WorldWideScience

Sample records for active electrolyte transport

  1. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  2. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL; Klingler, Robert J [Westmont, IL

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  3. Effect of changes in dietary sodium on active electrolyte transport by erythrocytes at different stages of human pregnancy.

    Science.gov (United States)

    Gallery, E D; Rowe, J; Brown, M A; Ross, M

    1988-02-01

    1. Active electrolyte transport was examined in erythrocytes from women in the second and third trimesters of pregnancy and post partum, and compared with that in ovulating women. 2. There was a significant reduction in intracellular sodium ([Na]i) and increase in intracellular potassium ([K]i) in pregnancy with a return towards normal values in the post-partum period. 3. Maximum specific ouabain binding [number of Na+,K+-adenosine triphosphatase (Na+, K+-ATPase) units] was increased by 70% in pregnancy and returned slowly towards normal values post partum. 4. Na+,K+-ATPase activity as determined by ouabain-sensitive 86Rb influx in artificial media was also increased in pregnancy by 13%. It returned towards normal post partum. 5. The increases in Na+,K+-ATPase in pregnancy were not closely related to the concomitant increases in aldosterone or cholesterol nor to reticulocytosis and were not affected by 7 days of high (greater than 250 mmol/day) or low (less than 50 mmol/day) sodium intake.

  4. Electrolyte solution transport in electropolar nanotubes

    International Nuclear Information System (INIS)

    Zhao Jianbing; Culligan, Patricia J; Chen Xi; Qiao Yu; Zhou Qulan; Li Yibing; Tak, Moonho; Park, Taehyo

    2010-01-01

    Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.

  5. Electrolytes: transport properties and non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions

  6. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  7. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  8. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  9. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  10. Benchmarking of electrolyte mass transport in next generation lithium batteries

    Directory of Open Access Journals (Sweden)

    Jonas Lindberg

    2017-12-01

    Full Text Available Beyond conductivity and viscosity, little is often known about the mass transport properties of next generation lithium battery electrolytes, thus, making performance estimation uncertain when concentration gradients are present, as conductivity only describes performance in the absence of these gradients. This study experimentally measured the diffusion resistivity, originating from voltage loss due to a concentration gradient, together with the ohmic resistivity, obtained from ionic conductivity measurements, hence, evaluating electrolytes both with and without the presence of concentration gradients. Under galvanostatic conditions, the concentration gradients, of all electrolytes examined, developed quickly and the diffusion resistivity rapidly dominated the ohmic resistivity. The electrolytes investigated consisted of lithium salt in: room temperature ionic liquids (RTIL, RTIL mixed organic carbonates, dimethyl sulfoxide (DMSO, and a conventional Li-ion battery electrolyte. At steady state the RTIL electrolytes displayed a diffusion resistivity ~ 20 times greater than the ohmic resistivity. The DMSO-based electrolyte showed mass transport properties similar to the conventional Li-ion battery electrolyte. In conclusion, the results presented in this study show that the diffusion polarization must be considered in applications where high energy and power density are desired.

  11. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  12. Investigating anomalous transport of electrolytes in charged porous media

    Science.gov (United States)

    Skjøde Bolet, Asger Johannes; Mathiesen, Joachim

    2017-04-01

    Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.

  13. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  14. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  15. Nuclear-electrolytic hydrogen as a transportation fuel

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1989-01-01

    Hydrogen is a very attractive transportation fuel in three important ways: it is the least polluting fuel that can be used in an internal combustion engine, it produces no greenhouse gases, and it is potentially available anywhere there is water and a clean source of power. The prospect of a clean, widely available transportation fuel has motivated much of the research on hydrogen fuels. This paper is a state-of-the art review of the production, storage, performance, environmental impacts, safety, and cost of nuclear-electrolytic hydrogen for highway vehicles

  16. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  17. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.

    Science.gov (United States)

    Danilov, Nikolay; Lyagaeva, Julia; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2017-08-16

    The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed. To this purpose, a SOFC based on a recently developed BaCe 0.5 Zr 0.3 Dy 0.2 O 3-δ proton-conducting ceramic material was fabricated and tested. The basis of the strategy consists of the use of traditional SOFC testing techniques combined with the current interruption method and electromotive force measurements with a modified polarization-correction assessment. This allows one to determine simultaneously such important parameters as maximal power density; ohmic and polarization resistances; average ion transport numbers; and total, ionic, and electronic film conductivities and their activation energies. The proposed experimental procedure is expected to expand both fundamental and applied basics that could be further adopted to improve the technology of electrochemical devices based on proton-conducting electrolytes.

  18. A model problem concerning ionic transport in microstructured solid electrolytes

    Science.gov (United States)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2015-11-01

    We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.

  19. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Science.gov (United States)

    Barzegar, Farshad; Dangbegnon, Julien K.; Bello, Abdulhakeem; Momodu, Damilola Y.; Johnson, A. T. Charlie; Manyala, Ncholu

    2015-09-01

    This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA) based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg-1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  20. Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors

    Directory of Open Access Journals (Sweden)

    Farshad Barzegar

    2015-09-01

    Full Text Available This article is focused on polymer based gel electrolyte due to the fact that polymers are cheap and can be used to achieve extended potential window for improved energy density of the supercapacitor devices when compared to aqueous electrolytes. Electrochemical characterization of a symmetric supercapacitor devices based on activated carbon in different polyvinyl alcohol (PVA based gel electrolytes was carried out. The device exhibited a maximum energy density of 24 Wh kg−1 when carbon black was added to the gel electrolyte as conductive additive. The good energy density was correlated with the improved conductivity of the electrolyte medium which is favorable for fast ion transport in this relatively viscous environment. Most importantly, the device remained stable with no capacitance lost after 10,000 cycles.

  1. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  2. Electrolyte control of photosynthetic electron transport in cyanobacteria

    International Nuclear Information System (INIS)

    Papageorgiou, G.C.

    1986-01-01

    Ion-permeable cells (permeaplasts) of the cyanobacterium Anacystis nidulans were prepared enzymatically and were characterized with respect to several structural and functional indices. The permeaplasts contain intact, ion-impermeable thylakoids and are photosynthetically active. The authors discuss how, employing these cells, they investigated the effects of cations, acting either on the outer, or on the inner thylakoid membrane surface, on photoinduced electron exchanges with anionic donors (Cyt c-550, plastocyanin, innersurface), or anionic acceptors (FeCN 3- ; outer surface). Cations accelerate such exchanges by accumulating near the solution-membrane interfaces and screening the negative surface charge of membranes. Electrostatic screening, however, is not the only contributing factor, and other electrolyte-linked influences must be invoked in order to interpret the experimental observations

  3. Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates

    Science.gov (United States)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2016-10-01

    We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.

  4. Properties of electrolytes in the micropores of activated carbon

    International Nuclear Information System (INIS)

    Kastening, Bertel; Heins, Matthias

    2005-01-01

    The dependence of the composition of aqueous electrolytes in the pore system of activated carbon on the potential has been determined by monitoring the amount of ions exchanged with the external electrolyte upon immersion and upon changing the electrode potential. From the investigation with KF solutions, a quantity δ/√ε = 4 x 10 -10 m is evaluated where δ is half the width of the micropores, and ε the (relative) permittivity. This is in accordance with δ ∼ 1 nm and ε ∼ 7 applying to essentially immobilized water and fits into the results with the other electrolytes. Anions are adsorbed in the cases of sodium perchlorate and potassium hydroxide, while protons are adsorbed in the case of acids (HCl, H 2 SO 4 ). The adsorption of ClO 4 - seems to result from electrostatic interaction with the solid, while H + and OH - are strongly chemisorbed, probably at surface groups like >CO. Ionic mobilities of ions in the micropores have been determined from conductance measurements concerning the pore electrolyte of a single spherical particle of activated carbon. Mobilities are more than one order of magnitude lower than those in bulk electrolyte, probably due to an increased viscosity of the liquid in the narrow pores and/or to the coulombic interaction with charged domains of the solid. The rate of charging of the capacitor (solid/micropore electrolyte) is assisted by macropores distributing ions throughout the carbon material

  5. Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte

    Science.gov (United States)

    Ghosh, Subrata; Sahoo, Gopinath; Polaki, S. R.; Krishna, Nanda Gopala; Kamruddin, M.; Mathews, Tom

    2017-12-01

    Supercapacitors are becoming the workhorse for emerging energy storage applications due to their higher power density and superior cycle life compared to conventional batteries. The performance of supercapacitors depends on the electrode material, type of electrolyte, and interaction between them. Owing to the beneficial interconnected porous structure with multiple conducting channels, vertical graphene nanosheets (VGN) have proved to be leading supercapacitor electrode materials. Herein, we demonstrate a novel approach based on the combination of surface activation and a new organo-aqueous hybrid electrolyte, tetraethylammonium tetrafluoroborate in H2SO4, to achieve significant enhancement in supercapacitor performance of VGN. As-synthesized VGN exhibits an excellent supercapacitance of 0.64 mF/cm2 in H2SO4. However, identification of a novel electrolyte for performance enhancement is the subject of current research. The present manuscript demonstrates the potential of the hybrid electrolyte in enhancing the areal capacitance (1.99 mF/cm2) with excellent retention (only 5.4% loss after 5000 cycles) and Coulombic efficiency (93.1%). In addition, a five-fold enhancement in the capacitance of VGNs (0.64 to 3.31 mF/cm2) with a reduced internal resistance is achieved by the combination of KOH activation and the hybrid electrolyte.

  6. Aeromonas hydrophila disturbs water and electrolyte transport in ...

    African Journals Online (AJOL)

    Fish diseases create a menace to aquaculture farms. They provoke disastrous economic losses and sanitary risks for the consumer. The present study aims to investigate the effect of the bacteria, Aeromonas hydrophila on water and electrolyte (Na+, K+, Cl-, HCO3 -) flux of Mugil cephalus (L, 1758) intestine. Anterior, middle ...

  7. A multiscale-compatible approach in modeling ionic transport in the electrolyte of (Lithium ion) batteries

    NARCIS (Netherlands)

    Salvadori, A.; Grazioli, D.; Geers, M.G.D.; Danilov, D.L.; Notten, P.H.L.

    2015-01-01

    A novel approach in modeling the ionic transport in the electrolyte of Li-ion batteries is here resented. Diffusion and migration processes govern the transport of ions in solution in the absence of onvection. In the porous electrode theory [1] it is common to model these processes via mass balance

  8. Active transport and heat.

    Science.gov (United States)

    Tait, Peter W

    2011-07-01

    Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.

  9. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  10. Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes

    International Nuclear Information System (INIS)

    Fukutsuka, Tomokazu; Koyamada, Kohei; Maruyama, Shohei; Miyazaki, Kohei; Abe, Takeshi

    2016-01-01

    Highlights: • Ion transport in organic electrolyte solution in macro- and meso-pores was focused. • Anodic nanoporous alumina membrane was used as a porous material. • The specific ion conductivities drastically decreased in macro- and meso-pores. - Abstract: For the development of high energy density lithium-ion batteries with the high rate performance, the enhancement of the ion transport in the electrolyte solutions impregnated in the porous electrodes is a key. To study the ion transport in porous electrodes, anodic nanoporous alumina (APA) self-standing membranes with macro- or meso-pores were used as model porous materials. These membranes had nearly spherical pore channels of discrete 20–68 nm in diameters. By using the geometric shape of the pores, we attempted to evaluate the specific ion conductivities of the organic electrolyte solution dissolving lithium salt simply. AC impedance spectroscopy measurement of a four-electrode cell with membranes showed one depressed semi-circle in the Nyquist plots and this semi-circle can be assigned as the ion transport resistance in the pores. The specific ion conductivities evaluated from the ion transport resistances and the geometric parameters showed very small values, even in the macro-pores, as compared with that of the bulk electrolyte solution.

  11. Ion Transport and Structure in Polymer Electrolytes with Applications in Lithium Batteries

    Science.gov (United States)

    Chintapalli, Mahati

    When mixed with lithium salts, polymers that contain more than one chemical group, such as block copolymers and endgroup-functionalized polymers, are promising electrolyte materials for next-generation lithium batteries. One chemical group can provide good ion solvation and transport properties, while the other chemical group can provide secondary properties that improve the performance characteristics of the battery. Secondary properties of interest include non-flammability for safer lithium ion batteries and high mechanical modulus for dendrite resistance in high energy density lithium metal batteries. Block copolymers and other materials with multiple chemical groups tend to exhibit nanoscale heterogeneity and can undergo microphase separation, which impacts the ion transport properties. In block copolymers that microphase separate, ordered self-assembled structures occur on longer length scales. Understanding the interplay between structure at different length scales, salt concentration, and ion transport is important for improving the performance of multifunctional polymer electrolytes. In this dissertation, two electrolyte materials are characterized: mixtures of endgroup-functionalized, short chain perfluoropolyethers (PFPEs) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and mixtures of polystyrene-block-poly(ethylene oxide) (PS- b-PEO; SEO) and LiTFSI. The PFPE/LiTFSI electrolytes are liquids in which the PFPE backbone provides non-flammability, and the endgroups resemble small molecules that solvate ions. In these electrolytes, the ion transport properties and nanoscale heterogeneity (length scale 1 nm) are characterized as a function of endgroup using electrochemical techniques, nuclear magnetic resonance spectroscopy, and wide angle X-ray scattering. Endgroups, especially those containing PEO segments, have a large impact on ionic conductivity, in part because the salt distribution is not homogenous; we find that salt partitions

  12. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  13. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  14. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    International Nuclear Information System (INIS)

    Shukur, M F; Yusof, Y M; Zawawi, S M M; Illias, H A; Kadir, M F Z

    2013-01-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4  S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3  S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a ) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)

  15. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    Science.gov (United States)

    Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.

    2013-11-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

  16. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  17. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    KAUST Repository

    Chen, Wei

    2013-01-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). This journal is © The Royal Society of Chemistry.

  18. Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Olesen, Laurits Højgaard; Bruus, Henrik

    2006-01-01

    for the hydraulic and electrical transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers, the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the geometrical correction factor for the Hagen-Poiseuille part of the problem....... In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.......We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross-section and obtain general results in linear-response theory...

  19. Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.

    Science.gov (United States)

    Borodin, Oleg; Suo, Liumin; Gobet, Mallory; Ren, Xiaoming; Wang, Fei; Faraone, Antonio; Peng, Jing; Olguin, Marco; Schroeder, Marshall; Ding, Michael S; Gobrogge, Eric; von Wald Cresce, Arthur; Munoz, Stephen; Dura, Joseph A; Greenbaum, Steve; Wang, Chunsheng; Xu, Kang

    2017-10-24

    Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.

  20. Densification of LSGM electrolytes using activated microwave sintering

    Science.gov (United States)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  1. Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes

    Science.gov (United States)

    Kozinsky, Boris; Akhade, Sneha A.; Hirel, Pierre; Hashibon, Adham; Elsässer, Christian; Mehta, Prateek; Logeat, Alan; Eisele, Ulrich

    2016-02-01

    We use rigorous group-theoretic techniques and molecular dynamics to investigate the connection between structural symmetry and ionic conductivity in the garnet family of solid Li-ion electrolytes. We identify new ordered phases and order-disorder phase transitions that are relevant for conductivity optimization. Ionic transport in this materials family is controlled by the frustration of the Li sublattice caused by incommensurability with the host structure at noninteger Li concentrations, while ordered phases explain regions of sharply lower conductivity. Disorder is therefore predicted to be optimal for ionic transport in this and other conductor families with strong Li interaction.

  2. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to

  3. Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.; Mayorga, G.

    1974-01-01

    The peculiar behavior of 2-2 and higher valence type electrolytes is discussed in terms of various theories some of which assume, while others do not, an equilibrium between separated ions and ion pairs as distinct chemical species. It is recognized that in some cases a distinct species of inner-shell ion pairs is indicated by spectroscopic or ultrasonic data. Nevertheless, there are many advantages in representing, if possible, the properties of these electrolytes by appropriate virial coefficients and without chemical association equilibria. It is shown that this is possible and is conveniently accomplished by the addition of these equations are given for nine solutes. It is also noted that these equations have been successfully applied to mixed electrolytes involving one component of the 2-2 type. 2 figures, 1 table.

  4. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  5. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  6. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  7. Systematic Experimental and Computational Investigation of Ion Transport in Novel Polyether Electrolytes

    Science.gov (United States)

    Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash

    Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.

  8. Axial and Cellular Heterogeneity in Electrolyte Transport Pathways Along the Thick Ascending Limb

    DEFF Research Database (Denmark)

    Dimke, Henrik; Schnermann, Jürgen

    2018-01-01

    The thick ascending limb (TAL) extends from the border of the inner medulla to the renal cortex, thus ascending through regions with wide differences in tissue solute and electrolyte concentrations. Structural and functional differences between TAL cells in the medulla (mTAL) and the cortex (c......TAL, divergent axial and cellular expression of H+transport proteins in TAL have been documented. The reabsorption of the divalent cations Ca2+and Mg2+is highest in cTAL and paralleled by differences in divalent cation permeability and the expression of select claudins. Morphologically, two cell types...

  9. Thermalhydraulics and activity transport

    International Nuclear Information System (INIS)

    McDonald, B.H.; Wren, D.J.

    1990-01-01

    The potential consequences of a reactor accident, in terms of its impact on public safety, rest on the source term of radioactive fission products. The source term, as, as defined by an international group of experts, is the quantity of radioactive material which might be released in a nuclear accident: its physical and chemical form and the other quantities needed to completely specify its dispersion in the environment (e.g., energy in the plume, height of release, duration of release etc.). Although there are a large number of physical and chemical factors that will contribute to the determination of the source term for a given accident scenario, those factors having a direct impact on the rate of transport are of obvious importance. The thermalhydraulic conditions controlling the rate of mass transport, among other things, are probably the most important factors influencing the source term. This paper is an overview of the areas in which thermalhydraulics most strongly influences activity transport during a severe accident in a water-cooled reactor. It also includes some discussion of the areas where coupling between the physics used in separate computer models of the two phenomena must be considered in any mechanistic best-estimate calculations of the source term

  10. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  11. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    Directory of Open Access Journals (Sweden)

    Feng-Hua Sun

    2015-05-01

    Full Text Available The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05. The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min than during the PL trial (91.6 ± 5.9 min (p < 0.05. At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05. The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.

  12. Prediction of thermophysical and transport properties of ternary organic non-electrolyte systems including water by polynomials

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan D.

    2013-01-01

    Full Text Available The description and prediction of the thermophysical and transport properties of ternary organic non-electrolyte systems including water by the polynomial equations are reviewed. Empirical equations of Radojković et al. (also known as Redlich-Kister, Kohler, Jacob-Fitzner, Colinet, Tsao-Smith, Toop, Scatchard et al. and Rastogi et al. are compared with experimental data of available papers appeared in well know international journals (Fluid Phase Equilibria, Journal of Chemical and Engineering Data, Journal of Chemical Thermodynamics, Journal of Solution Chemistry, Journal of the Serbian Chemical Society, The Canadian Journal of Chemical Engineering, Journal of Molecular Liquids, Thermochimica Acta, etc.. The applicability of empirical models to estimate excess molar volumes, VE, excess viscosities, ηE, excess free energies of activation of a viscous flow,

  13. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    Science.gov (United States)

    Chen, Wei; Rakhi, R. B.; Alshareef, H. N.

    2013-05-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a

  14. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei; Xia, Chuan; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2014-01-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline

  15. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  16. Status of solid polymer electrolyte fuel cell technology and potential for transportation applications

    Science.gov (United States)

    McElroy, J. F.; Nuttall, L. J.

    The solid polymer electrolyte (SPE) fuel cell represents the first fuel cell technology known to be used operationally. Current activities are mainly related to the development of a space regenerative fuel cell system for energy storage on board space stations, or other large orbiting vehicles and platforms. During 1981, a study was performed to determine the feasibility of using SPE fuel cells for automotive or other vehicular applications, using methanol as the fuel. The results of this study were very encouraging. Details concerning a conceptual automotive fuel cell power plant study are discussed, taking into account also a layout of major components for compact passenger car installation.

  17. Regulation of electrolyte transport with IL-1β in rabbit distal colon

    Directory of Open Access Journals (Sweden)

    F. R. Homaidan

    1995-01-01

    Full Text Available Interletrkin-1β levels are elevated in inflammatory bowel disease. In this study the mechanism by which interleukin-1β affects electrolyte transport in the rabbit distal colon, was investigated. Interleukin-1β caused a delayed increase in short-circuit current (Isc which was attributed to protein synthesis since the effect was inhibited by cycloheximide. The interleukin-1β induced increase in Isc was not affected by amiloride treatment but was completely inhibited by bumetanide or in chloride-free buffer and by indomethacin. Prostaglandin E2 levels increased in tissue treated with interleukin-1β, but this increase was reversed by cycloheximide. These data suggest that interleukin-1β causes its effect via a yet to be identified second messenger, by increasing chloride secretion through a prostaglandin E2 mediated mechanism.

  18. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    All solid-state poly(ethylene oxide) (PEO) nanocomposite electrolytes were made containing nanoscale fillers of layered double hydroxides (LDHs). Two kinds of LDHs with different surface states were prepared by aqueous co-precipitation method. The LDHs were added into PEO matrix to study the structures, conductivities and ionic transport properties of nanocomposite electrolytes. The structures of LDHs were characterized by infrared spectra, thermogravimetric analysis and wide-angle X-ray diffraction. With enhanced compatibility of LDH sheets by oligo(ethylene oxide) surface modification, the PEO/OMLDH nanocomposite electrolyte exhibits an amorphous morphology and an enhancement of conductivity by three orders of magnitude as compared to pure PEO electrolyte. The lithium ion transference number T Li + of PEO/LDH nanocomposite electrolyte measured with a value of 0.42 is two times higher than the one of pure PEO electrolyte, which can be attributed to the Lewis acid-base interaction between surface states of metal hydroxides and counter anions of lithium salts

  19. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  20. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan

    2017-10-23

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  1. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes

    KAUST Repository

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-01-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene–polyethylene oxide (PS–PEO) block copolymer (BCP) electrolytes doped with LiPF6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  2. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    Science.gov (United States)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  3. Effect of ionic transport and separation on the meniscus in molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, P.H.; Chen, C.C.; Selman, J.R. [Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2012-06-15

    Migrational separation due to differences in cationic mobility is commonly observed during current passage in molten carbonate mixtures, and this might be responsible for the improved wetting observed upon polarization, as found experimentally according to the literature. To check this, a 2D transport model based on concentrated-solution theory was applied to analyze the movement of ions in and near the meniscus. The effect of differences in cationic mobility and of ionic transport in general on current distribution, reaction rate, and electrolyte composition in the meniscus region was quantified, and corresponding surface tension gradients over the meniscus surface predicted. The resulting surface tension gradients were found to be too small to account for the experimentally observed meniscus rise. It is, therefore, concluded that the polarization effect on electrode wetting is not due to the gradient of surface tension caused by cationic separation. A plausible alternative explanation is that a gradient of the S/L interfacial tension exists but that this is due to specifically adsorbed intermediate reaction products, in particular oxides. Such a current density dependent adsorption layer would be in dynamic equilibrium with the local melt composition, and, thereby, drive the wetting/dewetting of the electrode surface that is experimentally observed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Proton transport in additives to the polymer electrolyte membrane for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Toelle, Pia

    2011-03-21

    The enhancement of proton transport in polymer electrolyte membranes is an important issue for the development of fuel cell technology. The objective is a material providing proton transport at a temperature range of 350 K to 450 K independent from a purely water based mechanism. To enhance the PEM properties of standard polymer materials, a class of additives is studied by means of atomistic simulations consisting of functionalised mesoporous silicon dioxide particles. The functional molecules are imidazole or sulphonic acid, covalently bound to the surface via a carbon chain with a surface density of about 1.0 nm{sup -2} groups. At first, the proton transport mechanism is explored in a system of functional molecules in vacuum. The molecules are constrained by the terminal carbon groups according to the geometric arrangement in the porous silicon dioxide. The proton transport mechanism is characterised by structural properties obtained from classical molecular dynamics simulations and consists of the aggregation of two or more functional groups, a barrier free proton transport between these groups followed by the separation of the groups and formation of new aggregates due to fluctuations in the hydrogen bond network and movement of the carbon chain. For the different proton conducting groups, i.e. methyl imidazole, methyl sulphonic acid and water, the barrier free proton transport and the formation of protonated bimolecular complexes were addressed by potential energy calculations of the density functional based tight binding method (DFTB). For sulphonic acid even at a temperature of 450 K, relatively stable aggregates are formed, while most imidazole groups are isolated and the hydrogen bond fluctuations are high. However, high density of groups and elevated temperatures enhance the proton transport in both systems. Besides the anchorage and the density of the groups, the influence of the chemical environment on the proton transport was studied. Therefore, the

  5. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    Science.gov (United States)

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  6. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    KAUST Repository

    Chen, Wei; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2013-01-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active

  7. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration.

    Science.gov (United States)

    Wang, Mei; Gao, Bin; Tang, Deshan; Yu, Congrong

    2018-04-01

    Simultaneous aggregation and retention of nanoparticles can occur during their transport in porous media. In this work, the concurrent aggregation and transport of GO in saturated porous media were investigated under the conditions of different combinations of temperature, cation type (valence), and electrolyte concentration. Increasing temperature (6-24 °C) at a relatively high electrolyte concentration (i.e., 50 mM for Na + , 1 mM for Ca 2+ , 1.75 mM for Mg 2+ , and 0.03 and 0.05 mM for Al 3+ ) resulted in enhanced GO retention in the porous media. For instance, when the temperature increased from 6 to 24 °C, GO recovery rate decreased from 31.08% to 6.53% for 0.03 mM Al 3+ and from 27.11% to 0 for 0.05 mM Al 3+ . At the same temperature, increasing cation valence and electrolyte concentration also promoted GO retention. Although GO aggregation occurred in the electrolytes during the transport, the deposition mechanisms of GO retention in the media depended on cation type (valence). For 50 mM Na + , surface deposition via secondary minima was the dominant GO retention mechanism. For multivalent cation electrolytes, GO aggregation was rapid and thus other mechanisms such as physical straining and sedimentation also played important roles in controlling GO retention in the media. After passing through the columns, the GO particles in the effluents showed better stability with lower initial aggregation rates. This was probably because less stable GO particles with lower surface charge densities in the porewater were filtered by the porous media, resulting in more stable GO particle with higher surface charge densities in the effluents. An advection-dispersion-reaction model was applied to simulate GO breakthrough curves and the simulations matched all the experimental data well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Introduction to the determination of transport numbers in electrolytic solutions. Effect of the activity coefficient in the coupled scattering and self-scattering processes. Electric mobility of the Na+ ion in water-THF mixture - Measurements of transport numbers by means of radio-tracers

    International Nuclear Information System (INIS)

    M'Malla

    1976-01-01

    Within the frame of a study of ion preferential solvation in hydro-organic media, the author reports some measurements of ionic conductivities of the Na + ion in mixtures of different proportions of water and THF (tetrahydrofuran), and more specifically the use of a recently developed method of transport number measurement. The author explains the general definition of the transport number, recalls usual measurement methods (Hittorf method, moving boundary method), describes the method principle, the measurement process, reports the assessment of corrective terms in the calculation of the transport number, and presents and comments the obtained results. A second part addresses the influence of activity coefficient gradient on the couple scattering and self-scattering phenomenon: self-scattering measurement with a tracer, theoretical aspects of coupled scattering, experimental results and discussion

  9. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  10. Impact of Hot Environment on Fluid and Electrolyte Imbalance, Renal Damage, Hemolysis, and Immune Activation Postmarathon

    Directory of Open Access Journals (Sweden)

    Rodrigo Assunção Oliveira

    2017-01-01

    Full Text Available Previous studies have demonstrated the physiological changes induced by exercise exposure in hot environments. We investigated the hematological and oxidative changes and tissue damage induced by marathon race in different thermal conditions. Twenty-six male runners completed the São Paulo International Marathon both in hot environment (HE and in temperate environment (TE. Blood and urine samples were collected 1 day before, immediately after, 1 day after, and 3 days after the marathon to analyze the hematological parameters, electrolytes, markers of tissue damage, and oxidative status. In both environments, the marathon race promotes fluid and electrolyte imbalance, hemolysis, oxidative stress, immune activation, and tissue damage. The marathon runner’s performance was approximately 13.5% lower in HE compared to TE; however, in HE, our results demonstrated more pronounced fluid and electrolyte imbalance, renal damage, hemolysis, and immune activation. Moreover, oxidative stress induced by marathon in HE is presumed to be related to protein/purine oxidation instead of other oxidative sources. Fluid and electrolyte imbalance and protein/purine oxidation may be important factors responsible for hemolysis, renal damage, immune activation, and impaired performance after long-term exercise in HE. Nonetheless, we suggested that the impairment on performance in HE was not associated to the muscle damage and lipoperoxidation.

  11. Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes

    Science.gov (United States)

    Shrisanjaykumar Jayswal, Manishkumar

    Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have also been explored. Where, a metal iodide salt along with silver oxide or silver phosphate is taken and an exchange reaction permitted by Hard and Soft, Acid and Base (HSAB) principle occurs between the two and AgI and metal oxide form in the glass forming melt. Work done in the present thesis has been organized in seven chapters as follows: Chapter 1: A review and background information of different solid electrolyte materials and their development is presented. Along

  12. Optimization of the transport and mechanical properties of polysiloxane/polyether hybrid polymer electrolytes

    International Nuclear Information System (INIS)

    Boaretto, Nicola; Horn, Theresa; Popall, Michael; Sextl, Gerhard

    2017-01-01

    In this study, the thermo-mechanical properties of networked, polysiloxane/polyether-based, hybrid polymer electrolytes are optimized with the aim of enabling room-temperature operation in lithium metal-polymer batteries. The structural parameters of the electrolytes (polyether chain length, cross-linking and salt concentration) are varied in order to get the best tradeoff between conductivity and mechanical stability. The optimized material has a conductivity close to 1.5·10 −4 S cm −1 at room temperature and a shear storage modulus of 50 kPa up to 100 °C. The effect of TiO 2 nano-particles is also studied with the results showing an overall ambiguous effect on the materials properties. Finally, one of the materials with the highest conductivity is used as electrolyte in a Li/LiFePO 4 cell. This cell has good rate capability and cyclability due to the high conductivity of the electrolyte. However, the high conductivity is reached at expense of the mechanical stability and the resulting electrolyte proves to be too weak to work as an efficient barrier against lithium dendrite growth.

  13. THERMODYNAMICS OF ELECTROLYTES. X. ENTHALPY AND THE EFFECT OF TEMPERATURE ON THE ACTIVITY COEFFICIENTS.

    Energy Technology Data Exchange (ETDEWEB)

    Silvester, Leonard F.; Pitzer, Kenneth S.

    1977-11-01

    Heat of dilution and of solution data are fitted to the form of equation corresponding to that used successfully for activity and osmotic coefficients over a wide range of concentration. The resulting parameters give the change with temperature of the activity and osmotic coefficients. Results are reported for 84 electrolytes of 1-1, 2-1, 3-1, and 2-2 valence types.

  14. Mathematical Modeling of Transport Phenomena in Polymer Electrolyte and Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Erik

    2004-02-01

    This thesis deals with modeling of two types of fuel cells: the polymer electrolyte fuel cell (PEFC) and the direct methanol fuel cell (DMFC), for which we address four major issues: a) mass transport limitations; b) water management (PEFC); c) gas management (DMFC); d) thermal management. Four models have been derived and studied for the PEFC, focusing on the cathode. The first exploits the slenderness of the cathode for a two-dimensional geometry, leading to a reduced model, where several non dimensional parameters capture the behavior of the cathode. The model was extended to three dimensions, where four different flow distributors were studied for the cathode. A quantitative comparison shows that the interdigitated channels can sustain the highest current densities. These two models, comprising isothermal gas phase flow, limit the studies to (a). Returning to a two-dimensional geometry of the PEFC, the liquid phase was introduced via a separate flow model approach for the cathode. In addition to conservation of mass, momentum and species, the model was extended to consider simultaneous charge and heat transfer for the whole cell. Different thermal, flow fields, and hydrodynamic conditions were studied, addressing (a), (b) and (d). A scale analysis allowed for predictions of the cell performance prior to any computations. Good agreement between experiments with a segmented cell and the model was obtained. A liquid-phase model, comprising conservation of mass, momentum and species, was derived and analyzed for the anode of the DMFC. The impact of hydrodynamic, electrochemical and geometrical features on the fuel cell performance were studied, mainly focusing on (a). The slenderness of the anode allows the use of a narrow-gap approximation, leading to a reduced model, with benefits such as reduced computational cost and understanding of the physical trends prior to any numerical computations. Adding the gas-phase via a multiphase mixture approach, the gas

  15. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF6 electrolyte

    International Nuclear Information System (INIS)

    Azam, M.A.; Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A.; Kudin, T.I.T.; Yahya, M.Z.A.

    2015-01-01

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF 6 non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g −1 . - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g −1 at a scan rate of 1 mV s −1

  16. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  17. Boronic ionogel electrolytes to improve lithium transport for Li-ion batteries

    International Nuclear Information System (INIS)

    Lee, Albert S.; Lee, Jin Hong; Hong, Soon Man; Lee, Jong-Chan; Hwang, Seung Sang; Koo, Chong Min

    2016-01-01

    Boron containing ionogels were fabricated through chemical crosslinking of boron allyloxide with polyethylene glycol dimethacrylate in an ionic liquid electrolyte solution to obtain mechanically robust gels. Because of the relatively small concentration of crosslinking agent required to fully solidify the ionic liquid electrolyte, good characters of high ionic conductivity, high thermal stability, and good electrochemical stability were observed. A spectroscopic investigation of the boronic ionogels revealed that the lithium mobility was noticeably enhanced compared with ionogels fabricated without the boronic crosslinker, leading to promising Li-ion battery performance at elevated temperatures.

  18. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  19. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  20. On the role of saturation in modeling ionic transport in the electrolyte of (Lithium ion) batteries

    NARCIS (Netherlands)

    Salvadori, A.; Grazioli, D.; Magri, M.; Geers, M.G.D.; Danilov, D.L.; Notten, P.H.L.

    2015-01-01

    Recent computational simulations of ionic conductivity across the electrolyte of commercial batteries by Salvadori et al. (2015) have shown that the concentration of ions exceeds half the saturation limit near the electrodes. This observation, which is in agreement with other approaches by Danilov

  1. Thermodynamic Study of Water Activity of Single Strong Electrolytes

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hashemi

    2017-06-01

    Full Text Available Today, due to the natural decline of oil exploitation, the use of methods of oil recovery, has made significant progress. However, these methods are accompanied by accumulation and deposition of mineral deposits in oil field installations. In the present study, aqueous solutions, strontium sulfate, barium sulfate, manganese sulfate and nickel sulfate are studied, in terms of EUNIQUAC model and genetic algorithms. Based on the findings of this article, as temperature increases, in order to increase the solubility of the system, the ionic strength decreases; but with increasing pressure, the solubility of barium sulfate increases. Meanwhile, in this article, to evaluate water activity, aqueous solutions of manganese sulfate and nickel sulfate is studied.

  2. Activity transport in nuclear reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.

    2000-01-01

    The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)

  3. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule

    DEFF Research Database (Denmark)

    Lee, Justin J; Plain, Allein; Beggs, Megan R

    2017-01-01

    ), active vitamin D 3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms......Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH...... as their regulation of active vitamin D 3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms...

  4. Experimental elucidation on rate-determining process of water transport in polymer electrolyte fuel cell membrane by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takita, Shinpei; Tsushima, Shohji; Hirai, Shuichiro; Kubo, Norio; Aotani, Koichiro

    2007-01-01

    We examined rate-determining process of water transport in polymer electrolyte membrane (PEM) used in fuel cells by using magnetic resonance imaging (MRI). We measured transversal water content distributions of the membrane by MRI and through-plane mass flux of water by hygrometers. Through place water flux has taken place in the membrane when relative humidify of supplied gas is not equal in both side of the membrane. MRI results revealed that diffusion coefficient of water in the membrane increases with water content of membrane, λ, whilst it shows intensive peak at λ=3-4. Diffusion resistance and mass transfer resistance involving evaporation and condensation on the interface are almost in the same order and thus water transport process in the membrane is determined by either concentration diffusion or mass transfer, depending on water content of membrane. (author)

  5. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  6. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  7. Electrical transport study of potato starch-based electrolyte system-II

    International Nuclear Information System (INIS)

    Tiwari, Tuhina; Kumar, Manindra; Srivastava, Neelam; Srivastava, P.C.

    2014-01-01

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10 −3 Scm −1 . • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10 −3 S/cm and ionic transference number (t ion ) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity

  8. Electrical transport study of potato starch-based electrolyte system-II

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Tuhina; Kumar, Manindra [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, Neelam, E-mail: neelamsrivastava_bhu@yahoo.co.in [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, P.C. [Department of Physics, Banaras Hindu University, Varanasi (India)

    2014-03-15

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10{sup −3} Scm{sup −1}. • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10{sup −3} S/cm and ionic transference number (t{sub ion}) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity.

  9. Tritium Activity Measurement of Water Samples Using Liquid Scintillation Counter and Electrolytical Enrichment

    International Nuclear Information System (INIS)

    Baresic, J.; Krajcar Bronic, I.; Horvatincic, N.; Obelic, B.; Sironic, A.; Kozar-Logar J.

    2011-01-01

    Tritium (3H) activity of natural waters (precipitation, groundwater, surface waters) has recently become too low to be directly measured by low-level liquid scintillation (LSC) techniques. It is therefore necessary to perform electrolytical enrichment of tritium in such waters prior to LSC measurements. Electrolytical enrichment procedure has been implemented at the Rudjer Boskovic Institute (RBI) Tritium Laboratory in 2008, and since then 19 electrolyses have been completed. The mean enrichment factor E (a ratio between the final and initial 3H activities) after stabilisation of the system is E R BI = 22.5 @ 0.5, and the mean enrichment parameter (which describes the process of water mass reduction during electrolysis) is P R BI 0.949 @ 0.003. These values are comparable with those obtained at the Jo@ef Stefan Institute (JSI) Laboratory for liquid scintillation counting, at the electrolysis equipment of the same producer (AGH University of Science and Technology, Krakow, Poland) after 66 electrolyses carried out under identical conditions since 2007: E J SI = 18.9 @ 1.5, and P J SI = 0.896 @ 0.021. Both RBI and JSI laboratories have Ultra-low-level LSC Quantulus 1220 (Wallac, PerkinElmer) for measurement of 3H activity. A set of water samples having 3H activities in the range from 0 TU (''dead-water'' samples) to 18 000 TU (1 TU 0.118 Bq/L) were measured at both laboratories. Samples having 3H activity <200 TU were electrolytically enriched, while the others were measured directly in LSC. A very good agreement was obtained (correlation coefficient 0.991). Both laboratories participated in the IAEA TRIC2008 international intercomparison exercise. The analyses of reported 3H activity results in terms of z and u parameters showed that all results in both laboratories were acceptable. (author)

  10. Health Impacts of Active Transportation in Europe

    DEFF Research Database (Denmark)

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health...... reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists...... and urban planners will help to introduce the health perspective in transport policies and promote active transportation....

  11. Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts

    International Nuclear Information System (INIS)

    Zhang, Tong; Fuchs, Bettina; Secchiaroli, Marco; Wohlfahrt-Mehrens, Margret; Dsoke, Sonia

    2016-01-01

    Highlights: • 1 M LiPF 6 in PC displays the widest electrochemical stability window among others couples electrolyte/activated carbon. • Electrolytes based on EC-DMC show lower impedance than electrolytes containing PC. • 1 M LiPF 6 in PC has the highest cycling stability with 75% of capacitance retention after 20 000 cycles. - Abstract: The fast development of Li-ion capacitor (LIC) technologies requires the use of low resistance and stable electrolytes. An electrolyte for a LIC not only has to provide Li for the intercalation/deintercalation of the battery-type materials, but it also needs to be compatible with the supercapacitor material. Before designing a hybrid Li-ion capacitor device containing Li-insertion and double layer-type materials, it is necessary to understand and separate the contribution of each electrode material to the resistance, capacity and stability in the chosen electrolyte. Due to the intensive research on Li-ion batteries, the interactions of Li-salt containing electrolytes combined with Li insertion materials have been extensively investigated, and a lot of literature is available on this field. In contrast, there is only little knowledge about the exclusive interaction and compatibility of Li containing electrolytes with supercapacitor-type electrode materials (in absence of battery materials). With this purpose, this paper explores the electrochemical performance of electrodes based on commercial activated carbon (AC) in various lithium salt-containing electrolytes. A standard electrolyte for Li-ion batteries (1 M LiPF 6 in EC:DMC, 1:1) is evaluated and compared with an electrolyte prepared with the same salt dissolved in propylene carbonate (1 M LiPF 6 in PC) which is a solvent typically used in commercial supercapacitors. Furthermore, two new electrolyte solutions are proposed, based on a blend of salts 0.8 M LiPF 6 + 0.2 M NEt 4 BF 4 in EC:DMC (1:1) as well as in pure PC. The effect of the electrolyte composition is evaluated

  12. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  13. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    International Nuclear Information System (INIS)

    Winie, Tan; Ramesh, S.; Arof, A.K.

    2009-01-01

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  14. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Winie, Tan, E-mail: tanwinie@salam.uitm.edu.m [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Ramesh, S. [Faculty of Engineering and Science, University Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Arof, A.K. [Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2009-11-15

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  15. Electrolyte Engineering: Optimizing High-Rate Double-Layer Capacitances of Micropore- and Mesopore-Rich Activated Carbon.

    Science.gov (United States)

    Chen, Ting-Hao; Yang, Cheng-Hsien; Su, Ching-Yuan; Lee, Tai-Chou; Dong, Quan-Feng; Chang, Jeng-Kuei

    2017-09-22

    Various types of electrolyte cations as well as binary cations are used to optimize the capacitive performance of activated carbon (AC) with different pore structures. The high-rate capability of micropore-rich AC, governed by the mobility of desolvated cations, can outperform that of mesopore-rich AC, which essentially depends on the electrolyte conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF

    National Research Council Canada - National Science Library

    Greenbaum, Steven

    1998-01-01

    .... In the first reported attempt to exploit 17O NMR to study lithium battery electrolytes, we have prepared 17O-enriched Li triflate and several electrolytes containing the isotopically enriched salt...

  17. KPF{sub 6} dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-02-15

    KPF{sub 6} dissolved in propylene carbonate (PC) has been proposed as an electrolyte for activated carbon (AC)/graphite capacitors. The electrochemical performance of AC/graphite capacitor has been tested in XPF{sub 6}-PC or XBF{sub 4}-PC electrolytes (X stands for alkali or quaternary alkyl ammonium cations). The AC/graphite capacitor using KPF{sub 6}-PC electrolyte shows an excellent cycle-ability compared with other electrolytes containing alkali ions. The big decomposition of the PC solvent at the AC negative electrode is considerably suppressed in the case of KPF{sub 6}-PC, which fact has been correlated with the mild solvation of K{sup +} by PC solvent. The relationship between the ionic radius of cation and the corresponding specific capacitance of AC negative electrode also proves that PC-solvated K{sup +} ions are adsorbed on AC electrode instead of naked K{sup +} ions. (author)

  18. Mean-field theory of active electrolytes: Dynamic adsorption and overscreening

    Science.gov (United States)

    Frydel, Derek; Podgornik, Rudolf

    2018-05-01

    We investigate active electrolytes within the mean-field level of description. The focus is on how the double-layer structure of passive, thermalized charges is affected by active dynamics of constituting ions. One feature of active dynamics is that particles adhere to hard surfaces, regardless of chemical properties of a surface and specifically in complete absence of any chemisorption or physisorption. To carry out the mean-field analysis of the system that is out of equilibrium, we develop the "mean-field simulation" technique, where the simulated system consists of charged parallel sheets moving on a line and obeying active dynamics, with the interaction strength rescaled by the number of sheets. The mean-field limit becomes exact in the limit of an infinite number of movable sheets.

  19. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro......-osmotic drag (EOD) with counter diffusion and/or hydraulic permeation is flawed, and that any net transport of water through the membrane is caused by diffusion. Depending on the effective drag the cathode side of the membrane may experience a lower hydration than the anode side. The effect of a water......-uptake layer on the net water transport will also be pictured. Finally, the effect of EOD is visualized using “Newton’s cradle”....

  20. Structure and transport of aqueous electrolytes: From simple halides to radionuclide ions

    Energy Technology Data Exchange (ETDEWEB)

    Hartkamp, Remco, E-mail: hartkamp@mit.edu; Coasne, Benoit, E-mail: benoit.coasne@enscm.fr [Institut Charles Gerhardt Montpellier, CNRS (UMR 5253), Université Montpellier 2, ENSCM, 8 rue de l’Ecole Normale, 34296 Montpellier Cedex 05 (France); MultiScale Material Science for Energy and Environment, CNRS/MIT (UMI 3466), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2014-09-28

    Molecular simulations are used to compare the structure and dynamics of conventional and radioactive aqueous electrolytes: chloride solutions with sodium, potassium, cesium, calcium, and strontium. The study of Cs{sup +} and Sr{sup 2+} is important because these radioactive ions can be extremely harmful and are often confused by living organisms for K{sup +} and Ca{sup 2+}, respectively. Na{sup +}, Ca{sup 2+}, and Sr{sup 2+} are strongly bonded to their hydration shell because of their large charge density. We find that the water molecules in the first hydration shell around Na{sup +} form hydrogen bonds between each other, whereas molecules in the first hydration shell around Ca{sup 2+} and Sr{sup 2+} predominantly form hydrogen bonds with water molecules in the second shell. In contrast to these three ions, K{sup +} and Cs{sup +} have low charge densities so that they are weakly bonded to their hydration shell. Overall, the structural differences between Ca{sup 2+} and Sr{sup 2+} are small, but the difference between their coordination numbers relative to their surface areas could potentially be used to separate these ions. Moreover, the different decays of the velocity-autocorrelation functions corresponding to these ions indicates that the difference in mass could be used to separate these cations. In this work, we also propose a new definition of the pairing time that is easy to calculate and of physical significance regardless of the problem at hand.

  1. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  2. A silicon-on-insulator vertical nanogap device for electrical transport measurements in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Sebastian [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Arinaga, Kenji [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Hansen, Allan [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Tornow, Marc [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2007-07-25

    A novel concept for metal electrodes with few 10 nm separation for electrical conductance measurements in an aqueous electrolyte environment is presented. Silicon-on-insulator (SOI) material with 10 nm buried silicon dioxide serves as a base substrate for the formation of SOI plateau structures which, after recess-etching the thin oxide layer, thermal oxidation and subsequent metal thin film evaporation, feature vertically oriented nanogap electrodes at their exposed sidewalls. During fabrication only standard silicon process technology without any high-resolution nanolithographic techniques is employed. The vertical concept allows an array-like parallel processing of many individual devices on the same substrate chip. As analysed by cross-sectional TEM analysis the devices exhibit a well-defined material layer architecture, determined by the chosen material thicknesses and process parameters. To investigate the device in aqueous solution, we passivated the sample surface by a polymer layer, leaving a micrometre-size fluid access window to the nanogap region only. First current-voltage characteristics of a 65 nm gap device measured in 60 mM buffer solution reveal excellent electrical isolation behaviour which suggests applications in the field of biomolecular electronics in a natural environment.

  3. Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Chung, In; Lee, Byunghong; Chang, Robert P. H.

    2017-10-31

    Photovoltaic cells incorporating the compounds A/M/X compounds as hole transport materials are provide. The A/M/X compounds comprise one or more A moieties, one or more M atoms and one or more X atoms. The A moieties are selected from organic cations and elements from Group 1 of the periodic table, the M atoms are selected from elements from at least one of Groups 3, 4, 5, 13, 14 or 15 of the periodic table, and the X atoms are selected from elements from Group 17 of the periodic table.

  4. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-27

    This work deals with selected aspects of mass transport phenomena in PEFCs and DMFCs. Emphasis is placed on the implications originating from the occurrence of two-phase flow within these devices. Optimality of supply, distribution, and removal of the fuel, the oxidant, and the reaction products is of utmost importance for the stability, efficiency, and durability of the devices. Being a prerequisite for high current densities while maintaining sufficient voltage, mass transport optimization contributes to the development of cost effective as well as compact designs and hence competitive fuel cells. [German] Die Visualisierung und Quantifizierung von Fluessigwasseransammlungen in Polymerelektrolytmembran-Brennstoffzellen konnte mittels Neutronenradiographie erreicht werden. Dank dieser neuartigen diagnostischen Methode konnte erstmals die Fluessigwasseransammlung in den poroesen Gasdiffusionsschichten direkt nachgewiesen und quantifiziert werden. Die Kombination von Neutronenradiographie mit ortsaufgeloesten Stromdichtemessungen bzw. lokaler Impedanzspektroskopie erlaubte die Korrelation des inhomogenen Fluessigwasseranfalls mit dem lokalen elektrochemischen Leistungsverhalten. Systematische Untersuchungen an Polymerelektrolyt- und Direkt-Methanol-Brennstoffzellen verdeutlichen sowohl den Einfluss von Betriebsbedingungen als auch die Auswirkung von Materialeigenschaften auf die Ausbildung zweiphasiger Stroemungen.

  5. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    Science.gov (United States)

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  7. MASS TRANSPORT PROPERTIES OF A FLOW-THROUGH ELECTROLYTIC REACTOR USING A POROUS ELECTRODE: PERFORMANCE AND FIGURES OF MERIT FOR Pb(II REMOVAL

    Directory of Open Access Journals (Sweden)

    Bertazzoli R.

    1998-01-01

    Full Text Available The removal of lead from an acid borate-nitrate solution containing Pb(II was used to characterize the mass transport properties of an electrolytic reactor with reticulated vitreous carbon cathodes, operated in the flow-through mode. Current potential curves recorded at a rotating vitreous carbon disc electrode were used to determine the diffusion coefficient for Pb(II under the conditions of the experiments. The performance and figures of merit of the electrolytic reactor were investigated by using different flowrates and cathode porosities. Dimensionless Sherwood and Reynolds numbers were correlated to characterize the mass transport properties of the reactor, and they were fitted to the equation Sh=24Re0.32Sc0.33.

  8. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  9. Responses of serum electrolytes of goats to twelve hours of road transportation during the hot-dry season in Nigeria, and the effect of pretreatment with ascorbic acid

    Directory of Open Access Journals (Sweden)

    J.O. Ayo

    2009-09-01

    Full Text Available Twenty goats which served as the experimental group were administered ascorbic acid (AA per os at a dosage rate of 100 mg/kg body mass, while 20 others served as controls and were given 10 mt each of sterile water. Forty minutes after the administration and loading, the goats were transported for 12 h. Handling and loading of the experimental and control groups of goats decreased (P < 0.05 the potassium and sodium serum concentrations. The concentration of serum chloride, sodium and calcium increased significantly (P< 0.05 immediately post-transportation, while potassium and magnesium decreased (P < 0.05 in the control goats. In AA-treated goats sodium and magnesium concentrations decreased abruptly (P< 0.05, while calcium increased significantly (P< 0.05 after transportation. Handling, loading and transportation adversely affected the electrolyte balance of the goats which suggested respiratory alkalosis, dehydration and muscular damage in the transported goats, and the administration of AA alleviated the adverse effects of road transportation stress on serum electrolytes.

  10. Electrolyte transport in distal colon of sodium-depleted rats: Effect of sodium repletion

    International Nuclear Information System (INIS)

    Turnamian, S.G.; Binder, H.J.

    1988-01-01

    Dietary sodium depletion increases plasma aldosterone level and, as a result, induces amiloride-sensitive electrogenic sodium absorption and electrogenic potassium secretion and stimulates Na + -K + -ATPase activity in rat distal colon, while inhibiting electroneutral sodium chloride absorption. To assess the events that occur as the aldosterone-stimulated colon reverts to normal, unidirectional 22 Na and 36 Cl fluxes were measured under voltage-clamp conditions across isolated distal colonic mucosa of rats that were initially dietary sodium depleted for 7 days and then sodium repleted for varying periods of time before the study. Within 8 h of dietary sodium repletion, plasma aldosterone level and Na + -K + -ATPase activity declined to normal, amiloride-sensitive electrogenic sodium absorption decreased by >90%, and active electrogenic potassium secretion also decreased markedly. In contrast, electroneutral sodium chloride absorption did not completely return to levels seen in normal animals until ∼64-68 h. These results demonstrate that maintenance of electrogenic sodium absorption and potassium secretion are directly dependent on elevated plasma aldosterone levels. The inhibition of electroneutral sodium absorption, although initiated by excess aldosterone, persists after normalization of the plasma aldosterone level, thereby implying that the inhibition is dependent on additional factor(s)

  11. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  12. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes

    Science.gov (United States)

    Hu, Sixiao; Zhang, Sanliang; Pan, Ning; Hsieh, You-Lo

    2014-12-01

    Highly porous submicron activated carbon fibers (ACFs) were robustly generated from low sulfonated alkali lignin and fabricated into supercapacitors for capacitive energy storage. The hydrophilic and high specific surface ACFs exhibited large-size nanographites and good electrical conductivity to demonstrate outstanding electrochemical performance. ACFs from KOH activation, in particular, showed very high 344 F g-1 specific capacitance at low 1.8 mg cm-2 mass loading and 10 mV s-1 scan rate in aqueous electrolytes. Even at relatively high scan rate of 50 mV s-1 and mass loading of 10 mg cm-2, a decent specific capacitance of 196 F g-1 and a remarkable areal capacitance of 0.55 F cm-2 was obtained, leading to high energy density of 8.1 Wh kg-1 based on averaged electrodes mass. Furthermore, over 96% capacitance retention rates were achieved after 5000 charge/discharge cycles. Such excellent performance demonstrated great potential of lignin derived carbons for electrical energy storage.

  13. Variation sweep rate cyclic voltammetry on the capacitance electrode activated carbon/PVDF with polymer electrolyte

    Science.gov (United States)

    Rohmawati, L.; Setyarsih, W.; Nurjannah, T.

    2018-03-01

    Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.

  14. Effect of PVA Blending on Structural and Ion Transport Properties of CS:AgNt-Based Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2017-11-01

    Full Text Available In this work, the role of poly(vinyl alcohol (PVA blending on structural and electrical properties of chitosan:silver nitrate systems is studied. The X-ray diffraction (XRD results show that the crystalline phase of chitosan (CS is greatly scarified by silver nitrate (AgNt salt. The crystalline domain of CS:AgNt is more broadened at 10 wt % of PVA. The spike and semicircular arcs can be separated in impedance plots. At high temperatures, the spike regions remained. The direct current (DC conductivity was calculated from the bulk resistance obtained from the impedance plots. The dielectric constant and DC conductivity versus PVA content exhibited similar behavior. The maximum DC conductivity at ambient temperature was 1.1 × 10−6 S/cm for 10 wt % of PVA. The DC ionic conductivity increased to 9.95 × 10−5 S/cm at 80 °C. Above 10 wt % of PVA, the drop in DC conductivity and dielectric constant were observed due to the increase in viscosity. Shifting of relaxation peaks towards the lower frequency revealed the increase of resistivity of the samples. The linear increase of DC conductivity versus 1000/T indicated that ion transport followed the Arrhenius model. The incomplete semicircular arc in Argand plots indicated the non-Debye type of relaxation process. The Argand plots were used to distinguish between conductivity relaxation and viscoelastic relaxation. Three regions were distinguished in the alternating current (AC spectra of the blend electrolyte samples. The plateau region in AC spectra was used to estimate the DC conductivity. The estimated DC conductivity from the AC spectra was close to those calculated from the impedance plots.

  15. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode

  16. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  17. First Principles Modeling of Structure and Transport in Solid Polymer Electrolytes, Ionic Liquids, and Methanol/Water Mixtures

    Science.gov (United States)

    2016-02-10

    chemical calculations of the magnesium battery electrolytes we were able to make all vibrational frequency assignments (measured in the IR and Raman ...electrolytes for magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group... magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group of Prof. Vito Di

  18. Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries

    Science.gov (United States)

    Iyer, Vinay A.; Schuh, Jonathon K.; Montoto, Elena C.; Pavan Nemani, V.; Qian, Shaoyi; Nagarjuna, Gavvalapalli; Rodríguez-López, Joaquín; Ewoldt, Randy H.; Smith, Kyle C.

    2017-09-01

    Redox-active small molecules, used traditionally in redox flow batteries (RFBs), are susceptible to crossover and require expensive ion exchange membranes (IEMs) to achieve long lifetimes. Redox-active polymer (RAP) solutions show promise as candidate electrolytes to mitigate crossover through size-exclusion, enabling the use of porous separators instead of IEMs. Here, poly(vinylbenzyl ethyl viologen) is studied as a surrogate RAP for RFBs. For oxidized RAPs, ionic conductivity varies weakly between 1.6 and 2.1 S m-1 for RAP concentrations of 0.13-1.27 mol kg-1 (monomeric repeat unit per kg solvent) and 0.32 mol kg-1 LiBF4 with a minor increase upon reduction. In contrast, viscosity varies between 1.8 and 184.0 mPa s over the same concentration range with weakly shear-thinning rheology independent of oxidation state. Techno-economic analysis is used to quantify reactor cost as a function of electrolyte transport properties for RAP concentrations of 0.13-1.27 mol kg-1, assuming a hypothetical 3V cell and facile kinetics. Among these concentrations, reactor cost is minimized over a current density range of 600-1000 A m-2 with minimum reactor cost between 11-17 per kWh, and pumping pressures below 10 kPa. The predicted low reactor cost of RAP RFBs is enabled by sustained ionic mobility in spite of the high viscosity of concentrated RAP solutions.

  19. Functionalized carbon nanotube based hybrid electrochemical capacitors using neutral bromide redox-active electrolyte for enhancing energy density

    Science.gov (United States)

    Tang, Xiaohui; Lui, Yu Hui; Chen, Bolin; Hu, Shan

    2017-06-01

    A hybrid electrochemical capacitor (EC) with enhanced energy density is realized by integrating functionalized carbon nanotube (FCNT) electrodes with redox-active electrolyte that has a neutral pH value (1 M Na2SO4 and 0.5 M KBr mixed aqueous solution). The negative electrode shows an electric double layer capacitor-type behavior. On the positive electrode, highly reversible Br-/Br3- redox reactions take place, presenting a battery-type behavior, which contributes to increase the capacitance of the hybrid cell. The voltage window of the whole cell is extended up to 1.5 V because of the high over-potentials of oxygen and hydrogen evolution reactions in the neutral electrolyte. Compared with raw CNT, the FCNT has better wettability in the aqueous electrolyte and contributes to increase the electric double layer capacitance of the cell. As a result, the maximum energy density of 28.3 Wh kg-1 is obtained from the hybrid EC at 0.5 A g-1 without sacrificing its power density, which is around 4 times larger than that of the electrical double layer capacitor constructed by FCNT electrodes and 1 M Na2SO4 electrolyte. Moreover, the discharge capacity retained 86.3% of its initial performance after 10000 cycles of galvanostatic charge and discharge test (10 A/g), suggesting its long life cycle even at high current loading.

  20. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  1. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  2. The use of anions with sulfate function in electrolyte for lithium battery. Study of transport mechanism; Utilisation d'anions a fonction sulfate dans des electrolytes pour batterie au lithium. Etude des mecanismes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Ch.

    2005-05-15

    Lithium salts based on oligo-ether sulfate were synthesized and characterised. They incorporate oxy-ethylene units which enable the lithium cation salvation and, potentially, their use as ionic liquids. Their properties as lithium salts dissolved in liquid or polymer electrolytes were evaluated. Their electrochemical and thermal stabilities are sufficient for lithium battery application. Due to their weak dissociation in POE, their conductivities are fairly low. On the other hand, they have high cationic transference numbers. In mixture with usual salts as LiTFSI, they provide a good compromise between conductivities/transference number/cost. The second part of this study deals with the synthesis and characterisation of an ionomer with sulfate function and polyether backbone. The electrochemical, physical and chemical properties of this material show that it could be used as polymer electrolyte. Its potential as cross-linked gelled polymer electrolyte is outstanding. Structural analyses on an ionomeric monocrystal have been corroborated with quantum chemistry calculations. (author)

  3. Correlation and prediction of osmotic coefficient and water activity of aqueous electrolyte solutions by a two-ionic parameter model

    International Nuclear Information System (INIS)

    Pazuki, G.R.

    2005-01-01

    In this study, osmotic coefficients and water activities in aqueous solutions have been modeled using a new approach based on the Pitzer model. This model contains two physically significant ionic parameters regarding ionic solvation and the closest distance of approach between ions in a solution. The proposed model was evaluated by estimating the osmotic coefficients of nine electrolytes in aqueous solutions. The obtained results showed that the model is suitable for predicting the osmotic coefficients in aqueous electrolyte solutions. Using adjustable parameters, which have been calculated from regression between the experimental osmotic coefficient and the results of this model, the water activity coefficients of aqueous solutions were calculated. The average absolute relative deviations of the osmotic coefficients between the experimental data and the calculated results were in agreement

  4. Study of ageing mechanisms of organic electrolyte super-capacitors based on activated carbons; Recherche des causes du vieillissement de supercondensateurs a electrolyte organique a base de carbones actives

    Energy Technology Data Exchange (ETDEWEB)

    Azais, Ph

    2003-11-15

    The energy which is stored in electrochemical capacitors is proportional to the square of voltage. Consequently, the most attractive super-capacitors are those which operate in organic electrolyte medium, with an electrolyte potential window which theoretically can easily reach more than 3 V. However, even using lower values of voltage, there is a remarkable fading of the electrochemical characteristics with operating time, that is mainly characterized by capacitance loss and resistance increase. On a commercial point of view, these capacitors must be improved in order to reach the expected criterion of long operating life. In the presented work, we will determine some reasons of super-capacitors ageing in organic electrolyte (1 M solution of Et{sub 4}N{sup +} BF{sub 4}{sup -} in acetonitrile) and we will propose a treatment of activated carbon which noticeably improves the performance. A prolonged charging of electrochemical capacitors at 2.5 V, so called floating, results in gases formation and to a noticeable mass uptake of the electrodes. XPS and NMR analysis performed on carefully washed electrodes demonstrated the existence of decomposition products from the electrolyte, which are trapped in the pores of the activated carbon. These products block the pores, limiting the ions access to the active surface that causes the decay of electrochemical performances. Electrolyte decomposition is especially very high when the electrodes are constituted of carbons with a rich surface functionality, i.e. surface oxygenated groups and free radicals. Therefore, activated carbons have been submitted to thermal treatment, both in nitrogen and hydrogen atmosphere, allowing the oxygenated surface functionality to be noticeably depressed. Super-capacitors built with the treated materials have been submitted to floating during more than 2000 hours. Extremely good electrochemical performance are preserved with the electrodes obtained from activated carbons treated under hydrogen

  5. Comparing the Effect of Fasting and Physical Activity on Active and Non-active Males’ Body Composition, Serum Osmolarity Levels and Some Parameters of Electrolytes

    Directory of Open Access Journals (Sweden)

    M Nematy

    2012-08-01

    Full Text Available Introduction: Ever since there is insufficient and incoherent information about the effect of the Ramadan Fasting together with regular exercise on levels of serum osmolarity, and electrolytes concentration. The aim of this study was to compare the effect of fasting and physical activity on active and non-active males’ body composition, serum osmolarity levels and some parameters of electrolytes. Methods: Twenty six healthy males, who were selected by convenience sampling method, were divided into two (active and non-active groups. The Active group participated in football training for three sessions per week during the fasting month. All measurements were repeated on the first and last day of fasting month and were used to analyze the test results. Results: The average differences were significantly decreased in weight, BMI, WHR, mineral, total water in two groups (P≤0.05. There was a significant difference in average of BMI, WHR, body fat, mineral and total water between two groups (P≤0.05. Within-group mean differences in glucose, potassium, urine and albumin in both groups were significant (P≤0.05. Differences of serum osmolarity in between- and within-groups were not significant in both groups. While, glucose decreased significantly, the levels of the protein decreased, and urea increased significantly only in non active fasting group. Conclusion: According to these results, regular exercise together with the Ramadan fasting result in change in some serum osmolarity index, electrolytes and water. Therefore, it is necessary to protect the athletics against the malnutrition in Ramadan fasting by using the diet schedule and enough water.

  6. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors

    Science.gov (United States)

    Liu, Ping; Verbrugge, Mark; Soukiazian, Souren

    For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.

  7. Health Impacts of Active Transportation in Europe.

    Directory of Open Access Journals (Sweden)

    David Rojas-Rueda

    Full Text Available Policies that stimulate active transportation (walking and bicycling have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64 in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163 annual deaths avoided, Prague 61 (29-104, Barcelona 37 (24-56, Paris 37 (18-64 and Basel 5 (3-9. An increase in walking trips to 50% of all trips (as in Paris resulted in 19 (3-42 deaths avoided annually in Warsaw, 11(3-21 in Prague, 6 (4-9 in Basel, 3 (2-6 in Copenhagen and 3 (2-4 in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year. Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation.

  8. Health Impacts of Active Transportation in Europe.

    Science.gov (United States)

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S; Tainio, Marko; Nieuwenhuijsen, Mark J

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163) annual deaths avoided, Prague 61 (29-104), Barcelona 37 (24-56), Paris 37 (18-64) and Basel 5 (3-9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3-42) deaths avoided annually in Warsaw, 11(3-21) in Prague, 6 (4-9) in Basel, 3 (2-6) in Copenhagen and 3 (2-4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation.

  9. Modelling of activity transport in PHWR

    International Nuclear Information System (INIS)

    Veena, S.N.; Rangarajan, S.; Narasimhan, S.V.; Horvath, G.L.

    2000-01-01

    The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60 Co around the PHT system. (author)

  10. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  11. Final Technical Report Transport Task Force Activities

    International Nuclear Information System (INIS)

    P.W. Terry

    2006-01-01

    The Transport Task Force has functioned as the primary scientific organization in the area of magnetic-fusion confinement and transport since its inception in 1988. It has defined and set research directions, coordinated broad research efforts, advocated new funding initiatives, and created a highly successful and widely admired interactive culture between experiment, theory and modeling. The Transport Task Force carries out its activities under the direction of its chair and the Executive Committee. The Executive Committee is comprised of the leaders and deputy leaders of the scientific working groups. The working groups are structured and organized according to research needs and priorities and have been organized around the areas of Core Transport, H Mode and Pedestal, Fast Particle Transport, Transient Transport Phenomena, and Modeling and Simulation. A steering committee provides advise on TTF activities. Further information on the working groups and the structure and management of the TTF can be found at http://psfcwww2.psfc.mit.edu/ttf/index.html. The TTF holds an annual workshop. A summary of the workshops held during the period of this report is given in Appendix I. During the period of this report the Transport Task Force was involved in several significant activities. Foremost of these was a sweeping review of the status of transport science, the key research tasks for progress during the next 5-10 years, and a proposal for a funding initiative to ensure application of adequate resources to these problems. The conclusions of this study were incorporated into a white paper, which is copied below in Appendix II. Other significant activities have included the introduction of an extended, ongoing discussion on verification and validation as a requisite for defining and codifying the path toward predictive capability, the orchestration of a gradual shift of focus from ion thermal confinement to electron thermal confinement, and a joining of efforts on edge

  12. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    DEFF Research Database (Denmark)

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent

    2016-01-01

    unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na(+) concentrations and a consequent increase in astrocytic Ca(2+) through Na(+)/Ca(2+) exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal...

  13. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  14. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  15. Assessment of Physical Activity and Active Transport Among School ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This study will assess physical activity and active transportation levels among ... the Neighbourhood Environment Walkability Scale instrument (NEWS) for use in ... prix de la diplomatie scientifique de la part du gouvernement de l'Afrique du Sud. ... Dans le dernier numéro du bulletin de BRAS, lisez un message d'adieu de ...

  16. Assessment of Physical Activity and Active Transport Among School ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Assessment of Physical Activity and Active Transport Among School Children in Kenya, Nigeria, and Mozambique ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: Innovative solutions from the Global South”.

  17. Measuring oxygen activity in liquid sodium with the use of solid electrolytes

    International Nuclear Information System (INIS)

    Jakes, D.; Skvor, F.

    1976-01-01

    Doped Y 2 O 3 (CaO or MgO up to 20 mol.%) was studied as a possible electrolyte. La 2 O 3 did not prove advantageous. The proposed version of an analyzer is described and the problems of calibration discussed. The reduction of the chemical gradient and the increase in material purity of the electrolytical tube significantly reduced the difference between the theoretical and experimentally obtained emf value, so that measurements may be carried out under these conditions even without calibration. The dependence of log σsub(T) on partial O 2 pressure is given for doped La and Y oxides at a temperature of 700 degC. (M.K.)

  18. Electrochemistry serving people and nature: high-energy ecocapacitors based on redox-active electrolytes.

    Science.gov (United States)

    Frackowiak, Elzbieta; Fic, Krzysztof; Meller, Mikolaj; Lota, Grzegorz

    2012-07-01

    Positive Poles: A new type of electrochemical capacitor with two different aqueous solutions, separated by a Nafion membrane is described. High capacitance values as well as excellent energy/power characteristics are reported and discussed. The neutral character of the applied electrolytes makes this capacitor an environmentally friendly, easy to assemble, and cost-effective device for energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Process & Quality procedures for transport & handling activities

    CERN Document Server

    Böttcher, O

    2002-01-01

    To respect the detailed and complex planning of the LHC installation project it is essential to reduce possible faults in every technical service that can cause delays in the schedule. In order to ensure proper execution of transport and handling activities it is important to get detailed information from the clients as early as possible in order to do the planning and the organisation of the required resources. One procedure that requires greater focus in the future is the preparation of the resources. The goal is to prevent equipment breakdowns and accidents while executing transport and handling activities. In the LEP dismantling project multiple breakdowns of important cranes caused serious problems in the project schedule. For the LHC installation project similar incidents in the reliability of the equipment cannot be accepted because of the high sensitivity of the whole schedule. This paper shall outline the efforts and methods that are put in place in order to meet the LHC installation requirements.

  20. Activity transport in nuclear generating stations

    International Nuclear Information System (INIS)

    Mitchell, A.B.

    1975-01-01

    The objective of this paper is to give a basic understanding of the operational limitations caused by radiation fields in the present design of CANDU-PHW reactors. A simple model of activity transport is described, and the significance of various radioisotopes identified. The impact which radiation fields have at the Divisional, Station Manager and Operation levels, is outlined in the context of typical work situations. (author)

  1. Determination of gold and platinum in biological materials by radiochemical neutron activation analysis using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Reitz, B.; Heydorn, K.

    1993-01-01

    A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains thee highest radiochemical purity without any interference from calcium or other major elements. With 199 Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out. (author) 18 refs.; 3 figs.; 2 tabs

  2. Poisson-Fermi modeling of ion activities in aqueous single and mixed electrolyte solutions at variable temperature

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2018-02-01

    The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.

  3. [Establishment of regional active neonatal transport network].

    Science.gov (United States)

    Kong, Xiang-yong; Gao, Xin; Yin, Xiao-juan; Hong, Xiao-yang; Fang, Huan-sheng; Wang, Zi-zhen; Li, Ai-hua; Luo, Fen-ping; Feng, Zhi-chun

    2010-01-01

    To evaluate the clinical function and significance of establishing a regional active neonatal transport network (ANTN) in Beijing. The authors retrospectively studied intensive care and the role of ANTN system in management of critically ill neonates and compared the outcome of newborn infants transported to our NICU before and after we established standardized NICU and ANTN system (phase 1: July 2004 to June 2006 vs phase 2: July 2006 to May 2008). The number of neonatal transport significantly increased from 587 during phase 1 to 2797 during phase 2. Success rate of transport and the total cure rate in phase 2 were 97.85% and 91.99% respectively, which were significantly higher than those in phase 1 (94.36% and 88.69%, respectively, P capacity of our NICU was enlarged following the development of ANTN. There are 200 beds for level 3 infants in phase 2, but there were only 20 beds in phase 1. Significantly less patients in the phase 2 had hypothermia, acidosis and the blood glucose instability than those in phase 1 (P transported to our NICU were higher in phase 2 compared with that in phase 1, especially infants whose gestational age was below 32 weeks. The proportions of asphyxia and respiratory distress syndrome were lower in phase 2 than that in phase 1, but the total cure rates of these two diseases had no significant changes between the two phases. The most important finding was that the improvement of outcome of premature infants and those with asphyxia and aspiration syndrome was noted following the development of ANTN. Establishing regional ANTN for a tertiary hospital is very important to elevate the total level in management of critically ill newborn infants. It plays a very important role in reducing mortality and improving total outcomes of newborn infants. There are still some problems remained to solve after four years practice in order to optimize the ANTN to meet needs of the development of neonatology.

  4. Active Transportation Surveillance - United States, 1999-2012.

    Science.gov (United States)

    Whitfield, Geoffrey P; Paul, Prabasaj; Wendel, Arthur M

    2015-08-28

    Physical activity is a health-enhancing behavior, and most U.S. adults do not meet the 2008 Physical Activity Guidelines for Americans. Active transportation, such as by walking or bicycling, is one way that persons can be physically active. No comprehensive, multiyear assessments of active transportation surveillance in the United States have been conducted. 1999-2012. Five surveillance systems assess one or more components of active transportation. The American Community Survey and the National Household Travel Survey (NHTS) both assess the mode of transportation to work in the past week. From these systems, the proportion of respondents who reported walking or bicycling to work can be calculated. NHTS and the American Time Use Survey include 1-day assessments of trips or activities. With that information, the proportion of respondents who report any walking or bicycling for transportation can be calculated. The National Health and Nutrition Examination Survey and the National Health Interview Survey both assess recent (i.e., in the past week or past month) habitual physical activity behaviors, including those performed during active travel. From these systems, the proportion of respondents who report any recent habitual active transportation can be calculated. The prevalence of active transportation as the primary commute mode to work in the past week ranged from 2.6% to 3.4%. The 1-day assessment indicated that the prevalence of any active transportation ranged from 10.5% to 18.5%. The prevalence of any habitual active transportation ranged from 23.9% to 31.4%. No consistent trends in active transportation across time periods and surveillance systems were identified. Among systems, active transportation was usually more common among men, younger respondents, and minority racial/ethnic groups. Among education groups, the highest prevalence of active transportation was usually among the least or most educated groups, and active transportation tended to be more

  5. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Justin J. Lee

    2017-10-01

    Full Text Available Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH, active vitamin D3, and fibroblast growth factor 23 (FGF23. The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.

  6. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1984-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. A computer code, RAPTOR, has been developed to determine the transport of these products in fusion reactor coolant/tritium breeding materials. Without special treatment, it is likely that fusion reactor power plant operators could experience dose rates as high as 8 rem per hour around a number of plant components after only a few years of operation. (orig.)

  7. An active matter analysis of intracellular Active Transport

    Science.gov (United States)

    Wang, Bo; Chen, Kejia; Bae, Sung Chul; Granick, Steve

    2012-02-01

    Tens of thousands of fluorescence-based trajectories at nm resolution have been analyzed, regarding active transport along microtubules in living cells. The following picture emerges. Directed motion to pre-determined locations is certainly an attractive idea, but cannot be pre-programmed as to do so would sacrifice adaptability. The polarity of microtubules is inadequate to identify these directions in cells, and no other mechanism is currently known. We conclude that molecular motors carry cargo through disordered intracellular microtubule networks in a statistical way, with loud cellular ``noise'' both in directionality and speed. Programmed random walks describe how local 1D active transport traverses crowded cellular space efficiently, rapidly, minimizing the energy waste that would result from redundant activity. The mechanism of statistical regulation is not yet understood, however.

  8. Transport on prescription: How can GPs contribute to the promotion of active transport?

    Science.gov (United States)

    Pistoll, Chance; Furler, John

    2017-10-01

    Active transport (ie walking, cycling, using public transport) can play a part in reducing non-communicable diseases (NCDs). Very little is known about how general practitioners (GPs) can contribute to promoting active transport. We explored GPs' ideas around active transport, and potential barriers and facilitators to its promotion in the clinical setting. Using a maximal variation sample, we conducted 10 semi-structured interviews with GPs in Victoria, Australia. The socioecological model informed data collection and analysis. The idea of active transport resonated with GPs. Limited awareness around active transport and safety concerns regarding commuter cycling were barriers to clinical promotion. GPs believed patients' health, cultural norms, socioeconomic position and access to supportive environments could facilitate participation. Future efforts should prioritise awareness of active transport among GPs. The perspectives of GPs would be valuable to policymakers, particularly in designing programs to mitigate inequalities around active transport access and use.

  9. Activation product transport in fusion reactors

    International Nuclear Information System (INIS)

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs

  10. Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G. [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States) and Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)]. E-mail: marshalg@mail.retina.ar; Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)

    2005-05-30

    Electrochemical deposition (ECD) and spatially coupled bipolar electrochemistry (SCBE) experiments in thin-layer cells are known to produce complex ion transport patterns concomitantly with the growth of dendrite-like structures. Here we present a macroscopic model of ECD and SCBE with a three-ion electrolyte in conditions of dense branched morphology. The model describes ion transport and deposit growth through the one-dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and, for ECD, a growth law for deposit evolution. We present numerical simulations for typical electrochemical deposition experiments: dense branched morphology in ECD and the incubation period in SCBE. In ECD the model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in qualitative agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. In SCBE, the model predicts that the inverse of the incubation time scales linearly with the applied voltage. Such behaviour was observed in experiments.

  11. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  12. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    International Nuclear Information System (INIS)

    Suleman, M; Deraman, M; Othman, M A R; Omar, R; Basri, N H; Nor, N S M; Dolah, B N M; Hanappi, M F Y M; Hamdan, E; Sazali, N E S; Tajuddin, N S M; Jasni, M R M; Hashim, M A

    2016-01-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ∼ 1700 m 2 g -1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (∼3.6×10 -3 S cm -1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (∼270 F g -1 ), specific energy (∼ 36 Wh kg -1 ), and power density (∼ 33 kW kg -1 ). (paper)

  13. Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Wu-yuan; Wang, Wei; He, Ben-lin; Sun, Ming-liang; Yin, Yan-sheng [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, Shandong Province (China)

    2010-11-01

    This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO{sub 2}) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO{sub 4} in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO{sub 2} film electro-codeposition. The redox properties of the coated PANI/MnO{sub 2} thin film exhibit ideal capacitive behaviour in 1 M LiClO{sub 4}/AN. The specific capacitance (SC) of PANI/MnO{sub 2} hybrid film is as high as 1292 F g{sup -1} and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm{sup -2}, and the coulombic efficiency ({eta}) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO{sub 2}/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg{sup -1} at a specific power of 172 W kg{sup -1} in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO{sub 2} material application in supercapacitors. (author)

  14. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  15. Complement activation by ceramide transporter proteins.

    Science.gov (United States)

    Bode, Gerard H; Losen, Mario; Buurman, Wim A; Veerhuis, Robert; Molenaar, Peter C; Steinbusch, Harry W M; De Baets, Marc H; Daha, Mohamed R; Martinez-Martinez, Pilar

    2014-02-01

    C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with extracellular matrix components, such as type IV collagen, and with the innate immune protein serum amyloid P. In this article, we report a novel function of CERT in the innate immune response. Both CERT isoforms, when immobilized, were found to bind the globular head region of C1q and to initiate the classical complement pathway, leading to activation of C4 and C3, as well as generation of the membrane attack complex C5b-9. In addition, C1q was shown to bind to endogenous CERTL on the surface of apoptotic cells. These results demonstrate the role of CERTs in innate immunity, especially in the clearance of apoptotic cells.

  16. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport

    Science.gov (United States)

    Emonts, Bernd; Schiebahn, Sebastian; Görner, Klaus; Lindenberger, Dietmar; Markewitz, Peter; Merten, Frank; Stolten, Detlef

    2017-02-01

    "Energiewende", which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of 'clean and green' projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.

  17. Effect of hypovolemia, infusion, and oral rehydration on plasma electrolytes, ADH, renin activity, and +G/z/ tolerance

    Science.gov (United States)

    Greenleaf, J. E.; Brock, P. J.; Haines, R. F.; Rositano, S. A.; Montgomery, L. D.; Keil, L. C.

    1977-01-01

    Effects on plasma volume, electrolyte shifts, and +G(z) tolerance induced by: (1) blood withdrawal; (2) blood infusion; and (3) oral fluid intake, were determined at 0.5 G/min in centrifugation tests of six ambulatory male patients, aged 21 to 27 yrs. Hypovolemia induced by withdrawal of 400 ml blood, blood infusion followed by repeated centrifugation, effects of consuming an isotonic drink (0.9% NaCl) to achieve oral rehydration, and donning of red adaptation goggles were studied for effects on acceleration tolerance, pre-acceleration and post-acceleration plasma renin activity (PRA) and plasma vasopressin levels. No significant changes in post-acceleration PRA compared to pre-acceleration PRA were found, and administration of oral rehydration is found as effective as blood replacement in counteracting hypovolemic effects.

  18. BWR startup and shutdown activity transport control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, A.J., E-mail: jgiannelli@finetech.com, E-mail: ajarvis@finetech.com [Finetech, Inc., Parsippany, New Jersey (United States)

    2010-07-01

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 {sup o

  19. Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Cheng, Ping [Ministry of Education Key Laboratory of Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiaotong University, DongChuan Road 800, Shanghai 200240 (China)

    2010-06-15

    The effect of wettability on water transport dynamics in gas diffusion layer (GDL) is investigated by simulating water invasion in an initially gas-filled GDL using the multiphase free-energy lattice Boltzmann method (LBM). The results show that wettability plays a significant role on water saturation distribution in two-phase flow in the uniform wetting GDL. For highly hydrophobicity, the water transport falls in the regime of capillary fingering, while for neutral wettability, water transport exhibits the characteristic of stable displacement, although both processes are capillary force dominated flow with same capillary numbers. In addition, the introduction of hydrophilic paths in the GDL leads the water to flow through the hydrophilic pores preferentially. The resulting water saturation distributions show that the saturation in the GDL has little change after water breaks through the GDL, and further confirm that the selective introduction of hydrophilic passages in the GDL would facilitate the removal of liquid water more effectively, thus alleviating the flooding in catalyst layer (CL) and GDL. The LBM approach presented in this study provides an effective tool to investigate water transport phenomenon in the GDL at pore-scale level with wettability distribution taken into consideration. (author)

  20. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  1. Influence of the electrolyte distribution near the micropores of the activated carbon (AC) electrode on high rate performance of high voltage capacitors

    International Nuclear Information System (INIS)

    Lee, Chung ho; Xu, Fan; Jung, Cheolsoo

    2014-01-01

    Highlights: • TFB can enhance the rate performance of high voltage capacitors. • TFB can suppress to increase the discharge slope to improve the cell performance. • TFB decreases the charge transfer resistance of an AC cell. • TFB affects the distribution of the electrolyte components near the microporous AC. - Abstract: This paper presents a method to enhance the rate performance of high voltage capacitors using an electrolyte additive, 1,3,5-trifluorobenzene (TFB). With increasing discharge rate, the capacity of the activated carbon (AC)/lithium (Li) cell decreases with increasing the slope of the discharge curve and its potential drop at 4.6 V. By adding TFB, the discharge slope improves to increase the rate performance of the cell, and EIS showed that the charge transfer resistance (Rc) of the AC cell decreases. These results suggest that TFB affects the distribution of the electrolyte components near the microporous AC and improves the rate performance of the AC cell

  2. A determination, using solid zirconia electrolytes, of the activities of chromium oxide in ferrochromium alloys and slags at 1650 degrees Celsius

    International Nuclear Information System (INIS)

    Wellbeloved, D.B.; Finn, C.W.P.

    1982-01-01

    This report describes the development of a method in which solid zirconia electrolytes are used in the determination of the activities of chromium and chromium oxide in ferrochromium alloys and slags at 1650 degrees Celsius. Problems related to the cracking of electrolytes as a result of thermal shock, the dissolution of electrolytes in slags, and electrical contacts are discussed. Results for the iron-chromium system at 1650 degrees Celsius are found to be in good agreement with published findings. A limited number of results are reported for slag, but these are inconclusive because there was contamination from container materials. A 'gas-phase' cell is described that overcomes most of the problems encountered

  3. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. Pedelecs as a physically active transportation mode.

    Science.gov (United States)

    Peterman, James E; Morris, Kalee L; Kram, Rodger; Byrnes, William C

    2016-08-01

    Pedelecs are bicycles that provide electric assistance only when a rider is pedaling and have become increasingly popular. Our purpose was to quantify usage patterns over 4 weeks of real-world commuting with a pedelec and to determine if pedelec use would improve cardiometabolic risk factors. Twenty sedentary commuters visited the laboratory for baseline physiological measurements [body composition, maximum oxygen consumption ([Formula: see text]), mean arterial blood pressure (MAP), blood lipid profile, and 2-h oral glucose tolerance test (OGTT)]. The following 4 weeks, participants were instructed to commute using a pedelec at least 3 days week(-1) for 40 min day(-1) while wearing a heart rate monitor and a GPS device. Metabolic equivalents (METS) were estimated from heart rate data. Following the intervention, we repeated the physiological measurements. Average total distance and time were 317.9 ± 113.8 km and 15.9 ± 3.4 h, respectively. Participants averaged 4.9 ± 1.2 METS when riding. Four weeks of pedelec commuting significantly improved 2-h post-OGTT glucose (5.53 ± 1.18-5.03 ± 0.91 mmol L(-1), p activity recommendations. Pedelec commuting also resulted in significant improvements in 2-h post-OGTT glucose, [Formula: see text], and power output. Pedelecs are an effective form of active transportation that can improve some cardiometabolic risk factors within only 4 weeks.

  5. Sustainable Transportation Systems Research Group: Ongoing and Past Activities

    OpenAIRE

    Gkritza, Konstantina "Nadia"; Hurtado, Davis Chacon; Gkartzonikas, Christos; Ke, Yue; Losada, Lisa L

    2017-01-01

    This presentation describes the ongoing and past activities of the Sustainable Transportation Systems Research (STSR) group at Purdue University (https://engineering.purdue.edu/STSRG). The STSR group aims to achieve green, safe, efficient, and equitable transportation systems by studying and modeling transportation externalities, using state of the art statistical, econometric, and economic analysis tools.

  6. Active transport among Czech school-aged children

    Directory of Open Access Journals (Sweden)

    Jan Pavelka

    2012-09-01

    Full Text Available BACKGROUND: Active transport is a very important factor for increasing the level of physical activity in children, which is significant for both their health and positive physical behaviour in adult age. OBJECTIVE: The aim of the study was to establish the proportion of Czech children aged 11 to 15 who select active transport to and from school and, at the same time, describe socio-economic and socio-demographic factors influencing active transport to and from school among children. METHODS: To establish the socio-demographic factors affecting active transport, data of a national representative sample of 11 to 15 year-old elementary school children in the Czech Republic (n = 4,425. Research data collection was performed within an international research study called Health Behaviour in School Aged Children in June 2010. Statistical processing of the results was made using a logistic regression analysis in the statistical programme IBM SPSS v 20. RESULTS: Active transport to and from school is opted for in the Czech Republic by approximately 2/3 of children aged 11 to 15. Differences between genders are not statistically significant; most children opting for active transport are aged 11 (69%. An important factor increasing the probability of active transport as much as 16 times is whether a child's place of residence is in the same municipality as the school. Other factors influencing this choice include BMI, time spent using a computer or a privateroom in a family. A significant factor determining active transport by children is safety; safe road crossing, opportunity to leave a bicycle safely at school, no fear of being assaulted on the way or provision of school lockers where children can leave their items. CONCLUSIONS: Active transport plays an important role in increasing the overall level of physical activity in children. Promotion of active transport should focus on children who spend more time using a computer; attention should also be

  7. Passenger transport and household activity patterns

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Review of Danish passenger transport patterns and analysis of energy consumption, emissions and safety impacts for selected typical households' travelling......Review of Danish passenger transport patterns and analysis of energy consumption, emissions and safety impacts for selected typical households' travelling...

  8. Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Hyung; Lee, Eunji; Kim, Myung-Soo; Jung, Ji Chul [Myongji University, Yongin (Korea, Republic of); Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun [Vitzrocell Co., Yesan (Korea, Republic of)

    2015-02-15

    Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance of activated carbon aerogel electrode was determined by cyclic voltammetry and galvanostatic charge/discharge methods using coin-type EDLC cell in organic electrolyte. Activation temperature played an important role in determining the electrochemical performance of activated carbon aerogel for EDLC electrode. Specific capacitance of activated carbon aerogel at a high current density (5 A/g) showed a volcano-shaped curve with respect to activation temperature. Excessively high activation temperature could have an adverse effect on the electrochemical properties of activated carbon aerogel due to the low electrical conductivity caused by a collapse of characteristic structure of carbon aerogel. Among the carbon samples, carbon aerogel activated at 800 .deg. C with a high surface area and a well-developed porous structure exhibited the highest specific capacitance. In addition, carbon aerogel activated at 800 .deg. C retained a considerable specific capacitance at a high current density even after 1000 cycles of charge/discharge. Therefore, it is concluded that carbon aerogel activated with KOH at 800 .deg. C can serve as an efficient electrode material for commercial EDLC with a high power density.

  9. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  10. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study.

    Science.gov (United States)

    Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie

    2014-09-27

    Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation

  11. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  12. Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder

    Science.gov (United States)

    Chen, Y.-R.; Chiu, K.-F.; Lin, H. C.; Chen, C.-L.; Hsieh, C. Y.; Tsai, C. B.; Chu, B. T. T.

    2014-11-01

    Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.

  13. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  14. Transport of the moving barrier driven by chiral active particles

    Science.gov (United States)

    Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.

  15. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  16. Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, M.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ; Modarress, H. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ]. E-mail: hmodares@aut.ac.ir; Monirfar, M. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-08-15

    Electrochemical measurements were made on (H{sub 2}O + NaBr + K{sub 3}PO{sub 4} + glycine) mixtures at T = 298.15 K by using ion selective electrodes. The mean ionic activity coefficients of NaBr at molality 0.1 were determined at five K{sub 3}PO{sub 4} molalities (0.01, 0.03, 0.05, 0.07, and 0.1) mol . kg{sup -1}. The activity coefficients of glycine were evaluated from mean ionic activity coefficients of NaBr. The modified Pitzer equation was used to model the experimental data.

  17. Electrolyte Balance of the Inner Ear Investigated by Neutron Activation Analysis of the Sodium and Potassium Content

    International Nuclear Information System (INIS)

    Ördögh, Mary; Miriszlai, E.

    1967-01-01

    Even the few experimental data that have been obtained from investigations of the inner ear are an important contribution to our biochemical knowledge of the sense organs. The apparent discrepancies between some experimental results have prompted comparative studies on the sodium and potassium concentrations in the inner-ear fluids, the liquor cerebrospinalis, the mammalian and human serum. The results of these studies are expected to give a good approximation of the intracellular and extracellular electrolyte concentrations and to yield important information on the physiological and pathological conditions of the inner ear as well as on the mechanism of hearing. The experimental material is obtained from guinea pigs by penetration through the round window (fenestra rotunda). The sodium and potassium content is determined by neutron activation analysis. Potassium is precipitated from the irradiated samples by sodium tetraphenyl borate reagent, so that the sodium activity retained by the filtrate can be directly counted. Since a single precipitation of potassium does not yield end products free from sodium contamination, the precipitate is dissolved in acetone and precipitated again with sodium tetraphenyl borate. The product of the second precipitation is radiochemically pure. In simultaneous experiments, potassium was separated from the much higher sodium activity by isotopic exchange. The irradiated sample is added to an experimentally determined inactive potassium tetraphenyl borate precipitate that adsorbs the total potassium activity present without adsorbing any sodium. The separation of potassium by isotopic exchange has the advantage of yielding in a single step a sufficiently pure product without any sodium contamination. For comparison, sodium and potassium were also determined by flame photometry. (author)

  18. 76 FR 7560 - Agency Information Collection Activities; Proposed Collection; Comment Request; Transportation...

    Science.gov (United States)

    2011-02-10

    ... Activities; Proposed Collection; Comment Request; Transportation Conformity Determinations for Federally... federally supported transportation activities are consistent with (``conform to'') the purpose of the state air quality implementation plan (SIP). Transportation activities include transportation plans...

  19. Separation Method for Oxygen Mass Transport Coefficient in Two Phase Porous Air Electrodes - Transport in Gas and Solid Polymer or Liquid Electrolyte Phases

    Science.gov (United States)

    2013-08-06

    of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated

  20. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous ...

  1. Underscreening in concentrated electrolytes.

    Science.gov (United States)

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  2. Complement Activation by Ceramide Transporter Proteins

    NARCIS (Netherlands)

    Bode, G.H.; Losen, M.; Buurman, W.A.; Veerhuis, R.; Molenaar, P.C.; Steinbusch, H.W.M.; De Baets, M.H.; Daha, MR; Martinez-Martinez, P.

    2014-01-01

    C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with

  3. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.

  4. Intrinsic Hand Muscle Activation for Grasp and Horizontal Transport

    OpenAIRE

    Winges, Sara A.; Kundu, Bornali; Soechting, John F.; Flanders, Martha

    2007-01-01

    During object manipulation, the hand and arm muscles produce internal forces on the object (grasping forces) and forces that result in external translation or rotation of the object in space (transport forces). The present study tested whether the intrinsic hand muscles are actively involved in transport as well as grasping. Intrinsic hand muscle activity increased with increasing demands for grasp stability, but also showed the timing and directional tuning patterns appropriate for actively ...

  5. Activity-Dependent Regulation of Surface Glucose Transporter-3

    OpenAIRE

    Ferreira, Jainne M.; Burnett, Arthur L.; Rameau, Gerald A.

    2011-01-01

    Glucose transporter 3 (GLUT3) is the main facilitative glucose transporter in neurons. Glucose provides neurons with a critical energy source for neuronal activity. However, the mechanism by which neuronal activity controls glucose influx via GLUT3 is unknown. We investigated the influence of synaptic stimulation on GLUT3 surface expression and glucose import in primary cultured cortical and hippocampal neurons. Synaptic activity increased surface expression of GLUT3 leading to an elevation o...

  6. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  7. Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    NARCIS (Netherlands)

    Sjostedt, N.; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Kidron, H.

    2017-01-01

    PURPOSE: To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. METHODS: The transport activity of the

  8. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Distribution of electrolytes in a flow battery

    Science.gov (United States)

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  10. Topology Optimization of Active Transport Flows

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    2017-01-01

    Fluid flows with particle transport are common in many industrial processes and components. The design of components for addition or removal of particles as well as mixing or stratification is of great importance in the specific processes. This work presents a methodology to apply topology....... The paper present the design and optimization of a particle separator and the important interpolation for modeling both solids, fluids and particles with a monolithic problem formulation. The interplay with the physics behind the model are discussed and the influence of parameters are demonstrated....

  11. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    Science.gov (United States)

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  12. Space transportation activities in the United States

    Science.gov (United States)

    Gabris, Edward A.

    1994-01-01

    The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.

  13. The effect of ramadan fasting and physical activity on body composition, serum osmolarity levels and some parameters of electrolytes in females.

    Science.gov (United States)

    Attarzadeh Hosseini, Seyyed Reza; Sardar, Mohammad Ali; Hejazi, Keyvan; Farahati, Samaneh

    2013-01-01

    So far, there have been a few and incoherent results about the effects of physical activities. Fasting in Ramadan has an effect on the level of osmolarity and the concentration of serum electrolytes both in active and inactive females. The aim of this study was to observe the changes of serum electrolytes and osmolarity levels according to regular exercise during fasting. TWENTY TWO HEALTHY FEMALES WHO WERE ELECTED BY CONVENIENCE SAMPLING METHOD WERE DIVIDED INTO TWO GROUPS: 1) fasting + exercise (FE; n = 11) and 2) fasting + non exercise (FNE; n = 15). The FE group participated in aerobic training for four sessions per week during the fasting. All measurements were done once before the first day, on the second week, on the fourth week and two weeks after fasting month and these measures were used to analyze test results. THE MEAN DIFFERENCES WERE AS FOLLOWS: significant weight loss, BMI, WHR, in two groups at the end of Ramadan (P 0.05). Potassium, creatinine, urea and uric acid had been decreased significantly in both groups (P Ramadan led to some changes in serum osmolarity index, electrolytes and water. Therefore, it is important for female athletes to consider applying a suitable nutritious diet and sufficient water consumption during Ramadan.

  14. THE TIME FACTOR IN MARITIME TRANSPORT AND PORT LOGISTICS ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Florin NICOLAE

    2016-06-01

    Full Text Available Execution of the carriage contract requires compliance to all the conditions in it, by all those involved in the transport. Main obligations incumbent upon the vessel, and obviously, to other transporters, who must provide transportation according to deadlines and safety. Contract compliance is certifying transport participants about their seriousness and an appropriate market quotation. Therefore, present work pragmatically sets schematics reference time associated implementation of the carriage contract. Also, are demonstrated relationships established between maritime transport “players” and sequence of activities related to the operation of the vessel in port. The authors propose a set of concepts and terms whose utility is established to solve practical problems in this area of activity.

  15. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  16. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  17. Collaboration between physical activity researchers and transport planners

    DEFF Research Database (Denmark)

    Crist, Katie; Bolling, Khalisa; Schipperijn, Jasper

    2018-01-01

    Collaboration between physical activity (PA) researchers and transport planners is a recommended strategy to combat the physical inactivity epidemic. Data collected by PA researchers could be used to identify, implement and evaluate active transport (AT) projects. However, despite aligned interests......, researchers and transport planners rarely collaborate. This study utilized qualitative methods to 1) gain an in-depth understanding of the data utilized in AT planning, 2) explore the utility of Global Positioning Systems (GPS) and accelerometer data in supporting the planning process, 3) identify...... expertise in health or transport planning. A thematic analysis was conducted following structural coding by two researchers. The analysis revealed that geographic and physical activity data that are current, local, objective and specific to individual AT trips would improve upon currently available data...

  18. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  19. Update of Nuclear Waste Policy Act transportation activities

    International Nuclear Information System (INIS)

    Callaghan, E.F.

    1987-01-01

    As directed by the Nuclear Waste Policy Act of 1982 (NWPA), the Department of Energy (DOE) is developing a nationwide system for transporting spent nuclear fuel and high-level radioactive waste from commercial power plants to deep geologic repositories for disposal. Plans for the transportation system will consider the following factors: the President's 1985 decision to co-locate some defense high-level waste with commercial waste in a repository, the NWPA requirement that the private sector be used to the fullest extent possible in developing and operating the system, and the possible approval by Congress of the DOE's proposal for a Monitored Retrievable Storage (MRS) facility, submitted in March 1987. (The MRS, if approved, would provide for the consolidation, packaging, and perhaps the temporary storage of spent fuel from reactors.) The ''Transportation Business Plan'', published in January 1986, reflects these considerations. The transportation system, when operational, will consist of two elements: (1) the cask system, which includes the transportation casks, the vehicular conveyances, tie-downs, and associated equipment for handling the casks; and (2) the transportation support system which is comprised of facilities, equipment, and services to support waste transportation. Development of the transportation system incorporates the following work elements: operational planning, support systems development, cash system development, systems analysis, and institutional activities. This paper focusses on the technical aspects of the system

  20. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor

  1. Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level

    Science.gov (United States)

    Heider, U.; Oesten, R.; Jungnitz, M.

    The quality of electrolytes for lithium batteries are a major topic in science and battery industries. The solvents and lithium salts should be of highest purity. Therefore, during preparation and handling of electrolyte solutions, the contamination level has to be minimized and the quality during packaging, storage and transportation has to be guaranteed. Especially, protic impurities are found to be very critical for LiPF 6-based electrolytes. The influence of water is reported to be tremendous. But also other protic impurities like alcohols are considered to play an important role in the electrolyte quality. The reaction of the protic impurities with LiPF 6 leads to the formation of HF which further reacts with cathode active materials (e.g., spinel) and the passivating films of the cathode and anode. For a better understanding of the protic impurities and their role in the electrolyte quality a systematic investigation of different impurities was carried out. Electrolytes were doped with different protic compounds. Then the electrolyte was analyzed for protic impurities and HF in dependence of time. First results showing the relation between protic impurities and HF are presented and discussed. In addition, different packaging materials for the electrolyte solutions were investigated. Storage tests were carried out at different temperatures and in different atmospheres. Results on contamination levels, influence of packaging, high temperature storage and handling are addressed.

  2. Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG1000 as an additive

    Science.gov (United States)

    Guan, Jie; Wang, Jinwei; Zhang, Dawei

    2018-06-01

    Ni coatings are prepared on Cu-pretreated anodic Al alloy by electroplating technique in environment-friendly electrolytes with PEG1000 as an additive. Some defects like pores, cracks and even uncovered areas are observed for the sample of the Cu-pretreated anodic Al alloy, and these defects seem to be remedied with the following Ni electroplating as observed from their SEM images; while the covering effect of Ni onto the Cu layer is rather limited as judged by their corrosion current data of polarization test. After adding PEG1000 in the Ni electroplating electrolyte, the obtained coating surfaces are seen smoother and thicker; and most of the tiny particles are seen closely packed together with some bigger particles on them. The diffusion of nickel particles into copper layer are confirmed by the line and mapping mode of EDS element analysis for the Ni-Cu composite coating. Their much lower corrosion current density ( I corr) and higher micro-hardness support the fact that the addition of PEG1000 in Ni plating electrolyte has a function of promoting the refinement of Ni particles and the formation of more compacter, thicker and smoother Ni-Cu composite coating.

  3. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.; Cashwell, J.W.; Jefferson, R.M.

    1983-01-01

    Transportation Technology Center has been conducting a wide range of technical research activities to assure the ability to transport radioactive materials in a safe, reliable manner. These activities include tasks in basic, analysis methodology and system research areas. Recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on the Department of Energy for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  4. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C.; Luna, R.E.; Jefferson, R.M.; Wowak, W.E.

    1983-01-01

    The Transportation Technology Center has been conducting a wide range of technical and non-technical research activities to assure the ability to transport radioactive materials in a safe, reliable, and publicly acceptable manner. These activities include tasks in Information and Intergovernmental issues, Safety Assessment and Environmental Analysis and Technology Development. Until recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on DOE for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  5. Endocrine control of active sodium transport across frog skin

    International Nuclear Information System (INIS)

    Maetz, J.

    1959-01-01

    I. Action of the neurohypophyseal peptides on sodium transport. 1) On Rana Esculenta, oxytocin alone is active on the sodium transport (not vaso pressin). 2) The post hypophysis of R.e. contains an hormonal factor even more specific on Na transport (12 times more active than oxytocin). 3) This new factor must be closely related to oxytocin. II. Action of the adrenal corticoids. 1) The skin of frogs adapted to a salt-rich external medium, shows a considerable diminution in sodium uptake. 2) This decreased sodium uptake is brought back to normal by the injections of aldosterone. 3) This suggests that salt loading of amphibians (as well as mammals) inhibits the mineralocorticoid activity of the adrenals. (author) [fr

  6. Advocacy for active transport: advocate and city council perspectives

    Directory of Open Access Journals (Sweden)

    Rosenby Marieah

    2010-01-01

    Full Text Available Abstract Background Effective advocacy is an important part of efforts to increase population participation in physical activity. Research about effective health advocacy is scarce, however, the health sector can learn from the experiences and knowledge of community advocates and those who are on the receiving end of this advocacy. The aim of this study is to explore advocacy for active transport from the perspectives of community advocates and representatives from City councils. Methods Cycling and walking advocates were identified from the local contact list of Cycling Advocates Network and Living Streets Aotearoa. Semi-structured telephone interviews were conducted with cycle and walking advocates from throughout New Zealand. Advocates also nominated a suitable council officer at their local City council to be interviewed. Interviews were recorded and transcribed and categories of responses for each of the questions created. Results Several processes were used by advocates to engage with council staff, including formal council submissions, meetings, stakeholder forums and partnership in running community events promoting active transport. Several other agencies were identified as being influential for active transport, some as potential coalition partners and others as potential adversaries. Barriers to improving conditions for active transport included a lack of funding, a lack of will-power among either council staff or councillors, limited council staff capacity (time or training and a culture of providing infrastructure for motor vehicles instead of people. Several suggestions were made about how the health sector could contribute to advocacy efforts, including encouraging political commitment, engaging the media, communicating the potential health benefits of active transport to the general public and being role models in terms of personal travel mode choice and having workplaces that support participation in active transport

  7. Presentation and exhibition activities for promoting theexportof transport services

    Directory of Open Access Journals (Sweden)

    Darya Vladimirovna Nesterova

    2012-03-01

    Full Text Available Development of presentation and exhibition activities is considered as an important factor in providing new competitive advantages at the strategic markets for exporting of transportation services. A specific role for exhibition activities as a factor to overcome market failures arose from imperfect information and incomplete markets is displayed. Exhibitions are considered as a true reflection of most market parameters, as a means to get correct information concerning market capacity and its borders, as an instrument to access to new markets. At the firm level presentation and branding activities should be considered as a modern technology (especially it concerns Russian companies which provide to hold up already existed markets and to conquer new ones. Presentation and branding activities are an effective technology to promote company trade-mark, competitive advantages for market demand increasing. Comparative analysis of the main exhibitions on transport and logistics issues is fulfilled on the data basecollected by authors. Data observes geographical distribution of transport exhibition and exhibition facilities development at several regions for the last years. The analyses allow to revealing a geographical structure of the exhibitions and its distribution by type of transport. The most promising and economically favorable exhibition areas for the promotion of Russian transport services are shown.

  8. Active water transport in unicellular algae: where, why, and how.

    Science.gov (United States)

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Identifying clusters of active transportation using spatial scan statistics.

    Science.gov (United States)

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  10. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  11. Activation of ion transport systems during cell volume regulation

    International Nuclear Information System (INIS)

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems

  12. Sediment transport in an active erodible channel bend

    Indian Academy of Sciences (India)

    Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, ...

  13. Design to nullify activity movement in heat transport systems

    International Nuclear Information System (INIS)

    Hemmings, R.L.; Barber, D.

    1975-01-01

    This article describes the methods by which designers can reduce the adverse effects of system corrosion and the resultant activation of the corrosion products in heat transport systems. The presentation will cover: a) choice of materials; b) assessment of the need of components; c) control of system chemistry; d) factors considered in sizing HTS purification systems; i) control of activation and fission products; ii) decontamination. (author)

  14. Verification of Monte Carlo transport codes by activation experiments

    OpenAIRE

    Chetvertkova, Vera

    2013-01-01

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is...

  15. Background electrolytes and pH effects on selenate adsorption using iron-impregnated granular activated carbon and surface binding mechanisms.

    Science.gov (United States)

    Zhang, Ning; Gang, Daniel Dianchen; McDonald, Louis; Lin, Lian-Shin

    2018-03-01

    Iron-impregnated granular activated carbon (Fe-GAC) has been shown effective for selenite adsorptive removal from aqueous solutions, but similar effectiveness was not observed with selenate. This study examined the effects of background electrolytes and pH on selenate adsorption on to Fe-GAC, and surface bindings to elucidate the selenate adsorption mechanisms. The decrease magnitude of selenate adsorption capacity under three background electrolytes followed the order: LiCl > NaCl > KCl, as ionic strength increased from 0.01 to 0.1 M. Larger adsorption capacity differences among the three electrolytes were observed under the higher ionic strengths (0.05 and 0.1 M) than those under 0.01 M. Multiplet peak fittings of high resolution X-ray photoelectron spectra for O1s and Fe2p 3/2 indicated the presence of iron (III) on adsorbent surface. pH variations during the adsorbent preparation within 3-8 in NaCl solutions did not cause appreciable changes in the iron redox state and composition. Raman spectra showed the formation of both monodentate and bidentate inner sphere complexes under pHs adsorption under alkaline conditions. Mechanisms for monodentate and bidentate formations and a stable six-member ring structure were proposed. Two strategies were recommended for modifying Fe-GAC preparation procedure to enhance the selenate adsorption: (1) mixed-metal oxide coatings to increase the point of zero charge (pH zpc ); and (2) ferrous iron coating to initially reduce selenate followed by selenite adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    Science.gov (United States)

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  17. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Science.gov (United States)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  18. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo

  19. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a designated...

  20. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  1. Liquid electrolyte positioning along the device channel influences the operation of Organic Electro-Chemical Transistors

    KAUST Repository

    D'angelo, Pasquale

    2014-11-01

    In this work, we show the influence of the liquid electrolyte adsorption by porous films made of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, on the operation of an Organic Electro-Chemical Transistor with an active channel based on these polymeric films. In particular, the effect of film hydration on device performance is evaluated by studying its electrical response as a function of the spatial position between the electrolyte and the channel electrodes. This is done by depositing a PEDOT:PSS film on a super-hydrophobic surface aimed at controlling the electrolyte confinement next to the electrodes. The device response shows that the confinement of ionic liquids near to the drain electrode results in a worsening of the current modulation. This result has been interpreted in the light of studies dealing with the transport of ions in semiconducting polymers, indicating that the electrolyte adsorption by the polymeric film implies the formation of liquid pathways inside its bulk. These pathways, in particular, affect the device response because they are able to assist the drift of ionic species in the electrolyte towards the drain electrode. The effect of electrolyte adsorption on the device operation is confirmed by means of moving-front measurements, and is related to the reproducibility of the device operation curves by measuring repeatedly its electrical response.

  2. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Egorova, E.G.; Ananieva, T.V.; Kulikova, I.A.

    1993-01-01

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  3. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    Science.gov (United States)

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  4. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost

  5. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the

  6. Effects of a Danish multicomponent physical activity intervention on active school transport

    DEFF Research Database (Denmark)

    Breum, Lars; Toftager, Mette; Ersbøll, Annette K.

    2014-01-01

    activity, active transport and after-school fitness program. Transport mode to school was assessed through a 5-day transportation diary. Results The proportion of active transport was high at baseline (86.0%) and was maintained at the two-year follow-up (87.0%). There was no difference in active travel...... between the intervention and the comparison schools after the intervention, but more students perceived parental encouragement and had a positive attitude towards bicycling at the intervention schools. This difference was however only borderline significant. Conclusion The prevalence of AST was high...... at both baseline and follow-up, but no difference between the intervention and comparison schools was detected. Future intervention research should ensure a high degree of involvement of students, teachers and parents, focus merely on AST and take advantage of already planned physical environment changes...

  7. Transendothelial albumin flux: evidence against active transport of albumin

    International Nuclear Information System (INIS)

    Siflinger-Birnboim, A.; Del Vecchio, P.J.; Cooper, J.A.; Malik, A.B.

    1986-01-01

    The authors studied whether albumin is actively transported across cultured pulmonary endothelium by comparing the transendothelial flux of 125 I-albumin from the luminal-to-abluminal side to the flux from the abluminal-to-luminal side. Bovine pulmonary artery endothelial cells were grown to confluence on gelatinized polycarbonated filters separating abluminal from luminal compartments. Each compartment had an albumin concentration of 1 g/100 ml to equalize oncotic pressure gradients. The effect of hydrostatic pressure was eliminated by maintaining an equal level of fluid in both compartments. The transendothelial flux of albumin across the monolayer was measured by placing 125 I-albumin tracer either on the luminal or the abluminal side. Equal fluxes of 125 I-albumin from luminal-to-abluminal side and from abluminal-to-luminal side were observed. The results indicate that the pulmonary endothelium behaves symmetrically for albumin, indicating the absence of active transport of albumin

  8. School physical activity policies and active transport to school among pupils in the Czech Republic

    NARCIS (Netherlands)

    Hollein, Tomas; Vasickova, Jana; Bucksch, Jens; Kalman, Michal; Sigmundova, Dagmar; van Dijk, Jitse P.

    Background: Previous studies indicate that the level of physical activity (PA) significantly affects children's health. Active transport to school is PA on a daily basis that may contribute substantially to the overall volume of moderate to vigorous physical activity (MVPA). Aim of our study was to

  9. Transportable, Low-Dose Active Fast-Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, John T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wright, Michael C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McConchie, Seth M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Archer, Daniel E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palles, Blake A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  10. 77 FR 71430 - New Agency Information Collection Activity Under OMB Review: Public Transportation Baseline...

    Science.gov (United States)

    2012-11-30

    ... DEPARTMENT OF HOMELAND SECURITY Transportation Security Administration New Agency Information Collection Activity Under OMB Review: Public Transportation Baseline Assessment for Security Enhancement... voluntary site visits with security and operating officials of public transportation systems. This program...

  11. 77 FR 19680 - Extension of Agency Information Collection Activity Under OMB Review: Rail Transportation Security

    Science.gov (United States)

    2012-04-02

    ... DEPARTMENT OF HOMELAND SECURITY Transportation Security Administration [Docket No. TSA-2006-26514] Extension of Agency Information Collection Activity Under OMB Review: Rail Transportation Security AGENCY: Transportation Security Administration, DHS. ACTION: 30-day Notice. SUMMARY: This notice announces that the...

  12. 77 FR 15114 - Extension of Agency Information Collection Activity Under OMB Review: Transportation Security...

    Science.gov (United States)

    2012-03-14

    ... DEPARTMENT OF HOMELAND SECURITY Transportation Security Administration Extension of Agency Information Collection Activity Under OMB Review: Transportation Security Officer (TSO) Medical Questionnaire AGENCY: Transportation Security Administration, DHS. ACTION: 30-day Notice. SUMMARY: This notice...

  13. 78 FR 68908 - Proposed Information Collection (Veterans Transportation Service Data Collection); Activity...

    Science.gov (United States)

    2013-11-15

    ... (Veterans Transportation Service Data Collection); Activity: Comment Request AGENCY: Veterans Health.... This notice solicits comments on the information needed to evaluate the Veterans Transportation Service... receive timely and reliable transportation for the purpose of examination, treatment and care. DATES...

  14. 75 FR 2556 - Extension of Agency Information Collection Activity Under OMB Review: Transportation Security...

    Science.gov (United States)

    2010-01-15

    ... DEPARTMENT OF HOMELAND SECURITY Transportation Security Administration Extension of Agency Information Collection Activity Under OMB Review: Transportation Security Officer (TSO) Medical Questionnaire AGENCY: Transportation Security Administration, DHS. ACTION: 30-day notice. SUMMARY: This notice...

  15. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  16. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 9 through 12.

    Science.gov (United States)

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 9-12. It contains forty-nine learning activities grouped…

  17. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 6 through 9.

    Science.gov (United States)

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 6-9. It contains forty-two learning activities grouped…

  18. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  19. Solute activity coefficients in dilute aqueous electrolyte mixutes. III. The ternary system HCLO4 + UO2(CLO4)2 + H2O at 250C

    International Nuclear Information System (INIS)

    Boyd, G.E.

    1977-01-01

    Isopiestic vapor pressure comparison measurements were conducted with the three-component system HClO 4 + UO 2 (ClO 4 ) 2 + H 2 O in the concentration range between I = 0.05 and 1.9 m. Analysis of the mixture composition and concentration dependence of the osmotic coefficients with the Scatchard neutral-electrolyte and ion-component methods and with the Pitzer ion-component methods gave equally satisfactory results. Prediction of the observed osmotic coefficients by two-component approximations was satisfactory, and the data agreed well with values estimated with a model based on the osmolal fraction. A fair concordance was also found between predicted solute activity coefficients from simple models and values derived from complete treatments which included interaction terms

  20. Determination of the activation energy of rotational microviscosity in the DPPC multilayer dispersions and the effects of high electrolyte concentration on rotational microviscosity

    Energy Technology Data Exchange (ETDEWEB)

    Aydas, C. [Ankara Nuclear Research and Training Center, Ankara (Turkmenistan); Korkmaz, M. [Hacettepe University, Beytepe, Ankara (Turkmenistan)

    2004-10-15

    In the present work, electron spin resonance (ESR) spectroscopy was used to study, through the rotational microviscosity approach, the effects of high electrolyte concentrations on the phase behaviors of DPPC (dipalmitoylphosphatidylcholine) multilayer aqueous dispersions of lipid concentrations of 25 mg/ml and 50 mg/ml containing a 5-SASL spin label. The correlation time involved in the definition of rotational microviscosity was calculated using two different equations given in the literature. The activation energies of the rotational viscosity in the gel and the liquid crystal phases and the main transition temperatures were calculated from constructed Andrade plots. The results obtained are discussed in light of the literature data, and the validity of the approach was emphasized.

  1. Electrocatalytic activity and operational stability of electrodeposited Pd-Co films towards ethanol oxidation in alkaline electrolytes

    Science.gov (United States)

    Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni

    2015-10-01

    Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.

  2. Modelling of electron transport and of sawtooth activity in tokamaks

    International Nuclear Information System (INIS)

    Angioni, C.

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  3. Nafion and modified-Nafion membranes for polymer electrolyte fuel

    Indian Academy of Sciences (India)

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article ...

  4. Reliability and validity of the transport and physical activity questionnaire (TPAQ) for assessing physical activity behaviour.

    Science.gov (United States)

    Adams, Emma J; Goad, Mary; Sahlqvist, Shannon; Bull, Fiona C; Cooper, Ashley R; Ogilvie, David

    2014-01-01

    No current validated survey instrument allows a comprehensive assessment of both physical activity and travel behaviours for use in interdisciplinary research on walking and cycling. This study reports on the test-retest reliability and validity of physical activity measures in the transport and physical activity questionnaire (TPAQ). The TPAQ assesses time spent in different domains of physical activity and using different modes of transport for five journey purposes. Test-retest reliability of eight physical activity summary variables was assessed using intra-class correlation coefficients (ICC) and Kappa scores for continuous and categorical variables respectively. In a separate study, the validity of three survey-reported physical activity summary variables was assessed by computing Spearman correlation coefficients using accelerometer-derived reference measures. The Bland-Altman technique was used to determine the absolute validity of survey-reported time spent in moderate-to-vigorous physical activity (MVPA). In the reliability study, ICC for time spent in different domains of physical activity ranged from fair to substantial for walking for transport (ICC = 0.59), cycling for transport (ICC = 0.61), walking for recreation (ICC = 0.48), cycling for recreation (ICC = 0.35), moderate leisure-time physical activity (ICC = 0.47), vigorous leisure-time physical activity (ICC = 0.63), and total physical activity (ICC = 0.56). The proportion of participants estimated to meet physical activity guidelines showed acceptable reliability (k = 0.60). In the validity study, comparison of survey-reported and accelerometer-derived time spent in physical activity showed strong agreement for vigorous physical activity (r = 0.72, ptravel behaviours and may be suitable for wider use. Its physical activity summary measures have comparable reliability and validity to those of similar existing questionnaires.

  5. Ionic liquids as electrolytes

    International Nuclear Information System (INIS)

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela

    2006-01-01

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  6. Promoting physical activity and reducing climate change : Opportunities to replace short car trips with active transportation

    NARCIS (Netherlands)

    Maibach, E.; Steg, L.; Anable, J.

    2009-01-01

    Automobile use is a significant contributor to climate change, local air pollution, pedestrian injuries and deaths, declines in physical activity and obesity. A significant proportion of car use is for short trips that can relatively easily be taken with active transportation options - walking or

  7. Modelling of activity transport in primary heat transport (PHT) system of Indian PHWRs

    International Nuclear Information System (INIS)

    Markandeya, S.G.; Pujari, P.K.; Gandhi, H.C.; Venkateswaran, G.; Narasimhan, S.V.; Krishnarao, K.S.; Mathur, P.K.; Venkat Raj, V.

    2000-01-01

    Nuclear Power plants (NPPs) are designed and built with the aim of minimising the occupational exposure to the operational and maintenance staff. Despite the use of prudently selected materials of construction with high corrosion resistance and adopting very stringent water chemistry controls during operation the build-up of activity in the Primary Heat Transport (PHT) systems of NPPs has been found to be unavoidable. The Indian Pressurised Heavy Water Reactors (PHWRs) are no exception to this. To enable advance planning of maintenance work and the decontamination schedules, it is necessary to perform the off-site calculations to predict the activity buildup in the PHT circuits of the NPPs. A computer code ANUCRUD is under development for predicting the corrosion product and activity transport behaviour in the PHT circuits of Indian PHWRs. The present paper briefly describes some of the salient features of the code ANUCRUD. As a first attempt, preliminary calculations for predicting corrosion product crud concentration buildup in the PHT circuit of the 220 MWe Indian PHWR have been carried out using the code. The findings of these studies are discussed in the paper. Finally, the further improvements proposed to be carried out in the code are also brought out in the paper. (author)

  8. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  9. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  10. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  11. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    Science.gov (United States)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  12. Verification of Monte Carlo transport codes by activation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera

    2012-12-18

    With the increasing energies and intensities of heavy-ion accelerator facilities, the problem of an excessive activation of the accelerator components caused by beam losses becomes more and more important. Numerical experiments using Monte Carlo transport codes are performed in order to assess the levels of activation. The heavy-ion versions of the codes were released approximately a decade ago, therefore the verification is needed to be sure that they give reasonable results. Present work is focused on obtaining the experimental data on activation of the targets by heavy-ion beams. Several experiments were performed at GSI Helmholtzzentrum fuer Schwerionenforschung. The interaction of nitrogen, argon and uranium beams with aluminum targets, as well as interaction of nitrogen and argon beams with copper targets was studied. After the irradiation of the targets by different ion beams from the SIS18 synchrotron at GSI, the γ-spectroscopy analysis was done: the γ-spectra of the residual activity were measured, the radioactive nuclides were identified, their amount and depth distribution were detected. The obtained experimental results were compared with the results of the Monte Carlo simulations using FLUKA, MARS and SHIELD. The discrepancies and agreements between experiment and simulations are pointed out. The origin of discrepancies is discussed. Obtained results allow for a better verification of the Monte Carlo transport codes, and also provide information for their further development. The necessity of the activation studies for accelerator applications is discussed. The limits of applicability of the heavy-ion beam-loss criteria were studied using the FLUKA code. FLUKA-simulations were done to determine the most preferable from the radiation protection point of view materials for use in accelerator components.

  13. Human Water and Electrolyte Balance

    National Research Council Canada - National Science Library

    Montain, S. J; Cheuvront, S. N; Carter, R; Sawka, M. N

    2006-01-01

    .... Sweat losses, if not replaced, reduce body water volume and electrolyte content. Excessive body water or electrolyte losses can disrupt physiological homeostasis and threaten both health and performance...

  14. Physical activity energy expenditure in Dutch adolescents: contribution of active transport to school, physical education, and leisure time activities.

    Science.gov (United States)

    Slingerland, Menno; Borghouts, Lars B; Hesselink, Matthijs K C

    2012-05-01

    Detailed knowledge about physical activity energy expenditure (PAEE) can guide the development of school interventions aimed at reducing overweight in adolescents. However, relevant components of PAEE have never been objectively quantified in this population. This study investigated the contribution of active transport to and from school, physical education (PE), and leisure time activities to total PAEE during a regular school week in adolescents. Seventy-three adolescents (mean age: 15.7 years) wore an individually calibrated combined heart rate-acceleration monitor and kept an activity diary during a regular school week. Branched equation modeling was used to calculate PAEE of the specific activity categories, and their relative contribution to total PAEE was determined. Active transport and PE contributed 30.0% and 17.4%, respectively, to school-related PAEE. Active transport to and from school contributed 15% to total PAEE. Youth with a high physical activity level (PAL) spent 4 hours less in sedentary behavior than subjects with a medium or low PAL (F = 77.415 (2.70), p activities (F = 10.583 (2.70), p Active transport and PE contribute significantly to PAEE during school hours in adolescents. To achieve an increase in total PAEE in the least active group of adolescents, promising strategies might be to reduce inactive behavior, increase participation in leisure time sports, and possibly to replace inactive for active jobs. © 2012, American School Health Association.

  15. Glutamate transporter activity promotes enhanced Na+/K+-ATPase -mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian R; Holm, Rikke; Vilsen, Bente

    2016-01-01

    , in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether...... the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter......+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i...

  16. Adult active transport in the Netherlands: an analysis of its contribution to physical activity requirements.

    Directory of Open Access Journals (Sweden)

    Elliot Fishman

    Full Text Available Modern, urban lifestyles have engineered physical activity out of everyday life and this presents a major threat to human health. The Netherlands is a world leader in active travel, particularly cycling, but little research has sought to quantify the cumulative amount of physical activity through everyday walking and cycling.Using data collected as part of the Dutch National Travel Survey (2010 - 2012, this paper determines the degree to which Dutch walking and cycling contributes to meeting minimum level of physical activity of 150 minutes of moderate intensity aerobic activity throughout the week. The sample includes 74,465 individuals who recorded at least some travel on the day surveyed. As physical activity benefits are cumulative, all walking and cycling trips are analysed, including those to and from public transport. These trips are then converted into an established measure of physical activity intensity, known as metabolic equivalents of tasks. Multivariate Tobit regression models were performed on a range of socio-demographic, transport resources, urban form and meteorological characteristics.The results reveal that Dutch men and women participate in 24 and 28 minutes of daily physical activity through walking and cycling, which is 41% and 55% more than the minimum recommended level. It should be noted however that some 57% of the entire sample failed to record any walking or cycling, and an investigation of this particular group serves as an important topic of future research. Active transport was positively related with age, income, bicycle ownership, urban density and air temperature. Car ownership had a strong negative relationship with physically active travel.The results of this analysis demonstrate the significance of active transport to counter the emerging issue of sedentary lifestyle disease. The Dutch experience provides other countries with a highly relevant case study in the creation of environments and cultures that

  17. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  18. NMR study of the structure and ion transport in the M1-xRxF2+x diamagnetic solid electrolytes

    International Nuclear Information System (INIS)

    Matsulv, A.N.; Nuznik, V.M.; Livshits, A.I.; Fedorov, P.P.; Sobolev, B.P.

    1988-01-01

    Monocrystalline samples of Sr 0.75 La 0.25 F 2.25 and Ba 0.75 Y 0.25 F 2.25 solid electrolytes, which belong to diamagnetic fluorite-like solid solutions, are investigated using 19 F continuous NMR method at 48 MHz frequency. Comparison of theoretical calculations and experimental data has allowed to attach component-spectra to two structural positions - F l main lattice one and F i interstitial one. A technique is suggested, and evaluation of density of structural positions is made on the basis of orientational dependences of spectra secondary moment. Change of spectra form and dispersion on heating is characteristic one for samples with ion diffusive movement. Analysis of experimental data has allowed to determine, that anionic systems of solid solutions are dinamically heterogeneous. At 290-470 K temperatures the florine ions of both types (F l and F i ) contribute to the ionic conductivity. Within this temperature range movement of the bulk of fluorine ions is more, than 10 4 Hz. Measurements, conducted for Sr 0.75 La 0.25 F 2.25 have shown, that fluorine ions in the interstitial positions are more mobile, than in the lattice ones

  19. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    DEFF Research Database (Denmark)

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    transport in concentrated electrolytes is found to be very low. In dilute electrolytes, water molecules accompany counter ions as solvated molecules and due to osmotic effect. In concentrated electrolytes, water movement is less due to limited availability of free water as well as a smaller osmotic pressure...

  20. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  1. Electrolyte for a lithium/thionyl chloride electric cell, a method of preparing said electrolyte and an electric cell which includes said electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gabano, J.

    1983-03-01

    An electrolyte for an electric cell whose negative active material is constituted by lithium and whose positive active material is constituted by thionyl chloride. The electrolyte contains at least one solvent and at least one solute, said solvent being thionyl chloride and said solute being chosen from the group which includes lithium tetrachloroaluminate and lithium hexachloroantimonate. According to the invention said electrolyte further includes a complex chosen from the group which includes AlCl/sub 3/,SO/sub 2/ and SbCl/sub 5/,SO/sub 2/. The voltage rise of electric cells which include such an electrolyte takes negligible time.

  2. Mean activity coefficient measurement and thermodynamic modelling of the ternary mixed electrolyte (MgCl_2 + glucose + water) system at T = 298.15 K

    International Nuclear Information System (INIS)

    Rouhi, Azam; Bagherinia, Mohammad Ali

    2015-01-01

    Highlights: • The main goal of the work is to provide precise thermodynamic data for the system. • The method used was potentiometric method. • Pitzer ion interaction model and modified TCPC model were used. • The mass fractions of glucose were (0, 10, 20, 30 and 40)%. • The ionic strengths were from 0.0010 to 6.0000 mol · kg"−"1. - Abstract: In this work, the mean activity coefficients of MgCl_2 in pure water and (glucose + water) mixture solvent were determined using a galvanic cell without liquid junction potential of type: (Mg"2"+ + ISE)|MgCl_2 (m), glucose (wt.%), H_2O (100 wt.%)|AgCl|Ag. The measurements were performed at T = 298.15 K. Total ionic strengths were from (0.0010 to 6.0000) mol · kg"−"1. The various (glucose + water) mixed solvents contained (0, 10, 20, 30 and 40)% mass fractions percentage of glucose respectively. The mean activity coefficients measured were correlated with Pitzer ion interaction model and the Pitzer adjustable parameters were determined. Then these parameters were used to calculate the thermodynamics properties for under investigated system. The results showed that Pitzer ion interaction model can satisfactory describe the investigated system. The modified three-characteristic-parameter correlation (TCPC) model was applied to correlate the experimental activity coefficient data for under investigation electrolyte system, too.

  3. AN ACTIVE FRACTURE MODEL FOR UNSATURATED FLOW AND TRANSPORT

    International Nuclear Information System (INIS)

    HUI-HAI LIU, GUDMUNDUR S. BODVARSSON AND CHRISTINE DOUGHTY

    1999-01-01

    Fracture/matrix (F/M) interaction is a key factor affecting flow and transport in unsaturated fractured rocks. In classic continuum approaches (Warren and Root, 1963), it is assumed that flow occurs through all the connected fractures and is uniformly distributed over the entire fracture area, which generally gives a relatively large F/M interaction. However, fractures seem to have limited interaction with the surrounding matrix at Yucca Mountain, Nevada, as suggested by geochemical nonequilibrium between the perched water (resulting mainly from fracture flow) and pore water in the rock matrix. Because of the importance of the F/M interaction and related issues, there is a critical need to develop new approaches to accurately consider the interaction reduction inferred from field data at the Yucca Mountain site. Motivated by this consideration, they have developed an active fracture model based on the hypothesis that not all connected fractures actively conduct water in unsaturated fractured rocks

  4. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi; Mueller, Karl T.

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directly involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.

  5. System for sampling active solutions in transport container; Systeme de prelevements de solutions actives sur les recipients de transport

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J.

    1958-12-03

    This report presents a system aimed at sampling active solution from a specific transport container (SCRGR model) while transferring this solution with a maximum safety. The sampling principle is described (a flexible tube connected to the receiving container, with a needle at the other end which goes through a rubber membrane and enters a plunger tube). Its benefits are outlined (operator protection, reduction of contamination risk; only the rubber membrane is removed and replaced). Some manufacturing details are described concerning the membrane and the cover.

  6. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  7. Body Composition, Physical Activity and Active Transportation in Adolescents of Metropolitan Region of Curitiba, Brazil

    Directory of Open Access Journals (Sweden)

    Leandra Ulbrict

    2014-06-01

    Full Text Available Background: Physical activity is a part of a healthy lifestyle, however sed entary habits are currently prevalent among adolescents which impacts rates of overweight and obesity in this group. This study aims to describe the relationship of physical activity with the use of active transportation to school (ATS and its relationshi p with body composition in adolescents. Materials and Methods: Information about physical activity, sedentary behavior and active transportation were collected through two survey instruments, one completed by a responsible parent/guardian and other by the adolescent. Body composition was assessed by dual - energy x - ray absorptiometry (DXA. Excess body fat was defined as ≥ 25% in male and ≥ 30% among female adolescents. Less than 60 minutes of moderate to vigorous daily physical activity defined one as sede ntary and greater than 2 hours of screen time per day was defined as excessive. Results: The prevalence of excess body fat was 46.5%. Only 24.7% of the sample performed recommended amounts of physical activity and 92.3% engaged in excess screen time. Appro ximately one - fifth of our sample (19.2% used ATS. The main barriers to active transport were traffic, distance and safety. Those that used ATS had lower body fat and fewer hours of sedentary behavior.

  8. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  9. Urban sprawl and its relationship with active transportation, physical activity and obesity in Canadian youth.

    Science.gov (United States)

    Seliske, Laura; Pickett, William; Janssen, Ian

    2012-06-01

    Urban sprawl is a potential environmental influence on youth overweight/obesity. However, little is known about the association between urban sprawl and behaviours that influence obesity such as active transportation and physical activity. The study population consisted of 7,017 respondents aged 12 to 19 to the 2007/2008 Canadian Community Health Survey, living in Canada's 33 census metropolitan areas (CMAs). Factor analysis was used to obtain an urban sprawl score for each CMA, incorporating dwelling density, percentage of single or detached dwelling units, and percentage of the population living in the urban core. Multi-level logistic regression examined whether urban sprawl was associated with frequent active transportation (30 or more minutes a day), moderate-to-vigorous physical activity (MVPA) (60 or more minutes a day), and overweight/obesity. Urban sprawl was associated with active transportation among 12- to 15-year-olds, with the relative odds of engaging in at least 30 minutes of active transportation per day increasing by 24% (95% CI: 10-39%) for each standard deviation (SD) increase in the urban sprawl score. For the entire sample aged 12 to 19, higher urban sprawl was associated with MVPA (odds ratio per SD increase = 1.10, 95% CI: 1.01-1.20), but not with overweight/obesity (odds ratio per SD increase = 1.06, 95% CI: 0.94-1.18). Urban sprawl was associated with active transportation and MVPA in Canadian youth, although in the opposite direction to what has been reported in the literature for adults.

  10. Project U-Turn: increasing active transportation in Jackson, Michigan.

    Science.gov (United States)

    TenBrink, David S; McMunn, Randall; Panken, Sarah

    2009-12-01

    Jackson, Michigan, is a medium-sized city suffering from a bad economy and obesity-related health issues. Nearly 20% of the 36,000 residents live below the poverty line. It is a relatively young city (median age of 30 years) with a mixed ethnicity (20% black, 73% white, 4% Hispanic). The city offers many structured, active recreational opportunities, but has not integrated physical activity into daily life. Project U-Turn aimed to increase active transportation (e.g., biking, walking, and transit use) through an integrated approach to Active Living by Design's community action model and the Michigan Safe Routes to School model. Resources were focused on active living promotions and programs; partnership meetings were the source of changes in policy and physical projects. Each initiative was designed to introduce each of the 5Ps (preparation, promotion, programs, policy, and physical projects) to build support for the partnership's overall work. The partnership collected snapshot data of community walking and biking behavior, percentage of students walking to school, participation in events and programs, and new physical projects. Jackson saw a vast improvement in physical infrastructure and policy and a related increase in walking and biking in the community. The project engaged in purposeful partnership building to implement effective programs and promotions that built support for policy and physical projects. Limited resources were best used by encouraging partners to contribute and coordinate activities using existing staff, funding, and resources. Jackson has seen a shift toward awareness of the benefits of active living on community health, economic development, and environmental awareness.

  11. Variability and seasonality of active transportation in USA: evidence from the 2001 NHTS

    Science.gov (United States)

    2011-01-01

    Background Active transportation including walking and bicycling is an important source of physical activity. Promoting active transportation is a challenge for the fields of public health and transportation. Descriptive data on the predictors of active transportation, including seasonal patterns in active transportation in the US as a whole, is needed to inform interventions and policies. Methods This study analyzed monthly variation in active transportation for the US using National Household Travel Survey 2001 data. For each age group of children, adolescents, adults and elderly, logistic regression models were used to identify predictors of the odds of active transportation including gender, race/ethnicity, household income level, geographical region, urbanization level, and month. Results The probability of engaging in active transportation was generally higher for children and adolescents than for adults and the elderly. Active transportation was greater in the lower income groups (except in the elderly), was lower in the South than in other regions of the US, and was greater in areas with higher urbanization. The percentage of people using active transportation exhibited clear seasonal patterns: high during summer months and low during winter months. Children and adolescents were more sensitive to seasonality than other age groups. Women, non-Caucasians, persons with lower household income, who resided in the Midwest or Northeast, and who lived in more urbanized areas had greater seasonal variation. Conclusions These descriptive results suggest that interventions and policies that target the promotion of active transportation need to consider socio-demographic factors and seasonality. PMID:21917136

  12. Modeling the voltage loss mechanisms in lithium-sulfur cells: the importance of electrolyte resistance and precipitation kinetics.

    Science.gov (United States)

    Zhang, Teng; Marinescu, Monica; O'Neill, Laura; Wild, Mark; Offer, Gregory

    2015-09-21

    Understanding of the complex electrochemical, transport, and phase-change phenomena in Li-S cells requires experimental characterization in tandem with mechanistic modeling. However, existing Li-S models currently contradict some key features of experimental findings, particularly the evolution of cell resistance during discharge. We demonstrate that, by introducing a concentration-dependent electrolyte conductivity, the correct trends in voltage drop due to electrolyte resistance and activation overpotentials are retrieved. In addition, we reveal the existence of an often overlooked potential drop mechanism in the low voltage-plateau which originates from the limited rate of Li2S precipitation.

  13. Reliability and validity of the transport and physical activity questionnaire (TPAQ for assessing physical activity behaviour.

    Directory of Open Access Journals (Sweden)

    Emma J Adams

    Full Text Available No current validated survey instrument allows a comprehensive assessment of both physical activity and travel behaviours for use in interdisciplinary research on walking and cycling. This study reports on the test-retest reliability and validity of physical activity measures in the transport and physical activity questionnaire (TPAQ.The TPAQ assesses time spent in different domains of physical activity and using different modes of transport for five journey purposes. Test-retest reliability of eight physical activity summary variables was assessed using intra-class correlation coefficients (ICC and Kappa scores for continuous and categorical variables respectively. In a separate study, the validity of three survey-reported physical activity summary variables was assessed by computing Spearman correlation coefficients using accelerometer-derived reference measures. The Bland-Altman technique was used to determine the absolute validity of survey-reported time spent in moderate-to-vigorous physical activity (MVPA.In the reliability study, ICC for time spent in different domains of physical activity ranged from fair to substantial for walking for transport (ICC = 0.59, cycling for transport (ICC = 0.61, walking for recreation (ICC = 0.48, cycling for recreation (ICC = 0.35, moderate leisure-time physical activity (ICC = 0.47, vigorous leisure-time physical activity (ICC = 0.63, and total physical activity (ICC = 0.56. The proportion of participants estimated to meet physical activity guidelines showed acceptable reliability (k = 0.60. In the validity study, comparison of survey-reported and accelerometer-derived time spent in physical activity showed strong agreement for vigorous physical activity (r = 0.72, p<0.001, fair but non-significant agreement for moderate physical activity (r = 0.24, p = 0.09 and fair agreement for MVPA (r = 0.27, p = 0.05. Bland-Altman analysis showed a mean

  14. Reliability and Validity of the Transport and Physical Activity Questionnaire (TPAQ) for Assessing Physical Activity Behaviour

    Science.gov (United States)

    Adams, Emma J.; Goad, Mary; Sahlqvist, Shannon; Bull, Fiona C.; Cooper, Ashley R.; Ogilvie, David

    2014-01-01

    Background No current validated survey instrument allows a comprehensive assessment of both physical activity and travel behaviours for use in interdisciplinary research on walking and cycling. This study reports on the test-retest reliability and validity of physical activity measures in the transport and physical activity questionnaire (TPAQ). Methods The TPAQ assesses time spent in different domains of physical activity and using different modes of transport for five journey purposes. Test-retest reliability of eight physical activity summary variables was assessed using intra-class correlation coefficients (ICC) and Kappa scores for continuous and categorical variables respectively. In a separate study, the validity of three survey-reported physical activity summary variables was assessed by computing Spearman correlation coefficients using accelerometer-derived reference measures. The Bland-Altman technique was used to determine the absolute validity of survey-reported time spent in moderate-to-vigorous physical activity (MVPA). Results In the reliability study, ICC for time spent in different domains of physical activity ranged from fair to substantial for walking for transport (ICC = 0.59), cycling for transport (ICC = 0.61), walking for recreation (ICC = 0.48), cycling for recreation (ICC = 0.35), moderate leisure-time physical activity (ICC = 0.47), vigorous leisure-time physical activity (ICC = 0.63), and total physical activity (ICC = 0.56). The proportion of participants estimated to meet physical activity guidelines showed acceptable reliability (k = 0.60). In the validity study, comparison of survey-reported and accelerometer-derived time spent in physical activity showed strong agreement for vigorous physical activity (r = 0.72, pphysical activity (r = 0.24, p = 0.09) and fair agreement for MVPA (r = 0.27, p = 0.05). Bland-Altman analysis showed a mean overestimation of MVPA of 87.6 min/week (p

  15. Constructions of aluminium electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to constructions of aluminium electrolytic cells. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  16. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.

    Science.gov (United States)

    Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian

    2018-03-20

    One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.

  17. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    Science.gov (United States)

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An electrolyte CPA equation of state for mixed solvent electrolytes

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M.

    2015-01-01

    Despite great efforts over the past decades, thermodynamic modeling of electrolytes in mixed solvents is still a challenge today. The existing modeling frameworks based on activity coefficient models are data-driven and require expert knowledge to be parameterized. It has been suggested...... using a self-consistent model for the static permittivity. A simple scheme for parameterization of salts with a limited number of parameters is proposed and model parameters for a range of salts are determined from experimental data of activity and osmotic coefficients as well as freezing point...

  19. Theory of activated transport in bilayer quantum Hall systems.

    Science.gov (United States)

    Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H

    2008-07-25

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.

  20. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    Barnstaple, A.G.; Petrella, A.J.

    1982-05-01

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  2. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Changes in mitochondrial electron transport chain activity during insect metamorphosis.

    Science.gov (United States)

    Chamberlin, M E

    2007-02-01

    The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.

  4. A Spectral Active Material Interference in the Electrical Conductivity of the Internal Electrolyte and the Potential Shift of the Ag/AgCl Electrode

    International Nuclear Information System (INIS)

    Yun, Myung Hee; Yeon, Jei Won; Hwang, Jae Sik; Song, Kyu Seok

    2009-01-01

    The Ag/AgCl electrode is a type of reference electrode, commonly used in electrochemical measurements, because it is simple and stable. For these reasons, the Ag/AgCl electrode has long been used to provide a reliable potential monitoring of ions in a solution. However, when a reference electrode is used in an aqueous solution containing a very low electrolyte for a long period of time, this could cause a considerable potential shift of the reference electrode due to a dilution of the internal electrolyte. If the potential of the reference electrode shifts, undesirable conditions may occur. Therefore, many studies have been applied to improve the long-term performance of the reference electrode. However, these attempts have not completely resolved the problem of an electrolyte dilution by the test solution. In the present study, we developed a creative technique to correct the concentration change of the internal electrolyte by a long-term exposure of the Ag/AgCl electrode in very dilute solutions. We measured the electrical conductivity and UV/VIS absorbance of the internal electrolyte. From these measurements, we observed the linear relationship between KCl concentration and the potential of the Ag/AgCl electrode. In order to accelerate the diffusion of the internal electrolyte into the test solution, an Ag/AgCl electrode with a tiny perforation was used. We confirmed the feasibility of the creative calibration technique

  5. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women.

    Science.gov (United States)

    Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal; Nazare, Julie-Anne

    2017-01-01

    The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the "active transportation" cluster. The perceived environmental characteristics positively associated with "active transportation" included "high availability of destinations around home," "presence of bicycle paths," and "low traffic." A "positive image of walking/cycling," the "individual feeling of being physically active," and a "high use of active transport modes by relatives/friends" were positively related to "active transportation," identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups.

  6. Safety and Health Perceptions in Work-related Transport Activities in Ghanaian Industries

    Directory of Open Access Journals (Sweden)

    Charles Atombo

    2017-06-01

    Conclusion: OSH culture is not fully complied in industries transport activities. This study, therefore, supports the use of safety seminars and training sessions for industry workers responsible for transport operations for better integration of safety standards.

  7. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  8. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advances in Ceramic Supports for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Oran Lori

    2015-08-01

    Full Text Available Durability of catalyst supports is a technical barrier for both stationary and transportation applications of polymer-electrolyte-membrane fuel cells. New classes of non-carbon-based materials were developed in order to overcome the current limitations of the state-of-the-art carbon supports. Some of these materials are designed and tested to exceed the US DOE lifetime goals of 5000 or 40,000 hrs for transportation and stationary applications, respectively. In addition to their increased durability, the interactions between some new support materials and metal catalysts such as Pt result in increased catalyst activity. In this review, we will cover the latest studies conducted with ceramic supports based on carbides, oxides, nitrides, borides, and some composite materials.

  10. Active transport of Na+ by reconstituted Na,K-ATPase

    International Nuclear Information System (INIS)

    Boldyrev, A.A.; Svinukhova, I.A.

    1987-01-01

    The ability of ATP, CTP, ITP, GTP, and UTP to support ouabain-sensitive accumulation of Na + by proteoliposomes with a reconstituted Na/K-pump was investigated. At a low [Na + ]/[K + ] ratio in the medium (20 mM/50 mM), a correlation is observed between the proton-accepting capacity of the nucleotide and its effectiveness as a substrate of active transport. To test the hypothesis of the importance of the presence of a negative charge in the 1-position of the purine (3-pyrimidine) base of the nucleotide for mutual transitions between the Na- and K-conformations of Na,K-ATPase they used two analogs of ATP: N 1 -hydroxy-ATP, possessing proton acceptor capacity, and N 1 -methoxy-ATP, in the molecule of which the negative charge is quenched by a methyl group. The first substrate supports active accumulation of Na + in proteoliposomes at the same rate as ATP, whereas the second substrate is relatively ineffective

  11. Water activated doping and transport in multilayered germanane crystals

    International Nuclear Information System (INIS)

    Young, Justin R; Johnston-Halperin, Ezekiel; Chitara, Basant; Cultrara, Nicholas D; Arguilla, Maxx Q; Jiang, Shishi; Fan, Fan; Goldberger, Joshua E

    2016-01-01

    The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe 2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues. (paper)

  12. The Influence of Urban Land-Use and Public Transport Facilities on Active Commuting in Wellington, New Zealand: Active Transport Forecasting Using the WILUTE Model

    Directory of Open Access Journals (Sweden)

    Joreintje Dingena Mackenbach

    2016-03-01

    Full Text Available Physical activity has numerous physical and mental health benefits, and active commuting (walking or cycling to work can help meet physical activity recommendations. This study investigated socioeconomic differences in active commuting, and assessed the impact of urban land-use and public transport policies on active commuting in the Wellington region in New Zealand. We combined data from the New Zealand Household Travel Survey and GIS data on land-use and public transport facilities with the Wellington Integrated Land-Use, Transportation and Environment (WILUTE model, and forecasted changes in active commuter trips associated with changes in the built environment. Results indicated high income individuals were more likely to commute actively than individuals on low income. Several land-use and transportation factors were associated with active commuting and results from the modelling showed a potential increase in active commuting following an increase in bus frequency and parking fees. In conclusion, regional level policies stimulating environmental factors that directly or indirectly affect active commuting may be a promising strategy to increase population level physical activity. Access to, and frequency of, public transport in the neighbourhood can act as a facilitator for a more active lifestyle among its residents without negatively affecting disadvantaged groups.

  13. Adolescents who engage in active school transport are also more active in other contexts

    DEFF Research Database (Denmark)

    Stewart, Tom; Duncan, Scott; Schipperijn, Jasper

    2017-01-01

    and travel behaviours across time- and space-classified domains. METHODS: A total of 196 adolescents wore a Global Positioning System receiver and an accelerometer for 7 days. All data were classified into one of four domains: home, school, transport, or leisure. Generalized linear mixed models were used......BACKGROUND: Although active school travel (AST) is important for increasing moderate-to-vigorous physical activity (MVPA), it is unclear how AST is related to context-specific physical activity and non-school travel. This study investigated how school travel is related to physical activity...... to compare domain-specific PA and non-school trips between active and passive school travellers. RESULTS: Active travellers accumulated 13 and 14 more min of MVPA on weekdays and weekend days, respectively. They also spent 15min less time in vehicular travel during non-school trips, and accrued an additional...

  14. Effect of alkyl chain length of imidazolium cations on the electron transport and recombination kinetics in ionic gel electrolytes based quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huo, Zhipeng; Tao, Li; Wang, Lu; Zhu, Jun; Chen, Shuanghong; Zhang, Changneng; Dai, Songyuan; Zhang, Bing

    2015-01-01

    Highlights: •A series of novel IGEs based on 12-hydroxystearicacid as LMOG were prepared. •The QS-DSSCs exhibit excellent stability during the accelerated aging tests. •The influence of Im + alkyl chain length on the electron kinetic process is investigated. -- Abstract: A series of stable quasi-solid-state dye-sensitized solar cells (QS-DSSCs) are prepared by the 12-hydroxystearicacid as low molecular mass organogelator (LMOG) to gelate the ionic liquid with different alkyl chain lengths (3, 4, and 7). The influence of alkyl chain length of imidazolium cations (Im + ) on the kinetic processes of electron transport and recombination are investigated by Electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy (IMPS/IMVS). It is found that the ionic gel electrolytes (IGEs) with different alkyl chain lengths of Im + can influence the competitive adsorption effects of imidazolium cations (Im + ) and Li + , and further affect the charge diffusion, the electron recombination/transport processes, the shift of TiO 2 conduction band edge and surface states distribution. The IGE with longer alkyl chain length of Im + can prolong the electron recombination lifetime, promote the incidental photon-to-electron conversion efficiency (IPCE) and the short circuit photocurrent density (J sc ). An excellent QS-DSSC based on the IGE with the longer alkyl chain of Im + gives the highest photoelectric conversion efficiency. Moreover, all the QS-DSSCs based on IGEs exhibit excellent durability without losing their photovoltaic performances during the accelerated thermal and light–soaking test. These results are very important to the researches on the electrochemical mechanism and application of QS-DSSCs based on IGEs

  15. Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle

    International Nuclear Information System (INIS)

    Feng, Liang; Campbell, Ernest B.; Hsiung, Yichun; MacKinnon, Roderick

    2010-01-01

    CLC proteins transport chloride (Cl - ) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl - ion channels, whereas others are secondary active transporters that exchange Cl - ions and protons (H + ) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl - /H + exchange and a simple mechanistic connection between CLC channels and transporters.

  16. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle

    Science.gov (United States)

    Feng, Liang; Campbell, Ernest B.; Hsiung, Yichun; MacKinnon, Roderick

    2011-01-01

    CLC proteins transport Cl− ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl− ion channels, while others are secondary active transporters that exchange Cl− ions and H+ with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 Å resolution. Cytoplasmic CBS domains are strategically positioned to regulate the ion transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate changes conformation and suggests a basis for 2:1 Cl−/H+ exchange and a simple mechanistic connection between CLC channels and transporters. PMID:20929736

  17. The association between access to public transportation and self-reported active commuting.

    Science.gov (United States)

    Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette; Glümer, Charlotte

    2014-12-05

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting.

  18. The Association between Access to Public Transportation and Self-Reported Active Commuting

    Directory of Open Access Journals (Sweden)

    Sune Djurhuus

    2014-12-01

    Full Text Available Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928. Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting.

  19. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    Science.gov (United States)

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  20. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  1. School Travel Planning: Mobilizing School and Community Resources to Encourage Active School Transportation

    Science.gov (United States)

    Buliung, Ron; Faulkner, Guy; Beesley, Theresa; Kennedy, Jacky

    2011-01-01

    Background: Active school transport (AST), school travel using an active mode like walking, may be important to children's overall physical activity. A "school travel plan" (STP) documents a school's transport characteristics and provides an action plan to address school and neighborhood barriers to AST. Methods: We conducted a pilot STP…

  2. The Role of Transport Activities in Logistics Chain

    OpenAIRE

    Robert Chira

    2014-01-01

    The operation of transportation determines the efficiency of moving products. The progress in techniques and management principles improves the moving load, delivery speed, service quality, operation costs, the usage of facilities and energy saving. Transportation takes a crucial part in the manipulation of logistic. Reviewing the current condition, a strong system needs a clear frame of logistics and a proper transport implements and techniques to link the producing procedures. The objective...

  3. Active Transportation Demand Management (ATDM) Trajectory Level Validation

    Data.gov (United States)

    Department of Transportation — The ATDM Trajectory Validation project developed a validation framework and a trajectory computational engine to compare and validate simulated and observed vehicle...

  4. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    Science.gov (United States)

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  6. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  7. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  8. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  9. Lithium current sources with an electrolyte based on aprotonic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shembel, Ye.M.; Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Sokolov, L.A.; Strizhko, A.S.

    1984-01-01

    Lithium current sources with an electrolyte based on aprotonic solvents are examined. The effect of the composition of the electrolyte solution on the solubility of SO2 and the excess pressure of the gas above the electrolyte solution is established. The temperature characteristics of the electrolyte are studied from the standpoint of salt solubility, the association between the discharge conditions, the macrostructure of the porous inert cathode and the degree of usage of the active cathode substance of the SO2 as the necessary aspects for solving the problems of optimizing a lithium and SO2 system.

  10. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  11. Ion transport studies on Pb(NO3)2:Al2O3 composite solid electrolytes: Effect of dispersoid particle size

    Science.gov (United States)

    Reddy, Y. Govinda; Sekhar, M. Chandra; Sadananda Chary, A.; Narender Reddy, S.

    2018-02-01

    Composites of Alumina dispersed Lead Nitrate of different particles sizes (0.3µm, 36.9µm) were prepared through mechanical mixing process. These composites have been characterized by using XRD and SEM. Transport properties of these systems have been studied by means of impedance spectroscopy in the frequency range 100Hz to 4MHz in the temperature range from room temperature to 300°C. Temperature dependent conductivity spectra for composites with different mole percentages of alumina and with different particle sizes (0.3µm, 36.9µm) studied. The contact surface area between host and dispersoid increases with the decrease in particle size. These studies indicate that the conductivity in these systems is mainly due to the contribution enhanced concentration of mobile ions at the interfacial regions of host and dispersoid materials and increased mobility of charge carriers along the grain boundaries. It is believed that mechanism of conductivity through anti-Frenkel disorder (NO3 - ions) in these composites.

  12. Electrolyte-gated transistors based on phenyl-C61-butyric acid methyl ester (PCBM) films: bridging redox properties, charge carrier transport and device performance.

    Science.gov (United States)

    Lan, Tian; Soavi, Francesca; Marcaccio, Massimo; Brunner, Pierre-Louis; Sayago, Jonathan; Santato, Clara

    2018-05-24

    The n-type organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM), a soluble fullerene derivative well investigated for organic solar cells and transistors, can undergo several successive reversible, diffusion-controlled, one-electron reduction processes. We exploited such processes to shed light on the correlation between electron transfer properties, ionic and electronic transport as well as device performance in ionic liquid (IL)-gated transistors. Two ILs were considered, based on bis(trifluoromethylsulfonyl)imide [TFSI] as the anion and 1-ethyl-3-methylimidazolium [EMIM] or 1-butyl-1-methylpyrrolidinium [PYR14] as the cation. The aromatic structure of [EMIM] and its lower steric hindrance with respect to [PYR14] favor a 3D (bulk) electrochemical doping. As opposed to this, for [PYR14] the doping seems to be 2D (surface-confined). If the n-doping of the PCBM is pursued beyond the first electrochemical process, the transistor current vs. gate-source voltage plots in [PYR14][TFSI] feature a maximum that points to the presence of finite windows of high conductivity in IL-gated PCBM transistors.

  13. 78 FR 76152 - Agency Information Collection Activities: Transportation Entry and Manifest of Goods Subject to...

    Science.gov (United States)

    2013-12-16

    ... Activities: Transportation Entry and Manifest of Goods Subject to CBP Inspection and Permit AGENCY: U.S... the Paperwork Reduction Act: Transportation Entry and Manifest of Goods Subject to CBP Inspection and..., mechanical, or other technological techniques or other forms of information. Title: Transportation Entry and...

  14. 75 FR 43997 - Agency Information Collection Activities: Transportation Entry and Manifest of Goods Subject to...

    Science.gov (United States)

    2010-07-27

    ... Activities: Transportation Entry and Manifest of Goods Subject to CBP Inspection and Permit AGENCY: U.S... agencies to comment on an information collection requirement concerning the: Transportation Entry and... CBP is soliciting comments concerning the following information collection: Title: Transportation...

  15. 75 FR 60772 - Agency Information Collection Activities: Transportation Entry and Manifest of Goods Subject to...

    Science.gov (United States)

    2010-10-01

    ... Activities: Transportation Entry and Manifest of Goods Subject to CBP Inspection and Permit AGENCY: U.S... the Paperwork Reduction Act: Transportation Entry and Manifest of Goods Subject to CBP Inspection and... techniques or other forms of information. Title: Transportation Entry and Manifest of Goods Subject to CBP...

  16. 78 FR 57405 - Agency Information Collection Activities: Transportation Entry and Manifest of Goods Subject to...

    Science.gov (United States)

    2013-09-18

    ... Activities: Transportation Entry and Manifest of Goods Subject to CBP Inspection and Permit AGENCY: U.S... agencies to comment on an information collection requirement concerning the: Transportation Entry and... CBP is soliciting comments concerning the following information collection: Title: Transportation...

  17. 76 FR 58567 - Proposed Information Collection (Request for Transportation Expense Reimbursement) Activity...

    Science.gov (United States)

    2011-09-21

    ... (Request for Transportation Expense Reimbursement) Activity; Comment Request AGENCY: Veterans Benefits... needed to determine children with spina bifida eligibility for reimbursement of transportation expenses...: Request for Transportation Expense Reimbursement (38 CFR 21.8370). OMB Control Number: 2900-0580. Type of...

  18. 76 FR 73020 - Agency Information Collection (Request for Transportation Expense Reimbursement): Activity Under...

    Science.gov (United States)

    2011-11-28

    ... for Transportation Expense Reimbursement): Activity Under OMB Review AGENCY: Veterans Benefits... for Transportation Expense Reimbursement (38 CFR 21.8370). OMB Control Number: 2900-0580. Type of... transportation expenses. To be eligible, the child must provide supportive documentation of actual expenses...

  19. Activity Development for Intersection Operations The National Transportation Curriculum Project : Developing Activity-Based Learning Modules for the Introductory Transportation Engineering Course

    Science.gov (United States)

    2012-05-01

    The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...

  20. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women

    Directory of Open Access Journals (Sweden)

    Camille Perchoux

    2017-01-01

    Full Text Available The objectives were (1 to define physical activity (PA and sedentary behaviors (SB patterns in daily life contexts (work, leisure, and transportation in French working women from NutriNet-Santé web-cohort and (2 to identify pattern(s of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i active occupation, high sedentary leisure, (ii sedentary occupation, low leisure, (iii sedentary transportation, (iv sedentary occupation and leisure, (v active transportation, and (vi active leisure. Multinomial logistic regressions were performed to identify correlates of the “active transportation” cluster. The perceived environmental characteristics positively associated with “active transportation” included “high availability of destinations around home,” “presence of bicycle paths,” and “low traffic.” A “positive image of walking/cycling,” the “individual feeling of being physically active,” and a “high use of active transport modes by relatives/friends” were positively related to “active transportation,” identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors’ complexity and to design interventions to promote active transportation in specific subgroups.

  1. The Association between Access to Public Transportation and Self-Reported Active Commuting

    DEFF Research Database (Denmark)

    Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette

    2014-01-01

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate...... more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation...... and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS...

  2. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-02-01

    The effects of self-discharge on the performance of symmetric electric double-layer capacitors (EDLCs) and active electrolyte-enhanced supercapacitors were examined by incorporating self-discharge into electrochemical capacitor models during charging and discharging. The sources of self-discharge in capacitors were side reactions or redox reactions and several impurities and electric double-layer (EDL) instability. The effects of self-discharge during capacitor storage was negligible since it took a fully charged capacitor a minimum of 14.0 days to be entirely discharged by self-discharge in all conditions studied, hence self-discharge in storage condition can be ignored. The first and second charge-discharge cycle energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a capacitor of electrode effective conductivity α1 = 0.05 S/cm with only EDL instability self-discharge with current density J_{{VR}} = 1.25 × 10-3 A/cm2 were 72.33% and 72.34%, respectively. Also, energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a similar capacitor with both side reactions and redox reactions and EDL instability self-discharges with current densities J_{{VR}} = 0.00125 A/cm2 and J_{{{{VR}}1}} = 0.0032 A/cm2 were 38.13% and 38.14% respectively, compared with 84.24% and 84.25% in a similar capacitor without self-discharge. A capacitor with only EDL instability self-discharge and that with both side reactions and redox reactions and EDL instability self-discharge lost 9.73 Wh and 28.38 Wh of energy, respectively, through self-discharge during charging and discharging. Hence, EDLCs charging and discharging time is significantly dependent on the self-discharge rate which are too large to be ignored.

  3. An investigation of 2,5-di-tertbutyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Liang; Ferrandon, Magali; Barton, John L.; de la Rosa, Noel Upia; Vaughey, John T.; Brushett, Fikile R.

    2017-08-01

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemical and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.

  4. Electrolytic decontamination of stainless steel using a basic electrolyte

    International Nuclear Information System (INIS)

    Childs, E.L.; Long, J.L.

    1981-01-01

    An electrolytic plutonium decontamination process or stainless steel was developed for use as the final step in a proposed radioactive waste handling and decontamination facility to be construced at the Rockwell International Rocky Flats plutonium handling facility. This paper discusses test plan, which was executed to compare the basic electrolyte with phosphoric acid and nitric acid electrolytes. 1 ref

  5. Persistence of blood changes associated with alteration of the dietary electrolyte balance in commercial pigs after feed withdrawal, transportation, and lairage, and the effects on performance and carcass quality.

    Science.gov (United States)

    Edwards, L N; Engle, T E; Paradis, M A; Correa, J A; Anderson, D B

    2010-12-01

    Increasing dietary electrolyte balance (dEB) has previously been shown to reduce the incidence of nonambulatory and noninjured swine, improve meat quality, and reduce the incidence of gastric ulcers. The objective of this study was to evaluate the effect of dEB under commercial conditions. Due to the variability in feed withdrawal, transport, and lairage conditions in the swine industry, it was necessary to determine first the persistence of blood changes during the marketing process after alteration of dEB. Sixteen pens of 8 crossbred barrows were assigned to a low (121 mEq/kg) or high (375 mEq/kg) dEB diet, calculated as Na(+) + K(+) - Cl(-), to determine the persistence of blood changes associated with the alteration of dEB. Diets were formulated to meet or exceed NRC (1998) requirements for energy, protein, vitamins, and minerals. Dietary treatments were provided for ad libitum intake for 3 d before slaughter. Before transport, animals were fasted in the barn for approximately 10 h. After fasting, animals were shipped to the packing plant, rested for 8 h, and subsequently slaughtered. Initial and final BW of the animals were obtained. Blood was sampled at baseline (2 d before administration of diets), before feed withdrawal (0 h), after feed withdrawal (10 h), and at exsanguination (20 h). Consumption of the high dEB diet for 3 d resulted in an increase in blood TCO(2) (P = 0.001), HCO(3)(-) (P = 0.001), and base excess (P = 0.0003) and a decrease in Cl(-) (P = 0.0002) and anion gap (P = 0.01). These differences, however, were not maintained for any of the blood components after the 10-h feed withdrawal (P > 0.22). Increasing dEB had no adverse effects (P > 0.18) on growth performance, meat quality, or carcass yield and did not decrease pars esophageal ulcer scores. This study demonstrated that the effect of dEB on blood components was not maintained after a 10-h feed withdrawal. Therefore, it is likely that the ability of the animal to withstand any increased

  6. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  7. A MULTI-AGENT SYSTEM FOR FOREST TRANSPORT ACTIVITY PLANNING

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Araújo Júnior

    2017-09-01

    Full Text Available This study aims to propose and implement a conceptual model of an intelligent system in a georeferenced environment to determine the design of forest transport fleets. For this, we used a multi-agent systems based tool, which is the subject of studies of distributed artificial intelligence. The proposed model considers the use of plantation mapping (stands and forest roads, as well as information about the different vehicle transport capacities. The system was designed to adapt itself to changes that occur during the forest transport operation process, such as the modification of demanded volume or the inclusion of route restrictions used by the vehicles. For its development, we used the Java programming language associated with the LPSolve library for the optimization calculation, the JADE platform to develop agents, and the ArcGis Runtime to determine the optimal transport routes. Five agents were modelled: the transporter, controller, router, loader and unloader agents. The model is able to determine the amount of trucks among the different vehicles available that meet the demand and availability of routes, with a focus on minimizing the total costs of timber transport. The system can also rearrange itself after the transportation routes change during the process.

  8. Socioeconomic and regional differences in active transportation in Brazil.

    Science.gov (United States)

    Sá, Thiago Hérick de; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-06-27

    To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. By using data from the Health section of 2008's Pesquisa Nacional por Amostra de Domicílio (Brazil's National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making. Apresentar estimativas nacionais sobre o deslocamento a pé ou de bicicleta no trajeto casa-trabalho no Brasil e em 10 de suas regiões metropolitanas. Utilizando dados do Suplemento sobre Saúde da Pesquisa Nacional por Amostra de Domicílios de 2008, estimamos a frequência de pessoas empregadas que se deslocam a pé ou de bicicleta no trajeto casa-trabalho estratificada por sexo, e segundo faixa etária, escolaridade, renda domiciliar per capita, residência em área urbana ou rural, regiões metropolitanas e macrorregiões do país. Adicionalmente, estimamos a distribuição da mesma frequ

  9. Are characteristics of the school district associated with active transportation to school in Danish adolescents?

    Science.gov (United States)

    Stock, Christiane; Bloomfield, Kim; Ejstrud, Bo; Vinther-Larsen, Mathilde; Meijer, Mathias; Grønbæk, Morten; Grittner, Ulrike

    2012-06-01

    This study sought to determine the influence of individual factors on active transportation to school among Danish seventh graders and whether school district factors are associated with such behaviour independently of individual factors. Mixed effects logistic regression models determined the effects of individual (gender, family affluence, enjoyment of school and academic performance) and school district factors (educational level, household savings, land use and size) on active transportation to school (by foot, bicycle or other active means) among 10 380 pupils aged 13-15 years nested in 407 school districts. Of all students, 64.4% used active transportation to school daily. Boys, those with perceived higher school performance and those with lower family affluence were more likely to use active transportation to school. After adjustment for all individual factors listed above, high household savings at the school district level was associated with higher odds of active transportation to school. As factors of land use, low level of farming land use and high proportion of single houses were associated with active transportation to school. Policies aiming at reducing social inequalities at the school district level may enhance active transportation to school. School districts with farming land use face barriers for active transportation to school, requiring special policy attention.

  10. The Electrolyte Factor in O2 Reduction Electrocatalysis

    Science.gov (United States)

    1993-04-23

    molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately

  11. Entropic transport of active particles driven by a transverse ac force

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian-chun, E-mail: wjchun2010@163.com; Chen, Qun; Ai, Bao-quan, E-mail: aibq@scnu.edu.cn

    2015-12-18

    Transport of active particles is numerically investigated in a two-dimensional period channel. In the presence of a transverse ac force, the directed transport of active particles demonstrates striking behaviors. By adjusting the amplitude and the frequency of the transverse ac force, the average velocity will be influenced significantly and the direction of the transport can be reversed several times. Remarkably, it is also found that the direction of the transport varies with different self-propelled speeds. Therefore, particles with different self-propelled speeds will move to the different directions, which is able to separate particles of different self-propelled speeds. - Highlights: • A transverse ac force strongly influence the transport of active particles. • The direction of the transport can be reversed several times. • Active particles with different self-propelled speeds can be separated.

  12. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    Science.gov (United States)

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  13. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  14. Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Di Lecce, Daniele; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steve; Hassoun, Jusef

    2017-05-24

    Triethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy. The study sheds light on the determinant role of the lithium nitrate (LiNO 3 ) addition for allowing cell operation by improving the electrode/electrolyte interfaces and widening the voltage stability window. Accordingly, an electrochemical activation procedure of the Li/LiFePO 4 cell using the upgraded electrolyte leads to the formation of stable interfaces at the electrodes surface as clearly evidenced by cyclic voltammetry, impedance spectroscopy, and ex situ scanning electron microscopy. Therefore, the lithium battery employing the TREGDME-LiCF 3 SO 3 -LiNO 3 solution shows a stable galvanostatic cycling, a high efficiency, and a notable rate capability upon the electrochemical conditions adopted herein.

  15. Barodiffusion phenomena at active transport of na+ and K+ ions through the cell membrane

    International Nuclear Information System (INIS)

    Khrapijchuk, G.V.; Chalyi, A.V.; Nurishchenko, N.Je.

    2010-01-01

    The influence of ultrasound as the significant motive force of barodiffusion phenomena at the processes of active transport of Na + and K + ions through the cell membrane is considered. The dependence of membrane potential is theoretically estimated at active transport of natrium and potassium ions on the ultrasound intensity and pressure overfall between external and internal medium of the cell.

  16. 78 FR 73824 - Subzones 247A and 247B, Authorization of Production Activity, GE Transportation, (Locomotives...

    Science.gov (United States)

    2013-12-09

    ... of Production Activity, GE Transportation, (Locomotives, Off-Highway Vehicles and Motors/Engines), Lawrence Park and Grove City, Pennsylvania On July 18, 2013, GE Transportation submitted a notification of proposed production activity to the Foreign-Trade Zones (FTZ) Board for its facilities within Subzones 247A...

  17. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  18. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  19. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  20. Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system

    Directory of Open Access Journals (Sweden)

    García-Lobo Juan M

    2010-04-01

    Full Text Available Abstract Background Urease is a virulence factor that plays a role in the resistance of Brucella to low pH conditions, both in vivo and in vitro. Brucella contains two separate urease gene clusters, ure1 and ure2. Although only ure1 codes for an active urease, ure2 is also transcribed, but its contribution to Brucella biology is unknown. Results Re-examination of the ure2 locus showed that the operon includes five genes downstream of ureABCEFGDT that are orthologs to a nikKMLQO cluster encoding an ECF-type transport system for nickel. ureT and nikO mutants were constructed and analyzed for urease activity and acid resistance. A non-polar ureT mutant was unaffected in urease activity at neutral pH but showed a significantly decreased activity at acidic pH. It also showed a decreased survival rate to pH 2 at low concentration of urea when compared to the wild type. The nikO mutant had decreased urease activity and acid resistance at all urea concentrations tested, and this phenotype could be reverted by the addition of nickel to the growth medium. Conclusions Based on these results, we concluded that the operon ure2 codes for an acid-activated urea transporter and a nickel transporter necessary for the maximal activity of the urease whose structural subunits are encoded exclusively by the genes in the ure1 operon.

  1. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  2. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  3. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase.

    Directory of Open Access Journals (Sweden)

    Kara R Barber

    2017-02-01

    Full Text Available Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated.

  4. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  5. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  6. What Moves Them? Active Transport among Inhabitants of Dutch Deprived Districts

    Directory of Open Access Journals (Sweden)

    Carla Saris

    2013-01-01

    Full Text Available Background. Active modes of transport like walking and cycling have been shown to be valuable contributions to daily physical activity. The current study investigates associations between personal and neighbourhood environmental characteristics and active transport among inhabitants of Dutch deprived districts. Method. Questionnaires about health, neighbourhoods, and physical activity behaviour were completed by 742 adults. Data was analysed by means of multivariate linear regression analyses. Results. Being younger, female, and migrant and having a normal weight were associated with more walking for active transport. Being younger, male, and native Dutch and having a normal weight were associated with more cycling for active transport. Neighbourhood characteristics were generally not correlated with active transport. Stratified analyses, based on significant person-environment interactions, showed that migrants and women walked more when cars did not exceed maximum speed in nearby streets and that younger people walked more when speed of traffic in nearby streets was perceived as low. Among migrants, more cycling was associated with the perceived attractiveness of the neighbourhood surroundings. Discussion and Conclusion. Results indicated that among inhabitants of Dutch deprived districts, personal characteristics were associated with active transport, whereas neighbourhood environmental characteristics were generally not associated with active transport. Nevertheless, interaction effects showed differences among subgroups that should be considered in intervention development.

  7. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    We aimed to assess the effect of well known antioxidant carnosine on disturbed plasma and intraerythrocytes electrolytes and Na+-K+-ATPase activity by cisplatin. 24 male albino Wistar rats were selected and divided into 4 groups: Group I = untreated control; Group II = cisplatin control (received cisplatin at a dose of 3 mg/ ...

  8. Achieving recommended daily physical activity levels through commuting by public transportation: unpacking individual and contextual influences.

    Science.gov (United States)

    Wasfi, Rania A; Ross, Nancy A; El-Geneidy, Ahmed M

    2013-09-01

    This paper estimates the amount of daily walking associated with using public transportation in a large metropolitan area and examines individual and contextual characteristics associated with walking distances. Total walking distance to and from transit was calculated from a travel diary survey for 6913 individuals. Multilevel regression modelling was used to examine the underlying factors associated with walking to public transportation. The physical activity benefits of public transportation varied along gender and socio-economic lines. Recommended minutes of daily physical activity can be achieved for public transportation users, especially train users living in affluent suburbs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A review of electrolyte materials and compositions for electrochemical supercapacitors.

    Science.gov (United States)

    Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun

    2015-11-07

    Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

  10. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  11. Nanoporous hybrid electrolytes

    KAUST Repository

    Schaefer, Jennifer L.

    2011-01-01

    Oligomer-suspended SiO2-polyethylene glycol nanoparticles are studied as porous media electrolytes. At SiO2 volume fractions, , bracketing a critical value y ≈ 0.29, the suspensions jam and their mechanical modulus increase by more than seven orders. For >y, the mean pore diameter is close to the anion size, yet the ionic conductivity remains surprisingly high and can be understood, at all , using a simple effective medium model proposed by Maxwell. SiO 2-polyethylene glycol hybrid electrolytes are also reported to manifest attractive electrochemical stability windows (0.3-6.3 V) and to reach a steady-state interfacial impedance when in contact with metallic lithium. © 2010 The Royal Society of Chemistry.

  12. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  13. Transport of uranium concentrates: low specific activity versus logistic complexity

    International Nuclear Information System (INIS)

    Dias, Pedro L.S.; Macedo, Eclesio F.; Carvalho, Leonardo B.; Carvalho, Renata R.

    2011-01-01

    This paper describes the case of radioactive material transport, according to pertinent documentation - nuclear material specifically in the form op ammonium diuranate, produced by Industrias Nucleares do Brasil S.A. - from the mine and physic-chemical processing at Caetite, Bahia, to the port of Salvador, state of Bahia, approaching the radiological protection aspects

  14. Plasma electrolytic oxidation of metals

    Directory of Open Access Journals (Sweden)

    Stojadinović Stevan

    2013-01-01

    Full Text Available In this lecture results of the investigation of plasma electrolytic oxidation (PEO process on some metals (aluminum, titanium, tantalum, magnesium, and zirconium were presented. Whole process involves anodizing metals above the dielectric breakdown voltage where numerous micro-discharges are generated continuously over the coating surface. For the characterization of PEO process optical emission spectroscopy and real-time imaging were used. These investigations enabled the determination of electron temperature, electron number density, spatial density of micro-discharges, the active surface covered by micro-discharges, and dimensional distribution of micro-discharges at various stages of PEO process. Special attention was focused on the results of the study of the morphology, chemical, and phase composition of oxide layers obtained by PEO process on aluminum, tantalum, and titanium in electrolytes containing tungsten. Physicochemical methodes: atomic force microscopy (AFM, scanning electron microscopy (SEM-EDS, x-ray diffraction (XRD, x-ray photoelectron spectroscopy (XPS, and Raman spectroscopy served as tools for examining obtained oxide coatings. Also, the application of the obtained oxide coatings, especially the application of TiO2/WO3 coatings in photocatalysis, were discussed.

  15. Conductometry of electrolyte solutions

    Science.gov (United States)

    Safonova, Lyubov P.; Kolker, Arkadii M.

    1992-09-01

    A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.

  16. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Electrolyte Concentrates Treat Dehydration

    Science.gov (United States)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  18. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  19. Time course of ongoing activity during neuritis and following axonal transport disruption.

    Science.gov (United States)

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-05-01

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.

  20. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  1. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  2. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  3. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  4. Electrolyte materials - Issues and challenges

    International Nuclear Information System (INIS)

    Balbuena, Perla B.

    2014-01-01

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes

  5. revue bibliographique des représentations analytiques de coefficients d'activité ioniques moyens dans les solutions binaires électrolytiques Bibliographic Review of Analytic Equations of Mean Lonic Activity Coefficients in Electrolytic Binary Solutions

    Directory of Open Access Journals (Sweden)

    Cruz J. -L.

    2006-11-01

    Full Text Available Le calcul de certaines propriétés à l'équilibre, de systèmes électrolytiques, nécessite la connaissance des coefficients d'activité en phase liquide des constituants de ces systèmes. L'estimation du coefficient d'activité ionique moyen de l'électrolyte permet, pour des systèmes binaires, de calculer ces coefficients d'activité. Dans cette revue bibliographique sont présentées les principales expressions analytiques, de coefficients d'activité ioniques moyens, fournies par la littérature. II est possible de classer ces expressions en plusieurs grandes catégories en fonction des modèles dont elles dérivent. Des critères de choix, de l'une ou l'autre de ces équations, sont proposés suivant le type de système électrolytique et le domaine de concentration étudiés. Liquid-phase activity coefficients must be known in order to calculate various equilibrium properties of electrolytic systems. For binary systems, these coefficients can be calculated by estimating the mean ionic activity coefficient of the electrolyte. This bibliographic review describes the principal analytic equations for mean ionic activity coefficients found in the literature. These equations can be classified in several major categories according to the theoretical model from which they are derived. Some criteria are proposed for choosing one or another of these equations on the basis of the type of electrolytic system and the concentration range studied.

  6. Are characteristics of the school district associated with active transportation to school in Danish adolescents?

    DEFF Research Database (Denmark)

    Stock, Christiane; Bloomfield, Kim; Ejstrud, Bo

    2012-01-01

    BACKGROUND: This study sought to determine the influence of individual factors on active transportation to school among Danish seventh graders and whether school district factors are associated with such behaviour independently of individual factors. METHODS: Mixed effects logistic regression...... models determined the effects of individual (gender, family affluence, enjoyment of school and academic performance) and school district factors (educational level, household savings, land use and size) on active transportation to school (by foot, bicycle or other active means) among 10 380 pupils aged...... 13-15 years nested in 407 school districts. RESULTS: Of all students, 64.4% used active transportation to school daily. Boys, those with perceived higher school performance and those with lower family affluence were more likely to use active transportation to school. After adjustment for all...

  7. Prehospital point of care testing of blood gases and electrolytes — an evaluation of IRMA

    OpenAIRE

    Prause, Gerhard; Ratzenhofer-Komenda, Beatrice; Offner, Anton; Lauda, Peter; Voit, Henrika; Pojer, Horst

    1997-01-01

    Background: This study evaluated the feasibility of blood gas analysis and electrolyte measurements during emergency transport prior to hospital admission. Results: A portable, battery-powered blood analyzer was used on patients in life threatening conditions to determine pH, pCO2, pO2, sodium, potassium and ionized calcium. Arterial blood was used for blood gas analysis and electrolyte measurements. Venous blood was used for electrolyte measurement alone. During the observation period of 4 m...

  8. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  9. A systematic review of interventions for promoting active transportation to school.

    Science.gov (United States)

    Chillón, Palma; Evenson, Kelly R; Vaughn, Amber; Ward, Dianne S

    2011-02-14

    Active transportation to school is an important contributor to the total physical activity of children and adolescents. However, active school travel has declined over time, and interventions are needed to reverse this trend. The purpose of this paper is to review intervention studies related to active school transportation to guide future intervention research. A systematic review was conducted to identify intervention studies of active transportation to school published in the scientific literature through January 2010. Five electronic databases and a manual search were conducted. Detailed information was extracted, including a quantitative assessment comparing the effect sizes, and a qualitative assessment using an established evaluation tool. We identified 14 interventions that focused on active transportation to school. These interventions mainly focused on primary school children in the United States, Australia, and the United Kingdom. Almost all the interventions used quasi-experimental designs (10/14), and most of the interventions reported a small effect size on active transportation (6/14). More research with higher quality study designs and measures should be conducted to further evaluate interventions and to determine the most successful strategies for increasing active transportation to school. © 2011 Chillón P et al; licensee BioMed Central Ltd.

  10. Voltammetry study of quinoxaline in aqueous electrolytes

    International Nuclear Information System (INIS)

    Milshtein, Jarrod D.; Su, Liang; Liou, Catherine; Badel, Andres F.; Brushett, Fikile R.

    2015-01-01

    Organic compounds have recently received considerable attention as active materials in redox flow batteries (RFBs) due to their good electrochemical reversibility, high theoretical energy densities, and promise for low cost production. Until now, organic active material candidates for aqueous RFBs have been limited to the quinone family, a set of aromatic-derived organic molecules, distinguished by an even number of ketone (R−C(=O)−R′) groups. This work aims to elucidate and optimize the electrochemical behavior of quinoxaline, an organic molecule consisting of fused benzene and pyrazine rings, in aqueous electrolytes. More than 30 electrolytes are screened by cyclic voltammetry, and the five most promising electrolytes are investigated further using rotating disk voltammetry. Electrochemical behavior of quinoxaline shows pH dependent thermodynamics and reaction mechanisms, while chloride-containing supporting electrolytes greatly enhance solubility. This study sheds light on the promising characteristics of quinoxaline as a low potential compound for aqueous RFBs; quinoxaline has a redox potential of E° ≈ −0.02 V vs. RHE, is soluble up to ∼4.5 M in water, exhibits a two-electron transfer capability, and possesses a low molecular weight (130.15 g mol"−"1), resulting in a theoretical capacity of 410 mAh g"−"1.

  11. Solute transport by groundwater flow to wetland ecosystems : the environmental impact of human activities

    NARCIS (Netherlands)

    Schot, P.P.

    1991-01-01

    This thesis deals with solute transport by groundwater flow and the way in which solute transport is affected by human activities. This in relation to wetland ecosystems. Wetlands in the eastern part of the Vecht river plain in The Netherlands are historically renown for their great variety of

  12. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali; Rafiuddin,, E-mail: rafi_amu@rediffmail.com

    2013-10-15

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl.

  13. Individual Public Transportation Accessibility is Positively Associated with Self-Reported Active Commuting.

    Science.gov (United States)

    Djurhuus, Sune; Hansen, Henning Sten; Aadahl, Mette; Glümer, Charlotte

    2014-01-01

    Active commuters have lower risk of chronic disease. Understanding which of the, to some extent, modifiable characteristics of public transportation that facilitate its use is thus important in a public health perspective. The aim of the study was to examine the association between individual public transportation accessibility and self-reported active commuting, and whether the associations varied with commute distance, age, and gender. Twenty-eight thousand nine hundred twenty-eight commuters in The Capital Region of Denmark reported self-reported time spent either walking or cycling to work or study each day and the distance to work or study. Data were obtained from the Danish National Health Survey collected in February to April 2010. Individual accessibility by public transportation was calculated using a multi-modal network in a GIS. Multilevel logistic regression was used to analyze the association between accessibility, expressed as access area, and being an active commuter. Public transport accessibility area based on all stops within walking and cycling distance was positively associated with being an active commuter. Distance to work, age, and gender modified the associations. Residing within 10 km commute distance and in areas of high accessibility was associated with being an active commuter and meeting the recommendations of physical activity. For the respondents above 29 years, individual public transportation accessibility was positively associated with being an active commuter. Women having high accessibility had significantly higher odds of being an active commuter compared to having a low accessibility. For men, the associations were insignificant. This study extends the knowledge about the driving forces of using public transportation for commuting by examining the individual public transportation accessibility. Findings suggest that transportation accessibility supports active commuting and planning of improved public transit accessibility

  14. Active transportation in adult survivors of childhood cancer and neighborhood controls.

    Science.gov (United States)

    Slater, Megan E; Kelly, Aaron S; Sadak, Karim T; Ross, Julie A

    2016-02-01

    Childhood cancer survivors (CCS) are at high risk of treatment-related late effects, including cardiovascular disease and diabetes, which can be exacerbated by inadequate physical activity (PA). Previous PA interventions targeting CCS have focused on the domain of leisure-time/recreational PA. Active transportation, another domain of PA, has not been described in CCS. Therefore, this study aimed to identify active transportation behaviors, barriers, and correlates in adult CCS. We recruited 158 adult CCS and 153 controls matched on age, sex, and neighborhood for a survey regarding active transportation behaviors and perceptions. Linear and logistic regression models accounting for correlation among matched participants were used. Adult CCS engaged in similar levels of active transportation as controls (2.72 vs. 2.32 h/week, P = 0.40) despite perceiving greater health-related barriers (1.88 vs. 1.65 (measured on four-point Likert scale), P = 0.01). Marital/relationship status (odds ratio (OR) = 0.30, 95 % confidence interval (CI) = 0.11-0.81), planning/psychosocial barriers (OR = 0.15, 95 % CI = 0.04-0.53), and perceived neighborhood walkability (OR = 2.55, 95 % CI = 1.14-5.66) were correlates of active transportation among adult CCS, while objective neighborhood walkability (OR = 1.03, 95 % CI = 1.01-1.05) was a correlate among controls. Results suggest adult CCS and controls utilize active transportation at approximately equal levels. Factors other than health, including perceived neighborhood walkability, are related to active transportation behaviors to a greater degree in adult CCS. Interventions might consider promoting active transportation as a way to incorporate more PA into the daily lives of adult CCS. Such interventions will not be likely successful, however, without existing or improved neighborhood walkability/bikeability.

  15. Active Transportation in Adult Survivors of Childhood Cancer and Neighborhood Controls

    Science.gov (United States)

    Slater, Megan E.; Kelly, Aaron S.; Sadak, Karim T.; Ross, Julie A.

    2015-01-01

    Purpose Childhood cancer survivors (CCS) are at high risk of treatment-related late effects, including cardiovascular disease and diabetes, which can be exacerbated by inadequate physical activity (PA). Previous PA interventions targeting CCS have focused on the domain of leisure-time/recreational PA. Active transportation, another domain of PA, has not been described in CCS. Therefore, this study aimed to identify active transportation behaviors, barriers, and correlates in adult CCS. Methods We recruited 158 adult CCS and 153 controls matched on age, sex, and neighborhood for a survey regarding active transportation behaviors and perceptions. Linear and logistic regression models accounting for correlation among matched participants were used. Results Adult CCS engaged in similar levels of active transportation as controls (2.72 vs. 2.32 hours/week, P=0.40) despite perceiving greater health-related barriers (1.88 vs. 1.65 (measured on four-point Likert scale), P=0.01). Marital/relationship status (odds ratio (OR)=0.30, 95% confidence interval (CI)=0.11–0.81), planning/psychosocial barriers (OR=0.15, 95% CI=0.04–0.53), and perceived neighborhood walkability (OR=2.55, 95% CI=1.14–5.66) were correlates of active transportation among adult CCS, while objective neighborhood walkability (OR=1.03, 95% CI=1.01–1.05) was a correlate among controls. Conclusions Results suggest adult CCS and controls utilize active transportation at approximately equal levels. Factors other than health, including perceived neighborhood walkability, appear to influence active transportation behaviors to a greater degree in adult CCS. Implications for Cancer Survivors Interventions might consider promoting active transportation as a way to incorporate more PA into the daily lives of adult CCS. Such interventions will not be widely successful, however, without existing or improved neighborhood walkability/bikeability. PMID:25809159

  16. Pneumatic transport devices based on the ARS equipment set for activation analysis

    International Nuclear Information System (INIS)

    Ivanov, I.V.; Ivanets, V.N.; Rogachev, V.M.; Zakharov, E.A.

    1978-01-01

    The AGIDEL and ARS-28G facilities manufactured on the basis of a set of standardized and aggregated products for activation analysis are described. The AGIDEL is designed for automatic activation analysis of relatively homogeneous samples from oil boreholes. The ARS-28G is designed for transporting the test samples during activation analysis, using a fast-neutron generator. Structurally, the ARS-28 is based on a pneumatic transportation system with two independenhat transport cnnels and a two-channel rotating irradiation unit. The analyzed samples are transported in polyethylene containers, which are moved by compressed air. The facility has been successfully tested and is used in an automated system for multielement activation analysis

  17. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    2001-01-01

    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  18. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  19. Active patterning and asymmetric transport in a model actomyosin network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenshen [Department of Chemical Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wolynes, Peter G. [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  20. OPTIMIZATION METHOD AND SOFTWARE FOR FUEL COST REDUCTION IN CASE OF ROAD TRANSPORT ACTIVITY

    Directory of Open Access Journals (Sweden)

    György Kovács

    2017-06-01

    Full Text Available The transport activity is one of the most expensive processes in the supply chain and the fuel cost is the highest cost among the cost components of transportation. The goal of the research is to optimize the transport costs in case of a given transport task both by the selecting the optimal petrol station and by determining the optimal amount of the refilled fuel. Recently, in practice, these two decisions have not been made centrally at the forwarding company, but they depend on the individual decision of the driver. The aim of this study is to elaborate a precise and reliable mathematical method for selecting the optimal refuelling stations and determining the optimal amount of the refilled fuel to fulfil the transport demands. Based on the elaborated model, new decision-supporting software is developed for the economical fulfilment of transport trips.

  1. Webcams, Crowdsourcing, and Enhanced Crosswalks: Developing a Novel Method to Analyze Active Transportation.

    Science.gov (United States)

    Hipp, J Aaron; Manteiga, Alicia; Burgess, Amanda; Stylianou, Abby; Pless, Robert

    2016-01-01

    Active transportation opportunities and infrastructure are an important component of a community's design, livability, and health. Features of the built environment influence active transportation, but objective study of the natural experiment effects of built environment improvements on active transportation is challenging. The purpose of this study was to develop and present a novel method of active transportation research using webcams and crowdsourcing, and to determine if crosswalk enhancement was associated with changes in active transportation rates, including across a variety of weather conditions. The 20,529 publicly available webcam images from two street intersections in Washington, DC, USA were used to examine the impact of an improved crosswalk on active transportation. A crowdsource, Amazon Mechanical Turk, annotated image data. Temperature data were collected from the National Oceanic and Atmospheric Administration, and precipitation data were annotated from images by trained research assistants. Summary analyses demonstrated slight, bi-directional differences in the percent of images with pedestrians and bicyclists captured before and after the enhancement of the crosswalks. Chi-square analyses revealed these changes were not significant. In general, pedestrian presence increased in images captured during moderate temperatures compared to images captured during hot or cold temperatures. Chi-square analyses indicated the crosswalk improvement may have encouraged walking and biking in uncomfortable outdoor conditions (P < 0.5). The methods employed provide an objective, cost-effective alternative to traditional means of examining the effects of built environment changes on active transportation. The use of webcams to collect active transportation data has applications for community policymakers, planners, and health professionals. Future research will work to validate this method in a variety of settings as well as across different built

  2. Webcams, crowdsourcing, and enhanced crosswalks: Developing a novel method to analyze active transportation

    Directory of Open Access Journals (Sweden)

    J. Aaron eHipp

    2016-05-01

    Full Text Available Introduction: Active transportation opportunities and infrastructure are an important component of a community’s design, livability, and health. Features of the built environment influence active transportation, but objective study of the natural experiment effects of built environment improvements on active transportation is challenging. The purpose of this study was to develop and present a novel method of active transportation research using webcams and crowdsourcing, and to determine if crosswalk enhancement was associated with changes in active transportation rates, including across a variety of weather conditions. Methods: 20,529 publicly available webcam images from two street intersections in Washington, D.C., were used to examine the impact of an improved crosswalk on active transportation. A crowdsource, Amazon Mechanical Turk, annotated image data. Temperature data was collected from the National Oceanic and Atmospheric Administration, and precipitation data was annotated from images by trained research assistants. Results: Summary analyses demonstrated slight, bi-directional differences in the percent of images with pedestrians and bicyclists captured before and after the enhancement of the crosswalks. Chi-square analyses revealed these changes were not significant. In general, pedestrian presence increased in images captured during moderate temperatures compared to images captured during hot or cold temperatures. Chi-square analyses indicated the crosswalk improvement may have encouraged walking and biking in uncomfortable outdoor conditions (p<0.5. Conclusion: The methods employed provide an objective, cost-effective alternative to traditional means of examining the effects of built environment changes on active transportation. The use of webcams to collect active transportation data has applications for community policymakers, planners, and health professionals. Future research will work to validate this method in a variety of

  3. Super-Gaussian, super-diffusive transport of multi-mode active matter

    OpenAIRE

    Hahn, Seungsoo; Song, Sanggeun; Kim, Dae Hyun; Yang, Gil-Suk; Lee, Kang Taek; Sung, Jaeyoung

    2017-01-01

    Living cells exhibit multi-mode transport that switches between an active, self-propelled motion and a seemingly passive, random motion. Cellular decision-making over transport mode switching is a stochastic process that depends on the dynamics of the intracellular chemical network regulating the cell migration process. Here, we propose a theory and an exactly solvable model of multi-mode active matter. Our exact model study shows that the reversible transition between a passive mode and an a...

  4. Diagnosis of Transport Activity as a Component of the Enterprise Logistical System

    Directory of Open Access Journals (Sweden)

    Skrynkovskyy Ruslan M.

    2016-05-01

    Full Text Available The article reveals the essence of the concept of “diagnosis of the enterprise transport activity”, by which there should be meant a process of evaluating the state of movement (transportation, carrying of freight (material resources, work in process or finished products by one type of transport facilities or their combination in accordance with the applied transport system and trends of its changes as well as determining the future prospects on the basis of sound management decisions in order to ensure a successful operation and development of the enterprise in the competitive environment. It has been found that the key business-indicators of the diagnosis system of transport activity as a component of the enterprise logistical system are: the coefficient of timeliness of freight transportation (delivery; coefficient of completeness of transportation; coefficient of freight safety conditions; coefficient of efficiency of freight transportation; coefficient of complexity of servicing freight owners; coefficient of satisfaction of freight owners’ demand, coefficient of readiness to operation of transport facilities per working day; coefficient of using vehicle kilometers travelled; coefficient of extensity of transport facility packing.

  5. 41 CFR 102-117.345 - Is there a requirement for me to report to GSA on my transportation activities?

    Science.gov (United States)

    2010-07-01

    ... for me to report to GSA on my transportation activities? 102-117.345 Section 102-117.345 Public... requirement for me to report to GSA on my transportation activities? (a) Currently, there is no requirement for reporting to GSA on your transportation activities. However, GSA will work with your agency and...

  6. Borreliacidal activity of Borrelia metal transporter A (BmtA binding small molecules by manganese transport inhibition

    Directory of Open Access Journals (Sweden)

    Wagh D

    2015-02-01

    Full Text Available Dhananjay Wagh,* Venkata Raveendra Pothineni,* Mohammed Inayathullah, Song Liu, Kwang-Min Kim, Jayakumar Rajadas Biomaterials and Advanced Drug Delivery Laboratory, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA *These authors contributed equally to this work  Abstract: Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA, a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 µg/mL (250 µM. Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia.  Keywords: Lyme disease, BmtA, Borrelia burgdorferi, desloratadine, Bac Titer-Glo assay

  7. Habitual active transport, TV viewing and weight gain: a four year follow-up study.

    Science.gov (United States)

    Ding, Ding; Sugiyama, Takemi; Owen, Neville

    2012-01-01

    To examine the associations of TV viewing time and domain-specific physical activity with weight change; to determine whether domain-specific physical activity moderates the potential association of TV viewing time with weight change. We used four-year longitudinal data (baseline: 2003-2004, follow-up: 2007-2008) on 969 adults from selected neighborhoods in Adelaide, Australia (Age: 48.6 ± 10.6 years, 61% females). Mixed models examined four-year weight change as the dependent variable, with TV viewing time, habitual transport and past week domain-specific physical activity at baseline as independent variables. On average, participants gained 1.6 kg over four years. TV viewing time at baseline was positively associated with weight gain at follow-up. Each additional hour of TV viewing was associated with 0.24-0.27 kg of extra weight gain. This relationship was not moderated by recent recall of transport, leisure-time, and occupational physical activity, but was moderated by habitual transport: an additional hour of TV viewing time at baseline was significantly associated with an extra weight gain of 0.65 kg at follow-up among those who were inactive in everyday transport; TV time was not significantly associated with weight change among those who were regularly active in transport. Habitual active transport may protect adults against risk of weight gain associated with prolonged TV viewing time. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  9. Activity-Based Costing Application in an Urban Mass Transport Company

    Directory of Open Access Journals (Sweden)

    Popesko Boris

    2011-12-01

    Full Text Available The purpose of this paper is to provide a basic overview of the application of Activity-Based Costing in an urban mass transport company which operates land public transport via buses and trolleys within the city. The case study was conducted using the Activity-Based Methodology in order to calculate the true cost of individual operations and to measure the profitability of particular transport lines. The case study analysis showed the possible effects of the application of the Activity-Based Costing for an urban mass transport company as well as the limitations of using the ABC methodology in the service industry. With regards to the application of the ABC methodology, the primary limitation of the accuracy of the conclusions is the quality of the non-financial information which had to be gathered throughout the implementation process. A basic limitation of the accurate data acquisition is the nature of the fare system of the transport company which does not allow the identification of the route that is taken by an individual passenger. The study illustrates the technique of ABC in urban mass transport and provides a real company example of information outputs of the ABC system. The users indicated that, the ABC model is very useful for profitability reporting and profit management. Also, the paper shows specific application of the Activity-Based Methodology in conditions of urban mass transport companies with regional specifics.

  10. Update of KSC activities for the space transportation system

    Science.gov (United States)

    Gray, R. H.

    1979-01-01

    The paper is a status report on the facilities and planned operations at the Kennedy Space Center (KSC) that will support Space Shuttle launches. The conversion of KSC facilities to support efficient and economical checkout and launch operations in the era of the Space Shuttle is nearing completion. The driving force behind the KSC effort has been the necessity of providing adequate and indispensable facilities and support systems at minimum cost. This required the optimum utilization of existing buildings, equipment and systems, both at KSC and at Air Force property on Cape Canaveral, as well as the construction of two major new facilities and several minor ones. The entirely new structures discussed are the Shuttle Landing Facility and Orbiter Processing Facility. KSC stands ready to provide the rapid reliable economical landing-to-launch processing needed to ensure the success of this new space transportation system.

  11. Active transportation and bullying in Canadian schoolchildren: a cross-sectional study.

    Science.gov (United States)

    Cozma, Ioana; Kukaswadia, Atif; Janssen, Ian; Craig, Wendy; Pickett, William

    2015-02-07

    Bullying is a recognized social problem within child populations. Engagement in childhood bullying often occurs in settings that are away from adult supervision, such as en route to and from school. Bullying episodes may also have a negative impact on school childrens' decisions to engage in active transportation. Using a cross-sectional design, we analyzed reports from the 2009/10 cycle of the Canadian Health Behaviour in School-Aged Children (HBSC) study. Records from this general health survey were obtained for 3,997 urban students in grades 6-10 who lived in close proximity of their school and were hence ineligible for school bussing. Students who indicated walking or bicycling to school were classified as engaged in active transportation. Victims and perpetrators of bullying were defined using standard measures and a frequency cut-off of at least 2-3 times per month. Analyses focused on relations between bullying and active transportation, as well as barriers to active transportation as perceived by young people. 27% of young people indicated being victimized, and 12% indicated that they engaged in bullying. Girls were more likely to be victimized than boys, and younger students were more likely to be victimized than older students. Engagement in active transportation was reported by 63% of respondents, of these, 68% indicated that worrying about bullying on the way to school was an impediment to such transportation methods. Victimization by bullying (adjusted OR = 1.26, 95% CI: 1.00 - 1.59) was reported more frequently by children who used active transportation. Health promotion efforts to promote engagement in active transportation of students to school have obvious value. The potential for modest increases in exposure to bullying should be considered in the planning of such initiatives.

  12. Is park visitation associated with leisure-time and transportation physical activity?

    Science.gov (United States)

    Veitch, Jenny; Ball, Kylie; Crawford, David; Abbott, Gavin; Salmon, Jo

    2013-11-01

    The aim of this study was to examine whether frequency of park visitation was associated with time spent in various domains of physical activity among adults living in a disadvantaged neighbourhood of Victoria, Australia. In 2009, participants (n=319) self-reported park visitation and physical activity including: walking and cycling for transport, leisure-time walking, leisure-time moderate- to vigorous-intensity physical activity, and total physical activity. The mean number of park visits per week was 3.3 (SD=3.8). Park visitation was associated with greater odds of engaging in high (as compared to low) amounts of transportation physical activity, leisure-time walking, leisure-time moderate- to vigorous-intensity physical activity (MVPA) and total physical activity. Each additional park visit per week was associated with 23% greater odds of being in the high category for transportation physical activity, 26% greater odds of engaging in high amounts of leisure-time walking, 11% greater odds of engaging in MVPA, and 40% greater odds of high total physical activity. Acknowledging the cross-sectional study design, the findings suggest that park visitation may be an important predictor and/or destination for transportation and leisure-time walking and physical activity. Findings highlight the potentially important role of parks for physical activity. © 2013.

  13. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  14. Electrolytic pretreatment of urine

    Science.gov (United States)

    1977-01-01

    Electrolysis has been under evaluation for several years as a process to pretreat urine for ultimate recovery of potable water in manned spacecraft applications. The conclusions that were drawn from this investigation are the following: (1) A platinum alloy containing 10 percent rhodium has been shown to be an effective, corrosion-resistant anode material for the electrolytic pretreatment of urine. Black platinum has been found to be suitable as a cathode material. (2) The mechanism of the reactions occurring during the electrolysis of urine is two-stage: (a) a total Kjeldahl nitrogen and total organic carbon (TOC) removal in the first stage is the result of electrochemical oxidation of urea to CO2, H2O, and ammonia followed by chloride interaction to produce N2 from ammonia, (b) after the urea has been essentially removed and the chloride ions have no more ammonia to interact with, the chloride ions start to oxidize to higher valence states, thus producing perchlorates. (3) Formation of perchlorates can be suppressed by high/low current operation, elevated temperature, and pH adjustment. (4) UV-radiation showed promise in assisting electrolytic TOC removal in beaker tests, but was not substantiated in limited single cell testing. This may have been due to non-optimum configurations of the single cell test rig and the light source.

  15. Transportation

    Science.gov (United States)

    2007-01-01

    Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being

  16. Formation of the Cycle of Business Processes of Management of Marketing Activity of a Transport Enterprise

    Directory of Open Access Journals (Sweden)

    Horielov Dmytro O.

    2014-02-01

    Full Text Available The article is devoted to problems of organisation of the process of management of marketing activity of an enterprise. It specifies the model of services of a transport enterprise and provides levels of services and their structure: basic, real, expanded, expected and prospective. The article offers to differentiate planning and realisation of the transportation service by its levels, each of which would correspond with a separate business process of management. It reveals specific features of use of instruments of the traditional, internal and interactive marketing in the market of transportation services. It identifies the structure of the object when managing marketing activity of a transportation enterprise. The article uses the Deming cycle to formulate general principles of formation of business processes of management of marketing activity: “Motivation – Plan – Do – Check – Act”. The proposed cycle would ensure continuous improvement of the said business processes of an enterprise in accordance with international quality standards (ISO.

  17. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    Science.gov (United States)

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  18. Adolescents who engage in active school transport are also more active in other contexts: A space-time investigation.

    Science.gov (United States)

    Stewart, Tom; Duncan, Scott; Schipperijn, Jasper

    2017-01-01

    Although active school travel (AST) is important for increasing moderate-to-vigorous physical activity (MVPA), it is unclear how AST is related to context-specific physical activity and non-school travel. This study investigated how school travel is related to physical activity and travel behaviours across time- and space-classified domains. A total of 196 adolescents wore a Global Positioning System receiver and an accelerometer for 7 days. All data were classified into one of four domains: home, school, transport, or leisure. Generalized linear mixed models were used to compare domain-specific PA and non-school trips between active and passive school travellers. Active travellers accumulated 13 and 14 more min of MVPA on weekdays and weekend days, respectively. They also spent 15min less time in vehicular travel during non-school trips, and accrued an additional 9min of MVPA while walking on weekend days. However, those with no AST still achieved most of their MVPA in the transport domain. AST is related to out-of-school physical activity and transportation, but transport is also important for those who do not use AST. As such, future studies should consider overall mobility and destinations other than school when assessing travel and physical activity behaviours. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Sode, Olaseni; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, Computation Institute, The University of Chicago, Chicago, Illinois 60637, USA and Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-12-14

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A{sup 2−}, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A{sup 2-} by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  20. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    International Nuclear Information System (INIS)

    Sode, Olaseni; Voth, Gregory A.

    2014-01-01

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A 2− , a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A 2- by closing a cavity that could otherwise fill with water near the proximal Fe of the active site

  1. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    Science.gov (United States)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  2. Interactions of psychosocial factors with built environments in explaining adolescents' active transportation.

    Science.gov (United States)

    Wang, Xiaobo; Conway, Terry L; Cain, Kelli L; Frank, Lawrence D; Saelens, Brian E; Geremia, Carrie; Kerr, Jacqueline; Glanz, Karen; Carlson, Jordan A; Sallis, James F

    2017-07-01

    The present study examined independent and interacting associations of psychosocial and neighborhood built environment variables with adolescents' reported active transportation. Moderating effects of adolescent sex were explored. Mixed-effects regression models were conducted on data from the Teen Environment and Neighborhood observational study (N=928) in the Seattle, WA and Baltimore regions 2009-2011. Frequency index of active transportation to neighborhood destinations (dependent variable) and 7 psychosocial measures were reported by adolescents. Built environment measures included home walkability and count of nearby parks and recreation facilities using GIS procedures and streetscape quality from environmental audits. Results indicated all 3 environmental variables and 3 psychosocial variables (self-efficacy, social support from peers, and enjoyment of physical activity) had significant positive main effects with active transportation (Pstransportation (Pstransportation was found among adolescents with the combination of activity-supportive built environment and positive psychosocial characteristics. Three-way interactions with sex indicated similar associations for girls and boys, with one exception. Results provided modest support for the ecological model principle of interactions across levels, highlight the importance of both built environment and psychosocial factors in shaping adolescents' active transportation, demonstrated the possibility of sex-specific findings, and suggested strategies for improving adolescents' active transportation may be most effective when targeting multiple levels of influence. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Activated human CD4 T cells express transporters for both cysteine and cystine

    DEFF Research Database (Denmark)

    Levring, Trine Bøegh; Hansen, Ann Kathrine; Nielsen, Bodil Lisbeth

    2012-01-01

    Because naïve T cells are unable to import cystine due to the absence of cystine transporters, it has been suggested that T cell activation is dependent on cysteine generated by antigen presenting cells. The aim of this study was to determine at which phases during T cell activation exogenous...... cystine/cysteine is required and how T cells meet this requirement. We found that early activation of T cells is independent of exogenous cystine/cysteine, whereas T cell proliferation is strictly dependent of uptake of exogenous cystine/cysteine. Naïve T cells express no or very low levels of both...... cystine and cysteine transporters. However, we found that these transporters become strongly up-regulated during T cell activation and provide activated T cells with the required amount of cystine/cysteine needed for T cell proliferation. Thus, T cells are equipped with mechanisms that allow T cell...

  4. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport requirements for low specific activity... SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.427 Transport requirements for low specific... must be transported in accordance with the following conditions: (1) The external dose rate may not...

  5. Conductivity of SDC and (Li/Na){sub 2}CO{sub 3} composite electrolytes in reducing and oxidising atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Andreas; Lagergren, Carina; Lindbergh, Goeran [KTH Chemical Science and Engineering, Applied Electrochemistry, SE-100 44 Stockholm (Sweden); Di, Jing; Wang, Cheng Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2007-10-25

    Composite electrolytes made of samarium-doped cerium oxide and a mixture of lithium carbonate and sodium carbonate salts are investigated with respect to their structure, morphology and ionic conductivity. The composite electrolytes are considered promising for use in so called intermediate temperature solid oxide fuel cells (IT-SOFC), operating at 400-600 C. The electrolytes are tested in both gaseous anode (reducing) and cathode (oxidising) environments and at different humidities and carbon dioxide partial pressures. For the structure and morphology measurements, it was concluded that no changes occur to the materials after usage. From measurements of melting energies, it was concluded that the melting point of the carbonate salt phase decreases with decreasing fraction of carbonate salt and that a partial melting occurs before the bulk melting point of the salt is reached. For all the composites, two regions may be observed for the conductivity, one below the carbonate salt melting point and one above the melting point. The conductivity is higher when electrolytes are tested in anode gas than when tested in cathode gas, at least for electrolytes with less than half the volume fraction consisting of carbonate salt. The higher the content of carbonate salt phase, the higher the conductivity of the composite for the temperature region above the carbonate melting point. Below the melting point, though, the conductivity does not follow this trend. Calculations on activation energies for the conductivity show no trend or value that indicates a certain transport mechanism for ion transport, either when changing between the different composites or between different gas environments. (author)

  6. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    International Nuclear Information System (INIS)

    Li, Song; Feng, Guang; Cummings Peter, T; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Dai, Sheng

    2014-01-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance–electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. (paper)

  7. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  8. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model [v1; ref status: indexed, http://f1000r.es/41n

    Directory of Open Access Journals (Sweden)

    Sergi Vaquer

    2014-08-01

    Full Text Available Abstract Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay® (Solvo Biotechnology, Hungary was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2 trans-membrane estradiol-17-β-glucuronide (E17βG transport activity, when activated by adenosine-tri-phosphate (ATP during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology

  9. Operating a redox flow battery with a negative electrolyte imbalance

    Science.gov (United States)

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  10. Solid-state electrolyte for supercapacitors

    OpenAIRE

    K.C., Sabin

    2016-01-01

    Renewable energy has become a primary focus for scientific community since last decade. Great interesting investigations and creative works have been carried out to develop technology for powering our society, including disrupt technology for efficient energy storage and power manage. Supercapacitors (SP) also known as electrochemical double layer capacitors uses high surface area active electrode materials and various electrolytes to achieve capacitance of several order magnitude greater tha...

  11. Activity transport models for PWR primary circuits; PWR-ydinvoimalaitoksen primaeaeripiirin aktiivisuuskulkeutumismallit

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, V; Rosenberg, R [VTT Chemical Technology, Otaniemi (Finland)

    1995-03-01

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR`s. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.).

  12. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  13. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions

    International Nuclear Information System (INIS)

    Osfouri, Shahriar; Azin, Reza; Gholami, Reza; Izadpanah, Amir Abbas

    2015-01-01

    Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions

  14. Epidemiology of leisure, transportation, occupational, and household physical activity: prevalence and associated factors.

    Science.gov (United States)

    Florindo, Alex Antonio; Guimarães, Vanessa Valente; Cesar, Chester Luiz Galvão; Barros, Marilisa Berti de Azevedo; Alves, Maria Cecília Goi Porto; Goldbaum, Moisés

    2009-09-01

    To estimate the prevalence of and identify factors associated with physical activity in leisure, transportation, occupational, and household settings. This was a cross-sectional study aimed at investigating living and health conditions among the population of São Paulo, Brazil. Data on 1318 adults aged 18 to 65 years were used. To assess physical activity, the long version of the International Physical Activity Questionnaire was applied. Multivariate analysis was conducted using a hierarchical model. The greatest prevalence of insufficient activity related to transportation (91.7%), followed by leisure (77.5%), occupational (68.9%), and household settings (56.7%). The variables associated with insufficient levels of physical activity in leisure were female sex, older age, low education level, nonwhite skin color, smoking, and self-reported poor health; in occupational settings were female sex, white skin color, high education level, self-reported poor health, nonsmoking, and obesity; in transportation settings were female sex; and in household settings, with male sex, separated, or widowed status and high education level. Physical activity in transportation and leisure settings should be encouraged. This study will serve as a reference point in monitoring different types of physical activities and implementing public physical activity policies in developing countries.

  15. Electrolytic coloration of air-grown sodium fluoride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Han Li; Song Cuiying; Guo Meili; Wang Na

    2007-01-01

    Air-grown sodium fluoride crystals were colored electrolytically by using a pointed cathode at various temperatures and electric field strengths, which should mainly benefit appropriate coloration temperatures and electric field strengths. O 2 - , F, M, N 1 , N 2 color centers and O 2- -F + complexes were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V color center migration was determined. The formation of the color centers was explained

  16. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions

    International Nuclear Information System (INIS)

    Li, C; Mishchenko, A; Li, Z; Pobelov, I; Wandlowski, Th; Li, X Q; Wuerthner, F; Bagrets, A; Evers, F

    2008-01-01

    We report a scanning tunneling microscopy (STM) experiment in an electrochemical environment which studies a prototype molecular switch. The target molecules were perylene tetracarboxylic acid bisimides modified with pyridine (P-PBI) and methylthiol (T-PBI) linker groups and with bulky tert-butyl-phenoxy substituents in the bay area. At a fixed bias voltage, we can control the transport current through a symmetric molecular wire Au|P-PBI(T-PBI)|Au by variation of the electrochemical 'gate' potential. The current increases by up to two orders of magnitude. The conductances of the P-PBI junctions are typically a factor 3 larger than those of T-PBI. A theoretical analysis explains this effect as a consequence of shifting the lowest unoccupied perylene level (LUMO) in or out of the bias window when tuning the electrochemical gate potential VG. The difference in on/off ratios reflects the variation of hybridization of the LUMO with the electrode states with the anchor groups. I T -E S(T) curves of asymmetric molecular junctions formed between a bare Au STM tip and a T-PBI (P-PBI) modified Au(111) electrode in an aqueous electrolyte exhibit a pronounced maximum in the tunneling current at -0.740, which is close to the formal potential of the surface-confined molecules. The experimental data were explained by a sequential two-step electron transfer process

  17. Comparative analysis of methods and sources of financing of the transport organizations activity

    Science.gov (United States)

    Gorshkov, Roman

    2017-10-01

    The article considers the analysis of methods of financing of transport organizations in conditions of limited investment resources. A comparative analysis of these methods is carried out, the classification of investment, methods and sources of financial support for projects being implemented to date are presented. In order to select the optimal sources of financing for the projects, various methods of financial management and financial support for the activities of the transport organization were analyzed, which were considered from the perspective of analysis of advantages and limitations. The result of the study is recommendations on the selection of optimal sources and methods of financing of transport organizations.

  18. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Min; Lu, Guangyuan; Heng, Jie

    2018-03-01

    Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters. © 2017 The Protein Society.

  19. Electric Pulse Discharge Activated Carbon Supercapacitors for Transportation Application

    Science.gov (United States)

    Nayak, Subhadarshi; Agrawal, Jyoti

    2012-03-01

    ScienceTomorrow is developing a high-speed, low-cost process for synthesizing high-porosity electrodes for electrochemical double-layer capacitors. Four types of coal (lignite, subbituminous, bituminous, and anthracite) were used as precursor materials for spark discharge activation with multiscale porous structure. The final porosity and pore distribution depended, among other factors, on precursor type. The high gas content in low-grade carbon resulted in mechanical disintegration, whereas high capacitance was attained in higher-grade coal. The properties, including capacitance, mechanical robustness, and internal conductivity, were excellent when the cost is taken into consideration.

  20. Associations between built environment and active transport in Danish adolescents

    DEFF Research Database (Denmark)

    Breum, Lars

    to and from school (very safe to very unsafe). - Area median household income (statistic records). GIS measures: -Individual network distance from home to school. -Index consisting of summed rank-score of the following three components (1-14 each; summed 3-42): Pedshed: ‘Area of 2 km school service area’ / ‘2...... km school buffer (euclidean)’1). Vehicular Traffic Exposure: ‘Length of larger roads (>6 meters wide)’ / ’minor roads (...-day active commuting was 0.58 (pdistance. To have an ‘unsafe’ or ‘very unsafe’ route to school was associated with an OR on 0.50 (p

  1. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  2. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  3. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control

    KAUST Repository

    Wu, Hui

    2012-03-25

    Although the performance of lithium ion-batteries continues to improve, their energy density and cycle life remain insufficient for applications in consumer electronics, transport and large-scale renewable energy storage 1-5. Silicon has a large charge storage capacity and this makes it an attractive anode material, but pulverization during cycling and an unstable solid-electrolyte interphase has limited the cycle life of silicon anodes to hundreds of cycles 6-11. Here, we show that anodes consisting of an active silicon nanotube surrounded by an ion-permeable silicon oxide shell can cycle over 6,000 times in half cells while retaining more than 85% of their initial capacity. The outer surface of the silicon nanotube is prevented from expansion by the oxide shell, and the expanding inner surface is not exposed to the electrolyte, resulting in a stable solid-electrolyte interphase. Batteries containing these double-walled silicon nanotube anodes exhibit charge capacities approximately eight times larger than conventional carbon anodes and charging rates of up to 20C (a rate of 1C corresponds to complete charge or discharge in one hour). © 2012 Macmillan Publishers Limited. All rights reserved.

  4. Enhanced performance of ultracapacitors using redox additive-based electrolytes

    Science.gov (United States)

    Jain, Dharmendra; Kanungo, Jitendra; Tripathi, S. K.

    2018-05-01

    Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode-electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4-KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge-discharge techniques. The maximum capacitance ` C' was observed with redox additives-based electrolyte system comprising 1 M H2SO4-0.3 M KI (1072 F g- 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g- 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg- 1 at 2.1 A g- 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg- 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5-70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)-KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.

  5. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  6. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L; Bayoudh, S [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Herlem, G [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1997-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  7. Packaging design criteria (onsite) project W-520 immobilized low-activity waste transportation system

    International Nuclear Information System (INIS)

    BOEHNKE, W.M.

    2001-01-01

    A plan is currently in place to process the high-level radioactive wastes that resulted from uranium and plutonium recovery operations from Spent Nuclear Fuel at the Hanford Site, Richland, Washington. Currently, millions of gallons of high-level radioactive waste in the form of liquids, sludges, and saltcake are stored in many large underground tanks onsite. This waste will be processed and separated into high-level and low-activity fractions. Both fractions will then be vitrified (i.e., blended with molten borosilicate glass) in order to encapsulate the toxic radionuclides. The immobilized low-activity waste (ILAW) glass will be poured into LAW canisters, allowed to cool and harden to solid form, sealed by welding, and then transported to a double-lined trench in the 200 East Area for permanent disposal. This document presents the packaging design criteria (PDC) for an onsite LAW transportation system, which includes the ILAW canister, ILAW package, and transport vehicle and defines normal and accident conditions. This PDC provides the basis for the ILAW onsite transportation system design and fabrication and establishes the transportation safety criteria that the design will be evaluated against in the Package Specific Safety Document (PSSD). It provides the criteria for the ILAW canister, cask and transport vehicles and defines normal and accident conditions. The LAW transportation system is designed to transport stabilized waste from the vitrification facility to the ILAW disposal facility developed by Project W-520. All ILAW transport will take place within the 200 East Area (all within the Hanford Site)

  8. Electrolytic preconcentration in instrumental analysis.

    Science.gov (United States)

    Sioda, R E; Batley, G E; Lund, W; Wang, J; Leach, S C

    1986-05-01

    The use of electrolytic deposition as a separation and preconcentration step in trace metal analysis is reviewed. Both the principles and applications of the technique are dealt with in some detail. Electrolytic preconcentration can be combined with a variety of instrumental techniques. Special attention is given to stripping voltammetry, potentiometric stripping analysis, different combinations with atomic-absorption spectrometry, and the use of flow-through porous electrodes. It is pointed out that the electrolytic preconcentration technique deserves more extensive use as well as fundamental investigation.

  9. Metal dispersion and transportational activities using food crops as biomonitors.

    Science.gov (United States)

    Ward, N I; Savage, J M

    1994-05-23

    The multielement (Al, Ca, Cd, Ce, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Si, and Zn) levels of various common vegetables (bean, broccoli, cabbage, cauliflower, lettuce, marrow, onion, parsnip, spinach, sprouts, sweet corn, and tomato); fruits (grape and strawberry); herbs (garlic, lemon balm, marjoram, mint, rosemary and tarragon); local pasture species and surface soils collected from a commercial garden centre located within a distance of 30 m of the London Orbital Motorway (M25) is presented. Comparative values are given from a background area, namely a domestic garden located in the North Yorkshire Dales National Park area. Analysis was undertaken by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma-source mass spectrometry (ICP-MS) with quality control assessment using four international biological reference materials; BCR:CRM 62 Olive Leaves, NIST 1575 Pine Needles, NIST 1573 Tomato Leaves, and NIST 1572 Citrus Leaves. Inter-analytical method comparison is given using two methods of ICP-MS; namely conventional pneumatic nebulisation of sample solution, and direct solids analysis by laser ablation; and neutron activation analysis methods (NAA). For the elements listed there is a good precision obtained by ICP-MS and NAA. In particular levels of herbs > vegetables > cereals > fruits. Measured values are in good agreement with reported literature values. The lowest Pb values are for marrow, lettuce, tomato and sweet corn samples (approximately 0.001-0.021 microgram/g). 'Green' leaf material levels were approximately 0.02-0.10 microgram/g (i.e. sprouts and cabbage). Root vegetables contain higher levels, approximately 0.02-0.125 microgram/g (especially carrot), reflecting possible metal uptake from soil. The highest vegetable Pb values are for leek and onion (approximately 0.35 microgram/g). Background values are also provided for nineteen elements (Al, As, B, Ba, Br, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, V, and Zn

  10. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Haghtalab, Ali, E-mail: haghtala@modares.ac.i [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Shojaeian, Abolfazl; Mazloumi, Seyed Hossein [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-03-15

    An electrolyte activity coefficient model is proposed by combining non-electrolyte NRTL-NRF local composition model and Pitzer-Debye-Hueckel equation as short-range and long-range contributions, respectively. With two adjustable parameters per each electrolyte, the present model is applied to correlation of the mean activity coefficients of more than 150 strong aqueous electrolyte solutions at 298.15 K. Also the results of the present model are compared with the other local composition models such as electrolyte-NRTL, electrolyte-NRTL-NRF and electrolyte-Wilson-NRF models. Moreover, the present model is used for prediction of the osmotic coefficient of several aqueous binary electrolytes systems at 298.15 K. Also the present activity coefficient model is adopted for representation of nonideality of the acid gases, as weak gas electrolytes, soluble in alkanolamine solutions. The model is applied for calculation of solubility and heat of absorption (enthalpy of solution) of acid gas in the two {l_brace}(H{sub 2}O + MDEA + CO{sub 2}) and (H{sub 2}O + MDEA + H{sub 2}S){r_brace} systems at different conditions. The results demonstrate that the present model can be successfully applied to study thermodynamic properties of both strong and weak electrolyte solutions.

  11. Further activities of safety culture toward nuclear transportation industry

    International Nuclear Information System (INIS)

    Machida, Y.; Shimakura, D.

    2004-01-01

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power

  12. Further activities of safety culture toward nuclear transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Y.; Shimakura, D. [NSnet, Tokyo (Japan)

    2004-07-01

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power.

  13. Objectively measured walkability and active transport and weight-related outcomes in adults: a systematic review.

    Science.gov (United States)

    Grasser, Gerlinde; Van Dyck, Delfien; Titze, Sylvia; Stronegger, Willibald

    2013-08-01

    The aim of this study was to investigate which GIS-based measures of walkability (density, land-use mix, connectivity and walkability indexes) in urban and suburban neighbourhoods are used in research and which of them are consistently associated with walking and cycling for transport, overall active transportation and weight-related measures in adults. A systematic review of English publications using PubMed, Science Direct, Active Living Research Literature Database, the Transportation Research Information Service and reference lists was conducted. The search terms utilised were synonyms for GIS in combination with synonyms for the outcomes. Thirty-four publications based on 19 different studies were eligible. Walkability measures such as gross population density, intersection density and walkability indexes most consistently correlated with measures of physical activity for transport. Results on weight-related measures were inconsistent. More research is needed to determine whether walkability is an appropriate measure for predicting weight-related measures and overall active transportation. As most of the consistent correlates, gross population density, intersection density and the walkability indexes have the potential to be used in planning and monitoring.

  14. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  15. Electrotransport in ionic crystals: Pt. 1. Application of liquid electrolyte theory

    International Nuclear Information System (INIS)

    Janek, J.

    1994-01-01

    Transport of matter and charge in ionic crystals is only possible by the existence of irregular structure elements (defects) which are often charged relative to the crystal lattice. A comparison between the transport behaviour of a crystalline matrix containing such charged defects and a liquid electrolyte containing dissolved ions shows a lot of similarities. As is well known the transport properties of liquid electrolytes are strongly affected by interactions between the dissolved ions. We have applied the well elaborated concept of mixed electrolytes by Onsager and Fuoss which was originally devoted to liquid electrolytes to ionic crystals containing charged point defects. The equations of Onsager and Fuoss allow in principle the calculation of the concentration dependence of the phenomenological transport coefficients L ij of all charge carriers of n-component electrolytes. We will use these equations to predict the transport behaviour of ionic crystals containing differently charged point defects. As examples we have calculated transport coefficients for electrolyte systems which can be regarded as models for the transition metal oxides Co 1-δ O and Cu 2-δ O. One major result concerns the magnitude of the cross effect between the ionic and electronic fluxes in those materials. The implications of these results with respect to experimental observations are discussed. (orig.)

  16. Surface modification of steels by electrical discharge treatment in electrolyte

    International Nuclear Information System (INIS)

    Krastev, D.; Paunov, V.; Yordanov, B.; Lazarova, V.

    2013-01-01

    Full text: In this work are discussed some experimental data about the influence of applied electrical discharge treatment in electrolyte on the surface structure of steels. The electrical discharge treatment of steel surface in electrolyte gives a modified structure with specific combination of characteristics in result of nonequilibrium transformations. The modification goes by a high energy thermal process in a very small volume on the metallic surface involving melting, vaporisation, activation and alloying in electrical discharges, and after that cooling of this surface with high rate in the electrolyte. The surface layers obtain a different structure in comparison with the metal matrix and are with higher hardness, wear resistance and corrosion resistance. key words: surface modification, electrical discharge treatment in electrolyte, steels

  17. The transports in the French Plutonium Industry. A high risk activity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This study throws light on the scale of transport of plutonium in France nuclear industry, an activity involving quantities of high risk materials often unknown to the public. The study is a significantly extended update of the one carried out by WISE-Paris in 1995 for the Plutonium Forum. It was motivated by important developments in the French plutonium industry and the publication of numerous data concerning transport activities since 1995. The 2003 study presents, in particular, all of the flows of plutonium crossing France every year, as well as analysis of the risks associated with this particular transport activity. Putting these data into perspective in terms of a rapidly and permanently changing political and industrial context, and a description of the regulatory framework within which shipments of plutonium take place, serve as a guide and source of reference to help readers better understand the issues. The importance of transport in the plutonium ''chain'', i.e. the stages corresponding to various industrial processes, is often under-estimated, even by the nuclear industry itself. Transport is, in fact, the activity which involves the greatest quantities of plutonium in the entire nuclear chain. Plutonium, produced during the fission reactions in the cores of nuclear reactors, is transported, contained in the irradiated fuel, to the facilities at La Hague where reprocessing separates it from the other radioactive components of the spent fuel. Part of the plutonium, now isolated in powder form, is then shipped to one of the three plants able to produce the fuel known as MOX. These are located at Cadarache and Marcoule, in France, and at Dessel in Belgium. Once in the MOX form, this plutonium has to be re-transported to reactor sites to be used. Once irradiated, the spent MOX will return to the La Hague installations to be stored for an unknown period; the plutonium contained in the spent MOX is not, at present, destined to be re

  18. The transports in the French Plutonium Industry. A high risk activity

    International Nuclear Information System (INIS)

    2003-02-01

    This study throws light on the scale of transport of plutonium in France nuclear industry, an activity involving quantities of high risk materials often unknown to the public. The study is a significantly extended update of the one carried out by WISE-Paris in 1995 for the Plutonium Forum. It was motivated by important developments in the French plutonium industry and the publication of numerous data concerning transport activities since 1995. The 2003 study presents, in particular, all of the flows of plutonium crossing France every year, as well as analysis of the risks associated with this particular transport activity. Putting these data into perspective in terms of a rapidly and permanently changing political and industrial context, and a description of the regulatory framework within which shipments of plutonium take place, serve as a guide and source of reference to help readers better understand the issues. The importance of transport in the plutonium ''chain'', i.e. the stages corresponding to various industrial processes, is often under-estimated, even by the nuclear industry itself. Transport is, in fact, the activity which involves the greatest quantities of plutonium in the entire nuclear chain. Plutonium, produced during the fission reactions in the cores of nuclear reactors, is transported, contained in the irradiated fuel, to the facilities at La Hague where reprocessing separates it from the other radioactive components of the spent fuel. Part of the plutonium, now isolated in powder form, is then shipped to one of the three plants able to produce the fuel known as MOX. These are located at Cadarache and Marcoule, in France, and at Dessel in Belgium. Once in the MOX form, this plutonium has to be re-transported to reactor sites to be used. Once irradiated, the spent MOX will return to the La Hague installations to be stored for an unknown period; the plutonium contained in the spent MOX is not, at present, destined to be re-used. (author)

  19. Impact of New Transport Infrastructure on Walking, Cycling, and Physical Activity.

    Science.gov (United States)

    Panter, Jenna; Heinen, Eva; Mackett, Roger; Ogilvie, David

    2016-02-01

    Walking and cycling bring health and environmental benefits, but there is little robust evidence that changing the built environment promotes these activities in populations. This study evaluated the effects of new transport infrastructure on active commuting and physical activity. Quasi-experimental analysis nested within a cohort study. Four hundred and sixty-nine adult commuters, recruited through a predominantly workplace-based strategy, who lived within 30 kilometers of Cambridge, United Kingdom and worked in areas of the city to be served by the new transport infrastructure. The Cambridgeshire Guided Busway opened in 2011 and comprised a new bus network and a traffic-free walking and cycling route. Exposure to the intervention was defined using the shortest distance from each participant's home to the busway. Change in weekly time spent in active commuting between 2009 and 2012, measured by validated 7-day recall instrument. Secondary outcomes were changes in total weekly time spent walking and cycling and in recreational and overall physical activity, measured using the validated Recent Physical Activity Questionnaire. Data were analyzed in 2014. In multivariable multinomial regression models--adjusted for potential sociodemographic, geographic, health, and workplace confounders; baseline active commuting; and home or work relocation-exposure to the busway was associated with a significantly greater likelihood of an increase in weekly cycle commuting time (relative risk ratio=1.34, 95% CI=1.03, 1.76) and with an increase in overall time spent in active commuting among the least active commuters at baseline (relative risk ratio=1.76, 95% CI=1.16, 2.67). The study found no evidence of changes in recreational or overall physical activity. Providing new sustainable transport infrastructure was effective in promoting an increase in active commuting. These findings provide new evidence to support reconfiguring transport systems as part of public health improvement

  20. Protein Kinases C-Mediated Regulations of Drug Transporter Activity, Localization and Expression

    Directory of Open Access Journals (Sweden)

    Abdullah Mayati

    2017-04-01

    Full Text Available Drug transporters are now recognized as major actors in pharmacokinetics, involved notably in drug–drug interactions and drug adverse effects. Factors that govern their activity, localization and expression are therefore important to consider. In the present review, the implications of protein kinases C (PKCs in transporter regulations are summarized and discussed. Both solute carrier (SLC and ATP-binding cassette (ABC drug transporters can be regulated by PKCs-related signaling pathways. PKCs thus target activity, membrane localization and/or expression level of major influx and efflux drug transporters, in various normal and pathological types of cells and tissues, often in a PKC isoform-specific manner. PKCs are notably implicated in membrane insertion of bile acid transporters in liver and, in this way, are thought to contribute to cholestatic or choleretic effects of endogenous compounds or drugs. The exact clinical relevance of PKCs-related regulation of drug transporters in terms of drug resistance, pharmacokinetics, drug–drug interactions and drug toxicity remains however to be precisely determined. This issue is likely important to consider in the context of the development of new drugs targeting PKCs-mediated signaling pathways, for treating notably cancers, diabetes or psychiatric disorders.

  1. Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors

    Science.gov (United States)

    Noorden, Zulkarnain A.; Matsumoto, Satoshi

    2013-10-01

    In this paper, we evaluate the essential electrochemical properties - capacitive and resistive behaviors - of hydrocarbon-derived electrolytes for supercapacitor application using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrolytes were systematically prepared from three hydrocarbon-derived compounds, which have different molecular structures and functional groups, by treatment with high-concentration sulfuric acid (H2SO4) at room temperature. Two-electrode cells were assembled by sandwiching an electrolyte-containing glass wool separator with two active electrodes of activated carbon sheets. The dc electrical properties of the tested cells in terms of their capacitive behavior were investigated by CV, and in order to observe the frequency characteristics of the constructed cells, EIS was carried out. Compared with the tested cell with only high-concentration H2SO4 as the electrolyte, the cell with the derived electrolytes exhibit a capacitance as high as 135 F/g with an improved overall internal resistance of 2.5 Ω. Through the use of a simple preparation method and low-cost precursors, hydrocarbon-derived electrolytes could potentially find large-scale and higher-rating supercapacitor applications.

  2. Applying GPS to enhance understanding of transport-related physical activity.

    Science.gov (United States)

    Duncan, Mitch J; Badland, Hannah M; Mummery, W Kerry

    2009-09-01

    The purpose of the paper is to review the utility of the global positioning system (GPS) in the study of health-related physical activity. The paper draws from existing literature to outline the current work performed using GPS to examine transport-related physical activity, with a focus on the relative utility of the approach when combined with geographic information system (GIS) and other data sources including accelerometers. The paper argues that GPS, especially when used in combination with GIS and accelerometery, offers great promise in objectively measuring and studying the relationship of numerous environmental attributes to human behaviour in terms of physical activity and transport-related activity. Limitations to the use of GPS for the purpose of monitoring health-related physical activity are presented, and recommendations for future avenues of research are discussed.

  3. The Railway Transport Cabinet of the Kyiv Commercial Institute: educational activities and library

    Directory of Open Access Journals (Sweden)

    Afanasievа Z.

    2014-01-01

    Full Text Available In the article the history of foundation and activities of the Railway Transport Cabinet of the Kyiv Commercial Institute are recreated and an attempt is made to trace the way of its library book fonds which "has been lost" during the institute numerous transformations.The Railway Transport Cabinet was established as a supportive educational subdivision of the Merchandising Museum of the Kyiv Commercial Institute. Its purpose was to gather materials on railway science from the improved models of railway transport to the rich collection of specialized literature in foreign languages. In this regard a library was organized in a cabinet; it consisted of professional books and documents covering the railway science, railroads organization and operation, various manuals, diagrams etc. The novelty of the publication lies in the disclosure of the history of the Kyiv Commercial Institute Railway Transport Cabinet library, which has not yet been an object of a special book science research.

  4. Coexistence of conversion and intercalation mechanisms in lithium ion batteries. Consequences for microstructure and interaction between the active material and electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Robert [TU Bergakademie, Freiberg (Germany). Inst. of Materials Science; Lepple, Maren [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Technische Univ. Darmstadt (Germany). Eduard-Zintl-Inst. fuer Anorganische und Physikalische Chemie; Mayer, Nicolas A. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); and others

    2017-11-15

    Conversion-type lithium ion batteries experience severe and partly irreversible phase transitions during operation. Such phase transitions reduce the crystallite size and therefore enhance the exchange of the Li ions. Concurrently, the irreversible nature of the phase transitions may deteriorate the cycling stability and the long-term capacity of conversion-type batteries. In this contribution, the observed correlations between the crystal structures of compounds which are employed as anodes in conversion-type Li ion cells, the capacity and the long-term stability of these cells are discussed. The central characteristics affecting the performance of conversion-type Li ion cells seem to be the similarity of crystal structures of intermediately forming phases during the charge/discharge process, which facilitates strong local preferred orientation of nanocrystallites of neighboring phases and for the formation of local strain fields at partially coherent phase boundaries. The effect of the above-mentioned phenomena on capacity and cycle stability is argued from the point of view of a possibly impeded ion exchange. Equilibrium open circuit potentials are calculated using the CALPHAD method. However, it is shown that in order to better reproduce the experimentally determined plateau voltages, thermodynamic descriptions of the non-equilibrium intermediate phases have to be included. In addition, the stabilization of the conversion reaction by the electrolyte is pointed out.

  5. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  6. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  7. Cosolvent electrolytes for electrochemical devices

    Science.gov (United States)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-01-23

    A method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  8. Cosolvent electrolytes for electrochemical devices

    Science.gov (United States)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-02-13

    A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  9. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.

    Science.gov (United States)

    Bredeston, Luis M; González Flecha, F Luis

    2016-07-01

    Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A fully resolved active musculo-mechanical model for esophageal transport

    Science.gov (United States)

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-10-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.

  11. Central Hemodynamics and Oxygen Transport in Various Activation of Patients Operated On Under Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Ye. V. Dzybinskaya

    2009-01-01

    Full Text Available Objective: to study central hemodynamics, the determinants of myocardial oxygen balance, and the parameters of oxygen transport in various activation of patients after surgery under extracorporeal circulation. Subjects and methods. Thirty-four patients aged 57.8±2.5 years who had coronary heart disease were divided into 2 groups: 1 those with late activation (artificial ventilation time 157±9 min and 2 those with immediate activation (artificial ventilation time 33±6 min. Group 2 patients were, if required, given fentanyl, midazolam, or myorelaxants. Results. During activation, there were no intergroup differences in the mean levels of the major parameters of cardiac pump function, in the determinants of coronary blood flow (coronary perfusion gradients and myocardial oxygen demand (the product of heart rate by systolic blood pressure, and in the parameters of oxygen transport, including arterial lactatemia. After tracheal extubation, the left ventricular pump coefficient was increased considerably (up to 3.8±0.2 and 4.4±0.2 gm/mm Hg/m2 in Groups 1 and 2, respectively; p<0.05 with minimum inotropic support (dopamine and/or dobutamine being used at 2.7±0.3 and 2.4±0.3 mg/kg/min, respectively. In both groups, there were no close correlations between the indices of oxygen delivery and consumption at all stages of the study, which was indicative of no transport-dependent oxygen uptake. Conclusion. When the early activation protocol was followed up, the maximum acceleration of early activation, including that using specific antagonists of anesthetics, has no negative impact on central hemodynamics, the determinants of myocardial oxygen balance and transport in patients operated on under extracorporeal circulation. Key words: early activation, surgery under extracorporeal circulation, tracheal extubation in the operating-room, central hemodynamics, oxygen transport.

  12. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes.

    Directory of Open Access Journals (Sweden)

    Yanmei Zhao

    2018-06-01

    Full Text Available Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.

  13. Individual public transportation accessibility is positively associated with self-reported active commuting

    DEFF Research Database (Denmark)

    Djurhuus, Sune; Hansen, Henning Sten; Aadahl, Mette

    2014-01-01

    BACKGROUND: Active commuters have lower risk of chronic disease. Understanding which of the, to some extent, modifiable characteristics of public transportation that facilitate its use is thus important in a public health perspective. The aim of the study was to examine the association between...... individual public transportation accessibility and self-reported active commuting, and whether the associations varied with commute distance, age, and gender. METHODS: Twenty-eight thousand nine hundred twenty-eight commuters in The Capital Region of Denmark reported self-reported time spent either walking...... or cycling to work or study each day and the distance to work or study. Data were obtained from the Danish National Health Survey collected in February to April 2010. Individual accessibility by public transportation was calculated using a multi-modal network in a GIS. Multilevel logistic regression was used...

  14. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    Science.gov (United States)

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  15. Optimization of a He-jet activity transport system to use at LAMPF

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.; Starner, J.W.

    1986-01-01

    As part of an assessment of the feasibility for a He-jet coupled on-line mass separator at LAMPF, we have studied performance characteristics of a gas activity transport system under conditions simulating those expected on the main LAMPF beam line. In experiments utilizing a side beam at LAMPF, we have measured absolute transport efficiencies, transit times, aerosol properties, and dependences on beam intensity. Further experiments with a He-jet system at the Omega West Reactor have indicated an optimum configuration of a target chamber to be placed in the LAMPF main beam. The results of these studies suggest that a He-jet activity transport system should work well at LAMPF in the 800-MeV, 1-mA proton beam that is spread over ∼40 cm 2 near the beam stop. 19 refs., 8 figs

  16. Generation of an activating Zn(2+) switch in the dopamine transporter

    DEFF Research Database (Denmark)

    Loland, Claus Juul; Norregaard, Lene; Litman, Thomas

    2002-01-01

    Binding of Zn(2+) to the endogenous Zn(2+) binding site in the human dopamine transporter leads to potent inhibition of [(3)H]dopamine uptake. Here we show that mutation of an intracellular tyrosine to alanine (Y335A) converts this inhibitory Zn(2+) switch into an activating Zn(2+) switch, allowing...... Zn(2+)-dependent activation of the transporter. The tyrosine is part of a conserved YXX Phi trafficking motif (X is any residue and Phi is a residue with a bulky hydrophobic group), but Y335A did not show alterations in surface targeting or protein kinase C-mediated internalization. Despite wild...... for several substrates was increased. However, the presence of Zn(2+) in micromolar concentrations increased the V(max) up to 24-fold and partially restored the apparent affinities. The capability of Zn(2+) to restore transport is consistent with a reversible, constitutive shift in the distribution...

  17. Assessment of sedentary behaviors and transport-related activities by questionnaire: a validation study

    Directory of Open Access Journals (Sweden)

    Keitly Mensah

    2016-08-01

    Full Text Available Abstract Background Comprehensive assessment of sedentary behavior (SB and physical activity (PA, including transport-related activities (TRA, is required to design innovative PA promotion strategies. There are few validated instruments that simultaneously assess the different components of human movement according to their context of practice (e.g. work, transport, leisure. We examined test-retest reliability and validity of the Sedentary, Transportation and Activity Questionnaire (STAQ, a newly developed questionnaire dedicated to assessing context-specific SB, TRA and PA. Methods Ninety six subjects (51 women kept a contextualized activity-logbook and wore a hip accelerometer (Actigraph GT3X + TM for a 7-day or 14-day period, at the end of which they completed the STAQ. Activity-energy expenditure was measured in a subgroup of 45 subjects using the double labeled water (DLW method. Test-retest reliability was assessed using intra-class-coefficients (ICC in a subgroup of 32 subjects who filled the questionnaire twice one month apart. Accelerometry was annotated using the logbook to obtain total and context-specific objective estimates of SB. Spearman correlations, Bland-Altman plots and ICC were used to analyze validity with logbook, accelerometry and DLW data validity criteria. Results Test-retest reliability was fair for total sitting time (ICC = 0.52, good to excellent for work sitting time (ICC = 0.71, transport-related walking (ICC = 0.61 and car use (ICC = 0.67, and leisure screen-related SB (ICC = 0.64-0.79, but poor for total sitting time during leisure and transport-related contexts. For validity, compared to accelerometry, significant correlations were found for STAQ estimates of total (r = 0.54 and context-specific sitting times with stronger correlations for work sitting time (r = 0.88, and screen times (TV/DVD viewing: r = 0.46; other screens: r = 0.42 than for transport (r = 0.35 or

  18. Assessment of sedentary behaviors and transport-related activities by questionnaire: a validation study.

    Science.gov (United States)

    Mensah, Keitly; Maire, Aurélia; Oppert, Jean-Michel; Dugas, Julien; Charreire, Hélène; Weber, Christiane; Simon, Chantal; Nazare, Julie-Anne

    2016-08-09

    Comprehensive assessment of sedentary behavior (SB) and physical activity (PA), including transport-related activities (TRA), is required to design innovative PA promotion strategies. There are few validated instruments that simultaneously assess the different components of human movement according to their context of practice (e.g. work, transport, leisure). We examined test-retest reliability and validity of the Sedentary, Transportation and Activity Questionnaire (STAQ), a newly developed questionnaire dedicated to assessing context-specific SB, TRA and PA. Ninety six subjects (51 women) kept a contextualized activity-logbook and wore a hip accelerometer (Actigraph GT3X + (TM)) for a 7-day or 14-day period, at the end of which they completed the STAQ. Activity-energy expenditure was measured in a subgroup of 45 subjects using the double labeled water (DLW) method. Test-retest reliability was assessed using intra-class-coefficients (ICC) in a subgroup of 32 subjects who filled the questionnaire twice one month apart. Accelerometry was annotated using the logbook to obtain total and context-specific objective estimates of SB. Spearman correlations, Bland-Altman plots and ICC were used to analyze validity with logbook, accelerometry and DLW data validity criteria. Test-retest reliability was fair for total sitting time (ICC = 0.52), good to excellent for work sitting time (ICC = 0.71), transport-related walking (ICC = 0.61) and car use (ICC = 0.67), and leisure screen-related SB (ICC = 0.64-0.79), but poor for total sitting time during leisure and transport-related contexts. For validity, compared to accelerometry, significant correlations were found for STAQ estimates of total (r = 0.54) and context-specific sitting times with stronger correlations for work sitting time (r = 0.88), and screen times (TV/DVD viewing: r = 0.46; other screens: r = 0.42) than for transport (r = 0.35) or leisure-related sitting-times (r

  19. Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates.

    Science.gov (United States)

    Jensen, Wyatt A; Brown, Barbara B; Smith, Ken R; Brewer, Simon C; Amburgey, Jonathan W; McIff, Brett

    2017-09-05

    Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale-Abbreviated, NEWS-A) and audited walkability (Irvine-Minnesota Inventory, IMI) measures for residents living within 2 km of a "complete street"-one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items ( n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents' active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions.

  20. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  1. Community Design and Transportation Policies: New Ways To Promote Physical Activity.

    Science.gov (United States)

    Killingsworth, Richard E.; Schmid, Thomas L.

    2001-01-01

    Public health, city planning, and transportation officials can work toward reducing the public health burden of physical inactivity by promoting the integration of walking and bicycling into daily routines. The paper discusses urban design challenges, promotion of walking and bicycling, and the importance of physical activity for children.…

  2. Filling the Gap : Relationship Between the Serotonin-Transporter-Linked Polymorphic Region and Amygdala Activation

    NARCIS (Netherlands)

    Bastiaansen, Jojanneke A.; Servaas, Michelle N.; Marsman, Jan-Bernard; Ormel, Johan; Nolte, Ilja M.; Riese, Harriette; Aleman, Andre

    2014-01-01

    The alleged association between the serotonin-transporter-linked polymorphic region (5-HTTLPR) and amygdala activation forms a cornerstone of the common view that carrying the short allele of this polymorphism is a potential risk factor for affective disorders. The authors of a recent meta-analysis

  3. Filling the Gap : Relationship Between the Serotonin-Transporter-Linked Polymorphic Region and Amygdala Activation

    NARCIS (Netherlands)

    Bastiaansen, Jojanneke A.; Servaas, Michelle N.; Marsman, Jan-Bernard; Ormel, Johan; Nolte, Ilja M.; Riese, Harriette; Aleman, Andre

    The alleged association between the serotonin-transporter-linked polymorphic region (5-HTTLPR) and amygdala activation forms a cornerstone of the common view that carrying the short allele of this polymorphism is a potential risk factor for affective disorders. The authors of a recent meta-analysis

  4. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ

  5. Transportation impact analysis for the shipment of Low Specific Activity Nitric Acid

    International Nuclear Information System (INIS)

    Green, J.R.

    1994-01-01

    This document was written in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes the potential toxicological and radiological risks associated with the transportation of PUREX Facility LSA Nitric Acid from the Hanford Site in Washington State to three Eastern ports

  6. Children's route choice during active transportation to school: Difference between shortest and actual route

    NARCIS (Netherlands)

    Dessing, D.; Vries, S.I. de; Hegeman, G.; Verhagen, E.; Mechelen, W. van; Pierik, F.H.

    2016-01-01

    Background: The purpose of this study is to increase our understanding of environmental correlates that are associated with route choice during active transportation to school (ATS) by comparing characteristics of actual walking and cycling routes between home and school with the shortest possible

  7. Effects of taurine on plasma glucose concentration and active glucose transport in the small intestine.

    Science.gov (United States)

    Tsuchiya, Yo; Kawamata, Koichi

    2017-11-01

    Taurine lowers blood glucose levels and improves hyperglycemia. However, its effects on glucose transport in the small intestine have not been investigated. Here, we elucidated the effect of taurine on glucose absorption in the small intestine. In the oral glucose tolerance test, addition of 10 mmol/L taurine suppressed the increase in hepatic portal glucose concentrations. To investigate whether the suppressive effect of taurine occurs via down-regulation of active glucose transport in the small intestine, we performed an assay using the everted sac of the rat jejunum. Addition of taurine to the mucosal side of the jejunum suppressed active glucose transport via sodium-glucose cotransporter 1 (SGLT1). After elimination of chloride ions from the mucosal solution, taurine did not show suppressive effects on active glucose transport. These results suggest that taurine suppressed the increase in hepatic portal glucose concentrations via suppression of SGLT1 activity in the rat jejunum, depending on chloride ions. © 2017 Japanese Society of Animal Science.

  8. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus-cucumber symbiosis

    DEFF Research Database (Denmark)

    Larsen, J.; Thingstrup, I.; Jakobsen, I.

    1996-01-01

    when benomyl was applied to the HC at 10 µg g-1 soil, whereas the uptake of 32P from RHC I roots + hyphae) was reduced only at the highest dose of application to the RHC (100 µ g g-1 soil). In contrast to the marked reduction of benomyl on fungal P transport, the activity of fungal alkaline phosphatase...

  9. NIREX transport activities since rejection of the rock characterisation facility planning application

    International Nuclear Information System (INIS)

    Barlow, S.; Carr, N.; Sievwright, R.W.T.

    2000-01-01

    The application by Nirex to build an underground Rock Characterisation Facility, was rejected by the Secretary of State on 17 March 1997. This decision has caused Nirex to reconsider its forward programme for the development of an underground disposal facility for intermediate level waste. This paper describes the transport related activities being undertaken by Nirex since that date. (author)

  10. The Association Between the Physical Environment of Primary Schools and Active School Transport

    NARCIS (Netherlands)

    Kann, D.H.H. van; Kremers, S.P.J.; Gubbels, J.S.; Bartelink, N.H.M.; Vries, S.I. de; Vries, N.K. de; Jansen, M.W.J.

    2015-01-01

    This study examined the relationship between the physical environment characteristics of primary schools and active school transport among 3,438 5- to 12-year-old primary school children in the Netherlands. The environmental characteristics were categorized into four theory-based clusters (function,

  11. Test-Retest Reliability of a Survey to Measure Transport-Related Physical Activity in Adults

    Science.gov (United States)

    Badland, Hannah; Schofield, Grant

    2006-01-01

    The present research details test-retest reliability of a newly developed, telephone-administered TPA survey for adults. This instrument examines barriers, perceptions, and current travel behaviors to place of work/study and local convenience shops. Demonstrated test-retest reliability of the Active Friendly Environments-Transport-Related Physical…

  12. Making Tracks 1.0: Action Researching an Active Transportation Education Program

    Science.gov (United States)

    Robinson, Daniel; Foran, Andrew; Robinson, Ingrid

    2014-01-01

    This paper reports on the results of the first cycle of an action research project. The objective of this action research was to examine the implementation of a school-based active transportation education program (Making Tracks). A two-cycle action research design was employed in which elementary school students' (ages 7-9), middle school…

  13. Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates

    Science.gov (United States)

    Jensen, Wyatt A.; Smith, Ken R.; Brewer, Simon C.; Amburgey, Jonathan W.; McIff, Brett

    2017-01-01

    Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale—Abbreviated, NEWS-A) and audited walkability (Irvine–Minnesota Inventory, IMI) measures for residents living within 2 km of a “complete street”—one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items (n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents’ active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions. PMID:28872595

  14. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  15. 25 CFR Appendix A to Subpart G - List of Activities Eligible for Funding Under BIA Transportation Facility Maintenance Program

    Science.gov (United States)

    2010-04-01

    ... Transportation Facility Maintenance Program A Appendix A to Subpart G Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance Pt. 170... Transportation Facility Maintenance Program The following activities are eligible for BIA Transportation Facility...

  16. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  17. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  18. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.

    Science.gov (United States)

    Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea

    2013-03-01

    We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.

  19. Evidence of active transport of cadmium complexing dithiocarbamates into renal and hepatic cells in vivo

    International Nuclear Information System (INIS)

    Gale, G.R.; Smith, A.B.; Jones, M.M.; Singh, P.K.

    1992-01-01

    A study was made of the effects of certain inhibitors of transport systems on the actions of four cadmium (Cd) complexing N,N-disubstituted dithiocarbamates (DTCs) in mobilizing murine renal and hepatic Cd in vivo. Probenecid, the prototypical antagonist of organic anion transport in the kidney, when given 1 hr prior to each DTC, sharply suppressed the DTC-induced reduction of renal Cd but was virtually without effect on mobilization of Cd from liver. Sulfinpyrazone, which blocks tubular reabsorption of uric acid and also inhibits transport of a variety of organic acids, inhibited markedly the mobilization of both renal and hepatic Cd by DTCs. Phlorizin, an inhibitor of tubular sugar reabsorption, did not affect the Cd mobilizing actions of DTCs in any consistent fashion. We propose that the high degree of selectivity of DTCs in mobilizing renal hepatic Cd is dependent, at lest in part, upon active transport of DTCs into these tissues via the organic anion transport systems. This report presents the first evidence that compounds of the (R) 2 NCSS - class may gain access to intracellular space by an active, carrier-mediated process. (au)

  20. Supply chain and innovation activity in transport related enterprises in Eastern Poland

    Directory of Open Access Journals (Sweden)

    Giuseppe Ioppolo

    2016-12-01

    Full Text Available  Background: One of the development strategies uses R&D activity as the main source of innovation, which is often carried out in cooperation with other units, but in particular in the supply chain, and therefore applies to cooperation between enterprises and their customers and suppliers. The aim of the study was to identify the variable determinants of the impact of the character of relationships among enterprises and their suppliers and customers on their innovative performance, within regional industrial systems and to define the constraints for a model regional structure of innovation network tailored to the needs of Poland and its regions. Methods: 167 enterprises belonging to the transport sector and operating in the area of Eastern Poland took part. In order to determine the impact of relationships with suppliers and customers on innovation activity, models based on probability analysis - probit models - were used. Results: It can be clearly stated that the cooperation of industrial enterprises in the transport sector with customers and suppliers activates innovation activity and its specified attributes. However, the probability varies depending on the test variable adopted. Conclusions: The cooperation with suppliers and customers is the cognitive aspect in the development of innovation activity in industrial enterprises representing the transport-related sector. Such cooperation has a stimulating effect on expenditures on innovation activity and on the implementation of innovative solutions in the field of technological innovation (products and processes.  

  1. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference number and ideally

  2. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference

  3. Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size.

    Science.gov (United States)

    Meredith, Megan; MacNeil, Allison H; Trasler, Jacquetta M; Baltz, Jay M

    2016-06-01

    The folate cycle is central to cellular one-carbon metabolism, where folates are carriers of one-carbon units that are critical for synthesis of purines, thymidylate, and S-adenosylmethionine, the universal methyl donor that forms the cellular methyl pool. Although folates are well-known to be important for early embryo and fetal development, their role in oogenesis has not been clearly established. Here, folate transport proteins were detected in developing neonatal ovaries and growing oocytes by immunohistochemistry, Western blot, and immunofluorescence. The folate receptors FOLR1 and FOLR2 as well as reduced folate carrier 1 (RFC1, SLC19A1 protein) each appeared to be present in follicular cells including granulosa cells. In growing oocytes, however, only FOLR2 immunoreactivity appeared abundant. Localization of apparent FOLR2 immunofluorescence near the plasma membrane increased with oocyte growth and peaked in oocytes as they neared full size. We assessed folate transport using the model folate leucovorin (folinic acid). Unexpectedly, there was a transient burst of folate transport activity for a brief period during oocyte growth as they neared full size, while folate transport was otherwise undetectable for the rest of oogenesis and in fully grown germinal vesicle stage oocytes. This folate transport was inhibited by dynasore, an inhibitor of endocytosis, but insensitive to the anion transport inhibitor stilbene 4-acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid, consistent with folate receptor-mediated transport but not with RFC1-mediated transport. Thus, near the end of their growth, growing oocytes may take up folates that could support the final stage of oogenesis or be stored to provide the endogenous folates needed in early embryogenesis. © 2016 by the Society for the Study of Reproduction, Inc.

  4. The transports of nuclear fuel cycle: An essential activity, safely managed

    International Nuclear Information System (INIS)

    Lenail, B.; Savornin, B.; Curtis, H.W.

    1989-01-01

    Transports associated with the nuclear fuel cycle normally use public means of transport by rail, road, sea and air and it might therefore be expected that they would be the Achilles heel of the cycle from a safety point of view. In fact, despite a few minor accidents, no radioactive releases resulting in a significant exposure of the public or the environment have occurred. On the other hand, during the last quarter, the news media have reported major spillages of crude oil and chemicals of high toxicity which have jeopardized the environment, the explosion of gas tankers with dozens of fatalities, and even the sinking of a nuclear submarine. All reports show that the radiation exposure to the public resulting from transports is negligible, i.e., far below 1% of that due to the whole nuclear industry. Similarly, the radiation exposure of transport workers has been lower than anticipated over several decades. The demonstrations and attacks by opponents of the nuclear industry against transports have been limited and have been used as an attempt to freeze the activity of different plants or disposal sites, and to focus public attention on the nuclear issue, rather than to question the fuel cycle transports themselves or the safety principles ruling them. When looking for explanations of such a favorable situation, which they should endeavour to perpetuate, without being surprised if any incident occurs, one finds two major reasons: First, the awareness by the fuel cycle operators, of the vital importance of a safe and reliable implementation of the necessary transports. Secondly, the results of assessments of safety conducted by international organizations and most countries, which have resulted in detailed international recommendations, as well as uniform national and modal regulations, thus establishing the necessary link between the basic rules for radioprotection and the needs of the Transport Industry

  5. Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase.

    Directory of Open Access Journals (Sweden)

    Christina Schueler

    Full Text Available Transport metabolons have been discussed between carbonic anhydrase II (CAII and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1, to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 µM, while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity.

  6. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  7. The influence of substrate transport limitation on porosity and methanogenic activity of anaerobic sludge granules

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, P.A. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Perez, M.C. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology); Lettinga, G. (Agricultural Univ., Wageningen (Netherlands). Dept. of Environmental Technology)

    1993-05-01

    The relationship between porosity, diameter and methanogenic activity of anaerobic granules has been investigated. Experiments with different granular sludges revealed that substrate transport limitations increase with the diameter of the granules. As a consequence, autolysis can occur in the core of the granule, producing hollow granules. The porosity measurements revealed that the hollow centre is not available for substrate transport. Possibly as an effect of bacterial lysis, the porosity decreases in the more interior layers of the granules. This results in a inactive inner part of the large granules, which is not involved in the treatment process; the specific methanogenic activity decreases with granule size. No marked difference in substrate affinity is observed between granules of different sizes, which probably indicates that for large granules only the exterior is biological active. (orig.)

  8. Serotonin transporter genotype (5-HTTLPR): effects of neutral and undefined conditions on amygdala activation.

    Science.gov (United States)

    Heinz, Andreas; Smolka, Michael N; Braus, Dieter F; Wrase, Jana; Beck, Anne; Flor, Herta; Mann, Karl; Schumann, Gunter; Büchel, Christian; Hariri, Ahmad R; Weinberger, Daniel R

    2007-04-15

    A polymorphism of the human serotonin transporter gene (SCL6A4) has been associated with serotonin transporter expression and with processing of aversive stimuli in the amygdala. Functional imaging studies show that during the presentation of aversive versus neutral cues, healthy carriers of the short (s) allele showed stronger amygdala activation than long (l) carriers. However, a recent report suggested that this interaction is driven by amygdala deactivation during presentation of neutral stimuli in s carriers. Functional MRI was used to assess amygdala activation during the presentation of a fixation cross or affectively aversive or neutral visual stimuli in 29 healthy men. Amygdala activation was increased in s carriers during undefined states such as the presentation of a fixation cross compared with emotionally neutral conditions. This finding suggests that s carriers show stronger amygdala reactivity to stimuli and contexts that are relatively uncertain, which we propose are stressful.

  9. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  10. Calibration of neutron yield activation measurements at JET using MCNP and furnace neutron transport codes

    International Nuclear Information System (INIS)

    Pillon, M.; Martone, M.; Verschuur, K.A.; Jarvis, O.N.; Kaellne, J.

    1989-01-01

    Neutron transport calculations have been performed using fluence ray tracing (FURNACE code) and Monte Carlo particle trajectory sampling methods (MCNP code) in order to determine the neutron fluence and energy distributions at different locations in the JET tokamak. These calculations were used to calibrate the activation measurements used in the determination of the absolute fusion neutron yields from the JET plasma. We present here the neutron activation response coefficients calculated for three different materials. Comparison of the MCNP and FURNACE results helps identify the sources of error in these neutron transport calculations. The accuracy of these calculations was tested by comparing the total 2.5 MeV neutron yields derived from the activation measurements with those obtained with calibrated fission chambers; agreement at the ±15% level was demonstrate. (orig.)

  11. Multivalent weak electrolytes - risky background electrolytes for capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Beckers, J. L.; Boček, Petr

    2002-01-01

    Roč. 23, č. 12 (2002), s. 1942-1946 ISSN 0173-0835 R&D Projects: GA ČR GA203/99/0044; GA ČR GA203/02/0023; GA ČR GA203/01/0401; GA AV ČR IAA4031703; GA AV ČR IAA4031103 Institutional research plan: CEZ:AV0Z4031919 Keywords : background electrolytes * capillary zone electrophoresis * multivalent electrolytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  12. The Small Protein SgrT Controls Transport Activity of the Glucose-Specific Phosphotransferase System.

    Science.gov (United States)

    Lloyd, Chelsea R; Park, Seongjin; Fei, Jingyi; Vanderpool, Carin K

    2017-06-01

    The bacterial small RNA (sRNA) SgrS has been a fruitful model for discovery of novel RNA-based regulatory mechanisms and new facets of bacterial physiology and metabolism. SgrS is one of only a few characterized dual-function sRNAs. SgrS can control gene expression posttranscriptionally via sRNA-mRNA base-pairing interactions. Its second function is coding for the small protein SgrT. Previous work demonstrated that both functions contribute to relief of growth inhibition caused by glucose-phosphate stress, a condition characterized by disrupted glycolytic flux and accumulation of sugar phosphates. The base-pairing activity of SgrS has been the subject of numerous studies, but the activity of SgrT is less well characterized. Here, we provide evidence that SgrT acts to specifically inhibit the transport activity of the major glucose permease PtsG. Superresolution microscopy demonstrated that SgrT localizes to the cell membrane in a PtsG-dependent manner. Mutational analysis determined that residues in the N-terminal domain of PtsG are important for conferring sensitivity to SgrT-mediated inhibition of transport activity. Growth assays support a model in which SgrT-mediated inhibition of PtsG transport activity reduces accumulation of nonmetabolizable sugar phosphates and promotes utilization of alternative carbon sources by modulating carbon catabolite repression. The results of this study expand our understanding of a basic and well-studied biological problem, namely, how cells coordinate carbohydrate transport and metabolism. Further, this work highlights the complex activities that can be carried out by sRNAs and small proteins in bacteria. IMPORTANCE Sequencing, annotation and investigation of hundreds of bacterial genomes have identified vast numbers of small RNAs and small proteins, the majority of which have no known function. In this study, we explore the function of a small protein that acts in tandem with a well-characterized small RNA during metabolic

  13. Cross-continental comparison of the association between the physical environment and active transportation in children: a systematic review.

    Science.gov (United States)

    D'Haese, Sara; Vanwolleghem, Griet; Hinckson, Erica; De Bourdeaudhuij, Ilse; Deforche, Benedicte; Van Dyck, Delfien; Cardon, Greet

    2015-11-26

    The purpose of this systematic review was to determine the relationship between a wide range of physical environmental characteristics and different contexts of active transportation in 6- to 12-year-old children across different continents. A systematic search was conducted in six databases (Pubmed, Web of Science, Cinahl, SportDiscus, TRIS and Cochrane) resulting in 65 papers, eligible for inclusion. The investigated physical environmental variables were grouped into six categories: walkability, accessibility, walk/cycle facilities, aesthetics, safety, recreation facilities. The majority of the studies were conducted in North America (n = 35), Europe (n = 17) and Australia (n = 11). Active transportation to school (walking or cycling) was positively associated with walkability. Walking to school was positively associated with walkability, density and accessibility. Evidence for a possible association was found for traffic safety and all forms of active transportation to school. No convincing evidence was found for associations between the physical environment and active transportation during leisure. General safety and traffic safety were associated with active transportation to school in North America and Australia but not associated with active transportation to school in Europe. The physical environment was mainly associated with active transportation to school. Continent specific associations were found, indicating that safety measures were most important in relation to active commuting to school in North America and Australia. There is a need for longitudinal studies and studies conducted in Asia, Africa and South-America and studies focusing specifically on active transportation during leisure.

  14. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  15. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2016-01-01

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  16. Variations in active transport behavior among different neighborhoods and across adult life stages

    DEFF Research Database (Denmark)

    Christiansen, Lars Breum; Madsen, Thomas; Schipperijn, Jasper

    2014-01-01

    OBJECTIVE: Built environment characteristics are closely related to transport behavior, but observed variations could be due to residents own choice of neighborhood called residential self-selection. The aim of this study was to investigate differences in neighborhood walkability and residential...... self-selection across life stages in relation to active transport behavior. METHODS: The IPEN walkability index, which consists of four built environment characteristics, was used to define 16 high and low walkable neighborhoods in Aarhus, Denmark (250.000 inhabitants). Transport behavior was assessed...... using the IPAQ questionnaire. Life stages were categorized in three groups according to age and parental status. A factor analysis was conducted to investigate patterns of self-selection. Multivariable logistic regression analyses were carried out to evaluate the association between walkability...

  17. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    Science.gov (United States)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  18. Validation of the Activities of Community Transportation model for individuals with cognitive impairments.

    Science.gov (United States)

    Sohlberg, McKay Moore; Fickas, Stephen; Lemoncello, Rik; Hung, Pei-Fang

    2009-01-01

    To develop a theoretical, functional model of community navigation for individuals with cognitive impairments: the Activities of Community Transportation (ACTs). Iterative design using qualitative methods (i.e. document review, focus groups and observations). Four agencies providing travel training to adults with cognitive impairments in the USA participated in the validation study. A thorough document review and series of focus groups led to the development of a comprehensive model (ACTs Wheels) delineating the requisite steps and skills for community navigation. The model was validated and updated based on observations of 395 actual trips by travellers with navigational challenges from the four participating agencies. Results revealed that the 'ACTs Wheel' models were complete and comprehensive. The 'ACTs Wheels' represent a comprehensive model of the steps needed to navigate to destinations using paratransit and fixed-route public transportation systems for travellers with cognitive impairments. Suggestions are made for future investigations of community transportation for this population.

  19. Physical activity during work, transport and leisure in Germany--prevalence and socio-demographic correlates.

    Science.gov (United States)

    Wallmann-Sperlich, Birgit; Froboese, Ingo

    2014-01-01

    This study aimed 1) to provide data estimates concerning overall moderate- and vigorous-intensity physical activity (MVPA) as well as MVPA during work, transport and leisure in Germany and 2) to investigate MVPA and possible associations with socio-demographic correlates. A cross-sectional telephone survey interviewed 2248 representative participants in the age of 18-65 years (1077 men; 42.4 ± 13.4 years; body mass index: 25.3 ± 4.5 kg • m(-2)) regarding their self-reported physical activity across Germany. The Global Physical Activity Questionnaire was applied to investigate MVPA during work, transport and leisure and questions were answered concerning their demographics. MVPA was stratified by gender, age, body mass index, residential setting, educational and income level. To identify socio-demographic correlates of overall MVPA as well as in the domains, we used a series of linear regressions. 52.8% of the sample achieved physical activity recommendations (53.7% men/52.1% women). Overall MVPA was highest in the age group 18-29 years (p importance of a comprehensive view on physical activity engagement according to the different physical activity domains and discloses a need for future physical activity interventions that consider socio-demographic variables, residential setting as well as the physical activity domain in Germany.

  20. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    Science.gov (United States)

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the