also addressed. Organic semiconductors that exhibit thermally activated delayed fluorescence and efficient intersystem and reverse intersystem crossing highlight the balance between singlet and triplet exciton energy transfer and diffusion. Temperature dependent measurements for LD provide insight into the inhomogeneously broadened exciton density of states and the thermal nature of exciton energy transfer. Additional topics include energy-cascade OPV architectures and broadband, spectrally tunable photodetectors based on organic semiconductors.

  18. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  19. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  20. Mathematical model of Fabry-Perot cavity filter%WDM设计中的Fabry-Perot腔传递函数模型

    Institute of Scientific and Technical Information of China (English)

    孙雅东; 武良春

    2003-01-01

    作为WDM(Wave Division Multiplexing)一个重要的器件,Fabry-Perot腔的相关设计和算法不断更新.笔者提出一种新的数学模型:把Fabry-Perot作为系统的一个参数对待,将信号与系统的知识纳入Fabry-Perot腔中,用系统的方法(梅森公式)求解Fabry-Perot腔的传递函数,避免了繁琐的矩阵运算,这样易于理解和优化设计.

  1. The RINGS Survey: High-Resolution H-alpha Velocity Fields of Nearby Spiral Galaxies with the SALT Fabry-Perot

    CERN Document Server

    Mitchell, Carl J; Williams, T B; Spekkens, Kristine; Lee-Waddell, K; de Naray, Rachel Kuzio

    2015-01-01

    We have obtained high-spatial-resolution spectrophotometric data on several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-P\\'erot interferometer on the Robert Stobie Spectrograph (RSS) as a part of the RSS Imaging spectroscopy Nearby Galaxy Survey (RINGS). We have successfully reduced two tracks of Fabry-P\\'erot data for the galaxy NGC 2280 to produce a velocity field of the H-alpha line of excited hydrogen. We have modeled these data with the DiskFit modeling software and found these models to be in excellent agreement both with previous measurements in the literature and with our lower-resolution HI velocity field of the same galaxy. Despite this good agreement, small regions exist where the difference between the H-alpha and HI velocities is larger than would be expected from typical dispersions. We investigate these regions of high velocity difference and offer possible explanations for their existence.

  2. Study on Fabry-Perot interference optic fiber temperature sensor%Fabry-Perot干涉式光纤温度传感器的研究

    Institute of Scientific and Technical Information of China (English)

    曹满婷

    2001-01-01

    分析了温度对相位的调制作用以及Fabry-Perot干涉结构检测相位变化的原理,提出了一种具有高灵敏度和高分辨率的相位调制型全光纤结构,并进行了系统的噪声分析

  3. A Study of the Chaos of Non-linear Fabry-Perot Resonator%含非线性介质Fabry-Perot腔混沌研究

    Institute of Scientific and Technical Information of China (English)

    袁圣付; 姜宗福

    2000-01-01

    根据混沌动力学的基本理论,计算了含非线性介质Fabry-Perot腔动力学方程在其参数下的Lyapunov指数分布图.利用Lyapunov指数和动力学特性的对应关系,分析出非线性Fabry-Perot腔在各种参数下的动力学特性、稳态参数区域面积和混沌转换机制.

  4. 双Fabry-Perot干涉腔型光纤声发射传感器%Fiber-optic acoustic emission sensors with dual Fabry-Perot interferometric cavities

    Institute of Scientific and Technical Information of China (English)

    赵江海; 章小建

    2015-01-01

    设计了一种新型的双Fabry-Perot腔光纤传感器用于材料损伤引起的声发射信号检测.基于低细度Fabry-Perot腔多光束干涉原理,建立了光纤Fabry-Perot传感器检测声发射信号的数学模型.分析双Fabry-Perot腔正交点稳定工作机制,设计并制作了具有双Fabry-Perot腔结构的光纤声发射传感器来保持传感器正交点的稳定性.通过模拟AE信号检测与热应力干扰实验对设计的传感器进行了实验验证.实验一通过冲击振动与折断铅笔芯产生两类模拟声发射信号,使用商用的压电传感器和光纤传感器进行对比实验,结果表明光纤传感器能够成功检测到两类模拟声发射信号,灵敏度为12.9 nm,带宽达到30 kHz.实验二对传感器进行工作点稳定测试,结果表明双F-P腔的控制机制能够保证传感器工作在正交点,解决了传感器输出信号衰减的问题.

  5. Optic Fiber Fabry-Perot Interferometer Applied to Measuring Temperature and Displacement%测量温度和位移的光纤Fabry-Perot干涉仪

    Institute of Scientific and Technical Information of China (English)

    陈国霖; 戴福隆; 周辛庚

    2002-01-01

    本文描述了两种光纤Fabry-Peort干涉仪的原理、结构和制造方法.采用光频调制方法用以辨别干涉时域条纹的移动方向,实现了对温度和位移的测量.另外还介绍了条纹计数检测的电路原理.

  6. Performance Enhancement of Spectrum Sliced Photonic Microwave Filter Using Parallel Fabry- Perot Filters With High Profiled Windowing for WDM-ROF Link

    OpenAIRE

    R. K. Jeyachitra,; Dr.R.Sukanesh

    2010-01-01

    In this paper, the performance of spectrum sliced photonic microwave filter for Radio Over Fiber link is characterized. The proposed filter utilizes parallel Fabry-Pérot filters for spectrum slicing of abroadband source. The filter performance is characterized by easuring the overall Free Spectral Range, 3db Bandwidth, Quality factor and Main Lobe to Sidelobe Suppression level for different modes of connecting the filter in parallel. Results showing that the highest tunable frequency 18.3 GH...

  7. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    OpenAIRE

    Peterka, Pavel; Navrátil, P; Dussardier, Bernard; Slavik, R.; Honzatko, P.; Kubeček, Václav

    2012-01-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a...

  8. 光纤法布里-珀罗腔液位传感器%Optical Fiber Fabry-Perot Cavity Liquid Level Sensor

    Institute of Scientific and Technical Information of China (English)

    李福进; 李奕; 张淑卿

    2008-01-01

    为了实现电不进油罐的目的,提出一种基于光纤法布里一珀罗(F-P)腔干涉仪原理的光纤液位传感器.它根据不同的液体高度产生不同的压强的原理实现液位测量.传感器产生的信号经放大、光电转换后,由单片机将数据处理显示.实验结果表明:光纤F-P腔传感器测量液住方法简单,并且精度较高.

  9. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tian, E-mail: tianz@student.unsw.edu.au; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan [Australian Centre for Advanced Photovoltaics, UNSW Australia, Kensington, New South Wales 2052 (Australia)

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  10. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    International Nuclear Information System (INIS)

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018–1019 cm−3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm−3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10−3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport

  11. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  12. Semiconductor Solar Superabsorbers

    OpenAIRE

    Yiling Yu; Lujun Huang; Linyou Cao

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materia...

  13. Semiconductor bridge (SCB) detonator

    Science.gov (United States)

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  14. Implementation of activity-based costing (ABC) to drive cost reduction efforts in a semiconductor manufacturing operation

    Science.gov (United States)

    Naguib, Hussein; Bol, Igor I.; Lora, J.; Chowdhry, R.

    1994-09-01

    This paper presents a case study on the implementation of ABC to calculate the cost per wafer and to drive cost reduction efforts for a new IC product line. The cost reduction activities were conducted through the efforts of 11 cross-functional teams which included members of the finance, purchasing, technology development, process engineering, equipment engineering, production control, and facility groups. The activities of these cross functional teams were coordinated by a cost council. It will be shown that these activities have resulted in a 57% reduction in the wafer manufacturing cost of the new product line. Factors contributed to successful implementation of an ABC management system are discussed.

  15. 基于注入半导体激光器的微波副载波相位调制信号产生%Generation of microwave subcarrier phase modulation signal based on optical injection into a semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    吴波; 于晋龙; 王文睿; 韩丙辰; 郭精忠; 罗俊; 王菊; 张晓媛; 刘毅; 杨恩泽

    2012-01-01

    光载无线技术是解决终端超宽带无线通信的重要方法,光信号与微波/毫米波信号的融合处理技术在光-无线的数据格式转换中至关重要.提出了一种基于相位调制信号光注入Fabry-Perot型半导体激光器实现微波副载波相位调制信号产生的方法.光学注入半导体激光器的输出光场会产生一周期(P1)振荡效应,P1振荡产生的边带实现了相位调制信号光的调制分量的放大,被放大的调制分量与注入光载波在激光器腔内拍频形成微波副载波.注入光相位的变化导致新产生的微波副载波相位变化,实现了注入信号光相位信息转化为微波副载波相位信息.本系统完成1.3 Gb/s,2.7 Gb/s,2 Gb/s光相位调制信号到微波副载波相位调制信号的转换,并测量了微波的单边带相位噪声.通过光电转换和电域混频将还原出的光基带信号与原信号进行逻辑对比,证明了数据信息转换的正确性.%Radio-over-fiber technology has become an important solution for ultra wide band wireless communication, and the convergence of signal processing between optics and microwave/millimeter wave is more crucial. In this paper, microwave subcarrier phase modu- lation signal generation based on optical injection into a semiconductor Fabry-Perot laser is proposed. According to the period-one(P 1) oscillation effect of laser output optical field, one modulation component of the optical phase modulation signal is amplified by side- band of P1 oscillation. The amplified component beats with injection optical carder to generate microwave subcarrier. The phase shifts lead to the phase shift of subcarrier, thus the phase information is converted into phase information about microwave subcarrier. The optical phase-shift-keying signals at 1.3 Gb/s, 2.7 Gb/s, 2 Gb/s are converted into microwave subcarrier phase modulation signal, and the single sideband phase noise is measured. By logically comparing the

  16. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    Science.gov (United States)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah; Katsuhiro, Uesugi; Hisashi, Fukuda

    2015-08-01

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d001 = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  17. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia); Katsuhiro, Uesugi; Hisashi, Fukuda [Division of Engineering for Composite Functions, Muroran Institute of Technology 27-1 Mizumoto, Muroran 050-8585 Hokkaido (Japan)

    2015-08-28

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d{sub 001} = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  18. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  19. Spin injection into semiconductors

    Science.gov (United States)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  20. Applications of Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Te; SUN Yan-fang; NING Yong-qiang; WANG Li-jun

    2005-01-01

    An overview of the applications of semiconductor lasers is presented. Diode lasers are widely used today,and the most prevalent use of the laser is probably in CD and DVD drives for computers and audio/video media systems. Semiconductor lasers are also used in many other fields ranging from optical fiber communications to display,medicine and pumping sources.