WorldWideScience

Sample records for active electrode material

  1. Influence of various Activated Carbon based Electrode Materials in the Performance of Super Capacitor

    Science.gov (United States)

    Ajay, K. M.; Dinesh, M. N.

    2018-02-01

    Various activated carbon based electrode materials with different surface areas was prepared on stainless steel based refillable super capacitor model using spin coating. Bio Synthesized Activated Carbon (BSAC), Activated Carbon (AC) and Graphite powder are chosen as electrode materials in this paper. Electrode materials prepared using binder solution which is 6% by wt. polyvinylidene difluoride, 94% by wt. dimethyl fluoride. 3M concentrated KOH solution is used as aqueous electrolyte with PVDF thin film as separator. It is tested for electrochemical characterizations and material characterizations. It is observed that the Specific capacitance of Graphite, Biosynthesized active carbon and Commercially available activated carbon are 16.1F g-1, 53.4F g-1 and 107.6F g-1 respectively at 5mV s-1 scan rate.

  2. Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices

    International Nuclear Information System (INIS)

    Cericola, Dario; Novak, Petr; Wokaun, Alexander; Koetz, Ruediger

    2011-01-01

    Highlights: → Bi-material electrodes for electrochemical hybrid devices were characterized. → Bi-material electrodes have higher specific charge than capacitor electrodes. → Bi-material electrodes have better rate capability than battery electrodes. → Bi-material systems outperform batteries and capacitors in pulsed applications. - Abstract: The performance of mixed bi-material electrodes composed of the battery material, LiMn 2 O 4 , and the electrochemical capacitor material, activated carbon, for hybrid electrochemical energy storage devices is investigated by galvanostatic charge/discharge and pulsed discharge experiments. Both, a high and a low conductivity lithium-containing electrolyte are used. The specific charge of the bi-material electrode is the linear combination of the specific charges of LiMn 2 O 4 and activated carbon according to the electrode composition at low discharge rates. Thus, the specific charge of the bi-material electrode falls between the specific charge of the activated carbon electrode and the LiMn 2 O 4 battery electrode. The bi-material electrodes have better rate capability than the LiMn 2 O 4 battery electrode. For high current pulsed applications the bi-material electrodes typically outperform both the battery and the capacitor electrode.

  3. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  4. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-qiao; Zou, Ying; Xia, Yong-yao [Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2007-01-01

    We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C. (author)

  5. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    International Nuclear Information System (INIS)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum; Oliveira, Ione M.F. de; Oliveira, Gilver F. de; Lepretre, Jean-Claude; Bucher, Christophe; Mou tet, Jean-Claude

    2009-01-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  6. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum [Universite Ferhat Abbas, Setif (Algeria). Faculte des Sciences de l' Ingenieur. Dept. du Tronc Commun; Oliveira, Ione M.F. de; Oliveira, Gilver F. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Lepretre, Jean-Claude [UMR-5631 CNRS-INPG-UJF, St. Martin d' Heres Cedex (France). Lab. d' Electrochimie et de Physicochimie des Materiaux et Interfaces; Bucher, Christophe; Mou tet, Jean-Claude [Universite Joseph Fourier Grenoble 1 (France). Dept. de Chimie Moleculaire], e-mail: Jean-Claude.Moutet@ujf-grenoble.fr

    2009-07-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  7. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  8. Aqueous processing of composite lithium ion electrode material

    Science.gov (United States)

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L

    2015-02-17

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  9. Aqueous processing of composite lithium ion electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianlin; Armstrong, Beth L.; Daniel, Claus; Wood, III, David L.

    2017-06-20

    A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.

  10. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  11. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  12. Electrode material comprising graphene-composite materials in a graphite network

    Science.gov (United States)

    Kung, Harold H.; Lee, Jung K.

    2017-08-08

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  13. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  14. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  15. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  16. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  17. Advances in electrode materials for Li-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui [China Academy of Space Technology (CAST), Beijing (China); Mao, Chengyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jianlin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chen, Ruiyong [Korea Inst. of Science and Technology (KIST), Saarbrucken (Germany); Saarland Univ., Saarbrucken (Germany)

    2017-07-05

    Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and new tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.

  18. A polyoxovanadate as an advanced electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Han-Yi; Wee, Grace; Al-Oweini, Rami; Friedl, Jochen; Tan, Kim Soon; Wang, Yuxi; Wong, Chui Ling; Kortz, Ulrich; Stimming, Ulrich; Srinivasan, Madhavi

    2014-07-21

    Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  20. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    Science.gov (United States)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  1. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...... higher performance for cathodic (electrolysis) polarization than for anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  2. Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Hyung; Lee, Eunji; Kim, Myung-Soo; Jung, Ji Chul [Myongji University, Yongin (Korea, Republic of); Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun [Vitzrocell Co., Yesan (Korea, Republic of)

    2015-02-15

    Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance of activated carbon aerogel electrode was determined by cyclic voltammetry and galvanostatic charge/discharge methods using coin-type EDLC cell in organic electrolyte. Activation temperature played an important role in determining the electrochemical performance of activated carbon aerogel for EDLC electrode. Specific capacitance of activated carbon aerogel at a high current density (5 A/g) showed a volcano-shaped curve with respect to activation temperature. Excessively high activation temperature could have an adverse effect on the electrochemical properties of activated carbon aerogel due to the low electrical conductivity caused by a collapse of characteristic structure of carbon aerogel. Among the carbon samples, carbon aerogel activated at 800 .deg. C with a high surface area and a well-developed porous structure exhibited the highest specific capacitance. In addition, carbon aerogel activated at 800 .deg. C retained a considerable specific capacitance at a high current density even after 1000 cycles of charge/discharge. Therefore, it is concluded that carbon aerogel activated with KOH at 800 .deg. C can serve as an efficient electrode material for commercial EDLC with a high power density.

  3. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization

    International Nuclear Information System (INIS)

    Liu, Po-I; Chung, Li-Ching; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Ma, Chen-Chi M.; Chang, Min-Chao

    2013-01-01

    The nanostructured anatase titanium dioxide/activated carbon composite material for capacitive deionization electrode was prepared in a short time by a lower temperature two-step microwave-assisted ionothermal (sol–gel method in the presence of ionic liquid) synthesis method. This method includes a reaction and a crystallization step. In the crystallization step, the ionic liquid plays a hydrothermal analogy role in driving the surface anatase crystallization of amorphous titanium dioxide nanoparticles formed in the reaction step. The energy dispersive spectroscopic study of the composite indicates that the anatase titanium dioxide nanoparticles are evenly deposited in the matrix of activated carbon. The electrochemical property of the composite electrode was investigated. In comparison to the pristine activated carbon electrode, higher specific capacitance was observed for the nanostructured anatase titanium dioxide/activated carbon composite electrode, especially when the composite was prepared with a molar ratio of titanium tetraisopropoxide/H 2 O equal to 1:15. Its X-ray photoelectron spectroscopic result indicates that it has the highest amount of Ti-OH. The Ti-OH group can enhance the wetting ability and the specific capacitance of the composite electrode. The accompanying capacitive deionization result indicates that the decay of electrosorption capacity of this composite electrode is insignificant after five cycle tests. It means that the ion electrosorption–desorption becomes a reversible process

  4. Recycling positive-electrode material of a lithium-ion battery

    Science.gov (United States)

    Sloop, Steven E.

    2017-11-21

    Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.

  5. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at

  6. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  7. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  8. A Viable Electrode Material for Use in Microbial Fuel Cells for Tropical Regions

    Directory of Open Access Journals (Sweden)

    Felix Offei

    2016-01-01

    Full Text Available Electrode materials are critical for microbial fuel cells (MFC since they influence the construction and operational costs. This study introduces a simple and efficient electrode material in the form of palm kernel shell activated carbon (AC obtained in tropical regions. The novel introduction of this material is also targeted at introducing an inexpensive and durable electrode material, which can be produced in rural communities to improve the viability of MFCs. The maximum voltage and power density obtained (under 1000 Ω load using an H-shaped MFC with AC as both anode and cathode electrode material was 0.66 V and 1.74 W/m3, respectively. The power generated by AC was as high as 86% of the value obtained with the extensively used carbon paper. Scanning electron microscopy and Denaturing Gradient Gel Electrophoresis (DGGE analysis of AC anode biofilms confirmed that electrogenic bacteria were present on the electrode surface for substrate oxidation and the formation of nanowires.

  9. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials

    International Nuclear Information System (INIS)

    Chen, Hao; Liu, Duo; Shen, Zhehong; Bao, Binfu; Zhao, Shuyan; Wu, Limin

    2015-01-01

    Highlights: • We successfully prepared bamboo-derived porous carbon with B and N co-doping. • This novel carbon exhibits significantly enhanced specific capacitance and energy density. • The highest specific capacitance exceeds those of most similar carbon materials. • Asymmetric supercapacitor based on this carbon shows satisfactory capacitive performance. - Abstract: This paper presents nitrogen and boron co-doped KOH-activated bamboo-derived carbon as a porous biomass carbon with utility as a supercapacitor electrode material. Owing to the high electrochemical activity promoted by the hierarchical porous structure and further endowed by boron and nitrogen co-doping, electrodes based on the as-obtained material exhibit significantly enhanced specific capacitance and energy density relative to those based on most similar materials. An asymmetric supercapacitor based on this novel carbon material demonstrated satisfactory energy density and electrochemical cycling stability.

  10. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  11. Electrode materials for microbial fuel cells: nanomaterial approach

    KAUST Repository

    Mustakeem, Mustakeem

    2015-11-05

    Microbial fuel cell (MFC) technology has the potential to become a major renewable energy resource by degrading organic pollutants in wastewater. The performance of MFC directly depends on the kinetics of the electrode reactions within the fuel cell, with the performance of the electrodes heavily influenced by the materials they are made from. A wide range of materials have been tested to improve the performance of MFCs. In the past decade, carbon-based nanomaterials have emerged as promising materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electrode manufacture. Various transition metal oxides have been investigated as alternatives to conventional expensive metals like platinum for oxygen reduction reaction. In this review, different carbon-based nanomaterials and composite materials are discussed for their potential use as MFC electrodes.

  12. Electrode materials for microbial fuel cells: nanomaterial approach

    KAUST Repository

    Mustakeem, Mustakeem

    2015-01-01

    Microbial fuel cell (MFC) technology has the potential to become a major renewable energy resource by degrading organic pollutants in wastewater. The performance of MFC directly depends on the kinetics of the electrode reactions within the fuel cell, with the performance of the electrodes heavily influenced by the materials they are made from. A wide range of materials have been tested to improve the performance of MFCs. In the past decade, carbon-based nanomaterials have emerged as promising materials for both anode and cathode construction. Composite materials have also shown to have the potential to become materials of choice for electrode manufacture. Various transition metal oxides have been investigated as alternatives to conventional expensive metals like platinum for oxygen reduction reaction. In this review, different carbon-based nanomaterials and composite materials are discussed for their potential use as MFC electrodes.

  13. Composite Material Suitable for Use as Electrode Material in a SOC

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material...... in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-[delta] or (Ln1-xSrx)1-sFe1-yCioyO3-[delta](s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material...... being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 [Omega]cm2 at around 600 DEG C....

  14. Insertion of Mono- vs. Bi- vs. Trivalent Atoms in Prospective Active Electrode Materials for Electrochemical Batteries: An ab Initio Perspective

    Directory of Open Access Journals (Sweden)

    Vadym V. Kulish

    2017-12-01

    Full Text Available Rational design of active electrode materials is important for the development of advanced lithium and post-lithium batteries. Ab initio modeling can provide mechanistic understanding of the performance of prospective materials and guide design. We review our recent comparative ab initio studies of lithium, sodium, potassium, magnesium, and aluminum interactions with different phases of several actively experimentally studied electrode materials, including monoelemental materials carbon, silicon, tin, and germanium, oxides TiO2 and VxOy as well as sulphur-based spinels MS2 (M = transition metal. These studies are unique in that they provided reliable comparisons, i.e., at the same level of theory and using the same computational parameters, among different materials and among Li, Na, K, Mg, and Al. Specifically, insertion energetics (related to the electrode voltage and diffusion barriers (related to rate capability, as well as phononic effects, are compared. These studies facilitate identification of phases most suitable as anode or cathode for different types of batteries. We highlight the possibility of increasing the voltage, or enabling electrochemical activity, by amorphization and p-doping, of rational choice of phases of oxides to maximize the insertion potential of Li, Na, K, Mg, Al, as well as of rational choice of the optimum sulfur-based spinel for Mg and Al insertion, based on ab initio calculations. Some methodological issues are also addressed, including construction of effective localized basis sets, applications of Hubbard correction, generation of amorphous structures, and the use of a posteriori dispersion corrections.

  15. Activated carbon fiber obtained from textile PAN fiber to electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres; Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: Supercapacitors are devices for electrical energy storage with application in distribution power generation, electric vehicles, electronic equipment, among others. Current challenges in the development of supercapacitors focuses on making an increasing on system density of energy. An increase of energy accumulated in the supercapacitor electrode can be achieved by developing materials with high specific electrical capacitance and low electrical resistance. Furthermore, it is expected that the electrode material present a simple procedure for obtaining, low cost and environmentally friendly. Carbon fibers are interesting materials for use as a supercapacitor electrode. Among them are carbon fibers from polyacrylonitrile (PAN). In this work were studied activated carbon fibers obtained from textile polyacrylonitrile (ACF-PAN) with deposition of Fe particles aiming to use as active material of supercapacitor electrodes. ACFPAN and ACF-PAN-Fe were characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The behavior of the activated carbon fibers as a supercapacitor electrode was evaluated by galvanostatic charge and discharge curves, cyclic voltammetry and a electrochemical impedance using a symmetrical two-electrode Swagelok®-type cell and sulfuric acid as electrolyte. ACF-PAN had a high specific surface area, which makes it an interesting material for electrodes of supercapacitors. The electrical capacitance for the ACF-PAN is 96 F/g and ACF-PAN-Fe is 106 F/g both at a current density of 0.30 A/g. This increase in electrical capacitance can be related to the presence of iron oxides which are deposited on the activated carbon fiber. (author)

  16. Carbon nanocages as supercapacitor electrode materials.

    Science.gov (United States)

    Xie, Ke; Qin, Xingtai; Wang, Xizhang; Wang, Yangnian; Tao, Haisheng; Wu, Qiang; Yang, Lijun; Hu, Zheng

    2012-01-17

    Supercapacitor electrode materials: Carbon nanocages are conveniently produced by an in situ MgO template method and demonstrate high specific capacitance over a wide range of charging-discharging rates with high stability, superior to the most carbonaceous supercapacitor electrode materials to date. The large specific surface area, good mesoporosity, and regular structure are responsible for the excellent performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sulfur based electrode materials for secondary batteries

    Science.gov (United States)

    Hao, Yong

    Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes

  18. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  19. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  20. Polyoxometalate active charge-transfer material for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  1. Optimising carbon electrode materials for adsorptive stripping voltammetry

    OpenAIRE

    Chaisiwamongkhol, K; Batchelor-McAuley, C; Sokolov, S; Holter, J; Young, N; Compton, R

    2017-01-01

    Different types of carbon electrode materials for adsorptive stripping voltammetry are studied through the use of cyclic voltammetry. Capsaicin is utilised as a model compound for adsorptive stripping voltammetry using unmodified and modified basal plane pyrolytic graphite (BPPG) electrodes modified with multi-walled carbon nanotubes, carbon black or graphene nanoplatelets, screen printed carbon electrodes (SPE), carbon nanotube modified screen printed electrodes, and carbon paste electrodes....

  2. Activated carbon as a pseudo-reference electrode for electrochemical measurement inside concrete

    NARCIS (Netherlands)

    Abbas, Yawar; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    The application of Kynol based activated carbon (KAC) as a pseudo-reference electrode for potentiometric measurement inside concrete is presented. Due to its high surface area the activated carbons has a large electrical double layer capacitance (EDLC > 50 F g(-1)) and are used as electrode material

  3. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.

    Science.gov (United States)

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-28

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  4. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  5. Optimization of Inactive Material Content in Lithium Iron Phosphate Electrodes for High Power Applications

    International Nuclear Information System (INIS)

    Ha, Seonbaek; Ramani, Vijay K.; Lu, Wenquan; Prakash, Jai

    2016-01-01

    The electrochemical performance of lithium iron phosphate (LiFePO 4 ) electrodes has been studied to find the optimum content of inactive materials (carbon black + polyvinylidene difluoride [PVDF] polymer binder) and to better understand electrode performance with variation in electrode composition. Trade-offs between inactive material content and electrochemical performance have been characterized in terms of electrical resistance, rate-capability, area-specific impedance (ASI), pulse-power characterization, and energy density calculations. The ASI and electrical conductivity were found to correlate well with ohmic polarization. The results showed that a 80:10:10 (active material: binder: carbon agents) electrode had a higher pulse-power density and energy density at rates above 1C as compared to 90:5:5, 86:7:7 and 70:15:15 formulations, while the 70:15:15 electrode had the highest electrical conductivity of 0.79 S cm −1 . A CB/PVDF ratio of ca. 1.22 was found to be the optimum formulation of inactive material when the LiFePO 4 composition was 80 wt%.

  6. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications

    Science.gov (United States)

    Taer, Erman; Taslim, Rika

    2018-02-01

    The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.

  7. Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes

    Science.gov (United States)

    Li, Siwei; Wang, Xiaohong; Xing, Hexin; Shen, Caiwei

    2013-11-01

    This paper presents three-dimensional (3D) micro supercapacitors with thick interdigital electrodes supported and separated by SU-8. Nanoporous carbon materials including graphene and activated carbon (AC) are used as active materials in self-supporting composites to build the electrodes. The SU-8 separators provide mechanical support for thick electrodes and allow a considerable amount of material to be loaded in a limited footprint area. The prototypes have been accomplished by a simple microelectromechanical systems (MEMS) fabrication process and sealed by polydimethylsiloxane (PDMS) caps with ionic liquid electrolytes injected into the electrode area. Electrochemical tests demonstrate that the graphene-based prototype with 100 µm thick electrodes shows good power performance and provides a considerable specific capacitance of about 60 mF cm-2. Two AC-based prototypes show larger capacitance of 160 mF cm-2 and 311 mF cm-2 with 100 µm and 200 µm thick electrodes respectively, because of higher volume density of the material. The results demonstrate that both thick 3D electrode structure and volume capacitance of the electrode material are key factors for high-performance micro supercapacitors, which can be potentially used in specific applications such as power suppliers and storage components for harvesters.

  8. Supercapacitor Electrode Based on Activated Carbon Wool Felt

    Directory of Open Access Journals (Sweden)

    Ana Claudia Pina

    2018-04-01

    Full Text Available An electrical double-layer capacitor (EDLC is based on the physical adsorption/desorption of electrolyte ions onto the surface of electrodes. Due to its high surface area and other properties, such as electrochemical stability and high electrical conductivity, carbon materials are the most widely used materials for EDLC electrodes. In this work, we study an activated carbon felt obtained from sheep wool felt (ACF’f as a supercapacitor electrode. The ACF’f was characterized by elemental analysis, scanning electron microscopy (SEM, textural analysis, and X-ray photoelectron spectroscopy (XPS. The electrochemical behaviour of the ACF’f was tested in a two-electrode Swagelok®-type, using acidic and basic aqueous electrolytes. At low current densities, the maximum specific capacitance determined from the charge-discharge curves were 163 F·g−1 and 152 F·g−1, in acidic and basic electrolytes, respectively. The capacitance retention at higher current densities was better in acidic electrolyte while, for both electrolytes, the voltammogram of the sample presents a typical capacitive behaviour, being in accordance with the electrochemical results.

  9. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    Science.gov (United States)

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  10. Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries

    Science.gov (United States)

    Ni, Qiao; Wu, Feng

    2017-01-01

    Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. PMID:28331782

  11. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  12. Structure and Modification of Electrode Materials for Protein Electrochemistry.

    Science.gov (United States)

    Jeuken, Lars J C

    The interactions between proteins and electrode surfaces are of fundamental importance in bioelectrochemistry, including photobioelectrochemistry. In order to optimise the interaction between electrode and redox protein, either the electrode or the protein can be engineered, with the former being the most adopted approach. This tutorial review provides a basic description of the most commonly used electrode materials in bioelectrochemistry and discusses approaches to modify these surfaces. Carbon, gold and transparent electrodes (e.g. indium tin oxide) are covered, while approaches to form meso- and macroporous structured electrodes are also described. Electrode modifications include the chemical modification with (self-assembled) monolayers and the use of conducting polymers in which the protein is imbedded. The proteins themselves can either be in solution, electrostatically adsorbed on the surface or covalently bound to the electrode. Drawbacks and benefits of each material and its modifications are discussed. Where examples exist of applications in photobioelectrochemistry, these are highlighted.

  13. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  14. The rise of organic electrode materials for energy storage.

    Science.gov (United States)

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  15. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin [Northwestern Univ., Evanston, IL (United States)

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  16. A review of electrode materials for electrochemical supercapacitors.

    Science.gov (United States)

    Wang, Guoping; Zhang, Lei; Zhang, Jiujun

    2012-01-21

    In this critical review, metal oxides-based materials for electrochemical supercapacitor (ES) electrodes are reviewed in detail together with a brief review of carbon materials and conducting polymers. Their advantages, disadvantages, and performance in ES electrodes are discussed through extensive analysis of the literature, and new trends in material development are also reviewed. Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density of ES (476 references).

  17. Functional materials in amperometric sensing polymeric, inorganic, and nanocomposite materials for modified electrodes

    CERN Document Server

    Seeber, Renato; Zanardi, Chiara

    2014-01-01

    Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and

  18. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, K.G.; Steen, W.M.; Manna, I. [Univ. of Liverpool (United Kingdom)] [and others

    1996-12-31

    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire. A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.

  19. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  20. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  1. Crystallic silver amalgam--a novel electrode material.

    Science.gov (United States)

    Danhel, Ales; Mansfeldova, Vera; Janda, Pavel; Vyskocil, Vlastimil; Barek, Jiri

    2011-09-21

    A crystallic silver amalgam was found to be a suitable working electrode material for voltammetric determination of electrochemically reducible organic nitro-compounds. Optimum conditions for crystal growth were found, the crystal surface was investigated by atomic force microscopy in tapping mode and single crystals were used for the preparation of quasi-cylindrical single crystal silver amalgam electrode (CAgAE). An electrochemical behavior of this alternative electrode material was investigated in aqueous media by direct current voltammetry, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) using 4-nitrophenol as a model compound. Applicable potential windows of the CAgAE were found comparable with those obtained at a hanging mercury drop electrode, providing high hydrogen overpotential, and polished silver solid amalgam electrode. Thanks to the smooth single crystal electrode surface, the effect of the passivation is not too pronounced, direct DPV determination of 100 μmol l(-1) of 4-nitrophenol at CAgAEs in 0.2 mol l(-1) acetate buffer pH 4.8 provides a RSD around 1.5% (n = 15). DPV calibration curves of 4-nitrophenol are linear in the whole concentration range 1-100 μmol l(-1) with a limit of quantification of 1.5 μmol l(-1). The attempt to increase sensitivity by application of AdSV was not successful. The mechanism of 4-nitrophenol reduction at CAgAE was investigated by CV.

  2. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  3. Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance

    International Nuclear Information System (INIS)

    Xu, Haitao; Zhang, Huijuan; Ouyang, Ya; Liu, Li; Wang, Yu

    2016-01-01

    Highlights: • Novel 2D porous carbon sheets from cornstalks are obtained for the first time. • The hierarchical porous carbon nansheets are gained by chemical activation. • The porous structure facilitates ion transfer and Li-ion absorption. • The strategy are applied to both cathode and anode electrode materials. • The porous nanocomposites exhibit excellent electrochemical performance. - Abstract: Herein, we propose a novel and green strategy to convert crop stalks waste into hierarchical porous carbon composites for electrode materials of lithium-ion batteries. In the method, the sustainable crop stalks, an abundant agricultural byproduct, is recycled and treated by a simple and clean chemical activation process. Afterwards, the obtained porous template is adopted for large-scale production of high-performance anode and cathode materials for lithium-ion batteries. Due to the large surface area, hierarchical porous structures and subsize of the functional particles, the electrode materials manifest excellent electrochemical performance. In particular, the prepared TiO 2 /C composite presents a reversible specific capacity of 203 mAh g −1 after 200 cycles. Our results demonstrate that the sheetlike composites show remarkable cycling stability, high specific capacity and excellent rate ability, and thus hold promise for commercializing the high-performance electrode materials as the advanced lithium-ion batteries.

  4. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  5. Simple fabrication of active electrodes using direct laser transference

    International Nuclear Information System (INIS)

    Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A.

    2014-01-01

    Highlights: •Electroactive materials can be transferred using a single pulse of laser light. •The transfer is made in air using a 6 ns pulse of Nd-YAG laser (532 or 1064 nm). •Conducting polymers films can be transferred maintaining the electroactivity. •Conducting polymer multilayers can be deposited using successive pulses. •Metallic (Au, Pt) transferred micro/nanoparticles are electrocatalytic. -- Abstract: Direct laser transference (DLT) method is applied to obtain electrodes modified with thin films of conducting polymers (CPs) or catalytic metals. A short (6–10 ns) pulse of laser light (second harmonic of Nd-YAG Laser, λ = 532 nm) is shined on the backside of a thin (<200 nm) film of the material to be transferred, which is deposited on a transparent substrate. The illuminated region heats up and the material (conducting polymer or metal) is thermally transferred to a solid target placed at short distance in air. In that ways, CPs are transferred onto polypropylene, glass, indium doped tin oxide (ITO), glassy carbon and gold films. In the same manner, electrocatalytic metals (platinum or gold) are transferred onto conductive substrates (glassy carbon or ITO films on glass). The films have been characterized by scanning electron microscopy, cyclic voltammetry, atomic force microscopy, UV-visible and Fourier Transform Infrared spectroscopies. The chemical, electrical and redox properties of the polymeric materials transferred remain unaltered after the transfer. Moreover, CP multilayers can be built applying DLT several times onto the same substrate. Besides polyaniline, it is shown that it is also possible to transfer functionalized polyanilines. The electrode modified with transferred Pt shows electrocatalytic activity toward methanol oxidation while ferricyanide shows a quasireversible behavior on electrodes modified with transferred Au. The method is simple and fast, works in air without complex environmental conditions and can produce active

  6. Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Song Yicheng; Zhang Junqian; Shao Xianjun; Guo Zhansheng

    2013-01-01

    This work investigates the stress-assisted diffusion of lithium ions in layered electrodes of Li-ion batteries. Decoupled diffusion governing equations are obtained. Material properties, which are characterized by a single dimensionless parameter, and mechanical constraint between a current collector and an active layer, which is characterized by the elastic modulus ratio and thickness ratio between the layers, are identified as key factors that govern the stress-assisted diffusion. For a symmetric plate electrode, stress is induced by the Li-ion concentration gradient, and stress-assisted diffusion therefore depends only on the material properties. For an asymmetric bilayer electrode, mechanical constraint plays a very important role in the diffusion via generation of bending stress. Diffusion may be facilitated, or inversely impeded, according to the constraint. By summarizing the coupling factors of common active materials and investigating the concentration variation induced by stress-assisted diffusion in various electrodes, this work provides insights on stress-assisted diffusion in a layered electrode, as well as suggestions for relevant modelling works on whether the stress-assisted diffusion should be taken into account according to the selection of material and structure. (paper)

  7. Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO4 Electrodes During Charge/Discharge Cycling of Lithium Batteries.

    Science.gov (United States)

    Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L

    2014-04-03

    The phase changes that occur during discharge of an electrode comprised of LiFePO 4 , carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO 4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.

  8. Nitrogen-doped carbon based on peptides of hair as electrode materials for surpercapacitors

    International Nuclear Information System (INIS)

    Guo, Zihan; Zhou, Qingwen; Wu, Zhaojun; Zhang, Zhiguo; Zhang, Wen; Zhang, Yao; Li, Lijun; Cao, Zhenzhu; Wang, Hong; Gao, Yanfang

    2013-01-01

    Highlights: • Hair was directly carbonized by environmental and energy-saving methods. • Hair was utilized to prepare nitrogen-doped carbon materials for supercapacitor. • A new approache for preparing nitrogen-rich active carbon from biomass waste of hair-like precursor. • Hair-based carbon having a non-crystalline layered structure and excellent capacitive performance. -- Abstract: Hair, a high-nitrogen energetic material, is utilized as a precursor for nitrogen-doped porous carbon. The preparation procedures for obtaining carbon from hair are very simple, namely, reductant or deionized water activation process followed by hair carbonization under argon atmosphere at 800 °C for 2 h. The samples are characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption, and X-ray photoelectron microscopy. The carbon samples are tested as electrode materials in supercapacitors in a three-electrode system. The carbon (soaked in deionized water at 80 °C) presents relatively low specific surface areas (441.34 m 2 g −1 ) and shows higher capacitance (154.5 F g −1 ) compared with nitrogen-free commercial activated carbons (134.5 F g −1 ) at 5 A g −1 . The capacitance remains at 130.5 F g −1 even when the current load is increased to 15 A g −1 . The capacitance loss is only 5% in 6 M KOH after 10,000 charge and discharge cycles at 5 A g −1 . It is the unique microstructure after activation processing and electroactive nitrogen functionalities that enable the carbon obtained through a simple, ecological, and economical process to be utilized as a potential electrode material for electrical double-layer capacitors

  9. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  10. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Science.gov (United States)

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  11. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    Science.gov (United States)

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  12. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    Science.gov (United States)

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  14. Electrode materials for an open-cycle MHD generator channel

    International Nuclear Information System (INIS)

    Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.

    1983-01-01

    The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel

  15. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    Science.gov (United States)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  16. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  17. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  18. An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

    International Nuclear Information System (INIS)

    Chang, Liang; Stacchiola, Dario J.; Hu, Yun Hang

    2017-01-01

    The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. But, current electrode materials cannot meet both requirements, resulting in poor performance. We creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh areal capacitance of 1.28 F/cm"2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.

  19. Sol-gel derived electrode materials for supercapacitor applications

    Science.gov (United States)

    Lin, Chuan

    1998-12-01

    Electrochemical capacitors have been receiving increasing interest in recent years for use in energy storage systems because of their high energy and power density and long cycle lifes. Possible applications of electrochemical capacitors include high power pulsed lasers, hybrid power system for electric vehicles, etc. In this dissertation, the preparation of electrode materials for use as electrochemical capacitors has been studied using the sol-gel process. The high surface area electrode materials explored in this work include a synthetic carbon xerogel for use in a double-layer capacitor, a cobalt oxide xerogel for use in a pseudocapacitor, and a carbon-ruthenium xerogel composite, which utilizes both double-layer and faradaic capacitances. The preparation conditions of these materials were investigated in detail to maximize the surface area and optimize the pore size so that more energy could be stored while minimizing mass transfer limitations. The microstructures of the materials were also correlated with their performance as electrochemical capacitors to improve their energy and power densities. Finally, an idealistic mathematical model, including both double-layer and faradaic processes, was developed and solved numerically. This model can be used to perform the parametric studies of an electrochemical capacitor so as to gain a better understanding of how the capacitor works and also how to improve cell operations and electrode materials design.

  20. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  1. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    Science.gov (United States)

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  2. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    Science.gov (United States)

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  3. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors

    Science.gov (United States)

    Wang, Fangping; Li, Guifang; Zhou, Qianqian; Zheng, Jinfeng; Yang, Caixia; Wang, Qizhao

    2017-12-01

    A facile one step hydrothermal process is developed for the synthesis of NiCo2S4@reduced graphene oxide (NiCo2S4@RGO) composite as electrode for electrochemical supercapacitors. This NiCo2S4@RGO electrode exhibits an ultrahigh specific capacitance of 2003 F g-1 at 1 A g-1 and 1726 F g-1 at 20 A g-1 (86.0% capacitance retention from 1 A g-1 to 20 A g-1), excellent cycling stabilities (86.0% retention after 3500 cycles). Moreover, an asymmetric supercapacitor is successfully assembled by using NiCo2S4@RGO nanoparticle as the positive electrode and active carbon(AC) as the negative electrode in 2 M KOH electrolyte. The fabricated NiCo2S4@RGO//AC asymmetric supercapacitor exhibits a high energy density of 21.9 Wh kg-1 at a power density of 417.1 W kg-1 and still remains an impressive energy density of 13.5 Wh kg-1 at a large power density of 2700 W kg-1. The results demonstrate that the NiCo2S4@RGO composite is a promising electrode material as supercapacitors in energy storage.

  4. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  5. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  6. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  7. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  8. Coaxial fiber supercapacitor using all-carbon material electrodes.

    Science.gov (United States)

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  9. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  10. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  11. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor.

    Science.gov (United States)

    Zou, Yuqin; Wang, Shuangyin

    2015-07-07

    Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.

  12. Carbonaceous electrode materials for supercapacitors.

    Science.gov (United States)

    Hao, Long; Li, Xianglong; Zhi, Linjie

    2013-07-26

    Supercapacitors have been widely studied around the world in recent years, due to their excellent power density and long cycle life. As the most frequently used electrode materials for supercapacitors, carbonaceous materials attract more and more attention. However, their relatively low energy density still holds back the widespread application. Up to now, various strategies have been developed to figure out this problem. This research news summarizes the recent advances in improving the supercapacitor performance of carbonaceous materials, including the incorporation of heteroatoms and the pore size effect (subnanopores' contribution). In addition, a new class of carbonaceous materials, porous organic networks (PONs) has been managed into the supercapacitor field, which promises great potential in not only improving the supercapacitor performances, but also unraveling the related mechanisms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Science.gov (United States)

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-01-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested. PMID:28773272

  14. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Brett Kimball [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  15. Edge-riched graphene nanoribbon for high capacity electrode materials

    International Nuclear Information System (INIS)

    Ping, Yunjie; Zhang, Yupeng; Gong, Youning; Cao, Bing; Fu, Qiang; Pan, Chunxu

    2017-01-01

    Highlights: •The graphene nanoribbon has been successfully synthesized by longitudinal unzipping of carbon nanotubes with oxidants KMnO 4 . •Compared with graphene oxide and carbon nanotubes, graphene nanoribbon shows the largest capacitance up to ∼202F/g at a scan rate of 5 mV/s. •The importance of the location of functional groups and the importance of the edge structure. •The pseudo-capacitance material should have high electron transfer and rapid ion diffusion. -- Abstract: Carbon materials have attracted great attention for their diversified applications in supercapacitors, and different structures of carbon have been reported to exhibit dissimilar electrochemical properties. In the past, activated carbons, carbon nanotubes (CNTs), carbon nanofibers and graphene have been shown to have excellent electrochemical performances, but it still remains a problem on how to improve the capacitance of carbon-based materials effectively from the viewpoint of their giant commercial potential. Noticing that connecting chemical groups to carbon can provide large pseudo-capacitance, we hereby demonstrated that the position of the chemical groups also plays an important role in the pseudo-capacitance. In our work, we synthesized graphene nanoribbon (GNR), graphene oxide (GO) and functional MWCNTs and showed that GNR has larger capacitance (calculated to be 202 F/g at a scan rate of 5 mV/s) and energy density compared to CNTs and GO when using as electrode materials. Furthermore, the supercapacitor device based on as-synthesized GNR exhibits excellent cycle stability and rate capability which evident is potential in high performance supercapacitor. Revealing the source of the capacitance, we found that though GNR has less oxygen-containing groups, it has larger pseudo-capacitance than GO and CNTs due to the remarkable edge-riched structure with high activity in electrochemical reactions. This finding highlights the importance of edge structure in carbon-based pseudo

  16. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.

    Science.gov (United States)

    Zhou, Jie; Bao, Li; Wu, Shengji; Yang, Wei; Wang, Hui

    2017-10-01

    Chitin biomass has received much attention as an amino-functional polysaccharide precursor for synthesis of carbon materials. Rich nitrogen and oxygen dual-doped porous carbon derived from cicada slough (CS), a renewable biomass mainly composed of chitin, was synthesized and employed as electrode materials for electrochemical capacitors, for the first time ever. The cicada slough-derived carbon (CSC) was prepared by a facile process via pre-carbonization in air, followed by KOH activation. The weight ratio of KOH and char plays an important role in fabricating the microporous structure and tuning the surface chemistry of CSC. The obtained CSC had a large specific surface area (1243-2217m 2 g -1 ), fairly high oxygen content (28.95-33.78 at%) and moderate nitrogen content (1.47-4.35 at%). The electrochemical performance of the CS char and CSC as electrodes for capacitors was evaluated in a three-electrode cell configuration with 6M KOH as the electrolyte. Electrochemical studies showed that the as-prepared CSC activated at the KOH-to-char weight ratio of 2 exhibited the highest specific capacitance (266.5Fg -1 at a current density of 0.5Ag -1 ) and excellent rate capability (196.2Fg -1 remained at 20Ag -1 ) and cycle durability. In addition, the CSC-2-based symmetrical device possessed the desirable energy density and power density of about 15.97Whkg -1 and 5000Wkg -1 at 5Ag -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  18. Microwave synthesis of electrode materials for lithium batteries

    Indian Academy of Sciences (India)

    A novel microwave method is described for the preparation of electrode materials required for lithium batteries. The method is simple, fast and carried out in most cases with the same starting material as in conventional methods. Good crystallinity has been noted and lower temperatures of reaction has been inferred in ...

  19. Method of making electrodes for electrochemical cell. [Li-Al alloy

    Science.gov (United States)

    Kaun, T.D.; Kilsdonk, D.J.

    1981-07-29

    A method is described for making an electrode for an electrochemical cell in which particulate electrode-active material is mixed with a liquid organic carrier chemically inert with respect to the electrode-active material, mixing the liquid carrier to form an extrudable slurry. The liquid carrier is present in an amount of from about 10 to about 50% by volume of the slurry, and then the carrier is removed from the slurry leaving the electrode-active material. The method is particularly suited for making a lithium-aluminum alloy negative electrode for a high-temperature cell.

  20. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode

    International Nuclear Information System (INIS)

    Jain, Amrita; Tripathi, S.K.

    2014-01-01

    Highlights: • CST with specific surface area of 1640 m 2 g −1 was synthesized using impregnation method. • XRD studies of CST confirm the formation of graphite and amorphous C. • EDLC cell has been successfully fabricated using CST as an electrode material having good energy and power density. - Abstract: In the present studies coconut shell based treated activated charcoal (CST) was synthesized by chemical activation method using KOH (potassium hydroxide) as an activating agent. Surface area analysis shows that CST has mesopores of size 3 nm having specific surface area of 1640 m 2 g −1 . Electrochemical double layer capacitor (EDLC) was fabricated using CST as an electrode material with blend polymer electrolyte having specific capacitance of 534 mF cm −2 (equivalent to single electrode specific capacitance of 356.2 F g −1 ). The corresponding energy and power density of 88.8 Wh kg −1 and 1.63 kW kg −1 , respectively, were achieved for EDLC

  1. Electrocatalytical activity of Pt, SnO2 and RuO2 mixed electrodes for the electrooxidation of formic acid and formaldehyde

    International Nuclear Information System (INIS)

    Profeti, L.P.R.; Profeti, D.; Olivi, P.

    2005-01-01

    The electrocatalytical activity of binary electrodes of Pt and SnO 2 and ternary electrodes of Pt and SnO 2 and RuO 2 for the electrooxidation of formic acid and formaldehyde was investigated by cyclic voltammetry and chronoamperometry techniques. The electrode materials were prepared by the thermal decomposition of polymeric precursors at 400 deg C. The cyclic voltammetry results showed that the methanol electrooxidation process presents peak potentials for those electrodes approximately 100 mV lower than the values obtained for metallic platinum electrodes. The Pt 0.6 Ru 0.2 Sn 0.2 O y electrodes presented the highest current density values for potentials lower than the peak potential values. The chronoamperometric experiments also showed that the addition of SnO 2 and RuO 2 contributed for the enhancement of the electrode activity in low potential values. The preparation method was found to be useful to obtain high active materials. (author)

  2. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    Science.gov (United States)

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oxide materials as positive electrodes of lithium-ion batteries

    International Nuclear Information System (INIS)

    Makhonina, Elena V; Pervov, Vladislav S; Dubasova, Valeriya S

    2004-01-01

    The published data on oxide materials as positive electrodes for lithium-ion batteries are described systematically. The mechanisms of structural changes in cathode materials occurring during the operation of lithium-ion batteries and the problems concerned with their selection are discussed. Modern trends in optimising cathode materials and lithium-ion batteries on the whole are considered.

  4. Hemi-ordered nanoporous carbon electrode material for highly selective determination of nitrite in physiological and environmental systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenghai; Wu, Hongmin; Wu, Ying; Shi, Hongyan; Feng, Xun; Jiang, Shang; Chen, Jian; Song, Wenbo, E-mail: wbsong@jlu.edu.cn

    2014-08-01

    Hemi-ordered nanoporous carbon (HONC) was obtained from a mesoporous silica template through a nano-replication method using furfuryl alcohol as the carbon source. The structure and morphology of HONC were characterized and analyzed in detail by X-ray diffraction, N{sub 2}-sorption, Raman spectroscopy and transmission electron microscopy. HONC was then demonstrated as active electrode material for selective determination of nitrite in either physiological or environmental system. Well separated oxidation peaks of ascorbic acid, dopamine, uric acid and nitrite were observed in physiological system, and simultaneous discrimination of catechol, hydroquinone, resorcinol and nitrite in environmental system was also accomplished. Distinctly improved performances for selective determination of nitrite (such as significantly fast and sensitive current response with especially high selectivity) coexisted with ascorbic acid, dopamine and uric acid in the physiological system, as well as with catechol, hydroquinone and resorcinol in the environmental system were achieved at HONC electrode material. The excellent discriminating ability and high selectivity for NO{sub 2}{sup −} determination were ascribed to the good electronic conductivity, unique hemi-ordered porous structure, large surface area and large number of edge plane defect sites contained on the surface of nanopore walls of HONC. Results in this work demonstrated that HONC is one of the promising catalytic electrode materials for nitrite sensor fabrication. - Highlights: • Hemi-ordered nanoporous carbon as an active electrode material • Good discriminating ability towards NO{sub 2}{sup −} from physiological or environmental system • Highly selective determination of nitrite with fast and sensitive current response.

  5. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  6. Crystallic silver amalgam – a novel electrode material

    Czech Academy of Sciences Publication Activity Database

    Daňhel, A.; Mansfeldová, Věra; Janda, Pavel; Vyskočil, V.; Barek, J.

    2011-01-01

    Roč. 136, č. 118 (2011), s. 36563662 ISSN 0003-2654 Institutional research plan: CEZ:AV0Z40400503 Keywords : crystallic silver amalgam * electrode materials * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 4.230, year: 2011

  7. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  8. Compliant Electrode and Composite Material for Piezoelectric Wind and Mechanical Energy Conversions

    Science.gov (United States)

    Chen, Bin (Inventor)

    2015-01-01

    A thin film device for harvesting energy from wind. The thin film device includes one or more layers of a compliant piezoelectric material formed from a composite of a polymer and an inorganic material, such as a ceramic. Electrodes are disposed on a first side and a second side of the piezoelectric material. The electrodes are formed from a compliant material, such as carbon nanotubes or graphene. The thin film device exhibits improved resistance to structural fatigue upon application of large strains and repeated cyclic loadings.

  9. Niobium Nitride Nb4N5 as a New High-Performance Electrode Material for Supercapacitors.

    Science.gov (United States)

    Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui; Huang, Fuqiang

    2015-12-01

    Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb 4 N 5 , is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm -2 , with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm -2 ) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb 4 N 5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb 4 N 5 . Moreover, this Nb 4 N 5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb 4 N 5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications.

  10. Niobium Nitride Nb4N5 as a New High‐Performance Electrode Material for Supercapacitors

    Science.gov (United States)

    Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui

    2015-01-01

    Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb4N5, is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm−2, with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm−2) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb4N5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb4N5. Moreover, this Nb4N5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb4N5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications. PMID:27980920

  11. Electrode effects of a cellulose-based electro-active paper energy harvester

    International Nuclear Information System (INIS)

    Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan; Kim, Joo-Hyung

    2014-01-01

    The possibility of cellulose-based electro-active paper (EAPap) as a vibrational energy transducer was investigated in this paper. Thin cellulose EAPap film specimens were prepared by the regenerating process. Three different metal electrodes of gold, silver and aluminum were deposited on a 50 × 50 mm 2 cellulose film using a thermal evaporator. An aluminum cantilever beam was used as a vibrational bender and EAPap was attached close to the root of the cantilever beam. The voltage output of the EAPap was measured under harmonic base excitation of the cantilever beam. The EAPap with aluminum electrode provided the largest open circuit voltage output compared to those with gold or silver electrodes. The output voltages of the EAPap increased linearly with increase of the area of the electrodes. The output voltages also increased with increasing input acceleration but became saturated at a certain magnitude. From the experimental results, we conclude that EAPap with metal electrodes can be used as a flexible energy harvesting transducer by external mechanical stress, and the output voltage is related to the electrode material due to its work function. (paper)

  12. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A.

    2015-01-01

    Highlights: • Graphene oxide is synthesized at high temperatures in a reducing environment. • Treated graphene oxide-based electrodes are prepared by the wet impregnation method. • Electrochemical performance is evaluated as a function of the physico-chemical properties. - Abstract: Thermically treated graphene oxides (TT-GOs) are synthesized at different temperatures, 100 °C, 150 °C, 200 °C and 300 °C in a reducing environment (20% H 2 /He) and investigated as electrode materials for vanadium redox flow battery (VRFB) applications. The treated graphene oxide-based electrodes are prepared by the wet impregnation method using carbon felt (CF) as support. The main aim is to achieve a suitable distribution of the dispersed graphene oxides on the CF surface in order to investigate the electrocatalytic activity for the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions in the perspective of a feasible large area electrodes scale-up for battery configuration of practical interest. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are carried out in a three electrode half-cell to characterize the electrochemical properties of the TT-GO-based electrodes. Physico-chemical characterizations are carried out to corroborate the electrochemical results. The TT-GO sample treated at 100 °C (TT-GO-100) shows the highest electrocatalytic activity in terms of peak to peak separation (ΔE = 0.03 V) and current density intensity (∼0.24 A cm −2 at 30 mV/s) both toward the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions. This result is correlated to the presence of hydroxyl (−OH) and carboxyl (−COOH) species that act as active sites. A valid candidate is individuated as effective anode and cathode electrode in the perspective of electrodes scale-up for battery configuration of practical interest

  13. The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer

    International Nuclear Information System (INIS)

    Liu Guozhen; Liu Jingquan; Boecking, Till; Eggers, Paul K.; Gooding, J. Justin

    2005-01-01

    The heterogeneous electron-transfer properties of ferrocenemethylamine coupled to a series of mixed 4-carboxyphenyl/phenyl monolayers on glassy carbon (GC) and gold electrodes were investigated, by cyclic voltammetry, in aqueous buffer solutions. The electrodes were derivatized in a step-wise process. Electrochemical reduction of mixtures of 4-carboxyphenyl and phenyl diazonium salts on the electrode surfaces yielded stable monolayers. The introduction of carboxylic acid moieties onto the surfaces was verified by X-ray photoelectron spectroscopy. Subsequently the 4-carboxyphenyl moieties were activated using water-soluble carbodiimide and N-hydroxysuccinimide and reacted with ferrocenemethylamine. The rate constants of electron transfer through the monolayer systems were determined from cyclic voltammograms using the Marcus theory for electron transfer and were found to be an order of magnitude higher for the ferrocene-modified monolayer systems on gold than those on GC electrodes. The results suggest the electrode material has an important influence on the rate of electron transfer

  14. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  15. Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes

    Directory of Open Access Journals (Sweden)

    Joan Stilling

    2014-09-01

    Full Text Available Tremendous potential for successful medical device development lies in both electrical stimulation therapies and neuronal prosthetic devices, which can be utilized in an extensive number of neurological disorders. These technologies rely on the successful electrical stimulation of biological tissue (i.e. neurons through the use of electrodes. However, this technology faces the principal problem of poor stimulus selectivity due to the currently available electrode’s large size relative to its targeted population of neurons. Irreversible damage to both the stimulated tissue and electrode are limiting factors in miniaturization of this technology, as charge density increases with decreasing electrode size. In an attempt to find an equilibrium between these two opposing constraints (electrode size and charge density, the objective of this work was to develop a novel iridium-nickel oxide (Ir0.2-Ni0.8-oxide coating that could intrinsically offer high charge storage capacity. Thermal decomposition was used to fabricate titanium oxide, iridium oxide, nickel oxide, and bimetallic iridium-nickel oxide coatings on titanium electrode substrates. The Ir0.2-Ni0.8-oxide coating yielded the highest intrinsic (material property and extrinsic (material property + surface area charge storage capacity (CSC among the investigated materials, exceeding the performance of the current state-of-the-art neural stimulating electrode, Ir-oxide. This indicates that the Ir0.2-Ni0.8-oxide material is a promising alternative to currently used Ir-oxide, Pt, Au and carbon-based stimulating electrodes.

  16. Positive electrode for lithium secondary battery of the next generation. Part 3. Positive electrode active material synthesized by soft chemistry; 3 sofutokemisutori de gosei sareru seikyoku katsubusshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, N.; Jo, A [Iwate Univ., Morioka (Japan). Faculty of Engineering

    1997-10-05

    Synthesis of high performance positive electrode material for the lithium secondary battery using soft chemistry methods such as sol-gel method, precipitation method, and ion exchange method as well as the electrochemical properties and the positive electrode material for the metal oxides synthesized by soft chemistry methods are introduced. V2O5 gel is obtained by acidifying aqueous solution of vanadate such as NaVO3. MnO2 exists in various crystalline forms, and the characteristics of the electrode depend strongly on the crystal structure, chemical composition, water content, conditions of powder, and density, which can be controlled by the methods of synthesis and heat treatment. Sol-gel method is applied to the synthesis of MnO2 related compounds. LiCoO2 is synthesized by the precipitation method of the aqueous solution of the mixture of lithium hydroxide and ammonium hydroxide. Tungsten trioxide hydrate and molybdenum trioxide hydrate are obtained as precipitation by adding strong acid for acidification to tungstate or molybdate A2MO4 aqueous solution. 31 refs., 8 figs.

  17. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2017-01-01

    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  18. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amrita; Tripathi, S.K., E-mail: sktripathi16@yahoo.com

    2014-04-01

    Highlights: • CST with specific surface area of 1640 m{sup 2} g{sup −1} was synthesized using impregnation method. • XRD studies of CST confirm the formation of graphite and amorphous C. • EDLC cell has been successfully fabricated using CST as an electrode material having good energy and power density. - Abstract: In the present studies coconut shell based treated activated charcoal (CST) was synthesized by chemical activation method using KOH (potassium hydroxide) as an activating agent. Surface area analysis shows that CST has mesopores of size 3 nm having specific surface area of 1640 m{sup 2} g{sup −1}. Electrochemical double layer capacitor (EDLC) was fabricated using CST as an electrode material with blend polymer electrolyte having specific capacitance of 534 mF cm{sup −2} (equivalent to single electrode specific capacitance of 356.2 F g{sup −1}). The corresponding energy and power density of 88.8 Wh kg{sup −1} and 1.63 kW kg{sup −1}, respectively, were achieved for EDLC.

  19. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.

    Science.gov (United States)

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-12-30

    Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.

  20. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability.

    Science.gov (United States)

    Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin

    2017-10-16

    Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.

  1. Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies.

    Science.gov (United States)

    Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy

    2017-09-18

    In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A porous carbon material from pyrolysis of fructus cannabis’s shells for supercapacitor electrode application

    Science.gov (United States)

    Li, Kai; Zhang, Wei-Bin; Zhao, Zhi-Yun; Zhao, Yue; Chen, Xi-Wen; Kong, Ling-Bin

    2018-02-01

    The porous carbon material is obtained via pyrolysis and activation of fructus cannabis’s shells, an easy-to-get biomass source, and is used as an active electrode material for supercapacitors. The obtained carbon exhibit a high specific surface area of 2389 m2 g-1. And the result of x-ray photoelectron spectroscopy (XPS) shows that the obtained porous carbon possess numerous oxygen groups, which can facilitate the wettability of the electrode. The prepared porous carbon also exhibit remarkable electrochemical properties, such as high specific capacitance of 357 F g-1 at a current density of 0.5 A g-1 in 6 mol L-1 aqueous KOH electrolyte, good rate capability of 77% capacitance retention as the current density increase from 0.5 A g-1 to 10 A g-1. In addition, it also presents a superior cycling stability of 100% capacitance retention after 10 000 cycles at the current density of 1 A g-1.

  3. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  4. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    Science.gov (United States)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  5. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  6. NiO nanosheet assembles for supercapacitor electrode materials

    Directory of Open Access Journals (Sweden)

    Huanhao Xiao

    2016-06-01

    Full Text Available In this paper, large scale hierarchically assembled NiO nanosheets have been favorably fabricated through a facile hydrothermal route. The as-prepared NiO nanosheet assembles were characterized in detail by various analytical techniques. The results showed these nanosheets present the thickness of about 30 nm and the surface area is 116.9 m2 g−1. These NiO nanosheet assembles were used as the working electrode materials in electrochemical tests, which demonstrated a specific capacitance value of 81.67 F g−1 at the current density of 0.5 A g−1 and excellent long cycle-life stability with 78.5% of its discharge specific capacitance retention after 3000 cycles at the current density of 0.5 A g−1, revealing the as-synthesized NiO nanosheet assembles might be a promising electrode material for supercapacitor applications.

  7. Study on Electrochemical Performance of Carbonnanotubes/Fey 04 Composite Electrode Material

    Directory of Open Access Journals (Sweden)

    WANG Fang--yong

    2017-02-01

    Full Text Available For single super capacitor materials,each material has its own unique advantages and defects. In this paper, the synthesis of complex multi walled carbon nanotubes with Fe304 nanoparticles by simple hydrothermal method. Composite performance for Fe3 OQ nanoparticles adsorbed on carbon nano tube wall composed of reticular structure morphology. Synergy of two component,provides the binary nanometer compound larger specific capacity, excellent properties and good cycle stability. The experimental results proved that the improvement effects of CNT carbon materials on the electrochemical properties of pseudocapacitive electrode material,and CNT/Fe3 OQ nano- composites applied to supercapacitor electrode material.

  8. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  9. Synthesis of a highly efficient 3D graphene-CNT-MnO2-PANI nanocomposite as a binder free electrode material for supercapacitors.

    Science.gov (United States)

    Asif, Muhammad; Tan, Yi; Pan, Lujun; Rashad, Muhammad; Li, Jiayan; Fu, Xin; Cui, Ruixue

    2016-09-29

    Graphene based nanocomposites have been investigated intensively, as electrode materials for energy storage applications. In the current work, a graphene-CNT-MnO 2 -PANI (GCM@PANI) nanocomposite has been synthesized on 3D graphene grown on nickel foam, as a highly efficient binder free electrode material for supercapacitors. Interestingly, the specific capacitance of the synthesized electrode increases up to the first 1500 charge-discharge cycles, and is thus referred to as an electrode activation process. The activated GCM@PANI nanocomposite electrode exhibits an extraordinary galvanostatic specific capacitance of 3037 F g -1 at a current density of 8 A g -1 . The synthesized nanocomposite exhibits an excellent cyclic stability with a capacitance retention of 83% over 12 000 charge-discharge cycles, and a high rate capability by retaining a specific capacitance of 84.6% at a current density of 20 A g -1 . The structural and electrochemical analysis of the synthesized nanocomposite suggests that the astonishing electrochemical performance might be attributed to the growth of a novel PANI nanoparticle layer and the synergistic effect of CNT/MnO 2 nanostructures.

  10. Contribution of tin in electrochemical properties of zinc antimonate nanostructures: An electrode material for supercapacitors

    Science.gov (United States)

    Balasubramaniam, M.; Balakumar, S.

    2018-04-01

    Tin (Sn) doped ZnSb2O6 nanostructures was synthesized by chemical precipitation method and was used as an electrode material for supercapacitors to explore its electrochemical stability and potentiality as energy storage materials. Their characteristic structural, morphological and compositional features were investigated through XRD, FESEM and XPS analysis. Results showed that the nanostructures have well ordered crystalline features with spherical particle morphology. As the size and morphology are the vital parameters in exhibiting better electrochemical properties, the prepared nanostructures exhibited a significant specific capacitance of 222 F/g at a current density of 0.5 A/g respectively. While charging and discharging for 1000 cycles, the capacitance retention was enhanced to 105.0% which depicts the stability and activeness of electrochemical sites present in the Sn doped ZnSb2O6 nanostructures even after cycling. Hence, the inclusion of Sn into ZnSb2O6 has contributed in improving the electrochemical properties thereby it represents itself as a potential electrode material for supercapacitors.

  11. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  12. High capacity electrode materials for batteries and process for their manufacture

    Science.gov (United States)

    Johnson, Christopher S.; Xiong, Hui; Rajh, Tijana; Shevchenko, Elena; Tepavcevic, Sanja

    2018-04-03

    The present invention provides a nanostructured metal oxide material for use as a component of an electrode in a lithium-ion or sodium-ion battery. The material comprises a nanostructured titanium oxide or vanadium oxide film on a metal foil substrate, produced by depositing or forming a nanostructured titanium dioxide or vanadium oxide material on the substrate, and then charging and discharging the material in an electrochemical cell from a high voltage in the range of about 2.8 to 3.8 V, to a low voltage in the range of about 0.8 to 1.4 V over a period of about 1/30 of an hour or less. Lithium-ion and sodium-ion electrochemical cells comprising electrodes formed from the nanostructured metal oxide materials, as well as batteries formed from the cells, also are provided.

  13. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    OpenAIRE

    Tieshi He; Xue Ren; Junping Nie; Jun Ying; Kedi Cai

    2015-01-01

    Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distrib...

  14. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  15. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Science.gov (United States)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  17. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Science.gov (United States)

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  19. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators

    Science.gov (United States)

    Kim, Hoe Joon; Jung, Soon In; Segovia-Fernandez, Jeronimo; Piazza, Gianluca

    2018-05-01

    This paper presents a detailed analysis on the impact of electrode materials and dimensions on flicker frequency (1/f) noise in piezoelectric aluminum nitride (AlN) contour mode resonators (CMRs). Flicker frequency noise is a fundamental noise mechanism present in any vibrating mechanical structure, whose sources are not generally well understood. 1 GHz AlN CMRs with three different top electrode materials (Al, Au, and Pt) along with various electrode lengths and widths are fabricated to control the overall damping acting on the device. Specifically, the use of different electrode materials allows control of thermoelastic damping (TED), which is the dominant damping mechanism for high frequency AlN CMRs and largely depends on the thermal properties (i.e. thermal diffusivities and expansion coefficients) of the metal electrode rather than the piezoelectric film. We have measured Q and 1/f noise of 68 resonators and the results show that 1/f noise decreases with increasing Q, with a power law dependence that is about 1/Q4. Interestingly, the noise level also depends on the type of electrode materials. Devices with Pt top electrode demonstrate the best noise performance. Our results help unveiling some of the sources of 1/f noise in these resonators, and indicate that a careful selection of the electrode material and dimensions could reduce 1/f noise not only in AlN-CMRs, but also in various classes of resonators, and thus enable ultra-low noise mechanical resonators for sensing and radio frequency applications.

  20. [Detection of surface EMG signal using active electrode].

    Science.gov (United States)

    He, Qinghua; Peng, Chenglin; Wu, Baoming; Wang, He

    2003-09-01

    Research of surface electromyogram(EMG) signal is important in rehabilitation medicine, sport medicine and clinical diagnosis, accurate detection of signal is the base of quantitative analysis of surface EMG signal. In this article were discussed how to reduce possible noise in the detection of surface EMG. Considerations on the design of electrode unit were presented. Instrumentation amplifier AD620 was employed to design a bipolar active electrode for use in surface EMG detection. The experiments showed that active electrode could be used to improve signal/noise ratio, reduce noise and detect surface EMG signal effectively.

  1. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  2. Synchrotron x-ray diffraction studies of the structural properties of electrode materials in operating battery cells

    International Nuclear Information System (INIS)

    Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.; Yang, X.Q.; McBreen, J.; Daroux, M.L.; Xing, X.K.

    1996-01-01

    Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating in situ in battery cells. Two technologically relevant electrode materials were examined; an AB 2 -type anode in a nickel endash metal endash hydride cell and a LiMn 2 O 4 cathode in a Li-ion open-quote open-quote rocking chair close-quote close-quote cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studies of battery electrode materials is discussed. copyright 1996 American Institute of Physics

  3. Method of preparing an electrode material of lithium-aluminum alloy

    Science.gov (United States)

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  4. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tieshi He

    2015-01-01

    Full Text Available Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distribution, and life cycle. The imbalanced supercapacitor with an AC weight ratio of 80 : 120 of positive to negative electrode has an average potential distribution in each electrode, and it revealed the best electrochemical performance: specific capacitor was 39.6 F·g−1, while the charge-discharge efficiency was 97.2% after 2000 life cycle tests.

  5. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  6. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators

    Directory of Open Access Journals (Sweden)

    Hoe Joon Kim

    2018-05-01

    Full Text Available This paper presents a detailed analysis on the impact of electrode materials and dimensions on flicker frequency (1/f noise in piezoelectric aluminum nitride (AlN contour mode resonators (CMRs. Flicker frequency noise is a fundamental noise mechanism present in any vibrating mechanical structure, whose sources are not generally well understood. 1 GHz AlN CMRs with three different top electrode materials (Al, Au, and Pt along with various electrode lengths and widths are fabricated to control the overall damping acting on the device. Specifically, the use of different electrode materials allows control of thermoelastic damping (TED, which is the dominant damping mechanism for high frequency AlN CMRs and largely depends on the thermal properties (i.e. thermal diffusivities and expansion coefficients of the metal electrode rather than the piezoelectric film. We have measured Q and 1/f noise of 68 resonators and the results show that 1/f noise decreases with increasing Q, with a power law dependence that is about 1/Q4. Interestingly, the noise level also depends on the type of electrode materials. Devices with Pt top electrode demonstrate the best noise performance. Our results help unveiling some of the sources of 1/f noise in these resonators, and indicate that a careful selection of the electrode material and dimensions could reduce 1/f noise not only in AlN-CMRs, but also in various classes of resonators, and thus enable ultra-low noise mechanical resonators for sensing and radio frequency applications.

  7. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Science.gov (United States)

    Rusi; Chan, P Y; Majid, S R

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  8. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    Science.gov (United States)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  9. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators

    Science.gov (United States)

    Knapp, Marius; Hoffmann, René; Lebedev, Vadim; Cimalla, Volker; Ambacher, Oliver

    2018-03-01

    Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator’s quality factor Q and a resonance frequency close to an ‘unloaded’ resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.

  10. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  11. Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect

    Science.gov (United States)

    Lakraychi, A. E.; Dolhem, F.; Djedaïni-Pilard, F.; Thiam, A.; Frayret, C.; Becuwe, M.

    2017-08-01

    The preparation and assessment versus lithium of a functionalized terephthalate-based as a potential new negative electrode material for Li-ion battery is presented. Inspired from molecular modelling, a decrease in redox potential is achieved through the symmetrical adjunction of electron-donating fragments (-CH3) on the aromatic ring. While the electrochemical activity of this organic material was maximized when used as nanocomposite and without any binder, the potential is furthermore lowered by 110 mV upon functionalization, consistently with predicted value gained from DFT calculations.

  12. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes

    International Nuclear Information System (INIS)

    Fan, Le-Qing; Liu, Gui-Jing; Wu, Ji-Huai; Liu, Lu; Lin, Jian-Ming; Wei, Yue-Lin

    2014-01-01

    Graphene oxide/polypyrrole (GO/PPy) composite is synthesized by in situ oxidation polymerization of pyrrole (Py) in the presence of GO and used for supercapacitor electrode. The scanning electron microscope (SEM) observes that PPy nanoparticles are uniformly grown on the surfaces of GO sheets, leading to increase both the specific surface area and the electrical conductivity of material. GO/PPy composite exhibits better electrochemical performances than the pure individual components. When the mass ratio of GO to Py is 10:100, the GO/PPy composite electrode shows the highest capacitance of 332.6 F g −1 , and presents high rate capability. An asymmetric supercapacitor is fabricated by using the optimized GO/PPy composite as positive electrode and activated carbon (AC) as negative electrode. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 0–1.6 V, and exhibits the maximum energy density of 21.4 Wh kg −1 at a power density of 453.9 W kg −1 . Furthermore, the GO/PPy//AC asymmetric supercapacitor displays good rate capability and excellent cyclic durability

  13. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  14. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    Science.gov (United States)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  15. Preparation of Reduced Graphene Oxides as Electrode Materials for Supercapacitors

    KAUST Repository

    Bai, Yaocai

    2012-01-01

    Reduced graphene oxide as outstanding candidate electrode material for supercapacitor has been investigated. This thesis includes two topics. One is that three kinds of reduced graphene oxides were prepared by hydrothermal reduction under different

  16. Non-traditional Electrode Materials in Environmental Analysis of Biologically Active Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Fischer, J.; Navrátil, Tomáš; Pecková, K.; Josypčuk, Bohdan; Zima, J.

    2007-01-01

    Roč. 19, 19-20 (2007), s. 2003-2014 ISSN 1040-0397 R&D Projects: GA ČR GA203/07/1195 Grant - others:GA MŠk(CZ) LC06035; GA ČR GP203/07/P261 Program:LC Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * carbon paste electrodes * voltammetry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.949, year: 2007

  17. Asymmetric Electrodes Constructed with PAN-Based Activated Carbon Fiber in Capacitive Deionization

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-01-01

    Full Text Available Capacitive deionization (CDI method has drawn much attention for its low energy consumption, low pollution, and convenient manipulation. Activated carbon fibers (ACFs possess high adsorption ability and can be used as CDI electrode material. Herein, two kinds of PAN-based ACFs with different specific surface area (SSA were used for the CDI electrodes. The CDI performance was investigated; especially asymmetric electrodes’ effect was evaluated. The results demonstrated that PAN-based ACFs showed a high electrosorption rate (complete electrosorption in less than half an hour and moderate electrosorption capacity (up to 0.2 mmol/g. CDI experiments with asymmetric electrodes displayed a variation in electrosorption capacity between forward voltage and reverse voltage. It can be attributed to the electrical double layer (EDL overlap effect and inner pore potential; thus the ions with smaller hydrated ionic radius can be adsorbed more easily.

  18. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    Science.gov (United States)

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  19. A viable electrode material for use in microbial fuel cells for tropical regions

    DEFF Research Database (Denmark)

    Offei, Felix; Thygesen, Anders; Mensah, Moses

    2016-01-01

    of this material is also targeted at introducing an inexpensive and durable electrode material, which can be produced in rural communities to improve the viability of MFCs. The maximum voltage and power density obtained (under 1000 Ω load) using an H-shaped MFC with AC as both anode and cathode electrode material...... was 0.66 V and 1.74 W/m3, respectively. The power generated by AC was as high as 86% of the value obtained with the extensively used carbon paper. Scanning electron microscopy and Denaturing Gradient Gel Electrophoresis (DGGE) analysis of AC anode biofilms confirmed that electrogenic bacteria were...

  20. Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter

    Energy Technology Data Exchange (ETDEWEB)

    Luttmer, J.D.; Konrad, D.; Trachtenberg, I.

    1985-05-01

    Texas Instruments has developed a solar chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid. Various materials were evaluated as anodes and cathodes for the electrolysis of the acid. Emphasis was placed on obtaining low overvoltage electrodes with good long-term stability. Sputtered platinum-iridium thin films were identified as the best choice as the cathode material, and sputtered iridium and iridium oxide thin films were identified as the best choice as anode materials. Electrochemical measurements indicate that low overvoltage losses are encountered on these materials at operating current densitities in the SCC. Accelerated corrosion tests of the materials predict acceptable electrode stability for 20 years in an environment representative of onthe-roof service.

  1. Amperometric Detection in Microchip Electrophoresis Devices: Effect of Electrode Material and Alignment on Analytical Performance

    Science.gov (United States)

    Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.

    2012-01-01

    The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847

  2. Studies on two classes of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, James Douglas [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO4/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi1/3Co1/3-yMyMn1/3O2 (M=Al, Co, Fe, Ti) and LiNi0.4Co0.2-yMyMn0.4O2 (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO4 is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO4/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO4 particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of

  3. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors

    Science.gov (United States)

    Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan

    2018-05-01

    Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.

  4. Alternate electrode materials for the SP100 reactor

    International Nuclear Information System (INIS)

    Randich, E.

    1992-05-01

    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB 2 (C) CVD coating on SiMo substrates, (2) development of a ZrB 2 (C) CVD coating on SiGe substrates, (3) development of CVI W for porous graphite electrodes, and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB 2 coatings on SiGe and graphite substrates, and later into developing ZrB 2 coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB 2 during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings

  5. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    Science.gov (United States)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  6. Effect of microwave heat-treatment time on the properties of activated carbons as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Wang, T.; Long, S.; Zhang, X.; Zheng, M. [Anhui Univ. of Technology, Ma' aushan (China). School of Chemistry and Chemical Engineering, Anhui Key Lab of Coal Clean Conversion and Utilization

    2010-07-01

    A microwave-assisted heating technique was used to prepare activated carbons (ACs) from petroleum coke with potassium hydroxide (KOH) as an activating agent. The aim of the study was to investigate the effect of heat treatment time on AC properties at 3, 5, and 7 minutes with a microwave power rate of 700 W. The structure and electrochemical performance of the microwave ACs were then compared with commercially prepared ACs. The study showed that the specific capacitance, equivalent series resistance and energy density of the AC electrodes decreased, while the cycle performance of the AC electrodes was improved. The specific capacitance and energy density of the ACs treated with microwave heat at 3 and 7 minutes was higher than rates observed in commercially-prepared ACs. Results showed that the microwave heat treatment method is an efficient means of obtaining stable ACs for use in supercapacitors. 3 refs., 1 tab., 1 fig.

  7. Synergetic Hybrid Aerogels of Vanadia and Graphene as Electrode Materials of Supercapacitors

    Directory of Open Access Journals (Sweden)

    Xuewei Fu

    2016-08-01

    Full Text Available The performance of synergetic hybrid aerogel materials of vanadia and graphene as electrode materials in supercapacitors was evaluated. The hybrid materials were synthesized by two methods. In Method I, premade graphene oxide (GO hydrogel was first chemically reduced by L-ascorbic acid and then soaked in vanadium triisopropoxide solution to obtain V2O5 gel in the pores of the reduced graphene oxide (rGO hydrogel. The gel was supercritically dried to obtain the hybrid aerogel. In Method II, vanadium triisopropoxide was hydrolyzed from a solution in water with GO particles uniformly dispersed to obtain the hybrid gel. The hybrid aerogel was obtained by supercritical drying of the gel followed by thermal reduction of GO. The electrode materials were prepared by mixing 80 wt % hybrid aerogel with 10 wt % carbon black and 10 wt % polyvinylidene fluoride. The hybrid materials in Method II showed higher capacitance due to better interactions between vanadia and graphene oxide particles and more uniform vanadia particle distribution.

  8. The synergic effect of activated carbon and Li3V1.95Ni0.05(PO4)3/C for the development of high energy and power electrodes

    International Nuclear Information System (INIS)

    Secchiaroli, M.; Marassi, R.; Wohlfahrt-Mehrens, M.; Dsoke, S.

    2016-01-01

    Highlights: • Bi-material electrode composed by activated carbon and Li 3 V 1.95 Ni 0.05 (PO 4 ) 3 /C is proposed. • It is studied as high energy/power positive and negative electrodes, between 3.0–4.3 and 3.0–1.5 V vs. Li/Li + . • This electrode shows high specific capacity and capacity retention up to 26.6 A g −1 . • Excellent cycle stability is shown over 2000 cycles at 26.6 A g −1 . - Abstract: Exceptionally high specific capacities at ultrahigh charge/discharge currents have been obtained with a bi-material electrode prepared using Li 3 V 1.95 Ni 0.05 (PO 4 ) 3 /C (LVNP/C) and activated carbon (AC) as coexisting active materials. Thanks to the amphoteric properties of LVNP/C, this electrode designated as LVNP/C-AC, has been evaluated both as positive and negative electrode in 1 M LiPF 6 in EC:DMC (1:1). At high specific currents (26.6 A g −1 ), the bi-material electrode delivers specific capacities as high as 61 and 24 mAh g −1 , between 3.0–4.3 V and 3.0–1.5 V vs Li/Li + , respectively. By contrast, the corresponding values for LVNP/C are 49 and 18 mAh g −1 . In both potential windows, the bi-material electrode shows an excellent cycling stability over 2000 cycles at 26.6 A g −1 , with capacity retention of 95 and 89%, between 3.0–4.3 and 3.0–1.5 V vs Li/Li + , respectively. The synergic effect of the activated carbon on the electrochemical performances of Li 3 V 1.95 Ni 0.05 (PO 4 ) 3 /C is investigated by comparing the cyclic voltammetry, electrochemical impedance spectroscopy, electronic conductivity, galvanostatic cycling, and scanning electron microscopy of the bi-material electrode with the ones of LVNP/C. This study highlights the huge potentialities of this bi-material electrode for the development of high energy and high power Li-ion hybrid supercapacitors.

  9. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  10. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 ), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  11. Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jiawei [Center for Advanced Photovoltaics, Department of Electrical Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States); Zhou, Zhengping; Qiao, Qiquan, E-mail: qiquan.qiao@sdstate.edu [Center for Advanced Photovoltaics, Department of Electrical Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States); Yang, Huojun [Department of Construction Management and Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States)

    2016-04-07

    Activated graphene nanoplatelets (aGNPs) prepared by a hydrothermal method using KOH as activating agent were used as counter electrode for high efficiency dye-sensitized solar cells (DSSCs). After the KOH activation, the scanning electron microscopy image shows that aGNPs demonstrate a more curled, rough, and porous morphology which could contain both micro- and mesopores. The KOH activation changed the stacked layers of GNPs to a more crumpled and curved morphology. The microstructure of large pores significantly increased the electrode surface area and roughness, leading to the high electrocatalytic activity for triiodide reduction at the counter electrode. The DSSCs fabricated using aGNP as counter electrodes were tested under standard AM 1.5 illumination with an intensity of 91.5 mW/cm{sup 2}. The device achieved an overall power conversion efficiency of 7.7%, which is comparable to the conventional platinum counter electrode (8%). Therefore, the low cost and high performance aGNP based counter electrode is a promising alternative to conventional Pt counter electrode in DSSCs.

  12. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    Science.gov (United States)

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  13. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    Science.gov (United States)

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of the collecting electrode material of an extrapolation chamber by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2017-01-01

    In this work, the influence of different materials of the collecting electrode on the response of an extrapolation ionization chamber, was evaluated. This ionization chamber was simulated with the MCNP-4C Monte Carlo code and the spectrum of a standard diagnostic radiology beam (RQR5) was utilized. The different results are due to interactions of photons with different materials of the collecting electrode contributing with different values of energy deposited in the sensitive volume of the ionization chamber, which depends on the atomic number of the evaluated materials. The material that presented the least influence was graphite, the original constituent of the ionization chamber. (author)

  15. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Wang, Lan; Gao, Zhiyong; Chang, Jiuli; Liu, Xiao; Wu, Dapeng; Xu, Fang; Guo, Yuming; Jiang, Kai

    2015-09-16

    Activated N-doped porous carbons (a-NCs) were synthesized by pyrolysis and alkali activation of graphene incorporated melamine formaldehyde resin (MF). The moderate N doping levels, mesopores rich porous texture, and incorporation of graphene enable the applications of a-NCs in surface and conductivity dependent electrode materials for supercapacitor and dye-sensitized solar cell (DSSC). Under optimal activation temperature of 700 °C, the afforded sample, labeled as a-NC700, possesses a specific surface area of 1302 m2 g(-1), a N fraction of 4.5%, and a modest graphitization. When used as a supercapacitor electrode, a-NC700 offers a high specific capacitance of 296 F g(-1) at a current density of 1 A g(-1), an acceptable rate capability, and a high cycling stability in 1 M H2SO4 electrolyte. As a result, a-NC700 supercapacitor delivers energy densities of 5.0-3.5 Wh kg(-1) under power densities of 83-1609 W kg(-1). Moreover, a-NC700 also demonstrates high electrocatalytic activity for I3- reduction. When employed as a counter electrode (CE) of DSSC, a power conversion efficiency (PCE) of 6.9% is achieved, which is comparable to that of the Pt CE based counterpart (7.1%). The excellent capacitive and photovoltaic performances highlight the potential of a-NCs in sustainable energy devices.

  16. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  17. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    Science.gov (United States)

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  19. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  20. Role of the Material Electrodes on Resistive Behaviour of Carbon Nanotube-Based Gas Sensors for H2S Detection

    Directory of Open Access Journals (Sweden)

    M. Lucci

    2012-01-01

    Full Text Available Miniaturized gas-sensing devices that use single-walled carbon nanotubes as active material have been fabricated using two different electrode materials, namely, Au/Cr and NbN. The resistive sensors have been assembled aligning by dielectrophoresis the nanotube bundles between 40 μm spaced Au/Cr or NbN multifinger electrodes. The sensing devices have been tested for detection of the H2S gas, in the concentration range 10–100 ppm, using N2 as carrier gas. No resistance changes were detected using sensor fabricated with NbN electrodes, whereas the response of the sensor fabricated with Au/Cr electrodes was characterized by an increase of the resistance upon gas exposure. The main performances of this sensor are a detection limit for H2S of 10 ppm and a recovery time of few minutes. The present study suggests that the mechanism involved in H2S gas detection is not a direct charge transfer between molecules and nanotubes. The hypothesis is that detection occurs through passivation of the Au surfaces by H2S molecules and modification of the contact resistance at the Au/nanotube interface.

  1. Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.L.; Marchant, D.D.

    1986-09-01

    Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.

  2. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials

    Directory of Open Access Journals (Sweden)

    Junhong Zhao

    2016-06-01

    Full Text Available Polypyrrole nanowires are facile synthesized under a mild condition with FeCl3 as an oxidant. Polypyrrole nanowires with the width of 120 nm form many nanogaps or pores due to the intertwined nanostructures. More importantly, PPy nanowires were further applied for supercapacitor electrode materials. After electrochemical testing, it was observed that the PPy nanowire based electrode showed a large specific capacitance (420 F g−1, 1.5 A g−1 and good rate capability (272 F g−1, 18.0 A g−1, which is larger than that of most of published results. The as-prepared electrode can work well even after 8000 cycles at 1.5 A g−1.

  3. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  4. Deliverable D2.4: Status of Dry Electrode Development Activity

    NARCIS (Netherlands)

    Mihajlovic, V.; Garcia Molina, G.

    2010-01-01

    The goal of dry electrode development activity within the WP2 is tobuild a dry electrode prototype for brain wave sensing that is comfortable for the user and provides sufficient signal quality. The electrodes are to be utilized in BCI applications, namely Steady-StateVisually Evoked Potential

  5. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    International Nuclear Information System (INIS)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento; Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres

    2016-01-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO 3 Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  6. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento, E-mail: alinerodrigues_1@msn.com [Instituto Tecnologico Aeroespacial (ITA), Sao Jose dos Campos, SP (Brazil); Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Cuna, Andres [Faculdade de Quimica, Universidad de la Republica (Uruguay)

    2016-07-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO{sub 3}Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  7. Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications

    International Nuclear Information System (INIS)

    Venkatachalam, V.; Jayavel, R.

    2015-01-01

    Novel nanocrystalline NiFe 2 O 4 has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe 2 O 4 with high crystallinity. The average crystallite size of NiFe 2 O 4 nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor

  8. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  9. Methods for making lithium vanadium oxide electrode materials

    Science.gov (United States)

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  10. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    Science.gov (United States)

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  11. Development of powder diffraction anomalous fine structure method and applications to electrode materials for rechargeable batteries

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Oishi, Masatsugu; Ichitsubo, Tetsu; Matsubara, Eiichiro; Mizuki, Jun'ichiro

    2015-01-01

    A powder diffraction anomalous fine structure (P-DAFS) method is developed both in analytical and experimental techniques and applied to cathode materials for lithium ion batteries. The DAFS method, which is an absorption spectroscopic technique through a scattering measurement, enables us to analyze the chemical states and the local structures of a certain element at different sites, thanks to the nature of x-ray diffraction, where the contributions from each site are different at each diffraction. Electrode materials for rechargeable batteries frequently exhibit the interchange between Li and a transition metal, which is known as the cation mixing phenomena. This cation mixing significantly affects the whole electrode properties; therefore, the site-distinguished understanding of the roles of the transition metal is essential for further material design by controlling and positively utilizing this cation mixing phenomenon. However, the developments of the P-DAFS method are required for the applications to the practical materials such as the electrode materials. In the present study, a direct analysis technique to extract the absorption spectrum from the scattering without using the conventional iterative calculations, fast and accurate measurement techniques of the P-DAFS method, and applications to a typical electrode material of Li 1-x Ni 1+x O 2 , which exhibits the significant cation mixing, are described. (author)

  12. Graphene synthesized on porous silicon for active electrode material of supercapacitors

    Science.gov (United States)

    Su, B. B.; Chen, X. Y.; Halvorsen, E.

    2016-11-01

    We present graphene synthesized by chemical vapour deposition under atmospheric pressure on both porous nanostructures and flat wafers as electrode scaffolds for supercapacitors. A 3nm thin gold layer was deposited on samples of both porous and flat silicon for exploring the catalytic influence during graphene synthesis. Micro-four-point probe resistivity measurements revealed that the resistivity of porous silicon samples was nearly 53 times smaller than of the flat silicon ones when all the samples were covered by a thin gold layer after the graphene growth. From cyclic voltammetry, the average specific capacitance of porous silicon coated with gold was estimated to 267 μF/cm2 while that without catalyst layer was 145μF/cm2. We demonstrated that porous silicon based on nanorods can play an important role in graphene synthesis and enable silicon as promising electrodes for supercapacitors.

  13. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors

    Science.gov (United States)

    Cao, Jianyun; Li, Xiaohong; Wang, Yaming; Walsh, Frank C.; Ouyang, Jia-Hu; Jia, Dechang; Zhou, Yu

    2015-10-01

    MnO2 is a promising electrode material for high energy supercapacitors because of its large pseudo-capacitance. However, MnO2 suffers from low electronic conductivity and poor cation diffusivity, which results in poor utilization and limited rate performance of traditional MnO2 powder electrodes, obtained by pressing a mixed paste of MnO2 powder, conductive additive and polymer binder onto metallic current collectors. Developing binder-free MnO2 electrodes by loading nanoscale MnO2 deposits on pre-fabricated device-ready electrode scaffolds is an effective way to achieve both high power and energy performance. These electrode scaffolds, with interconnected skeletons and pore structures, will not only provide mechanical support and electron collection as traditional current collectors but also fast ion transfer tunnels, leading to high MnO2 utilization and rate performance. This review covers design strategies, materials and fabrication methods for the electrode scaffolds. Rational evaluation of the true performance of these electrodes is carried out, which clarifies that some of the electrodes with as-claimed exceptional performances lack potential in practical applications due to poor mass loading of MnO2 and large dead volume of inert scaffold materials/void spaces in the electrode structure. Possible ways to meet this challenge and bring MnO2 electrodes from laboratory studies to real-world applications are considered.

  14. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  15. Organic Photovoltaic Structures as Photo-active Electrodes

    International Nuclear Information System (INIS)

    Gustafson, Matthew P.; Clark, Noel; Winther-Jensen, Bjorn; MacFarlane, Douglas R.

    2014-01-01

    This study demonstrated the novel use of a bulk heterojunction (BHJ), as present in modern organic solar cells, as a light-assisted electrocatalyst for water electrolysis reactions. Two separate organic photo-voltaic electrode structures were designed for targeting both the reduction, (ITO-PET/PEDOT:PSS/P3HT:PCBM)* and oxidation, (ITO-PET/ZnO/P3HT:PCBM)* reactions of water, denoted as OPE-R and OPE-O respectively. The OPE-R electrode supported both the proton reduction reaction (PRR) and oxygen reduction reaction (ORR) achieving photocurrents of -0.04 mAcm −2 (ORR) and -0.03 mAcm −2 (PRR) and a photovoltage of 0.50 V (ORR) and onset photovoltage at -0.59 V (PRR). By comparison, the OPE-O electrode achieved photocurrents of 0.15 mAcm −2 and photovoltages of 0.35 V for the water oxidation reaction (WOR). Both BHJ designs confirmed evidence of photo-enhanced Bulk Heterojunction Electrode (BHE) activity. The stability and sources of electrode degradation were also studied, with the OPE-O electrode proving to be more stable than the OPE-R electrode, most likely due to the PEDOT:PSS layer and PSS migration in the presence of water. *Indium Tin Oxide (ITO), Polyethylene Terephthalate (PET), Poly(3,4-ethylenedioxythiophene) (PEDOT), Polystyrenesulfonate acid (PSS), Poly(3-hexylthiophene) (P3HT), Phenyl-C 61 -Butyric acid Methyl ester (PCBM), Zinc Oxide (ZnO)

  16. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials

    OpenAIRE

    Zhao, Junhong; Wu, Jinping; Li, Bing; Du, Weimin; Huang, Qingli; Zheng, Mingbo; Xue, Huaiguo; Pang, Huan

    2016-01-01

    Polypyrrole nanowires are facile synthesized under a mild condition with FeCl3 as an oxidant. Polypyrrole nanowires with the width of 120 nm form many nanogaps or pores due to the intertwined nanostructures. More importantly, PPy nanowires were further applied for supercapacitor electrode materials. After electrochemical testing, it was observed that the PPy nanowire based electrode showed a large specific capacitance (420 F g−1, 1.5 A g−1) and good rate capability (272 F g−1, 18.0 A g−1), wh...

  17. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  18. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.

    Science.gov (United States)

    Cai, Jie; Niu, Haitao; Li, Zhenyu; Du, Yong; Cizek, Pavel; Xie, Zongli; Xiong, Hanguo; Lin, Tong

    2015-07-15

    Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

  19. Graphene synthesized on porous silicon for active electrode material of supercapacitors

    International Nuclear Information System (INIS)

    Su, B B; Chen, X Y; Halvorsen, E

    2016-01-01

    We present graphene synthesized by chemical vapour deposition under atmospheric pressure on both porous nanostructures and flat wafers as electrode scaffolds for supercapacitors. A 3nm thin gold layer was deposited on samples of both porous and flat silicon for exploring the catalytic influence during graphene synthesis. Micro-four-point probe resistivity measurements revealed that the resistivity of porous silicon samples was nearly 53 times smaller than of the flat silicon ones when all the samples were covered by a thin gold layer after the graphene growth. From cyclic voltammetry, the average specific capacitance of porous silicon coated with gold was estimated to 267 μF/cm 2 while that without catalyst layer was 145μF/cm 2 . We demonstrated that porous silicon based on nanorods can play an important role in graphene synthesis and enable silicon as promising electrodes for supercapacitors. (paper)

  20. Direct Electrochemistry of Horseradish Peroxidase on NiO Nanoflower Modified Electrode and Its Electrocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Lijun Yan

    2016-09-01

    Full Text Available In this paper nickel oxide (NiO nanoflower was synthesized and used for the realization of direct electrochemistry of horseradish peroxidase (HRP. By using carbon ionic liquid electrode (CILE as the substrate electrode, NiO-HRP composite was casted on the surface of CILE with chitosan (CTS as the film forming material and the modified electrode was denoted as CTS/NiO-HRP/CILE. UV-Vis absorption and FT-IR spectra confirmed that HRP retained its native structure after mixed with NiO nanoflower. Direct electron transfer of HRP on the modified electrode was investigated by cyclic voltammetry with a pair of quasi-reversible redox waves appeared, indicating that the presence of NiO nanoflower on the electrode surface could accelerate the electron transfer rate between the electroactive center of HRP and the substrate electrode. Electrochemical behaviors of HRP on the modified electrode were carefully investigated. The HRP modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid with wider linear range and lower detection limit. Therefore the presence of NiO nanoflower could provide a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated electrochemical biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. This work is licensed under a Creative Commons Attribution 4.0 International License.

  1. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    International Nuclear Information System (INIS)

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-01-01

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g −1 at a current density of 1 A g −1 and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices

  2. Research Progress in MnO2 -Carbon Based Supercapacitor Electrode Materials.

    Science.gov (United States)

    Zhang, Qun-Zheng; Zhang, Dian; Miao, Zong-Cheng; Zhang, Xun-Li; Chou, Shu-Lei

    2018-04-30

    With the serious impact of fossil fuels on the environment and the rapid development of the global economy, the development of clean and usable energy storage devices has become one of the most important themes of sustainable development in the world today. Supercapacitors are a new type of green energy storage device, with high power density, long cycle life, wide temperature range, and both economic and environmental advantages. In many industries, they have enormous application prospects. Electrode materials are an important factor affecting the performance of supercapacitors. MnO 2 -based materials are widely investigated for supercapacitors because of their high theoretical capacitance, good chemical stability, low cost, and environmental friendliness. To achieve high specific capacitance and high rate capability, the current best solution is to use MnO 2 and carbon composite materials. Herein, MnO 2 -carbon composite as supercapacitor electrode materials is reviewed including the synthesis method and research status in recent years. Finally, the challenges and future development directions of an MnO 2 -carbon based supercapacitor are summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  4. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    Science.gov (United States)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  5. New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells.

    Science.gov (United States)

    Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran; Lu, Yalin

    2018-01-17

    Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu 2 Fe 1.8 Co 0.2 O 7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H 2 (∼3% H 2 O) and 10% H 2 O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

  6. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  7. Low-temperature self-assembled vertically aligned carbon nanofibers as counter-electrode material for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Mahpeykar, S M; Tabatabaei, M K; Ghafoori-fard, H; Habibiyan, H; Koohsorkhi, J

    2013-01-01

    Low-temperature AC–DC PECVD is employed for direct growth of vertically aligned carbon nanofibers (VACNFs) on ordinary transparent conductive glass as counter-electrode material for dye-sensitized solar cells (DSSCs). To the best of our knowledge, this is the first report on utilization of VACNFs grown directly on ordinary FTO-coated glass as a cost-effective catalyst material in DSSCs. According to the FESEM images, the as-grown arrays are well aligned and dense, and offer uniform coverage on the surface of the substrate. In-plane and out-of-plane conductivity measurements reveal their good electrical conductivity, and Raman spectroscopy suggests a high number of electrocatalytic active sites, favoring charge transport at the electrolyte/electrode interface. Hybrid VACNF/Pt electrodes are also fabricated for performance comparison with Pt and VACNF electrodes. X-ray diffraction results verify the crystallization of Pt in hybrid electrodes and further confirm the vertical alignment of carbon nanofibers. Electrochemical characterization indicates that VACNFs provide both high catalytic and good charge transfer capability, which can be attributed to their high surface area, defect-rich and one-dimensional structure, vertical alignment and low contact resistance. As a result, VACNF cells can achieve a comparable performance (∼5.6%) to that of the reference Pt cells (∼6.5%). Moreover, by combination of the excellent charge transport and catalytic ability of VACNFs and the high conductivity of Pt nanoparticles, hybrid VACNF/Pt cells can deliver a performance superior to that of the Pt cells (∼7.2%), despite having a much smaller amount of Pt loading, which raises hopes for low-cost large-scale production of DSSCs in the future. (paper)

  8. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  9. Porphyrin doped vanadium pentoxide xerogel as electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Anaissi, F.J.; Engelmann, F.M.; Araki, K.; Toma, H.E. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    2003-04-01

    The lamellar composite material, VXG-TMPyP, obtained from the combination of cationic, water-soluble meso-(tetra-4-methyl-pyridinium)porphyrin (TMPyP) and vanadium pentoxide gel was investigated and employed as electrode modifying material. This material was isolated as a xerogel and characterized by X-ray diffraction, UV-Vis spectroscopy, cyclic voltammetry, spectro-electrochemistry and TG analysis. According to the X-ray diffraction data, the original VXG lamellar matrix framework is kept in the composite, evidencing a topotatic reaction. UV-Vis spectra indicated a strong interaction between VXG and TMPyP leading to the protonation of the porphyrin ring. In contrast with the vanadium oxide xerogel the new material is stable in water. The presence of the cationic porphyrin species in its structure turns it able to incorporate negatively charged ions, such as ferrocyanide and I{sup -}. The presence of the I{sub 2}/I{sup -} couple gives rise to a dramatic increase in the reversibility of the V{sup V/IV} process and in the charge capacity of the material. (authors)

  10. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  11. Surface modification of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C.M., E-mail: Christian.Julien@upmc.fr [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Mauger, A. [Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), UPMC Univ. Paris 6, 4 place Jussieu, 75005 Paris (France); Groult, H. [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Zaghib, K. [Energy Storage and Conversion, Research Institute of Hydro-Québec, Varennes, Québec J3X 1S1 (Canada)

    2014-12-01

    The advanced lithium-ion batteries are critically important for a wide range of applications, from portable electronics to electric vehicles. The research on their electrodes aims to increase the energy density and the power density, improve the calendar and the cycling life, without sacrificing the safety issues. A constant progress through the years has been obtained owing to the surface treatment of the particles, in particular the coating of the nanoparticles with a layer that protects the core region from side reactions with the electrolyte, prevents the loss of oxygen, and the dissolution of the metal ions in the electrolyte, or simply improve the conductivity of the powder. The purpose of the present work is to present the different surface modifications that have been tried for three families of positive electrodes: layered, spinel and olivine frameworks that are currently considered as promising materials. The role of the different coats used to improve either the surface conductivity, or the thermal stability, or the structural integrity is discussed. - Highlights: • Report the various surface modifications tried for the positive electrodes of Li-ion batteries. • The role of different coats used to improve the conductivity, or the thermal stability, or the structural integrity. • Improvement of electrochemical properties of electrodes after coating or surface treatment.

  12. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  13. NiO nanosheet assembles for supercapacitor electrode materials

    OpenAIRE

    Huanhao Xiao; Shunyu Yao; Hongda Liu; Fengyu Qu; Xu Zhang; Xiang Wu

    2016-01-01

    In this paper, large scale hierarchically assembled NiO nanosheets have been favorably fabricated through a facile hydrothermal route. The as-prepared NiO nanosheet assembles were characterized in detail by various analytical techniques. The results showed these nanosheets present the thickness of about 30 nm and the surface area is 116.9 m2 g−1. These NiO nanosheet assembles were used as the working electrode materials in electrochemical tests, which demonstrated a specific capacitance value...

  14. Synthesis and characterization of NiCo_2O_4 nanoplates as efficient electrode materials for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Kim, Taehyun; Ramadoss, Ananthakumar; Saravanakumar, Balasubramaniam; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-01-01

    Highlights: • NiCo_2O_4 nanoplates were synthesized through a facile approach. • The NiCo_2O_4 nanoplates electrode material exhibit a specific capacitance of 332 F g"−"1 at 5 mV s"−"1. • The fabricated NiCo_2O_4 electrode reveals 86% retention of initial capacitance after 2000 cycles. - Abstract: In the present work, NiCo_2O_4 nanoplates were prepared by a facile, low temperature, hydrothermal method, followed by thermal annealing and used supercapacitor applications. The physico-chemical characterization of as-prepared materials were investigated by means of X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical measurements demonstrate that the NiCo_2O_4 nanoplates electrode (NC-5) exhibits a high specific capacitance of 332 F g"−"1 at a scan rate of 5 mV s"−"1 and also retained about 86% of the initial specific capacitance value even after 2000 cycles at a current density of 2.5 A g"−"1. These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.

  15. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Domingo-Garcia, M.; Almazan-Almazan, M.C.; Lopez-Garzon, F.J. [Dpto de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Fernandez, J.A.; Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, 33080 Oviedo (Spain); Stoeckli, F. [Physics Department, University of Neuchatel, Rue Emile Argand 11, CH-2009 Neuchatel (Switzerland)

    2010-06-15

    A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g{sup -1} in 2 M H{sub 2}SO{sub 4} aqueous electrolyte and 98 F g{sup -1} in the aprotic medium 1 M (C{sub 2}H{sub 5}){sub 4}NBF{sub 4}/acetonitrile. Additionally, high performance has also been achieved at high current densities, which confirms the potential of this type of materials for electrical energy storage. A new method based on the basic solvolysis of PET-waste and the subsequent carbonization seems to be an interesting alternative to obtain porous carbons with enhanced properties for supercapacitors. (author)

  16. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl3/EMIMCl Electrolyte

    Directory of Open Access Journals (Sweden)

    Linda Ager-Wick Ellingsen

    2018-06-01

    Full Text Available Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl3/EMIMCl (1-ethyl-3-methylimidazolium chloride room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a “silver bullet” for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.

  17. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  18. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.

    Science.gov (United States)

    Saheb-Alam, Soroush; Singh, Abhijeet; Hermansson, Malte; Persson, Frank; Schnürer, Anna; Wilén, Britt-Marie; Modin, Oskar

    2018-02-15

    The enrichment of CO 2 -reducing microbial biocathodes is challenging. Previous research has shown that a promising approach could be to first enrich bioanodes and then lower the potential so the electrodes are converted into biocathodes. However, the effect of such a transition on the microbial community on the electrode has not been studied. The goal of this study was thus to compare the start-up of biocathodes from preenriched anodes with direct start-up from bare electrodes and to investigate changes in microbial community composition. The effect of three electrode materials on the long-term performance of the biocathodes was also investigated. In this study, preenrichment of acetate-oxidizing bioanodes did not facilitate the start-up of biocathodes. It took about 170 days for the preenriched electrodes to generate substantial cathodic current, compared to 83 days for the bare electrodes. Graphite foil and carbon felt cathodes produced higher current at the beginning of the experiment than did graphite rods. However, all electrodes produced similar current densities at the end of the over 1-year-long study (2.5 A/m 2 ). Methane was the only product detected during operation of the biocathodes. Acetate was the only product detected after inhibition of the methanogens. Microbial community analysis showed that Geobacter sp. dominated the bioanodes. On the biocathodes, the Geobacter sp. was succeeded by Methanobacterium spp., which made up more than 80% of the population. After inhibition of the methanogens, Acetobacterium sp. became dominant on the electrodes (40% relative abundance). The results suggested that bioelectrochemically generated H 2 acted as an electron donor for CO 2 reduction. IMPORTANCE In microbial electrochemical systems, living microorganisms function as catalysts for reactions on the anode and/or the cathode. There is a variety of potential applications, ranging from wastewater treatment and biogas generation to production of chemicals. Systems

  19. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules.

    Science.gov (United States)

    Harper, Jason C; Polsky, Ronen; Wheeler, David R; Brozik, Susan M

    2008-03-04

    A versatile and simple method is introduced for formation of maleimide-functionalized surfaces using maleimide-activated aryl diazonium salts. We show for the first time electrodeposition of N-(4-diazophenyl)maleimide tetrafluoroborate on gold and carbon electrodes which was characterized via voltammetry, grazing angle FTIR, and ellipsometry. Electrodeposition conditions were used to control film thickness and yielded submonolayer-to-multilayer grafting. The resulting phenylmaleimide surfaces served as effective coupling agents for electrode functionalization with ferrocene and the redox-active protein cytochrome c. The utility of phenylmaleimide diazonium toward formation of a diazonium-activated conjugate, followed by direct electrodeposition of the diazonium-modified DNA onto the electrode surface, was also demonstrated. Effective electron transfer was obtained between immobilized molecules and the electrodes. This novel application of N-phenylmaleimide diazonium may facilitate the development of bioelectronic devices including biofuel cells, biosensors, and DNA and protein microarrays.

  20. Selective observation of charge storing ions in supercapacitor electrode materials.

    Science.gov (United States)

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2018-02-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13 C nuclei in porous carbons to nearby nuclei in the cations ( 1 H) or anions ( 19 F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp 2 -hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  1. CAPACITANCE OF SUPERCAPACITORS WITH ELECTRODES BASED ON CARBON NANOCOMPOSITE MATERIAL

    OpenAIRE

    S.L Revo; B.I Rachiy; S Hamamda; T.G Avramenko; K.O Ivanenko

    2012-01-01

    This work presents the results of our research of the structure and practically important characteristics of a nanocomposite material on the basis of nanoporous carbon and thermally exfoliated graphite. This work shows that the use of the abovementioned composition in electrodes for supercapacitors allows to attain the level of their specific electrical capacitance at (155...160) F/g.

  2. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  3. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  4. Modified Gold Electrode and Hollow Mn3O4 Nanoparticles as Electrode Materials for Microbial Fuel Cell Applications

    Science.gov (United States)

    Dhungana, Pramod

    Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.

  5. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  6. Water desalination using capacitive deionization with microporous carbon electrodes.

    Science.gov (United States)

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. © 2012 American Chemical Society

  7. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Musheng; Xu Bo; Ouyang Chuying

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. (topical review)

  8. Electrocolorimetry of electrochromic materials on flexible ITO electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Carlos [Requimte, Dep. Quimica, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); YDreams, Madan Parque, Quinta da Torre, 2829-516 Caparica (Portugal); Parola, A.J.; Pina, F. [Requimte, Dep. Quimica, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Fonseca, J.; Freire, C. [Requimte, Dep. Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal)

    2008-08-15

    Electrochromic materials are characterized by their colour changes upon applied voltage. Colour can mean many things: a certain kind of light, its effect on the human eye, or the result of this effect in the mind of the viewer. Since the electrochromic materials are developed towards real life applications it is relevant to characterize them with the usual commercial colour standards. A colorimetric study of electrogenerated Prussian blue and electrogenerated polymers based on salen-type complexes of Cu(II), Ni(II) and Pd(II) deposited over transparent flexible electrodes of polyethylene terephthalate coated with indium tin oxide (PET/ITO electrodes) was carried out using the CIELAB coordinates. A cuvette with a designed adapter to allow potentiostatic control was placed on an integrating sphere installed in the sample compartment of a spectrophotometer to run the colorimetric measurements. The colour evolution in situ was measured through the transmittance of the films by potentiostatic control. Chronocoulometry/chronoabsorptometry was used to evaluate maximum coloration efficiencies for the coloration step: 184 (Pd), 161 (Cu) and 83 cm{sup 2}/C (Ni) and for bleaching: 199 (Pd), 212 (Cu) and 173 cm{sup 2}/C (Ni) of the Pd, Cu and Ni polymer films, respectively. The Prussian Blue/Prussian White states over the PET/ITO films were relatively reversible while the reversibility and stability of the polymers based on the metals salen-type complexes depends on the metal, Pd being the most stable. (author)

  9. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  10. Battery designs with high capacity anode materials and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  11. Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants

    Science.gov (United States)

    Apetrei, Constantin; Apetrei, Irina Mirela; De Saja, Jose Antonio; Rodriguez-Mendez, Maria Luz

    2011-01-01

    This work describes the sensing properties of carbon paste electrodes (CPEs) prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, l-ascorbic acid and l-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, whereas G-CPEs presented the smallest detection limit for all the antioxidants analyzed. An array of electrodes has been constructed using the three types of electrodes. As demonstrated by means of Principal Component Analysis, the system is able to discriminate among antioxidants as a function of their chemical structure and reactivity. PMID:22319354

  12. Binder-less activated carbon electrode from gelam wood for use in supercapacitors

    Directory of Open Access Journals (Sweden)

    IVANDINI A. TRIBIDASARI

    2013-04-01

    Full Text Available This work focused on the relation between the porous structure of activated carbon and its capacitive properties. Three types of activated carbon monoliths were used as the electrodes in a half cell electrochemical system. One monolith was produced from activated carbon and considered to be a binder-less electrode. Two others were produced from acid and high pressure steam oxidized activated carbon. The micrographs clearly indicate that three electrodes have different porous structures. Both porosity and surface area of carbons increased due to the formation of grains during oxidation. This fact specified that an acid oxidized carbon monolith will have relatively higher capacitance compared to non-oxidized and steam oxidized monoliths. Maximum capacitance values for acid, steam oxidized and non-oxidized electrodes were 27.68, 2.23 and 1.20 F g-1, respectively.

  13. Latest advances in supercapacitors: from new electrode materials to novel device designs.

    Science.gov (United States)

    Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai; Liu, Zaichun; Zhang, Yi; Fu, Lijun; Zhu, Yusong; Zhou, Qingming; Wu, Yuping; Huang, Wei

    2017-11-13

    Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO 3 , and RbAg 4 I 5 /graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

  14. Ceramic carbon electrode-based anodes for use in the Cu-Cl thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Santhanam; Easton, E. Bradley [Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-05-15

    We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. CCE-based electrodes vastly outperform a bare carbon electrode. Optimization of the organosilicate loading revealed maximum electrode performance was achieved with 36 wt% and was explained in terms of the optimal balance of active area and anion transport properties. (author)

  15. The use of selective electrodes for the control of nuclear materials

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Abrao, A.

    1984-01-01

    The use of ion selective electrodes is discussed for the determination of nitrate, chloride and fluoride in several materials used in the fuel cycle. The determination of nitrate and chloride in thorium compounds, the analysis of fluoride and chloride in uranium compounds and the determination of fluoride in crude phosphoric acid are described. The control of fluoride in urine of individuals that handle materials containing fluor and its compounds is also described. (C.L.B.) [pt

  16. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    Science.gov (United States)

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  17. Supercapacitor Electrode Materials from Highly Porous Carbon Nanofibers with Tailored Pore Distributions

    Science.gov (United States)

    Chathurika Abeykoon, Nimali

    for EDLCs. It also explains the necessity and the advantages of tailored high surface area nanofibers as an electrode materials for supercapacitors. Chapter 2 describes the preparation of high surface area carbon nanofibers using polymer blends containing PAN and PMMA and introduces an effective and simple strategy to improve the surface area of CNFs by using a sacrificial polymer, PMMA. Chapter 3 describes blending of high fractional free volume polymer, 6FDA-DAM: DABA (3:2) into PBI to increase surface area and by using the higher etch rate of 6FDA-DAM: DABA in the blend to optimize pore distribution of CNFs. Chapter 4 introduces a novel approach to increase surface area of CNFs without any physical or chemical activation by using an in situ porogen containing copolymer P(AN-co-IA). The concept developed here avoids unnecessary and complex extra activation steps when fabricating carbon nanofibers which leads to lower char yield and uncontrollable pore sizes. Chapter 5 describes enhancement of surface area by using terpolymer P(AN-VIM-IA) to develop a new precursor. This approach is further advantageous since terpolymer can combine superior electrochemical properties of homopolymer, PAN and P(AN- co-IA) and P(AN-co-VIM). Chapter 6 describes the use of commercially available small molecule compatibilizer 2-MI to tailor pore architecture of carbon fiber derived from the immiscible blend of PBI/6FDD to match with the ion sizes of ionic liquid electrolytes thereby increasing the surface area of the CNFs that is accessible to electrolytes.

  18. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  19. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Steven J.; Bassiri-Gharb, Nazanin [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Deng, Carmen Z.; Callaway, Connor P. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Paul, McKinley K. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Woodward Academy, College Park, Georgia 30337 (United States); Fisher, Kenzie J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Riverwood International Charter School, Atlanta, Georgia 30328 (United States); Guerrier, Jonathon E.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Rudy, Ryan Q.; Polcawich, Ronald G. [Army Research Laboratory, Adelphi, Maryland 20783 (United States); Glaser, Evan R.; Cress, Cory D. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-07-14

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr{sub 0.52}Ti{sub 0.48}]O{sub 3} (PZT) thin film stacks were investigated for structures with conductive oxide (IrO{sub 2}) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) {sup 60}Co gamma radiation. However, the low-field, relative dielectric permittivity, ε{sub r}, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric–electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO{sub 2} electrodes).

  20. Experimental performance assessment of electrodes and numerical analysis of flow channel for CDI

    Energy Technology Data Exchange (ETDEWEB)

    You, Byung Hyun

    2011-02-15

    One possible solution suggested providing drinkable water with an expense of small amount of energy and investment is desalinating water with the capacitive deionization (CDI) technique. The idea of CDI is to successfully remove any ions dissolved in water by applying electrical field between electrodes and flowing water between the electrodes. The most commonly used electrode materials are carbon aerogel and activated-carbon because of their corrosion resistance and large specific area, which can provide major advantages for electrochemical adsorption processes in an aqueous solution. Through experiments using three electrode materials, we compared the ion adsorption performance of the electrodes from three different viewpoints: per unit mass, total used area and volume of electrode. Specific area is an important figure, but pore size distribution and pore structure should also be considered in comparing electrodes. Carbon aerogel outperforms carbon felt and activated carbon in ion removal per unit surface area and volume. But in of ion removal per unit mass, carbon felt outperforms carbon aerogel and activated carbon. Also, comparing the ion removing performance of electrodes in different initial concentrations, as the initial concentration increases, activated carbon increases in performance but aerogel's performance decreases. This means even if carbon aerogel had a better ion removing performance, activated carbon could perform higher in a higher concentration. Therefore, all these parameters should be considered when designing a desalination plant using CDI technology. Most previous studies related to CDI concentrated on developing novel materials for electrodes suitable for CDI application while little attention was given to how the CDI system is to be designed for maximizing the performance. Since we believe that other design parameters such as gap distance between the capacitor should be considered seriously also, a numerical study was conducted to

  1. Experimental performance assessment of electrodes and numerical analysis of flow channel for CDI

    International Nuclear Information System (INIS)

    You, Byung Hyun

    2011-02-01

    One possible solution suggested providing drinkable water with an expense of small amount of energy and investment is desalinating water with the capacitive deionization (CDI) technique. The idea of CDI is to successfully remove any ions dissolved in water by applying electrical field between electrodes and flowing water between the electrodes. The most commonly used electrode materials are carbon aerogel and activated-carbon because of their corrosion resistance and large specific area, which can provide major advantages for electrochemical adsorption processes in an aqueous solution. Through experiments using three electrode materials, we compared the ion adsorption performance of the electrodes from three different viewpoints: per unit mass, total used area and volume of electrode. Specific area is an important figure, but pore size distribution and pore structure should also be considered in comparing electrodes. Carbon aerogel outperforms carbon felt and activated carbon in ion removal per unit surface area and volume. But in of ion removal per unit mass, carbon felt outperforms carbon aerogel and activated carbon. Also, comparing the ion removing performance of electrodes in different initial concentrations, as the initial concentration increases, activated carbon increases in performance but aerogel's performance decreases. This means even if carbon aerogel had a better ion removing performance, activated carbon could perform higher in a higher concentration. Therefore, all these parameters should be considered when designing a desalination plant using CDI technology. Most previous studies related to CDI concentrated on developing novel materials for electrodes suitable for CDI application while little attention was given to how the CDI system is to be designed for maximizing the performance. Since we believe that other design parameters such as gap distance between the capacitor should be considered seriously also, a numerical study was conducted to observe

  2. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  3. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  4. Etching holes in graphene supercapacitor electrodes for faster performance.

    Science.gov (United States)

    Ervin, Matthew H

    2015-06-12

    Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes.

  5. Nitrogen and oxygen co-doped carbon nanofibers with rich sub-nanoscale pores as self-supported electrode material of high-performance supercapacitors

    International Nuclear Information System (INIS)

    Li, Qun; Xie, Wenhe; Liu, Dequan; Wang, Qi; He, Deyan

    2016-01-01

    Self-supported porous carbon nanofibers (CNFs) network has been prepared by electrospinning technology assisted with template method. The as-prepared material is rich in sub-nanoscale pores and nitrogen and oxygen functional groups, which can serve as a fast conductive network with abundant electrochemical active sites and greatly facilitates the transport of electrons and ions. When the porous CNFs network is used as an electrode for supercapacitor in a three electrode system, it displays a high capacitance of 233.1 F/g at 0.2 A/g, and a capacitance of 130.2 F/g even at 14 A/g. It maintains a capacitance of 154.0 F/g with 90.17% retention after 4000 cycles at 2 A/g. Moreover, the assembled symmetric supercapacitor not only exhibits excellent rate capability and cycle performance, but also delivers an energy density of 4.17 Wh/kg and a power density of 2500 W/kg. The experimental results demonstrate that the prepared N, O co-doped carbon nanofibers with rich sub-nanoscale pores are a promising electrode material for high-performance supercapacitors.

  6. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  7. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  8. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.

    Science.gov (United States)

    Guo, Nannan; Li, Min; Wang, Yong; Sun, Xingkai; Wang, Feng; Yang, Ru

    2016-12-14

    Soybeans are extensively cultivated worldwide as human food. However, large quantities of soybean roots (SRs), which possess an abundant three-dimensional (3D) structure, remain unused and produce enormous pressure on the environment. Here, 3D hierarchical porous carbon was prepared by the facile carbonization of SRs followed by chemical activation. The as-prepared material, possessing large specific surface area (2143 m 2 g -1 ), good electrical conductivity, and unique 3D hierarchical porosity, shows outstanding electrochemical performance as an electrode material for supercapacitors, such as a high capacitance (276 F g -1 at 0.5 A g -1 ), superior cycle stability (98% capacitance retention after 10,000 cycles at 5 A g -1 ), and good rate capability in a symmetric two-electrode supercapacitor in 6 M KOH. Furthermore, the maximum energy density of as-assembled symmetric supercapacitor can reach 100.5 Wh kg -1 in neat EMIM BF 4 . Moreover, a value of 40.7 Wh kg -1 is maintained at ultrahigh power density (63000 W kg -1 ). These results show that the as-assembled supercapacitor can simultaneously deliver superior energy and power density.

  9. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-09-01

    Full Text Available Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC. In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy.

  10. Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors

    International Nuclear Information System (INIS)

    Ko, T-H; Hung, K-H; Tzeng, S-S; Shen, J-W; Hung, C-H

    2007-01-01

    Carbon nanofibers (CNFs) were grown directly on activated carbon fiber fabric (ACFF), which was then used as the electrode of supercapacitors. Cyclic voltammetry and ac impedance were used to characterize the electrochemical properties of ACFF and CNF/ACFF electrodes in both aqueous and organic electrolytes. ACFF electrodes show higher specific capacitance than CNF/ACFF electrodes due to larger specific surface area. However, the spaces formed between the CNFs in the CNF/ACFF electrodes are more easily accessed than the slit-type pores of ACFF, and much higher electrical-double layer capacitance was obtained for CNF/ACFF electrodes

  11. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.

    Science.gov (United States)

    Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng

    2018-04-03

    The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.

  12. Recent advancements in the cobalt oxides, manganese oxides and their composite as an electrode material for supercapacitor: a review

    Science.gov (United States)

    Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.

    2017-08-01

    In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.

  13. Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang

    2017-12-01

    By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.

  14. Hybrid nanomaterial of α-Co(OH)2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors.

    Science.gov (United States)

    Cheng, J P; Liu, L; Ma, K Y; Wang, X; Li, Q Q; Wu, J S; Liu, F

    2017-01-15

    Supercapacitor with metal hydroxide nanosheets as electrode can have high capacitance. However, the cycling stability and high rate capacity is low due to the low electrical conductivity. Here, the exfoliated α-Co(OH) 2 nanosheets with high capacitance has been assembled on few-layer graphene with high electric conductivity by a facile yet effective and scalable solution method. Exfoliated hydrotalcite-like α-Co(OH) 2 nanosheets and few-layer graphene suspensions were prepared by a simple ultrasonication in formamide and N-methyl-2-pyrrolidone, respectively. Subsequently, a hybrid was made by self-assembly of α-Co(OH) 2 and few-layer graphene when the two dispersions were mixed at room temperature. The hybrid material provided a high specific capacitance of 567.1F/g at 1A/g, while a better rate capability and better stability were achieved compared to that mad of pristine and single exfoliated α-Co(OH) 2 . When the hybrid nanocomposite was used as a positive electrode and activated carbon was applied as negative electrode to assembly an asymmetric capacitor, an energy density of 21.2Wh/kg at a power density of 0.41kW/kg within a potential of 1.65V was delivered. The high electrochemical performance and facile solution-based synthesis method suggested that the hybrid of exfoliated α-Co(OH) 2 /few-layer graphene could be a potential electrode material for electrochemical capacitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.; Vidal-Abarca, C.

    2007-01-01

    An ethanol dehydration procedure has been used to precipitate gel-like citrate precursors containing cobalt and manganese transition metal ions. Further annealing led to the Mn x Co 3-x O 4 spinel oxide series (x: 1, 1.5, 2, 3). Annealing temperature and treatment time were also evaluated to optimize the performance of the oxides as active electrode materials in lithium cells. The manganese-cobalt mixed oxides obtained by this procedure were cubic or tetragonal phases depending on the cobalt content. SEM images showed spherical macroporous aggregates for MnCo 2 O 4 and hollow spheres for manganese oxides. The galvanostatic cycling of lithium cells assembled with these materials demonstrated a simultaneous reduction of cobalt and manganese during the first discharge and separation of cobalt- and manganese-based products on further cycling. As compared with binary manganese oxides, a notorious electrochemical improvement was observed in the mixed oxides. This behavior is a consequence of the synergistic effect of both transition metal elements, associated with the in-situ formation of a nanocomposite electrode material when cobalt is introduced in the manganese oxide composition. Values higher than 400 mAh/g were sustained after 50 cycles for MnCo 2 O 4

  16. Synthesis and electrochemical characterization of Ni-B/ZIF-8 as electrode materials for supercapacitors

    Science.gov (United States)

    Li, Zhen; Gao, Yilong; Wu, Jianxiang; Zhang, Wei; Tan, Yueyue; Tang, Bohejin

    2016-09-01

    Ni-B/Zeolitic Imidazolate Frameworks-8 (Ni-B/ZIF-8) is synthesized via a series of solvothermal, incipient wetness impregnation and chemical reduction methods. The ZIF-8 serves as the host for the growth of Ni-B forming a Ni-B/ZIF-8 composite. Characterization by X-ray diffraction and Transmission electron microscope reveals the dispersion of Ni-B in ZIF-8. As electrode materials for supercapacitors, ZIF-8, Ni-B and Ni-B/ZIF-8 electrodes exhibit specific capacitances of 147, 563 and 866 F g-1, respectively at a scan rate of 5 mV s-1 and good stability over 500 cycles. In particular, Ni-B/ZIF-8 is a promising material for supercapacitors.

  17. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  18. Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

    Science.gov (United States)

    Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin

    2018-03-27

    One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.

  19. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  20. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    International Nuclear Information System (INIS)

    Ranganathan, S.; Easton, E.B.

    2009-01-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  1. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Faculty of Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: ranga@uoit.ca, Brad.Easton@uoit.ca

    2009-07-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  2. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell.

    Science.gov (United States)

    Penteado, Eduardo D; Fernandez-Marchante, Carmen M; Zaiat, Marcelo; Gonzalez, Ernesto R; Rodrigo, Manuel A

    2017-06-01

    The aim of this work was to evaluate three carbon materials as anodes in microbial fuel cells (MFCs), clarifying their influence on the generation of electricity and on the treatability of winery wastewater, a highly organic-loaded waste. The electrode materials tested were carbon felt, carbon cloth and carbon paper and they were used at the same time as anode and cathode in the tests. The MFC equipped with carbon felt reached the highest voltage and power (72 mV and 420 mW m -2 , respectively), while the lowest values were observed when carbon paper was used as electrode (0.2 mV and 8.37·10 -6  mW m -2 , respectively). Chemical oxygen demand (COD) removal from the wastewater was observed to depend on the electrode material, as well. When carbon felt was used, the MFC showed the highest average organic matter consumption rate (650 mg COD L -1  d -1 ), whereas by using carbon paper the rate decreased to 270 mg COD L -1  d -1 . Therefore, both electricity generation and organic matter removal are strongly related not to the chemical composition of the electrode (which was graphite carbon in the three electrodes), but to its surface features and, consequently, to the amount of biomass adhered to the electrode surface.

  3. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    Science.gov (United States)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  4. Phosphate-bonded composite electrodes for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, E.; Menard, H.; Lalancette, J.M. (Sherbrooke Univ., PQ (Canada). Dept. de Chimie); Brossard, L. (Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada))

    1990-03-01

    A new process of cementing metallic powders to produce high surface area cathodes for alkaline water electrolysis is described. The binding compound is a tridimensional polymer of aluminium phosphate (AlPO{sub 4}). Phosphate-bonded composite electrodes give a low-polarization performance for hydrogen evolution in 1 M KOH aqueous solution in the case of 95wt% Pt and 98wt%Ni. When electrode materials are prepared with nickel powder, the electrocatalytic activity for the hydrogen evolution reaction, the chemical stability and the electrical conductivity depend on the Ni content and morphology of the electrode. The best performance and chemical stability with Ni as the starting material are obtained for spiky filamentary particles produced by the decomposition of nickel carbonyl. (author).

  5. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhang, Li; Amirkhiz, Babak Shalchi; Tan, Xuehai; Xu, Zhanwei; Wang, Huanlei; Olsen, Brian C.; Holt, Chris M.B.; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Edmonton, AB (Canada); National Institute for Nanotechnology (NINT), NRC, Edmonton, AB (Canada)

    2012-04-15

    Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three-dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m{sup 2} g{sup -1}, exceptional specific capacitances of 297 F g{sup -1} and 284 F g{sup -1} are achieved in basic and acidic electrolytes, respectively, in a 3-electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g{sup -1}. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Determination of the Resistance of Cone-Shaped Solid Electrodes

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Hendriksen, Peter Vang; Koch, Søren

    2017-01-01

    during processing can be avoided. Newman's formula for current constriction in the electrolyte is then used to deduce the active contact area based on the ohmic resistance of the cell, and from this the surface specific electro-catalytic activity. However, for electrode materials with low electrical......A cone-shaped electrode pressed into an electrolyte can with advantage be utilized to characterize the electro-catalytic properties of the electrode, because it is less dependent on the electrode microstructure than e.g. thin porous composite electrodes, and reactions with the electrolyte occurring...... conductivity (like Ce1-xPrxO2-δ), the resistance of the cell is significantly influenced by the ohmic resistance of the cone electrode, wherefore it must be included. In this work the ohmic resistance of a cone is modelled analytically based on simplified geometries. The two analytical models only differ...

  7. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  8. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  9. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.

    2013-06-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case, the performances of the active material are inaccurate, especially at high current densities. In this work we show the error committed in neglecting the polarizability of lithium counter electrodes, and we propose two reference electrodes to use in organic electrolytes based on lithium salts, namely Li4Ti5O12 and LiFePO 4. In particular, it was observed that, the polarizability of the metallic lithium counter electrode has a relevant stochastic component, which renders measurements at high current densities (above 1 mA·cm - 2) in two electrode cells non reproducible.

  10. Method for making carbon super capacitor electrode materials

    Science.gov (United States)

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  11. Nitrogen-doped diamond electrode shows high performance for electrochemical reduction of nitrobenzene

    International Nuclear Information System (INIS)

    Zhang, Qing; Liu, Yanming; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2014-01-01

    Highlights: • A metal-free nitrogen-doped diamond electrode was synthesized. • The electrode exhibits high electrocatalytic activity for nitrobenzene reduction. • The electrode exhibits high selectivity for reduction of nitrobenzene to aniline. • High energy efficiency was obtained compared with graphite electrode. -- Abstract: Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC–MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN

  12. Nanostructured MnO₂ as Electrode Materials for Energy Storage.

    Science.gov (United States)

    Julien, Christian M; Mauger, Alain

    2017-11-17

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO₂ nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO₂ particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  13. Etching holes in graphene supercapacitor electrodes for faster performance

    International Nuclear Information System (INIS)

    Ervin, Matthew H

    2015-01-01

    Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes. (special)

  14. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  15. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review

    Directory of Open Access Journals (Sweden)

    Santosh J. Uke

    2017-08-01

    Full Text Available Recently, our modern society demands the portable electronic devices such as mobile phones, laptops, smart watches, etc. Such devices demand light weight, flexible, and low-cost energy storage systems. Among different energy storage systems, supercapacitor has been considered as one of the most potential energy storage systems. This has several significant merits such as high power density, light weight, eco-friendly, etc. The electrode material is the important part of the supercapacitor. Recent studies have shown that there are many new advancement in electrode materials for supercapacitors. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides, and their composites as an electrode material for supercapacitor.

  16. Operando XRD studies as a tool for determination of transport parameters of mobile ions in electrode materials

    Science.gov (United States)

    Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina

    2017-11-01

    In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.

  17. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  18. Graphene-Wrapped Ni(OH)2 Hollow Spheres as Novel Electrode Material for Supercapacitors.

    Science.gov (United States)

    Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Ou, Junfei; Niu, Lengyuan; Wang, Honggang; Yang, Shengrong

    2015-09-01

    Graphene-wrapped Ni(OH)2 hollow spheres were prepared via electrostatic interaction between poly(diallyldimethylammonium chloride) (PDDA) modified Ni(OH)2 and graphene oxide (GO) in an aqueous dispersion, followed by the reduction of GO. Morphological and structural analysis by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis confirmed the successful coating of graphene on Ni(OH)2 hollow spheres with a content of 3.8 wt%. And then its application as electrode material for supercapacitor has been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results show that the sample displays a high capacitance of 1368 F g(-1) at a current density of 1 A g(-1), much better than that of pure Ni(OH)2, illustrating that such composite is a promising candidate as electrode material for supercapacitors.

  19. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  20. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  1. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  2. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.

  3. An active electrode for biopotential recording from small localized bio-sources

    Directory of Open Access Journals (Sweden)

    Pallikarakis Nicolas E

    2004-07-01

    Full Text Available Abstract Background Laser bio-stimulation is a well-established procedure in Medical Acupuncture. Nevertheless there is still a confusion as to whether it works or the effect is just placebo. Although a plethora of scientific papers published, showing positive clinical results, there is still a lack of objective scientific proofs about the bio-stimulation effect of lasers used in Acupuncture. The objective of this work was to design and build a body surface electrode and an amplifier for biopotential recording from acupuncture points, considered here as small localized bio-sources (SLB. The design is aimed for studying SLB potentials provoked by laser stimulus, in search for objective proofs of the bio-stimulation effect of lasers used in Medical Acupuncture. Methods The active electrode presented features a new adjustable anchoring system and fractionation of the biopotential amplifier between the electrode and the cabinet's location. The new adjustable electrode anchoring system is designed to reduce the electrode-skin contact impedance, its variation and motion artifacts. That is achieved by increasing the electrode-skin tension and decreasing its relative movement. Additionally the sensing element provides local constant skin stretching thus eliminating the contribution of the skin potential artifact. The electrode is attached to the skin by a double-sided adhesive pad, where the sensing element is a stainless steel, 4 mm in diameter. The fractionation of the biopotential amplifier is done by incorporating the amplifier's front-end op-amps at the electrodes, thus avoiding the use of extra buffers. The biopotential amplifier features two selectable modes of operation: semi-AC-mode with a -3 dB bandwidth of 0.32–1000 Hz and AC-mode with a bandwidth of 0.16–1000 Hz. Results The average measured DC electrode-skin contact impedance of the proposed electrode was 450 kΩ, with electrode tension of 0.3 kg/cm2 on an unprepared skin of the inner

  4. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liping; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie [School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, Xiangtan University, Hunan 411105 (China); Wang, Ying; Guo, Jia [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China)

    2010-03-15

    Calcium carbide (CaC{sub 2})-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N{sub 2} sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g{sup -1} measured by cyclic voltammetry at 1 mV s{sup -1}. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. (author)

  5. Effect of Pore Structure and Chemistry on the Performance of Activated Oil Sands Petroleum Coke Electrodes for use in Electrochemical Double-Layer Capacitors

    Science.gov (United States)

    Zuliani, Jocelyn Ellen

    Electrical energy storage is a limiting barrier to widespread usage and commercialization of sustainable and renewable energy sources, such as wind and solar energy, as well as integration of electric vehicles. Electrochemical double-layer capacitors (EDLCs) are a promising energy storage technology that offers the benefits of high power density, long cycle life, rapid charging rates, and moderate energy density. The energy storage mechanism of EDLCs is physical ion adsorption on the surface of porous carbon electrodes. This thesis is an investigation of three different sections relating to EDLCs: 1) techniques to properly characterize novel porous carbon electrode materials, 2) investigation of activated oil sands petroleum coke (APC) as the electrode material for EDLCs, and 3) a systematic study of the effects of porous carbon structure and chemistry on EDLC performance. In the first section, it was shown that variations in operating conditions and testing techniques can lead to discrepancies in measured and reported capacitance. Therefore, it was concluded that a standardized approach is necessary in order to properly compare different porous carbon electrodes. In the second section, APC was investigated as a novel electrode material for EDLCs. PetCoke is a carbon dense material that can be activated with potassium hydroxide to generate high surface area porous carbon materials. These materials show promising electrochemical performance in EDLCs, with capacitance values up to 400 Fg-1 in 4M potassium hydroxide aqueous electrolytes, depending on the operating conditions. Additionally, the power density of these materials is comparable to that of other carbon nanomaterials, which are more costly and challenging to produce. Finally, the third section investigates the relationship between measured capacitance, and carbon macrostructure, meso-structure, microstructure, and oxygen content. In each of these studies, the desired parameter was varied, while all others

  6. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Panizza, Marco

    Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

  7. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-01-01

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g −1 . • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m 2 g −1 ) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g −1 at 0.5 A g −1 and still 120 F g −1 at a high rate of 30 A g −1 . There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg −1 and 4.03 Wh kg −1 with the corresponding power densities of 108 W kg −1 and 6.49 kW kg −1 , respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  8. Novel metal(II) coordination polymers based on N,N'-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte.

    Science.gov (United States)

    Gong, Yun; Li, Jian; Jiang, Peng-Gang; Li, Qing-Fang; Lin, Jian-Hua

    2013-02-07

    Based on the redox-active L (N,N'-bis-(4-pyridyl)phthalamide) ligand, two porous MOFs formulated as Zn(6)(BPC)(6)(L)(3)·9DMF (H(2)BPC = 4,4'-biphenyldicarboxylic acid) (1) and Cd(2)(TDC)(2)(L)(2)·4H(2)O (H(2)TDC = 2,5-thiophenedicarboxylic acid) (2) were synthesized and structurally characterized by single-crystal X-ray diffractions. Complex 1 features a uninodal 5-connected 3-fold interpenetrated 3D framework with {4(6).6(4)}-bnn hexagonal BN topology. Complex 2 displays a uninodal 6-connected 2-fold interpenetrated 3D framework with {4(12).6(3)}-pcu topology. When complexes 1 and 2 are used as supercapacitor electrode materials, they can provide a large voltage window as high as 2.6 V in an aqueous electrolyte, and their specific capacitances are much more than the value for the bare carbon glassy electrode. It is observed that the more the current density, the less the specific capacitance for the two kinds of supercapacitor electrode materials. The two complexes show different thermal stabilities, UV absorption and photoluminescence properties.

  9. Synthesis and characterization of NiCo{sub 2}O{sub 4} nanoplates as efficient electrode materials for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyun [Nanomaterials and System Lab, Department of Mechatronics Engineering, Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Ramadoss, Ananthakumar [Nanomaterials and System Lab, Faculty of Applied Energy System, Science and Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Saravanakumar, Balasubramaniam; Veerasubramani, Ganesh Kumar [Nanomaterials and System Lab, Department of Mechatronics Engineering, Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Kim, Sang Jae, E-mail: kimsangj@jejunu.ac.kr [Nanomaterials and System Lab, Department of Mechatronics Engineering, Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Nanomaterials and System Lab, Faculty of Applied Energy System, Science and Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of)

    2016-05-01

    Highlights: • NiCo{sub 2}O{sub 4} nanoplates were synthesized through a facile approach. • The NiCo{sub 2}O{sub 4} nanoplates electrode material exhibit a specific capacitance of 332 F g{sup −1} at 5 mV s{sup −1}. • The fabricated NiCo{sub 2}O{sub 4} electrode reveals 86% retention of initial capacitance after 2000 cycles. - Abstract: In the present work, NiCo{sub 2}O{sub 4} nanoplates were prepared by a facile, low temperature, hydrothermal method, followed by thermal annealing and used supercapacitor applications. The physico-chemical characterization of as-prepared materials were investigated by means of X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical measurements demonstrate that the NiCo{sub 2}O{sub 4} nanoplates electrode (NC-5) exhibits a high specific capacitance of 332 F g{sup −1} at a scan rate of 5 mV s{sup −1} and also retained about 86% of the initial specific capacitance value even after 2000 cycles at a current density of 2.5 A g{sup −1}. These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.

  10. Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries

    Science.gov (United States)

    Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao

    2017-02-01

    A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.

  11. A facile approach to anchor cadmium sulfide nanoparticles on graphene nanosheets as promising electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jia; Li, Jing; Yang, Xuyu [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang, Xianbao, E-mail: wangxb68@yahoo.com.cn [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Wan, Li; Yang, Yingkui [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2012-08-15

    A controllable preparation of novel graphene-based inorganic semi-conducting composites has aroused great attention in the optoelectronic device and powerful electronic anode materials. In this article, we demonstrate a simple two-step strategy for the synthesis of cadmium sulfide/reduced graphene oxide (CdS/RGO) nanocomposites, of which the preparing process includes modification of the exfoliated graphene oxide acylated with thionyl chloride, immobilization of the CdS nanoparticles on the graphene oxide (GO) surface by an amide reaction between the amino groups located on the CdS particles and the acyl chloride bound to the GO surface, and reduction by hydrazine and ammonia. Our results showed that the CdS nanoparticles with an average size of 20 nm were homogeneously dispersed on the surface of RGO sheets. The CdS/RGO nanocomposites can form a homogeneous and stable solution in dimethylformamide, and CV analysis indicated a remarkable increase for the CdS/RGO modified electrode in the electrochemical current relative to that at a glass carbon electrode. -- Highlights: Black-Right-Pointing-Pointer CdS/RGO nanocomposites were synthesized by a covalent bonding and electrostatic interaction. Black-Right-Pointing-Pointer CdS/RGO exhibits a homogeneous dispersion in dimethylformamide. Black-Right-Pointing-Pointer CdS/RGO was used as an anode electrode with good electrochemical activity.

  12. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  13. Few-layered CoHPO4 · 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors.

    Science.gov (United States)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-07-07

    Ultrathin cobalt phosphate (CoHPO4 · 3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4 · 3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g(-1), and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.

  14. Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode

    Science.gov (United States)

    Ahmed, Sultan; Parvaz, M.; Johari, Rahul; Rafat, M.

    2018-04-01

    The present study reports the preparation of quasi solid-state supercapacitor employing activated carbon (AC) electrodes and gel polymer electrolyte (GPE). AC was derived from Neem leaves by means of chemical activation using zinc chloride as activating agent. GPE was prepared using solution-cast technique and comprises of LiClO 4 salt, dispersed in EC:PC (1:1 vol.) and entrapped in PVdF-HFP solution. Extensive physical and electrochemical characterization of synthesized AC and GPE was done. AC was characterized using the techniques of SEM, TEM, XRD, Raman spectroscopy, TGA and BET tests while GPE was characterized by electrochemical stability window (ESW) and conductivity test. The fabricated supercapacitor cell was tested using standard electrochemical characterization techniques. It was found that the fabricated cell offers high values of specific capacitance (74.41 F g‑1), specific energy (10.33 Wh kg‑1) and specific power (4.66 kW kg‑1). These results demonstrate the suitability of prepared AC as promising electrode material for supercapacitor applications.

  15. Bimetallic Co-Mn Perovskite Fluorides as Highly-Stable Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Shi, Wei; Ding, Rui; Li, Xudong; Xu, Qilei; Ying, Danfeng; Huang, Yongfa; Liu, Enhui

    2017-11-02

    Bimetallic Co-Mn perovskite fluorides (KCo x Mn 1-x F 3 , denoted as K-Co-Mn-F) with various Co/Mn ratios (1:0, 12:1, 6:1, 3:1, 1:1, 1:3, 0:1) were prepared through a one-pot solvothermal strategy and further used as electrode materials for supercapacitors. The optimal K-Co-Mn-F candidate (Co/Mn=6:1) showed a size range of 0.1-1 μm and uniform elemental distribution; exhibiting small changes in XRD peaks and XPS binding energy in comparison to the bare K-Co-F and K-Mn-F, due to the structural/electronic effects. Owing to the stronger synergistic effect of Co/Mn redox species, the K-Co-Mn-F (Co/Mn=6:1) electrode exhibited superior specific capacity and rate behavior (113-100 C g -1 at 1-16 Ag -1 ) together with excellent cycling stability (118 % for 5000 cycles at 8 Ag -1 ), and the activated carbon (AC)//K-Co-Mn-F (Co/Mn=6:1) asymmetric capacitor showed superior energy and power densities (8.0-2.4 Wh kg -1 at 0.14-8.7 kW kg -1 ) along with high cycling stability (90 % for 10 000 cycles at 5 Ag -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wang, W.H.; Wang, X.D.

    2007-01-01

    Porous graphite felts have been used as electrode materials for all-vanadium redox flow batteries due to their wide operating potential range, stability as both an anode and a cathode, and availability in high surface area. In this paper, the carbon felt was modified by pyrolysis of Ir reduced from H 2 IrCl 6 . ac impedance and steady-state polarization measurements showed that the Ir-modified materials have improved activity and lowered overpotential of the desired V(IV)/V(V) redox process. Ir-modification of carbon felt enhanced the electro-conductivity of electrode materials. The Ir-material, when coated on the graphite felt electrode surface, lowered the cell internal resistance. A test cell was assembled with the Ir-modified carbon felt as the activation layer of the positive electrode, the unmodified raw felt as the activation layer of the negative electrode. At an operating current density of 20 mA cm -2 , a voltage efficiency of 87.5% was achieved. The resistance of the cell using Ir-modified felt decreased 25% compared to the cell using non-modified felt

  17. Active counter electrode in a-SiC electrochemical metallization memory

    Science.gov (United States)

    Morgan, K. A.; Fan, J.; Huang, R.; Zhong, L.; Gowers, R.; Ou, J. Y.; Jiang, L.; De Groot, C. H.

    2017-08-01

    Cu/amorphous-SiC (a-SiC) electrochemical metallization memory cells have been fabricated with two different counter electrode (CE) materials, W and Au, in order to investigate the role of CEs in a non-oxide semiconductor switching matrix. In a positive bipolar regime with Cu filaments forming and rupturing, the CE influences the OFF state resistance and minimum current compliance. Nevertheless, a similarity in SET kinetics is seen for both CEs, which differs from previously published SiO2 memories, confirming that CE effects are dependent on the switching layer material or type. Both a-SiC memories are able to switch in the negative bipolar regime, indicating Au and W filaments. This confirms that CEs can play an active role in a non-oxide semiconducting switching matrix, such as a-SiC. By comparing both Au and W CEs, this work shows that W is superior in terms of a higher R OFF/R ON ratio, along with the ability to switch at lower current compliances making it a favourable material for future low energy applications. With its CMOS compatibility, a-SiC/W is an excellent choice for future resistive memory applications.

  18. Graphene-based carbons as supercapacitor electrodes with bicontinuous, porous polyacrylonitrile

    Science.gov (United States)

    Kim, Bit-Na; Yang, Young Suk; You, In-Kyu

    2017-07-01

    In this study, we fabricated a bicontinuous carbon structure (BCS) with high porosity and a loosely connected framework structure. The role of the BCS is to support a concrete supercapacitor active electrode structure. Poly(acrylonitrile) was used as a precursor for the BCS material, which was a porous polymer monolith carbonized by heat treatment (at 1100 °C). The BCS was prepared by mixing with an active material, graphene or an activated carbon. The mixed materials were used as an electrode material in a supercapacitor. The BCS13 + AC sample (∼107.5 F/g) showed a higher specific capacitance than the commercial activated carbon cell (∼76 F/g). The BCS13 + graphene sample (∼75 F/g) also exhibited a higher specific capacitance than the graphene cell (∼49 F/g). This BCS monolith had many macro- and micropores in its structure, enabling fast electrolyte ion movement and excellent electrochemical performance with a low equivalent series resistance (ESR).

  19. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

    Directory of Open Access Journals (Sweden)

    Drygała A.

    2016-06-01

    Full Text Available The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE was analysed. Carbon materials have been applied in DSSC s in order to produce low-cost solar cells with reasonable efficiency. Platinum is a preferred material for the counter electrode because of its high conductivity and catalytic activity. However, the costs of manufacturing of the platinum counter electrode limit its use to large-scale applications in solar cells. This paper presents the results of examining the structure and properties of the studied layers, defining optical properties of conductive layers and electrical properties of dye-sensitized solar cells manufactured with the use of carbon nanotubes.

  20. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  1. Nanocomposite of cobalt oxide and ordered mesoporous carbon as the electrode materials for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Liu, P.; Zhao, J.; Feng, J.; Tang, B. [Shanghai Univ. of Engineering Science (China). College of Chemistry and Chemical Engineering

    2010-07-01

    An incipient wetness impregnation method was used to prepare a cobalt oxide ordered mesoporous carbon composite for use as an electrode in supercapacitor applications. The composite was then incorporated inside periodic nanoholes in the ordered mesoporous carbon (OMC). X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherm analyses were used to characterize the structures of the samples. The specific capacitance of the synthesized materials was estimated using cyclic voltammetric (CV) analyses. The study showed that composites prepared using the new method exhibited a higher reversible specific capacitance of 594.8 F per g at a scan rate of 5 mV per second. The composite also showed good cyclic stability. Results suggested that the composite can be used as an electrode material in supercapacitors.

  2. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    International Nuclear Information System (INIS)

    Anand, S V; Arvind, K; Bharath, P; Roy Mahapatra, D

    2010-01-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)–metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications

  3. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials.

    Science.gov (United States)

    Sun, Hongmei; He, Wenhui; Zong, Chenghua; Lu, Lehui

    2013-03-01

    The urgent need for sustainable development has forced material scientists to explore novel materials for next-generation energy storage devices through a green and facile strategy. In this context, yeast, which is a large group of single cell fungi widely distributed in nature environments, will be an ideal candidate for developing effective electrode materials with fascinating structures for high-performance supercapacitors. With this in mind, herein, we present the first example of creating three-dimensional (3D) interpenetrating macroporous carbon materials via a template-free method, using the green, renewable, and widespread yeast cells as the precursors. Remarkably, when the as-prepared materials are used as the electrode materials for supercapacitors, they exhibit outstanding performance with high specific capacitance of 330 F g(-1) at a current density of 1 A g(-1), and good stability, even after 1000 charge/discharge cycles. The approach developed in this work provides a new view of making full use of sustainable resources endowed by nature, opening the avenue to designing and producing robust materials with great promising applications in high-performance energy-storage devices.

  4. Comparative study of graphene and its derivative materials as an electrode in OLEDs

    Science.gov (United States)

    Srivastava, Anshika; Kumar, Brijesh

    2018-04-01

    In current scenario, the organic materials have given a revolutionary evolution in the electronics industry. As, the organic light emitting diodes (OLEDs) have almost replaced the conventional technologies due to the use of organic based materials. However, the next generations OLEDs are intensively desired nowadays for high definition display technology. There are various concern involved in the successful design of OLEDs. Electrodes are one of the electrical conductors, which play a vital role in the construction of OLEDs. The performance of OLED is majorly affected by the material used for electrodes. Due to the requirement of transparent, flexible and inexpensive anodes in bottom emissive OLEDs, ITO was replaced by graphene material. Graphene is a single layer 2-dimensional transparent carbon allotrope which showed prodigious potential to escalate the device performance. Although graphene demonstrated impressive characteristics in various applications, it showed unfavorable work function for many other devices. Thus, derivative materials of graphene such as graphene oxide, graphane and β - graphdiyne were synthesized by several researchers. By comparing graphene and its derivatives as an anode of OLEDs, it has been found that graphene oxide showed the preeminent performance among all. In this paper, all the comparisons are investigated by using a standard device constructed by piling layers of anode/ m_MTDATA/ NPB/ Alq3: QAD/ Alq3/ cathode in TCAD ATLAS device simulator.

  5. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  6. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  7. Determination of equilibration kinetics of oxide electrode materials using a manometric method

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Jiang, S.P.; Love, J.; Nowotny, J.; Rekas, M.

    1998-01-01

    The gas/solid equilibration kinetics for electrode oxide materials, such as (La 0.8 Sr 0.2 )MnO 3 , using a manometric method, was determined. The reaction kinetics between oxygen and the oxide material was monitored using the measurements of the P(O 2 ) changes during isothermic experiments of oxidation and reduction. The procedure of the determination will be described and relevant kinetic equations was derived. The equilibration kinetic data obtained can be used to determine the chemical diffusion coefficient. Copyright (1998) Australasian Ceramic Society

  8. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  9. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    Science.gov (United States)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  10. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. (Division of Cardiovascular Medicine, University of California, School of Medicine, Davis (USA))

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  11. Activated Carbon Fiber Monoliths as Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Gelines Moreno-Fernandez

    2017-01-01

    Full Text Available Activated carbon fibers (ACF are interesting candidates for electrodes in electrochemical energy storage devices; however, one major drawback for practical application is their low density. In the present work, monoliths were synthesized from two different ACFs, reaching 3 times higher densities than the original ACFs’ apparent densities. The porosity of the monoliths was only slightly decreased with respect to the pristine ACFs, the employed PVDC binder developing additional porosity upon carbonization. The ACF monoliths are essentially microporous and reach BET surface areas of up to 1838 m2 g−1. SEM analysis reveals that the ACFs are well embedded into the monolith structure and that their length was significantly reduced due to the monolith preparation process. The carbonized monoliths were studied as supercapacitor electrodes in two- and three-electrode cells having 2 M H2SO4 as electrolyte. Maximum capacitances of around 200 F g−1 were reached. The results confirm that the capacitance of the bisulfate anions essentially originates from the double layer, while hydronium cations contribute with a mixture of both, double layer capacitance and pseudocapacitance.

  12. Transparent Conducting Nb-Doped TiO2 Electrodes Activated by Laser Annealing for Inexpensive Flexible Organic Solar Cells

    Science.gov (United States)

    Lee, Jung-Hsiang; Lin, Chia-Chi; Lin, Yi-Chang

    2012-01-01

    A KrF excimer laser (λ= 248 nm) has been adopted for annealing cost-effective Nb-doped TiO2 (NTO) films. Sputtered NTO layers were annealed on SiO2-coated flexible poly(ethylene terephthalate) (PET) substrates. This local laser annealing technique is very useful for the formation of anatase NTO electrodes used in flexible organic solar cells (OSCs). An amorphous NTO film with a high resistivity and a low transparency was transformed significantly into a conductive and transparent anatase NTO electrode by laser irradiation. The 210 nm anatase NTO film shows a sheet resistance of 50 Ω and an average optical transmittance of 83.5% in the wavelength range from 450 to 600 nm after annealing at 0.25 J/cm2. The activation of Nb dopants and the formation of the anatase phase contribute to the high conductivity of the laser-annealed NTO electrode. Nb activation causes an increase in the optical band gap due to the Burstein-Moss effect. The electrical properties are in agreement with the material characteristics determined by X-ray diffraction (XRD) analysis and secondary ion mass spectrometry (SIMS). The irradiation energy for the NTO electrode also affects the performance of the organic solar cell. The laser annealing technique provides good properties of the anatase NTO film used as a transparent electrode for flexible organic solar cells (OSCs) without damage to the PET substrate or layer delamination from the substrate.

  13. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.

    Science.gov (United States)

    Nöll, Tanja; Nöll, Gilbert

    2011-07-01

    In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.

  14. Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries

    Science.gov (United States)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-03-01

    The exploration of new and advanced electrode materials are required in electronic and electrical devices for power storage applications. Also, there has been a continuous endeavour to formulate strategies for extraction of high performance electrode materials from naturally obtained waste products. In this work, we have developed an in situ hybrid nanocomposite from coffee waste extracted porous graphene oxide (CEPG), polyaniline (PANI) and silver nanoparticles (Ag) and have found this novel composite to serve as an efficient electrode material for batteries. The successful interaction among the three phases of the nano-composite i.e. CEPG-PANI-Ag have been thoroughly understood through RAMAN, Fourier transform infrared and x-ray diffraction spectroscopy, morphological studies through field emission scanning electron microscope and transmission electron microscope. Thermo-gravimetric analysis of the nano-composite demonstrates higher thermal stability up-to a temperature of 495 °C. Further BET studies through nitrogen adsorption-desorption isotherms confirm the presence of micro/meso and macro-pores in the nanocomposite sample. The cyclic-voltammetry (CV) analysis performed on CEPG-PANI-Ag nanocomposite exhibits a purely faradic behaviour using nickel foam as a current collector thus suggests the prepared nanocomposite as a battery electrode material. The nanocomposite reports a maximum specific capacity of 1428 C g-1 and excellent cyclic stability up-to 5000 cycles.

  15. Mn2C sheet as an electrode material for lithium-ion battery: A first-principles prediction

    International Nuclear Information System (INIS)

    Zhou, Yungang; Zu, Xiaotao

    2017-01-01

    Graphical abstract: Combined with strong Li bond, low Li diffusion barrier, superior electrical conductivity and high theoretical capacity, Mn 2 C Sheet is found to be a new promising electrode material for Lithium-Ion Battery. - Highlights: • Li atom bind strongly with Mn 2 C sheet with a very low adsorption energy. • Pristine Mn 2 C sheet exhibits metallic character. • Li atom can easily and freely migrate on the Mn 2 C sheet. • Lithiation to a high content is feasible. • Theoretical capacity of Mn 2 C sheet arrives at 879 mAhg −1 . - Abstract: A search for high-efficiency electrode materials is crucial for the application of Li-ion batteries (LIBs). Using density functional theory (DFT), we assess the Mn 2 C sheet, a new MXene, as a suitable electrode material. Our studies show that Li atoms can bind strongly to the Mn 2 C sheet, with low adsorption energy of −1.93 eV. A pristine Mn 2 C sheet exhibits metallic characteristic, offering an intrinsic advantage for the transportation of electrons in material. A very low energy barrier of 0.05 eV is predicted, showing that Li ion can easily and freely migrate on the Mn 2 C sheet. In addition, with the increase of Li content, adsorption energy varies minimally within a range of energy that spans only 0.27 eV, showing that lithiation to a high content is feasible. Furthermore, we found that, because of the bilayer adsorptions on both sides of the Mn 2 C sheet, the theoretical capacity of the Mn 2 C sheet is 879 mAhg −1 , which is greater than that of most two-dimentional (2D) electrode materials. All these results reveal a new promising MXene material for LIBs. We also studied the effects of oxidation and fluorination on the electrochemical properties of the Mn 2 C sheet and found that oxidation and fluorination will fade the electrochemical properties of the Mn 2 C sheet in general.

  16. Engineering and Optimization of Silicon-Iron-Manganese Nanoalloy Electrode for Enhanced Lithium-Ion Battery

    Science.gov (United States)

    Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin

    2017-10-01

    The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.

  17. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  18. Investigation on Electrochemical Properties of Polythiophene Nanocomposite with Graphite Derivatives as Supercapacitor Material on Breath Figure-Decorated PMMA Electrode

    Science.gov (United States)

    Azimi, Mona; Abbaspour, Mohsen; Fazli, Ali; Setoodeh, Hamideh; Pourabbas, Behzad

    2018-03-01

    Breath figures have been formed by the direct breath figure method on polymethyl methacrylate electrode sand hexagonal oriented holes with 0.5- to 10- μm2 surface area have been created. Deposition of materials on the electrodes has been performed by the spray-coating method. polythiophene (PTh) nanoparticles, polythiophene-graphene oxide (PTh-GO) and polythiophene-reduced graphene oxide (PTh-G) nanocomposites were synthesized by emulsion polymerization, while characterization of synthetic materials have been carried out by Fourier transform infrared, Χ-ray diffraction, transmission electron microscopy, UV-Vis spectroscopy and field emission scanning electron microscopy techniques. Also, the electrochemical properties of the designed electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques. Specific capacitance of porous electrodes coated by PTh nanoparticles, PTh-GO and PTh-G nanocomposites were calculated from cyclic voltammetry curves at 5 mV/s scan rate, andthe values are 3.5 F/g, 16.39 F/g, and 28.68 F/g, respectively. Also, the energy density of each electrode at 5 mV/s scan rate has been calculated and the results show that incorporation of GO and G nanolayers with PTh nanoparticles enhances the electrochemical properties of electrodes.

  19. Nano ZnO-activated carbon composite electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Selvakumar, M. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Krishna Bhat, D., E-mail: denthajekb@gmail.co [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025 (India); Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G. [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025 (India)

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na{sub 2}SO{sub 4} as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm{sup 2}. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na{sub 2}SO{sub 4} electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  20. Nano ZnO-activated carbon composite electrodes for supercapacitors

    Science.gov (United States)

    Selvakumar, M.; Krishna Bhat, D.; Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G.

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na 2SO 4 as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm 2. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na 2SO 4 electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  1. Solvothermal Synthesis of Fe2O3 Loaded Activated Carbon as Electrode Materials for High-performance Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Li, Ying; Kang, Litao; Bai, Gailing; Li, Peiyang; Deng, Jiachun; Liu, Xuguang; Yang, Yongzhen; Gao, Feng; Liang, Wei

    2014-01-01

    This article describes a facile solvothermal synthesis method to prepare Fe 2 O 3 /AC composites for electrochemical capacitors from Iron (III) chloride hexahydrate (FeCl 3 ·6H 2 O), activated carbon (AC, from petroleum coke), and four different precipitants (i.e., NaOH, CH 3 COONa, HMT, CO(NH 2 ) 2 ). X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Thermogravimetric (TG) analysis show that the products consisted of nanosized α-Fe 2 O 3 (weight ratios: 48.1, 47.9, 44.2, 44.3%) loaded onto AC particles (∼ 20 μm). Significantly, both kind and dosage of precipitants exhibit effects on the specific capacitances of Fe 2 O 3 /AC composites. The highest specific capacitance reaches up to 240 F g −1 (at a current density of 1 A g −1 in 6 M KOH aqueous electrolyte) when the molar ratio of CH 3 COONa: FeCl 3 is 9. On the other hand, the sample prepared with NaOH: FeCl 3 molar ratio being 1.5 exhibits excellent rate capability with specific capacitance of 215 F g −1 at 1 A g −1 , and 89.3, 82.3, 78.1, 72.6 and 65.1% capacity retention at 2, 5, 10, 20, and 40 A g −1 , respectively. These electrochemical performances are superior to other materials consisted of Fe 2 O 3 /carbon nanotube (CNT), graphene oxide (GO) or reduced graphene oxide (rGO) composites, demonstrating the great potential of Fe 2 O 3 /AC composites in the development of high-performance electrode materials for electrochemical capacitors

  2. Synthesis and characterization of prospective polyanionic electrode materials for high performance energy storage applications

    Science.gov (United States)

    Jayachandran, M.; Durai, G.; Vijayakumar, T.

    2018-04-01

    In the present study, Polyanionic compound (SO4)-group based on Li2Ni(SO4)2 (Lithium Nickel Sulphate) composite electrodes materials were prepared by a ball-milling method and solid-state reaction route. X-ray diffraction analysis confirmed the formation of a polycrystalline orthorhombic phase of composite Li2Ni(SO4)2 with an average crystallite size of about 50.16 nm. Field Emission Scanning electron microscopy investigation reveals the spherical shape particles with the particle size of around 200–500 nm. Raman and FTIR analysis confirms the structural and functional groups of the synthesized materials and also the formation of Li2Ni(SO4)2. The electrochemical measurements using cyclic voltammetry (CV) and galvanostatic charging-discharging (GCD) techniques were carried out to study the electrochemical supercapacitive performance of the composite Li2Ni (SO4)2 electrodes. From the CV investigations, an areal capacitance of 508 mF cm‑2 was obtained at 10 mV s‑1. The galvanostatic charge-discharge (GCD) measurements exhibited the areal capacitance of 101 mF cm‑2 at a constant current density of 2 mA cm‑2 in 2 M KOH. These GCD profiles were linear and also symmetric in nature with the maximum columbic efficiency of about 85%. The electrochemical performance of the composite Li2Ni(SO4)2 electrode material shows excellent performance for supercapacitor applications.

  3. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Gao, Jihui, E-mail: gaojh@hit.edu.cn; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-30

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g{sup −1}. • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m{sup 2} g{sup −1}) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g{sup −1} at 0.5 A g{sup −1} and still 120 F g{sup −1} at a high rate of 30 A g{sup −1}. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg{sup −1} and 4.03 Wh kg{sup −1} with the corresponding power densities of 108 W kg{sup −1} and 6.49 kW kg{sup −1}, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  4. IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems.

    Science.gov (United States)

    Carretero, Nina M; Lichtenstein, Mathieu P; Pérez, Estela; Cabana, Laura; Suñol, Cristina; Casañ-Pastor, Nieves

    2014-10-01

    Nanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity. Chemical, electrochemical, structural and surface characterization of the hybrids has been accomplished. The high performance of the material in electrochemical measurements and the significant increase in cathodal charge storage capacity obtained for the hybrid in comparison with bare IrOx represent a significant advance in electric field application in biosystems, while its cyclability is also an order of magnitude greater than pure IrOx. Moreover, experiments using in vitro neuronal cultures suggest high biocompatibility for IrOx-CNT coatings and full functionality of neurons, validating this material for use in neural electrodes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    Science.gov (United States)

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  7. MXene–2D layered electrode materials for energy storage

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2018-04-01

    Full Text Available As promising candidates of power resources, electrochemical energy storage (EES devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field. Keywords: MXene, 2D materials, Electrochemistry, Battery, Supercapacitor

  8. Electrochemical investigation of tetravalent uranium β-diketones for active materials of all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Ikeda, Yasuhisa

    2002-01-01

    For active materials of the all-uranium redox flow battery for the power storage, tetravalent uranium β-diketones were investigated. The electrode reactions of U(ba) 4 and U(btfa) 4 were examined in comparison with that of U(acac) 4 , where ba denotes benzoylacetone, btfa benzoyltrifluoroacetone and acac acetylacetone. The cyclic voltammograms of U(ba) 4 and U(btfa) 4 solutions indicate that there are two series of redox reactions corresponding to the complexes with different coordination numbers of four and three. The electrode kinetics of the U(IV)/U(III) redox reactions for btfa complexes is examined. The obtained result supports that the uranium β-diketone complexes examined in the present study will serve as excellent active materials for negative electrolyte in the redox flow battery. (author)

  9. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.

    Science.gov (United States)

    Lee, Hyeon Jeong; Shin, Jaeho; Choi, Jang Wook

    2018-03-24

    The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li + , Na + , Mg 2+ , and Zn 2+ ions and supercapacitors are considered, along with their impact in materials research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigation of positive electrode materials based on MnO2 for lithium batteries

    International Nuclear Information System (INIS)

    Le, My Loan Phung; Lam, Thi Xuan Binh; Pham, Quoc Trung; Nguyen, Thi Phuong Thoa

    2011-01-01

    Various composite materials of MnO 2 /C have been synthesized by electrochemical deposition and then used for the synthesis of lithium manganese oxide (LiMn 2 O 4 ) spinel as a cathode material for lithium ion batteries. The structure and electrochemical properties of electrode materials based on MnO 2 /C, spinel LiMn 2 O 4 and doped spinel LiNi 0.5 Mn 1.5 O 4 have been studied. The influence of synthesis conditions on the structural and electrochemical properties of synthesized materials was investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM) and charge–discharge experiments. Some of the studied materials exhibit good performance of cycling and discharge capacity

  11. Arcing time analysis of liquid nitrogen with respect to electrode materials

    Science.gov (United States)

    Junaid, Muhammad; Yang, Kun; Ge, Hanming; Wang, Jianhua

    2018-03-01

    Unlike sulphur hexafluoride (SF6), liquid nitrogen (LN2) is cost effective, environment friendly and cryogenic dielectric. It has astounding insulating properties with the potential to decrease power loss in switchgear applications due to its remarkably low temperatures. The basic research is however a necessity to observe the performance of LN2 subjected to high luminance arcs. So far, there are no findings that refer to the arcing time inside the LN2 environment. The objective of this work was to investigate the arcing times in LN2 and compare the results with open air conditions using different electrode materials. Experiments were conducted on different DC voltages and their arcing times were measured. Three different kinds of electrode materials, namely: pure copper (Cu), stainless used steel (SUS) and aluminium alloy (Al 6061) were tested under 1 atmospheric pressure. The results revealed that LN2 extinguishes arc in almost half the amount of time required by the open air insulation. With Al 6061 has the shortest arcing time, whilst Cu, the second best choice and SUS places last in the evaluation. It was encapsulated from the findings that LN2 is a better choice than air insulation in terms of arc quenching and a better alternative to SF6 when environment is the priority.

  12. Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Selvakumar, M.; Bhat, D. Krishna

    2012-01-01

    Highlights: ► Nanostructure TiO 2 has been prepared by a microwave assisted synthesis method. ► Microwave irradiation was varied with time duration on the formation of nanoparticles. ► TiO 2 -activate carbon show very good specific capacitance for supercapacitor. ► Electrochemical properties were studied on electroanalytical techniques. - Abstract: Electrochemical properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO 2 nano particles synthesized by a microwave method have been determined. The TiO 2 /activated carbon nanocomposite electrode with a composition of 1:3 showed a specific capacitance 92 Fg −1 . The specific capacitance of the electrode decreased with increase in titanium dioxide content. The p/p symmetrical supercapacitor fabricated with TiO 2 /activated carbon composite electrodes showed a specific capacitance of 122 Fg −1 . The electrochemical behavior of the neat TiO 2 nanoparticles has also been studied for comparison purpose. The galvanostatic charge–discharge test of the fabricated supercapacitor showed that the device has good coulombic efficiency and cycle life. The specific capacitance of the supercapacitor was stable up to 5000 cycles at current densities of 2, 4, 6 and 7 mA cm −2 .

  13. The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts

    International Nuclear Information System (INIS)

    Bo, Xiangjie; Li, Mian; Han, Ce; Guo, Liping

    2013-01-01

    Highlights: •More defective sites in graphene after the doping of boron atoms. •Fine dispersion of Pt nanoparticles supported on boron-doped graphene. •Low electron transfer resistance at boron-doped graphene. •High performance of boron-doped graphene as an electrode material or a support for Pt catalysts. -- Abstract: Boron-doped graphene (BGR) is prepared by thermal annealing of graphene oxide (GO) in the presence of boric acid. More defective sites are introduced into GR accompanied by the doping of boron. Low electron transfer resistance towards redox probe is observed at BGR. The BGR modified electrode can effectively distinguish the anodic peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The defective sites of BGR can also act as anchoring sites for the deposition of Pt nanoparticles. When used as a support for Pt electrocatalysts, Pt nanoparticles with an average diameter of 3.2 nm are deposited on BGR. The doping of boron into GR facilitates the dispersion of Pt nanoparticles and increases the utilization efficiency of Pt nanoparticles. The Pt/BGR exhibits significant catalytic activity towards the oxidation of methanol. The results demonstrate that BGR is a good support for Pt catalysts or an electrode material compared with the undoped GR

  14. Studies of doped negative valve-regulated lead-acid battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Micka, K. [J. Heyrovsky Institute of Physical Chemistry, ASCR, 182 23 Prague 8 (Czech Republic); Calabek, M.; Baca, P.; Krivak, P.; Labus, R.; Bilko, R. [Department of Electrotechnology, University of Technology, 602 00 Brno (Czech Republic)

    2009-06-01

    Accelerated cycling in the partial state of charge regime showed conclusively that the improvement in cycle life of negative lead accumulator electrodes can be brought about not only by the addition of various sorts of powdered carbon into the active mass but also by the addition of other powdered inert materials like glass fibers, alumina, or titanium dioxide. Steric hindrance of the crystallization of lead sulfate in the electrode pores evidenced by ESEM microphotographs is considered as the main reason for this effect. The added powdered substances were practically without influence on the hydrogen overpotential; and their effect on the active material resistance was also negligible. (author)

  15. Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Sato, T; Suda, Y; Uruno, H; Takikawa, H; Tanoue, H; Ue, H; Aoyagi, N; Okawa, T; Shimizu, K

    2012-01-01

    In this study, we used two types of carbon nanomaterials, arc-black (AcB) which has an amorphous structure and carbon nano-balloon (CNB) which has a graphitic structure as electrochemical capacitor electrodes. We made a coin electrode from these carbon materials and fabricated an electric double-layer capacitor (EDLC) that sandwiches a separator between the coin electrodes. On the other hand, RuO 2 was loaded on these carbon materials, and we fabricated a pseudo-capacitor that has an ion insertion mechanism into RuO 2 . For comparison with these carbon materials, activated carbon (AC) was also used for a capacitor electrode. The electrochemical properties of all the capacitors were evaluated in 1M H 2 SO 4 aqueous solution. As a result of EDLC performance, AcB electrode had a higher specific capacitance than AC electrode at a high scan rate (≥ 100 mV/s). In the evaluation of pseudo-capacitor performance, RuO 2 -loaded CNB electrode showed a high specific capacitance of 734 F/g per RuO 2 weight.

  16. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  17. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    Science.gov (United States)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  18. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.

    Science.gov (United States)

    Elmouwahidi, Abdelhakim; Zapata-Benabithe, Zulamita; Carrasco-Marín, Francisco; Moreno-Castilla, Carlos

    2012-05-01

    Activated carbons were prepared by KOH-activation of argan seed shells (ASS). The activated carbon with the largest surface area and most developed porosity was superficially treated to introduce oxygen and nitrogen functionalities. Activated carbons with a surface area of around 2100 m(2)/g were obtained. Electrochemical measurements were carried out with a three-electrode cell using 1M H(2)SO(4) as electrolyte and Ag/AgCl as reference electrode. The O-rich activated carbon showed the lowest capacitance (259 F/g at 125 mA/g) and the lowest capacity retention (52% at 1A/g), due to surface carboxyl groups hindering electrolyte diffusion into the pores. Conversely, the N-rich activated carbon showed the highest capacitance (355 F/g at 125 mA/g) with the highest retention (93% at 1A/g), due to its well-developed micro-mesoporosity and the pseudocapacitance effects of N functionalities. This capacitance performance was among the highest reported for other activated carbons from a large variety of biomass precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  20. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.

    Science.gov (United States)

    Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2015-07-08

    Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.

  1. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.

    Science.gov (United States)

    Grayfer, Ekaterina D; Pazhetnov, Egor M; Kozlova, Mariia N; Artemkina, Sofya B; Fedorov, Vladimir E

    2017-12-22

    Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS 2 , VS 4 , TiS 3 , NbS 3 , TiS 4 , MoS 3 , etc., in which the key role is played by the (S-S) 2- /2 S 2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Progress in the Development of Lightweight Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1999-01-01

    Development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (Ni-H2) program at the NASA Glenn Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at five different discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C. The electrodes are life cycle tested using a half-cell configuration at 40 and 80% depths-of-discharge (DOD) in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flight weight design are built and tested.

  3. Nanostructured MnO2 as Electrode Materials for Energy Storage

    Science.gov (United States)

    Mauger, Alain

    2017-01-01

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined. PMID:29149066

  4. Nanostructured MnO2 as Electrode Materials for Energy Storage

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2017-11-01

    Full Text Available Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  5. Redox-active Hybrid Materials for Pseudocapacitive Energy Storage

    Science.gov (United States)

    Boota, Muhammad

    Organic-inorganic hybrid materials show a great promise for the purpose of manufacturing high performance electrode materials for electrochemical energy storage systems and beyond. Molecular level combination of two best suited components in a hybrid material leads to new or sometimes exceptional sets of physical, chemical, mechanical and electrochemical properties that makes them attractive for broad ranges of applications. Recently, there has been growing interest in producing redox-active hybrid nanomaterials for energy storage applications where generally the organic component provides high redox capacitance and the inorganic component offers high conductivity and robust support. While organic-inorganic hybrid materials offer tremendous opportunities for electrochemical energy storage applications, the task of matching the right organic material out of hundreds of natural and nearly unlimited synthetic organic molecules to appropriate nanostructured inorganic support hampers their electrochemical energy storage applications. We aim to present the recent development of redox-active hybrid materials for pseudocapacitive energy storage. We will show the impact of combination of suitable organic materials with distinct carbon nanostructures and/or highly conductive metal carbides (MXenes) on conductivity, charge storage performance, and cyclability. Combined experimental and molecular simulation results will be discussed to shed light on the interfacial organic-inorganic interactions, pseudocapacitive charge storage mechanisms, and likely orientations of organic molecules on conductive supports. Later, the concept of all-pseudocapacitive organic-inorganic asymmetric supercapacitors will be highlighted which open up new avenues for developing inexpensive, sustainable, and high energy density aqueous supercapacitors. Lastly, future challenges and opportunities to further tailor the redox-active hybrids will be highlighted.

  6. Flexible supercapacitor yarns with coaxial carbon nanotube network electrodes

    International Nuclear Information System (INIS)

    Smithyman, Jesse; Liang, Richard

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated flexible yarn supercapacitor with coaxial electrodes. • Use of multifunctional carbon nanotube network electrodes eliminates inactive components and enables high energy/power density. • Robust structure maintains >95% of energy/power while under deformation. - Abstract: Flexible supercapacitors with a yarn-like geometry were fabricated with coaxially arranged electrodes. Carbon nanotube (CNT) network electrodes enabled the integration of the electronic conductor and active material of each electrode into a single component. CNT yarns were employed as the inner electrode to provide the supporting structure of the device. These part integration strategies eliminated the need for inactive material, which resulted in device volumetric energy and power densities among the highest reported for flexible carbon-based EDLCs. In addition, the coaxial yarn cell design provided a robust structure able to undergo flexural deformation with minimal impact on the energy storage performance. Greater than 95% of the energy density and 99% of the power density were retained when wound around an 11 cm diameter cylinder. The electrochemical properties were characterized at stages throughout the fabrication process to provide insights and potential directions for further development of these novel cell designs

  7. Electro active polymers : novel bio-electrodes and implants for urinary continence

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S.; Sawan, M.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour les systemes electrochimiques et energetiques

    2006-07-01

    This paper presented a technical solution to spinal cord injuries that result in urinary bladder dysfunction. It involves miniaturized implants based on polypyrrole, an electroactive polymer, as smart drug-eluting electrodes for neural stimulation to restore bladder function. The nerve-electrode interface is the most vulnerable point in the design and operation of neuro-electronic implants. The main disadvantages are decreased impedance and protein build-up at the stimulation site due to an inflammatory reaction. Polypyrrole is a naturally conducting polymer having both electron-conducting properties as well as actuating properties, rendering it suitable as a drug-eluting electrode for a neurostimulator. Polypyrrole electrochemically coated on platinum increases biocompatibility and reduces electric impedance by increasing the surface area of the electrode. When electrically stimulated, polypyrrole also serves as a matrix to release a negatively-charged anti-inflammatory drug fosfosal. This technology may prove useful in reconstructing a severely damaged bladder through electroactive biomaterials. Polyelectrolyte gels, such as poly(sodium) acrylate, reversibly contract and relax when activated electrically or under the influx of divalent ions. These artificial muscles can be connected to a polypyrrole strain sensor to alert the microcontroller to activate the sphincter muscle, thereby creating an artificial bladder.

  8. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  9. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.

  10. Dielectric elastomers with novel highly-conducting electrodes

    Science.gov (United States)

    Böse, Holger; Uhl, Detlev

    2013-04-01

    Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.

  11. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, J.; Shui, J.L.; Zhang, S.L.; Wei, X.; Xiang, Y.J.; Xie, S.; Zhu, C.F.; Chen, C.H.

    2005-01-01

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship

  12. NdFeB alloy as a magnetic electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Shui, J.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhang, S.L. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Wei, X. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xiang, Y.J. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Xie, S. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Zhu, C.F. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China); Chen, C.H. [Department of Materials Science and Engineering, University of Science and Technology of China, Anhui Hefei 230026 (China)]. E-mail: cchchen@ustc.edu.cn

    2005-04-05

    The search for a reliable indicator of state of charge and even the remaining energy of a lithium-ion cell is of great importance for various applications. This study was an exploratory effort to use magnetic susceptibility as the indicator. In this work, for the first time the change of ac susceptibility of cells was in situ monitored during charge-discharge process. A strong permanent magnetic material, NdFeB alloy, was investigated as an anode material for rechargeable lithium batteries. Both original and partially oxidized NdFeB powders were made into electrodes. Structural characterization was performed on the NdFeB electrodes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. An alloy (core)-oxide (shell) structure was found for those partially oxidized samples. The electrochemical cycling of cells made of the NdFeB electrodes against lithium was measured. The first lithium intercalation capacity of a treated NdFeB can be up to about 831 mAh/g, while a rather reversible capacity of up to 352 mAh/g can be obtained. With a specially designed cell, we were able to monitor in situ the change of relative ac susceptibility during charge and/or discharge steps. A clearly monotonous relationship is found between the ac susceptibility of a cell and its depth-of-discharge (DOD). A mechanism based on skin effect and eddy current change is proposed to explain this susceptibility versus DOD relationship.

  13. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo{sub 2}O{sub 4}) electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naveen, A. Nirmalesh, E-mail: nirmalesh.naveen@gmail.com; Selladurai, S. [Ionics Laboratory, Department of Physics, Anna University, Chennai-600025 (India)

    2015-06-24

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  14. Electrochemical investigations of activation and degradation of hydrogen storage alloy electrodes in sealed Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.X.; Xu, Z.D. [Zhejiang University, Hangzhou (China). Dept. of Chemistry; Tu, J.P. [Zhejiang University, Hangzhou (China). Dept. of Materials Science and Engineering

    2002-04-01

    The M1Ni{sub 0.4}Co{sub 0.6}Al{sub 0.4} alloy was treated with hot alkaline solution containing a small amount of KBH{sub 4} and its effect on the activation and degradation behaviors of the hydrogen storage alloy electrodes in sealed Ni/MH batteries was investigated. It was found that the treated alloy electrode exhibited a better activation property than the untreated one in the sealed battery as well as in open cell. For the treated alloy electrode activating, the polarization resistance in the sealed battery was almost equal to that in the open cell. But in the case of the untreated alloy electrode activating, the polarization resistance in the sealed battery was larger than that in the open cell. The reason is that the oxide film on the untreated alloy surface suppressed the combination of the oxygen evolved on the positive electrode with hydrogen on the negative alloy surface. In addition, the decaying of capacity of the untreated alloy electrode was much faster than that of the treated one. The reasons were, that after surface treatment, the Ni-rich and Al-poor layer on the alloy surface not only had a high electrocatalytic activity for hydrogen electrode reaction, but also facilitated the combination of the oxygen with hydrogen and hydrogen adsorption on the alloy surface. (author)

  15. Reliability of electrode wear compensation based on material removal per discharge in micro EDM milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Tristo, G.; Hansen, Hans Nørgaard

    2013-01-01

    This paper investigates the reliability of workpiece material removal per discharge (MRD) estimation for application in electrode wear compensation based on workpiece material removal. An experimental investigation involving discharge counting and automatic on the machine measurement of removed...... material volume was carried out in a range of process parameters settings from fine finishing to roughing. MRD showed a decreasing trend with the progress of the machining operation, reaching stabilization after a number of machined layers. Using the information on MRD and discharge counting, a material...

  16. Sensors properties of an alkylamine-intercalated kaolinite material towards the voltammetric preconcentration of [Ru(CN)6]4- at a clay-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tonle, I.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation; Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Dschang Univ. (Cameroon). Dept. de Chimie; Bouwe, B.; Rose, G.; Ngameni, E. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences; Detellier, C. [Yanoude Univ. (Cameroon). Laboratoire de Chimie Analytique, Faculte des Sciences

    2008-07-01

    This study discussed the sensor properties of a kaolinite material in relation to the voltammetric preconcentration of ruthenium (Ru) anions in a clay-modified electrode. An organoclay was intercalated at room temperature with a layer of hexylamine. Dimethylsulfoxide (DMSO) was intercalated between the clay layers and displaced in wet conditions by the akylamine. The modified clay was then characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The analyses confirmed the incorporation of the hexylamine between the kaolinite platelets. The organokaolinite was then studied for use as a preconcentration agent when coated on the active surface of a glassy carbon electrode for the accumulation of [Ru(CN)6]4- anions in a hydrochloric acid medium. Factors that influenced the conductivity of the film and the diffusion of the electroactive species within the film included the concentration of the electrolyte, and the redox probe. The study showed that kaolinite can be used as a material in electrochemical sensors.

  17. Facile Synthesis of MnPO4·H2O Nanowire/Graphene Oxide Composite Material and Its Application as Electrode Material for High Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Yan

    2016-12-01

    Full Text Available In this work, we reported a facile one-pot hydrothermal method to synthesize MnPO4·H2O nanowire/graphene oxide composite material with coated graphene oxide. Transmission electron microscopy and scanning electron microscope were employed to study its morphology information, and X-ray diffraction was used to study the phase and structure of the material. Additionally, X-ray photoelectron spectroscopy was used to study the elements information. To measure electrochemical performances of electrode materials and the symmetry cell, cyclic voltammetry, chronopotentiometry and electrochemical impedance spectrometry were conducted on electrochemical workstation using 3 M KOH electrolytes. Importantly, electrochemical results showed that the as-prepared MnPO4·H2O nanowire/graphene oxide composite material exhibited high specific capacitance (287.9 F·g−1 at 0.625 A·g−1 and specific power (1.5 × 105 W·kg−1 at 2.271 Wh·kg−1, which is expected to have promising applications as supercapacitor electrode material.

  18. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  19. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  20. Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes

    Science.gov (United States)

    Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.

    2018-03-01

    A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.

  1. Electroencephalogram measurement using polymer-based dry microneedle electrode

    Science.gov (United States)

    Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa

    2015-06-01

    In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.

  2. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    Science.gov (United States)

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g-1, even at 60 A g-1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  4. Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles

    International Nuclear Information System (INIS)

    Zanardi, C.; Terzi, F.; Pigani, L.; Heras, A.; Colina, A.; Lopez-Palacios, J.; Seeber, R.

    2008-01-01

    Composite material consisting of poly(3,4-ethylenedioxythiophene) (PEDOT), including Au nanoparticles encapsulated by N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulphonate (SB12) is synthesised by constant-current method on ITO glass, in aqueous medium, leading to an electrode coating. The synthesis process is followed by UV-vis spectroelectrochemistry, both in normal-beam and in parallel-beam configurations. Under the same experimental conditions PEDOT is also synthesised by electropolymerisation only in the presence of LiClO 4 supporting electrolyte, as well in solutions also containing SB12. The data relative to the electrosynthesis of the three materials are compared. The composite material based on the conductive polymer matrix including Au nanoparticles has been characterised by SEM, TEM, ICP, Raman and UV-vis spectroscopies. The behaviour of the three different electrode coatings with respect to p-doping process has been studied by conventional electrochemical techniques and by potentiostatic and potentiodynamic UV-vis spectroelectrochemical methods. Conclusions are drawn out about the effect of the presence of the surfactant and of Au nanoparticles on the electrochemical properties of the electrode system

  5. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  6. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    Science.gov (United States)

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  7. Graphene-based materials for supercapacitor electrodes – A review

    Directory of Open Access Journals (Sweden)

    Qingqing Ke

    2016-03-01

    Full Text Available The graphene-based materials are promising for applications in supercapacitors and other energy storage devices due to the intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability and excellent mechanical behavior. This review summarizes recent development on graphene-based materials for supercapacitor electrodes, based on their macrostructural complexity, i.e., zero-dimensional (0D (e.g. free-standing graphene dots and particles, one-dimensional (1D (e.g. fiber-type and yarn-type structures, two-dimensional (2D (e.g. graphenes and graphene-based nanocomposite films, and three-dimensional (3D (e.g. graphene foam and hydrogel-based nanocomposites. There are extensive and on-going researches on the rationalization of their structures at varying scales and dimensions, development of effective and low cost synthesis techniques, design and architecturing of graphene-based materials, as well as clarification of their electrochemical performance. It is indicated that future studies should focus on the overall device performance in energy storage devices and large-scale process in low costs for the promising applications in portable and wearable electronic, transport, electrical and hybrid vehicles.

  8. Nanostructured Electrode Materials Derived from Metal-Organic Framework Xerogels for High-Energy-Density Asymmetric Supercapacitor.

    Science.gov (United States)

    Mahmood, Asif; Zou, Ruqiang; Wang, Qingfei; Xia, Wei; Tabassum, Hassina; Qiu, Bin; Zhao, Ruo

    2016-01-27

    This work successfully demonstrates metal-organic framework (MOF) derived strategy to prepare nanoporous carbon (NPC) with or without Fe3O4/Fe nanoparticles by the optimization of calcination temperature as highly active electrode materials for asymmetric supercapacitors (ASC). The nanostructured Fe3O4/Fe/C hybrid shows high specific capacitance of 600 F/g at a current density of 1 A/g and excellent capacitance retention up to 500 F/g at 8 A/g. Furthermore, hierarchically NPC with high surface area also obtained from MOF gels displays excellent electrochemical performance of 272 F/g at 2 mV/s. Considering practical applications, aqueous ASC (aASC) was also assembled, which shows high energy density of 17.496 Wh/kg at the power density of 388.8 W/kg. The high energy density and excellent capacity retention of the developed materials show great promise for the practical utilization of these energy storage devices.

  9. Superior Cycle Stability Performance of Quasi-Cuboidal CoV2O6 Microstructures as Electrode Material for Supercapacitors.

    Science.gov (United States)

    Wang, Yucheng; Chai, Hui; Dong, Hong; Xu, Jiayu; Jia, Dianzeng; Zhou, Wanyong

    2016-10-12

    In this study, a rapid, facile, and environment-friendly microwave-assisted method followed by annealing for synthesizing the quasi-cuboidal CoV 2 O 6 is developed. The as-prepared samples manifest high supercapacitor properties with a specific capacitance of 223 F g -1 , good rate capability, and superior cycle stability, retaining 123.3% capacitance when the number of cycles reaches 15,000 after determined by electrochemical tests. More importantly, the quasi-cuboidal CoV 2 O 6 for the first time is introduced into the supercapacitor as a kind of electrode material. The superior electrochemical performance of the quasi-cuboidal CoV 2 O 6 will render the metal vanadium oxides as new and attractive active material for promising application in supercapacitors.

  10. The influence of Lampblack on capacity retention in Pb/PbSO/sub 4/ electrodes with forced flow of electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Hullmeine, U.

    1984-10-01

    High active material utilization of Pb/PbSO/sub 4/ electrodes after formation in the range of 170 - 120 Ah/kg is obtained when these electrodes are discharged at 50-200 A/kg current density with forced flow of electrolyte. Decline of capacity was observed on further cycling at high current density and forced flow of electrolyte. The extent of capacity decline in these electrodes is largely influenced by the amount of additives in the active material, e.g. lampblack and expander.

  11. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  12. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A MEMS platform for in situ, real-time monitoring of electrochemically induced mechanical changes in lithium-ion battery electrodes

    International Nuclear Information System (INIS)

    Pomerantseva, Ekaterina; Jung, Hyun; Gnerlich, Markus; Baron, Sergio; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2013-01-01

    We report the first successful demonstration of an optical microelectromechanical systems (MEMS) sensing platform for the in situ characterization of electrochemically induced reversible mechanical changes in lithium-ion battery (LIB) electrodes. The platform consists of an array of flexible membranes with a reflective surface on one side and a thin-film LIB electrode on the other side. The membranes deflect due to the active battery material volume change caused by lithium intercalation (expansion) and extraction (contraction). This deflection is monitored using the Fabry–Perot optical interferometry principle. The active material volume change causes high internal stresses and mechanical degradation of the electrodes. The stress evolution observed in a silicon thin-film electrode incorporated into this MEMS platform follows a ‘first elastic, then plastic’ deformation scheme. Understanding of the internal stresses in battery electrodes during discharge/charge is important for improving the reliability and cycle lifetime of LIBs. The developed MEMS platform presents a new method for in situ diagnostics of thin-film LIB electrodes to aid the development of new materials, optimization of electrode performance, and prevention of battery failure. (paper)

  14. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  15. Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection.

    Science.gov (United States)

    Haddad, Peter A; Servati, Amir; Soltanian, Saeid; Ko, Frank; Servati, Peyman

    2017-12-01

    The focus of this research is to evaluate the effects of design parameters including surface area, distance between and geometry of dry flexible electrodes on electrodermal activity (EDA) stimulus response detection. EDA is a result of the autonomic nervous system being stimulated, which causes sweat and changes the electrical characteristics of the skin. Standard silver/silver chloride (Ag/AgCl) EDA electrodes are rigid and lack conformability in contact with skin. In this study, flexible dry Ag/AgCl EDA electrodes were fabricated on a compliant substrate, used to monitor EDA stimulus responses and compared to results simultaneously collected by rigid dry Ag/AgCl electrodes. A repeatable fabrication process for flexible Ag/AgCl electrodes has been established. Surface area, distance between and geometry of electrodes are shown to affect the detectability of the EDA response and the minimum number of sweat glands to be covered by the electrodes has been estimated at 140, or more, in order to maintain functionality. The optimal flexible EDA electrode is a serpentine design with a 0.15 cm 2 surface area and a 0.20 cm distance with an average Pearson correlation coefficient of . Fabrication of flexible electrodes is described and an understanding of the effects of electrode designs on the EDA stimulus response detection has been established and is potentially related to the coverage of sweat glands. This work presents a novel systematic approach to understand the effects of electrode designs on monitoring EDA which is of importance for the design of wearable EDA monitoring devices.

  16. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields

    International Nuclear Information System (INIS)

    Li, Xinyang; Wu, Yue; Zhu, Wei; Xue, Fangqing; Qian, Yi; Wang, Chengwen

    2016-01-01

    Highlights: • We study granular activated carbon (GAC) electrodes coated with catalysts. • GAC coated with ATOT demonstrates an impressive ·OH yield. • This electrode can be used in continuous-flow three-dimensional electrode reactors. • We use Rhodamine B as a model organic compound for removal. • The GAC/ATOT performs better than all other electrodes examined. - Abstract: In this study, granular activated carbon (GAC) coated with SnO 2 -Sb doped TiO 2 (GAC/ATOT) with a high hydroxyl radical (·OH) yield is prepared via the sol-gel method. This material is utilized as a granular electrode in a continuous-flow three-dimensional electrode reactor (CTDER) for the enhanced treatment of synthetic dyeing wastewater containing Rhodamine B (RhB). We then characterize the physical properties, electrochemical properties, and electrochemical oxidation performance of the granular electrode. The results show that using the GAC/ATOT electrode in a CTDER significantly enhances the chemical oxygen demand (COD) removal, decreases the energy consumption, and improves the current efficiency of the wastewater. This is primarily attributed to the higher catalytic activity of GAC/ATOT for ·OH production compared to that of other candidates, such as TiO 2 coated GAC (GAC/T), Sb doped SnO 2 coated GAC (GAC/ATO), and pure GAC. The mechanism of the enhanced electrochemical oxidation afforded by using GAC/ATOT indicates that the high ·OH yield in the reactor packed with GAC/ATOT electrodes contributes to the enhanced electrochemical oxidation performance with respect to organic compounds.

  17. Implementation of active electrodes on a brain-computer interface and its application as P300 speller

    International Nuclear Information System (INIS)

    Aguero Rojas, Eliecer

    2013-01-01

    A brain computer interface has implemented using open hardware called Modular EEG, created by The OpenEEG Project and distributed by the company Olimex Ltd. That hardware is modified to use active electrodes, instead of passive electrodes, for acquiring electroencephalographic signals. The application has been given to the interface has been a speller P300; for which has used the BC12000 open software that has the necessary configuration for the application. P300 speller has used a protocol in each session so that could be standardize the method to different users. Valuing the results with three neuropsychological tests, was within the objectives; however, has not been achieved by the limitation in time of project implementation. A brain computer interface has been used with passive electrodes; implemented in the same way that the BCI with active electrodes; and has worked better than the interface with active electrodes. One of the major advantages that has been observed of passive electrodes on the actives has been the size of the same, because the liabilities are smaller and therefore, easier to place preventing the hair of the user, which increases the noise in the signal. (author) [es

  18. Electrochemical activities of Geobacter biofilms growing on electrodes with various potentials

    International Nuclear Information System (INIS)

    Li, Dao-Bo; Huang, Yu-Xi; Li, Jie; Li, Ling-Li; Tian, Li-Jiao; Yu, Han-Qing

    2017-01-01

    Highlights: • Dependence of current generation on potentials by G. sulfurreducens is complex with the optimum at +0.1 V. • Unfavorable spatial distribution of biological activity within the biofilm at high potentials limits the current generation. • Same cytochrome c species are used for electron transfer in the biofilms developed at all potentials. - Abstract: Exoelectrogenic bacteria (EEB) play a central role in bioenergy recovery, biogeochemistry of elements, and polluting remediation. The electrochemical activity of EEB biofilm on electrode was proven to be dependent on the electrode potential, but the mechanism behind such a phenomenon is unclear. In this work, Geobacter sulfurreducens biofilms were developed at potentials ranging from −0.1 V to +0.6 V vs. standard hydrogen electrode to explore the profiles of potential regulation on G. sulfurreducens biofilm development and the electrochemical activity. We found that elevating the developing potential could improve the current generation by G. sulfurreducens biofilm until +0.1 V. At higher potentials less current was generated, although more biomass was formed on the electrode. The same cytochrome c species were synthesized for electron transfer in all biofilms, independent of the developing potential. Electrochemical experimental results and redox-sensitive staining imagings proved that the biofilms developed at +0.2 V–+0.4 V had greater cytochrome c contents and reducing capacities than the others. Current generation at high potentials was likely to be limited by both the metabolic rate and the electron transfer kinetics. These findings are useful for tuning the electrochemical activity of biofilm in catalyzing redox processes or generating electricity, which is crucial for the environmental and electrochemical application of EEB.

  19. A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors

    International Nuclear Information System (INIS)

    Wen, Z.B.; Yu, F.; You, T.; Zhu, L.; Zhang, L.; Wu, Y.P.

    2016-01-01

    Highlights: • A core–shell structured NiO@CNTs nanocomposite is synthesized by a simple hydrothermal method. • The CNTs core effectively improves the capacitance, rate and cycling performance of NiO. • A supercapacitor is assembled when activated carbon is used as the negative electrode. • The supercapacitor presents an energy density up to 52.6 Wh kg"−"1. - Abstract: A nanocomposite of carbon nanotubes coated with nickel oxide was prepared by a simple hydrothermal method. The structure, morphology and electrochemical performance of the nanocomposite were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, electrochemical tests including cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy, respectively. It presents the highest specific capacitance of 1844 F g"−"1 at 1 A g"−"1 and 1145 F g"−"1 at current density of 10 A g"−"1 with 88.9% (at 1 A g"−"1) capacitance retention after 1000 cycles. The specific capacitance of the nanocomposite is almost double of that of the virginal NiO (972 F g"−"1 at 1 A g"−"1). Its cycling behavior is also very good. When combined with activated carbon as the negative electrode, the energy density can be up to 52.6 Wh kg"−"1. Such good electrochemical behavior indicates that the nanocomposite is a promising electrode material for supercapacitors.

  20. FY 1998 annual report on the development of novel, high-activity oxygen electrode by ion-implantation; 1998 nendo ion chunyuho ni yoru shinkina kokassei sanso denkyoku no kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An attempt has been made to develop an electrode material having high activity for oxygen generating reactions by ion-implantation, which is used to form the bulk defects (fine gaps at the atomic level) on the electrode surface, considered to serve as the active sites. It is found that implantation of the Co{sup +} or Zn{sup +} ion into a compound oxide electrode of Ti and Ru is accompanied by decreased overvoltage for oxygen generation by 50 to 100 mV. The Co{sup +} and Zn{sup +} ions, when implanted, cause damage of similar density in the thin film, decreasing its overvoltage to a similar extent, in spite of their different chemical properties, from which it is considered that the effect of ion implantation is not to change chemical properties of the film but to form a structural defect therein. A thin-film electrode of ruthenium dioxide, which is considered to be the oxygen generating electrode of the highest activity at present, is prepared and implanted with the Ru{sup +} ion, to observe the effect. The ion implantation also decreases the overvoltage by 50 to 70 mV, demonstrating its effect. The same principle is expected to be applicable to development of high-activity oxygen reducing electrode (electrode for fuel cell). (NEDO)

  1. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    Science.gov (United States)

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  3. A facile electrode preparation method for accurate electrochemical measurements of double-side-coated electrode from commercial Li-ion batteries

    Science.gov (United States)

    Zhou, Ge; Wang, Qiyu; Wang, Shuo; Ling, Shigang; Zheng, Jieyun; Yu, Xiqian; Li, Hong

    2018-04-01

    The post mortem electrochemical analysis, including charge-discharge and electrochemical impedance spectroscopy (EIS) measurements, are critical steps for revealing the failure mechanisms of commercial lithium-ion batteries (LIBs). These post measurements usually require the reassembling of coin-cell with electrode which is often double-side-coated in commercial LIBs. It is difficult to use such double-side-coated electrode to perform accurate electrochemical measurements because the back side of the electrode is coated with active materials, rather than single-side-coated electrode that is often used in coin-cell measurements. In this study, we report a facile tape-covering sample preparation method, which can effectively suppress the influence of back side of the double-side-coated electrodes on capacity and EIS measurements in coin-cells. By tape-covering the unwanted side, the areal capacity of the desired investigated side of the electrode has been accurately measured with an experimental error of about 0.5% at various current densities, and accurate EIS measurements and analysis have been conducted as well.

  4. Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor

    Science.gov (United States)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-12-01

    Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.

  5. Report on the FY 1999 investigational survey on the activation of oxygen electrode by ion implantation; 1999 nendo ion chunyuho ni yoru sanso denkyoku no kasseika ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The oxygen electrode is important as the base electrode for water electrolysis and fuel cell, but to move it, overvoltage (activated energy) in addition to equilibrium voltage is necessary, which leads to the lowering of energy efficiency. By forming the active spot by ion implantation, the lowering of overvoltage was studied. The implantation of Ru{sup +} ion in Ruthenium dioxide thin film electrode reduced the oxygen generating overvoltage by 15-20mV. Even in the oxygen reduction, activity was also increased. The chemical composition of thin film does not change by ion implantation. The increase in activity is based on a physical change which is called the surface defect formation. The layer of ion implantation is composed of microcrystals, which is thought to contribute to the formation of any active spot. Ions were implanted in Pt electrode as a practical use material, and even in the oxygen reduction of Pt, a possibility of heightening activity by ion implantation was admitted even in the oxygen reduction of Pt. The generation of high activity oxygen by ion plantation and development of oxygen reduction electrode were established as one method as a rule. (NEDO)

  6. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials.

    Science.gov (United States)

    Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong

    2016-11-15

    Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A method for making an inert porous electrode for a chemical current source

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Shembel, Ye.M.; Sokolov, L.A.

    1983-01-01

    A method is proposed for making an inert, porous electrode for chemical current sources (KhIT) with a nonaqueous electrolyte on the basis of aprotonic solvents and an active cathode substance which is dissolved in the electrolyte. The method includes preparing an electrode mass from the starting material and subsequent formation of the electrode. To increase the energy capacity, after formation, the electrode is subjected to electrochemical anode polarization to potentials which correspond to the potential of electrochemical breakdown of the background electrolyte.

  8. Nonlinear Impedance of Whole Cells Near an Electrode as a Probe of Mitochondrial Activity

    Directory of Open Access Journals (Sweden)

    John H. Miller Jr.

    2011-04-01

    Full Text Available By simultaneously measuring the bulk media and electrode interface voltages of a yeast (Saccharomyces cerevisiae suspension subjected to an AC voltage, a yeast-dependent nonlinear response was found only near the current injection electrodes. Computer simulation of yeast near a current injection electrode found an enhanced voltage drop across the yeast near the electrode due to slowed charging of the electrode interfacial capacitance. This voltage drop is sufficient to induce conformation change in membrane proteins. Disruption of the mitochondrial electron transport chain is found to significantly change the measured nonlinear current response, suggesting nonlinear impedance can be used as a non-invasive probe of cellular metabolic activity.

  9. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.

    Science.gov (United States)

    Gryglewicz, Grażyna; Śliwak, Agata; Béguin, François

    2013-08-01

    A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.

    Science.gov (United States)

    Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo

    2017-10-25

    The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.

  11. The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Ting; Shi, Shaojun; Kong, Fanjun; Yang, Gang; Qian, Bin; Yin, Fan

    2016-01-01

    Graphical abstract: After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation of the active material and conductive carbon, but also results in the falling of active material from the current collector. Nano-FNO can remain the excellent capacity after dozens of cycles. - Abstract: Nano-sized FeNbO 4 (Nano-FNO) with an average diameter of 120 nm is facilely prepared by co-precipitation method. Bulk FeNbO 4 (Micro-FNO) as a comparison synthesized by conventional solid-state synthesis has an average grain size of 3–10 μm. In the high-resolution transmission electron microscopy (HRTEM) images, Nano-FNO reveals an ordered single crystal structure, but Mirco-FNO is composed of disordered crystallites with different crystal orientation. Nano-FNO as anode material delivers the initial capacity of 475 mAh g −1 which is much higher than Micro-FNO electrode of 250 mAh g −1 .After dozens of charge/discharge cycles, the electrode of Nano-FNO remains the homogeneous combination with active material and conductive carbon, but the microcrystals in Micro-FNO electrode are cracked to small particles. The pulverization of Micro-FNO not only blocks the transfer of Li + and electrons due to the separation between the active material and conductive carbon, but also results in the falling of active material from the current collector. Compared with the weakened electrochemical performances of Micro-FNO, Nano-FNO remains the excellent capacity after dozens of cycles. The charge transfer resistances of Nano-FNO and Micro-FNO after several cycles are further studied by fitting their electrochemical impedance spectra.

  12. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  13. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  14. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  15. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  16. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis

    2013-05-03

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh specific pore volumes [similar]11.4 cm3 g−1. The materials function well as amine impregnated supports for CO2 capture and as supercapacitor electrodes.

  17. A theoretical model to determine the capacity performance of shape-specific electrodes

    Science.gov (United States)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  18. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies

    Science.gov (United States)

    Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of

  19. Advanced screening of electrode couples

    Science.gov (United States)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  20. Porous electrode bodies for primary and secondary cells. [fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, O; Kaus, W

    1962-08-15

    These electrode bodies are constructed by soldering grains of resins, e.g., polyethylene, polypropylene, polymers of tetrafluoroethylene, trifluoroethylene chloroethylene, etc. Proper porosity is achieved by use of different grain sizes or various retarding agents. Pore surfaces are coated with carbon black or similar material, and active material is introduced by means of solutions. (RWR)

  1. Synthesis, spectroscopic analysis and electrochemical performance of modified β-nickel hydroxide electrode with CuO

    Directory of Open Access Journals (Sweden)

    B. Shruthi

    2017-03-01

    Full Text Available In the present work, a modified β-nickel hydroxide (β-Ni(OH2 electrode material with CuO has been prepared using a co-precipitation method. The structure and property of the modified β-Ni(OH2 with CuO were characterized by X-ray diffraction (XRD, Fourier Transform infra-red (FT-IR, Raman and thermal gravimetric-differential thermal analysis (TG-DTA techniques. The results of the FT-IR spectroscopy and TG-DTA indicate that the modified β-Ni(OH2 electrode materials contain intercalated water molecules and anions. A pasted–type electrode was prepared using nickel hydroxide powder as the main active material on a nickel sheet as a current collector. Cyclic voltammetry (CV and Electrochemical impedance spectroscopy (EIS studies were undertaken to assess the electrochemical behavior of pure β-Ni(OH2 and modified β-Ni(OH2 electrode with CuO in a 6 M KOH electrolyte. The addition of CuO into β-nickel hydroxide was found to enhance the reversibility of the electrode reaction and also increase the separation of the oxidation current peak of the active material from the oxygen evolution current. The modified nickel hydroxide with CuO was also found to exhibit a higher proton diffusion coefficient and a lower charge transfer resistance. These findings suggest that the modified β-Ni(OH2 with CuO possesses an enhanced electrochemical response and thus can be recognized as a promising candidate for battery electrode applications.

  2. Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors

    Science.gov (United States)

    Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You

    2016-09-01

    Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.

  3. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    Science.gov (United States)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  4. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    forming the active surfaces on a porous backbone with embedded electronic current collector material, yielding one of the highest performances reported for an electrode that operates either on fuel or oxidant. The second is a nano-Ce0.9Gd0.1O2-δ thin film prepared by spin-coating, which provides......In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...

  5. Synthesis and characterization of poly-o-anisidine Sn(IV tungstate: A new and novel ‘organic–inorganic’ nano-composite material and its electro-analytical applications as Hg(II ion-selective membrane electrode

    Directory of Open Access Journals (Sweden)

    Asif A. Khan

    2012-07-01

    Full Text Available An organic–inorganic nano-composite poly-o-anisidine Sn(IV tungstate was chemically synthesized by sol–gel mixing of the incorporation of organic polymer o-anisidine into the matrices of inorganic ppt of Sn(IV tungstate in different mixing volume ratios. This composite material has been characterized using various analytical techniques like XRD (X-ray diffraction, FTIR (Fourier transform infrared, SEM (Scanning electron microscopy, TEM (Transmission electron microscopy and simultaneous TGA (Thermogravimetric analysis studies. On the basis of distribution studies, the material was found to be highly selective for Hg(II. Using this nano-composite cation exchanger as electro-active material, a new heterogeneous precipitate based on ion-sensitive membrane electrode was developed for the determination of Hg(II ions in solutions. The membrane electrode was mechanically stable, with a quick response time, and can be operated within a wide pH range. The electrode was also found to be satisfactory in electrometric titrations.

  6. A Novel 12-Lead ECG T-Shirt with Active Electrodes

    Directory of Open Access Journals (Sweden)

    Anna Boehm

    2016-11-01

    Full Text Available We developed an ECG T-shirt with a portable recorder for unobtrusive and long-term multichannel ECG monitoring with active electrodes. A major drawback of conventional 12-lead ECGs is the use of adhesive gel electrodes, which are uncomfortable during long-term application and may even cause skin irritations and allergic reactions. Therefore, we integrated comfortable patches of conductive textile into the ECG T-shirt in order to replace the adhesive gel electrodes. In order to prevent signal deterioration, as reported for other textile ECG systems, we attached active circuits on the outside of the T-shirt to further improve the signal quality of the dry electrodes. Finally, we validated the ECG T-shirt against a commercial Holter ECG with healthy volunteers during phases of lying down, sitting, and walking. The 12-lead ECG was successfully recorded with a resulting mean relative error of the RR intervals of 0.96% and mean coverage of 96.6%. Furthermore, the ECG waves of the 12 leads were analyzed separately and showed high accordance. The P-wave had a correlation of 0.703 for walking subjects, while the T-wave demonstrated lower correlations for all three scenarios (lying: 0.817, sitting: 0.710, walking: 0.403. The other correlations for the P, Q, R, and S-waves were all higher than 0.9. This work demonstrates that our ECG T-shirt is suitable for 12-lead ECG recordings while providing a higher level of comfort compared with a commercial Holter ECG.

  7. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Electrode systems for in situ vitrification

    Science.gov (United States)

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1990-01-01

    An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.

  9. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor.

    Science.gov (United States)

    Ghasemi, Shahram; Hosseini, Sayed Reza; Boore-Talari, Omid

    2018-01-01

    Manganese dioxide (MnO 2 ) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO 2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO 2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO 2 /GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1V to obtain MnO 2 /RGO nanohybrid. The structure and morphology of the MnO 2 and MnO 2 /RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO 2 and MnO 2 /RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5M sodium sulfate in the potential window of 0.0-1.0V. The electrochemical investigations reveal that MnO 2 /RGO exhibits high specific capacitance (C s ) of 375Fg -1 at current density of 1Ag -1 and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200mVs -1 ). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Graphene electrodes for stimulation of neuronal cells

    International Nuclear Information System (INIS)

    Koerbitzer, Berit; Nick, Christoph; Thielemann, Christiane; Krauss, Peter; Yadav, Sandeep; Schneider, Joerg J

    2016-01-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO 2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO 2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO 2 substrate is a very promising material combination for stimulation electrodes. (paper)

  11. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors

    Science.gov (United States)

    Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa

    2017-02-01

    A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.

  12. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  13. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  14. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  15. A sulfur–microporous carbon composite positive electrode for lithium/sulfur and silicon/sulfur rechargeble batteries

    Directory of Open Access Journals (Sweden)

    Takuya Takahashi

    2015-12-01

    Full Text Available Sulfur is an advantageous material as a promising next-generation positive electrode material for high-energy lithium batteries due to a high theoretical capacity of 1672 mA h g−1 although its discharge potential is somewhat modest: ca. 2 V vs Li/Li+. However, a sulfur positive electrode has some crucial problems for practical use, which are mainly attributed to the dissolution of its intermediate products in charge–discharge processes. In order to resolve the dissolution problem of lithium polysulfide, we attempted to synthesize a sulfur–microporous activated carbon (AC composite positive electrode. Moreover, we have systematically researched the battery performance of sulfur–microporous AC positive electrode with variations of electrolytes as well as negative electrodes, and found its promising positive electrode performance for a next-generation rechargeable battery.

  16. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  17. Preparation and property study of MnO2/CNPs as electrode materials of electrochemical supercapacitors

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2016-12-01

    Full Text Available MnO2 nanorods deposited on carbon nanospheres (MnO2/CNPs as electrode materials of electrochemical supercapacitors have been synthesized via a hydrothermal synthesis.The micro morphologies and phases of the as-prepared MnO2/CNPs were characterized by field emission scanning electro microscopy(FESEM and X-ray diffraction(XRD.The electrochemical properties of nanomaterials were tested by cyclic voltammetry and galvanostatic charge-discharge.At a current density of 0.1 A/g using 1 mol/L Na2SO4 as electrolyte,the as-prepared MnO2/CNPs exhibit excellent specific capacitance of 305.6 F/g,far larger than carbon nanospheres (49.3 F/g.At a current density of 5 A/g,the specific capacitance of MnO2/CNPs is 235 F/g,which is 76.9% of the specific capacitance under 1 A/g current density.These results demonstrated that MnO2/CNPs may show potential application for electrode materials in electrochemical supercapacitors.

  18. Supercapacitors specialities - Materials review

    Science.gov (United States)

    Obreja, Vasile V. N.

    2014-06-01

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  19. Supercapacitors specialities - Materials review

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  20. Supercapacitors specialities - Materials review

    International Nuclear Information System (INIS)

    Obreja, Vasile V. N.

    2014-01-01

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes

  1. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0materials and their use in electrochemical devices are also described.

  2. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes

    International Nuclear Information System (INIS)

    Pablos, Cristina; Marugán, Javier; Grieken, Rafael van; Adán, Cristina; Riquelme, Ainhoa; Palma, Jesús

    2014-01-01

    The use of TiO 2 electrodes may solve the two main drawbacks of photocatalytic processes: i) the necessity of recovering the catalyst and ii) the low quantum yield in the use of the radiation. This work focuses on the correlation between the photoelectrochemical properties of TiO 2 electrodes and their activity for the photoelectrocatalytic oxidation of methanol. Particulate TiO 2 electrodes prepared by deposition of P25-TiO 2 nanoparticles on titanium (TiO 2 /Ti) or conductive glass support (TiO 2 /ITO) seem to be effective for charge carrier transference on TiO 2 surface favouring the formation of ·OH radicals and consequently, the oxidation of molecules. In contrast, thermal TiO 2 electrodes prepared by annealing of titanium (Ti) present better properties for charge carrier separation as a consequence of the application of a potential bias. Despite reducing charge carrier recombination by applying an electric potential bias, the activity of thermal electrodes remains lower than that of P25-particulate electrodes. TiO 2 structure of P25-particulate electrodes does not completely allow developing a potential gradient. However, their adequate TiO 2 layer characteristics for charge carrier transfer lead to a reduction in charge carrier recombination making up for the lack of charge carrier separation when applying an electric potential bias. TiO 2 /Ti showed the highest values of activity. Therefore, the combination of the suitable TiO 2 surface properties for charge carrier transfer with an adequate conductive support seems to increase the properties of the electrode for allowing charge carrier separation. The scaling-up calculations for a TiO 2 /ITO electrode do lead to good estimations of the activity and photocurrent of larger electrodes since this photoanode made from ITO as conductive support does not seem to be significantly affected by the applied potential bias

  3. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation

    Directory of Open Access Journals (Sweden)

    Tzia Ming Onn

    2018-03-01

    Full Text Available Atomic layer deposition (ALD offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker films. By contrast, ALD films in porous materials rarely need to be more than 1 nm thick. The elimination of diffusion gradients, efficient use of precursors, and ligand removal with less reactive precursors are the major factors that need to be controlled. In this review, criteria will be outlined for the successful use of ALD in porous materials. Examples of opportunities for using ALD to modify heterogeneous catalysts and SOFC electrodes will be given.

  4. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor

    Science.gov (United States)

    Li, Li; Qin, Zong-Yi; Wang, Ling-Feng; Liu, Hong-Jin; Zhu, Mei-Fang

    2010-09-01

    The partial coverage of manganese oxide (MnO2) particles was achieved on the surfaces of multi-walled carbon nanotubes (MWCNTs) through a facile hydrothermal process. These particles were demonstrated to be alpha-manganese dioxide (α-MnO2) nanocrystallites, and exhibited the appearance of the whisker-shaped crystals with the length of 80-100 nm. In such a configuration, the uncovered CNTs in the nanocomposite acted as a good conductive pathway and the whisker-shaped MnO2 nanocrystallites efficiently increased the contact of the electrolyte with the active materials. Thus, the highest specific capacitance of 550 F g-1 was achieved using the resulting nanocomposites as the supercapacitor electrode. In addition, the enhancement of the capacity retention was observed, with the nanocomposite losing only 10% of the maximum capacity after 1,500 cycles.

  5. A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Z.B., E-mail: zbwen@jxnu.edu.cn [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Yu, F. [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province (China); New Energy and Material Laboratory (NEML), Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai 200433 (China); You, T.; Zhu, L. [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Zhang, L., E-mail: lzhang@jxnu.edu.cn [College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022 (China); Wu, Y.P., E-mail: wuyp@fudan.edu.cn [College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province (China); New Energy and Material Laboratory (NEML), Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai 200433 (China)

    2016-02-15

    Highlights: • A core–shell structured NiO@CNTs nanocomposite is synthesized by a simple hydrothermal method. • The CNTs core effectively improves the capacitance, rate and cycling performance of NiO. • A supercapacitor is assembled when activated carbon is used as the negative electrode. • The supercapacitor presents an energy density up to 52.6 Wh kg{sup −1}. - Abstract: A nanocomposite of carbon nanotubes coated with nickel oxide was prepared by a simple hydrothermal method. The structure, morphology and electrochemical performance of the nanocomposite were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, electrochemical tests including cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy, respectively. It presents the highest specific capacitance of 1844 F g{sup −1} at 1 A g{sup −1} and 1145 F g{sup −1} at current density of 10 A g{sup −1} with 88.9% (at 1 A g{sup −1}) capacitance retention after 1000 cycles. The specific capacitance of the nanocomposite is almost double of that of the virginal NiO (972 F g{sup −1} at 1 A g{sup −1}). Its cycling behavior is also very good. When combined with activated carbon as the negative electrode, the energy density can be up to 52.6 Wh kg{sup −1}. Such good electrochemical behavior indicates that the nanocomposite is a promising electrode material for supercapacitors.

  6. Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications.

    Science.gov (United States)

    Garrett, David J; Ganesan, Kumaravelu; Stacey, Alastair; Fox, Kate; Meffin, Hamish; Prawer, Steven

    2012-02-01

    Diamond is well known to possess many favourable qualities for implantation into living tissue including biocompatibility, biostability, and for some applications hardness. However, conducting diamond has not, to date, been exploited in neural stimulation electrodes due to very low electrochemical double layer capacitance values that have been previously reported. Here we present electrochemical characterization of ultra-nanocrystalline diamond electrodes grown in the presence of nitrogen (N-UNCD) that exhibit charge injection capacity values as high as 163 µC cm(-2) indicating that N-UNCD is a viable material for microelectrode fabrication. Furthermore, we show that the maximum charge injection of N-UNCD can be increased by tailoring growth conditions and by subsequent electrochemical activation. For applications requiring yet higher charge injection, we show that N-UNCD electrodes can be readily metalized with platinum or iridium, further increasing charge injection capacity. Using such materials an implantable neural stimulation device fabricated from a single piece of bio-permanent material becomes feasible. This has significant advantages in terms of the physical stability and hermeticity of a long-term bionic implant.

  7. Optimized spherical manganese oxide-ferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Zhu, Jian; Tang, Shaochun; Vongehr, Sascha; Xie, Hao; Meng, Xiangkang

    2015-09-01

    Inexpensive MnO2 is a promising material for supercapacitors (SCs), but its application is limited by poor electrical conductivity and low specific surface area. We design and fabricate hierarchical MnO2-based ternary composite nanostructures showing superior electrochemical performance via doping with electrochemically active Fe3O4 in the interior and electrically conductive SnO2 nanoparticles in the surface layer. Optimization composition results in a MnO2-Fe3O4-SnO2 composite electrode material with 5.9 wt.% Fe3O4 and 5.3 wt.% SnO2, leading to a high specific areal capacitance of 1.12 F cm-2 at a scan rate of 5 mV s-1. This is two to three times the values for MnO2-based binary nanostructures at the same scan rate. The low amount of SnO2 almost doubles the capacitance of porous MnO2-Fe3O4 (before SnO2 addition), which is attributed to an improved conductivity and remaining porosity. In addition, the optimal ternary composite has a good rate capability and an excellent cycling performance with stable capacitance retention of ˜90% after 5000 charge/discharge cycles at 7.5 mA cm-2. All-solid-state SCs are assembled with such electrodes using polyvinyl alcohol/Na2SO4 electrolyte. An integrated device made by connecting two identical SCs in series can power a light-emitting diode indicator for more than 10 min.

  8. High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application

    Science.gov (United States)

    Chang, Yu-Chung; Chen, Jian-Yu; Kabtamu, Daniel Manaye; Lin, Guan-Yi; Hsu, Ning-Yih; Chou, Yi-Sin; Wei, Hwa-Jou; Wang, Chen-Hao

    2017-10-01

    A simple method for preparing CO2-activated graphite felt as an electrode in a vanadium redox flow battery (VRFB) was employed by the direct treatment in a CO2 atmosphere at a high temperature for a short period. The CO2-activated graphite felt demonstrates excellent electrochemical activity and reversibility. The VRFB using the CO2-activated graphite felts in the electrodes has coulombic, voltage, and energy efficiencies of 94.52%, 88.97%, and 84.15%, respectively, which is much higher than VRFBs using the electrodes of untreated graphite felt and N2-activated graphite felt. The efficiency enhancement was attributed to the higher number of oxygen-containing functional groups on the graphite felt that are formed during the CO2-activation, leading to improving the electrochemical behaviour of the resultant VRFB.

  9. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Xue, Rong; Yan, Jingwang; Jiang, Liang; Yi, Baolian

    2015-01-01

    A lithium titanate (Li 4 Ti 5 O 12 )/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H 2 /Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li 4 Ti 5 O 12 particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g −1 at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg −1 and 1.5 kW kg −1 , respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li 4 Ti 5 O 12 /graphene composite was fabricated with a one-pot sol–gel method. • The Li 4 Ti 5 O 12 /graphene composite showed a reduced aggregation and an improved homogeneity. • The Li 4 Ti 5 O 12 /graphene based hybrid supercapacitor exhibited higher energy and power densities

  10. Polyaniline integrated carbon nanohorn: A superior electrode materials for advanced energy storage

    Directory of Open Access Journals (Sweden)

    S. Maiti

    2014-12-01

    Full Text Available Fiber-like polyaniline (PANI/carbon nanohorn (CNH composites (PACN composites were prepared as electrode materials for supercapacitor by simple method that involves in-situ polymerization of aniline in the presence of CNH in acidic (HCl medium with noteworthy electrochemical performances. Thus, the prepared PACN composites show high specific capacitance value of ≈ 834 F/g at 5 mV/s scan rate compared to ≈ 231 F/g for pure PANI and CNH (≈ 145 F/g at same scan rate of 5 mV/s. CNHs are homogeneously dispersed throughout the matrix and coated successfully. Thus, it provides more active sites for nucleation and electron transfer path. In addition, the composites show high electrical conductivity in the order of ≈ 6.7•10–2 S•cm–1 which indicates the formation of continuous interconnected conducting network path in the PACN composites. Morphological study of the PACN composites was carried out by high resolution transmission electron microscopy (HRTEM and field emission scanning electron microscopy (FESEM.

  11. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    Science.gov (United States)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  12. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials

    International Nuclear Information System (INIS)

    Wang, Yadong; Zaghib, K.; Guerfi, A.; Bazito, Fernanda F.C.; Torresi, Roberto M.; Dahn, J.R.

    2007-01-01

    Using accelerating rate calorimetry (ARC), the reactivity between six ionic liquids (with and without added LiPF 6 ) and charged electrode materials is compared to the reactivity of standard carbonate-based solvents and electrolytes with the same electrode materials. The charged electrode materials used were Li 1 Si, Li 7 Ti 4 O 12 and Li 0.45 CoO 2 . The experiments showed that not all ionic liquids are safer than conventional electrolytes/solvents. Of the six ionic liquids tested, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) shows the worst safety properties, and is much worse than conventional electrolyte. 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) and 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI) show similar reactivity to carbonate-based electrolyte. The three ionic liquids 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMI-TFSI), 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide (Pp14-TFSI) and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (TMBA-TFSI) show similar reactivity and are much safer than the conventional carbonate-based electrolyte. A comparison of the reactivity of ionic liquids with common anions and cations shows that ionic liquids with TFSI - are safer than those with FSI - , and liquids with EMI + are worse than those with BMMI + , Py13 + , Pp14 + and TMBA +

  13. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    Science.gov (United States)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  14. Symmetric Supercapacitor Electrodes from KOH Activation of Pristine, Carbonized, and Hydrothermally Treated Melia azedarach Stones.

    Science.gov (United States)

    Moreno-Castilla, Carlos; García-Rosero, Helena; Carrasco-Marín, Francisco

    2017-07-04

    Waste biomass-derived activated carbons (ACs) are promising materials for supercapacitor electrodes due to their abundance and low cost. In this study, we investigated the potential use of Melia azedarach (MA) stones to prepare ACs for supercapacitors. The ash content was considerably lower in MA stones (0.7% ash) than that found in other lignocellulosic wastes. ACs were prepared by KOH activation of pristine, carbonized, and hydrothermally-treated MA stones. The morphology, composition, surface area, porosity, and surface chemistry of the ACs were determined. Electrochemical measurements were carried out in three- and two-electrode cells, 3EC and 2EC, respectively, using 1 M H₂SO₄ as the electrolyte. The highest capacitance from galvanostatic charge-discharge (GCD) in 2EC ranged between 232 and 240 F·g -1 at 1 A·g -1 . The maximum energy density reached was 27.4 Wh·kg -1 at a power density of 110 W·kg -1 . Electrochemical impedance spectroscopy (EIS) revealed an increase in equivalent series resistance (ESR) and charge transfer resistance (R CT ) with greater ash content. Electrochemical performance of MA stone-derived ACs was compared with that of other ACs described in the recent literature that were prepared from different biomass wastes and results showed that they are among the best ACs for supercapacitor applications.

  15. One-dimensional nanostructured materials for lithium-ion battery and supercapacitor electrodes

    Science.gov (United States)

    Chan, Candace Kay

    The need for improved electrochemical storage devices has necessitated research on new and advanced electrode materials. One-dimensional nanomaterials such as nanowires, nanotubes, and nanoribbons, can provide a unique opportunity to engineer electrochemical devices to have improved electronic and ionic conductivity as well as electrochemical and structural transformations. Silicon and germanium nanowires (NWs) were studied as negative electrode materials for lithiumion batteries because of their ability to alloy with large amounts of lithium, leading to 4-10 times higher specific capacities than the graphite standard. These nanowires could be grown vertically off of metallic current collector substrates using the gold-catalyzed vapor-liquid-solid synthesis. Electrochemical measurements of the SiNWs showed that capacities greater than 3,500 mAh/g could be obtained for tens of cycles, while hundreds of cycles could be obtained at lower capacities. As opposed to bulk Si, the SiNWs were observed to maintain their morphology during cycling and did not pulverize due to the large volume changes. Detailed TEM and XRD characterization showed that the SiNWs became amorphous during the first lithiation (charge) and formed a two-phase region between crystalline Si and amorphous Li xSi. Afterwards, the SiNWs remained amorphous and subsequent reaction was through a single-phase cycling of amorphous Si. The good cycling behavior compared to bulk and micron-sized Si particles was attributed to the nanowire morphology and electrode design. The surface chemistry and solid-electrolyte interphase (SEI) were studied using XPS as a function of charge and discharge potential. The common reduction productions expected in the electrolyte (1 M LiPF6 in 1:1 EC/DEC) were observed, with the main component being Li2CO3. The morphology of the SEI was found to change at different potentials, indicating a dynamic process involving deposition, dissolution, and re-deposition on the SiNWs. Longterm

  16. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

    KAUST Repository

    Yates, Matthew D.; Logan, Bruce E.

    2014-01-01

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.

  17. Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

    KAUST Repository

    Yates, Matthew D.

    2014-07-30

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.

  18. Utilization of actinide as cell active materials. JAERI's nuclear research promotion program, H10-034-1. Contract research

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamamura, Tomoo; Watanabe, Nobutaka; Umekita, Satoshi

    2002-03-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system and some uranium complexes in the polar aprotic solvents can be utilized as an active material of the redox flow battery for the electric power storage. Moreover, A new actinide redox battery is proposed in the present article: the galvanic cell is expressed by Electrode(-) |An 3+ , An 4+ | |AnO 2 + , AnO 2 2+ | Electrode(+). The actinide batteries are expected to have more excellent charge and discharge performance than the current vanadium battery because of the great similarity of chemical species in the each redox couple. The standard rate constants and formal potential of Np(VI)/Np(V) and Np(IV)/Np(III) couples were determined by the cyclic voltammetry and the neptunium battery was demonstrated. For the development of uranium redox flow battery, the redox reaction mechanisms and redox potentials of uranium -diketones including new -tetraketones were elucidated and it was found the open circuit voltage is increased with the acid dissociation constant of the ligand. (author)

  19. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  20. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m2 g-1) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g-1 at 1.0 A g-1 in 0.5 M Na2SO4; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g-1 at 11 A g-1). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  1. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  2. Compressed multiwall carbon nanotube composite electrodes provide enhanced electroanalytical performance for determination of serotonin

    International Nuclear Information System (INIS)

    Fagan-Murphy, Aidan; Patel, Bhavik Anil

    2014-01-01

    Serotonin (5-HT) is an important neurochemical that is present in high concentrations within the intestinal tract. Carbon fibre and boron-doped diamond based electrodes have been widely used to date for monitoring 5-HT, however these electrodes are prone to fouling and are difficult to fabricate in certain sizes and geometries. Carbon nanotubes have shown potential as a suitable material for electroanalytical monitoring of 5-HT but can be difficult to manipulate into a suitable form. The fabrication of composite electrodes is an approach that can shape conductive materials into practical electrode geometries suitable for biological environments. This work investigated how compression of multiwall carbon nanotubes (MWCNTs) epoxy composite electrodes can influence their electroanalytical performance. Highly compressed composite electrodes displayed significant improvements in their electrochemical properties along with decreased internal and charge transfer resistance, reproducible behaviour and improved batch to batch variability when compared to non-compressed composite electrodes. Compression of MWCNT epoxy composite electrodes resulted in an increased current response for potassium ferricyanide, ruthenium hexaammine and dopamine, by preferentially removing the epoxy during compression and increasing the electrochemical active surface of the final electrode. For the detection of serotonin, compressed electrodes have a lower limit of detection and improved sensitivity compared to non-compressed electrodes. Fouling studies were carried out in 10 μM serotonin where the MWCNT compressed electrodes were shown to be less prone to fouling than non-compressed electrodes. This work indicates that the compression of MWCNT carbon-epoxy can result in a highly conductive material that can be moulded to various geometries, thus providing scope for electroanalytical measurements and the production of a wide range of analytical devices for a variety of systems

  3. Analysis of the dynamic behavior of porous nickel electrodes in alkaline solutions

    International Nuclear Information System (INIS)

    Real, Silvia G; Visintin, Arnaldo; Castro, Elida B

    2004-01-01

    The nickel electrode is important for its electrocatalytic properties, when it is used in water electrolysis, and for use as a positive terminal in alkaline nickel-cadmium, nickel-iron, nickel-zinc, nickel-hydrogen and nickel-metal hydride batteries. Since there are many factors related to the functioning of these batteries that have still not been clarified, such as the memory effect associated with the change in structure of the nickel hydroxide and the phenomenon of 'battery sudden death', that produce serious problems mostly in spaces uses, this work discusses the dynamic behavior of the porous nickel hydroxide electrode. This electrode possesses outstanding properties such as high power density, good cyclability and elevated specific energy, which make it unique for the above-mentioned applications. The electrochemical storage of energy in this electrode is based on the reversible characteristics of nickel hydroxide/oxhydroxide redox coupling. The reversibility of the process is an important factor in battery materials. In the case of the Ni oxide, during the electrode discharge H + is inserted and this process inverts during the charging. This work presents the results obtained with the use of impedance spectroscopy for different discharge states of the electrode material in order to correlate its electrochemical properties according to the development of physical chemical models. These models include the charging and discharging processes, the process of proton diffusion in the solid and the porous nature of the material. Knowledge about the functioning of the electrode material is obtained by adjusting the experimental data according to the model and the parametric identification to determine values associated with such variables as area of active material, diffusion coefficient of the H + , conductivity of the solid as a function of the discharge state and kinetic constants of the charge transfer process (CW)

  4. Carbon: The Ultimate Electrode Choice for Widely Distributed Polymer Solar Cells

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Madsen, Morten Vesterager

    2014-01-01

    -, indium tin oxide (ITO)-, and silver-free solar cells in a fully packaged form using only roll-to-roll processing is reported. Replacing silver with carbon as electrode material signifi cantly lowers the manufacturing cost and makes the organic photovoltaic (OPV) modules environmentally safe while...... retaining their fl exibility, active area effi ciency, and stability. The substitution of silver with carbon does not affect the roll-to-roll manufacturing of the modules and allows for the same fast printing and coating. The use of carbon as electrode material is one step closer to the wide release of low...

  5. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  6. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    Science.gov (United States)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  7. Interphase evolution at two promising electrode materials for Li-ion batteries: LiFePO4 and LiNi1/2 Mn1/2O2.

    Science.gov (United States)

    Dupré, Nicolas; Cuisinier, Marine; Martin, Jean-Frederic; Guyomard, Dominique

    2014-07-21

    The present review reports the characterization and control of interfacial processes occurring on olivine LiFePO(4) and layered LiNi(1/2) Mn(1/2)O(2), standing here as model compounds, during storage and electrochemical cycling. The formation and evolution of the interphase created by decomposition of the electrolyte is investigated by using spectroscopic tools such as magic-angle-spinning nuclear magnetic resonance ((7)Li,(19)F and (31)P) and electron energy loss spectroscopy, in parallel to X-ray photoelectron spectroscopy, to quantitatively describe the interphase and unravel its architecture. The influence of the pristine surface chemistry of the active material is carefully examined. The importance of the chemical history of the surface of the electrode material before any electrochemical cycling and the strong correlation between interface phenomena, the formation/evolution of an interphase, and the electrochemical behavior appear clearly from the use of these combined characterization probes. This approach allows identifying interface aging and failure mechanisms. Different types of surface modifications are then investigated, such as intrinsic modifications upon aging in air or methods based on the use of additives in the electrolyte or carbon coatings on the surface of the active materials. In each case, the species detected on the surface of the materials during storage and cycling are correlated with the electrochemical performance of the modified positive electrodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  9. Perovskite electrodes and method of making the same

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  10. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    Science.gov (United States)

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-08

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Lee, Chang Woo

    2011-01-01

    Highlights: → A novel attempt of Super P carbon black as an anode active material for lithium-ion batteries. → The first discharge capacity was approximately 1256 mAh g -1 and at the end of 20th cycling the capacity was 610 mAh g -1 at 0.1 C rate. → Coulombic efficiency of Super P carbon black electrode was maintained about 84% at the end of cycling. - Abstract: A new approach to investigate upon the electrochemical properties of Super P carbon black anode material is attempted and compared with conventional mesophase pitch-based carbon fibers (MPCFs) anode material for lithium-ion batteries. The prepared Super P carbon black electrodes are characterized using transmission electron microscope (TEM). The assembled 2032-type coin cells are electrochemically characterized by ac impedance spectroscopic and cyclic voltammetric methods. The electrochemical performance of charge and discharge was analyzed using a battery cycler at 0.1 C rate and cut-off potentials of 1.20 and 0.01 V vs. Li/Li + . The electrochemical test illustrates that the discharge capacity corresponding to Li intercalation into the Super P carbon black electrode is higher and coulombic efficiency is maintained approximately 84% at the end of the 20th cycling at room temperature.

  12. A review of laser electrode processing for development and manufacturing of lithium-ion batteries

    Science.gov (United States)

    Pfleging, Wilhelm

    2018-02-01

    Laser processes for cutting, annealing, structuring, and printing of battery materials have a great potential in order to minimize the fabrication costs and to increase the electrochemical performance and operational lifetime of lithium-ion cells. Hereby, a broad range of applications can be covered such as micro-batteries, mobile applications, electric vehicles, and stand-alone electric energy storage devices. Cost-efficient nanosecond (ns)-laser cutting of electrodes was one of the first laser technologies which were successfully transferred to industrial high-energy battery production. A defined thermal impact can be useful in electrode manufacturing which was demonstrated by laser annealing of thin-film electrodes for adjusting of battery active crystalline phases or by laser-based drying of composite thick-film electrodes for high-energy batteries. Ultrafast or ns-laser direct structuring or printing of electrode materials is a rather new technical approach in order to realize three-dimensional (3D) electrode architectures. Three-dimensional electrode configurations lead to a better electrochemical performance in comparison to conventional 2D one, due to an increased active surface area, reduced mechanical tensions during electrochemical cycling, and an overall reduced cell impedance. Furthermore, it was shown that for thick-film composite electrodes an increase of electrolyte wetting could be achieved by introducing 3D micro-/nano-structures. Laser structuring can turn electrodes into superwicking. This has a positive impact regarding an increased battery lifetime and a reliable battery production. Finally, laser processes can be up-scaled in order to transfer the 3D battery concept to high-energy and high-power lithium-ion cells.

  13. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  14. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution

    International Nuclear Information System (INIS)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-01-01

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi 5 composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi 5 particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi 5 coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol -1 for the Ni-Co-LaNi 5 , Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi 5 proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi 5 is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface

  15. Modelling porous active layer electrodes of proton exchange membrane fuel cells; Modelisation des couches actives d'electrodes volumiques de piles a combustible a membrane echangeuse de protons

    Energy Technology Data Exchange (ETDEWEB)

    Bultel, Yann

    1997-07-01

    This work focusses on the modeling of mass, charge and heat transfer in the active layers of the volume electrodes of proton exchange membrane fuel cells (PEMFC). A first part describes the structure of fuel cells and the physico-chemical processes taking place at the electrodes. An analysis of the classical models encountered in the literature shows that they all assume that the electro-catalysts is uniformly distributed in a plane or in volume. In a second part, the modeling of mass and charge transport phenomena has been carried out with a numerical calculation software which uses the finite-elements method and which allows to take into consideration the discrete distribution of the catalyst in nano-particulates. The simulations show the limitations of the catalyst use because of the diffusion and ionic ohmic drop both at the electrolyte and particulates scale. In order to improve the modeling of PEMFC fuel cells, the classical models have been modified to consider these local contributions. They require only simple numerical methods, like the finite-differences one. When applied to the oxygen reduction at the cathode or to the hydrogen oxidation at the anode, these models allow to determine the kinetics parameters (exchange current densities and slopes of the Tafel lines) after correction of the active layer diffusion. A modeling of the heat transfers at the active layers scale is proposed. The model takes into account the convective heat transfers between the solid phases and the gas, the electro-osmosis water transfer, and the generation of heat by joule effect and by the electrochemical reactions. Finally, the last chapter presents a study of the reaction mechanisms in the case of porous electrodes using the impedances method. Numerical and analytical models have been developed to calculate the electrode impedances and are applied to the study of oxygen reduction and hydrogen oxidation. (J.S.)

  16. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  17. Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance

    International Nuclear Information System (INIS)

    Wang, Zhuo; Ma, Chunyan; Wang, Hailin; Liu, Zonghuai; Hao, Zhengping

    2013-01-01

    Graphical abstract: Fe 2 O 3 Graphene nanocomposite was synthesized in a simple hydrothermal way by using urea to adjust the system pH value, by this method the reduction of graphite oxide and the formation of Fe 2 O 3 nanocomposite are finished in one step. The specific capacitance of the Fe 2 O 3 Graphene electrode reached 226 F/g at a discharge current density of 1 A g –1 . Highlights: ► The Fe 2 O 3 –graphene nanocomposite was obtained by friendly method with urea in one step. ► The addition of Fe 2 O 3 composites has positive effect on the electrical performance of the graphene nanosheets. ► The specific capacitance of the Fe 2 O 3 –graphene electrode was 226 F/g at a discharge current density of 1 A g −1 . -- Abstract: Fe 2 O 3 –graphene nanocomposite with high capacitive properties had been prepared friendly and facilely by hydrothermal method in one-step. The morphology and structure of the obtained material were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and transmission electron microscope (TEM) techniques. It was revealed by TEM images that Fe 2 O 3 nanoparticles grow well on the surface of graphene and the formation of Fe 2 O 3 nanoparticles hinders the aggregation of graphene (reduced graphene oxide, namely, RGO). Electrochemical properties of the synthesized materials were characterized by serials of electrochemical measurements in 1 M Na 2 SO 4 electrolyte. Fe 2 O 3 –graphene nanocomposite electrode show higher specific capacitance than graphene, indicating an accelerative effect of Fe 2 O 3 and graphene on improving the electrochemical performance of the electrode. The specific capacitance of Fe 2 O 3 –graphene nanocomposite is 226 F/g at a current density of 1 A/g. These attractive results indicate it is possible to seek and develop the promising, environmentally benign and commercial electrodes material based on Fe 2 O 3 and graphene

  18. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li Li; Qin Zongyi, E-mail: phqin@dhu.edu.cn; Wang Lingfeng; Liu Hongjin; Zhu Meifang [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering (China)

    2010-09-15

    The partial coverage of manganese oxide (MnO{sub 2}) particles was achieved on the surfaces of multi-walled carbon nanotubes (MWCNTs) through a facile hydrothermal process. These particles were demonstrated to be alpha-manganese dioxide ({alpha}-MnO{sub 2}) nanocrystallites, and exhibited the appearance of the whisker-shaped crystals with the length of 80-100 nm. In such a configuration, the uncovered CNTs in the nanocomposite acted as a good conductive pathway and the whisker-shaped MnO{sub 2} nanocrystallites efficiently increased the contact of the electrolyte with the active materials. Thus, the highest specific capacitance of 550 F g{sup -1} was achieved using the resulting nanocomposites as the supercapacitor electrode. In addition, the enhancement of the capacity retention was observed, with the nanocomposite losing only 10% of the maximum capacity after 1,500 cycles.

  19. Manufacturing process for electrodes for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Tirelli, M.G.; Hecquet, R.

    1987-01-01

    A manufacturing proces for electrodes for ionizing radiation detectors, particularly electrodes for X-ray multidetectors, is proposed. It consists of electrodepositing at least one layer of an electrically conducting material on at least one side of a relatively flat plate. A ductile material is used to form the conducting layer. The assembly formed by the plate covered by the ductile conducting material is subjected to pressing to crush the ductile conducting material at least in the zones where the assembly formed by the plate and the covering material has a total thickness superior to a constant thickness desired for the electrode [fr

  20. Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage

    Science.gov (United States)

    Liu, Tianyuan; Kavian, Reza; Chen, Zhongming; Cruz, Samuel S.; Noda, Suguru; Lee, Seung Woo

    2016-02-01

    Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering that the carbon spheres were obtained in an aqueous glucose solution and no toxic or hazardous reagents were used, this process opens up a green and sustainable method for designing high performance, environmentally-friendly energy storage devices.Biomass derived carbon materials have been widely used as electrode materials; however, in most cases, only electrical double layer capacitance (EDLC) is utilized and therefore, only low energy density can be achieved. Herein, we report on redox-active carbon spheres that can be simply synthesized from earth-abundant glucose via a hydrothermal process. These carbon spheres exhibit a specific capacity of ~210 mA h gCS-1, with high redox potentials in the voltage range of 2.2-3.7 V vs. Li, when used as positive electrode in lithium cells. Free-standing, flexible composite films consisting of the carbon spheres and few-walled carbon nanotubes deliver high specific capacities up to ~155 mA h gelectrode-1 with no obvious capacity fading up to 10 000 cycles, proposing to be promising positive electrodes for lithium-ion batteries or capacitors. Furthermore, considering

  1. Dilute NiO/carbon nanofiber composites derived from metal organic framework fibers as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Yang, Feng; Hu, Hongru; Lee, Sungsik; Wang, Yue; Zhao, Hairui; Zeng, Dehong; Zhou, Biao; Hao, Shijie

    2017-01-01

    A new type of carbon nanofiber (CNF) dominated electrode materials decorated with dilute NiO particles (NiO/CNF) has been in situ fabricated by direct pyrolysis of Ni, Zn-containing metal organic framework fibers, which are skillfully constructed by assembling different proportional NiCl2·6H2O and Zn(Ac)2·2H2O with trimesic acid in the presence of N,N-dimethylformamide. With elegant combination of advantages of CNF and evenly dispersed NiO particles, as well as successful modulation of conductivity and porosity of final composites, our NiO/CNF composites display well-defined capacitive features. A high capacitance of 14926 F g–1 was obtained in 6 M KOH electrolyte when the contribution from 0.43 wt% NiO was considered alone, contributing to over 35% of the total capacitance (234 F g–1 ). This significantly exceeds its theoretical specific capacitance of 2584 F g–1. It has been established from the Ragone plot that a largest energy density of 33.4 Wh kg–1 was obtained at the current density of 0.25 A g–1. Furthermore, such composite electrode materials show good rate capability and outstanding cycling stability up to 5000 times (only 10% loss). The present study provides a brand-new approach to design a high capacitance and stable supercapacitor electrode and the concept is extendable to other composite materials. Keywords: Metal organic framework; Nickel oxide; Carbon nanofiber; In situ synthesis; Capacitance

  2. Photosensitive-polyimide based method for fabricating various neural electrode architectures

    Directory of Open Access Journals (Sweden)

    Yasuhiro X Kato

    2012-06-01

    Full Text Available An extensive photosensitive polyimide (PSPI-based method for designing and fabricating various neural electrode architectures was developed. The method aims to broaden the design flexibility and expand the fabrication capability for neural electrodes to improve the quality of recorded signals and integrate other functions. After characterizing PSPI’s properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes. The fabricated neural electrodes were an electrocorticogram electrode, a mesh intracortical electrode with a unique lattice-like mesh structure to fixate neural tissue, and a guide cannula electrode with recording microelectrodes placed on the curved surface of a guide cannula as a microdialysis probe. In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time. These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

  3. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    OpenAIRE

    Yingzhi Li; Qinghua Zhang; Junxian Zhang; Lei Jin; Xin Zhao; Ting Xu

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific ca...

  4. Hierarchically porous carbon nanosheets derived from Moringa oleifera stems as electrode material for high-performance electric double-layer capacitors

    Science.gov (United States)

    Cai, Yijin; Luo, Ying; Dong, Hanwu; Zhao, Xiao; Xiao, Yong; Liang, Yeru; Hu, Hang; Liu, Yingliang; Zheng, Mingtao

    2017-06-01

    A facile one-step pyrolysis route for the synthesis of hierarchically porous carbon nanosheets (PCNSs) derived from Moringa oleifera stems (MOSs) is reported, in which no post-activation-process in needed. The as-prepared PCNSs possesses unique porous nanosheet morphology with high specific surface area of ca. 2250 m2 g-1, large pore volume of ca. 2.3 cm3 g-1, appropriate porosity as well as heteroatom doping (N and O), endowing outstanding electrochemical properties as electrode material for high-performance supercapacitors. The PCNS-based electrodes are investigated in various aqueous electrolytes including 1.0 M Na2SO4, 1.0 M H2SO4, and 6.0 M KOH. The PCNSs exhibit a maximum specific capacitance of ca. 283 F g-1 (0.5 A g-1), excellent rate capability (ca. 72% of capacitance retention even at an ultrahigh current density of 50 A g-1), and a tremendous long-term cycling stability in the three-electrode system. Moreover, the as-assembled PCNS-based symmetric supercapacitor shows a high energy density of ca. 25.8 Wh kg-1 (in 1.0 M Na2SO4 electrolyte) and remarkable long-term cycling stability (almost no capacitance fade in aqueous electrolytes), indicating the promising of the as-prepared PCNSs for electrochemical energy storage and conversion.

  5. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Opallo, Marcin, E-mail: mopallo@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland)

    2011-10-01

    Highlights: > We introduced ITO nanoparticulate films for enzyme immobilization. > The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. > The electrocatalytical current increase with the thickness of nanoparticulate film. > There is no difference in electrocatalytic current in the presence or absence of mediator. > The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 {mu}A cm{sup -2} seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm{sup -3} McIlvaine buffer (pH 4.8).

  6. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    International Nuclear Information System (INIS)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W.; Opallo, Marcin

    2011-01-01

    Highlights: → We introduced ITO nanoparticulate films for enzyme immobilization. → The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. → The electrocatalytical current increase with the thickness of nanoparticulate film. → There is no difference in electrocatalytic current in the presence or absence of mediator. → The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 μA cm -2 seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm -3 McIlvaine buffer (pH 4.8).

  7. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode.

    Science.gov (United States)

    Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju

    2006-03-01

    The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.

  8. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-10-15

    A facile method for fabrication of raspberry-like Au nanostructures (Au NRBs)-modified electrode by electrodeposition and its applications toward the electrocatalytic oxidation of methanol (MOR) in alkaline medium and oxygen reduction reaction (ORR) in both alkaline and acidic media are demonstrated. The Au NRBs are characterized by UV-Vis absorption spectra, SEM, X-ray diffraction, and electrochemical measurements. The growth of Au NRBs was monitored by recording the in-situ absorption spectral changes during electrodeposition using spectroelectrochemical technique. Here we systematically studied the MOR by varying several reaction parameters such as potential scan rate and methanol concentration. The electrocatalytic poisoning effect due to the MOR products are not observed at the Au NRBs-modified electrode. At the alkaline medium the Au NRBs-modified electrode shows the better catalytic activities toward the MOR and ORR when compared to the poly crystalline gold and bare glassy carbon electrodes. The Au NRBs-modified electrode is a promising and inexpensive electrode material for other electrocatalytic applications.Graphical AbstractRaspberry-like Au nanostructures modified electrode is prepared and used for electrocatalytic applications.

  9. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    R. Pietrzak; K. Jurewicz; P. Nowicki; K. Babel; H. Wachowska [A. Mickiewicz University, Poznan (Poland). Laboratory of Coal Chemistry and Technology

    2010-11-15

    The paper presents the results of a study on obtaining N-enriched active carbons from bituminous coal and on testing its use as an electrode material in supercapacitors. The coal was carbonised, activated with KOH and ammoxidised by a mixture of ammonia and air at the ratio 1:3 at 300{sup o}C or 350{sup o}C, at different stages of the production, that is, at those of precursor, carbonisate, and active carbon. The products were microporous N-enriched active carbon samples of well-developed surface area reaching from 1577 to 2510 m{sup 2}/g and containing 1.0 to 8.5 wt% of nitrogen. The XPS measurements have shown that in the active carbons enriched in nitrogen at the stage of precursor and at the stage of carbonisate, the dominant nitrogen species are the N-5 groups, while in the samples ammoxidised at the last stage of the treatment the dominant nitrogen species are the surface groups of imines and/or nitriles, probably accompanied by amines and amides. The paper reports the results of a comprehensive study of the effect of the structure and chemical composition of a series of active carbon samples of different properties on their capacity performance in water solutions of H{sub 2}SO{sub 4} or KOH, with the behaviour of positive and negative electrodes analysed separately. 33 refs., 7 figs., 8 tabs.

  10. Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials.

    Science.gov (United States)

    Song, Yanjie; Li, Zhu; Guo, Kunkun; Shao, Ting

    2016-08-25

    Hierarchically ordered mesoporous carbon/graphene (OMC/G) composites have been fabricated by means of a solvent-evaporation-induced self-assembly (EISA) method. The structures of these composites are characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and nitrogen adsorption-desorption at 77 K. These results indicate that OMC/G composites possess the hierarchically ordered hexagonal p6mm mesostructure with the lattice unit parameter and pore diameter close to 10 nm and 3 nm, respectively. The specific surface area of OMC/G composites after KOH activation is high up to 2109.2 m(2) g(-1), which is significantly greater than OMC after activation (1474.6 m(2) g(-1)). Subsequently, the resulting OMC/G composites as supercapacitor electrode materials exhibit an outstanding capacitance as high as 329.5 F g(-1) in 6 M KOH electrolyte at a current density of 0.5 A g(-1), which is much higher than both OMC (234.2 F g(-1)) and a sample made by mechanical mixing of OMC with graphene (217.7 F g(-1)). In addition, the obtained OMC/G composites display good cyclic stability, and the final capacitance retention is approximately 96% after 5000 cycles. These ordered mesopores in the OMC/G composites are beneficial to the accessibility and rapid diffusion of the electrolyte, while graphene in OMC/G composites can also facilitate the transport of electrons during the processes of charging and discharging owing to its high conductivity, thereby leading to an excellent energy storage performance. The method demonstrated in this work would open up a new route to design and develop graphene-based architectures for supercapacitor applications.

  11. Bacterial-cellulose-derived carbon nanofiber@MnO₂ and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density.

    Science.gov (United States)

    Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong

    2013-09-14

    A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biomimetic synthesis and characterization of the positive electrode material LiFePO4

    International Nuclear Information System (INIS)

    Li Peng; He Wen; Zhao Hongshi; Wang Shaopeng

    2009-01-01

    The biosurfactant is used as the template to synthesize lithium iron phosphate (LiFePO 4 ) precursor with the co-precipitation method and the microwave sintering method is used to prepare positive electrode material LiFePO 4 for the lithium ion battery. By using the Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and conductometer, the authors explored the influence of the microwave power on the structure and performance of the materials. The results the authors got have proved that good crystal and high conductivity values can be obtained from the LiFePO 4 powders which are processed 10 min under the microwave power of 300 W

  13. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  14. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 0 C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. (topical review)

  15. S-functionalized MXenes as electrode materials for Li-ion batteries

    KAUST Repository

    Zhu, Jiajie

    2016-09-03

    MXenes are promising electrode materials for Li-ion batteries because of their high Li capacities and cycling rates. We use density functional theory to investigate the structural and energy storage properties of Li decorated Zr2C and Zr2CX2 (X = F, O and S). We find for Zr2C and Zr2CS2 high Li specific capacities and low diffusion barriers. To overcome the critical drawbacks of the OH, F, and O groups introduced during the synthesis we propose substitution by S groups and demonstrate that an exchange reaction is indeed possible. Zr2CS2 shows a similar Li specific capacity as Zr2CO2 but a substantially reduced diffusion barrier. © 2016 Elsevier Ltd

  16. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.

    2014-01-01

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  17. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    Science.gov (United States)

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  18. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang

    2014-09-14

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  19. Results of the research on electrode and insulation wall material in fiscal 1977. Large scale technological development 'R and D on magneto hydrodynamic generation'; 1977 nendo denkyoku oyobi zetsuenheki zairyo ni kansuru kenkyu seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-01

    Results of research in fiscal 1977 were compiled concerning electrodes and insulation wall materials, the research conducted by the material working group of the magneto hydrodynamic (MHD) generation R and D liaison conference. Researches on trial manufacturing of duct materials for MHD generation were conducted for a Si{sub 3}N{sub 4}-MgO, Si{sub 3}N{sub 4}-Spinel, Spinel and Sialon based insulation wall material, MgO-BN based insulation wall material, tin oxide based electrode material, cold press ZrO{sub 2}-CeO{sub 2} and ZrO{sub 2}-Y{sub 2}O{sub 2} based electrode material, hot press hot hydrostatic pressure ZrO{sub 2}-CeO{sub 2} based electrode material, cermet based electrode material, etc. In the investigation and measurement of basic characteristics, these materials were put through various tests such as 1,300 degree C-300 hr-K{sub 2}SO{sub 4} immersion test, thermal shock resistance, thermal expansibility, oxidation resistance of oxide/nitride based materials. In addition, selection of materials for MHD generation, as well as the examination and degradation analysis of dynamic characteristics, was carried out by simulation of MHD generation, which provided data of various electrodes such as consumption, electrical characteristics (electrode lowering voltage, critical current, etc.) and thermal characteristics (surface temperature, heat flow velocity, etc.) (NEDO)

  20. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  1. Binder free MnO2/PIn electrode material for supercapacitor application

    Science.gov (United States)

    Purty, B.; Choudhary, R. B.; Kandulna, R.; Singh, R.

    2018-05-01

    Electrochemically stable MnO2/PIn nanocomposite was synthesized via in-situ chemical oxidative polymerization process. The structural and morphological properties were studied through FTIR and FESEM characterizing techniques. Sphere like PIn and MnO2 nanorods offers interacting surface for charge transfer action. The electrochemical properties were investigated through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopic (EIS) techniques. The significant enhancement in capacitance value with 95% coulombic efficiency and relatively low equivalent series resistance (ESR)˜0.4 Ω proved that MnO2/PIn nanocomposite is an excellent performer as an electrode material in the spectrum of supercapcitors and optoelectronic devices.

  2. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors

    OpenAIRE

    Domingo-García, M.; Fernández López, José Antonio; Almazán-Almazán, M.C.; López-Garzón, F.J.; Stoeckli, F.; Álvarez Centeno, Teresa

    2010-01-01

    A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g−1 in 2 M H2SO4 aqueous electrolyte and 98 F g−1 in the aprotic medium 1 M (C2H5)4NBF4/acetonitrile. Additionally, high performance has also been achieved at high current de...

  3. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte

    Science.gov (United States)

    Chen, Yujuan; Liu, Zhaoen; Sun, Li; Lu, Zhiwei; Zhuo, Kelei

    2018-06-01

    Nitrogen and sulfur co-doped graphene aerogel (NS-GA) is prepared by one-pot process. The as-prepared materials are investigated as supercapacitors electrodes in an ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EMIMBF4) electrolyte. The NS-GA is characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy scanning electron microscopy. The results show that the NS-GA has hierarchical porous structure. Electrochemical performance is investigated by cycle voltammetry and galvanostatic charge-discharge. Notably, the supercapacitor based on the NS-GA-5 possesses a maximum energy density of 100.7 Wh kg-1 at power density of 0.94 kW kg-1. The electrode materials also offer a large specific capacitance of 203.2 F g-1 at a current density of 1 A g-1 and the capacitance retention of NS-GA-5 is 90% after 3000 cycles at a scan rate of 2 A g-1. The NS-GA-5 with numerous advantages including low cost and remarkable electrochemical behaviors can be a promising electrode material for the application of supercapacitors.

  4. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  6. Symmetric Supercapacitor Electrodes from KOH Activation of Pristine, Carbonized, and Hydrothermally Treated Melia azedarach Stones

    Directory of Open Access Journals (Sweden)

    Carlos Moreno-Castilla

    2017-07-01

    Full Text Available Waste biomass-derived activated carbons (ACs are promising materials for supercapacitor electrodes due to their abundance and low cost. In this study, we investigated the potential use of Melia azedarach (MA stones to prepare ACs for supercapacitors. The ash content was considerably lower in MA stones (0.7% ash than that found in other lignocellulosic wastes. ACs were prepared by KOH activation of pristine, carbonized, and hydrothermally-treated MA stones. The morphology, composition, surface area, porosity, and surface chemistry of the ACs were determined. Electrochemical measurements were carried out in three- and two-electrode cells, 3EC and 2EC, respectively, using 1 M H2SO4 as the electrolyte. The highest capacitance from galvanostatic charge-discharge (GCD in 2EC ranged between 232 and 240 F·g−1 at 1 A·g−1. The maximum energy density reached was 27.4 Wh·kg−1 at a power density of 110 W·kg−1. Electrochemical impedance spectroscopy (EIS revealed an increase in equivalent series resistance (ESR and charge transfer resistance (RCT with greater ash content. Electrochemical performance of MA stone-derived ACs was compared with that of other ACs described in the recent literature that were prepared from different biomass wastes and results showed that they are among the best ACs for supercapacitor applications.

  7. Smart materials for energy storage in Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Ashraf E Abdel-Ghany

    2016-01-01

    Full Text Available Advanced lithium-ion batteries contain smart materials having the function of insertion electrodes in the form of powders with specific and optimized electrochemical properties. Different classes can be considered: the surface modified active particles at either positive or negative electrodes, the nano-composite electrodes and the blended materials. In this paper, various systems are described, which illustrate the improvement of lithium-ion batteries in term of specific energy and power, thermal stability and life cycling.

  8. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  9. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    Science.gov (United States)

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-04-24

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  10. Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials

    Science.gov (United States)

    Fan, Xin; Chen, Weiliang; Pang, Shuhua; Lu, Wei; Zhao, Yu; Liu, Zheng; Fang, Dong

    2017-12-01

    In the present work, asymmetric supercapacitors (ASCs) are assembled using a highly conductive N-doped nanocarbon (NDC) material derived from a polyaniline hydrogel as a cathode, and Ni foam covered with flower-like Co3O4 nanosheets (Co3O4-Ni) prepared from a zeolitic imidazolate metal-organic framework as a single precursor serves as a high gravimetric capacitance anode. At a current of 0.2 A g-1, the Co3O4-Ni electrode provides a gravimetric capacitance of 637.7 F g-1, and the NDC electrode provides a gravimetric capacitance of 359.6 F g-1. The ASC assembled with an optimal active material loading operates within a wide potential window of 0-1.1 V, and provides a high areal capacitance of 25.7 mF cm-2. The proposed ASC represents a promising strategy for designing high-performance supercapacitors.

  11. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    Science.gov (United States)

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  12. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    Science.gov (United States)

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  13. Variation sweep rate cyclic voltammetry on the capacitance electrode activated carbon/PVDF with polymer electrolyte

    Science.gov (United States)

    Rohmawati, L.; Setyarsih, W.; Nurjannah, T.

    2018-03-01

    Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.

  14. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  15. VS4 Nanoparticles Anchored on Graphene Sheets as a High-Rate and Stable Electrode Material for Sodium Ion Batteries.

    Science.gov (United States)

    Pang, Qiang; Zhao, Yingying; Yu, Yanhao; Bian, Xiaofei; Wang, Xudong; Wei, Yingjin; Gao, Yu; Chen, Gang

    2018-02-22

    The size and conductivity of the electrode materials play a significant role in the kinetics of sodium-ion batteries. Various characterizations reveal that size-controllable VS 4 nanoparticles can be successfully anchored on the surface of graphene sheets (GSs) by a simple cationic-surfactant-assisted hydrothermal method. When used as an electrode material for sodium-ion batteries, these VS 4 @GS nanocomposites show large specific capacity (349.1 mAh g -1 after 100 cycles), excellent long-term stability (84 % capacity retention after 1200 cycles), and high rate capability (188.1 mAh g -1 at 4000 mA g -1 ). A large proportion of the capacity was contributed by capacitive processes. This remarkable electrochemical performance was attributed to synergistic interactions between nanosized VS 4 particles and a highly conductive graphene network, which provided short diffusion pathways for Na + ions and large contact areas between the electrolyte and electrode, resulting in considerably improved electrochemical kinetic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode.

    Science.gov (United States)

    Zhang, Jia-Jia; Fan, Hao-Xiang; Dai, Xiao-Hu; Yuan, Shi-Jie

    2018-04-01

    Digested sludge, as the main by-product of the sewage sludge anaerobic digestion process, still contains considerable organic compounds. In this protocol, we report a facile method for preparing digested sludge-derived self-doped porous carbon material for high-performance supercapacitor electrodes via a sustainable pyrolysis/activation process. The obtained digested sludge-derived carbon material (HPDSC) exhibits versatile O-, N-doped hierarchical porous framework, high specific surface area (2103.6 m 2  g -1 ) and partial graphitization phase, which can facilitate ion transport, provide more storage sites for electrolyte ions and enhance the conductivity of active electrode materials. The HPDSC-based supercapacitor electrodes show favourable energy storage performance, with a specific capacitance of 245 F g -1 at 1.0 A g -1 in 0.5 M Na 2 SO 4 ; outstanding cycling stability, with 98.4% capacitance retention after 2000 cycles; and good rate performance (211 F g -1 at 11 A g -1 ). This work provides a unique self-doped three-dimensional hierarchical porous carbon material with a favourable charge storage capacity and at the same time finds a high value-added and environment-friendly strategy for disposal and recycling of digested sludge.

  17. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.

    Science.gov (United States)

    Pérez, Briza; Del Valle, Manel; Alegret, Salvador; Merkoçi, Arben

    2007-12-15

    Carbon materials (CMs), such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and carbon microparticles (CMPs) are used as doping materials for electrochemical sensors. The efficiency of these materials (either before or after acidic treatments) while being used as electrocatalysts in electrochemical sensors is discussed for beta-nicotinamide adenine dinucleotide (NADH) detection using cyclic voltammetry (CV). The sensitivity of the electrodes (glassy carbon (GC) and gold (Au)) modified with both treated and untreated materials have been deeply studied. The response efficiencies of the GC and Au electrodes modified with CNF and CMP, using dimethylformamide (DMF) as dispersing agent are significantly different due to the peculiar physical and chemical characteristics of each doping material. Several differences between the electrocatalytic activities of CMs modified electrodes upon NADH oxidation have been observed. The CNF film promotes better the electron transfer of NADH minimizing the oxidation potential at +0.352 V. Moreover higher currents for the NADH oxidation peak have been observed for these electrodes. The shown differences in the electrochemical reactivities of CNF and CMP modified electrodes should be with interest for future applications in biosensors.

  18. A Spectral Active Material Interference in the Electrical Conductivity of the Internal Electrolyte and the Potential Shift of the Ag/AgCl Electrode

    International Nuclear Information System (INIS)

    Yun, Myung Hee; Yeon, Jei Won; Hwang, Jae Sik; Song, Kyu Seok

    2009-01-01

    The Ag/AgCl electrode is a type of reference electrode, commonly used in electrochemical measurements, because it is simple and stable. For these reasons, the Ag/AgCl electrode has long been used to provide a reliable potential monitoring of ions in a solution. However, when a reference electrode is used in an aqueous solution containing a very low electrolyte for a long period of time, this could cause a considerable potential shift of the reference electrode due to a dilution of the internal electrolyte. If the potential of the reference electrode shifts, undesirable conditions may occur. Therefore, many studies have been applied to improve the long-term performance of the reference electrode. However, these attempts have not completely resolved the problem of an electrolyte dilution by the test solution. In the present study, we developed a creative technique to correct the concentration change of the internal electrolyte by a long-term exposure of the Ag/AgCl electrode in very dilute solutions. We measured the electrical conductivity and UV/VIS absorbance of the internal electrolyte. From these measurements, we observed the linear relationship between KCl concentration and the potential of the Ag/AgCl electrode. In order to accelerate the diffusion of the internal electrolyte into the test solution, an Ag/AgCl electrode with a tiny perforation was used. We confirmed the feasibility of the creative calibration technique

  19. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong [Dept. of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University,Seoul (Korea, Republic of)

    2015-05-15

    When fabricating a RuO{sub 2} electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO{sub 2} electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO{sub 2} electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO{sub 2} electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO{sub 2} electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc){sub 3} as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO{sub 2} electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments.

  20. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    International Nuclear Information System (INIS)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong

    2015-01-01

    When fabricating a RuO_2 electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO_2 electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO_2 electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO_2 electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO_2 electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc)_3 as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO_2 electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments