WorldWideScience

Sample records for active crustal deformation

  1. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  2. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    Science.gov (United States)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  3. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    Science.gov (United States)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  4. A Geodynamic Study of Active Crustal Deformation and Earthquakes in North China

    Science.gov (United States)

    Yang, Y.; Liu, M.

    2005-12-01

    North China is part of the Archaean Sino-Korean craton, yet today it is a region of intense crustal deformation and earthquakes, including 21 M >=7.0 events since 512 AD. More than half of the large events occurred within the Fen-Wei rift system surrounding the stable Ordos plateau; the largest events (M >=7.3) show a sequential southward migration along the rift. However, since 1695 the Fen-Wei rift has became seismically dormant, while seismicity seems having shifted eastward to the North China plain, marked by the 1996 Tangshan earthquake (M=7.8). We have developed a 3D viscoelastic geodynamic model to study the cause of seismicity and its spatial-temporal pattern in North China. Constrained by crustal kinematics from GPS and neotectonic data, the model shows high deviatoric stress in the North China crust, resulting mainly from compression of the expanding Tibetan Plateau and resistance from the stable Siberian block. Within North China seismicity is largely controlled by lateral heterogeneity of lithospheric structures, which explains the concentration of seismicity in the Fen-Wei rift. Our results show that stress triggering may have contributed to the sequential migration of large events along the rift, and the release and migration of stress and strain energy from these large events may partially explain the intense seismicity in the North China plain in the past 300 years. Comparing the predicted long-term spatial pattern of strain energy with seismic energy release provides some insights of potential earthquake risks in North China.

  5. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    Science.gov (United States)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  6. GPS-derived crustal deformation in Azerbaijan

    Science.gov (United States)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  7. Glacio-Seismotectonics: Ice Sheets, Crustal Deformation and Seismicity

    Science.gov (United States)

    Sauber, Jeanne; Stewart, Iain S.; Rose, James

    2000-01-01

    The last decade has witnessed a significant growth in our understanding of the past and continuing effects of ice sheets and glaciers on contemporary crustal deformation and seismicity. This growth has been driven largely by the emergence of postglacial rebound models (PGM) constrained by new field observations that incorporate increasingly realistic rheological, mechanical, and glacial parameters. In this paper, we highlight some of these recent field-based investigations and new PGMs, and examine their implications for understanding crustal deformation and seismicity during glaciation and following deglaciation. The emerging glacial rebound models outlined in the paper support the view that both tectonic stresses and glacial rebound stresses are needed to explain the distribution and style of contemporary earthquake activity in former glaciated shields of eastern Canada and Fennoscandia. However, many of these models neglect important parameters, such as topography, lateral variations in lithospheric strength and tectonic strain built up during glaciation. In glaciated mountainous terrains, glacial erosion may directly modulate tectonic deformation by resetting the orogenic topography and thereby providing an additional compensatory uplift mechanism. Such effects are likely to be important both in tectonically active orogens and in the mountainous regions of glaciated shields.

  8. Active crustal deformation of the El Salvador Fault Zone by integrating geodetic, seismological and geological data: application in seismic hazard assessment

    Science.gov (United States)

    Staller, A.; Benito, B.; Martínez-Díaz, J.; Hernández, D.; Hernández-Rey, R.

    2013-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90-100E direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  9. PIXEL: Japanese InSAR community for crustal deformation research

    Science.gov (United States)

    Furuya, M.; Shimada, M.; Ozawa, T.; Fukushima, Y.; Aoki, Y.; Miyagi, Y.; Kitagawa, S.

    2007-12-01

    In anticipation of the launch of ALOS (Advanced Land Observation Satellite) by JAXA (Japan Aerospace eXploration Agency), and in order to expand and bolster the InSAR community for crustal deformation research in Japan, a couple of scientists established a consortium, PIXEL, in November 2005 in a completely bottom-up fashion. PIXEL stands for Palsar Interferometry Consortium to Study our Evolving Land. Formally, it is a research contract between JAXA and Earthquake Research Institute (ERI), University of Tokyo. As ERI is a shared institute of the Japanese universities and research institutes, every scientist at all Japanese universities and institutes can participate in this consortium. The activity of PIXEL includes information exchange by mailing list, tutorial workshop for InSAR software, research workshop, and PALSAR data sharing. After the launch of ALOS, we have already witnessed several earthquakes and volcanic activities using PALSAR interferometry. We will briefly show and digest some of those observation results.

  10. Fluvial archives, a valuable record of vertical crustal deformation

    Science.gov (United States)

    Demoulin, A.; Mather, A.; Whittaker, A.

    2017-06-01

    The study of drainage network response to uplift is important not only for understanding river system dynamics and associated channel properties and fluvial landforms, but also for identifying the nature of crustal deformation and its history. In recent decades, geomorphic analysis of rivers has proved powerful in elucidating the tectonic evolution of actively uplifting and eroding orogens. Here, we review the main recent developments that have improved and expanded qualitative and quantitative information about vertical tectonic motions (the effects of horizontal deformation are not addressed). Channel long profiles have received considerable attention in the literature, and we briefly introduce basic aspects of the behaviour of bedrock rivers from field and numerical modelling perspectives, before describing the various metrics that have been proposed to identify the information on crustal deformation contained within their steady-state characteristics. Then, we review the literature dealing with the transient response of rivers to tectonic perturbation, through the production of knickpoints propagating through the drainage network. Inverse modelling of river profiles for uplift in time and space is also shown to be very effective in reconstructing regional tectonic histories. Finally, we present a synthetic morphometric approach for deducing the tectonic record of fluvial landscapes. As well as the erosional imprint of tectonic forcing, sedimentary deposits, such as fluvial terrace staircases, are also considered as a classical component of tectonic geomorphology. We show that these studies have recently benefited from rapid advances in dating techniques, allowing more reliable reconstruction of incision histories and estimation of incision rates. The combination of progress in the understanding of transient river profiles and larger, more rigorous data sets of terrace ages has led to improved understanding of river erosion and the implications for terrace

  11. Intraplate Crustal Deformation Within the Northern Sinai Microplate: Evidence from Paleomagnetic Directions and Mechanical Modeling

    Science.gov (United States)

    Dembo, N.; Granot, R.; Hamiel, Y.

    2017-12-01

    The intraplate crustal deformation found in the northern part of the Sinai Microplate, located near the northern Dead Sea Fault plate boundary, is examined. Previous studies have suggested that distributed deformation in Lebanon is accommodated by regional uniform counterclockwise rigid block rotations. However, remanent magnetization directions observed near the Lebanese restraining bend are not entirely homogeneous suggesting that an unexplained and complex internal deformation pattern exists. In order to explain the variations in the amount of vertical-axis rotations we construct a mechanical model of the major active faults in the region that simulates the rotational deformation induced by motion along these faults. The rotational pattern calculated by the mechanical modeling predicts heterogeneous distribution of rotations around the faults. The combined rotation field that considers both the fault induced rotations and the already suggested regional block rotations stands in general agreement with the observed magnetization directions. Overall, the modeling results provide a more detailed and complete picture of the deformation pattern in this region and show that rotations induced by motion along the Dead Sea Fault act in parallel to rigid block rotations. Finally, the new modeling results unravel important insights as to the fashion in which crustal deformation is distributed within the northern part of the Sinai Microplate and propose an improved deformational mechanism that might be appropriate for other plate margins as well.

  12. Application of SAR interferometry to low-rate crustal deformation fields

    Science.gov (United States)

    Vincent, Paul

    Differential SAR interferometry is applied to the study of low-rate interseismic crustal deformation fields along three regions of the San Adreas fault system: Salton Sea (southernmost region), Pinto Mountain fault (south-central region), and San Francisco Bay (northern region). New techniques are developed to analyze and model these low-rate deformation fields including constrained horizontal-vertical component deconvolution, deformation phase pattern analysis and strain field evolution modeling. Several new active faults were discovered as well as unmeasured activity on existing faults in the process of this SAR interferometry study. The feasibility and limitations of InSAR as a tool to study low-rate deformation fields is also addressed.

  13. Preliminary crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Monem S. Mohamed

    2013-06-01

    From the seismic tomography study, the 3D Vp and Vp/Vs crustal models indicate high Vp/Vs values forms an elongated anomaly, in the central part of the study area, that extends from a depth of 12 km to about 1–2 km of depth is obtained. By using this crustal model in relocations all seismicity informed that most of the seismicity strongly tend to occur in a cluster manner exactly above the southern part of the study area. Based on the conducted source mechanism study, it is noticed that shallow earthquakes are associated by a high CLVD ratio (up to 40%. Furthermore, initiation of a high level seismic activity, without a large seismic main shock is observed in the Abu-Dabbab area. The distribution of micro-earthquakes tends to align in an ENE–WSW direction marking a zone of activity verse the Red Sea. The nucleation of the seismic activity beneath the southern part of the Abu-Dabbab crust is more consistent with the obtained crustal deformation result by increasing the crustal movement in the south part than the northern part. Then, based on the obtained results of the above mentioned studies; seismic tomography; source mechanisms, and crustal deformation we conclude that these seismic activities that are associated by crustal deformation are owing to some magma activity beneath the crust of the Abu-Dabbab area.

  14. Crustal deformation mechanism in southeastern Tibetan Plateau: Insights from numerical modeling

    Science.gov (United States)

    Li, Y.; Liu, S.; Chen, L.

    2017-12-01

    The Indo-Asian collision developed the complicated crustal deformation around the southeastern Tibetan plateau. Numerous models have proposed to explain the crustal deformation, but the mechanism remains controversial, especially the increasing multi-geophysics data, which demonstrate the existence of lower velocity, lower resistivity and high conductivity, implying that lower crustal flow is responsible for the crustal deformation, arguing for the lower crust flow model. To address the relations between the crust flow and the surface deformation, we employ a three-dimensional viscoelastic finite model to investigate the possible influence on the surface deformation, and discuss the stress field distribution under the model. Our preliminary results suggest that lower crustal flow plays an important role in crustal deformation in southeastern Tibetan plateau. The best fitting is achieved when the flow velocity of the lower crust is approximately 10-11 mm/a faster than that of the upper crust. Crustal rheological properties affect regional crustal deformation, when the viscosity of the middle and lower crust in the South China block reaches 1022 and 1023 Pa.s, respectively; the predicted match observations well, especially for the magnitude within the South China block. The maximum principal stress field exhibits clear zoning, gradually shifting from an approximately east-west orientation in the northern Bayan Har block to southeast in the South China block, southwest in the western Yunnan block, and a radially divergent distribution in the Middle Yunnan and Southern Yunnan blocks.

  15. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques

    Science.gov (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.

    2009-04-01

    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  16. Different Phases of Earthquake Cycle Reflected in GPS Measured Crustal Deformations along the Andes

    Science.gov (United States)

    Khazaradze, G.; Klotz, J.

    2001-12-01

    The South American Geodynamic Activities (SAGA) project was initiated in 1993 by the GeoForschungsZentrum together with host organizations in Argentina and Chile with the main objective of studying the kinematics and dynamics of present-day deformation processes along the central and southern Andes. Currently the SAGA network consists of 230 geodetic markers spanning more than 2000 km long distance from Peru/Chile border in the north to Cape Horn in the south. The majority of the observed crustal deformation field is relatively homogenous: roughly parallel to the plate convergence direction and decreasing in magnitude away from the deformation front. This pattern is characteristic for the \\textit{inter-seismic} phase of earthquake deformation cycle and can be explained by the elastic strain accumulation due to locking of the thrust interface between the subducting Nazca and the overriding South America plates. However, in addition to the dominant inter-seismic signal, close examination of the observed velocity field also reveals significant spatial and temporal variations, contrary to the commonly used assumption of constant deformation rates. This variation is especially pronounced for the measurements in the vicinity of the 1995 Mw8.0 Antofagasta earthquake (22{° }S-26{° }S). Here, after capturing up to 1 meters of \\textit{co-seismic} displacements associated with this event, the analysis of data obtained during the three following field campaigns (1996-1999), reveals highly time dependent deformation pattern. This can be explained by the decreasing importance of \\textit{post-seismic} effects of the Antofagasta event relative to the increasing dominance of the inter-seismic phase of subduction. Perhaps, even more interesting time dependent observations have been detected in the southern part the SAGA network (38{° }S-43{° }S).Here, after 35 years of the occurrence of the 1960 Mw9.5 Chile earthquake, we still see the continuing post-seismic effects of this

  17. First indications of high slip rates on active reverse faults NW of Damascus, Syria, from observations of deformed Quaternary sediments: Implications for the partitioning of crustal deformation in the Middle Eastern region

    Science.gov (United States)

    Abou Romieh, Mohammad; Westaway, Rob; Daoud, Mohamad; Bridgland, David R.

    2012-05-01

    Recent research on rates of crustal shortening within the Palmyra Fold Belt (PFB) in Syria has drawn attention to the possibility that reverse faults near the city of Damascus, which adjoins the SW PFB, have significant slip rates. We infer that the Damascus Fault, directly adjacent to the city, has developed a throw of ~ 2500 m and report the discovery of the en echelon Bassimeh Fault, with a throw of ~ 1000 m, this fault being revealed by warping of the local bedrock and of a terrace, of inferred Late Pleistocene age, of the River Barada. We estimate that this set of faults became active circa 0.9 Ma, synchronous with changes to the pattern of faulting previously reported farther southwest in the northern Jordan Valley. Vertical slip rates on the Bassimeh and Damascus faults of ~ 1.1 and ~ 2.8 mm a- 1, respectively, are thus estimated. We also infer that large historical earthquakes, previously attributed to left-lateral faulting farther west on the Dead Sea Fault Zone (DSFZ), probably occurred on this set of reverse faults; these faults thus represent a significant hazard to the city of Damascus. Our observations indicate that as much as half of the northward motion of the Arabian plate, relative to the African plate, may be 'absorbed' by crustal shortening within the PFB, potentially explaining the low slip rate recently measured geodetically on the northern DSFZ in western Syria.

  18. Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau

    Science.gov (United States)

    Li, Yuhang; Liu, Mian; Wang, Qingliang; Cui, Duxin

    2018-04-01

    The three-dimensional present-day crustal deformation and strain partitioning in northeastern Tibetan Plateau are analyzed using available GPS and precise leveling data. We used the multi-scale wavelet method to analyze strain rates, and the elastic block model to estimate slip rates on the major faults and internal strain within each block. Our results show that shear strain is strongly localized along major strike-slip faults, as expected in the tectonic extrusion model. However, extrusion ends and transfers to crustal contraction near the eastern margin of the Tibetan Plateau. The strain transfer is abrupt along the Haiyuan Fault and diffusive along the East Kunlun Fault. Crustal contraction is spatially correlated with active uplifting. The present-day strain is concentrated along major fault zones; however, within many terranes bounded by these faults, intra-block strain is detectable. Terranes having high intra-block strain rates also show strong seismicity. On average the Ordos and Sichuan blocks show no intra-block strain, but localized strain on the southwestern corner of the Ordos block indicates tectonic encroachment.

  19. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  20. Viscoelastic crustal deformation by magmatic intrusion: A case study in the Kutcharo caldera, eastern Hokkaido, Japan

    Science.gov (United States)

    Yamasaki, Tadashi; Kobayashi, Tomokazu; Wright, Tim J.; Fukahata, Yukitoshi

    2018-01-01

    inflation of the chamber itself. The observed ground displacement is controlled by a lower-crustal viscosity of 4 × 1017 Pa s, which is lower than that inferred from some studies of post-seismic deformation, perhaps due to higher temperatures beneath the active caldera. Our results suggest that geodetic signals observed during and following magmatic intrusions need to be revisited. Uzs‧ is the uplift at t‧ = Δt‧ for models with Δt‧ > 0.

  1. Present day crustal deformation of the Italian peninsula observed by permanent GPS stations

    Science.gov (United States)

    Devoti, Roberto; Esposito, Alessandra; Galvani, Alessandro; Pietrantonio, Grazia; Pisani, Anna Rita; Riguzzi, Federica; Sepe, Vincenzo

    2010-05-01

    Italian penisula is a crucial area in the Mediterranean region to understand the active deformation processes along Nubia-Eurasia plate boundary. We present the velocity and strain rate fields of the Italian area derived from continuous GPS observations of more than 300 sites in the time span 1998-2009. The GPS networks were installed and managed by different institutions and for different purposes; altogether they cover the whole country with a mean inter-site distance of about 50 km and provide a valuable source of data to map the present day kinematics of the region. The data processing is performed by BERNESE software ver. 5.0, adopting a distributed session approach, with more than 10 clusters, sharing common stations, each of them consisting of about 40 stations. Daily loosely constrained solutions are routinely produced for each cluster and then combined into a network daily loose solution. Subsequently daily solutions are transformed on the chosen reference frame and the constrained time series are fitted using the complete covariance matrix, simultaneously estimating site velocities together with annual signals and sporadic offsets at epochs of instrumental changes. In this work we provide an updated detailed picture of the horizontal and vertical kinematics (velocity maps) and deformation pattern (strain rate maps) of the Italian area. The results show several crustal domains characterized by different velocity rates and styles of deformation.

  2. Crustal structure and tectonic deformation of the southern Ecuadorian margin

    Science.gov (United States)

    Calahorrano, Alcinoe; Collot, Jean-Yves; Sage, Françoise; Ranero, César R.

    2010-05-01

    Multichannel seismic lines acquired during the SISTEUR cruise (2000) provide new constraints on the structure and deformation of the subduction zone at the southern Ecuadorian margin, from the deformation front to the continental shelf of the Gulf of Guayaquil. The pre-stack depth migrated images allows to characterise the main structures of the downgoing and overriding plates and to map the margin stratigraphy in order to propose a chronology of the deformation, by means of integrating commercial well data and industry seismic lines located in the gulf area. The 100-km-long seismic lines show the oceanic Nazca plate underthrusting the South American plate, as well as the subduction channel and inter-plate contact from the deformation front to about 90 km landward and ~20 km depth. Based on seismic structure we identify four upper-plate units, consisting of basement and overlaying sedimentary sequences A, B and C. The sedimentary cover varies along the margin, being few hundreds of meters thick in the lower and middle slope, and ~2-3 km thick in the upper slope. Exceptionally, a ~10-km -thick basin, here named Banco Peru basin, is located on the upper slope at the southernmost part of the gulf. This basin seems to be the first evidence of the Gulf of Guayaquil opening resulting from the NE escaping of the North Andean Block. Below the continental shelf, thick sedimentary basins of ~6 to 8 km occupy most of the gulf area. Tectonic deformation across most of the upper-plate is dominated by extensional regime, locally disturbed by diapirism. Compression evidences are restricted to the deformation front and surrounding areas. Well data calibrating the seismic profiles indicate that an important portion of the total thickness of the sedimentary coverage of the overriding plate are Miocene or older. The data indicate the extensional deformation resulting from the NE motion of the North Andean Block and the opening of the Gulf of Guayaquil, evolves progressively in age

  3. RECENT GEODYNAMICS OF INTRACONTINENTAL AREAS: INSTRUMENTAL AND GEOMORPHOLOGICAL ASSESSMENT OF CRUSTAL MOVEMENTS AND DEFORMATION IN CENTRAL ASIA

    Directory of Open Access Journals (Sweden)

    V. А. Sankov

    2014-01-01

    Full Text Available Studies of recent geodynamics have been conducted by the Institute of the Earth’s Crust, SB RAS since 1998. Present-day crustal deformations are monitored at the geodynamic GPS polygon established by the Laboratory of Recent Geodynamics in the Mongol-Baikal region. Original methods and techniques using specialized equipment are applied to research intra-continental tectonic deformation and have already provided original scientific results. Independent data are received concerning the onset and character of processes of neotectonic activation and the state of stresses and deformation of the crust in the southern part of Siberia and in Mongolia. A model of the Late Cenozoic and contemporary geodynamics of the Mongol-Siberian mobile area is proposed. With application of GPS geodesy methods, quantitative parameters of present-day horizontal movements and deformations are determined for Central Asia and a part of the Far East at different scale levels. Present-day velocities of extension of the Baikal rift are estimated, and parameters of rotation of the Amur plate relative to Eurasia are calculated. Data on long-term and contemporary deformation are subject to comparative analyses. The Laboratory develops studies of present-day and historical seismicity in relation to processes of contemporary faulting in active tectonic zones of inter-plate boundaries and diffusive activation of subactive intraplate territories. The first results are obtained in studies of local crustal deformation by methods of satellite radar interferometry and ground polygonometry. Jointly with other institutes of SB RAS, the Laboratory conducts instrumental studies of interaction between the lithosphere and the ionosphere. Looking further ahead, the main scientific fields and prospects of the Laboratory are highlighted.  

  4. Preliminary crustal deformation model deduced from GPS and earthquakes’ data at Abu-Dabbab area, Eastern Desert, Egypt

    Science.gov (United States)

    Mohamed, Abdel-Monem S.; Hosny, A.; Abou-Aly, N.; Saleh, M.; Rayan, A.

    2013-06-01

    A local geodetic network consisting of eleven benchmarks has been established to study the recent crustal deformation in the Abu-Dabbab area. Seven campaigns of GPS measurements have been collected started from October 2008 and ended in March 2012. The collected data were processed using Bernese version 5.0, and the result values were adjusted to get the more accurate positions of the GPS stations. The magnitudes of horizontal displacements are variable from one epoch to another and in the range of 1-3 (±0.2) mm/yr. Due to the differences in rates of the horizontal displacement; the area is divided into two main blocks. The first one, moves to the east direction of about 3 mm/yr, while the second block, moves to the SW direction of about 6 mm/yr. According to the strain fields that were calculated for the different epochs of measurement, the main force is compression force and is taken the NW-SE to NWW-SEE direction. This force could be because of local and regional tectonic processes affecting on the study area. The maximum values of compression stress are found in the southern central and western part of study area. Estimated accumulation of this strain energy may be considered as an indicator of the possibility of earthquake occurrence. From the seismic tomography study, the 3D Vp and Vp/Vs crustal models indicate high Vp/Vs values forms an elongated anomaly, in the central part of the study area, that extends from a depth of 12 km to about 1-2 km of depth is obtained. By using this crustal model in relocations all seismicity informed that most of the seismicity strongly tend to occur in a cluster manner exactly above the southern part of the study area. Based on the conducted source mechanism study, it is noticed that shallow earthquakes are associated by a high CLVD ratio (up to 40%). Furthermore, initiation of a high level seismic activity, without a large seismic main shock is observed in the Abu-Dabbab area. The distribution of micro-earthquakes tends to

  5. Influence of mid-crustal rheology on the deformation behavior of continental crust in the continental subduction zone

    Science.gov (United States)

    Li, Fucheng; Sun, Zhen; Zhang, Jiangyang

    2018-06-01

    Although the presence of low-viscosity middle crustal layer in the continental crust has been detected by both geophysical and geochemical studies, its influence on the deformation behavior of continental crust during subduction remains poorly investigated. To illustrate the crustal deformation associated with layered crust during continental subduction, we conducted a suite of 2-D thermo-mechanical numerical studies with visco-brittle/plastic rheology based on finite-differences and marker-in-cell techniques. In the experiments, we established a three-layer crustal model with a quartz-rich middle crustal layer embedded between the upper and lower continental crust. Results show that the middle crustal layer determines the amount of the accreted upper crust, maximum subduction depth, and exhumation path of the subducted upper crust. By varying the initial effective viscosity and thickness of the middle crustal layer, the further effects can be summarized as: (1) a rheologically weaker and/or thicker middle crustal layer results in a larger percentage of the upper crust detaching from the underlying slab and accreting at the trench zone, thereby leading to more serious crustal deformation. The rest of the upper crust only subducts into the depths of high pressure (HP) conditions, causing the absence of ultra-high pressure (UHP) metamorphic rocks; (2) a rheologically stronger and/or thinner middle crustal layer favors the stable subduction of the continental crust, dragging the upper crust to a maximum depth of ∼100 km and forming UHP rocks; (3) the middle crustal layer flows in a ductile way and acts as an exhumation channel for the HP-UHP rocks in both situations. In addition, the higher convergence velocity decreases the amount of subducted upper crust. A detailed comparison of our modeling results with the Himalayan collisional belt are conducted. Our work suggests that the presence of low-viscosity middle crustal layer may be another possible mechanism for

  6. Crustal Deformation During the 2011 Volanic Crisis of El Hierro, Canary Islands, Revealed by Continuous GPS Observation

    Science.gov (United States)

    Sagiya, T.; Barrancos Martinez, J.; Calvo, D.; Padron, E.; Hernandez, G. H.; Hernández, P. A.; Perez Rodriguez, N.; Suárez, J. M. P.

    2012-04-01

    Seismo-volcnic activity of El Hierro started in the middle of July of 2011 and resulted in the active submarine eruption after October 12 south off La Restinga, the southern tip of the island. We have been operating one continuous GPS site on the island since 2004. Responding to the activity, we quickly installed 5 more GPS sites. Including another site operated by the Canary Islands Cartograhical Service (GRAFCAN) for a cartographic purpose, we have been monitoring 7 GPS sites equipped with dual-frequency receivers. We present the result of our crustal deformation monitoring and the magmatic activity inferred from the deformation data. In accordance with the deformation pattern, we divide the volcanic activity in 2011 into 4 stages. The first stage is from the middle of July to middle of September, during which steady magmatic inflation is estimated at the center of the island. The inflated volume of the first stage is estimated to be about 1.3 X 107 m3 at the depth of about 5km. The second stage, which continued until the first submarine eruption on October 12, is characterized by the accelerated deformation due to the upward as well as southward migration of magma. Additional inflation of about 2.1 X 107 m3 occurred in the depth range of 1-2km. The third stage continued for about 3 weeks after the first submarine eruption. During this stage, submarine eruption continues while no significant surface deformation is observed. It is considered magma supply from a deeper magma chamber continued during this 3 weeks period. Therefore, the total inflation volume during the first two stages gives the minimum estimate for the total magma volume. Since the beginning of November 2011, many GPS sites started subsiding. However, this deflation pattern is quite different from those in the shallow inflation stages. Horizontal deformation during this 4th stage is not significant, implying that deflation is occurring below the moho.

  7. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  8. Intensity attenuation for active crustal regions

    Science.gov (United States)

    Allen, Trevor I.; Wald, David J.; Worden, C. Bruce

    2012-07-01

    We develop globally applicable macroseismic intensity prediction equations (IPEs) for earthquakes of moment magnitude M W 5.0-7.9 and intensities of degree II and greater for distances less than 300 km for active crustal regions. The IPEs are developed for two distance metrics: closest distance to rupture ( R rup) and hypocentral distance ( R hyp). The key objective for developing the model based on hypocentral distance—in addition to more rigorous and standard measure R rup—is to provide an IPE which can be used in near real-time earthquake response systems for earthquakes anywhere in the world, where information regarding the rupture dimensions of a fault may not be known in the immediate aftermath of the event. We observe that our models, particularly the model for the R rup distance metric, generally have low median residuals with magnitude and distance. In particular, we address whether the direct use of IPEs leads to a reduction in overall uncertainties when compared with methods which use a combination of ground-motion prediction equations and ground motion to intensity conversion equations. Finally, using topographic gradient as a proxy and median model predictions, we derive intensity-based site amplification factors. These factors lead to a small reduction of residuals at shallow gradients at strong shaking levels. However, the overall effect on total median residuals is relatively small. This is in part due to the observation that the median site condition for intensity observations used to develop these IPEs is approximately near the National Earthquake Hazard Reduction Program CD site-class boundary.

  9. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    Science.gov (United States)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  10. Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision

    Science.gov (United States)

    Cheng, Win-Bin

    2018-01-01

    Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.

  11. InSAR Observations and Finite Element Modeling of Crustal Deformation Around a Surging Glacier, Iceland

    Science.gov (United States)

    Spaans, K.; Auriac, A.; Sigmundsson, F.; Hooper, A. J.; Bjornsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. L.

    2014-12-01

    Icelandic ice caps, covering ~11% of the country, are known to be surging glaciers. Such process implies an important local crustal subsidence due to the large ice mass being transported to the ice edge during the surge in a few months only. In 1993-1995, a glacial surge occurred at four neighboring outlet glaciers in the southwestern part of Vatnajökull ice cap, the largest ice cap in Iceland. We estimated that ~16±1 km3 of ice have been moved during this event while the fronts of some of the outlet glaciers advanced by ~1 km.Surface deformation associated with this surge has been surveyed using Interferometric Synthetic Aperture Radar (InSAR) acquisitions from 1992-2002, providing high resolution ground observations of the study area. The data show about 75 mm subsidence at the ice edge of the outlet glaciers following the transport of the large volume of ice during the surge (Fig. 1). The long time span covered by the InSAR images enabled us to remove ~12 mm/yr of uplift occurring in this area due to glacial isostatic adjustment from the retreat of Vatnajökull ice cap since the end of the Little Ice Age in Iceland. We then used finite element modeling to investigate the elastic Earth response to the surge, as well as confirm that no significant viscoelastic deformation occurred as a consequence of the surge. A statistical approach based on Bayes' rule was used to compare the models to the observations and obtain an estimate of the Young's modulus (E) and Poisson's ratio (v) in Iceland. The best-fitting models are those using a one-kilometer thick top layer with v=0.17 and E between 12.9-15.3 GPa underlain by a layer with v=0.25 and E from 67.3 to 81.9 GPa. Results demonstrate that InSAR data and finite element models can be used successfully to reproduce crustal deformation induced by ice mass variations at Icelandic ice caps.Fig. 1: Interferograms spanning 1993 July 31 to 1995 June 19, showing the surge at Tungnaárjökull (Tu.), Skaftárjökull (Sk.) and S

  12. Study on the fixed point in crustal deformation before strong earthquake

    Science.gov (United States)

    Niu, A.; Li, Y.; Yan, W. Mr

    2017-12-01

    Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the

  13. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gürpinar, Aybars, E-mail: aybarsgurpinar2007@yahoo.com [Nuclear & Risk Consultancy, Anisgasse 4, 1221 Vienna (Austria); Serva, Leonello, E-mail: lserva@alice.it [Independent Consultant, Via dei Dauni 1, 00185 Rome (Italy); Livio, Franz, E-mail: franz.livio@uninsubria.it [Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Velleggio, 11, 22100 Como (Italy); Rizzo, Paul C., E-mail: paul.rizzo@rizzoasoc.com [RIZZO Associates, 500 Penn Center Blvd., Suite 100, Pittsburgh, PA 15235 (United States)

    2017-01-15

    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  14. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Gürpinar, Aybars; Serva, Leonello; Livio, Franz; Rizzo, Paul C.

    2017-01-01

    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  15. Crustal and uppermost mantle structure and deformation in east-central China

    Science.gov (United States)

    Li, H.; Yang, X.; Ouyang, L.; Li, J.

    2017-12-01

    We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present

  16. Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?

    Science.gov (United States)

    Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.

    2017-12-01

    The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.

  17. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  18. U-Th age evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Uysal, I. Tonguç; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin

    2017-12-01

    Central Anatolia represents one of the most outstanding examples of intraplate deformation related to both continental collision and back-arc extension generating non-uniformly distributed stress fields. In this study, we provide direct field evidence of various stress directions and investigate carbonate-filled fracture systems in the Central Anatolian Volcanic Province using U/Th geochronology and isotope geochemistry for evaluating the episodes of latest volcanic activity under regional stress. Field data reveal two independent fracture systems in the region. Successive fracture development has been controlled by two different volcanic eruption centers (Hasandağ Composite Volcano and Acıgöl Caldera). Trace element, and stable (C and O) and radiogenic (Sr) isotope compositions of carbonate veins indicate different fluid migration pathways for two different fracture systems. The U/Th age data for carbonate veins of two independent fracture systems indicate that the crustal deformation intensified during 7 episodic periods in the last 150 ka. The NNE-trending first fracture system was formed as a result of strain cycles in a period from 149 ± 2.5, through 91 ± 1.5 to 83 ± 2.5 ka BP. Subsequent deformation events represented by the ENE-trending second fracture zone have been triggered during the period of 53 ± 3.5, 44 ± 0.6 and 34 ± 1 ka BP before the first fracture zone resumed the activity at about 4.7 ± 0.15 ka BP. Although further studies are needed to evaluate statistical significance of age correlations, the periods of carbonate precipitation inferred from U-Th age distributions in this study are comparable with the previous dating results of surrounding volcanic eruption events.

  19. Crustal deformation pattern of the Morocco-Iberian area: constraints from 14 years of GPS measurements

    Science.gov (United States)

    Palano, Mimmo; González, Pablo; Fernandez, Josè

    2014-05-01

    We present an improved rendition of crustal motion field of the Morocco-Iberian area, based on an extensive GPS dataset covering about 14 years of observations from 1999.00 up to 2013.79 in order to provide a detailed spatial resolution of geodetic velocity and strain-rate fields. In particular, we included all available data from public continuous GPS stations, considering also data coming from networks developed mainly for mapping, engineering and cadastre purposes. In addition to continuous GPS sites, we included data from 31 episodic GPS sites located in Morocco with surveys spanning the 1999-2006 time interval, whose data are available through the UNAVCO archive (www.unavco.org). All GPS data were processed by using the GAMIT/GLOBK software, taking into account precise ephemerides from the IGS (International GNSS Service; http://igscb.jpl.nasa.gov) and Earth orientation parameters from the International Earth Rotation Service (http://www.iers.org). To improve the overall configuration of the network and tie the regional measurements to an external global reference frame, data coming from more than 25 continuously operating global tracking stations, largely from the IGS and EUREF permanent networks, were introduced in the processing. All stations were organized (and processed) into seven sub-networks of about 40-50 sites each, on average, sharing a few common sites to provide ties between them. Finally, by using the GLORG module of GLOBK, the GAMIT-solutions and their full covariance matrices were combined to estimated a consistent set of positions and velocities in the ITRF2008 reference frame by minimizing the horizontal velocity of the continuously operating global tracking stations mentioned above. To adequately investigate the crustal deformation pattern over the study area, we aligned our estimated GPS velocities to an Eurasian and a Nubian fixed reference frames. In addition, by taking into account the observed GPS horizontal velocity field and

  20. Crustal Deformation Caused by Earthquake Detected by InSAR Technique Using ALOS/PALSAR Data

    Science.gov (United States)

    Miyagi, Y.; Nishimura, Y.; Takahashi, H.; Shimada, M.

    2007-12-01

    The Japan Aerospace Exploration Agency (JAXA) launched the Advanced Land Observing Satellite (ALOS), which is commonly called 'Daichi' in Japanese, on 24th January 2006. This satellite has the Phased Array type L- band Synthetic Aperture Radar (PALSAR) following the mission of the Japanese Earth Resource Satellite-1 (JERS-1). The PALSAR is an advanced SAR sensor with up to 10 m of spatial resolution and variable off-nadir angle. The ALOS/PALSAR can determine the position and attitude with high accuracy by use of mounted dual frequency GPS system and high precision star trackers, and L-band SAR sensor is suitable to observe even heavily-vegetated area. Therefore it is expected much better coherent SAR images than the JERS-1 and the other previous C-band SAR satellites, and major step forward for InSAR (Interferometric SAR) technique. Actually, several outstanding results from InSAR measurements have been reported for the period after the launch. In 2007, two big earthquakes causing some damages on the periphery occurred in Japan. One is M6.7 Noto Peninsula earthquake on 25th March 2007, and the other is M6.8 off the Chuetsu region earthquake on 16th July 2007. Because both seismic faults inferred from these earthquakes are located at shallow depth beneath the bottom of the sea near the coast, obvious crustal deformation in a land area were detected by PALSAR data. In Japan, there is a dense nation-wide GPS network (GEONET) composed of more than 1200 GPS sites established and operated by Geographical Survey Institute and a lot of seismometers. Similarly GPS and seismometer could detect signals caused by the earthquakes, so these are noticeable cases from the standpoint of a comparison among various kinds of data. A remote sensing technique like the ALOS/PALSAR has advantage to observe and monitor a disaster occurred in a remote location where it is difficult to get and there has been little geophysical observation. In this presentation, we notice the case of

  1. Deformation of quartz and feldspar at mid-crustal depths in an extensional normal fault (Viveiro Fault, NW Spain)

    Science.gov (United States)

    López-Sánchez, M. A.; Llana-Fúnez, S.; Marcos, A.; Martínez, F. J.

    2012-04-01

    Metamorphic reactions, deformation mechanism and chemical changes during mylonitization and ultramylonitization of granite affected by a crustal-scale shear zone are investigated using microstructural observations and quantitative analysis. The Vivero Fault (VF) is a large extensional shear zone (>140Km) in NW of Iberia that follows the main Variscan trend dipping 60° toward the West. The movement accumulated during its tectonic history affects the major lithostratigraphic sequence of Palaeozoic and Neoproterozoic rocks and the metamorphic facies developed during Variscan orogenesis. Staurolite, and locally, andalucite plus biotite grew in the hangingwall during the development of VF, overprinted the previous regional Variscan greenschist facies metamorphism. Andalusite growth took place during the intrusion of syntectonic granitic bodies, such as the deformed granite studied here. The Penedo Gordo granite is coarse-grained two-mica biotite-rich granite intruding the VF and its hangingwall. This granite developed a localized deformation consisting of a set of narrow zones (mm to metric scales) heterogeneously distributed subsequently to its intrusion. Based on pseudosections for representative hangingwall pelites hosting the granite and the inferred metamorphic evolution, the shear zone that outcrops at present-day erosion surface was previously active at 14,7-17 km depth (390-450 MPa). Temperature estimates during deformation reach at least the range 500-600° C, implying a local gradient of 35±6°C/km. Microstructures in the mylonites are characterized by bulging (BLG) to subgrain rotation (SGR) recristallization in quartz with the increasing of deformation. Albitisation, flame-perthite and tartan twining are common in K-feldspar at the early stage of deformation. The inferred dominant deformation mechanisms are: i) intracrystalline plasticity in quartz, ii) cataclasis with syntectonic crystallisation of very fine albite-oligoclase and micas in K-feldspar, and

  2. Noise Characteristics of High-Rate Multi-GNSS for Subdaily Crustal Deformation Monitoring

    Science.gov (United States)

    Geng, Jianghui; Pan, Yuanxin; Li, Xiaotao; Guo, Jiang; Liu, Jingnan; Chen, Xianchun; Zhang, Yong

    2018-02-01

    High-rate GPS (Global Positioning System) has the potential to record crustal motions on a wide subdaily timescale from seconds to hours but usually fails to capture subtle deformations which are often overwhelmed by the centimeter noise of epoch-wise GPS displacements. We hence investigated high-rate multi-GNSS (Global Navigation Satellite System) by processing 1 Hz GPS/GLONASS/BeiDou data at 15 static stations over 24 days and also those from the 8 August 2017 Jiuzhaigou Mw 6.5 earthquake. In contrast to high-rate GPS, its further integration with GLONASS/BeiDou reduces near uniformly the power spectral densities (PSDs) of 1 Hz displacement noise by 4-6 dB over the periods from a few seconds to half of a day, and orbital repeat time (ORT) filtering on all GNSS further again leads to a 2 more decibel decline of the PSDs over the periods of a few tens of seconds to minutes. BeiDou ORT filtering, however, takes effect mainly on the periods of over 2,000 s due to the high altitudes of Inclined Geosynchronous Satellite Orbiters/Geosynchronous Earth Orbiters. Multi-GNSS integration is on average as effective as GPS ORT filtering in reducing PSDs for the periods of a few tens of seconds to minutes while desirably can further decrease the PSDs on almost all other periods by 3-4 dB thanks to the enhanced satellite geometry. We conclude that the introduction of more GNSS into high-rate solutions and its augmentation by ORT filtering benefit the discrimination of slight deformations over a broad subdaily frequency band.

  3. Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR

    Science.gov (United States)

    Xu, X.; Sandwell, D. T.

    2017-12-01

    We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.

  4. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  5. Time-Dependent Crustal Deformation Associated With the 2004 Chuetsu and the 2007 Chuetsu-Oki Earthquakes

    Science.gov (United States)

    Meneses Gutierrez, A.; Sagiya, T.

    2013-12-01

    There is an ongoing concentrated deformation along the Japan Sea coast, which has been identified as Niigata Kobe Tectonic Zone (Sagiya et al., 2000). Large historical earthquakes have occurred in this area, and in recent years, Niigata has suffered the impact of two important events, known as the 2004 Mid-Niigata Prefecture earthquake (M 6.8) and The 2007 Niigata-ken Chuetsu-Oki earthquake (M 6.6), which considerately affected the crustal deformation pattern. For this reason, we review temporal variation of crustal deformation pattern in the mid Niigata region based on daily coordinates of 28 GPS sites from the GEONET network for three time windows: before 2004, 2004-2007 and after 2007 until March 2011, to avoid effects of crustal deformation associated with the 2011 Tohoku-Oki earthquake. We observed a migration of the deformation pattern in the East-West direction through the contraction belts for the above time windows. Before 2004, we recognize a clear shortening of 0.3ppm/yr in the area between the source regions of 2004 and 2007 quakes. After the 2004 Chuetsu earthquake, this shortening rate decreased. On the other hand, an accelerated contraction occurred to the east of this region, around the source region of the 2004 earthquake. After the 2007 earthquake, another contraction zone appeared to the northwest, near the 2007 source region. These time-dependent behaviors suggest there exists strong interaction between parallel fault segments in this area. It is crucially important to reveal such interaction to understand crustal deformation and seismogenesis in this region. We construct kinematic deformation models to interpret the time-dependent deformation pattern for each time period and to investigate mechanical interaction of coseismic as well as probably aseismic fault slips. Optimal faults parameters were established using a grid search, and computing the 95% confidence interval for each model parameter using the normalized Chi-squared distribution to

  6. Contemporary Crustal Deformation Within the Pamir Plateau Constrained by Geodetic Observations and Focal Mechanism Solutions

    Science.gov (United States)

    Pan, Zhengyang; He, Jiankun; Li, Jun

    2018-04-01

    We used an updated data set of 192 GPS-derived surface velocities and 393 earthquake focal mechanisms (Mw > 3.0, hypocenter depths https://doi.org/10.1029/2005jb004144, 2006). The results show that the crustal stress field around the Pamir Plateau is predominantly characterized by NNW-SSE compression and E-W extension, which is consistent with the principal orientations of the two-dimensional surface strain rate tensor. This agreement supports the notion that the Pamir and southwestern Tien Shan are uniformly strained blocks. In particular, the fan-shaped rotational pattern between {Shmax} and the strain rate from the western Pamir to the Tajik Basin shows that the counterclockwise rotation of the {Shmax} orientation is associated with vertical deformation, which is consistent with the idea of Schurr et al. (Tectonics 33(8):2014TC003576, 2014) concerning the gravitational collapse and westward extrusion of the crust in the western Pamir. We propose that such a stress-strain pattern, dominated by NNW-ESE oriented compression and E-W trending extension, originated from a combination of the northward push of the Indian continent and the southward subduction of the Tien Shan.

  7. To crustal deformation modeling of the West Bohemia swarm area, Central Europe. Reply to the open letter

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka

    2013-01-01

    Roč. 10, č. 1 (2013), s. 41-45 ISSN 1214-9705 R&D Projects: GA MŠk(CZ) LC506; GA MŠk 1P05ME781; GA AV ČR 1QS300460551 Institutional support: RVO:67985891 Keywords : satellite geodesy * crustal deformation * seismic cycle Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.667, year: 2013

  8. On the relation between crustal deformation and seismicity during the 2012-2014 magmatic intrusions in El Hierro island.

    Science.gov (United States)

    Domínguez Cerdeña, Itahiza; García-Cañada, Laura; Ángeles Benito Saz, María; Del Fresno, Carmen

    2017-04-01

    The last volcanic eruption in the Canary Islands took place in 2011 less than 2 km offshore El Hierro island, after 3 months of measuring surface deformation (up to 5 cm) and locating more than 10 000 earthquakes. In the two years following the end of the submarine eruption on 5 March 2012, six deep magmatic intrusions were recorded beneath the island. Despite the short time duration of these intrusions, these events have been more energetic that the 2011 pre-eruptive intrusive event but none of them ended in a new eruption. These post-eruptive reactivations are some of the few examples in the world of well monitored magmatic intrusions related with monogenetic volcanism. In order to understand these processes we have analyzed the geodetic and seismic data with different techniques. First, we did a joint hypocentral relocation of the six seismic swarms, including more than 6 300 events, to analyze the relative distribution of the earthquakes from different intrusions. The uncertainties of the earthquakes relocations was reduced to an average value of 300 m. New earthquakes' distribution shows the alignments of the different intrusions and a temporal migration of the events to larger depths. Moreover, we show the results of the ground deformation using GPS data from the network installed on the island (for each of the six intrusive events) and their inversion considering spherical models. In most of the intrusions the optimal source model was shallower and southern than the corresponding seismicity hypocenters. The intruded magma volume ranges from 0.02 to 0.13 km3. Finally, we also computed the b value from the Gutenberg Richter equation by means of a bootstrap method. The spatial and temporal evolution of the b value for the seismicity show a clear correlation with the temporal evolution of the crustal deformation. The six magma intrusions can be grouped, depending on their location, in three pairs each one associated with each of the three active rifts of El

  9. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.

    2010-06-01

    This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.

  10. Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chen

    2014-01-01

    Full Text Available The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007 - 2009, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a rapid clockwise rotation of 33° Myr-1 and an eastward tectonic escape in the small Hualien City block (HUAL area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block defined by previous studies. We interpret it as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault, which needs further investigation.

  11. Plate convergence, crustal delamination, extrusion tectonics and minimization of shortening work as main controlling factors of the recent Mediterranean deformation pattern

    Directory of Open Access Journals (Sweden)

    D. Babbucci

    1997-06-01

    Full Text Available It is argued that the time-space distribution of major post middle Miocene deformation events in the Central-Eastern Mediterranean region, deduced from the relevant literature, can be coherently explained as a consequence of the convergence between the Africa/Arabia and Eurasia blocks. This plate convergence has mainly been accommodated by the consumption of the thinnest parts of the Northern African (Ionian and Levantine basins and peri-Adriatic margins. During each evolutionary phase the space distribution of trench zones is controlled by the basic physical requirement of minimizing the work of horizontal forces, induced by plate convergence, against the resisting forces, i.e., the cohesion of the upper brittle crustal layer and the buoyancy forces at the consuming boundaries. The significant changes of tectonic styles which determined the transition from one phase to the next, like those which occurred around the Messinian and the late Pliocene-early Pleistocene, were determined by the suture of consuming boundaries. When such an event occurs, the system must activate alternative consuming processes to accommodate the convergence of the major confining blocks. The observed deformations in the study area suggest that this tectonic reorganization mostly developed by the lateral extrusion of crustal wedges away from the sutured borders. This mechanism allowed the translation of maximum horizontal stresses from the locked collisional fronts to the zones where consumable lithosphere was still present, in order to activate the next consuming processes. The extensional episodes which led to the formation of basins and troughs in the Tyrrhenian and Aegean zones are interpreted as secondary effects of the outward escape of crustal wedges, like those which occurred in response to longitudinal compressional regimes in the Apennines and Aegean regions.

  12. NASA plan for international crustal dynamics studies

    Science.gov (United States)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  13. Crustal deformation characteristics of Sichuan-Yunnan region in China on the constraint of multi-periods of GPS velocity fields

    Science.gov (United States)

    Yue, Caiya; Dang, Yamin; Dai, Huayang; Yang, Qiang; Wang, Xiankai

    2018-04-01

    In order to obtain deformation parameters in each block of Sichuan-Yunnan Region (SYG) in China by stages and establish a dynamic model about the variation of the strain rate fields and the surface expansion in this area, we taken the Global Positioning System (GPS) sites velocity in the region as constrained condition and taken advantage of the block strain calculation model based on spherical surface. We also analyzed the deformation of the active blocks in the whole SYG before and after the Wenchuan earthquake, and analyzed the deformation of active blocks near the epicenter of the Wenchuan earthquake in detail. The results show that, (1) Under the effects of the carving from India plate and the crimping from the potential energy of Tibetan Plateau for a long time, there is a certain periodicity in crustal deformation in SYG. And the period change and the earthquake occurrence have a good agreement. (2) The differences in GPS velocity fields relative Eurasian reference frame shows that the Wenchuan earthquake and the Ya'an earthquake mainly affect the crustal movement in the central and southern part of SYG, and the average velocity difference is about 4-8 mm/a for the Wenchuan earthquake and 2-4 mm/a for the Ya'an earthquake. (3) For the Wenchuan earthquake, the average strain changed from 10 to 20 nanostrian/a before earthquake to 40-50 nanostrian/a after the earthquake, but before and after the Ya'an earthquake, the strain value increased from about 15 nanostrian/a to about 30 nanostrian/a. (4) The Wenchuan earthquake has changed the strain parameter of each active block more or less. Especially, the Longmen block and Chengdu block near the epicenter. The research provides fundamental material for the study of the dynamic mechanism of the push extrusion from the north-east of the India plate and the crimp from Qinghai Tibet Plateau, and it also provides support for the study of crustal stress variation and earthquake prediction in Sichuan Yunnan region.

  14. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    Science.gov (United States)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  15. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  16. GPS-determined Crustal Deformation of South Korea after the 2011 Tohoku-Oki Earthquake: Straining Heterogeneity and Seismicity

    Science.gov (United States)

    Ree, J. H.; Kim, S.; Yoon, H. S.; Choi, B. K.; Park, P. H.

    2017-12-01

    The GPS-determined, pre-, co- and post-seismic crustal deformations of the Korean peninsula with respect to the 2011 Tohoku-Oki earthquake (Baek et al., 2012, Terra Nova; Kim et al., 2015, KSCE Jour. of Civil Engineering) are all stretching ones (extensional; horizontal stretching rate larger than horizontal shortening rate). However, focal mechanism solutions of earthquakes indicate that South Korea has been at compressional regime dominated by strike- and reverse-slip faultings. We reevaluated the velocity field of GPS data to see any effect of the Tohoku-Oki earthquake on the Korean crustal deformation and seismicity. To calculate the velocity gradient tensor of GPS sites, we used a gridding method based on least-square collocation (LSC). This LSC method can overcome shortcomings of the segmentation methods including the triangulation method. For example, an undesirable, abrupt change in components of velocity field occurs at segment boundaries in the segmentation methods. It is also known that LSC method is more useful in evaluating deformation patterns in intraplate areas with relatively small displacements. Velocity vectors of South Korea, pointing in general to 113° before the Tohoku-Oki earthquake, instantly changed their direction toward the epicenter (82° on average) during the Tohoku-Oki earthquake, and then gradually returned to the original position about 2 years after the Tohoku-Oki earthquake. Our calculation of velocity gradient tensors after the Tohoku-Oki earthquake shows that the stretching and rotating fields are quite heterogeneous, and that both stretching and shortening areas exist in South Korea. In particular, after the post-seismic relaxation ceased (i.e., from two years after the Tohoku-Oki earthquake), regions with thicker and thinner crusts tend to be shortening and stretching, respectively, in South Korea. Furthermore, the straining rate is larger in the regions with thinner crust. Although there is no meaningful correlation between

  17. Postseismic deformation associated with the 2015 Mw 7.8 Gorkha earthquake, Nepal: Investigating ongoing afterslip and constraining crustal rheology

    Science.gov (United States)

    Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Hassan, Abubakr

    2018-05-01

    The 2015 Mw 7.8 Gorkha earthquake has not only imposed effective constraints on the geometrical structures, friction behaviours and seismogenic patterns of the Nepal Himalaya thrust systems but has also provided valuable insights into the uplift mechanism and lithosphere rheology of the Tibetan Plateau. Here, ∼1.6-year GPS observations are used to reveal the postseismic deformation characteristics following the Gorkha earthquake, investigate the ongoing aseismic afterslip on the Main Himalayan Thrust (MHT) fault and constrain the crustal rheology of the Southern Tibetan Plateau. First, afterslip is considered to be solely responsible for the postseismic deformation (afterslip-only model). The results show that afterslip is anticorrelated with peak coseismic slip areas. One high-afterslip-concentration area, with a peak of ∼24 cm, is distributed downdip of the coseismic rupture, as well as in two other regions: one partially overlapping the mainshock rupture, and the other next to the Mw 7.3 aftershock area. Second, the GPS postseismic observations are inverted to jointly investigate afterslip and viscoelastic deformation (multiple-mechanism model). The afterslip inversion results of the above two models are highly consistent, indicating the dominant contribution of afterslip to surface deformation during the ∼1.6-year postseismic period. Considering the interseismic fault coupling and historical seismicity, no appreciable fault slip associated with the Gorkha earthquake is found to occur both updip and west of the mainshock rupture areas. This reveals that the Gorkha earthquake only unzipped the lower edge of the locked portion of the MHT, leaving the shallow portion and western segment of the seismogenic zone still locked and the Nepal region under high seismic risk. The viscoelastic mechanism contributes minorly to surface deformation during the ∼1.6-year postseismic period. The middle-lower crust is assumed to comprise Maxwell material beneath an elastic

  18. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  19. Crustal Deformation In the Northwestern Margin of the South China Sea: Results From Wide-angle Seismic Modeling

    Science.gov (United States)

    Huang, H.; Klingelhoefer, F.

    2017-12-01

    The South China Sea (SCS) has undergone episodic spreading during the Cenozoic Era. The long-term extension has shaped the continental margins of the SCS, leading to a progressive breakup of the lithosphere. Separated blocks and rift troughs, as controlled by tectonic stretching, contains key information about the deforming mechanism of the crust. In this work, we present a P-wave velocity model of a wide-angle seismic profile OBS2013-1 which passes through the NW margin of the SCS. Modeling of 25 ocean bottom seismometers (OBS) data revealed a detailed crustal structure and shallow complexities along the profile (Figure 1). The crust thins symmetrically across the Xisha Trough, from more than 20 km on flanks to 10 km in the central valley where the sediments thickens over 5 km; A volcano is situated on top of the centre basement high where the Moho drops slightly. At the distal margin around the Zhongsha Trough, the upper crust was detached and accordingly made the middle crust exhumed in a narrow area ( 20 km wide). Meanwhile, materials from the lower crust rises asymmetrically, increasing the crustal velocity by 0.3 km/s and may also giving rise to volcanisms along the hanging side. A 40 km wide hyper-stretched crust (with thickness of 5 km) was identified next to the Zhongsha Trough and covered by overflowing magma and post-rift sediments on the top. These observations argue for a depth-related and asymmetrically extension of the crust, including (1) detachment fault controls the deformation of the upper crust, leading to exhumation of the middle crust and asymmetrically rising of the lower crust, (2) The region adjacent to the exhumation region and with highly thinned crust can be considered as extinct OCT due to magma-starved supplying.

  20. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro Earthquake Swarm in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Rutqvist, J.; Yamamoto, K.

    2009-05-15

    In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been driven by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the

  1. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  2. Recent crustal movements

    Science.gov (United States)

    Maelzer, H.

    Calculation of temporal height changes for the determination of recent vertical crustal movements in northern, western, and southern Germany is described. Precise geodetic measurements and their analysis for the determination of recent crustal movements in north-eastern Iceland, western Venezuela, and central Peru are described. Determination of recent vertical crustal movements by leveling and gravity data; geodetic modeling of deformations and recent crustal movements; geodetic modeling of plate motions; and instrumental developments in geodetic measuring are discussed.

  3. Crustal Structure and Deformation of the Sichuan-Yunnan Region Revealed by receiver Function Data

    Science.gov (United States)

    Zeng, S.; Zheng, Y.

    2017-12-01

    Sichuan-Yunnan and its surrounding areas locates in the southeast side to the Tibetan Plateau, due to the intrusion of the Indian Plate under the Tibetan Plateau, materials escape from the Tibetan Plateau and flow southward to southeastward. Because of such tectonic environment, the Sichuan-Yunnan region is experiencing high tectonic movement, and is capable of highly diffused seismicity. Based on dynamic simulation and field survey investigations, tectonic and geological studies proposed a decoupling model in this region and lower crustal flow may inflate in the crust. However, this idea needs more evidences, especially anisotropic structures to support it, since the anisotropic structures are usually directly related to the movement of materials, or to the tectonic distributions. In the past several years, a number of works have been done on the anisotropic structures in the Tibetan Plateau and its surroundings. In usually, previous studies were mainly carried out by two kinds of methods. First, the shear wave splitting of SKS, which mainly reflects the accumulation effect of the anisotropy of the crust to the mantle; the other way is use surface wave to investigate the anisotropic features at different azimuths and depths. In the recent years, receiver function is used to determine the inclination and anisotropy of the subsurface structure, comparing with the other two methods, receiver functions can provide higher resolution and reliable anisotropic features in the crust. Following the method of Liu and Niu(2012), we collected teleseismic data from the Himalayan first term network, and picked out high quality data based on the waveform SNR ratio, as well as the azimuthal distributions. Comparing with previous work (e.g., Sun et al.,2012), our work can provide more receiver functions results with higher reliability. We find that the crust beneath the Sichuan-Yunnan region has a thickness of 30-60 km and Vp/Vs ratio of 1.70-1.80. The Moho depth from northwest to

  4. Crustal seismicity and active fault system in the SE of Romania

    International Nuclear Information System (INIS)

    Raileanu, V; Bala, A.; Radulian, M.; Popescu, E.; Mateciuc, D.; Popa, M.; Dinu, C.; Diaconescu, V.

    2007-01-01

    Romania is known as a country with a high seismicity located in the Vrancea region where 2-3 strong intermediate depth earthquakes/century generate great damages and casualties. A moderate crustal seismicity is also observed in other zones of the country, with events having a moderate magnitude but sometimes with important economic and social effects on the locale scale. The crustal seismogenic zones are located in front of the Eastern Carpathian Bend, South Carpathians, Dobrogea, Banat, Crisana and Maramures regions. The SE part of Romania comprises some of the most active crustal seismic sources that generated earthquakes up to Mw=6.5 concentrated in more zones, namely: Vrancea crustal domain, E Vrancea zone that is overlapped on the Focsani basin, Barlad and Predobrogean depressions along with the North Dobrogea Orogen, Intramoesian and Shabla (Bulgaria) zones and Fagaras-Campulung-Sinaia zone. (authors)

  5. Three-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins

    Science.gov (United States)

    Zhu, G.; Gerya, T.; Tackley, P. J.

    2011-12-01

    Active margins are important sites of new continental crust formation by magmatic processes related to the subduction of oceanic plates. We investigate these phenomena using a three-dimensional coupled petrological-geochemical-thermomechanical numerical model, which combines a finite-difference flow solver with a non-diffusive marker-in-cell technique for advection (I3ELVIS code, Gerya and Yuen, PEPI,2007). The model includes mantle flow associated with the subducting plate, water release from the slab, fluid propagation that triggers partial melting at the slab surface, melt extraction and the resulting volcanic crustal growth at the surface. The model also accounts for variations in physical properties (mainly density and viscosity) of both fluids and rocks as a function of local conditions in temperature, pressure, deformation, nature of the rocks, and chemical exchanges. Our results show different patterns of crustal growth and surface topography, which are comparable to nature, during subduction at active continental margins. Often, two trench-parallel lines of magmatic activity, which reflect two maxima of melt production atop the slab, are formed on the surface. The melt extraction rate controls the patterns of new crust at different ages. Moving free water reflects the path of fluids, and the velocity of free water shows the trend of two parallel lines of magmatic activity. The formation of new crust in particular time intervals is distributed in finger-like shapes, corresponding to finger-like and ridge-like cold plumes developed atop the subducting slabs (Zhu et al., G-cubed,2009; PEPI,2011). Most of the new crust is basaltic, formed from peridotitic mantle. Granitic crust extracted from melted sediment and upper crust forms in a line closer to the trench, and its distribution reflects the finger-like cold plumes. Dacitic crust extracted from the melted lower crust forms in a line farther away from the trench, and its distribution is anticorrelated with

  6. Crustal deformation associated with glacial fluctuations in the eastern Chugach Mountains, Alaska

    Science.gov (United States)

    Sauber, Jeanne; Plafker, George; Molnia, Bruce F.; Bryant, Mark A.

    2000-04-01

    The changes of the solid Earth in south central Alaska in response to two major glacial fluctuations on different temporal and spatial scales have been estimated and we evaluated their influence on the stress state and ongoing tectonic deformation of the region. During the recent (1993-1995) Bering Glacier surge, a large transfer of ice from the Bagley Ice Field to the Bering Glacier terminus region occurred. We estimated the elastic displacement of the solid Earth due to ice mass redistribution from Global Positioning System (GPS) measurements at sites near the surging glacier. We can account for these displacements by transfer of an ice volume of about 14 km3 from the surge reservoir area to the terminus region. We examined the background seismicity (ML ≥ 2.5) before, during, and after the surge. We found that the occurrence of small earthquakes (ML ≤ 4.0) in the surge reservoir region increased during the surge time interval possibly in response to a decrease in ice mass. This suggests that a small decrease in the vertical stress, σ3, could be enough to modulate the occurrence of small, shallow earthquakes in this dominantly thrust fault setting. During this century the southern Alaska coastal glaciers have been undergoing an overall decrease in volume. Based on our compilation of changes in the extent and thickness of the coastal glaciers between the Malaspina and Bering, we calculated surface displacements due to the Earth's viscoelastic response to annual thinning and to the cumulative retreat over the last 100 years. The uplift of the region due to an average annual thinning rate of 1-6 m/yr in the ablation region is 1-12 mm/yr. For our reference model with a viscosity of 5×1019 Pa s for depths between ≈ 40 and 200 km the total viscoelastic response due to the retreat over the last century may be as much as a couple of meters within the coastal ablation zone near Icy Bay. The maximum decrease in σv between 0 and 10 km was ≈ 1.0 MPa, which is

  7. Interpretation of Crustal Deformation following the 2011 Tohoku-oki Megathrust Earthquake by the Combined Effect of Afterslip and Viscoelastic Stress Relaxation

    Science.gov (United States)

    Noda, A.; Takahama, T.; Ohba, M.; Ito, T.; Matsu'ura, M.

    2015-12-01

    Crustal deformation following the 2011 Tohoku-oki megathrust earthquake, occurred at the North American-Pacific plate interface, has been revealed by GPS measurement on land (Geospatial Information Authority of Japan) and GPS/Acoustic measurement on seafloor (Japan Coast Guard). The essential causes of the postseismic crustal deformation are considered to be slow afterslip at the downdip extension of the main rupture zone and viscoelastic relaxation of stress changes induced in the asthenosphere. Crustal responses to the afterslip and the viscoelastic relaxation are different in both space and time. So, given proper plate interface geometry and proper crust-mantle rheological structure, we can estimate unbiased spatiotemporal distribution of afterslip through the inversion analysis of observed geodetic data. In the present analysis, we used a 3-D realistic model developed by Hashimoto et al. (2004) for plate interface geometry and a standard elastic-viscoelastic layered model, consisting of a 60 km-thick elastic surface layer and a Maxwell-type viscoelastic substratum with the viscosity of 1019 Pa s, for crust-mantle rheological structure. First, following Noda et al. (2013), we transformed the GPS displacement data on land into the average strains of triangular elements composed of adjacent three GPS stations. Then, by applying a sequential method of stepwise (every two months) inversion to the strain data, we estimated the spatiotemporal distribution of afterslip together with coseismic slip distribution. The estimated results show that significant afterslip has proceeded for the first one and a half years at the downdip extension of the main rupture zone off Iwate and Miyagi with decaying its rate. Finally, based on the estimated results, we computed postseismic offshore crustal movements by using the same elastic-viscoelastic structure model and compared them with seafloor geodetic observations (Watanabe et al., 2014). The good agreement between the computed

  8. Habitual Physical Activity, Peripheral Neuropathy, Foot Deformities ...

    African Journals Online (AJOL)

    Results: Habitual physical activity index (3.2 ± 0.83) was highest in work-related activities; 69 (26.1 %) patients presented with peripheral neuropathy and 52 (19. 7%) had the lowest limb function. Pes planus was the most prevalent foot deformity (20.1%). Significant differences existed in physical activity indices across ...

  9. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  10. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    Science.gov (United States)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  11. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  12. Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska

    Science.gov (United States)

    Dixit, N.; Hanks, C.

    2017-12-01

    Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.

  13. A Comparison of the Crustal Deformation Predicted by Glacial Isostatic Adjustment to Seismicity in the Baffin Region of Northern Canada

    Science.gov (United States)

    James, T. S.; Schamehorn, T.; Bent, A. L.; Allen, T. I.; Mulder, T.; Simon, K.

    2016-12-01

    The horizontal crustal strain-rates induced by glacial isostatic adjustment (GIA) in northern Canada and western Greenland region are compared to the spatial pattern of seismicity. For the comparison, an updated seismicity catalogue was created from the 2010 version of the NRCan Seismic Hazard Earthquake Epicentre File (SHEEF2010) catalogue and the Greenland Ice Sheet Monitoring Network (GLISN) catalogue of the Geological Survey of Denmark and Greenland (GEUS). Crustal motion rates were computed with the Innu/Laur16 ice-sheet history and the VM5a viscosity profile (Simon et al., 2015; 2016). This GIA model optimizes the fit to relative sea-level and vertical crustal motion measurements around Hudson Bay and in the Canadian Arctic Archipelago (CAA). A region in Baffin Bay with historically high seismicity, including the 1933 M 7.4 and the 1934 and 1945 M 6.5 earthquakes, features high predicted GIA strain-rates. Elsewhere, agreement is not strong, with zones of seismicity occurring where predicted horizontal crustal strain-rates are small and large crustal strain-rates predicted where earthquake occurrence is muted. For example, large compressional crustal strain-rates are predicted beneath seismically quiescent portions of the Greenland ice sheet. Similarly, large predicted extensional strain-rates occur around southern Hudson Bay and the Foxe Basin, which are also regions of relative seismic quiescence. Additional factors to be considered include the orientation of the background stress field, relative to the predicted stress changes, and potential pre-existing zones of lithospheric weakness.

  14. A multiple dating approach (luminescence and electron spin resonance) to assess rates of crustal deformation using Quaternary fluvial terraces of the lower Moulouya River (NE Morocco)

    Science.gov (United States)

    Bartz, Melanie; Rixhon, Gilles; Duval, Mathieu; King, Georgina; Brückner, Helmut

    2017-04-01

    The Moulouya River, the largest catchment in Morocco, drains an area characterized by active crustal deformation during the Late Cenozoic due to the convergence between the African and Eurasian plates. Our study focuses on the lowermost reach of the river in NE Morocco, where a thrust zone associated with N-S compressive shortening in this region was identified (Barcos et al., 2014; Rixhon et al., 2017). New geomorphological results demonstrate contrasting fluvial environments on each side of the thrust: long-lasting fluvial aggradation, materialized by >37 m-thick stacked fill terraces, and the development of a well-preserved terrace staircase, with three Pleistocene terrace levels, occurred in the footwall and the hanging wall, respectively (Rixhon et al., 2017). Here, we present a preliminary geochronological background for these contrasting terrace systems based on a multiple dating approach. Samples for (i) luminescence (pIRIR225 and pIRIR290 dating of coarse-grained K-feldspars) and (ii) electron spin resonance (ESR dating of coarse-grained quartz) from four different profiles were collected. (i) Due to the application of the athermal detrapping model by Huntley (2006) (modified after Kars et al., 2008), it appears that the feldspar signals are in sample specific field saturation. Our results yielded minimum ages of 0.9 Ma and 0.7 Ma for the footwall and hanging wall, respectively. (ii) Using the multiple centre approach with ESR dating (Duval et al., 2015), we measured both the aluminium (Al) and the titanium (Ti) centres in order to evaluate whether they would provide consistent results. Results indicate that De values of the Al centre are either slightly higher compared to those of the Ti centre or they agree within a 1σ-error range, which may simply be due to the slower bleaching kinetics of the Al centre. Thus, the ESR ages were inferred from the Ti centre. Ages between 1.35±0.10 and 1.17±0.10 Ma in the footwall show sediment aggradation between MIS

  15. Microseismicity in Southern South Island, New Zealand: Implications for the Mechanism of Crustal Deformation Adjacent to a Major Continental Transform

    Science.gov (United States)

    Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.; Smith, Euan

    2017-11-01

    Shallow (convergent Australian-Pacific plate boundary zone. It has recently been proposed that continental convergence here is accommodated by oblique slip on a low-angle detachment that underlies the region, and as such, forms a previously unrecognized mode of oblique continental convergence. We test this model using microseismicity, presenting a new, 15 month high-resolution microearthquake catalog for the Southern Lakes and northern Fiordland regions adjacent to the Alpine Fault. We determine the spatial distribution, moment release, and style of microearthquakes and show that seismicity in the continental lithosphere is predominantly shallower than 20 km, in a zone up to 150 km wide, but less frequent deeper microseismicity extending into the mantle, at depths of up to 100 km is also observed. The geometry of the subducted oceanic Australian plate is well imaged, with a well-defined Benioff zone to depths of 150 km. In detail, the depth of continental microseismicity shows considerable variation, with no clear link with major active surface faults, but rather represents diffuse cracking in response to the ambient stress release. The moment release rate is 0.1% of that required to accommodate relative plate convergence, and the azimuth of the principal horizontal axis of contraction accommodated by microseismicity is 120°, 15-20° clockwise of the horizontal axis of contractional strain rate observed geodetically. Thus, short-term microseismicity, independent of knowledge of intermittent large-magnitude earthquakes, may not be a good guide to the rate and orientation of long-term deformation but is an indicator of the instantaneous state of stress and potential distribution of finite deformation. We show that both the horizontal and vertical spatial distribution of microseismicity can be explained in terms of a low-angle detachment model.

  16. Crustal deformation and seismic measurements in the region of McDonald Observatory, West Texas. [Texas and Northern Chihuahua, Mexico

    Science.gov (United States)

    Dorman, H. J.

    1981-01-01

    The arrival times of regional and local earthquakes and located earthquakes in the Basin and Range province of Texas and in the adjacent areas of Chihuahua, Mexico from January 1976 to August 1980 at the UT'NASA seismic array are summarized. The August 1931 Texas earthquake is reevaluated and the seismicity and crustal structure of West Texas is examined. A table of seismic stations is included.

  17. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    Science.gov (United States)

    Azzouzi, R.

    2009-04-01

    Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames. By: R. Azzouzi*, M. Ettarid*, El H. Semlali*, et A. Rimi+ * Filière de Formation en Topographie Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts MAROC + Département de la Physique du Globe Université Mohammed V Rabat MAROC This study focus on the use of the geodetic spatial technique GPS for geodynamic purposes generally in the Western Mediterranean area and particularly in Morocco. It aims to exploit this technique first to determine the geodetic coordinates on some western Mediterranean sites. And also this technique is used to detect and to determine movements cross the boundary line between the two African and Eurasian crustal plates on some well chosen GPS-Geodynamics sites. It will allow us also to estimate crustal dynamic parameters of tension that results. These parameters are linked to deformations of terrestrial crust in the region. They are also associated with tectonic constraints of the study area. The usefulness of repeated measurements of these elements, the estimate of displacements and the determination of their temporal rates is indisputable. Indeed, sismo-tectonique studies allow a good knowledge of the of earthquake processes, their frequency their amplitude and even of their prediction in the world in general and in Moroccan area especially. They allow also contributing to guarantee more security for all most important management projects, as projects of building great works (dams, bridges, nuclear centrals). And also as preliminary study, for the most important joint-project between Europe and Africa through the Strait of Gibraltar. For our application, 23 GPS monitoring stations under the ITRF2000 reference frame are chosen in Eurasian and African plates. The sites are located around the

  18. Lithospheric strength in the active boundary between the Pacific Plate and Baja California microplate constrained from lower crustal and upper mantle xenoliths

    Science.gov (United States)

    Chatzaras, Vasileios; van der Werf, Thomas; Kriegsman, Leo M.; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.

    2017-04-01

    The lower crust is the most poorly understood of the lithospheric layers in terms of its rheology, particularly at active plate boundaries. We studied naturally deformed lower crustal xenoliths within an active plate boundary, in order to link their microstructures and rheological parameters to the well-defined active tectonic context. The Baja California shear zone (BCSZ), located at the western boundary of the Baja California microplate, comprises the active boundary accommodating the relative motion between the Pacific plate and Baja California microplate. The basalts of the Holocene San Quintin volcanic field carry lower crustal and upper mantle xenoliths, which sample the Baja California microplate lithosphere in the vicinity of the BCSZ. The lower crustal xenoliths range from undeformed gabbros to granoblastic two-pyroxene granulites. Two-pyroxene geothermometry shows that the granulites equilibrated at temperatures of 690-920 oC. Phase equilibria (P-T pseudosections using Perple_X) indicate that symplectites with intergrown pyroxenes, plagioclase, olivine and spinel formed at 3.6-5.4 kbar, following decompression from pressures exceeding 6 kbar. FTIR spectroscopy shows that the water content of plagioclase varies among the analyzed xenoliths; plagioclase is relatively dry in two xenoliths while one xenolith contains hydrated plagioclase grains. Microstructural observations and analysis of the crystallographic texture provide evidence for deformation of plagioclase by a combination of dislocation creep and grain boundary sliding. To constrain the strength of the lower crust and upper mantle near the BCSZ we estimated the differential stress using plagioclase and olivine grain size paleopiezomtery, respectively. Differential stress estimates for plagioclase range from 10 to 32 MPa and for olivine are 30 MPa. Thus the active microplate boundary records elevated crustal temperatures, heterogeneous levels of hydration, and low strength in both the lower crust and

  19. Broadscale postseismic deformation and lower crustal relaxation in the central Bayankala Block (central Tibetan Plateau) observed using InSAR data

    Science.gov (United States)

    Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Zuo, Ronghu; Liu, Yunhua; Gong, Wenyu; Zhang, Guohong

    2018-04-01

    We have generated a more than 500 km long postseismic deformation rate map and cumulative displacement time series in the central Bayankala Block of the Tibetan Plateau using ENVISAT/ASAR data from 2003 to 2010 by the π-RATE stacking algorithm. This rate map spans a period of ∼7.2 years and reveals that postseismic motion of 2001 Kokoxili earthquake exhibits a striking signal, dominating crustal deformation of the central Bayankala Block with a cross-fault magnitude ∼9-11 mm/yr in line of sight (LOS) (∼93.1°E). The southern and northern parts of the postseismic deformation field exhibit different patterns and variable magnitudes, reflecting asymmetry of the displacement distribution. Postseismic motion affects eastward extrusion of the central Bayankala Block, which reaches ∼15 km north of the Ganzi-Yushu fault. To further investigate viscoelastic relaxation of the lower crust in this area after approximately two years, E-M, E-M-M and E-S models are constructed. The result shows that the best fit viscosity for the lower crust is about 1 × 1019 Pa·s. Comparison between cumulative displacements resolved by these three models shows that viscoelastic relaxation of the lower crust makes the most significant contribution to postseismic stress relaxation after 2001 event.

  20. Evaluation of the crustal deformations in the northern region of Lake Nasser (Egypt) derived from 8 years of GPS campaign observations

    Science.gov (United States)

    Rayan, A.; Fernandes, R. M. S.; Khalil, H. A.; Mahmoud, S.; Miranda, J. M.; Tealab, A.

    2010-04-01

    The proper evaluation of crustal deformations in the Aswan (Egypt) region is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction induced the creation of one of the major artificial lakes: Lake Nasser, which has a surface area of about 5200 km 2 with a maximum capacity of 165 km 3. The lake is nearly 550 km long (more than 350 km within Egypt and the remainder in Sudan) and 35 km across at its widest point. Great attention has focused on this area after the November 14, 1981 earthquake ( ML = 5.7), with its epicenter southwest of the High Dam. In order to evaluate the present-day kinematics of the region, its relationship with increasing seismicity, and the possible influence of the Aswan High Dam operation, a network of 11 GPS sites was deployed in the area. This network has been reobserved every year since 2000 in campaign style. We present here the results of the analysis of the GPS campaign time-series. These time-series are already long enough to derive robust solutions for the motions of these stations. The computed trends are analyzed within the framework of the geophysical and geological settings of this region. We show that the observed displacements are significant, pointing to a coherent intraplate extensional deformation pattern, where some of the major faults (e.g., dextral strike-slip Kalabsha fault and normal Dabud fault) correspond to gradients of the surface deformation field. We also discuss the possible influence of the water load on the long-term deformation pattern.

  1. Radiometric Dating of Folds: A new approach to determine the timing of deformation at shallow-crustal conditions, with examples from the Mexican Fold-Thrust Belt

    Science.gov (United States)

    Fitz Diaz, E.; van der Pluijm, B. A.

    2012-12-01

    We are developing a robust method to obtain absolute ages of folds that were formed at shallow crustal conditions. The method takes advantage of illite neocrystallization in folded, clay-bearing layers and the ability to obtain accurate retention and total gas ages from small size fractions using encapsulated Ar analysis, analogous to prior work on fault gouge dating. We illustrate our approach in folded Cretaceous shale-bentonitic layers that are interbedded with carbonates of the Zimapán and the Tampico-Misantla cretaceous basins in central-eastern Mexico. Basinal carbonates were buried by syntectonic turbidites and inverted during the formation of the Mexican Fold-Thrust in the Late Cretaceous. Results were obtained from four chevron folds that are representative of different stages of deformation, burial/temperature conditions and location within this thin-skinned orogenic wedge: two from the Zimapán Basin (Folds 1 and 2) in the west and two from the Tampico-Misantla Basin (Folds 3 and 4) in the east. Mineralogic compositions and variations in illite-polytypes, crystallite-size (CS) and Ar/Ar ages were obtained from size fractions in limbs and hinges of folded layers. Ar retention ages produce a folding age of ~81 Ma for Fold 1 and ~69 Ma for Fold 2, which are fully consistent with stratigraphic limits from syn-orogenic turbidities and observed overprinting events in the Mexican Fold-Thrust Belt. The total gas age of Fold 3, on the easternmost margin of the Tampico-Misantla Basin is similar to that of Fold 2, indicating that the second event is regional in scale. In addition to presenting a new, reliable method to constrain the timing of local deformation, we interpret folding and associated clay neo-mineralization in terms of the regional burial history, and localization and propagation of deformation within a heterogeneous orogenic wedge involving progressive deformation of two basins separated by a platform block.

  2. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  3. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  4. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    Science.gov (United States)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2017-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D

  5. Studying the active deformation of distributed plate boundaries by integration of GNSS networks

    Science.gov (United States)

    D'Agostino, Nicola; Avallone, Antonio; Cecere, Gianpaolo; D'Anastasio, Elisabetta

    2013-04-01

    In the last decade GNSS networks installed for different purposes have proliferated in Italy and now provide a large amount of data available to geophysical studies. In addition to the existing regional and nation-wide scientific GNSS networks developed by ASI (http://geodaf.mt.asi.it), INGV (http://ring.gm.ingv.it) and OGS (http://crs.inogs.it/frednet), a large number (> 400) of continuously-operating GPS stations have been installed in the framework of regional and national networks, both publicly-operated and commercial, developed to provide real-time positioning capability to surveyors. Although the quality of the data and metadata associated to these stations is generally lower with respect to the "scientific" CGPS stations, the increased density and redundancy in crustal motion information, resulting in more than 500 stations with more than 2.5 years of observations, significantly increase the knowledge of the active deformation of the Italian territory and provides a unique image of the crustal deformation field. The obtained GPS velocity field is analysed and various features ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults are presented in this work. Undeforming, aseismic regions (Sardinia, Southern Apulia) provide test sites to evaluate the lower bound on the accuracy achievable to measure tectonic deformation. Integration of GNSS networks significantly improves the resolution of the strain rate field in Central Italy showing that active deformation is concentrated in a narrow belt along the crest of the Apennines, consistently with the distribution of the largest historical and recent earthquakes. Products derived from dense GPS velocity and strain rate fields include map of earthquake potential developed under the assumption that the rate of seismic moment accumulation measured from geodesy distributes into earthquake sizes that

  6. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    Science.gov (United States)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  7. Relationship between water activity, deformation speed, and crispness characterization

    NARCIS (Netherlands)

    Castro Prada, E.M.; Primo Martin, C.; Meinders, M.B.J.; Hamer, R.J.; Vliet, van T.

    2009-01-01

    Very little is known on the rate dependency of the fracture behavior of crispy products as a function of water activity (Aw). Therefore, the effect of deformation speed on instrumental and sensory crispness was studied as a function of Aw. Deformation speed clearly affects the transition Aw range

  8. Recently active contractile deformation in the forearc of southern Peru

    Science.gov (United States)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2010-12-01

    In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.

  9. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-05-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring

  10. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-01-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring

  11. Crustal Models Assessment in Western Part of Romania Employing Active Seismic and Seismologic Methods

    Science.gov (United States)

    Bala, Andrei; Toma-Danila, Dragos; Tataru, Dragos; Grecu, Bogdan

    2017-12-01

    In the years 1999 - 2000 two regional seismic refraction lines were performed within a close cooperation with German partners from University of Karlsruhe. One of these lines is Vrancea 2001, with 420 km in length, almost half of them recorded in Transylvanian Basin. The structure of the crust along the seismic line revealed a very complicated crustal structure beginning with Eastern Carpathians and continuing in the Transylvanian Basin until Medias. As a result of the development of the National Seismic Network in the last ten years, more than 100 permanent broadband stations are now continuously operating in Romania. Complementary to this national dataset, maintained and developed in the National Institute for Earth Physics, new data emerged from the temporary seismologic networks established during the joint projects with European partners in the last decades. The data gathered so far is valuable both for seismology purposes and crustal structure studies, especially for the western part of the country, where this kind of data were sparse until now. Between 2009 and 2011, a new reference model for the Earth’s crust and mantle of the European Plate was defined through the NERIES project from existing data and models. The database gathered from different kind of measurements in Transylvanian Basin and eastern Pannonian Basin were included in this NERIES model and an improved and upgraded model of the Earth crust emerged for western part of Romania. Although the dataset has its origins in several periods over the last 50 years, the results are homogeneous and they improve and strengthen our image about the depth of the principal boundaries in the crust. In the last chapter two maps regarding these boundaries are constructed, one for mid-crustal boundary and one for Moho. They were build considering all the punctual information available from different sources in active seismic and seismology which are introduced in the general maps from the NERIES project for

  12. GPS crustal deformation of the Eastern Betics and its relationship with the Lorca earthquake; Deformacion cortical de las Beticas Orientales observada mediante GPS y su relacion con el terremoto de Lorca

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, A.; Khazaradze, G.; Asensio, E.; Garate, J.; Surinach, E.

    2012-07-01

    On May 11{sup t}h of 2011, a seismic series occurred near the city of Lorca (Murcia). The main earthquake of magnitude Mw 5.2 has been attributed to the Alhama de Murcia Fault, one of the most active faults in the SE Iberian Peninsula. We analyzed data from 5 GPS campaigns of the CuaTeNeo network conducted between 1997 and 2011. The velocities of the stations closest to the Alhama de Murcia Fault show the reverse and strike-slip direction of motion. Stations located on the southeastern side of the fault have the maximum velocities in the area (between 1.4 and 1.8 mm/yr), oriented towards NNW direction, obliquely to the trace of the fault. The kinematics of the fault and the strain rate directions obtained from the CuaTeNeo network GPS measurements matches the calculated focal mechanism of Lorca earthquake. Detailed analysis of the time-series from the continuous GPS station at the Lorca city allows the detection of co-seismic offset of {approx}6 mm to the North. Keywords: crustal deformation, GPS, Betics, Lorca earthquake. (Author) 20 refs.

  13. New design deforming controlling system of the active stressed lap

    Science.gov (United States)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  14. The 2015 Fillmore earthquake swarm and possible crustal deformation mechanisms near the bottom of the eastern Ventura Basin, California

    Science.gov (United States)

    Hauksson, Egill; Andrews, Jennifer; Plesch, Andreas; Shaw, John H.; Shelly, David R.

    2016-01-01

    The 2015 Fillmore swarm occurred about 6 km west of the city of Fillmore in Ventura, California, and was located beneath the eastern part of the actively subsiding Ventura basin at depths from 11.8 to 13.8 km, similar to two previous swarms in the area. Template‐matching event detection showed that it started on 5 July 2015 at 2:21 UTC with an M∼1.0 earthquake. The swarm exhibited unusual episodic spatial and temporal migrations and unusual diversity in the nodal planes of the focal mechanisms as compared to the simple hypocenter‐defined plane. It was also noteworthy because it consisted of >1400 events of M≥0.0, with M 2.8 being the largest event. We suggest that fluids released by metamorphic dehydration processes, migration of fluids along a detachment zone, and cascading asperity failures caused this prolific earthquake swarm, but other mechanisms (such as simple mainshock–aftershock stress triggering or a regional aseismic creep event) are less likely. Dilatant strengthening may be a mechanism that causes the temporal decay of the swarm as pore‐pressure drop increased the effective normal stress, and counteracted the instability driving the swarm.

  15. Kinematics and significance of a poly-deformed crustal-scale shear zone in central to south-eastern Madagascar: the Itremo-Ikalamavony thrust

    Science.gov (United States)

    Giese, Jörg; Schreurs, Guido; Berger, Alfons; Herwegh, Marco

    2017-09-01

    Across the crystalline basement of Madagascar, late Archaean rocks of the Antananarivo Block are tectonically overlain by Proterozoic, predominantly metasedimentary units of the Ikalamavony and Itremo Groups of the Southwest Madagascar Block. The generally west-dipping tectonic contact can be traced for more than 750 km from NW to SE and is referred to here as the Itremo-Ikalamavony thrust. The basal units of the SW Madagascar Block comprise metasedimentary quartzites with the potential to preserve a multistage deformation history in their microstructures. Previous studies suggest contrasting structural evolutions for this contact, including eastward thrusting, top-to-the-west directed extension and right-lateral strike-slip deformation during the late Neoproterozoic/Ediacaran. In this study, we integrate remote sensing analyses, structural and petrological fieldwork, as well as microstructural investigations of predominantly quartz mylonites from the central southern segment of the contact between Ankaramena and Maropaika. In this area, two major phases of ductile deformation under high-grade metamorphic conditions occurred in latest Neoproterozoic/early Phanerozoic times. A first (Andreaba) phase produces a penetrative foliation, which is parallel to the contact between the two blocks and contemporaneous with widespread magmatism. A second (Ihosy) phase of deformation folds Andreaba-related structures. The investigated (micro-)structures indicate that (a) juxtaposition of both blocks possibly already occurred prior to the Andreaba phase, (b) (re-)activation with top-to-the-east thrusting took place during the latest stages of the Andreaba phase, (c) the Ihosy phase resulted in regional-scale open folding of the tectonic contact and (d) reactivation of parts of the contact took place at distinctively lower temperatures post-dating the major ductile deformations.

  16. Tunable deformation modes shape contractility in active biopolymer networks

    Science.gov (United States)

    Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret

    Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.

  17. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2016-04-01

    Full Text Available Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 4.3 x 10-3 mJ h-1 ml-1 was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63 °C and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 hours during a step-wise isothermal scan from 35.5 to 85.0 °C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 x 104 cells ml-1FLUID and their subsequent metabolic activity at temperatures greater than 50 °C. The average cellular energy consumption (1.79 x 10-7 kJ h-1 cell-1 reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8 °C, relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 hours as temperature ramped from 34.8 to 43.0 °C. Corresponding cell-specific energy turnover rates (0.18 pW cell-1 were converted to oxygen uptake rates of 24.5 nmol O2 ml-1FLUID d-1, validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

  18. A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs

    Science.gov (United States)

    Zeng, Yuehua; Shen, Zheng-Kang

    2017-01-01

    We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018  N·m/year">8.5×1018  N⋅m/year for California and the WUS outside California, respectively.

  19. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-01-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  20. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  1. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  2. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    Science.gov (United States)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  3. Plate boundary deformation of the Pacific plate. Two case studies. (1) Crustal structure of the northwestern Vizcaino block and Gorda escarpment, offshore northern California, and implications for postsubduction deformation of a paleoaccretionary margin. (2) A focused look at the Alpine fault, New Zealand: Seismicity, focal mechanisms and stress observations

    Science.gov (United States)

    Leitner, Beate

    Two examples of Pacific rim plate boundary deformation are presented. In the first part of the thesis crustal models are derived for the northwestern part of the Vizcaino block in California using marine seismic and gravity data collected by the Mendocino Triple Junction Seismic Experiment. A northwest-southeast trending kink in the Moho is imaged and interpreted to have formed under compression by reactivation of preexisting thrust faults in the paleoaccretionary prism at the seaward margin of the Vizcaino block. The study suggests that the deformation resulted from mainly north-south compression between the Pacific-Juan de Fuca plates across the Mendocino transform fault and predates late Pliocene Pacific-North America plate convergence. In the second part, 195 earthquakes recorded during the duration of the Southern Alps Passive Seismic Experiment (SAPSE) are analysed. Precise earthquake locations and focal mechanisms provide unprecedented detail of the seismotectonics in the central South Island. The short term (6 month) SAPSE seismicity is compared with long term (8 years) seismicity recorded by the New Zealand National Seismic network and the Lake Pukaki network. The seismicity rate of the Alpine fault is low, but comparable to locked sections of the San Andreas fault, with large earthquakes expected. Changes of the depth of the seismogenic zone, generally uniform at about 10--12 km, occur only localised over distances smaller than 30 km, suggesting that thermal perturbations must be of similar scale. This implies that the thermal effects of the uplift of the Southern Alps do not change the seismogenic depth significantly and are not in accordance with most of the present thermal models. Both the Hope and Porters Pass fault zones are seismically active and deformation is accommodated near the fault zones and in the adjacent crust. North of Mt Cook, a triangular shaped region along the Alpine fault is characterised by absence of earthquakes. We interpret this

  4. Crustal Seismic Anisotropy: Implications for Understanding Crustal Dynamics

    Science.gov (United States)

    Meltzer, A.; Christensen, N.; Okaya, D.

    2003-12-01

    The Nanga Parbat - Haramosh massif, in the core of the western syntaxis of the Himalaya, represents a unique exposure of mid-lower continental crust from beneath a collisional orogen. The exhumed core of the massif forms a large scale antiformal structure with axial orientation of N10E and associated lineation directed north-south with near-vertical dips. Laboratory measurements of seismic velocity on a suite of quartzofeldspathic gneisses from the massif show a relatively strong degree of anisotropy, up to 12.5% for compressional waves and up to 21% for shear waves. The degree of velocity anisotropy is primarily a function of mica content and rock fabric strength. The strong anisotropy measured in these rocks should be observable in recorded seismic field data and provides a means of mapping rock fabric at depth provided the rock fabric is coherent over appropriate length scales. An IRIS/PASSCAL deployment of 50 short period instruments recorded local and regional earthquakes to characterize seismicity and determine crustal structure beneath the massif as part of a multidisciplinary NSF Continental Dynamics study investigating the active tectonic processes responsible for exhumation and crustal reworking at Nanga Parbat. Microseismicity at Nanga Parbat is distributed along strike beneath the massif but exhibits a sharp drop-off laterally into adjacent terranes and with depth. This data set is ideal for studying crustal seismic anisotropy because the raypaths are restricted to the crust, sharp onsets in P and S allow for clear identification of arrivals, and source-receiver geometries sample a range of azimuths with respect to structure. Preliminary analysis indicates that the majority of local events exhibit some degree of splitting and that splitting patterns, while complicated, are coherent. While splitting delay normally increases with distance traveled through anisotropic material, the range of delay times can be due to heterogeneity in composition, lateral

  5. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    Science.gov (United States)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a

  6. InSAR analysis of the crustal deformation affecting the megacity of Istanbul: the results of the FP7 Marsite Project as a GEO Supersite Initiative

    Science.gov (United States)

    Solaro, Giuseppe; Bonano, Manuela; Manzo, Mariarosaria

    2016-04-01

    The North Anatolian Fault (NAF) is one of the most active faults worldwide, extending approximately 1,200 km from Eastern Turkey to the Northern Aegean Sea. During the 20th century series of damaging earthquakes occurred along the NAF, generally propagated westward towards Istanbul; the last one occurred in 1999 at Izmit, a city 80 km away from Istanbul. Within this scenario, the FP7 MARsite project (New Directions in Seismic Hazard assessment through Focused Earth Observation in Marmara Supersite), supported by EU, intends to collect, share and integrate multidisciplinary data (seismologic, geochemical, surveying, satellite, etc.) in order to carry out assessment, mitigation and management of seismic risk in the region of the Sea of Marmara. In the framework of the MARsite project, we performed the analysis and monitoring of the surface deformation affecting the Istanbul mega city by exploiting the large archives of X-band satellite SAR data, made available through the Supersites Initiatives, and by processing them via the advanced multi-temporal and multi-scale InSAR technique, known as the Small BAseline Subset (SBAS) approach. In particular, we applied the SBAS technique to a dataset of 101 SAR images acquired by the TerraSAR-X constellation of the German Space Agency (DLR) over descending orbits and spanning the November 2010 - August 2014 time interval. From,these images, we generated 312 differential interferograms with a maximum spatial separation (perpendicular baseline) between the acquisition orbits of about 500 m., that were used to generate, via the SBAS approach, mean deformation velocity map and corresponding ground time series of the investigated area. The performed InSAR analysis reveals a generalized stability over the Istanbul area, except for some localized displacements, related to subsidence and slope instability phenomena. In particular, we identified: (i) a displacement pattern related to the Istanbul airport, showing a mostly linear

  7. Spatial Relationship Between Crustal Structure and Mantle Seismicity in the Vrancea Seismogenic Zone of Romania

    Science.gov (United States)

    Knapp, C. C.; Enciu, D. M.; Knapp, J. H.

    2007-12-01

    Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the

  8. The crustal thickness and lithospheric structure of active and inactive volcanic arc terrains in Fiji and Tonga

    Science.gov (United States)

    Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.

    2015-12-01

    In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.

  9. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    Science.gov (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  10. Analogue experiment of the crustal deformation by X-ray CT; X sen CT wo mochiita chikaku no henkei no analogue jikken

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; Shi, B; Murakami, Y. [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    This paper reports a predictive result on a deformation experiment on sand beds using an X-ray computerized tomography (CT) equipment. The X-ray CT is a method to perform the following processes: X-rays are irradiated on a sample; decayed intensity data are measured along ray paths of the permeated X-rays; the data are inverted by using the Fourier transform; and spatial distribution of the coefficient of X-ray absorption inside the sample is acquired as a gray scale image. The deformation experiment was carried by putting sand into an acrylic container to a depth of 2 cm and manually pressing a plate in the horizontal direction. Sand blocks make a relative motion along a specific plane when they are deformed, but it was not possible to recognize faults clearly by naked eyes. Upon completion of the deformation, the experimental device was placed on the CT equipment to acquire images of the two-dimensional cross section. The higher the X-ray absorption coefficient, the brighter the picture elements. It can be seen that three inversed faults have been imaged clearly. Therefore, this equipment was verified usable as an effective observation equipment for an analogue deformation experiment. 4 refs., 2 figs.

  11. Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese region from 11 years (2002-2013) of GPS measurements

    Science.gov (United States)

    Barman, Prakash; Jade, Sridevi; Shrungeshwara, T. S.; Kumar, Ashok; Bhattacharyya, Sanjeev; Ray, Jagat Dwipendra; Jagannathan, Saigeetha; Jamir, Wangshi Menla

    2017-09-01

    The present study reports the contemporary deformation of the tectonically complex northeast India using 11 years (2002-2013) of GPS observations. The central Shillong Plateau and few sites north of Plateau located in Assam Valley behave like a rigid block with 7 mm/year India-fixed southward velocity. The Euler pole of rotation of this central Shillong Plateau-Assam Valley (SH-AS) block is estimated to be at -25.1° ± 0.2°N, -97.8° ± 1.8°E with an angular velocity of 0.533° ± 0.10° Myr-1 relative to India-fixed reference frame. Kopili fault located between Shillong Plateau and Mikir massif records a dextral slip of 4.7 ± 1.3 mm/year with a locking depth of 10.2 ± 1.4 km indicating the fragmentation of Assam Valley across the fault. Presently, western edge of Mikir massif appears to be locked to Assam block indicating strain accumulation in this region. First-order elastic dislocation modelling of the GPS velocities estimates a slip rate of 16 mm/year along the Main Himalayan Thrust in Eastern Himalaya which is locked over a width of 130 km from the surface to a depth of 17 km with underthrusting Indian plate. Around 9 mm/year arc-normal convergence is accommodated in Lesser Himalaya just south of Main Central Thrust indicating high strain accumulation. Out of 36 mm/year (SSE) India-Sunda plate motion, about 16 mm/year motion is accommodated in Indo-Burmese Fold and Thrust Belt, both as normal convergence ( 6 mm/year) and active slip ( 7-11 mm/year) in this region.

  12. The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps

    Science.gov (United States)

    Heberer, B.; Prasicek, G.; Neubauer, F.; Hergarten, S.

    2017-01-01

    Abstract The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA‐EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one‐dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ‐transformed channel profiles coincide spatially with the Valsugana‐Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA‐EA drainage divide imply an ongoing, north directed shift of the Danube‐ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA‐EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration. PMID:28344912

  13. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  14. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey)

    Science.gov (United States)

    Rossetti, Federico; Asti, Riccardo; Faccenna, Claudio; Gerdes, Axel; Lucci, Federico; Theye, Thomas

    2017-06-01

    The Menderes Massif of western Turkey is a key area to study feedback relationships between magma generation/emplacement and activation of extensional detachment tectonics. Here, we present new textural analysis and in situ U-(Th)-Pb titanite dating from selected samples collected in the transition from the undeformed to the mylonitized zones of the Salihli granodiorite at the footwall of the Neogene, ductile-to-brittle, top-to-the-NNE Gediz-Alaşheir (GDF) detachment fault. Ductile shearing was accompanied by the fluid-mediated sub-solidus transformation of the granodiorite to orthogneiss, which occurred at shallower crustal levels and temperatures compatible with the upper greenschist-to-amphibolite facies metamorphic conditions (530-580 °C and P system ages during fluid-assisted syn-tectonic re-crystallisation in the transition from magma crystallization and emplacement (at 16-17 Ma) to the syn-tectonic, solid-state shearing (at 14-15 Ma). A minimum time lapse of ca. 1-2 Ma is then inferred between the crustal emplacement of the Salihli granodiorite and nucleation of the ductile extensional shearing along the Gediz detachment. The reconstruction of the cooling history of the Salihli granodiorite documents a punctuated evolution dominated by two episodes of rapid cooling, between 14 Ma and 12 Ma ( 100 °C/Ma) and between 3 and 2 Ma ( 105 °C/Ma). We relate the first episode to nucleation and development of post-emplacement of ductile shearing along the GDF and the second to brittle high-angle faulting, respectively. Our dataset suggests that in the Menderes Massif the activation of ductile extension was a consequence, rather than the cause, of magma emplacement in the extending crust.

  15. Lower crustal seismic activity in the Adana Basin (Eastern Mediterranean): Possible connection to gravitational flexure

    Science.gov (United States)

    Ergin, Mehmet; Aktar, Mustafa

    2018-04-01

    High quality broadband data, together with the application of the double difference relocation technique, has been used to study the characteristics of the lower crustal seismicity in the Adana Basin, in southwestern Turkey. Deep events are clearly seen to be restricted only to the Adana Basin and never extend outside its boundaries. Furthermore, the seismogenic zone is observed to align roughly with the main axis of the basin and plunges steadily in the SSW-direction, following the basement trend of the Adana Basin. Similarities between geometries of the basin evolution and the deep seismic production suggest that both processes are closely related. A flexure process is proposed related to the subsidence of the Adana Basin. The seismogenic zone, originally at a shallow depth, is assumed to have been displaced vertically into the lower crust, by flexure. The temperature evolution of the crust during the flexure has been studied in detail using finite difference modeling, with amplitude and duration parameters taken from earlier studies. It has been concluded that the physical conditions for brittle fracturing remained unchanged for an extended period of time after the flexure. The brittle layers originally at shallow depths, preserved their original thermal properties after the subsidence and will continue to produce earthquakes at considerable depths. Numerical tests using inferred parameters imply a total vertical shift of 7-8 km for the seismogenic zone. Discussions for additional processes, which may further contribute to the cooling of the crust, are also included.

  16. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  17. Crustal-scale shear zones recording 400 m.y. of tectonic activity in the North Caribou greenstone belt, western Superior Province of Canada

    Science.gov (United States)

    Kalbfleisch, Netasha

    A series of crustal-scale shear zones demarcates the northern and eastern margins of the North Caribou greenstone belt (NCGB), proximal to a Mesoarchean terrane boundary in the core of the western Superior Province of Canada. The dominant deformation produced a pervasive steeply dipping fabric that trends broadly parallel to the doubly arcuate shape of the belt and was responsible for tight folding the banded iron formation host to Goldcorp's prolific gold deposit at Musselwhite mine. The shear zones in the North Caribou greenstone belt are of particular interest because of their ability to channel hydrothermal fluids with the potential to bear ore and cause alteration of the middle to shallow crust. Shear zones are commonly reactivated during subsequent tectonism, but exhibit a consistent and dominant dextral shear sense across the belt; fabric-forming micas and chlorite are generally Mg-rich. Although garnets samples from within the shear zones are dominantly almandine, they possess variable geochemical trends (HREEs of >2 orders of magnitude) and can be syn-, intra-, or post-tectonic in origin. In situ geochronological analysis of zircon (U-Pb) and monazite (total-Pb) in high strain rocks in and around the NCGB, interpreted in light of in situ geochemical analysis of garnet and fabric-forming micas and chlorite, reveals four relatively discrete events that span 400 million years. Metamorphism of the mid-crust was coeval with magmatism during docking of the Island Lake domain at c. 2.86 Ga and subsequent terrane accretion at the north and south margins of the North Caribou Superterrane from c. 2.75 to 2.71 Ga. Transpressive shear at c. 2.60 to 2.56 Ga and late re-activation of shear zones at c. 2.44 Ga produced a steeply-dipping pervasive fabric, and channeled fluids for late crystallization of garnet and monazite recorded in the Markop Lake deformation zone. These observations implicate a horizontal tectonic model similar to the modern eastern Pacific plate

  18. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    Science.gov (United States)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  19. Measurements of Active Tectonic Deformation on the Guerrero Coast, Mexico

    Science.gov (United States)

    Ramirez, T.; Cundy, A.; Carranza-Edwards, A.; Morales, E.; Kostoglodov, V.; Urrutia-Fucugauchi, J.

    2004-12-01

    The study of tectonic deformation rates using displaced shoreline features is relatively well-established, and has provided much useful information on seismic hazard. Such studies have frequently been complemented by analysis of the coastal sedimentary record, where past marine to terrestrial environmental changes (and vice versa) may be recorded by clear changes in stratigraphy. Studies of this type are particularly valuable for tectonically-active areas where the preservation of former shoreline features is poor, or where long-term subsidence has resulted in their erosion, drowning or burial. The specific objective of this study is to derive rates of tectonic deformation from geomorphic and stratigraphic studies of the Guerrero coastal area, and to examine the feasibility of this stratigraphic approach in the coastal lagoons of the Mexican Pacific coast, in the Guerrero gap. The Guerrero gap coastal area, where a major earthquake is expected to occur, parallels the Cocos plate subduction zone. Here convergence rates vary from 5.2 cm/yr to 5.8 cm/yr. The Guerrero gap has experienced several historical earthquakes, notably the 1911 (7.8 Ms). However, no large magnitude events since the 1911 earthquake and only a few Ms~6 events have occurred near the Guerrero gap edges. It is expected that a major interplate earthquake of estimated magnitude Mw=8.1 to 8.4 has a high probability to occur. Landforms within the Guerrero gap indicate that the coast is subsiding. A series of key indicators such as elongated islands reminiscent of ancient barriers, submerged barriers island, extensive marshy environments, increased depths in the lagoons, and submerged anthropogenic features (shell mounds), among others, suggest active tectonic subsidence of the coast. In contrast, the adjacent northwest area off the Guerrero gap exhibits landforms characteristic of tectonic uplift (marine terraces and uplifted beach ridges), indicating a different seismo-tectonic regime northwest of the

  20. Sensing surface mechanical deformation using active probes driven by motor proteins

    Science.gov (United States)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  1. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  2. Evolution of the Dharwar Craton: a terrain of early Archean crustal stability, long term orogenic cycles and large scale palaeobiological activity

    International Nuclear Information System (INIS)

    Srinivasan, R.; Naqvi, S.M.

    1988-01-01

    Traceable history of the Dharwar Craton goes back to approximately 3400 m.y. old tonalitic to trondhjemitic fundamental gneiss whose REE composition indicates its derivation from a preexisting basalt which apparently had very short time of crustal residence. The fundamental gneiss is preserved only as rare relicts in the vast gneissic complex of the Indian Peninsula (the Peninsular Gneiss), and as pebbles in the conglomerates of the Archean Dharwar sequence. Study of these relicts, shows evidence of a deformation episode prior to the deposition of the high- and low-grade Dharwar supracrustal sequence. The Dharwar supracrustal sequence is briefly described. Geochemistry of the volcanic and sedimentary rocks of the Dharwar supracrustal belts are examined

  3. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images

    Directory of Open Access Journals (Sweden)

    Anna Barra

    2017-09-01

    Full Text Available This work is focused on deformation activity mapping and monitoring using Sentinel-1 (S-1 data and the DInSAR (Differential Interferometric Synthetic Aperture Radar technique. The main goal is to present a procedure to periodically update and assess the geohazard activity (volcanic activity, landslides and ground-subsidence of a given area by exploiting the wide area coverage and the high coherence and temporal sampling (revisit time up to six days provided by the S-1 satellites. The main products of the procedure are two updatable maps: the deformation activity map and the active deformation areas map. These maps present two different levels of information aimed at different levels of geohazard risk management, from a very simplified level of information to the classical deformation map based on SAR interferometry. The methodology has been successfully applied to La Gomera, Tenerife and Gran Canaria Islands (Canary Island archipelago. The main obtained results are discussed.

  4. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    Science.gov (United States)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    determined from the borehole logging data and core samples. These results were also compared with in situ stress data by the hydraulic fracturing stress measurements in the boreholes. We obtained characteristic states on crustal stress and strength of the fault from these investigations. Our findings are as follows: (1) The fracture zone around the Atera fault shows a very wide and complex fracture structure, from approximately 1 km to 4 km wide. The average slip rate was estimated to be 5.3 m /1000 yrs. by the distribution of basalt in age of 1.5 Ma by radioactive dating. We inferred that the Atera fault has been repeatedly active in recent geologic time; however, it is in a very weak state at present. (2) The stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost in a North-South direction, just reverse of the fault moving direction. These are important results to evaluate fault activity. We argue that the stress state observed in these sites exists only when the faults are quite "weak," and thus does not reach to a critical level of fault activation in the present situation.

  5. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    Science.gov (United States)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate

  6. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    Science.gov (United States)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  7. Active Deformation of the Northern Cordillera Observed with GPS

    Science.gov (United States)

    Elliott, J.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Freymueller, J.; Mazzotti, S.

    2017-12-01

    The Northern Cordillera, which encompasses western Canada and eastern Alaska, is a complex tectonic puzzle. Past terrane accretions, the present collision of the Yakutat block, large-scale plate motions, and past and present glacier change have created a tectonic landscape that includes a major transform system, most of the highest peaks in North America, and far-flung ongoing distributed deformation. We present an updated GPS velocity field as well as a new integrated tectonic block model for the region. The style of deformation varies through the region. Surrounding the Yakutat collision, the model includes a number of small blocks that indicate rotations to the east, north, and west as material moves away from the collisional front. These small blocks also show evidence of internal deformation. Farther from the collisional front, blocks are larger and appear to behave more rigidly. In the south, northwestward motion resulting in a prominent band of coastal shear extends from Vancouver Island to Glacier Bay. In the Arctic, small southeastward motions in Alaska transition to easterly motion in Canada that extends to the Mackenize Mountains near the Cordillera-craton boundary. A number of faults and fault systems accommodate relative Pacific-North America plate motion in the region, although the significant majority is along the Fairweather-Queen Charlotte transform system and the St. Elias fold-and-thrust belt. Along the Fairweather-Queen Charlotte system, the motion is dominantly dextral with increasing oblique transpression to the south corresponding to a change in margin trend. At the northern end of the transform system, motion is distributed onto multiple faults. Roughly 75% of the Fairweather motion is transferred west into the St. Elias fold-and-thrust belt, which accommodates 30 mm/yr of convergence. The remaining 25% is transferred north towards the dextral Denali-Totschunda system. The eastern Denali fault presently plays a minor role in accommodating

  8. Parallel Fast Multipole Boundary Element Method for crustal dynamics

    International Nuclear Information System (INIS)

    Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar

    2010-01-01

    Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.

  9. ASSESSMENT OF THE INFLUENCE OF MODERN CRUSTAL MOVEMENTS AND THE RECENTLY ACTIVATED PRECAMBRIAN STRUCTURAL PLAN ON THE RELIEF OF THE LAKE LADOGA REGION (THE SOUTHEASTERN BALTIC SHIELD

    Directory of Open Access Journals (Sweden)

    A. O. Agibalov

    2017-01-01

    Full Text Available This paper describes the influence of modern crustal movements and the recently activated Precambrian structural plan on the relief of theLakeLadogaregion. It presents the results of comprehensive studies, including processing of the regional geological and geomorphological data by the modern methods, as the major novelty of our work. The solutions of earthquake focal mechanisms suggest the current subhorizontal NW compression in the study area. Based on the computer simulation by the Roxar software, we have identified areas wherein new fractures are most likely to occur, determined the dominant directions of such fractures, and revealed the areas of intense vertical movements in the given stress state. The input database included a digital model of the relief and the spatial patterns of ancient faults represented by large-size inhomogeneities influencing the stress field. Strain values were estimated from the horizontal displacements recorded by the International GPS Service for Geodynamics (IGS and the GPS networks in theRepublicofKareliaand the southeastern regions ofFinland. Using the LESSA software, we have estima­ted the relief orientation characteristics: the density of lineaments, and elongation lines, which are indicative of the changes in the dominant directions of the strike of the lineaments (‘hatches’ in the study area. By interpreting the satellite images and the topographic maps (scale 1:20000, we reveal a number of geological structures, such as gra­nite-gneiss domes and large-size faults, which are directly reflected in the relief. The study results give grounds to establish an indirect relationship between the relief and the modern field of deformation: the areas with high strain values correspond to the areas with steep slopes. The computer simulation data show a NE-trending linear zone with the increased amplitudes of vertical movements. This zone occupies the region along the NW shoreLakeLadoga. In the block

  10. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution

    Science.gov (United States)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  11. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    Science.gov (United States)

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.

  12. Crustal structure of Central Sicily

    Science.gov (United States)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo

    2018-01-01

    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  13. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    Science.gov (United States)

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times CreCre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits (0.3–1)×10−1 kg(0.3–1)×10−1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼7.5×104 km2∼7.5×104 km2 of granitic rock in California is estimated to release (0.019–3.2)×10−1 kg(0.019–3.2)×10−1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

  14. Some contributions to the high strain rate deformation of solids and the thermally activated deformation of wood

    International Nuclear Information System (INIS)

    Ferguson, W George

    2009-01-01

    The behaviour of metals as a function of rate of loading, strain rate, and temperature is discussed in terms of previous work by the author. Strain rates range from 10 -3 s -1 , obtained in a standard tensile testing machine, to 10 2 s -1 obtained in a hydraulic piston driven machine and up to 10 4 s -1 , very high strain rates with a Kolsky split Hopkinson bar using shear type loading. At rates less 10 3 s -1 the strength is a function of strain rate and temperature, is thermally activated and governed by the stress-assisted thermal activation of dislocations across short-range barriers in the crystal. At very high strain rates however the behaviour is controlled by interaction of dislocations with either phonons or electrons, giving a strength proportional to strain rate. The compressive strength of small clear samples of wood, Pinus radiata and Kahikatea, determined over the strain rate range 10 -3 s -1 to 10 3 s -1 as a function of strain rate, temperature and moisture content shows the behaviour to again be thermally activated with the strength a function of stain rate, temperature and moisture content. A rate theory of deformation is developed where the yield behaviour of wood is assumed to result from the stress-assisted thermally activated motion of elementary fibrils over short-range barriers. The moisture is assumed to affect the bond energy between elementary fibrils and the barrier energy is taken to be a linear decreasing function of increasing moisture content and the moisture to act like a plasticiser in separating the elementary fibrils. The theory more than adequately explains the observed behaviour.

  15. Lithospheric Structure, Crustal Kinematics, and Earthquakes in North China: An Integrated Study

    Science.gov (United States)

    Liu, M.; Yang, Y.; Sandvol, E.; Chen, Y.; Wang, L.; Zhou, S.; Shen, Z.; Wang, Q.

    2007-12-01

    The North China block (NCB) is geologically part of the Archaean Sino-Korean craton. But unusual for a craton, it was thermally rejuvenated since late Mesozoic, and experienced widespread extension and volcanism through much of the Cenozoic. Today, the NCB is characterized by strong internal deformation and seismicity, including the 1976 Tangshan earthquake that killed ~250,000 people. We have started a multidisciplinary study to image the lithospheric and upper mantle structure using seismological methods, to delineate crustal kinematics and deformation via studies of neotectonics and space geodesy, and to investigate the driving forces, the stress states and evolution, and seismicity using geodynamic modeling. Both seismic imaging and GPS results indicate that the Ordos plateau, which is the western part of the NCB and a relic of the Sino-Korean craton, has been encroached around its southern margins by mantle flow and thus is experiencing active cratonic destruction. Some of the mantle flow may be driven by the Indo-Asian collision, although the cause of the broad mantle upwelling responsible for the Mesozoic thinning of the NCB lithosphere remains uncertain. At present, crustal deformation in the NCB is largely driven by gravitational spreading of the expanding Tibetan Plateau. Internal deformation within the NCB is further facilitated by the particular tectonic boundary conditions around the NCB, and the large lateral contrasts of lithospheric strength and rheology. Based on the crustal kinematics and lithospheric structure, we have developed a preliminary geodynamic model for stress states and strain energy in the crust of the NCB. The predicted long-term strain energy distribution is comparable with the spatial pattern of seismic energy release in the past 2000 years. We are exploring the cause of the spatiotemporal occurrence of large earthquakes in the NCB, especially the apparent migration of seismicity from the Weihe-Shanxi grabens around the Ordos to

  16. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  17. Evidences of Episodic Crustal Magmatic Diapir and Shallow Volcanic Activity at Uturuncu, Central Andes, from Geodetic Observations between 2014 - 2017

    Science.gov (United States)

    Lau, H. N.; Tymofyeyeva, E.; Fialko, Y. A.

    2017-12-01

    Previous space geodetic studies using ERS-1/2 and Envisat Interferometric Synthetic Aperture Radar (InSAR) data revealed a broad uplift of 10 mm/yr within the Altiplano-Puna Volcanic Complex (APVC), centered at the Uturuncu volcano, surrounded by a ring of subsidence at a rate of a few millimeters per year. This pattern was attributed to formation of a diapir in the middle of the Altiplano-Puna Magma Body (APMB), at depth of 15-19 km. We use new data from the Sentinel-1 InSAR mission, collected between 2014-2017, to produce high-resolution maps of surface displacements in the satellite's line of sight (LOS) from 4 satellite tracks. We estimated random propagation effects (e.g. due to atmospheric turbulence) using a common-point stacking method by Tymofyeyeva and Fialko [2015] and estimated temporally-correlated propagation effects (e.g. due to seasonal variations in atmospheric moisture) using a regression of the residual phase against topography. The estimated atmospheric artifacts were removed from the interferograms prior to computing the time series of the LOS displacements. The data indicate that the uplift above the APMB has considerably slowed down compared to the 1992-2010 epoch. The observed variations in the uplift rate suggest that the "ballooning" of the mid-crustal diapir is episodic on time scales of year to decades, possibly due to variations in melt supply from the partially molten APMB to the incipient diapir. We also find a previously undiscovered localized uplift 11 km south of Uturuncu's peak with maximum LOS velocities of 10 - 15 mm/yr. Joint inversions of data from different satellite tracks for a point source of inflation in an elastic half space constrain the source depth to be at 2 km, suggestive of a shallow magma chamber or a hydrothermal system.

  18. Verification of the active deformation compensation system of the LMT/GTM by end-to-end simulations

    Science.gov (United States)

    Eisentraeger, Peter; Suess, Martin

    2000-07-01

    The 50 m LMT/GTM is exposed to the climatic conditions at 4,600 m height on Cerro La Negra, Mexico. For operating the telescope to the challenging requirements of its millimeter objective, an active approach for monitoring and compensating the structural deformations (Flexible Body Compensation FBC) is necessary. This system includes temperature sensors and strain gages for identifying large scale deformations of the reflector backup structure, a laser system for measuring the subreflector position, and an inclinometer system for measuring the deformations of the alidade. For compensating the monitored deformations, the telescope is equipped with additional actuators for active control of the main reflector surface and the subreflector position. The paper describes the verification of the active deformation system by finite element calculations and MATLAB simulations of the surface accuracy and the pointing including the servo under the operational wind and thermal conditions.

  19. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin

    Science.gov (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  20. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  1. Lithospheric controls on crustal reactivation and intraplate mountain building in the Gobi Corridor, Central Asia

    Science.gov (United States)

    Cunningham, D.

    2017-12-01

    This talk will review the Permian-Recent tectonic history of the Gobi Corridor region which includes the actively deforming Gobi Altai-Altai, Eastern Tien Shan, Beishan and North Tibetan foreland. Since terrane amalgamation in the Permian, Gobi Corridor crust has been repeatedly reactivated by Triassic-Jurassic contraction/transpression, Late Cretaceous extension and Late Cenozoic transpression. The tectonic history of the region suggests the following basic principle for intraplate continental regions: non-cratonized continental interior terrane collages are susceptible to repeated intraplate reactivation events, driven by either post-orogenic collapse and/or compressional stresses derived from distant plate boundary convergence. Thus, important related questions are: 1) what lithospheric pre-conditions favor intraplate crustal reactivation in the Gobi Corridor (simple answer: crustal thinning, thermal weakening, strong buttressing cratons), 2) what are the controls on the kinematics of deformation and style of mountain building in the Gobi-Altai-Altai, Beishan and North Tibetan margin (simple answer: many factors, but especially angular relationship between SHmax and `crustal grain'), 3) how does knowledge of the array of Quaternary faults and the historical earthquake record influence our understanding of modern earthquake hazards in continental intraplate regions (answer: extrapolation of derived fault slip rates and recurrence interval determinations are problematic), 4) what important lessons can we learn from the Mesozoic-Cenozoic tectonic history of Central Asia that is applicable to the tectonic evolution of all intraplate continental regions (simple answer: ancient intraplate deformation events may be subtly expressed in the rock record and only revealed by low-temperature thermochronometers, preserved orogen-derived sedimentary sequences, fault zone evidence for younger brittle reactivation, and recognition of a younger class of cross-cutting tectonic

  2. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    Science.gov (United States)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  3. Oblique reactivation of lithosphere-scale lineaments controls rift physiography - the upper-crustal expression of the Sorgenfrei-Tornquist Zone, offshore southern Norway

    Science.gov (United States)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.

    2018-04-01

    Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of

  4. Application of FE software Elmer to the modeling of crustal-scale processes

    Science.gov (United States)

    Maierová, Petra; Guy, Alexandra; Lexa, Ondrej; Cadek, Ondrej

    2010-05-01

    We extended Elmer (the open source finite element software for multiphysical problems, http://www.csc.fi/english/pages/elmer) by user-written procedures for the two-dimensional modeling of crustal-scale processes. The standard version of Elmer is an appropriate tool for modeling of thermomechanical convection with non-linear viscous rheology. In geophysics, it might be suitable for some type of mantle convection modeling. Unlike the mantle, the crust is very heterogeneous. It consists of materials with distinct rheological properties that are subject to highly varied conditions: low pressure and temperature near the surface of the Earth and relatively high pressure and temperature at a depth of several tens of kilometers. Moreover, the deformation in the upper crust is mostly brittle and the strain is concentrated into narrow shear zones and thrusts. In order to simulate the brittle behavior of the crust, we implemented pressure-dependent visco-plastic rheology. The material heterogeneity and chemical convection is implemented in terms of active markers. Another special feature of the crust, the moving free surface, is already included in Elmer by means of a moving computational grid. Erosion can easily be added in this scheme. We tested the properties of our formulation of plastic flow on several numerical experiments simulating the deformation of material under compressional and extensional stresses. In the first step, we examined angles of shear zones that form in a plastically deforming material for different material parameters and grid resolutions. A more complex setting of "sandbox-type" experiments containing heterogeneous material, strain-softening and boundary friction was considered as a next testing case. To illustrate the abilities of the extended Elmer software in crustal deformation studies, we present two models of geological processes: diapirism of the lower crust and a channel flow forced by indentation. Both these processes are assumed to take

  5. Active deformation in the northern Sierra de Valle Fértil, Sierras Pampeanas, Argentina

    Science.gov (United States)

    Ortiz, Gustavo; Alvarado, Patricia; Fosdick, Julie C.; Perucca, Laura; Saez, Mauro; Venerdini, Agostina

    2015-12-01

    The Western Sierras Pampeanas region in the San Juan Province is characterized by thick-skinned deformation with approximately N-S trending ranges of average heights of 2500 m and a high frequency occurrence of seismic activity. Its location to the east of the mainly thin-skinned tectonics of the Argentine Precordillera fold-and-thrust belt suggests that at 30°S, deformation is concentrated in a narrow zone involving these two morphostructural units. In this paper, we present new apatite (U-Th)/He results (AHe) across the northern part of the Sierra de Valle Fértil (around 30°S) and analyze them in a framework of thermochronologic available datasets. We found Pliocene AHe results for Carboniferous and Triassic strata in the northern Sierra de Valle Fértil consistent with the hypothesis of recent cooling and inferred erosional denudation concentrated along the northern end of this mountain range. Our analysis shows that this northern region may have evolved under different conditions than the central part of the Sierra de Valle Fértil. Previous studies have observed AHe ages consistent with Permian through Cretaceous cooling, indicating the middle part of the Sierra de Valle Fértil remained near surface before the Pampean slab subduction flattening process. Those studies also obtained ˜5 My cooling ages in the southern part of the Sierra de Valle Fértil, which are similar to our results in the northern end of the range. Taken together, these results suggest a pattern of young deformation in the northern and southern low elevation ends of the Sierra de Valle Fértil consistent with regions of high seismic activity, and Quaternary active faulting along the western-bounding thrust fault of the Sierra de Valle Fértil.

  6. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  7. Evaluation of the deformation parameters of the northern part of Eg

    Directory of Open Access Journals (Sweden)

    Abdel-Monem S. Mohamed

    2016-06-01

    Full Text Available The northern part of Egypt is a rapidly growing development accompanied by the increased levels of standard living particularly in its urban areas. From tectonic and seismic point of views, the northern part of Egypt is one of the interested regions. It shows an active geologic structure attributed to the tectonic movements of the African and Eurasian plates from one side and the Arabian plate from the other side. From historical point of view and recent instrumental records, the northern part of Egypt is one of the seismo-active regions in Egypt. The investigations of the seismic events and their interpretations had led to evaluate the seismic hazard for disaster mitigation, for the safety of the densely populated regions and the vital projects. In addition to the monitoring of the seismic events, the most powerful technique of Global Navigation Satellite System (GNSS will be used in determining crustal deformation where a geodetic network covers the northern part of Egypt. Joining the GPS Permanent stations of the northern part of Egypt with the Southern part of Europe will give a clear picture about the recent crustal deformation and the African plate velocity. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. Final compiled output from the seismological and geodetic analysis will throw lights upon the geodynamical regime of these seismo-active regions. This work will throw lights upon the geodynamical regime and to delineate the crustal stress and strain fields in the study region. This also enables to evaluate the active tectonics and surface deformation with their directions from repeated geodetic observations. The results show that the area under study suffers from continuous seismic activity related to the crustal movements taken place along trends of major faults

  8. Evaluation of the deformation parameters of the northern part of Eg

    Science.gov (United States)

    Mohamed, Abdel-Monem S.; Radwan, Ali M.; Sharf, Mohamed; Hamimi, Zakaria; Hegazy, Esraa E.; Abou Aly, Nadia; Gomaa, Mahmoud

    2016-06-01

    The northern part of Egypt is a rapidly growing development accompanied by the increased levels of standard living particularly in its urban areas. From tectonic and seismic point of views, the northern part of Egypt is one of the interested regions. It shows an active geologic structure attributed to the tectonic movements of the African and Eurasian plates from one side and the Arabian plate from the other side. From historical point of view and recent instrumental records, the northern part of Egypt is one of the seismo-active regions in Egypt. The investigations of the seismic events and their interpretations had led to evaluate the seismic hazard for disaster mitigation, for the safety of the densely populated regions and the vital projects. In addition to the monitoring of the seismic events, the most powerful technique of Global Navigation Satellite System (GNSS) will be used in determining crustal deformation where a geodetic network covers the northern part of Egypt. Joining the GPS Permanent stations of the northern part of Egypt with the Southern part of Europe will give a clear picture about the recent crustal deformation and the African plate velocity. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. Final compiled output from the seismological and geodetic analysis will throw lights upon the geodynamical regime of these seismo-active regions. This work will throw lights upon the geodynamical regime and to delineate the crustal stress and strain fields in the study region. This also enables to evaluate the active tectonics and surface deformation with their directions from repeated geodetic observations. The results show that the area under study suffers from continuous seismic activity related to the crustal movements taken place along trends of major faults

  9. Active tectonics and drainage evolution in the Tunisian Atlas driven by interaction between crustal shortening and slab pull

    Science.gov (United States)

    Camafort, Miquel; Booth-Rea, Guillermo; Pérez-Peña, Jose Vicente; Melki, Fetheddine; Gracia, Eulalia; Azañón, Jose Miguel; Ranero, César R.

    2017-04-01

    Active tectonics in North Africa is fundamentally driven by NW-SE directed slow convergence between the Nubia and Eurasia plates, leading to a region of thrust and strike-slip faulting. In this paper we analyze the morphometric characteristics of the little-studied northern Tunisia sector. The study aimed at identifying previously unknown active tectonic structures, and to further understand the mechanisms that drive the drainage evolution in this region of slow convergence. The interpretation of morphometric data was supported with a field campaign of a selection of structures. The analysis indicates that recent fluvial captures have been the main factor rejuvenating drainage catchments. The Medjerda River, which is the main catchment in northern Tunisia, has increased its drainage area during the Quaternary by capturing adjacent axial valleys to the north and south of its drainage divide. These captures are probably driven by gradual uplift of adjacent axial valleys by reverse/oblique faults or associated folds like El Alia-Teboursouk and Dkhila faults. Our fieldwork found that these faults cut Holocene colluvial fans containing seismites like clastic dikes and sand volcanoes, indicating recent seismogenic faulting. The growth and stabilization of the axial Medjerda River against the natural tendency of transverse drainages might be caused by a combination of dynamic topography and transpressive tectonics. The orientation of the large axial Medjerda drainage that runs from eastern Algeria towards northeastern Tunisia into the Gulf of Tunis, might be the associated to negative buoyancy caused by the underlying Nubia slab at its mouth, together with uplift of the Medjerda headwaters along the South Atlassic dextral transfer zone.

  10. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    Science.gov (United States)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    , the relative motion between central Iran and Eurasia is partly taken-up by dextral-reverse oblique-slip faulting along the Neyshabur and Mashhad fault systems. This faulting mechanism implies a long-term rate of ~4 mm/yr for the range-parallel strike-slip faulting, and an uplift rate of ~2.4 mm/yr due to the range-normal shortening during late Quaternary. Our data provide the first geological constraints on the rate of active faulting on both sides of the Binalud Mountains, and allow us to examine the geological reliability of preexisting tectonic models proposed to describe the kinematics of active deformation at the northeastern boundary of the Arabia-Eurasia collision. Our results favor the northward translation of central Iran with respect to Eurasia through strike-slip faulting localized along distinct crustal scale fault systems rather than systematic block rotations around vertical axes.

  11. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  12. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness.

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10 13 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus-Tidal deformation-Faults-Variable ice shell thickness-Tidal heating-Plume activity and timing. Astrobiology 17, 941-954.

  13. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  14. Why Wet Kaolin can be used as a Crustal Analog and its Application to Fault Evolution at Restraining Bends

    Science.gov (United States)

    Cooke, M. L.; van der Elst, N.; Schottenfeld, M. T.

    2010-12-01

    To simulate geologic deformation on observable time and length scales within the lab, a subset of analog modelers have used wet kaolin. Unlike the more often used sand, wet kaolin beautifully exhibits detailed fault structures. Furthermore, faults within the kaolin are more readily reactivated than those in sand. The low plasticity of kaolin (compared to other clays) gives it low shear strength. Consequently, the clay is a suitable analog material if we assume that the wet kaolin deforms by coulomb frictional failure. Koalin generally deforms as a Bingham solid and exhibits more complex deformation than the perfectly plastic behavior assumed with Coulomb failure. We performed fall cone and rheometric tests on wet kaolin to refine our quantitative understanding of its rheology. We use North American wet kaolin with density 1.65-1.7 g/cm3 and water content of 37.5-38.5%. The fall cone tests reveal that the undrained shear strength (100-160 Pa) is greater than previously measured with a viscometer. The rheometer tests show that the wet koalin exhibits many of the same properties of crustal materials including: 1) elastic behavior at low strains, 2) stress relaxation at near-failure strains, 3) creep under static load, 4) yield strength sensitive to strain rate and 5) rate and state dependent failure. Armed with quantitative values for this complex deformation, we can better scale the length and strain rate of the wet koalin experiments to specific crustal settings. Experiments of deformation around restraining bends show features very similar to those found in natural examples. The detailed fault structures produced in the wet kaolin can be analyzed to understand the evolution of active faulting at restraining bends.

  15. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  16. Electromechanical stability of electro-active silicone filled with high permittivity particles undergoing large deformation

    International Nuclear Information System (INIS)

    Liu, Liwu; Liu, Yanju; Zhang, Zhen; Leng, Jinsong; Li, Bo

    2010-01-01

    In this paper, an expression for the permittivity of electro-active silicone undergoing large deformation with high permittivity particles filled uniformly has been proposed. Two expressions are proposed for the permittivity, one based on experimental tests and the other based on the theory of composite material. By applying the thermodynamic model incorporating linear dielectric permittivity and nonlinear hyperelastic performance, the mechanical performance and electromechanical stability of the coupling system constituted by silicone filled with PMN–PT have been studied. The results show that the critical electric field decreases, namely the stability performance of the system declines when the content of PMN–PT c(v) increases and the electrostrictive coefficients increase. The results are beneficial for us to understand deeply the influence of the filled particle on the stability performance of silicone and to guide the design and manufacture of actuators and sensors based on dielectric elastomers

  17. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    Science.gov (United States)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  18. Phreatic eruptions and deformation of Ioto Island (Iwo-jima), Japan, triggered by deep magma injection

    Science.gov (United States)

    Ueda, Hideki; Nagai, Masashi; Tanada, Toshikazu

    2018-03-01

    On Ioto Island (Iwo-jima), 44 phreatic eruptions have been recorded since 1889, when people began to settle there. Four of these eruptions, after the beginning of continuous observation by seismometers in 1976, were accompanied by intense seismic activity and rapid crustal deformation beforehand. Other eruptions on Ioto were without obvious crustal activities. In this paper, we discuss the mechanisms of phreatic eruptions on Ioto. Regular geodetic surveys and continuous GNSS observations show that Ioto intermittently uplifts at an abnormally high rate. All of the four eruptions accompanied by the precursors took place during intermittent uplifts. The crustal deformation before and after one of these eruptions revealed that a sill-like deformation source in the shallow part of Motoyama rapidly inflated before and deflated after the beginning of the eruption. From the results of a seismic array and a borehole survey, it is estimated that there is a layer of lava at a depth of about 100-200 m, and there is a tuff layer about 200-500 m beneath it. The eruptions accompanied by the precursors probably occurred due to abrupt boiling of hot water in hydrothermal reservoirs in the tuff layer, sealed by the lava layer and triggered by intermittent uplift. For the eruptions without precursors, the hydrothermal systems are weakly sealed by clay or probably occurred on the same principle as a geyser because phreatic eruptions had occurred beforehand and hydrostatic pressure is applied to the hydrothermal reservoirs.

  19. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  20. Deformation mechanisms in the frontal Lesser Himalayan Duplex in ...

    Indian Academy of Sciences (India)

    kinematics of the LHD is in the process of being worked out .... also played a major role in the deformation process as evident from .... mation occurred at shallow crustal levels within ..... deep structure of the outer and Lesser Himalaya, Jumoan.

  1. Crustal response to lithosphere evolution

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Cherepanova, Yulia

    2012-01-01

    We present a new model for the structure of the crust in an area which stretches from the North Atlantic region in the west to the Verkhoyansk Ridge in the east and encompasses Greenland, Iceland, most of Europe, West Siberian basin, and the Siberian cratons. The model is based on critically asse......, thicknesses of different crustal layers, and Pn seismic velocities....... assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. The region includes a nearly continuous age record for crustal evolution over ca. 3.6-3.8 billion years. We present an analysis of the crustal structure heterogeneity in relation...

  2. A 150-ka-long record for the volcano-tectonic deformation of Central Anatolian Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Tonguç Uysal, I.; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin

    2017-04-01

    The Anatolian Block represents one of the most outstanding examples of intra-plate deformation related to continental collision. Deformation related to the convergence of the Afro-Arabian continent toward north gives rise to widespread and intense arc volcanism in the Central Anatolia. All the usual studies on dating the volcano-tectonic deformation of the region are performed entirely on volcanic events of the geological record resulted in eruptions. However, without volcanic eruption, magma migration and related fluid pressurization also generate crustal deformation. In the current study has been funded by the Scientific and Technological Research Council of Turkey with the project no. 115Y497, we focused on fracture systems and their carbonate veins around the Ihlara Valley (Cappadocia) surrounded by well-known volcanic centers with latest activities of the southern Central Anatolian Volcanic Province. We dated 37 samples using the Uranium-series technique and analyzed their isotope systematics from fissure veins, which are thought to be controlled by the young volcanism in the region. Our detailed fracture analyses in the field show that there is a regional dilatation as a result of a NW-SE striking extension which is consistent with the results of recent GPS studies. The Uranium-series results indicate that fracture development and associated carbonate vein deposition occurred in the last 150 ka. Carbon and oxygen isotope systematics have almost remained unchanged in the studied time interval. Although veins in the region were precipitated from fluids primarily of meteoric origin, fluids originating from water-rock interaction also contribute for the deposition of carbonate veins. The age distribution indicates that the crustal deformation intensified during 7 different period at about 4.7, 34, 44, 52, 83, 91, 149 ka BP. Four of these periods (4.7, 34, 91, 149 ka BP) correspond to the volcanic activities suggested in the previous studies. The three crustal

  3. Precambrian crustal history of the Nimrod Group, central Transantarctic Mountains

    International Nuclear Information System (INIS)

    Goodge, J.W.; Fanning, C.M.

    2002-01-01

    High-grade metamorphic and igneous rocks of the Nimrod Group represent crystalline basement to the central Transantarctic Mountains. Despite metamorphism and penetrative deformation during the Ross Orogeny, they preserve a deep record of Precambrian geologic history in this sector of the East Antarctic shield. A review of available U-Pb geochronometric data reveals multiple geologic events spanning 2.5 b.y. of Archean to Early Paleozoic time, including: (1) juvenile Archean crust production by magmatism between 3150 and 3000 Ma; (2) crustal stabilisation and metamorphism between 2955 and 2900 Ma; (3) ultra-metamorphism or anatexis at c. 2500 Ma; (4) deep-crustal metamorphism and magmatism between 1720 and 1730 Ma, redefining the Nimrod Orogeny; (5) post-1700 Ma sedimentation; and (6) basement reactivation involving high-grade metamorphism, magmatism, and penetrative deformation during the Ross Orogeny between 540 and 515 Ma. A strong regional metamorphic and deformational Ross overprint, dated by U-Pb and Ar thermochronology, had pronounced thermomechanical effects on the basement assemblage, yet rocks of the Nimrod Group retain robust evidence of their Precambrian ancestry. The zircon U-Pb record therefore demonstrates that primary crustal lithosphere of the East Antarctic shield extends to the central Transantarctic Mountains, and that it has undergone multiple episodes of reactivation culminating in the Ross Orogeny. (author). 48 refs., 2 figs., 1 tab

  4. Active deformation processes of the Northern Caucasus deduced from the GPS observations

    Science.gov (United States)

    Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury

    2015-04-01

    The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of

  5. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    Science.gov (United States)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for

  6. Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ice Shell Thickness

    Science.gov (United States)

    Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej

    2017-09-01

    We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.

  7. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  8. MAGNETAR FIELD EVOLUTION AND CRUSTAL PLASTICITY

    International Nuclear Information System (INIS)

    Lander, S. K.

    2016-01-01

    The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.

  9. Continental crustal formation and recycling: Evidence from oceanic basalts

    Science.gov (United States)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  10. Anelastic deformation processes in metallic glasses and activation energy spectrum model

    NARCIS (Netherlands)

    Ocelik, [No Value; Csach, K; Kasardova, A; Bengus, VZ; Ocelik, Vaclav

    1997-01-01

    The isothermal kinetics of anelastic deformation below the glass transition temperature (so-called 'stress induced ordering' or 'creep recovery' deformation) was investigated in Ni-Si-B metallic glass. The relaxation time spectrum model and two recently developed methods for its calculation from the

  11. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna

    2010-01-01

    -activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia....

  12. Active oil-water interfaces: buckling and deformation of oil drops by bacteria

    Science.gov (United States)

    Juarez, Gabriel; Stocker, Roman

    2014-11-01

    Bacteria are unicellular organisms that seek nutrients and energy for growth, division, and self-propulsion. Bacteria are also natural colloidal particles that attach and self-assemble at liquid-liquid interfaces. Here, we present experimental results on active oil-water interfaces that spontaneously form when bacteria accumulate or grow on the interface. Using phase-contrast and fluorescence microscopy, we simultaneously observed the dynamics of adsorbed Alcanivorax bacteria and the oil-water interface within microfluidic devices. We find that, by growing and dividing, adsorbed bacteria form a jammed monolayer of cells that encapsulates the entire oil drop. As bacteria continue to grow at the interface, the drop buckles and the interface undergoes strong deformations. The bacteria act to stabilize non-equilibrium shapes of the oil-phase such wrinkling and tubulation. In addition to presenting a natural example of a living interface, these findings shape our understanding of microbial degradation of oil and may have important repercussions on engineering interventions for oil bioremediation.

  13. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  14. On Loosening Plastic Composite under Active Load and Its Influence on the Deformation and Strength Properties

    Directory of Open Access Journals (Sweden)

    K. F. Komkov

    2015-01-01

    Full Text Available Processing the test results of the composite, which is a mechanical mixture of metal particles with a plastic polymer binder, has shown that its deformation and strength properties are substantially different from those of stable plastic material. The specimen tests for tensile and compression with measuring transverse deformations, as well as torsion tests of tubular samples have revealed that the process of its deformation is accompanied by a change in the original structure.The composite instability is caused by the fact that during this process, it acquires considerable loosening that depends on the type of the stress-state. Hard metal particles are hardly deformed at any stress-state, but they form a layer of bonds that affect the mixture behavior under force action. The total deformation is the plastic flow of the binder on which deformation, caused both by sliding and by loss of the surface layer bonds, is superimposed.The analysis shows that with destruction at tensile test the non-linear part of the bulk deformation (dilatancy is 6 times more than "conditionally" elastic (3.5 times compressed. The objective of this work is to develop a technique for determining a dilatancy, define its influence on deformation and strength properties of the composite, and improve the mathematical model of the material. The proposed model based on the tensor-nonlinear equations describes loosening, as an additional component of the mean deformation and as a mean stress component, hereinafter referred to as: the first - by the deformation, the second – by the stress. A ratio value of the nonlinear part of deformation with the quadratic tensor argument to the linear part, which reaches 0.3, shows the need for such equations. It also shows the influence of deformation on the relationship between the deviators.To enhance capabilities of mathematical model is possible after including therein the equations for the spherical part of the tensor of deformation

  15. Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation.

    Science.gov (United States)

    Zong, Lu; Li, Xiankai; Han, Xiangsheng; Lv, Lili; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-09-20

    Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly(N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS 2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheet-reinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).

  16. Seismicity and volcanic activity in Japan based on crustal thermal activity. 1; Chikaku no netsukatsudo ni motozuku Nippon no jishin kazan katsudo. 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about correlation between seismic and volcanic activities and thermal energy. Investigations on the status of seismic and volcanic activities in the Japanese archipelago during about 400 years in the past reveals the following matters: noticing earthquakes with magnitudes of upper M6 to about M7, flows of energy going outward from deep crust of the earth repeat ups and downs, whereas several prominent rising periods having certain time widths can be seen; volcanic activities are included in the rising period at the same rank as seismic activities; with regard to years 1900 and on, the similar fact can be seen if the Japanese archipelago is divided into a north portion, a south portion, and an extremely south portion southern than the Hiuga area; and the present time is going toward a period of rise in energy flows. In other words, it is thought that the crust and the uppermost portion of the mantle form one body like an organic body, making an action like a geyser releasing the energy outward. 3 refs., 2 figs., 1 tab.

  17. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ Technological Research Council of Turkey (TUBITAK Project No: ÇAYDAG-114Y066), and EU-HORIZON-2020: COST Actions: Earth System Science and Environmental Management: ES1401 - Time Dependent Seismology (TIDES).

  18. Crustal anisotropy from Moho converted Ps wave splitting and geodynamic implications in Northeastern margin of Tibetan Plateau

    Science.gov (United States)

    Xie, Z.; Wu, Q.; Zhang, R.

    2017-12-01

    Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.

  19. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Science.gov (United States)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  20. Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

    Directory of Open Access Journals (Sweden)

    S. V. Luniov

    2017-08-01

    Full Text Available Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

  1. Glacial rebound and crustal stress in Finland

    International Nuclear Information System (INIS)

    Lambeck, K.; Purcell, A.

    2003-11-01

    The last ice age of Fennoscandinavia continues to have geological repercussions across Finland despite the last ice having retreated almost 10,000 years ago: land uplift, shoreline retreat, and the stress state of the crust continues to evolve. This report focusses on the glacial rebound signals for Finland and the Gulf of Bothnia and explores the consequences of the ongoing deformation. The rebound signals include the geological evidence as well as instrumental observations: the tide gauge and lake-level measurements of the past century, the changes in geodetic levels recorded in the repeat levelling surveys of the region and the direct measurement of crustal deformation (radial and horizontal) using high-precision space-geodesy measurements. These signals provide constraints on the Earth's rheology, its elasticity and viscosity, and the glacial history of the region. Once observationally constrained, the rebound models are used to predict both the ongoing evolution of shorelines and the changing state of stress within the crust. This report covers: (i) A review of glacial rebound modelling for Scandinavia (Sections 2 and 3). (ii) Review of observational evidence relating to sea-level change and crustal rebound (Section 4). (iii) New earth and ice-sheet model results from the inversion of the geological evidence for sea-level change, including models of shoreline evolution (Sections 5 and 6). (iv) Earth-model results from the inversion of the geodetic evidence for sea-level change (Section 7). (v) Development of crustal stress models for past and present stress states (Section 8). (vi) Conclusions and recommendations (Section 9). Specific conclusions reached pertain to: (i) Thickness of ice cover over Scandinavia since the Last Glacial Maximum, particularly for the Lateglacial period. (ii) Sea-level change and shoreline evolution for the Baltic area since the time the region became ice-free for the last time. (iii) The predicted rates of present-day crustal

  2. Crustal Ages of the Ocean Floor - Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  3. Seismicity and volcanic activity in Japan based on crustal thermal activity . 2; Chikaku no netsukatsudo ni motozuku Nippon no Jishin kazan katsudo. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M [Tokai Univ., Tokyo (Japan). School of Marine Science and Technology

    1996-05-01

    This paper describes the following matters about seismic and volcanic activities in Japan. The previous paper has reported a view that energy is transported from deep portions of the earth`s crust toward outer portions, and the stored energy thrusts up collectively in a certain time period (a rising period). A fact may be accounted for as one of the endorsements thereof that earthquakes and volcanic eruptions take place successively over a wide area from Okinawa to Hokkaido in a short period of time (included in the rising period). When viewed by limiting the time period and areas, a great earthquake would not occur suddenly, but stored energy is released wholly at a certain time while it has been released little by little. Referring to the Kanto Great Earthquake (1923) and the Tokai and Nankai Earthquakes (1944 and 1946), it is found that earthquakes had been occurring successively in the surrounding areas since about 20 years before the occurrence of these great earthquakes. Similar phenomena may be seen in the great earthquakes of Ansei (1854) and An-ei (1707). 5 figs.

  4. Crustal deformations at permanent GPS sites in Denmark

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Knudsen, Per; Tscherning, Carl Christian

    2005-01-01

    The National Survey and Cadastre (KMS) is responsible for the geodetic definition of the reference network in Denmark. Permanent GPS stations play an important role in the monitoring and maintenance of the geodetic network. During 1998 and 1999 KMS established three permanent GPS station in Denma...

  5. Characterization of the active deformation mechanisms in Zirconium alpha alloys, and use of micro-macro transfer models

    International Nuclear Information System (INIS)

    Francillette, H.; Bacroix, B.; Gasperini, M.; Lebensohn, R.A.

    1996-01-01

    The aim of this study is to model the evolution of the crystallographic textures of rolled zirconium sheet metals, based on the active deformation mechanisms. Plane compression tests have been carried out on Zr 702 polycrystalline samples, at ambient temperature. Active mechanisms were identified and characterized by the means of local orientation measurements (EBSD: electron BackScattering Diffraction), completed with global texture measurements. Measured orientations are then introduced in Taylor, Sachs and self-coherent type micro-macro models in order to validate these models with respect to mechanism activation and texture evolution. (A.B.)

  6. The crustal thickness of Australia

    Science.gov (United States)

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  7. Crustal anisotropy across northern Japan from receiver functions.

    Science.gov (United States)

    Bianchi, I; Bokelmann, G; Shiomi, K

    2015-07-01

    Northern Japan is a tectonically active area, with the presence of several volcanoes, and with frequent earthquakes among which the destructive M w  = 8.9-9.0 Tohoku-oki occurred on 11 March 2011. Tectonic activity leaves an imprint on the crustal structures, on both the upper and the lower layers. To investigate the crust in northern Japan, we construct a receiver function data set using teleseismic events recorded at 58 seismic stations belonging to the Japanese National (Hi-net) network. We isolate the signals, in the receiver function wavelet, that witness the presence of anisotropic structures at depth, with the aim of mapping the variation of anisotropy across the northern part of the island. This study focuses on the relation among anisotropy detected in the crust, stresses induced by plate convergence across the subduction zone, and the intrinsic characteristics of the rocks. Our results show how a simple velocity model with two anisotropic layers reproduces the observed data at the stations. We observe a negligible or small amount of signal related to anisotropy in the eastern part of the study area (i.e., the outer arc) for both upper and lower crust. Distinct anisotropic features are observed at the stations on the western part of the study area (i.e., the inner arc) for both upper and lower crust. The symmetry axes are mostly E-W oriented. Deviation from the E-W orientation is observed close to the volcanic areas, where the higher geothermal gradient might influence the deformation processes.

  8. Crustal Structure of Khövsgöl, Mongolia

    Science.gov (United States)

    Scott, A. M.; Meltzer, A.; Stachnik, J.; Russo, R.; Munkhuu, U.; Tsagaan, B.

    2017-12-01

    Mongolia is part of the Central Asian Orogenic Belt, an accretionary event that spanned 800 million years from the mid-Proterozoic to mid-Phanerozoic. As a result of the past collisional and rifting events, the modern Khövsgöl rift system of northern Mongolia contains a heterogeneous lithospheric structure. The current rift system has three parallel N-S trending basins that roughly align with terrane boundaries. Structures inherited during the accretionary events may be a factor influencing regional deformation. The forces that drive local deformation are not well understood, but varying processes have been proposed: far-field effects of India-Eurasian plate convergence, westward subduction of the Pacific plate, magmatic underplating at the base of the crust, mantle plume activity, and asthenospheric mantle convection. Determining the nature of crustal features within this poorly understood region may illuminate processes that control rifting within intracontinental settings. A network of 26 broadband seismic stations encompassing 200 square kilometers of the Khövsgöl rift system were deployed from August 2014 to June 2016. More than 2100 events were detected, and most earthquakes were concentrated near rift structures. Events between Busiin-Gol and Darkhad, the westernmost and central basins of the Khövsgöl rift system, are distributed within the crust. An active fault is outlined along the eastern border of the Darkhad basin. Khövsgöl earthquakes bound both sides of the rift. Along the northern border of Lake Khövsgöl, seismic events define a shallow active fault orthogonal to the basin. The largest event recorded within the network was a magnitude ml=5.2 located near the northeastern border of Lake Khövsgöl on 12-05-2014. The focal mechanism of this earthquake is predominantly strike-slip, but also includes an extensional component. This work focuses on earthquake relocation and calculating moment tensors and focal mechanisms of larger regional

  9. Active folding of fluvial terraces across a `blind' Himalayan deformation front in the Kashmir Himalaya, northwest India.

    Science.gov (United States)

    Gavillot, Y. G.; Meigs, A.; Rittenour, T. M.; Malik, M. O. A.

    2016-12-01

    In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline, and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the Suruin-Mastargh anticline hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and four yield multiple optically stimulated luminescence (OSL) and depth profiles terrigenous cosmogenic nuclides (TCN) ages between 53 ka and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Murree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggests rock uplift rates across the Suruin-Mastargh anticline range between 1.8-2.5 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rates across the Suruin-Mastargh anticline range between 3.8-5.4 mm/yr since 53 ka. Geodetic data indicate that an 11-12 mm/yr arc-normal shortening rate characterizes the interseismic strain accumulation across the plate boundary due to India-Tibet convergence. These data combined with rates of other active internal faults in the Kashmir Himalaya indicate that the Riasi fault accounts for the remainder 60% of the convergence not taken up by the Suruin-Mastargh anticline. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled

  10. Evaluation of stiffness and plastic deformation of active ceramic self-ligating bracket clips after repetitive opening and closure movements.

    Science.gov (United States)

    Carneiro, Grace Kelly Martins; Roque, Juliano Alves; Segundo, Aguinaldo Silva Garcez; Suzuki, Hideo

    2015-01-01

    The aim of this study was to assess whether repetitive opening and closure of self-ligating bracket clips can cause plastic deformation of the clip. Three types of active/interactive ceramic self-ligating brackets (n = 20) were tested: In-Ovation C, Quicklear and WOW. A standardized controlled device performed 500 cycles of opening and closure movements of the bracket clip with proper instruments and techniques adapted as recommended by the manufacturer of each bracket type. Two tensile tests, one before and one after the repetitive cycles, were performed to assess the stiffness of the clips. To this end, a custom-made stainless steel 0.40 x 0.40 mm wire was inserted into the bracket slot and adapted to the universal testing machine (EMIC DL2000), after which measurements were recorded. On the loading portion of the loading-unloading curve of clips, the slope fitted a first-degree equation curve to determine the stiffness/deflection rate of the clip. The results of plastic deformation showed no significant difference among bracket types before and after the 500 cycles of opening and closure (p = 0.811). There were significant differences on stiffness among the three types of brackets (p = 0.005). The WOW bracket had higher mean values, whereas Quicklear bracket had lower values, regardless of the opening/closure cycle. Repetitive controlled opening and closure movements of the clip did not alter stiffness or cause plastic deformation.

  11. Dynamic strength, particle deformation, and fracture within fluids with impact-activated microstructures

    Science.gov (United States)

    Petel, Oren E.; Ouellet, Simon

    2017-07-01

    The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.

  12. Study of the active deformation of Mitidja (Tell Atlas, Algeria) by GPS

    Science.gov (United States)

    Bacha, Wahab; Masson, Frederic; Yelles-Chaouche, Abdelkrim; Lammali, Kamel; Bellik, Amar; Hamai, Lamine

    2013-04-01

    A network was created in the Mitidja region around the capital Algiers (Algeria). It has been established to study the deformation of the region and the slow operation of flaws in it. The network was installed by a distribution of GPS stations according to structural domains existing in the region. Twelve bases spread across the study area, have been installed. The measurements were acquired by performing four measurement campaigns in 2006, 2007, 2009 and 2010, with sessions over a month of action. This work allowed the installation of a geodetic network of regional monitoring by methodology GPS in the zone of Mitidja (Tellian Atlas, Algeria). Four observation campaigns were carried out on this area with session's superiors in one month of measurements. The treatment was carried out with software GAMIT-GLOBK, the network is attached to several world stations IGS treated between 2000-2010, indexed in a precise frame of reference ITRF05. The results presented in this memory show a deformation in shortening ≤ 0.5 mm/an in the plain of Mitidja and the surrounding Solid masses.

  13. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    Science.gov (United States)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  14. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    International Nuclear Information System (INIS)

    Sheridan, Robert; VonLockette, Paris R; Roche, Juan; Lofland, Samuel E

    2014-01-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a

  15. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  16. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    Science.gov (United States)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to

  17. High resolution 2D numerical models from rift to break-up: Crustal hyper-extension, Margin asymmetry, Sequential faulting

    Science.gov (United States)

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan

    2013-04-01

    Numerical modelling is a powerful tool to integrate a multitude of geological and geophysical data while addressing fundamental questions of passive margin formation such as the occurrence of crustal hyper-extension, (a-)symmetries between conjugate margin pairs, and the sometimes significant structural differences between adjacent margin segments. This study utilises knowledge gathered from two key examples of non-magmatic, asymmetric, conjugate margin pairs, i.e. Iberia-New Foundland and Southern Africa-Brazil, where many published seismic lines provide solid knowledge on individual margin geometry. While both margins involve crustal hyper-extension, it is much more pronounced in the South Atlantic. We investigate the evolution of these two margin pairs by carefully constraining our models with detailed plate kinematic history, laboratory-based rheology, and melt fraction evaluation of mantle upwelling. Our experiments are consistent with observed fault patterns, crustal thickness, and basin stratigraphy. We conduct 2D thermomechanical rift models using the finite element code SLIM3D that operates with nonlinear stress- and temperature-dependent elasto-visco-plastic rheology, with parameters provided by laboratory experiments on major crustal and upper mantle rocks. In our models we also calculate the melt fraction within the upwelling asthenosphere, which allows us to control whether the model indeed corresponds to the non-magmatic margin type or not. Our modelling highlights two processes as fundamental for the formation of hyper-extension and margin asymmetry at non-magmatic margins: (1) Strain hardening in the rift center due to cooling of upwelling mantle material (2) The formation of a weak crustal domain adjacent to the rift center caused by localized viscous strain softening and heat transfer from the mantle. Simultaneous activity of both processes promotes lateral rift migration in a continuous way that generates a wide layer of hyper-extended crust on

  18. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  19. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    Science.gov (United States)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  20. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    Science.gov (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  1. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    Science.gov (United States)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  2. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  3. Evaluation of stiffness and plastic deformation of active ceramic self-ligating bracket clips after repetitive opening and closure movements

    Directory of Open Access Journals (Sweden)

    Grace Kelly Martins Carneiro

    2015-08-01

    Full Text Available OBJECTIVE: The aim of this study was to assess whether repetitive opening and closure of self-ligating bracket clips can cause plastic deformation of the clip.METHODS: Three types of active/interactive ceramic self-ligating brackets (n = 20 were tested: In-Ovation C, Quicklear and WOW. A standardized controlled device performed 500 cycles of opening and closure movements of the bracket clip with proper instruments and techniques adapted as recommended by the manufacturer of each bracket type. Two tensile tests, one before and one after the repetitive cycles, were performed to assess the stiffness of the clips. To this end, a custom-made stainless steel 0.40 x 0.40 mm wire was inserted into the bracket slot and adapted to the universal testing machine (EMIC DL2000, after which measurements were recorded. On the loading portion of the loading-unloading curve of clips, the slope fitted a first-degree equation curve to determine the stiffness/deflection rate of the clip.RESULTS: The results of plastic deformation showed no significant difference among bracket types before and after the 500 cycles of opening and closure (p = 0.811. There were significant differences on stiffness among the three types of brackets (p = 0.005. The WOW bracket had higher mean values, whereas Quicklear bracket had lower values, regardless of the opening/closure cycle.CONCLUSION: Repetitive controlled opening and closure movements of the clip did not alter stiffness or cause plastic deformation.

  4. Crustal-scale tilting of the central Salton block, southern California

    Science.gov (United States)

    Dorsey, Rebecca; Langenheim, Victoria

    2015-01-01

    The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.

  5. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia

    NARCIS (Netherlands)

    Schellart, Wouter P.; Lister, G. S.

    2005-01-01

    East Asia is a region of widespread deformation, dominated by normal and strike-slip faults. Deformation has been interpreted to result from extrusion tectonics related to the India-Eurasia collision, which started in the Early Eocene. In East and SE China, however, deformation started earlier than

  6. Modelling of crustal rock mechanics for radioactive waste storage in Fennoscandia - problem definition

    International Nuclear Information System (INIS)

    Stephansson, O.

    1987-05-01

    Existing knowledge of crustal stresses for Fennoscandia is presented. Generic, two-dimensional models are proposed for vertical and planar sections of a traverse having a direction NW-SE in Northern Fennoscandia. The proposed traverse will include the major neotectonic structures at Lansjaerv and Paervie, respectively, and also the study site for storage of spent nuclear fuel at Kamlunge. The influence of glaciation, deglaciation, glacial rebound on crustal rock mechanics and stability is studied for the modelling work. Global models, with a length of roughly 100 km, will increase our over all understanding of the change in stresses and deformations. These can provide boundary conditions for regional and near-field models. Properties of strength and stiffness of intact granitic rock masses, faults and joints are considered in the modelling of the crustal rock mechanics for any of the three models described. (orig./HP)

  7. Crustal seismicity associated to rpid surface uplift at Laguna del Maule Volcanic Complex, Southern Volcanic Zone of the Andes

    Science.gov (United States)

    Cardona, Carlos; Tassara, Andrés; Gil-Cruz, Fernando; Lara, Luis; Morales, Sergio; Kohler, Paulina; Franco, Luis

    2018-03-01

    Laguna del Maule Volcanic Complex (LMVC, Southern Andes of Chile) has been experiencing large rates (ca. 30 cm/yr) of surface uplift as detected since 2008 by satellite geodetic measurements. Previous works have modeled the source of this deformation as an inflating rectangular sub-horizontal sill underlying LMVC at 5 km depth, which is supposedly related to an active process of magmatic replenishment of a shallow silicic reservoir. However little is known about the tectonic context on which this activity is taking place, particularly its relation with crustal seismicity that could help understanding and monitoring the current deformation process. Here we present the first detailed characterization of the seismic activity taking place at LMVC and integrate it with structural data acquired in the field in order to illuminate the possible connection between the ongoing process of surface uplift and the activation of crustal faults. Our main finding is the recognition of repetitive volcano-tectonic (VT) seismic swarms that occur periodically between 2011 and 2014 near the SW corner of the sill modeled by InSAR studies. A cross-correlation analysis of the waveforms recorded for these VT events allows identifying three different seismic families. Families F1 and F3 share some common features in the stacked waveform and its locations, which markedly differ from those of family F2. Swarms belonging to this later family are more energetic and its energy was increasing since 2011 to a peak in January 2013, which coincide with maximum vertical velocities detected by local GPS stations. This points to a common process relating both phenomena. The location of VT seismic swarms roughly coincides with the intersection of a NE-SW lineament with a WNW-ESE lineament. The former shows clear field evidences of dextral strike-slip that are fully consistent with one nodal plane of focal mechanism for well-recorded F2 events. The conjugate nodal plane of these focal mechanisms could

  8. First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts

    Science.gov (United States)

    Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter

    2015-07-01

    The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these

  9. Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project

    Science.gov (United States)

    Paluska, A.; Pavoni, N.

    1983-01-01

    Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

  10. Modeling of periodic great earthquakes on the San Andreas fault: Effects of nonlinear crustal rheology

    Science.gov (United States)

    Reches, Ze'ev; Schubert, Gerald; Anderson, Charles

    1994-01-01

    We analyze the cycle of great earthquakes along the San Andreas fault with a finite element numerical model of deformation in a crust with a nonlinear viscoelastic rheology. The viscous component of deformation has an effective viscosity that depends exponentially on the inverse absolute temperature and nonlinearity on the shear stress; the elastic deformation is linear. Crustal thickness and temperature are constrained by seismic and heat flow data for California. The models are for anti plane strain in a 25-km-thick crustal layer having a very long, vertical strike-slip fault; the crustal block extends 250 km to either side of the fault. During the earthquake cycle that lasts 160 years, a constant plate velocity v(sub p)/2 = 17.5 mm yr is applied to the base of the crust and to the vertical end of the crustal block 250 km away from the fault. The upper half of the fault is locked during the interseismic period, while its lower half slips at the constant plate velocity. The locked part of the fault is moved abruptly 2.8 m every 160 years to simulate great earthquakes. The results are sensitive to crustal rheology. Models with quartzite-like rheology display profound transient stages in the velocity, displacement, and stress fields. The predicted transient zone extends about 3-4 times the crustal thickness on each side of the fault, significantly wider than the zone of deformation in elastic models. Models with diabase-like rheology behave similarly to elastic models and exhibit no transient stages. The model predictions are compared with geodetic observations of fault-parallel velocities in northern and central California and local rates of shear strain along the San Andreas fault. The observations are best fit by models which are 10-100 times less viscous than a quartzite-like rheology. Since the lower crust in California is composed of intermediate to mafic rocks, the present result suggests that the in situ viscosity of the crustal rock is orders of magnitude

  11. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  12. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  13. Influence of crustal layering and thickness on co-seismic effects of Wenchuan earthquake

    Directory of Open Access Journals (Sweden)

    Tan Hongbo

    2011-02-01

    Full Text Available Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the influences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that; the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simulated results between the two models is similar to that of co-seismic effect. For the per centum distribution, it’s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% – 20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4%,18.0%, 15.8% and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6%, 5.3%, 3.8% and 3.8%. Then the crustal thickness is 70 km, the average influences are 3.5%, 4.6%, 3.0% and 2.5% respectively.

  14. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  15. Thermally-activated deformation in dispersion-hardened polycrystalline iron at room temperature

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Cotteril, P.

    1970-01-01

    The activation volume and dislocation velocity exponent have been obtained for polycrystalline iron in the extruded, extruded and annealed, and cold-rolled and annealed condition containing various amounts of alumina or zirconia particles, using the strain rate-change technique. It is found that ...... to the thermally activated flow stress contribution at room temperature. The dislocation velocity exponent also explains the yield-drop and Lüder's strain and is in a good agreement with Hahn's model....

  16. Crustal structure and inferred extension mode in the northern margin of the South China Sea

    Science.gov (United States)

    Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.

    2016-12-01

    Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted

  17. Thinning Mechanism of the South China Sea Crust: New Insight from the Deep Crustal Images

    Science.gov (United States)

    Chang, S. P.; Pubellier, M. F.; Delescluse, M.; Qiu, Y.; Liang, Y.; Chamot-Rooke, N. R. A.; Nie, X.; Wang, J.

    2017-12-01

    The passive margin in the South China Sea (SCS) has experienced a long-lived extension period from Paleocene to late Miocene, as well as an extreme stretching which implies an unusual fault system to accommodate the whole amount of extension. Previous interpretations of the fault system need to be revised to explain the amount of strain. We study a long multichannel seismic profile crossing the whole rifted margin in the southwest of SCS, using 6 km- and 8 km-long streamers. After de-multiple processing by SRME, Radon and F-K filtering, an enhanced image of the crustal geometry, especially on the deep crust, allows us to illustrate two levels of detachment at depth. The deeper detachment is around 7-8 sec TWT in the profile. The faults rooting at this detachment are characterized by large offset and are responsible for thicker synrift sediment. A few of these faults appear to reach the Moho. The geometry of the acoustic basement between these boundary faults suggests gentle tilting with a long wavelength ( 200km), and implies some internal deformation. The shallower detachment is located around 4-5 sec TWT. The faults rooting at this detachment represent smaller offset, a shorter wavelength of the basement and thinner packages of synrift sediment. Two detachments separate the crust into upper, middle and lower crust. If the lower crust shows ductile behavior, the upper and middle crust is mostly brittle and form large wavelength boudinage structure, and the internal deformation of the boudins might imply low friction detachments at shallower levels. The faults rooting to deep detachment have activated during the whole rifting period until the breakup. Within the upper and middle crust, the faults resulted in important tilting of the basement at shallow depth, and connect to the deep detachment at some places. The crustal geometry illustrates how the two detachments are important for the thinning process, and also constitute a pathway for the following magmatic

  18. Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia)

    Science.gov (United States)

    Neuwerth, Ralph; Suter, Fiore; Guzman, Carlos A.; Gorin, Georges E.

    2006-04-01

    seismites in the Zarzal Formation represents corroboration of tectonic activity in this area during the Pleistocene. Earthquakes with a magnitude higher than 5 can be postulated, based upon the proximity of active faults and the types of deformations.

  19. The Crustal Structure and Seismicity of Eastern Venezuela

    Science.gov (United States)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment

  20. PRECURSORY SLOPE DEFORMATION AROUND LANDSLIDE AREA DETECTED BY INSAR THROUGHOUT JAPAN

    Directory of Open Access Journals (Sweden)

    T. Nakano

    2016-06-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014. Geospatial Information Authority (GSI of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.

  1. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    Gusti, E.Ya.; Babej, Yu.I.

    1977-01-01

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  2. Crustal inheritance and arc magmatism: Magnetotelluric constraints from the Washington Cascades on top-down control

    Science.gov (United States)

    Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.

    2017-12-01

    Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc

  3. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive...

  4. Crustal balance and crustal flux from shortening estimates in the Central Andes

    Science.gov (United States)

    Hindle, David; Kley, Jonas; Oncken, Onno; Sobolev, Stephan

    2005-01-01

    The Central Andes of South America form the second largest high elevation plateau on earth. Extreme elevations have formed on a noncollisional margin with abundant associated arc magmatism. It has long been thought that the crustal thickness necessary to support Andean topography was not accounted for by known crustal shortening alone. We show that this may in part be due to a two-dimensional treatment of the problem. A three-dimensional analysis of crustal shortening and crustal thickness shows that displacement of material towards the axis of the bend in the Central Andes has added a significant volume of crust not accounted for in previous comparisons. We find that present-day crustal thickness between 12°S and 25°S is accounted for (∼-10% to ∼+3%)with the same shortening estimates, and the same assumed initial crustal thickness as had previously led to the conclusion of a ∼25-35% deficit in shortening relative to volume of crustal material. We suggest that the present-day measured crustal thickness distribution may not match that predicted due to shortening, and substantial redistribution of crust may have occurred by both erosion and deposition at the surface and lower crustal flow in regions of the thermally weakened middle and lower crust.

  5. Formation of diapiric structure in the deformation zone, central ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    serpentinite layer existing near the base of the crust that is interpreted to have been formed at mid-ocean ... Keywords. Diffusive plate boundary; deformation zone; diapiric structure; serpentinized peridotites; crustal structure; ... calculated by applying Eotvos correction and nor- ..... trend of the basement and flat Moho, and.

  6. MODELING OF MOVING DEFORMABLE CONTINENTS BY ACTIVE TRACERS: CLOSING AND OPENING OF OCEANS, RECIRCULATION OF OCEANIC CRUST

    Directory of Open Access Journals (Sweden)

    A. V. Bobrov

    2018-01-01

    Full Text Available The evolution of the ‘mantle – moving deformable continents’ system has been studied by numerical experiments. The continents move self-consistently with the mantle flows of thermo-compositional convection. Our model (two-dimensional mantle convection, non-Newtonian rheology, the presence of deformable continents demonstrates the main features of global geodynamics: convergence and divergence of continents; appearance and disappearance of subduction zones; backrolling of subduction zones; restructuring of mantle flows; stretching, breakup and divergence of continents; opening and closing of oceans; oceanic crust recirculation in the mantle, and overriding of hot mantle plumes by continents. In our study, the continental crust is modeled by active markers which transfer additional viscosity and buoyancy, while the continental lithosphere is marked only by increased viscosity with neutral buoyancy. The oceanic crust, in its turn, is modeled by active markers that have only an additional buoyancy. The principal result of our modeling is a consistency between the numerical calculations and the bimodal dynamics of the real Earth: the oceanic crust, despite its positive buoyancy near the surface, submerges in subduction zones and sinks deep into the mantle. (Some part of the oceanic crust remains attached to the continental margins for a long time. In contrast to the oceanic crust, the continental crust does not sink in subduction zones. The continental lithosphere, despite its neutral buoyancy, also remains on the surface due to its viscosity and coupling with the continental crust. It should be noted that when a continent overrides a subduction zone, the subduction zone disappears, and the flows in the mantle are locally reorganized. The effect of basalt-eclogite transition in the oceanic crust on the mantle flow pattern and on the motion of continents has been studied. Our numerical experiments show that the inclusion of this effect in the

  7. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    Science.gov (United States)

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  8. Fracturing and Transformation Into Veins Beneath the Crustal Scale Brittle Ductile Transition - a Record of Co-seismic Loading and Post-seismic Relaxation

    Science.gov (United States)

    Nüchter, J. A.; Stöckhert, B.

    2005-12-01

    Metamorphic rocks approaching the crustal scale brittle-ductile transition (BDT) during exhumation are expected to become increasingly affected by short term stress fluctuations related to seismic activity in the overlying seismogenic layer (schizosphere), while still residing in a long-term viscous environment (plastosphere). The structural and microstructural record of quartz veins in low grade - high pressure metamorphic rocks from southern Evia, Greece, yields insight into the processes and conditions just beneath the long-term BDT at temperatures of about 300 to 350°C, which switches between brittle failure and viscous flow as a function of imposed stress or strain rate. The following features are characteristic: (1) The veins have formed from tensile fractures, with a typical length on the order of 10-1 to 101 m; (2) The veins are discordant with respect to foliation and all pre-existing structures, with a uniform orientation over more than 500 km2; (3) The veins show a low aspect ratio of about 10 to 100 and an irregular or characteristic flame shape, which requires distributed ductile deformation of the host rock; (4) Fabrics of the sealing vein quartz indicate that - at a time - the veins were wide open cavities; (5) The sealing quartz crystals reveal a broad spectrum of microstructural features indicative of crystal plastic deformation at high stress and temperatures of about 300 to 350°C. These features indicate that opening and sealing of the fractures commenced immediately after brittle failure, controlled by ductile deformation of the host rock. Vein-parallel shortening was generally less than about 2%. Crystals formed early during sealing were plastically deformed upon progressive deformation and opening of the vein. The structural and microstructural record is interpreted as follows: Brittle failure is proposed to be a consequence of short term co-seismic loading. Subsequent opening of the fracture and sealing to become a vein is interpreted to

  9. Effect of yeast biomass with high content of carotenoids on erythrocyte deformability, NO production and Na,K-ATPase activity in healthy and LPS treated rats.

    Science.gov (United States)

    Radosinska, J; Mezesova, L; Okruhlicova, L; Frimmel, K; Breierova, E; Bartekova, M; Vrbjar, N

    2016-11-25

    Measurements of red blood cell (RBC) deformability together with estimation of NO-synthase activity and Na,K-ATPase activity were used for characterization of RBC functionality in rats subjected to single dose of Escherichia coli lipopolysaccharides (LPS) at a dose of 1 mg/kg. We hypothesized that LPS might initiate a malfunction of RBC. We also investigated the potential effect of carotenoids (10 mg/kg/day) produced in red yeast biomass of Rhodotorula glutinis on RBC in LPS-challenged rats. LPS significantly reduced the deformability of RBC (by 14%) together with decrease of NO-synthase activity by 20%. Daily supplementation of carotenoids for 10 days attenuated the LPS-induced injury, as observed by 22% increase of RBC deformability and 23% increase of NO-synthase activity. The activity of Na,K-ATPase was also improved probably due to increased number of active enzyme molecules as indicated by 66% enhancement of Vmax value, hence maintaining the activity of erythrocyte Na,K-ATPase to the level even higher as compared with healthy control animals. It may be concluded that administration of yeast biomass with high content of carotenoids resulted in advanced function of erythrocytes as concerns their ability to squeeze through narrow capillaries of the circulation, better intrinsic production of NO and improvement of intracellular homeostasis of sodium.

  10. Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands

    Science.gov (United States)

    GonzáLez, Pablo J.; FernáNdez, José

    2011-10-01

    Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.

  11. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    Science.gov (United States)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  12. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  13. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation

    Science.gov (United States)

    Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi; Gansser Working Group

    2017-08-01

    The instrumental record of Bhutan is characterized by a lower seismicity compared to other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. Recorded seismicity, earthquake moment tensors and local earthquake tomography reveal along-strike variations in structure and crustal deformation regime. A thickened crust imaged in western Bhutan suggests lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting the interseismic coupling and deformation regime. Sikkim, western Bhutan and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking mid-crustal fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) causes segmentation of the Indian basement and the MHT between eastern Nepal and western Bhutan and connects the deformation front of the Himalaya with the Shillong Plateau by forming the western boundary of the Shillong block. The Kopili fault, the proposed eastern boundary of this block, appears to be a diffuse zone of mid-crustal seismicity in the foreland. In eastern Bhutan we image a seismogenic, flat portion of the MHT, which might be either related to a partially creeping segment or to increased background seismicity originating from the 2009 MW 6.1 earthquake. In western-central Bhutan clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes as documented by the 2011 Sikkim and the 1930 Dhubri earthquakes, which were potentially

  14. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    Science.gov (United States)

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  15. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    Science.gov (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  16. Description of vertical displacements in the active process of rock strata deformation under conditions of mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Piwowarski, W. (Akademia Gorniczo-Hutnicza, Cracow (Poland))

    1989-01-01

    Analyzes modeling vertical displacement in the evolution process of rock strata deformation caused by underground coal mining. The modeling results in a continuous description of the deformation process. Assumptions concerning model structure account for geometry of the phenomenon, while development of the deformation process is based on one physical mechanism. As a result of the analysis it has been stated that the deformation process is quantitatively similar to diffusion. On that basis the problem is described by differential equations. The class and order of the differential equations result from energy balance of the displacement field, while the analysis of the gradient of changes in the displacement field leads to a parabolic equation. The vertical displacement process in a transient state is characterized as a parabolic problem: one-dimensional, two-dimensional solenoidal, two-dimensional with one source of displacements. Equation solutions are based on Green's identity with boundary conditions. Modeling rock strata displacement in a transient state of deformation includes integration of differential equations and optimization of model parameters. The algorithm solution is written in form of a program for PC IBM/XT class computers. 41 refs.

  17. Late Pleistocene Activity and deformation features of the North Margin Fault of West Qinling Mountains, northeastern Tibet

    Science.gov (United States)

    Chen, P.; Lin, A.; Yan, B.

    2017-12-01

    Abstract: A precise constraints of slip rates of active faults within and around Tibetan Plateau will provide us a definite and explicit knowledge of continental dynamics and present-day tectonic evolution. The major strike-slip faults in the northern and northeastern Tibetan Plateau, including the Altyn Tagh fault and Kunlun fault play a vital role in dissipating and transferring the strain energy. The WNW-trending North Margin Fault of West Qinling Mountains (hereafter name NMFWQM, the target of this study) developed along the topographic boundary between Longzhong basin and the Qinling mountains. Intensive Historic records show that large earthquakes repeatedly in the area around the NMFWQM, including the AD 143 M 7.0 Gangu West earthquake; AD 734 M≥7.0 Tianshui earthquake; AD 1654 M 8.0 Tianshui South earthquake and the most recent 2013 Mw6.0 Zhangxian earthquake. In this study, we investigated the structural features and activity of the NMFWQM including the nature of the fault, slip rate, and paleoseismicity by interpretation of high-resolution remote sensing images and field investigation. Based on the interpretations of high resolution satellite images, field investigations and 14C dating ages, we conclude the following conclusions: 1) The drainage systems have been systematical deflected or offset sinistrally along the fault trace; 2) The amounts of displacement (D) show a positive linear correlation with the upstream length (L) from the deflected point of offset river channels as DaL (a: a certain coefficient); 3) The alluvial fans and terrace risers formed in the last interglacial period are systematically offset by 16.4m to 93.9 m, indicating an accumulation of horizontal displacements as that observed in the offset drainages; 4) A horizontal slip rate is estimated to be 2.5-3.1 mm/yr with an average of 2.8 mm/yr. Comparing with the well-know strike-slip active faults developed in the northern Tibetan Plateau, such as the Altyn Tagh fault and Kunlun

  18. The Western Barents Sea: where is the Caledonian Deformation Front?

    Science.gov (United States)

    Shulgin, Alexey; Aarseth, Iselin; Faleide, Jan Inge; Mjelde, Rolf; Huismans, Ritske

    2017-04-01

    The basement architecture below the Paleozoic sedimentary basins is still not fully understood in the Western Barents Sea region. It has been proposed that the early Devonian Caledonian orogeny has formed structural framework over which major basins have developed lately. However, the geometry of the Caledonian suture zone (its location, orientation and the extent of the deformation front) is still poorly constrained and is ambiguous in the Barents Sea. The crustal evolution of the Barents Sea and the basin-basement interaction is heavily dependent on the spatial extent and orientation of the Caledonian Deformation Front (CDF). In 2014 an active marine seismic experiment was conducted in the Western Barents Sea. One of the goals of the experiment is to discriminate between two existing models for orientations of the CDF: north-south from the potential fields data, and southwest-northeast from seismic data. We also aim to constrain the location of the CDF offshore northern Norway. We present the joint interpretation of collocated newly collected wide-angle seismic data (Ocean Bottom Seismometers) and reprocessing of the reflection seismic dataset (Multi-channel seismics) collected in the mid 1980's, using modern computational techniques. The two seismic methods provide best resolution at different depth ranges, and in our modeling we combine the results from the two methods to constrain the location of the CDF along transect running Northwest-Southeast across the Western Barents Sea.

  19. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 2: Lithospheric structure, seismicity, and contemporary deformation of the United States Cordillera

    Science.gov (United States)

    Smith, R. B.

    1986-01-01

    The structural evolution of the U.S. Cordillera has been influenced by a variety of tectonic mechanisms including passive margin rifting and sedimentation; arc volcanism; accretion of exotic terranes; intraplate magmatism; and folding and faulting associated with compression and extension processes that have profoundly influenced the lithospheric structure. As a result the Cordilleran crust is laterally inhomogeneous across its 2000 km east-west breadth. It is thin along the West Coast where it has close oceanic affinities. The crust thickens eastward beneath the Sierra Nevada, then thins beneath the Basin-Range. Crustal thickening continues eastward beneath the Colorado Plateau, the Rocky Mountains, and the Great Plains. The total lithospheric thickness attains 65 km in the Basin-Range and increases eastward beneath the Colorado Plateau. The upper-crust, including the crystalline basement of the Cordillera, has P sub G velocities of 6 km/s in the Basin-Range and Rio Grande Rift. Lower P sub G velocities of 5.4 to 5.7 km/s are associated with the youthful Yellowstone, Valles and Long Valley calderas and the Franciscan assemblage of the western coastal margin. Averaged crustal velocity reflects integrated tectonic evolution of the crust-thick silicic bodies, velocity reversals, and a thin crust produce low averaged velocities that are characteristic of a highly attenuated and thermally deformed crust.

  20. Anomalous crustal movements with low seismic efficiency - Campi Flegrei, Italy and some examples in Japan

    Directory of Open Access Journals (Sweden)

    A. Nazzaro

    2002-06-01

    Full Text Available Campi Flegrei is a unique volcanic region located near Naples, Italy. Anomalous crustal movements at Pozzuoli in Campi Flegrei have been documented since the Roman period. The movements were gradual and have continued to the present, occasionally accompanying swarms of local earthquakes and volcanic eruptions. Generally the movements proceed with low seismicity. After the 1538 eruption of Monte Nuovo, Pozzuoli had subsided monotonously, but it changed to uplift abruptly in 1969. The uplift accelerated in 1983 and 1984 reaching more than 2 m, and thereafter began to subside. Many discussions of this event have been published. In Japan, we have examples of deformations similar to those at Campi Flegrei, mainly in volcanic areas, and rarely in non-volcanic areas. The former includes Iwojima, Miyakejima and Aira caldera while the latter is represented by Cape Omaezaki. Iwojima is a volcano island, and its secular uplifts since the 18th century are recognized as an unusual event. Miyakejima volcano and Aira caldera exhibited anomalous movements with low seismicity after their eruptions. Cape Omaezaki is not situated in volcanic zone but near a subduction zone, and gradually and continuously subsides as a precursor to a large earthquake. In such cases as Campi Flegrei and the Japanese localities, we would question whether the deformations are accompanied by normal seismicity or low seismicity. To examine quantitatively the relationship between seismicity and related deformation, seismic efficiency is generally useful. The crustal deformations in all the regions cited above are characterized by exceptionally low seismic efficiencies. In the present paper, the deformations at Pozzuoli and Iwojima are mainly described and a comparative discussion among these and other localities in Japan is supplemented. It is concluded that such anomalous phenomena in volcanic areas are attributable to peculiar rheological aspects of the material composing the local

  1. The use of satellite laser observations in studying the crustal movements

    Directory of Open Access Journals (Sweden)

    Gamal F. Attia

    2012-12-01

    Full Text Available The mutual tectonic displacements of the lithospheric blocks take place within the deep fracture dividing them into hundreds and thousands kilometers long. It is possible to suggest that the reason of the accumulation of considerable local shift deformations is the change of the velocity of the tectonic motion in some or other parts of fractures as a result of different physical, chemical and mechanical processes. Nowadays, the range precision of Satellite Laser Ranging (SLR technique reaches a few millimeters level. Therefore, the space geodesy technique becomes a very important tool in detecting and monitoring recent crustal movements. Regular repeated measurements of the baselines between some stations on different plates give the possibility to construct precise and detail models of crustal movements. In this paper, the length of four baselines between Helwan-SLR station and other four SLR stations are calculated using satellite geodetical technique.

  2. The Role of Long-Term Tectonic Deformation on the Distribution of Present-Day Seismic Activity in the Caribbean and Central America

    Science.gov (United States)

    Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.

    2017-12-01

    The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.

  3. "Storms of crustal stress" and AE earthquake precursors

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2010-02-01

    Full Text Available Acoustic emission (AE displays violent paroxysms preceding strong earthquakes, observed within some large area (several hundred kilometres wide around the epicentre. We call them "storms of crustal stress" or, briefly "crustal storms". A few case histories are discussed, all dealing with the Italian peninsula, and with the different behaviour shown by the AE records in the Cephalonia island (Greece, which is characterized by a different tectonic setting.

    AE is an effective tool for diagnosing the state of some wide slab of the Earth's crust, and for monitoring its evolution, by means of AE of different frequencies. The same effect ought to be detected being time-delayed, when referring to progressively lower frequencies. This results to be an effective check for validating the physical interpretation.

    Unlike a seismic event, which involves a much limited focal volume and therefore affects a restricted area on the Earth's surface, a "crustal storm" typically involves some large slab of lithosphere and crust. In general, it cannot be easily reckoned to any specific seismic event. An earthquake responds to strictly local rheological features of the crust, which are eventually activated, and become crucial, on the occasion of a "crustal storm". A "crustal storm" lasts typically few years, eventually involving several destructive earthquakes that hit at different times, at different sites, within that given lithospheric slab.

    Concerning the case histories that are here discussed, the lithospheric slab is identified with the Italian peninsula. During 1996–1997 a "crustal storm" was on, maybe elapsing until 2002 (we lack information for the period 1998–2001. Then, a quiet period occurred from 2002 until 26 May 2008, when a new "crustal storm" started, and by the end of 2009 it is still on. During the 1996–1997 "storm" two strong earthquakes occurred (Potenza and

  4. Nd isotopes and crustal growth rate

    International Nuclear Information System (INIS)

    Albarede, F.

    1988-01-01

    Sm/Nd isotopic constraints on crustal growth is discussed. In order to constrain Sm/Nd fractionation between continental crust and depleted mantle, an extensive data base of isotopic measurements (assumed to be adequately representative of continental crust) was compiled. The results imply that the evolution of depleted mantles was roughly linear, with no major discontinuities over the course of geologic time. This is different from other determinations of depleting mantle evolution, which show nonlinear behavior. The Sm/Nd evolution lines for continental crust and depleted mantle intersect between 3.8 to 4.0 Ga, which may indicate that the onset of continental growth was later than 4.5 Ga. A mathematical model is described, the results of which imply that time integrated crustal additions from the mantle are about 1.8 to 2.5 cu km/a, whereas crustal subtractions by sediment recycling are about 0.6 to 1.5 cu km/a. This results in a net time integrated crustal growth rate of about 1 cu km/a, which is similar to present day rates determined, for example, by Reymer and Schubert

  5. Crustal structure of the Khartoum Basin, Sudan

    CSIR Research Space (South Africa)

    El Tahir, N

    2013-05-01

    Full Text Available Basin ranges between 33 and 37 km, with an average of 35 km, and that the crustal Vp/Vs ratio ranges from 1.74 to 1.81, with an average of 1.78. From the joint inversion of receiver functions and Rayleigh wave group velocities,we obtained similar results...

  6. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    Science.gov (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  7. Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum

    Science.gov (United States)

    Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.

    2000-01-01

    The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.

  8. Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?

    Science.gov (United States)

    Suter, F.; Martínez, J. I.; Vélez, M. I.

    2011-04-01

    The detailed study of four deformed intervals from the Holocene fluvio-lacustrine deposits of the Santa Fe-Sopetrán Basin in northern Colombia shows 17 types of soft-sediment deformation (SSD) structures. Evidence indicates that seismic activity was responsible for the SSD structures, a conclusion reached after considering the environmental conditions at the time of sediment deposition and shortly after, and the detailed analysis of the driving force systems. Other triggers (i.e. overloading and rapid sedimentation), however, are not discarded. Intervals showing SSD structures occurred at centennial frequencies and apparently resulted from Mw 6-7 earthquakes. The Holocene age of these major shaking events should be seriously considered when evaluating the seismic hazard and risk for the middle Cauca Valley and the nearby city of Medellín with 3 million inhabitants.

  9. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive......The Western Kunlun mountain range is a slowly converging intra-continental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range...... a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised...

  10. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    Science.gov (United States)

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  11. 2-D Deformation analysis of a half-space due to a long dip-slip fault ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    tic deformation in a uniform half-space due to long faults has been attempted by a number of researchers. Singh and Rani (1996) presented step- by-step progress made in the direction of crustal deformation modeling associated with strike-slip and dip-slip faulting in the earth. Cohen (1996) gave convenient formulas for ...

  12. Seismotectonics of Taiwan Shoal region in northeastern SCS: Insights from crustal structure

    Science.gov (United States)

    Kuiyuan, Wan; Jinlong, Sun; Shaohong, Xia; Xiaoling, Xie; Xiang, Zhang; Huilong, Xu; Jinghe, Cao

    2017-04-01

    A seismicity cluster and a great 16 September 1994 earthquake occur in the Taiwan Shoal region, outer rise of the Manila subduction zone. To understand what mechanisms control and generate the earthquake cluster, it is important to investigate the deep crustal structure of the Taiwan Shoal region. We present a 2-D seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean bottom seismographic (OBS) data. The structure exhibits that a high velocity anomaly in the upper crust beneath the Taiwan Shoal is flanked by lower velocity anomalies. Based on the crustal structure, we study the 765 earthquakes, which occurred in the period 1991-2015. These epicenters, combined with the regional faults, and crustal structure, allow us to better understand the nature of the active tectonics in this region. The high velocity area is interpreted as representing stronger, defining major asperities where stress is concentrated corresponding to the location of the earthquake cluster. The earthquake cluster is influenced by the fault interactions. However, the 16 September 1994 earthquake is independents of the seismic activities but associated with the reactivation of the preexisting fault. In Taiwan region, the slab-pull was resisted by the exposed pre-collision accretionary prism and the resistive force caused the in-plane compressive stress accumulation. This condition may favor the triggering of future damaging earthquakes in this region. Key words: earthquake cluster; crustal structure; fault interactions; outer rise; Taiwan Shoal

  13. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen)

    Science.gov (United States)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias

    2014-12-01

    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  14. Crustal parameters in the Iberian Peninsula

    Science.gov (United States)

    Banda, E.

    1988-06-01

    The structure of the crust in the Iberian Peninsula has been investigated for the last 15 years by Spanish and Portuguese groups in close collaboration with other European institutions. The first experiments were carried out in Portugal (Mueller et al., 1973) with the aim of investigating the crustal structure of the Hercynian belt in the southwest corner of the Iberian peninsula. Other experiments have been subsequently realized to study different aspects of the crust in various regions of Portugal. In Spain the main effort has been focused in Alpine areas, with the first experiments in the Alboran Sea and the Betic Cordilleras (Working Group for Deep Seismic Sounding in Spain, 1974-1975, 1977; Working Group for Deep Seismic Sounding in the Alboran Sea, 1974-1975, 1978). Follow-up experiments until 1981 completed the work in the Betic Cordillera. Extensive experiments were carried out in the Pyrenees in 1978. Further surveys covered the Balearic Islands in 1976, the Valencia Trough in 1976 and 1983, and the Celtiberian Chain (or Iberic system) in 1981. The Hercynian belt has only been studied in detail in the northwest corner of Spain in 1982, with smaller studies in the central Iberian Massif in 1976 and 1986. Mostaanpour (1984) has compiled some crustal parameters (crustal thickness, average crustal velocity and Pn velocity) for western Europe. Meanwhile, more complete data are available for the Iberian Peninsula. The results presented here were derived from a large number of seismic refraction experiments which have been carried out mostly along or close to coastal areas of the Iberian Peninsula. Offshore explosions of various sizes were used as the energy source in most cases, in addition to some quarry blasts. Unfortunately this leaves most of the inner part of the Iberian Peninsula unsurveyed. Our purpose is to summarize some of the crustal parameters obtained so far and to detail the appropriate literature for the interested reader.

  15. A combined rigid/deformable plate tectonic model for the evolution of the Indian Ocean

    Science.gov (United States)

    Watson, J. G.; Glover, C. T.; Adriasola Munoz, A. C.; Harris, J. P.; Goodrich, M.

    2012-04-01

    Plate tectonic reconstructions are essential for placing geological information in its correct spatial context, understanding depositional environments, defining basin dimensions and evolution, and serve as a basis for palaeogeographic mapping and for palaeo-climate modelling. Traditional 'rigid' plate reconstructions often result in misfits (overlaps and underfits) in the geometries of juxtaposed plate margins when restored to their pre-rift positions. This has been attributed to internal deformation pre- and/or syn- continental break-up. Poorly defined continent-ocean boundaries add to these problems. To date, few studies have integrated continental extension within a global model. Recent plate tectonic reconstructions based on the relative motions of Africa, Madagascar, India and Antarctica during the break-up of eastern Gondwana have not taken into account the effects of deformation; particularly between India and Madagascar, and India and the Seychelles. A deformable plate model is in development that builds on the current rigid plate model to describe the complex multiphase break-up history between Africa, Madagascar, Seychelles and India, the associated magmatic activity and subsequent India/Eurasia collision. The break-up of eastern Gondwana occurred in the mid Jurassic by rifting between Africa and the India-Madagascar-Australian-Antarctica plates, followed by the Late Jurassic drift of India away from Australia and the Cretaceous break-up of Australia and Antarctica. The northwards drift of the Seychelles-India block in the Tertiary was accommodated by the opening of the Laxmi Basin. This was followed by the eruption of the extensive Deccan flood basalts and the separation of India and the Seychelles. Crustal domains on volcanic margins can be very difficult to define due to the accretion of magmatic material. On these margins, there is much speculation on the position of the continent-ocean boundary and the timing of rifting and sea-floor spreading. The

  16. Crustal and deep seismicity in Italy (30 years after

    Directory of Open Access Journals (Sweden)

    G. Selvaggi

    1997-06-01

    Full Text Available The first modern studies of seismicity in Italy date back to the late 60's and early 70's. Although with a sparse seismic network available and only a few telemetered short-period stations, significant studies were carried out that outlined the main features of Italian seismicity (see, e.g., Boschi et al., 1969. Among these studies, one of the most important achievements was the reconnaissance of a Wadati-Benioff zone in Southern Tyrrhenian, described for the first time in detail in the papers of Caputo et al.(1970, 1973. Today, after three decades of more and more detailed seismological monitoring of the Italian region and tens of thousands earthquakes located since then, the knowledge of the earthquake generation processes in our country is much improved, although some of the conclusions reached in these early papers still hold. These improvements were made possible by the efforts of many institutions and seismologists who have been working hard to bring seismological research in Italy to standards of absolute quality, under the pivoting role of the Istituto Nazionale di Geofisica (ING. From the relocation of about 30000 crustal earthquakes and detailed studies on intermediate and deep shocks carried out in the last few years, we show that seismic release in peninsular Italy is only weakly related to the Africa-Eurasia convergence, but rather is best explained by the existence of two separate subduction/collision arcs (Northern Apennines and Southern Apennines-Calabria-Sicily. The width of the deforming belt running along peninsular Italy is 30 to 60 km, it is broader in the north than in the south, and the two arcs are separated by a region of more distributed deformation and stress rotations in the Central Apennines. Along the belt, the reconnaissance of regions of continuous and weak release of seismic energy, adjacent to fault areas which are currently «locked» (and therefore are the best candidates for future earthquakes is another

  17. Evaluation of six NEHRP B/C crustal amplification models proposed for use in western North America

    Science.gov (United States)

    Boore, David; Campbell, Kenneth W.

    2016-01-01

    We evaluate six crustal amplification models based on National Earthquake Hazards Reduction Program (NEHRP) B/C crustal profiles proposed for use in western North America (WNA) and often used in other active crustal regions where crustal properties are unknown. One of the models is based on an interpolation of generic rock velocity profiles previously proposed for WNA and central and eastern North America (CENA), in conjunction with material densities based on an updated velocity–density relationship. A second model is based on the velocity profile used to develop amplification factors for the Next Generation Attenuation (NGA)‐West2 project. A third model is based on a near‐surface velocity profile developed from the NGA‐West2 site database. A fourth model is based on velocity and density profiles originally proposed for use in CENA but recently used to represent crustal properties in California. We propose two alternatives to this latter model that more closely represent WNA crustal properties. We adopt a value of site attenuation (κ0) for each model that is either recommended by the author of the model or proposed by us. Stochastic simulation is used to evaluate the Fourier amplification factors and their impact on response spectra associated with each model. Based on this evaluation, we conclude that among the available models evaluated in this study the NEHRP B/C amplification model of Boore (2016) best represents median crustal amplification in WNA, although the amplification models based on the crustal profiles of Kamai et al. (2013, 2016, unpublished manuscript, see Data and Resources) and Yenier and Atkinson (2015), the latter adjusted to WNA crustal properties, can be used to represent epistemic uncertainty.

  18. Creep deformation and rupture behaviour of 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Mythili, R.; Chandravathi, K.S.; Saroja, S.; Mathew, M.D.

    2012-01-01

    Highlights: ► Creep tests on broad temperature and stress ranges were carried out. ► Microstructural instability on creep and thermal exposures were studied using TEM. ► Creep damage tolerance factor of the material was estimated. - Abstract: This paper presents the creep deformation and rupture behaviour of indigenously produced 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic (RAFM) steel for fusion reactor application. Creep studies were carried out at 773, 823 and 873 K over a stress range of 100–300 MPa. The creep deformation of the steel was found to proceed with relatively shorter primary regime followed by an extended tertiary regime with virtually no secondary regime. The variation of minimum creep rate of the material with applied stress followed a power law relation, ε m = Aσ n , with stress exponent value ‘n’ decreasing with increase in temperature. The product of minimum creep rate and creep rupture life was found to obey the modified Monkman–Grant relation. The time to onset of tertiary stage of deformation was directly proportional to rupture life. TEM studies revealed relatively large changes in martensitic sub-structure and coarsening of precipitates in the steel on creep exposure as compared to thermal exposure. Microstructural degradation was considered as the prime cause of extended tertiary stage of creep deformation, which was also reflected in the damage tolerance factor λ with a value more than 2.5. In view of the microstructural instability of the material on creep exposure, the variation of minimum creep rate with stress and temperature did not obey Dorn's equation modified by invoking Lagneborg and Bergman's concepts of back stress.

  19. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  20. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    Science.gov (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  1. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha

    2013-05-01

    Full Text Available Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite-slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic–Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1 the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2 the older deformation and metamorphism relate to a Pacific type

  2. Crustal Structure beneath Alaska from Receiver Functions

    Science.gov (United States)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  3. Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast

    Science.gov (United States)

    Julia, J.; Nascimento, R.

    2013-05-01

    Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.

  4. Crustal structure of the southeastern Tibetan Plateau from gravity data: New evidence for clockwise movement of the Chuan-Dian rhombic block

    Science.gov (United States)

    Xuan, Songbai; Shen, Chongyang; Shen, Wenbin; Wang, Jiapei; Li, Jianguo

    2018-06-01

    The crustal deformation beneath the Chuan-Dian rhombic block (CDB) and surrounding regions has been studied in geological and geodetic methods, and provide important insights into the kinematics and dynamics about the clockwise movement of this tectonic block. In this work, we present images of the normalized full gradient (NFG) of the Bouguer gravity anomalies from five gravity profiles across the boundary faults of the CDB measured in recent years, and investigate the distribution characteristics of the crustal anomalous bodies along the profiles. Firstly, an anomalous body with eastward dipping exist beneath the Xianshuihe fault, suggesting that crustal mass move to east. Secondly, near the Xiaojiang fault, two anomalous bodies dip westward with depth increasing. The inferred movement direction of the north one is from west to east, and the south one is from east to west. Thirdly, anomalous bodies on the northeast and southwest sides of the Red River fault suggest the directions of crustal movement is from northeast to southwest. These results are also consistent with GPS solutions, and provide gravity evidence for crustal deformation of the CDB with clockwise rotation.

  5. Control of Precambrian basement deformation zones on emplacement of the Laramide Boulder batholith and Butte mining district, Montana, United States

    Science.gov (United States)

    Berger, Byron R.; Hildenbrand, Thomas G.; O'Neill, J. Michael

    2011-01-01

    What are the roles of deep Precambrian basement deformation zones in the localization of subsequent shallow-crustal deformation zones and magmas? The Paleoproterozoic Great Falls tectonic zone and its included Boulder batholith (Montana, United States) provide an opportunity to examine the importance of inherited deformation fabrics in batholith emplacement and the localization of magmatic-hydrothermal mineral deposits. Northeast-trending deformation fabrics predominate in the Great Falls tectonic zone, which formed during the suturing of Paleoproterozoic and Archean cratonic masses approximately 1,800 mega-annum (Ma). Subsequent Mesoproterozoic to Neoproterozoic deformation fabrics trend northwest. Following Paleozoic through Early Cretaceous sedimentation, a Late Cretaceous fold-and-thrust belt with associated strike-slip faulting developed across the region, wherein some Proterozoic faults localized thrust faulting, while others were reactivated as strike-slip faults. The 81- to 76-Ma Boulder batholith was emplaced along the reactivated central Paleoproterozoic suture in the Great Falls tectonic zone. Early-stage Boulder batholith plutons were emplaced concurrent with east-directed thrust faulting and localized primarily by northwest-trending strike-slip and related faults. The late-stage Butte Quartz Monzonite pluton was localized in a northeast-trending pull-apart structure that formed behind the active thrust front and is axially symmetric across the underlying northeast-striking Paleoproterozoic fault zone, interpreted as a crustal suture. The modeling of potential-field geophysical data indicates that pull-apart?stage magmas fed into the structure through two funnel-shaped zones beneath the batholith. Renewed magmatic activity in the southern feeder from 66 to 64 Ma led to the formation of two small porphyry-style copper-molybdenum deposits and ensuing world-class polymetallic copper- and silver-bearing veins in the Butte mining district. Vein orientations

  6. Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction

    Science.gov (United States)

    No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.

    2012-12-01

    Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato

  7. Intracontinental Deformation in the NW Iranian Plateau and Comparisons with the Northern Margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, L.; Jiang, M.; Talebian, M.; Wan, B.; Ai, Y.; Ghods, A.; Sobouti, F.; Xiao, W.; Zhu, R.

    2017-12-01

    This study investigates the intracontinental deformation and its relationship with the structure of the crust and uppermost mantle in the NW Iranian plateau by combining new seismic and geological observations, to understand how this part of the plateau deformed to accommodate the Arabia-Eurasia plate collision and how the property of the lithosphere controls the deformation pattern. In contrast to the adjacent Anatolian block that exhibits westward large-scale extrusion, the northwesternmost part of the Iranian plateau shows dispersed intracontinental deformations with the development of numerous small-scale and discontinuous right-lateral strike-slip faults. The dispersed surface structures and deformation pattern correspond well to the active volcanism and seismically slow crust and uppermost mantle, and hence a weak lithosphere of the area. Further to the southeast are the western part of the Alborz Mountains and the southern Caspian Sea, both of which are characterized by stronger and more rigid lithosphere with relatively fast crust and uppermost mantle and absence of Quaternary volcanoes. A sharp Moho offset of 18 km has been imaged at the border of the Alborz and southern Caspian Sea using teleseismic receiver function data from a dense seismic array deployed under a collaborative project named "China-Iran Geological and Geophysical Survey in the Iranian Plateau (CIGSIP)". The sharp Moho offset and the minor undulations of the Moho on both sides indicate insignificant intracrustal deformation but mainly relative crustal movements between the Alborz Mountains and southern Caspian Sea, a behavior consistent with the relatively rigid nature of the lithosphere. Similar Moho offsets and lithospheric structures have been reported at the borders between the Kunlun Mountains and Qaidam or Tarim Basins in the northern margin of the Tibetan plateau, suggesting the occurrence of relative crustal movements with the effects of rigid continental lithosphere in the region

  8. Tropics in Antarctica? Crustal Evaluation Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  9. Drifting Continents and Wandering Poles. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  10. Drifting Continents and Magnetic Fields. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  11. Volcanoes: Where and Why? Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  12. Hot Spots in the Earth's Crust. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  13. Crustal stress regime in Italy

    Directory of Open Access Journals (Sweden)

    M. Cesaro

    1997-06-01

    Full Text Available In order to obtain a reliable map of the present-day stress field in Italy, needed to better understand the active tectonic processes and to contribute to the assessment of seismic hazard, in 1992 we started to collect and analyze new data from borehole breakouts in deep oil and geothermal wells and focal mechanisms of earthquakes (2.5 < M <5 occurred in Italy between 1988 and 1995. From about 200 deep wells and 300 focal mechanisms analyzed to date, we infer that: the internal (SW sector of the Northern Apenninic arc is extending with minimum compressional stress (Shmin oriented ? ENE, while the external front is thrusting over the Adriatic foreland (Shmin ? NW-SE. The entire Southern Apennine is extending in NE direction (from the Tyrrhenian margin to the Apulian foreland and compression (in the foredeep is no longer active at the outer (NE thrust front. Between these two arcs, an abrupt change in the tectonic regime is detected with directions of horizontal stress changing by as much as 90º in the external front, around latitude 430N. Along the Ionian side of the Calabrian arc the stress directions inferred from breakouts and focal mechanisms are scattered with a hint of rotation from N-S Shmin close to the Southern Apennines, to ~ E-W directions in the Messina Strait. In Sicily, a NW-SE direction of SHmax is evident in the Hyblean foreland, parallel to the direction of plate motion between Africa and Europe. A more complex pattern of stress directions is observed in the thrust belt zone, with rotations from the regional trend (NW í directed SHmax to NE oriented SHmax. A predominant NW direction of SHmax is also detected in mainland Sicily from earthquake focal mechanisms, but no well data are available in this region. In the northern part of Sicily (Aeolian Islands a ~N-S direction of SHmax is observed.

  14. Crustal Structure of the Tengchong Intra-plate Volcanic Area

    Science.gov (United States)

    Qian, Rongyi; Tong, Vincent C. H.

    2015-09-01

    We here provide an overview of our current understanding of the crustal structure of Tengchong in southwest China, a key intra-plate volcanic area along the Himalayan geothermal belt. Given that there is hitherto a lack of information about the near-surface structure of intra-plate volcanic areas, we present the first seismic reflection and velocity constraints on the shallow crust between intra-plate volcanoes. Our near-surface seismic images reveal the existence of dome-shaped seismic reflectors (DSRs) in the shallow crust between intra-plate volcanic clusters in Tengchong. The two DSRs are both ~2 km wide, and the shallowest parts of the DSRs are found at the depth of 200-300 m. The velocity model shows that the shallow low-velocity layer (<4 km/s) is anomalously thick (~1 km) in the region where the DSRs are observed. The presence of DSRs indicates significant levels of intra-plate magmatism beneath the along-axis gap separating two volcano clusters. Along-axis gaps between volcano clusters are therefore not necessarily an indicator of lower levels of magmatism. The seismic images obtained in this technically challenging area for controlled-source seismology allow us to conclude that shallow crustal structures are crucial for understanding the along-axis variations of magmatism and hydrothermal activities in intra-plate volcanic areas.

  15. Seismotectonics and Crustal Thickness of Northwest Mindoro, Philippines

    Science.gov (United States)

    Chen, P. F.; Olavere, E. A.; Lee, K. M.; Bautista, B.; Solidum, R., Jr.; Huang, B. S.

    2015-12-01

    Mindoro Island locates where the Palawan Continental Block (PCB) indented into the Philippine Mobile Belt (PMB) during the Early Miocene and where the Manila Trench terminates, having ceased convergence due to collision. On the transition from subduction to collision, Northwest Mindoro exhibits vigorous seismic activity and has been debated about its affiliation being PCB or PMB. Here, we use data from both the EHB and Global Centroid Moment Tensor catalogues to study the regional seismotectonics. We also deployed five broadband stations to probe the crustal thickness beneath NW Mindoro using receiver function analysis. Results show that, following the southeasterly reduction of convergence rates at the southern termination of the Manila Trench, the slab dipping angles steepen, were initiated at depth (~200 km) and propagate upwards. The horizontal distances of the trench and slab, as measured from the Wadati-Benioff zone at 200 km depth, also reduce in a southeasterly direction. Observations of intermediate-depth earthquakes that exhibit predominantly down-dip extensional stress patterns attest that the steepening of slab dipping angles is due to the negative buoyancy of the slab. Preliminary results of receiver function analysis suggest that the crustal thickness beneath NW Mindoro is about 40 km and is probably PCB affiliated.

  16. Correlation of Crustal Structures and Seismicity Patterns in Northern Appalachians

    Science.gov (United States)

    Yang, X.; Gao, H.

    2017-12-01

    The earthquake distributions in northern Appalachians are bounded by major geologically-defined terrane boundaries. There is a distinct seismic gap within Taconic Belt between the Western Quebec Seismic Zone (WQSZ) to the west and the seismically active Ganderia terrane to the east. It is not clear, however, what crustal structures control the characteristics of earthquake clustering in this region. Here we present a newly constructed crustal shear velocity model for the northern Appalachians using Rayleigh wave data extracted from ambient noises. Our tomographic model reveals strongly heterogeneous seismic structures in the crust. We observe multiple NW-dipping patches of high-velocity anomalies in the upper crust beneath the southeastern WQSZ. The upper crust shear velocities in the Ganderia and Avalonia region are generally lower than those beneath the WQSZ. The middle crust has relatively lower velocities in the study area. The earthquakes in the study area are constrained within the upper crust. Most of the earthquake hypocenters within the WQSZ are concentrated along the NW-dipping boundaries separating the high-velocity anomalies. In contrast, most of the earthquake hypocenters in the Ganderia and Avalonia region are diffusely distributed without clear vertical lineaments. The orientations of maximum compressive stresses change from W-E in the Ganderia and Avalonia region to SW-NE in the WQSZ. The contrasts in seismicity, velocity, and stress field across the Taconic Belt indicate that the Taconic Belt terrane may act as a seismically inactive buffer zone in northern Appalachians.

  17. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    Science.gov (United States)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  18. The crustal characteristics at syn- and/or post-rifting in eastern Shikoku basin by seismic reflection survey

    Science.gov (United States)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; Takizawa, K.; No, T.; Miura, S.; Kaneda, Y.

    2008-12-01

    Imaging of the arc-backarc transition zone is important in relation to the backarc opening process. Shikoku Basin locates between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, which is an important area to reveal the opening evolution of the backarc basins as a part of the growth process of the Philippine Sea. The Shikoku Basin was in the backarc rifting and spreading stage during about 30-15 Ma (e.g. Okino et al., 1994). High P-wave velocity lower crust is identified in arc-backarc transition zone by refraction survey using OBSs (Takahashi et al., 2007). Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection (MCS) survey using 12,000 cu.in. air gun and 5 km streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. We extracted and mapped the crustal characteristics from poststack and prestack depth migrated profiles. According to obtained profiles, the deformation structure with share component is recognized in arc-backarc transition zone, which located eastern side of Shikoku Basin from Zenisu Ridge to about 500 km south. The maximum width of this deformation zone is about 100 km. The relative displacement of horizon is little; however, it is strongly deformed from upper crust beneath seafloor. This deformation zone indicates the post- rifting activity in east side of Shikoku Basin. On the other hand, some knolls are indicated along the en- echelon arrangement from Izu-Ogasawara arc. Ishizuka et al. (2003) reported post-rifting volcanism with Miocene age in en-echelon arrangement. A part of these knolls are estimated to penetrate at syn-rifting and/or post-rifting stage in backarc opening. By comparing the both side of arc-backarc transition zone, we elucidate syn- and post-rifting effect in Shikoku Basin. We also carried out high density MCS surveys in Shikoku Basin in order to IODP proposal site for reconstruction of magmatic processes since Oligocene in rear arc. In this survey, we use new

  19. New Rb-Sr isotopic ages and geochemistry of granitic gneisses from southern Bastar: implications for crustal evolution

    International Nuclear Information System (INIS)

    Sarkar, G.; Gupta, S.N.; Bishui, P.K.

    1994-01-01

    Deformed gneisses from the southern Bastar craton yield Rb-Sr whole-rock ages of 2560 Ma and 2659 Ma with initial Sr ratios ranging between 0.70899 and 0.70726 respectively. The isotopic data are found to be scattered even at the outcrop scale which possibly indicate large-scale reworking of the gneisses during the period. The high initial Sr ratios that associate with scattering of the isotopic data reflect reworking of older gneisses. Geochemically, these gneisses are considered to be derived from an amphibolitic or basaltic protolith. The 2095 Ma (initial Sr ratio of 0.74312) old leucocratic granite intrusive into these gneisses represent early Proterozoic magmatic activity. Based on the available isotopic and geochemical data, it is suggested that the Bastar craton represents a polyphase, multicomponent terrain developed by repeated magmatism at a much earlier, probably during mid-Archaean, time and was extensively reworked during the time span between end-Archaean and early Proterozoic period. This reworking may be synchronous with coalescing of smaller crustal components possibly during the end-Archaean time. (author). 21 refs., 5 figs., 2 tabs

  20. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H; Heer, R [eds.

    1997-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  1. 6. International FIG-symposium on deformation measurements. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, H.; Heer, R. [eds.

    1996-12-31

    Due to the diversified fields of specialization of the authors, the papers span a very wide spectrum of theories, applications and case studies, concerning various problems of deformation studies in structural, geotechnical and mining engineering, in rock mechanics and earth crustal movements, covering such topics as: Design and analysis of deformations surveys; Integration of terrestrial, and space measurement techniques; New instrumental developements for automatic, continuous and telemetric data-acquisition with respect to geotechnical and geodetic applications; Monitoring and prediction of ground subsidence in mining areas, land slides and tectonic movements; Modeling and computation of deformations by Kalman-filtering techniques, finite element analysis and a special view to continuum mechanics; Application of expert systems and artificial intelligence; Description and analysis of dynamical deformation problems; special views in rock- and groundmechanics; Demonstration of mechanical engineering problems with respect to the supervision of industrial production and quality control. (orig.)

  2. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  3. Fragmentation of wall rock garnets during deep crustal earthquakes

    NARCIS (Netherlands)

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoît; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth's crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic

  4. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  5. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-01-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  6. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  7. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea

    Science.gov (United States)

    Ko, Kyoungtae; Kim, Sung Won; Lee, Hong-Jin; Hwang, In Gul; Kim, Bok Chul; Kee, Won-Seo; Kim, Young-Seog; Gihm, Yong Sik

    2017-08-01

    The Cretaceous Beolgeumri Formation is composed of laminated mudstones intercalated with sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine environment at the terminal part of a regional strike-slip fault systems on the southwestern Korean Peninsula. The Beolgeumri Formation contains various types of soft sediment deformation (SSD) structures that are characterized by a wide extent (features and deformation styles: 1) fold structures, 2) load structures, 3) water-escape structures, 4) rip-down structures, 5) boudin structures, and 6) synsedimentary fault structures. Field examination of SSD structures together with an analysis of the sedimentological records of the Beolgeumri Formation indicate that the SSD structures formed largely by liquefaction and/or fluidization triggered by ground shaking during earthquakes. To constrain the timing of the development of SSD structures in the Beolgeumri Formation, we conducted sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age dating of block sized lithic clasts bearing volcaniclastic deposits that conformably underlie (the Mangryeongbong Tuff) and overlie (the Ttandallae Tuff) the Beolgeumri Formation. The Mangryeongbong and Ttandallae Tuffs have ages of 86.63 ± 0.83 Ma and 87.24 ± 0.36 Ma, respectively, indicating that the Beolgeumri Formation was deposited during a short interval between major volcanic eruptions. The large lithic clasts of volcaniclastic deposits suggest that the Beolgeumri Formation was deposited adjacent to an active volcanic edifice(s). Syndepositional magmatic activities are suggested by the occurrence of a lapilli tuff bed in the Beolgeumri Formation and an igneous intrusion (intermediate sill) that is crosscut by a sand dike, as well as the similar age results of the underlying and overlying volcaniclastic deposits. Thus, we infer that the earthquakes that caused the development of SSD structures in the study area were closely related to syndepositional

  8. Crustal Growth: In Defense of the Dogma

    Science.gov (United States)

    Albarede, F.; Blichert-Toft, J.; Guitreau, M.

    2012-12-01

    Plate tectonics was not even in its teens when Armstrong suggested that mantle and crust have interacted at steady-state over Earth's history. With the help of new geochemical tools and large-scale compilations, the concept of steady-state crust (as opposed to continuous crustal growth) is being revived with the implications that the equivalent of several volumes of present-day crust (PDCV) may have been subducted through geological times. Here we argue --or recall-- that four different lines of evidence invalidate this model. (i) The subduction filter must be particularly efficient for argon, even more so than for LILE and most other volatile elements. Atmosphere collects 40Ar degassed from both the extant crust and the crust dragged down at subduction zones over geological time. Regardless of the residence time of the crust at the surface, the amount of atmospheric 40Ar limits subduction of continental crust into the mantle to < 30% of the PDCV [1]. (ii) EM II, the only component that undoubtedly represents subducted continental crust in oceanic basalts, is extremely uncommon. (iii) Crustal age histograms are irrepressibly episodic. It has been argued that erosion selectively removes the crust with the elusive ages [2]. Ages of detrital zircons, which in the selective erosion conjecture should fill the voids, do not support this view [3]. Episodicity is difficult to reconcile with a continental protolith isolated by the common geological processes working either at mid-ocean ridges or subduction zones. A role may be recognized for Wilson cycles, if they can be shown to have prevailed for the entire history of the Earth. Geochemistry demonstrates that superplume material makes up the crustal protolith of all the major juvenile provinces. (iv) The residence time in the mantle of the elements distinctive of the crust is similar to the age of the Earth or even longer [4]. Continental crust finds its source in the instabilities of the lower mantle and the irreversible

  9. Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone, in "Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere"

    NARCIS (Netherlands)

    Willingshofer, E.; Sokoutis, D.; Burg, J.P.

    2005-01-01

    Lithospheric-scale analogue experiments have been conducted to investigate the influence of strength heterogeneities on the distribution and mode of crustal-scale deformation, on the resulting geometry of the deformed area, and on its topographic expression. Strength heterogeneities were

  10. Gas Release as a Deformation Signal

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes in gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.

  11. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility

    Science.gov (United States)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.

    2017-03-01

    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  12. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    Science.gov (United States)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  13. Inter-seasonal surface deformations of an active rock glacier imaged with radar and lidar remote sensing; Turtmann valley, Switzerland

    Science.gov (United States)

    Kos, Andrew; Buchli, Thomas; Strozzi, Tazio; Springman, Sarah

    2013-04-01

    Inter-seasonal changes in surface deformation were imaged using a portable radar interferometer and terrestrial laser scanner during a series of three campaigns that took place in autumn 2011, summer 2012 and autumn 2012 on a rock glacier located in the Turtmann valley, Switzerland. Satellite radar interferometry (ERS 1 & 2, CosmoSkymed) indicate that accelerated downslope movement of the rock glacier commenced during the 1990s. Due to signal decorrelation associated with the satellite repeat pass time interval, continuous ground-based radar interferometry measurements were undertaken. Results show that the rock glacier accelerated significantly in Summer (Vmax = 6.0cm/25hrs), probably in response to the condition of the subsurface hydrology (e.g. post-peak spring snow melt and/or infiltration of rainfall). In autumn, the displacement velocity was reduced (Vmax = 2.0cm/25hrs). A one year surface difference of the glacier topography, derived from terrestrial laser scanning, provided insight into the rock glacier kinematics. Ongoing research is aimed at integrating surface displacement results with an extensive borehole monitoring system consisting of inclinometers and temperature sensors.

  14. Stress modulation of earthquakes: A study of long and short period stress perturbations and the crustal response

    Science.gov (United States)

    Johnson, Christopher W.

    Decomposing fault mechanical processes advances our understanding of active fault systems and properties of the lithosphere, thereby increasing the effectiveness of seismic hazard assessment and preventative measures implemented in urban centers. Along plate boundaries earthquakes are inevitable as tectonic forces reshape the Earth's surface. Earthquakes, faulting, and surface displacements are related systems that require multidisciplinary approaches to characterize deformation in the lithosphere. Modern geodetic instrumentation can resolve displacements to millimeter precision and provide valuable insight into secular deformation in near real-time. The expansion of permanent seismic networks as well as temporary deployments allow unprecedented detection of microseismic events that image fault interfaces and fracture networks in the crust. The research presented in this dissertation is at the intersection of seismology and geodesy to study the Earth's response to transient deformation and explores research questions focusing on earthquake triggering, induced seismicity, and seasonal loading while utilizing seismic data, geodetic data, and modeling tools. The focus is to quantify stress changes in the crust, explore seismicity rate variations and migration patterns, and model crustal deformation in order to characterize the evolving state of stress on faults and the migration of fluids in the crust. The collection of problems investigated all investigate the question: Why do earthquakes nucleate following a low magnitude stress perturbation? Answers to this question are fundamental to understanding the time dependent failure processes of the lithosphere. Dynamic triggering is the interaction of faults and triggering of earthquakes represents stress transferring from one system to another, at both local and remote distances [Freed, 2005]. The passage of teleseismic surface waves from the largest earthquakes produce dynamic stress fields and provides a natural

  15. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Directory of Open Access Journals (Sweden)

    Mohamed K. Salah

    2013-03-01

    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  16. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  17. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data

    Science.gov (United States)

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.

    2005-05-01

    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  18. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    Cambay basin; P-wave velocity; heat flow; heat generation; 2-D modelling; crustal thermal structure; Mohodepth; Curie isotherm. ... This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin.

  19. Late Quaternary deformation of the Longquan anticline in the Longmenshan thrust belt, eastern Tibet, and its tectonic implication

    Science.gov (United States)

    Li, Kang; Xu, Xi-Wei; Tan, Xi-Bin; Chen, Gui-Hua; Xu, Chong; Kang, Wen-Jun

    2015-11-01

    The 2008 Mw 7.9 Wenchuan earthquake and 2013 Mw 6.6 Lushan earthquake are a consequence of ongoing India-Tibet collision and reflect the growth of the Longmenshan thrust belt (LSTB). Assessing seismic hazards associated with the Longquan anticline and its contribution to crustal shortening of the LSTB requires understanding of its fold structure and activity. To address this, the geometry of fluvial terraces across the anticline was surveyed and measured by real-time kinematic (RTK), and these terraces were dated by using radiocarbon with accelerator mass spectrometry (AMS) and optical stimulated luminescence (OSL) methods. Interpretation of seismic reflection profiles suggest that the Longquan anticline grows laterally through kink-band migration and a total cumulative shortening is about 1.13 km in NW-SE direction. Combining with previous studies of depth of decollement, this yields a crustal shortening rate of ∼1.47 mm/yr in NW-SE direction and constrains the time of initiation of the Longquan anticline deformation to 1-2 Ma in the late Pliocene. Obviously, our result indicate that the Longquan anticline is active and potentially seismogenic, and that it should be incorporated into current regional seismic hazard models for the highly populated area of Sichuan basin.

  20. Deformation and recrystallization mechanisms in actively extruding salt fountain: Microstructural evidence for a switch in deformation mechanisms with increased availability of meteoric water and decreased grain size (Qum Kuh, central Iran)

    Czech Academy of Sciences Publication Activity Database

    Desbois, G.; Závada, Prokop; Schléder, Z.; Urai, J. L.

    2010-01-01

    Roč. 32, č. 4 (2010), s. 580-594 ISSN 0191-8141 Grant - others:Deutsche Forschungsgemeinschaft(DE) UR 64/9-2 Institutional research plan: CEZ:AV0Z30120515 Keywords : rocksalt * salt extrusion * gamma - irradiation * deformation mechanisms * microstructure Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.911, year: 2010

  1. Crustal evolution of South American Platform based on Sm-Nd isotope geochemistry; Evolucao crustal da plataforma sul americana com base na geoquimica isotopica Sm-Nd

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kei

    1998-07-01

    Sm-Nd isotopic systematics is relevant to the topics of origin and evolution the of continental crust, where model ages refer to the time when crustal material was differentiated from the upper mantle. Alternative interpretations are due to a lack of adequate information on crustal processes and the variable composition of the mantle sources. The Sm-Nd methods are presented, and applied on rock materials from the South American Platform. The main conclusions indicate juvenile accretion with higher growth rates (peaks), around 3.7-3.5 Ga ({approx} 0.5% in volume), 3.1 - 2.9 Ga ({approx}16%), 2.7 - 2.6 ({approx} 9%), 2.2 - 1.9 (35%) and 1.3-1.0 (7%). The continental growth curve indicates that about 35 % of the crust was formed by 2.5 Ga, 88% by 1.8 Ga and 99% by 1.0 Ga, and the remaining {approx} 1 % was added in the Phanerozoic. Rapid crustal growth occurred between 2.2 and 1.9 Ga. The main period of continental crust formation occurred during the Paleoproterozoic, corresponding to 54 % in volume. Sm-Nd model ages, when compared with the crystallisation ages of granitoid rocks, furnish a rough estimate of juvenile vs. reworked material. Within the South American Platform about 45% of juvenile continental crust is still preserved within tectonic provinces of different ages. The remainder represents continental crust reworked in younger tectono-thermal events. In particular crustal reworking was predominating over juvenile accretion during Meso-Neoproterozoic. The Transbrasiliano Lineament is a megasuture, active in the Neoproterozoic, which separates a large northwestern mass, including the Amazonian and Sao Luis Cratons, from a southeastern mass, formed by a collage of cratonic fragments, of which the Sao Francisco and Rio de La Plata are the largest. The crustal evolutions of these two large continental masses are considered individually, and can be resumed following form: I - Old Archean rocks (>3.4 Ga) are found only within the south-eastern part (Gaviao Block

  2. Solitary Waves of Ice Loss Detected in Greenland Crustal Motion

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2017-12-01

    The annual cycle and secular trend of Greenland mass loading are well recorded in measurements of solid Earth deformation. While bedrock vertical displacements are in phase with loading as inferred from space observations, horizontal motions have received almost no attention. The horizontal bedrock displacements can potentially track the spatiotemporal detail of mass changes with great fidelity. Our analysis of Greenland crustal motion data reveals that a significant excitation of horizontal amplitudes occurs during the intense Greenland melting. A suite of space geodetic observations and climate reanalysis data cannot explain these large horizontal displacements. We discover that solitary seasonal waves of substantial mass transport traveled through Rink Glacier in 2010 and 2012. We deduce that intense summer melting enhanced either basal lubrication or shear softening, or both, causing the glacier to thin dynamically. The newly routed upstream sublglacial water was likely to be both retarded and inefficient, thus providing a causal mechanism for the prolonged ice transport to continue well into the winter months. As the climate continues to produce increasingly warmer spring and summer, amplified seasonal waves of mass transport may become ever more present in years of future observations. Increased frequency of amplified seasonal mass transport may ultimately strengthen the Greenland's dynamic ice mass loss, a component of the balance that will have important ramifications for sea level rise. This animation shows a solitary wave passing through Rink Glacier, Greenland, in 2012, recorded by the motion of a GPS station (circle with arrow). Darker blue colors within the flow indicate mass loss, red colors show mass gain. The star marks the center of the wave. Credit: NASA/JPL-Caltech

  3. Deformation mechanisms in the frontal Lesser Himalayan Duplex in Sikkim Himalaya, India

    Science.gov (United States)

    Matin, Abdul; Mazumdar, Sweety

    2009-08-01

    Understanding deformation mechanisms in Himalayan rocks is a challenging proposition due to the complex nature of the deformed rocks and their genesis. Crustal deformation in the Himalayan thrust belt typically occurs in elastico-frictional (EF) or quasi-plastic (QP) regimes at depths controlled mainly by regional strain-rate and geothermal gradient. However, material property, grain-size and their progressive changes during deformation are also important controlling factors. We present evidence of EF deformation from Gondwana rocks developed during the emplacement of one of the frontal horses (Jorthang horse) in the Lesser Himalayan Duplex (LHD) structure associated with Lesser Himalayan rocks in the footwall of the Ramgarh thrust in the Rangit window near Jorthang in the Sikkim Himalaya. The rocks in the horse exhibit systematic changes in microand meso-structures from an undeformed protolith to cataclasite suggesting that it was emplaced under elastico-frictional conditions. Meso- to micro-scale shear fractures are seen developed in Gondwana sandstone and slate while intercalated fine-grained shale-coal-carbonates are deformed by cataclastic flow suggesting that material property and grain-size have played an important role in the deformation of the Jorthang horse. In contrast, the hanging wall schists and quartzites of the Ramgarh thrust exhibit quasi-plastic deformation structures. This suggests that the Jorthang horse was emplaced under shallower crustal conditions than the antiformally folded Ramgarh thrust sheet even though the Ramgarh sheet presently overlies the Jorthang horse.

  4. Variation in the crustal structure across central Iceland

    Science.gov (United States)

    Du, Zhijun; Foulger, G. R.

    2001-04-01

    We determine the crustal structures beneath 12 broad-band seismic stations deployed in a swath across central Iceland along and around the ICEMELT explosion seismic profile by combining teleseismic receiver functions, surface wave dispersion curves and the waveforms of a large, local event in Iceland. By using teleseisms that approach from different backazimuths, we study lateral structural variability out of the line of the ICEMELT profile. Beneath Tertiary areas, the thickness of the upper crust, as defined by the 6.5kms-1 velocity horizon, is ~8km and the depth to the base of the lower crust, as defined by the 7.2kms-1 velocity horizon, is ~29-32km. Beneath the currently active rift zone the upper crust thins to ~6.0km and the depth to the base of the lower crust increases to ~35-40km. A substantial low-velocity zone underlies the Middle Volcanic Zone in the lower crust, which may indicate anomalously high geothermal gradients there. This suggests that the large-scale thermal centre of the hotspot may be more westerly than northwest Vatnajokull, where it is generally assumed to lie. Simplified description of the results notwithstanding, there is substantial variability in the overall style of crustal structure throughout Iceland, and a clear, tripartite division into upper and lower crusts and a sharp Moho is poorly supported by many of our results. The nature, distinctiveness and continuity of the Moho is variable and in many areas the crust-mantle transition is a zone with enhanced velocity gradients several kilometres thick.

  5. West-directed thrusting south of the eastern Himalayan syntaxis indicates clockwise crustal flow at the indenter corner during the India-Asia collision

    Science.gov (United States)

    Haproff, Peter J.; Zuza, Andrew V.; Yin, An

    2018-01-01

    Whether continental deformation is accommodated by microplate motion or continuum flow is a central issue regarding the nature of Cenozoic deformation surrounding the eastern Himalayan syntaxis. The microplate model predicts southeastward extrusion of rigid blocks along widely-spaced strike-slip faults, whereas the crustal-flow model requires clockwise crustal rotation along closely-spaced, semi-circular right-slip faults around the eastern Himalayan syntaxis. Although global positioning system (GPS) data support the crustal-flow model, the surface velocity field provides no information on the evolution of the India-Asia orogenic system at million-year scales. In this work, we present the results of systematic geologic mapping across the northernmost segment of the Indo-Burma Ranges, located directly southeast of the eastern Himalayan syntaxis. Early research inferred the area to have experienced either right-slip faulting accommodating northward indentation of India or thrusting due to the eastward continuation of the Himalayan orogen in the Cenozoic. Our mapping supports the presence of dip-slip thrust faults, rather than strike-slip faults. Specifically, the northern Indo-Burma Ranges exposes south- to west-directed ductile thrust shear zones in the hinterland and brittle fault zones in the foreland. The trends of ductile stretching lineations within thrust shear zones and thrust sheets rotate clockwise from the northeast direction in the northern part of the study area to the east direction in the southern part of the study area. This clockwise deflection pattern of lineations around the eastern Himalayan syntaxis mirrors the clockwise crustal-rotation pattern as suggested by the crustal-flow model and contemporary GPS velocity field. However, our finding is inconsistent with discrete strike-slip deformation in the area and the microplate model.

  6. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  7. Analytical magmatic source modelling from a joint inversion of ground deformation and focal mechanisms data

    Science.gov (United States)

    Cannavo', Flavio; Scandura, Danila; Palano, Mimmo; Musumeci, Carla

    2014-05-01

    Seismicity and ground deformation represent the principal geophysical methods for volcano monitoring and provide important constraints on subsurface magma movements. The occurrence of migrating seismic swarms, as observed at several volcanoes worldwide, are commonly associated with dike intrusions. In addition, on active volcanoes, (de)pressurization and/or intrusion of magmatic bodies stress and deform the surrounding crustal rocks, often causing earthquakes randomly distributed in time within a volume extending about 5-10 km from the wall of the magmatic bodies. Despite advances in space-based, geodetic and seismic networks have significantly improved volcano monitoring in the last decades on an increasing worldwide number of volcanoes, quantitative models relating deformation and seismicity are not common. The observation of several episodes of volcanic unrest throughout the world, where the movement of magma through the shallow crust was able to produce local rotation of the ambient stress field, introduces an opportunity to improve the estimate of the parameters of a deformation source. In particular, during these episodes of volcanic unrest a radial pattern of P-axes of the focal mechanism solutions, similar to that of ground deformation, has been observed. Therefore, taking into account additional information from focal mechanisms data, we propose a novel approach to volcanic source modeling based on the joint inversion of deformation and focal plane solutions assuming that both observations are due to the same source. The methodology is first verified against a synthetic dataset of surface deformation and strain within the medium, and then applied to real data from an unrest episode occurred before the May 13th 2008 eruption at Mt. Etna (Italy). The main results clearly indicate as the joint inversion improves the accuracy of the estimated source parameters of about 70%. The statistical tests indicate that the source depth is the parameter with the highest

  8. Crustal evolution inferred from apollo magnetic measurements

    International Nuclear Information System (INIS)

    Dyal, P.; Daily, W.D.; Vanyan, L.L.

    1978-09-01

    Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments

  9. Detailed crustal structure of the North China and its implication for seismicity

    Science.gov (United States)

    Jiang, Wenliang; Wang, Xin; Tian, Tian; Zhang, Jingfa; Wang, Donglei

    2014-02-01

    Since the Mesozoic-Cenozoic era the North China Craton has experienced an important tectonic transition and it has given rise to complicated crustal structure and strong earthquake activity. Based on the large-scale surface gravity data, we studied the detailed crustal structure and seismogenic mechanism of the North China. The results indicate that the North China presents typical characteristics of adjoining depression and uplift, alternating basins and hills, inhomogeneous density and also great differences in crustal structure and Moho topography. The upper and middle crustal structures are dominated by the NNE-striking tectonic units, with many faults cut down to the middle crust. The lower crust is characterized by the folding-structure, with high and low-density placed alternately from west to east, presenting lateral heterogeneous feature. Adjusted by the gravity isostasy, Moho topography of the North China fluctuates greatly. Compared with the North China Basin, crustal thickness in the Western Taihang, northern Yanshan and Luzhong areas are much thicker while those densities are lower than the North China Basin. The dominating tectonic direction of the Moho topography strikes NE to NNE and undulates alternately from west to east. The epicenters are mostly concentrated in the upper and middle crust, especially the transitional areas between the high and low-gravity anomalies. The Tancheng earthquake in 1668, Sanhe earthquake in 1673, Tangshan earthquake in 1976, and all other seismic tectonic zones of the North China are all distributed in area where magma moves strongly beneath the crust, which is considered to be related to the movement of the high density, unstable and heat flows along the deep passage from the uppermost and asthenosphere due to the subduction of the Pacific slab towards the Eurasian plate.

  10. Fractal behavior in continental crustal heat production

    Directory of Open Access Journals (Sweden)

    N. Vedanti

    2011-02-01

    Full Text Available The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India, Kaapvaal craton (South Africa, Baltic shield (Kola, Russia, Hidaka metamorphic belt (Japan, Nissho pluton (Japan and Continental Deep Drilling site (KTB, Germany. The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  11. Fractal behavior in continental crustal heat production

    Science.gov (United States)

    Vedanti, N.; Srivastava, R. P.; Pandey, O. P.; Dimri, V. P.

    2011-02-01

    The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India), Kaapvaal craton (South Africa), Baltic shield (Kola, Russia), Hidaka metamorphic belt (Japan), Nissho pluton (Japan) and Continental Deep Drilling site (KTB, Germany). The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  12. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling

    Science.gov (United States)

    Zurek, Jeffrey; William-Jones, Glyn; Johnson, Dan; Eggers, Al

    2012-10-01

    Microgravity data were collected between 2002 and 2009 at the Three Sisters Volcanic Complex, Oregon, to investigate the causes of an ongoing deformation event west of South Sister volcano. Three different conceptual models have been proposed as the causal mechanism for the deformation event: (1) hydraulic uplift due to continual injection of magma at depth, (2) pressurization of hydrothermal systems and (3) viscoelastic response to an initial pressurization at depth. The gravitational effect of continual magma injection was modeled to be 20 to 33 μGal at the center of the deformation field with volumes based on previous deformation studies. The gravity time series, however, did not detect a mass increase suggesting that a viscoelactic response of the crust is the most likely cause for the deformation from 2002 to 2009. The crust, deeper than 3 km, in the Three Sisters region was modeled as a Maxwell viscoelastic material and the results suggest a dynamic viscosity between 1018 to 5 × 1019 Pa s. This low crustal viscosity suggests that magma emplacement or stall depth is controlled by density and not the brittle ductile transition zone. Furthermore, these crustal properties and the observed geochemical composition gaps at Three Sisters can be best explained by different melt sources and limited magma mixing rather than fractional crystallization. More generally, low intrusion rates, low crustal viscosity, and multiple melt sources could also explain the whole rock compositional gaps observed at other arc volcanoes.

  13. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    International Nuclear Information System (INIS)

    Ekman, Lennart; Ekman, Mats

    2013-03-01

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower than those presented in Gustafson and Ljungberg (2010), which is in line with findings in Finland (Satakunta, Olkiluoto, Kivetty, Romuvaara) as well as with many of the baselines in the measurements at Oskarshamn (Aespoe/Laxemar). We recommend that the GPS measurements proceed for a number of years, preferably as continuous measurements rather than intermittent campaigns. The advantages with continuous measurements are that they enable identification of slow as well as rapid periodical changes, and also counteract the aliasing effect

  14. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Lennart; Ekman, Mats [LE Geokonsult AB, Baelinge (Sweden)

    2013-03-15

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower than those presented in Gustafson and Ljungberg (2010), which is in line with findings in Finland (Satakunta, Olkiluoto, Kivetty, Romuvaara) as well as with many of the baselines in the measurements at Oskarshamn (Aespoe/Laxemar). We recommend that the GPS measurements proceed for a number of years, preferably as continuous measurements rather than intermittent campaigns. The advantages with continuous measurements are that they enable identification of slow as well as rapid periodical changes, and also counteract the aliasing effect.

  15. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    Science.gov (United States)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  16. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    Science.gov (United States)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  17. An experimental approach to non - extensive statistical physics and Epidemic Type Aftershock Sequence (ETAS) modeling. The case of triaxially deformed sandstones using acoustic emissions.

    Science.gov (United States)

    Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.

    2014-12-01

    Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union

  18. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    Science.gov (United States)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    The discussed area, Tulcea, is delimitated by the Scythian Platform in the North and Moessian Platform in the South, not far from the Black Sea coast. Natural disasters in the city could occur due to Vrancea intermediate-depth (subcrustal) earthquakes and crustal earthquakes caused by active faults. In the last 30 years three important seismic events affected the region of interest with the following recorded magnitudes: MW = 5.1 (13.11.1981) followed in the same day by 6 aftershocks (at depth 0-9 km) with MW = 2.9-3.3; MW = 5 (27.04.1986) and MW = 4.9 (3.10.2004) followed by two aftershocks. Information about the seismic zone of Tulcea is from three seismic catalogues made by Florinescu (1958), Constantinescu and Mârza (1980) and ROMPLUS (2008), but for urban planning of Tulcea city is very important to be better understood the effect of active faults (Măcin-Cerna, Tulcea-Isaccea, Peceneaga-Camena etc) located in the Pre-Dobrogean Depression (our interest area) in the two parts of the city. Regarding the effects of Vrancea subcrustal earthquakes, as the Tulcea city is situated relatively at a large distance from the epicenters, there is necessary to improve the actual method of microzonation based on Medvedev's method. In order to discuss the local seismic site effects we have considered two scenarios, which take into account the characteristics of the seismogenic area. The first one considers the city exposed to a seismic event with magnitude Mw = 5.1 from Sf. Gheorghe fault and the second one considers the city exposed to an earthquake from the EV zone (superficial). The earthquake epicentres are located in very active seismic areas. The absolute response spectra at the bedrock and at surface will be calculated and the characteristic transfer functions, as well. Nonlinear effects induced by significant deformations need a certain method - linear equivalent - for a multistratified zone, as we considered for the Tulcea superficial area. Therefore, important

  19. Quantitative tectonic reconstructions of Zealandia based on crustal thickness estimates

    Science.gov (United States)

    Grobys, Jan W. G.; Gohl, Karsten; Eagles, Graeme

    2008-01-01

    Zealandia is a key piece in the plate reconstruction of Gondwana. The positions of its submarine plateaus are major constraints on the best fit and breakup involving New Zealand, Australia, Antarctica, and associated microplates. As the submarine plateaus surrounding New Zealand consist of extended and highly extended continental crust, classic plate tectonic reconstructions assuming rigid plates and narrow plate boundaries fail to reconstruct these areas correctly. However, if the early breakup history shall be reconstructed, it is crucial to consider crustal stretching in a plate-tectonic reconstruction. We present a reconstruction of the basins around New Zealand (Great South Basin, Bounty Trough, and New Caledonia Basin) based on crustal balancing, an approach that takes into account the rifting and thinning processes affecting continental crust. In a first step, we computed a crustal thickness map of Zealandia using seismic, seismological, and gravity data. The crustal thickness map shows the submarine plateaus to have a uniform crustal thickness of 20-24 km and the basins to have a thickness of 12-16 km. We assumed that a reconstruction of Zealandia should close the basins and lead to a most uniform crustal thickness. We used the standard deviation of the reconstructed crustal thickness as a measure of uniformity. The reconstruction of the Campbell Plateau area shows that the amount of extension in the Bounty Trough and the Great South Basin is far smaller than previously thought. Our results indicate that the extension of the Bounty Trough and Great South Basin occurred simultaneously.

  20. StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz

    Directory of Open Access Journals (Sweden)

    Sanaz Vajedian

    2015-06-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR capability to detect slow deformation over terrain areas is limited by temporal decorrelation, geometric decorrelation and atmospheric artefacts. Multitemporal InSAR methods such as Persistent Scatterer (PS-InSAR and Small Baseline Subset (SBAS have been developed to deal with various aspects of decorrelation and atmospheric problems affecting InSAR observations. Nevertheless, the applicability of both PS-InSAR and SBAS in mountainous regions is still challenging. Correct phase unwrapping in both methods is hampered due to geometric decorrelation in particular when using C-band SAR data for deformation analysis. In this paper, we build upon the SBAS method implemented in StaMPS software and improved the technique, here called ISBAS, to assess tectonic and volcanic deformation in the center of the Alborz Mountains in Iran using both Envisat and ALOS SAR data. We modify several aspects within the chain of the processing including: filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing the atmospheric noise with the help of additional GPS data, and removing the ramp caused by ionosphere turbulence and/or orbit errors to better estimate crustal deformation in this tectonically active region. Topographic correction is done within the three-dimensional unwrapping in order to improve the phase unwrapping process, which is in contrast to previous methods in which DEM error is estimated before/after phase unwrapping. Our experiments show that our improved SBAS approach is able to better characterize the tectonic and volcanic deformation in the center of the Alborz region than the classical SBAS. In particular, Damavand volcano shows an average uplift rate of about 3 mm/year in the year 2003–2010. The Mosha fault illustrates left-lateral motion that could be explained with a fault that is locked up to 17–18 km depths and slips with 2–4 mm

  1. STRUCTURE OF THE LITHOSPHERE AND SEISMOTECTONIC DEFORMATIONS IN CONTACT ZONE OF LITHOSPHERIC PLATES IN THE SUMATRA ISLAND REGION

    Directory of Open Access Journals (Sweden)

    O. A. Kuchay

    2015-01-01

    Full Text Available The inversion seismic tomography algorithm (ITS was used to calculate 3D seismic anomalies models for velocities of P- and S-waves in the zone of the Sunda arc, Indonesia. In the area under study, strong earthquakes (M>4.8 are clustered in the zone of high P-wave velocities. Earthquake hypocenters are located in zones of both high and low velocity anomalies of S-waves. The giant Sumatra earthquake (December 26, 2004, Mw=9.0 ruptured the greatest fault length of any recorded earthquake, and the rupture started in the area wherein the sign of P-wave velo­city anomalies is abruptly changed. We calculated seismotectonic deformations (STD from data on mechanisms of 2227 earthquakes recorded from 1977 to 2013, and our calculations show that the STD component, that controls vertical extension of rocks, is most stable through all the depth levels. In the marginal regions at the western and eastern sides of the Sunda arc, the crustal areas (depths from 0 to 35 km are subject to deformations which sign is opposite to that of deformations in the central part. Besides, at depths from 70 to 150 km beneath the Sumatra earthquake epicentre area, the zone is subject to deformations which sign is opposite to that of deformations in the studied part of the Sunda arc. For earthquakes that may occur in the crust in the Sunda arc in the contact zone of the plates, maximum magnitudes depend on the direction of pressure imposed by the actively subducting plate, which is an additional criteria for determining the limit magnitude for the region under study. 

  2. Crustal structure in the Kiruna area, northern Sweden, based on seismic reflection profiling

    Science.gov (United States)

    Juhojuntti, Niklas; Bergman, Stefan; Olsson, Sverker

    2013-04-01

    Northernmost Sweden is currently one of the most active mining areas in Europe. In order to better understand the regional three-dimensional crustal structure and to support deep ore exploration, we have acquired a 74 km long seismic reflection profile in the Kiruna area. The upper crust in this area is largely composed of various supracrustal units, which are dominated by metabasalts, acidic metavolcanics and clastic metasedimentary rocks, resting on an Archaean metagranitoid complex. All of these units have been intruded by plutonic rocks, and to variable degrees folded, sheared and metamorphosed, during the Svecokarelian orogeny. The profile crosses several steep ductile shear zones, some of which extend for hundreds of kilometres along strike. Many of the lithological contacts and deformation zones are expected to be seismically reflective. The profile is located only a few kilometres from the world's largest underground iron-ore mine in Kiruna, and closer to the profile there are several known ore bodies, some of which are active exploration targets. For the seismic recording we used approximately 350 geophones in split-spread configuration, at a separation of 25 m. The main seismic source was the Vibsist system (an impact source), which normally was employed at every geophone station. We also fired explosive charges (8-16 kg) at a few locations distributed along the profile to image deeper structures, although at very low resolution. Wireless seismometers were placed along and to the side of the profile, mainly in order to achieve better velocity control and to study out-of-the-plane reflections. Some mining blasts in Kiruna were also recorded. The upper crust in the area is quite reflective, most clearly demonstrated by the dynamite shot records. Some of the reflections appear to originate from steeply dipping structures. The dynamite shot records show a set of reflections at 3-4 s twt, corresponding to a depth of roughly 10 km, the explanation for which is

  3. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  4. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  5. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  6. Shear transformation zone activation during deformation in bulk metallic glasses characterized using a new indentation creep technique

    Science.gov (United States)

    J.B. Puthoff; H.B. Cao; Joseph E. Jakes; P.M. Voyles; D.S. Stone

    2009-01-01

    We have developed a novel type of nanoindentation creep experiment, called broadband nanoindentation creep (BNC), and used it to characterize the thermal activation of shear transformation zones (STZs) in three BMGs in the Zr-Cu-Al system. Using BNC, material hardness can be determined across a wide range of strain rates (10–4 to 10 s–...

  7. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  8. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær

    2005-01-01

    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  9. Effect of infiltrated water on rheology of plagioclase feldspar under lower crustal condition

    Science.gov (United States)

    Kido, M.; Muto, J.; Koizumi, S.; Nagahama, H.

    2016-12-01

    Fluids in the deep crust have an important role in deformation of lithosphere and seismicity. In this study, we performed deformation experiments to reveal rheological properties of plagioclase feldspars as a main constituent of crustal materials with infilitrated water. Axial compression tests on synthetic polycrystalline anorthite (An) were performed in a Griggs-type deformation apparatus at temparature of 900 °C, strain rates of roughly about 10-5 s-1 and various confining pressures of 0.8-1.4 GPa. Distilled water was added on samples before tests. Times for infiltration of water into samples were changed to investigate the variation of strength associated with diffusion of water. Strengths of wet An tended to decrease with infiltration time or strain magnitude. If other conditions such as temperature, time and strain being the same, strengths increase with confining pressures. Recovered samples show that deformation was concentrated in the lower part of samples. Differential stresses were significantly lower than predicted values by a previous flow law for wet An obtained by low pressure gas apparatus ( 0.4 GPa, Rybacki et al., 2006). This implies that the effect of water on mechanical behavior in higher pressure might be larger than those predicted by lower pressure experiments. Ideal water concentration and strength profile of internal of samples were estimated by one-dimensional model of grain boundary diffusion. Estimated strength of internal part of samples was significant higher than measured stresses. There is possibility that cataclastic flow partially occurred in samples. In addition, deformation-enhanced fluid flow probably occurred. In conclusion, strength of wet An depends on water infiltration time, strain magnitude and confining pressure. The results suggest that the strength of fluid-rich regions in the lower crust becomes lower than that predicted by previous studies.

  10. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  11. Reconnaissance isotopic investigations in the Namaqua mobile belt and implications for proterozoic crustal evolution - Namaqualand geotraverse

    International Nuclear Information System (INIS)

    Barton, E.S.

    1983-01-01

    Fourteen rock units in the western portion of the Namaqua mobile belt were investigated by some or all of the following isotopic methods: Rb-Sr, Pb-Pb, Th-Pb total-rock and Rb-Sr mineral age measurements. Two major tectogenetic events are recongnised. The early Orange River event is represented by the emplacement and metamorphism of the volcanic rocks of the Haib Subgroup and the emplacement of granitoids of the Vioolsdrif and Gladkop suites in the regions of the Richtersveld Province and the Steinkopf domain. The later Namaqua event is represented mainly by extensive granitoid emplacement and high-grade granulite facies metamorphism in the Okiep Copper District, with minor granitoid and dyke emplacement taking place in the Steinkopf domain. The polymetamorphism associated with these tectonic events had far-reaching effects in the form of long continued isotopic resetting of rock and mineral systems. In the instances where the regression of the total-rock isotopic data define errorchron results, geological disturbance is inferred. The Sr-isotopic results indicate substrantial crustal reworking and two periods of mantle differentiation producing continental crust at approximately 2 000 and approximately 1 200 Ma ago. The Pb-isotopic data for these rocks indicate μ 2 values for the source regions that are compatible with crustal reworking for the felsic rocks or a significant amount of crustal recycling into the mantle for the mafic rocks. On this basis a magmatic arc environment is envisaged for the rocks generated during the Orange River event. The deformation fabrics associated with the Orange River and Namaqua tectogenetic episodes are dated by the time of emplacement of syn- and post-tectonic granitic rocks. The regional fabric observed in the Steinkopf domain and in the Okiep Copper District was not synchronously developed

  12. Shear wave splitting and crustal anisotropy in the Eastern Ladakh-Karakoram zone, northwest Himalaya

    Science.gov (United States)

    Paul, Arpita; Hazarika, Devajit; Wadhawan, Monika

    2017-06-01

    Seismic anisotropy of the crust beneath the eastern Ladakh-Karakoram zone has been studied by shear wave splitting analysis of S-waves of local earthquakes and P-to-S or Ps converted phases originated at the crust-mantle boundary. The splitting parameters (Φ and δt), derived from S-wave of local earthquakes with shallow focal depths, reveal complex nature of anisotropy with NW-SE and NE oriented Fast Polarization directions (FPD) in the upper ∼22 km of the crust. The observed anisotropy in the upper crust may be attributed to combined effects of existing tectonic features as well as regional tectonic stress. The maximum delay time of fast and slow waves in the upper crust is ∼0.3 s. The Ps splitting analysis shows more consistent FPDs compared to S-wave splitting. The FPDs are parallel or sub parallel to the Karakoram fault (KF) and other NW-SE trending tectonic features existing in the region. The strength of anisotropy estimated for the whole crust is higher (maximum delay time δt: 0.75 s) in comparison to the upper crust. This indicates that the dominant source of anisotropy in the trans-Himalayan crust is confined within the middle and lower crustal depths. The predominant NW-SE trending FPDs consistently observed in the upper crust as well as in the middle and lower crust near the KF zone support the fact that the KF is a crustal-scale fault which extends at least up to the lower crust. Dextral shearing of the KF creates shear fabric and preferential alignment of mineral grains along the strike of the fault, resulting in the observed FPDs. A Similar observation in the Indus Suture Zone (ISZ) also suggests crustal scale deformation owing to the India-Asia collision.

  13. Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation

    International Nuclear Information System (INIS)

    Riahi, Mohammadreza; Alizadeh, Elaheh

    2012-01-01

    In this paper an active 3D mixer for lab-on-chip applications is presented. The micrometer size cone shape holes are ablated on a PMMA sheet utilizing a CO 2 laser. The holes are filled with Fe micro-particles and the whole structure is molded with PDMS which cause the Fe micro-particles to be trapped in a PDMS cone structure. These Fe-doped PDMS cones are placed in a PMMA micro-channel structure fabricated by CO 2 laser machining. By applying an external periodic magnetic field, the cones periodically bend in the micro-channel and stir the fluid. The fabrication method and the effect of the magnetic field on the bending of the cones with different aspect ratios is also discussed utilizing computer simulation. Doping the polymers with micro- and nano-metallic particles has been carried out by different research groups before, but according to our knowledge, application of such structures for the fabrication of a 3D active mixer has not been presented before. (paper)

  14. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  15. Recent crustal movements and seismicity in the western coastal region of peninsular India

    Science.gov (United States)

    Kailasam, L. N.

    1983-09-01

    Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.

  16. Lower crustal strength controls on melting and type of oceanization at magma-poor margins

    Science.gov (United States)

    Ros, E.; Perez-Gussinye, M.; Araujo, M. N.; Thoaldo Romeiro, M.; Andres-Martinez, M.; Morgan, J. P.

    2017-12-01

    Geodynamical models have been widely used to explain the variability in the architectonical style of conjugate rifted margins as a combination of lithospheric deformation modes, which are strongly influenced by lower crustal strength. We use 2D numerical models to show that the lower crustal strength also plays a key role on the onset and amount of melting and serpentinization during continental rifting. The relative timing between melting and serpentinization onsets controls whether the continent-ocean transition (COT) of margins will be predominantly magmatic or will mainly consist of exhumed and serpentinized mantle. Based on our results for magma-poor continental rifting, we propose a genetic link between margin architecture and COT styles that can be used as an additional tool to help interpret and understand the processes leading to margin formation. Our results show that strong lower crusts and very slow extension velocities (architecture of the magma-poor section of the South Atlantic, we suggest that the COT of the northern sector, Camamu-Gabon basins, is more likely to consist of exhumed mantle with intruded magmatism, while to the South, the Camamu-Kwanza and North Santos-South Kwanza conjugates, may be better characterized by a predominantly magmatic COT.

  17. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  18. Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC

    Directory of Open Access Journals (Sweden)

    A. Tzanis

    2003-01-01

    Full Text Available A region of definite accelerating seismic release rates has been identified at the SW Hellenic Arc and Trench system, of Peloponnesus, and to the south-west of the island of Kythera (Greece. The identification was made after detailed, parametric time-to-failure modelling on a 0.1° square grid over the area 20° E – 27° E and 34° N–38° N. The observations are strongly suggestive of terminal-stage critical point behaviour (critical exponent of the order of 0.25, leading to a large earthquake with magnitude 7.1 ± 0.4, to occur at time 2003.6 ± 0.6. In addition to the region of accelerating seismic release rates, an adjacent region of decelerating seismicity was also observed. The acceleration/deceleration pattern appears in such a well structured and organised manner, which is strongly suggestive of a causal relationship. An explanation may be that the observed characteristics of distributed power-law seismicity changes may be produced by stress transfer from a fault, to a region already subjected to stress inhomogeneities, i.e. a region defined by the stress field required to rupture a fault with a specified size, orientation and rake. Around a fault that is going to rupture, there are bright spots (regions of increasing stress and stress shadows (regions relaxing stress; whereas acceleration may be observed in bright spots, deceleration may be expected in the shadows. We concluded that the observed seismic release patterns can possibly be explained with a family of NE-SW oriented, left-lateral, strike-slip to oblique-slip faults, located to the SW of Kythera and Antikythera and capable of producing earthquakes with magnitudes MS ~ 7. Time-to-failure modelling and empirical analysis of earthquakes in the stress bright spots yield a critical exponent of the order 0.25 as expected from theory, and a predicted magnitude and critical time perfectly consistent with the figures given above. Although we have determined an approximate location, time and magnitude, it is as yet difficult to assert a prediction for reasons discussed in the text. However, our results, as well as similar independent observations by another research team, indicate that a strong earthquake may occur at the SW Hellenic Arc, in the next few years.

  19. Crustal deformations in the epicentral area of the West Bohemia 2008 earthquake swarm in central Europe

    Czech Academy of Sciences Publication Activity Database

    Schenk, Vladimír; Schenková, Zdeňka; Jechumtálová, Zuzana; Pichl, R.

    2012-01-01

    Roč. 117, B7 (2012), B07408 ISSN 0148-0227 R&D Projects: GA MŠk(CZ) LC506; GA ČR GA205/05/2287; GA AV ČR 1QS300460551; GA MŠk 1P05ME781 Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30120515 Keywords : geodynamics * geophysics * geology * geodesy Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.174, year: 2012

  20. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    Science.gov (United States)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  1. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  2. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    29

    marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly ...... Lu-Hf and Sm-Nd isotope systematics of Archean komatiites; Earth Planet. ..... Association Commission on New Minerals and Mineral Names; Can.

  3. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)

    29

    understand their petrogenesis and tectonic setting. .... crystallize from magmas with temperatures significantly higher than those of other intracrustal ...... blanketing by greenstone belt volcanic rocks, crustal thickening and hot subduction or a. 1.

  4. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  5. An InSAR-based survey of volcanic deformation in the central Andes

    Science.gov (United States)

    Pritchard, M. E.; Simons, M.

    2004-02-01

    We extend an earlier interferometric synthetic aperture radar (InSAR) survey covering about 900 remote volcanos of the central Andes (14°-27°S) between the years 1992 and 2002. Our survey reveals broad (10s of km), roughly axisymmetric deformation at 4 volcanic centers: two stratovolcanoes are inflating (Uturuncu, Bolivia, and Hualca Hualca, Peru); another source of inflation on the border between Chile and Argentina is not obviously associated with a volcanic edifice (here called Lazufre); and a caldera (Cerro Blanco, also called Robledo) in northwest Argentina is subsiding. We explore the range of source depths and volumes allowed by our observations, using spherical, ellipsoidal and crack-like source geometries. We further examine the effects of local topography upon the deformation field and invert for a spherical point-source in both elastic half-space and layered-space crustal models. We use a global search algorithm, with gradient search methods used to further constrain best-fitting models. Inferred source depths are model-dependent, with differences in the assumed source geometry generating a larger range of accepted depths than variations in elastic structure. Source depths relative to sea level are: 8-18 km at Hualca Hualca; 12-25 km for Uturuncu; 5-13 km for Lazufre, and 5-10 km at Cerro Blanco. Deformation at all four volcanoes seems to be time-dependent, and only Uturuncu and Cerro Blanco were deforming during the entire time period of observation. Inflation at Hualca Hualca stopped in 1997, perhaps related to a large eruption of nearby Sabancaya volcano in May 1997, although there is no obvious relation between the rate of deformation and the eruptions of Sabancaya. We do not observe any deformation associated with eruptions of Lascar, Chile, at 16 other volcanoes that had recent small eruptions or fumarolic activity, or associated with a short-lived thermal anomaly at Chiliques volcano. We posit a hydrothermal system at Cerro Blanco to explain the

  6. Seasonal deformation and active landslide thickness revealed by spaceborne InSAR observations: a case study of Crescent lake landslide, WA

    Science.gov (United States)

    Hu, X.; Lu, Z.; Pierson, T. C.; Kramer, R.

    2017-12-01

    Understanding the precipitation triggering mechanism and quantifying the creeping landslide thickness are important to conduct early warnings and estimate potential failure volume and runout extent. However, it is problematic to use traditional geodetic methods to identify the active landslide boundaries and capture the transient mobility over hilly and vegetated landslide landscape. Here we present a novel InSAR processing strategy to characterize the spatial distribution and temporal behavior of the landslide movement in response to precipitation over Crescent lake landslide, WA using spaceborne SAR data of ALOS-1 PALSAR-1, ALOS-2 PALSAR-2 and Sentinel-1A. Time-series measurements reveal the seasonal deformation of landslide lobe, showing a much larger magnitude compared to the motion at lower elevated terrain expressed by an off-slide GPS station, suggesting an amplified hydrological loading effect associated with thick unconsolidated zone. Thanks to the high temporal resolution of Sentinel-1A and on-slide GPS data, we capture the progressive incipient motions in the wet season, characterized by the elastic slope-normal contraction due to loading during antecedent rainfall, followed by downslope slip and lateral propagation in less than one-month intense precipitation, because the elevated pore pressure and the reduced friction at the basal instigate the shear motion. The proposed threshold precipitation concept, in terms of the intensity and duration, can be an integral part of the landslide warning system. The active thickness can be inverted using three-dimensional (3D) displacement map based on the principle of mass conservation. We extract quasi-3D displacements using two independent (ascending and descending) InSAR measurements assuming that the targets move exclusively along the aspect direction on the slope-parallel plane. This routine of the extraction of quasi-3D displacement and the inversion of active lobe thickness can be utilized in the study of

  7. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield

    Science.gov (United States)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.

    2012-12-01

    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  8. Developing Tools to Test the Thermo-Mechanical Models, Examples at Crustal and Upper Mantle Scale

    Science.gov (United States)

    Le Pourhiet, L.; Yamato, P.; Burov, E.; Gurnis, M.

    2005-12-01

    Testing geodynamical model is never an easy task. Depending on the spatio-temporal scale of the model, different testable predictions are needed and no magic reciepe exist. This contribution first presents different methods that have been used to test themo-mechanical modeling results at upper crustal, lithospheric and upper mantle scale using three geodynamical examples : the Gulf of Corinth (Greece), the Western Alps, and the Sierra Nevada. At short spatio-temporal scale (e.g. Gulf of Corinth). The resolution of the numerical models is usually sufficient to catch the timing and kinematics of the faults precisely enough to be tested by tectono-stratigraphic arguments. In active deforming area, microseismicity can be compared to the effective rheology and P and T axes of the focal mechanism can be compared with local orientation of the major component of the stress tensor. At lithospheric scale the resolution of the models doesn't permit anymore to constrain the models by direct observations (i.e. structural data from field or seismic reflection). Instead, synthetic P-T-t path may be computed and compared to natural ones in term of rate of exhumation for ancient orogens. Topography may also help but on continent it mainly depends on erosion laws that are complicated to constrain. Deeper in the mantle, the only available constrain are long wave length topographic data and tomographic "data". The major problem to overcome now at lithospheric and upper mantle scale, is that the so called "data" results actually from inverse models of the real data and that those inverse model are based on synthetic models. Post processing P and S wave velocities is not sufficient to be able to make testable prediction at upper mantle scale. Instead of that, direct wave propagations model must be computed. This allows checking if the differences between two models constitute a testable prediction or not. On longer term, we may be able to use those synthetic models to reduce the residue

  9. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  10. The crustal dynamics intelligent user interface anthology

    Science.gov (United States)

    Short, Nicholas M., Jr.; Campbell, William J.; Roelofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views.

  11. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  12. Cooperative research in space geodesy and crustal dynamics

    Science.gov (United States)

    1994-01-01

    This research grant, which covered the period of July 1991 to August 1994, was concerned with a variety of topics within the geodesy and crustal dynamics fields. The specific topics of this grant included satellite tracking and gravity field determinations and crustal dynamics (this concentrated of space geodetic site stability for VLBI sites). Summaries of the specific research projects are included along with a list of publications and presentations supported by this research grant.

  13. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    Science.gov (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  14. Paleomagnetic Constraints From the Baoshan Area on the Deformation of the Qiangtang-Sibumasu Terrane Around the Eastern Himalayan Syntaxis

    NARCIS (Netherlands)

    Li, Shihu|info:eu-repo/dai/nl/411296248; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624; Deng, Chenglong; Advokaat, Eldert L.; Zhu, Rixiang

    The Sibumasu Block in SE Asia represents the eastward continuation of the Qiangtang Block. Here we report a detailed rock magnetic and paleomagnetic study on the Middle Jurassic and Paleocene rocks from northern Sibumasu, to document the crustal deformation during the India-Asia collision since the

  15. A Case Study of the Activity Gravitational Deformation Slate Slope on One Newly Rebuild Highway Bridge in Taitung Longitudinal Valley of Taiwan

    Science.gov (United States)

    Hsieh, Pei-Chen; Weng, Cheng-Hsueh; Lu, An; Lin, Ming-Lang

    2017-04-01

    There are many landslide hazards induced by typhoon and earthquake in Taiwan because Taiwan is located in active orogen zone, where the Taitung Longitudinal Valley is the plate boundary, and also many typhoons hit Taiwan and bring much precipitation. In Japan, where also is located in orogen zone, the 2016 Kumamoto Earthquake caused a large landslide which destroyed the Great Aso Bridge. It shows that landslides might have huge influence on the safety of bridges. In Sep. 2016, Typhoon No.14 (Meranti) hit Taiwan and caused a slate slope failure which located in Taitung Longitudinal Valley. It cut the approach road of a highway bridge called Songfeng Bridge and the maximum displacement is about 2 meters. The landslide body might include the bridge, and if this landslide continued move the bridge structure might be destroyed. The attitude of cleavage and joints measured in site investigation are complex and confused, it imply that this landslide event is not only controlled by gravitational deformation, but also affected by release joint and river erosion because the site is located on confluence of two river. The target of site investigation in this research includes finding the border of failure surface and the measurement of cleavage and joints. In this research, we compare the result of site investigation and numerical model to find the mechanism of failure, and try to analysis the possible influence on the bridge structure.

  16. CRUSTAL THICKNESS VARIATIONS AND SEISMICITY OF NORTHWESTERN SOUTH AMERICA

    Directory of Open Access Journals (Sweden)

    Woo Kim Jeong

    2007-06-01

    Full Text Available Any uncompensated mass of the northern Andes Mountains is presumably under pressure to adjust within the Earth to its ideal state of isostatic equilibrium. Isostasy is the ideal state that any
    uncompensated mass seeks to achieve in time. These pressures interact with the relative motions between adjacent plates that give rise to earthquakes along the plate boundaries. By combining the
    gravity MOHO estimates and crustal discontinuities with historical and instrumental seismological catalogs the correlation between isostatically disturbed terrains and seismicity has been established.
    The thinner and thicker crustal regions were mapped from the zero horizontal curvature of the crustal thickness estimates. These boundaries or edges of crustal thickness variations were compared to
    crustal discontinuities inferred from gravity and magnetic anomalies and the patterns of seismicity that have been catalogued for the last 363 years. The seismicity is very intense along the Nazca-North
    Andes, Caribbean-North American and North Andes-South American collision zones and associated with regional tectonic compressional stresses that have locally increased and/or diminished by
    compressional and tensional stress, respectively, due to crustal thickness variations. High seismicity is also associated with the Nazca-Cocos diverging plate boundary whereas low seismicity is associated with the Panama-Nazca Transform Fault and the South American Plate.

  17. Variable near-surface deformation along the Commerce segment of the Commerce geophysical lineament, southeast Missouri to southern Illinois, USA

    Science.gov (United States)

    Odum, J.K.; Stephenson, W.J.; Williams, R.A.

    2003-01-01

    Recent studies have demonstrated a plausible link between surface and near-surface tectonic features and the vertical projection of the Commerce geophysical lineament (CGL). The CGL is a 5- to 10-km-wide zone of basement magnetic and gravity anomalies traceable for more than 600 km, extending from Arkansas through southeast Missouri and southern Illinois and into Indiana. Twelve kilometers of high-resolution seismic reflection data, collected at four sites along a 175-km segment of the CGL projection, are interpreted to show varying amounts of deformation involving Tertiary and some Quaternary sediments. Some of the locally anomalous geomorphic features in the northern Mississippi embayment region (i.e., paleoliquefaction features, anomalous directional changes in stream channels, and areas of linear bluff escarpments) overlying the CGL can be correlated with specific faults and/or narrow zones of deformed (faulted and folded) strata that are imaged on high-resolution seismic reflection data. There is an observable change in near-surface deformation style and complexity progressing from the southwest to the northeast along the trace of the CGL. The seismic reflection data collaborate mapping evidence which suggests that this region has undergone a complex history of deformation, some of which is documented to be as young as Quaternary, during multiple episodes of reactivation under varying stress fields. This work, along with that of other studies presented in this volume, points to the existence of at least one major crustal feature outside the currently defined zone of seismic activity (New Madrid Seismic Zone) that should be considered as a significant potential source zone for seismogenic activity within the midcontinent region of the United States. ?? 2003 Elsevier B.V. All rights reserved.

  18. Crustal structure, and topographic relief in the high southern Scandes, Norway

    Science.gov (United States)

    Stratford, W.; Thybo, H.; Frassetto, A.

    2010-05-01

    Resolving the uplift history of southern Norway is hindered by the lack of constraint available from the geologic record. Sediments that often contain information of burial and uplift history have long since been stripped from the onshore regions in southern Norway, and geophysical, dating methods and geomorphological studies are the remaining means of unraveling uplift history. New constraints on topographic evolution and uplift in southern Norway have been added by a recent crustal scale refraction project. Magnus-Rex (Mantle investigation of Norwegian uplift Structure, refraction experiment) recorded three ~400 km long active source seismic profiles across the high southern Scandes Mountains. The goal of the project is to determine crustal thickness and establish whether these mountains are supported at depth by a crustal root or by other processes. The southern Scandes Mountains were formed during the Caledonian Orogeny around 440 Ma. These mountains, which reach elevations of up to ~2.5 km, are comprised of one or more palaeic (denudation) surfaces of rolling relief that are incised by fluvial and glacial erosion. Extreme vertical glacial incision of up to 1000 m cuts into the surfaces in the western fjords, while the valleys of eastern Norway are more fluvial in character. Climatic controls on topography here are the Neogene - Recent effects of rebound due to removal of the Fennoscandian ice sheet and isostatic rebound due to incisional erosion. However, unknown tectonic uplift mechanisms may also be in effect, and separating the tectonic and climate-based vertical motions is often difficult. Sediment and rock has been removed by the formation of the palaeic surfaces and uplift measurements cannot be directly related to present elevations. Estimates so far have indicated that rebound due to incisional erosion has a small effect of ~500 m on surface elevation. Results from Magnus-Rex indicate the crust beneath the high mountains is up to 40 km thick. This

  19. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  20. Crustal evolution of South American Platform based on Sm-Nd isotope geochemistry

    International Nuclear Information System (INIS)

    Sato, Kei

    1998-01-01

    Sm-Nd isotopic systematics is relevant to the topics of origin and evolution the of continental crust, where model ages refer to the time when crustal material was differentiated from the upper mantle. Alternative interpretations are due to a lack of adequate information on crustal processes and the variable composition of the mantle sources. The Sm-Nd methods are presented, and applied on rock materials from the South American Platform. The main conclusions indicate juvenile accretion with higher growth rates (peaks), around 3.7-3.5 Ga (∼ 0.5% in volume), 3.1 - 2.9 Ga (∼16%), 2.7 - 2.6 (∼ 9%), 2.2 - 1.9 (35%) and 1.3-1.0 (7%). The continental growth curve indicates that about 35 % of the crust was formed by 2.5 Ga, 88% by 1.8 Ga and 99% by 1.0 Ga, and the remaining ∼ 1 % was added in the Phanerozoic. Rapid crustal growth occurred between 2.2 and 1.9 Ga. The main period of continental crust formation occurred during the Paleoproterozoic, corresponding to 54 % in volume. Sm-Nd model ages, when compared with the crystallisation ages of granitoid rocks, furnish a rough estimate of juvenile vs. reworked material. Within the South American Platform about 45% of juvenile continental crust is still preserved within tectonic provinces of different ages. The remainder represents continental crust reworked in younger tectono-thermal events. In particular crustal reworking was predominating over juvenile accretion during Meso-Neoproterozoic. The Transbrasiliano Lineament is a megasuture, active in the Neoproterozoic, which separates a large northwestern mass, including the Amazonian and Sao Luis Cratons, from a southeastern mass, formed by a collage of cratonic fragments, of which the Sao Francisco and Rio de La Plata are the largest. The crustal evolutions of these two large continental masses are considered individually, and can be resumed following form: I - Old Archean rocks (>3.4 Ga) are found only within the south-eastern part (Gaviao Block, Contendas

  1. Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 Mw 6.9 Loma Prieta earthquake

    Science.gov (United States)

    Huang, Mong-Han; Burgmann, Roland; Pollitz, Fred

    2016-01-01

    The October 17, 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 Mw 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1–4 mm/yr toward Loma Prieta Mountain until 2000, and ∼2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989–1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of ∼6 × 1018 Pas, underlain by a viscous upper mantle with viscosity between 3 × 1018 and 2 × 1019 Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event.

  2. How Does Heat Flow Vary in the Ocean Floor? Crustal Evaluation Education Project. Teacher's Guide [and] Student Investigation.

    Science.gov (United States)

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  3. An Andean tectonic cycle: From crustal thickening to extension in a thin crust (34°–37°SL

    Directory of Open Access Journals (Sweden)

    Victor A. Ramos

    2014-05-01

    Full Text Available Several orogenic cycles of mountain building and subsequent collapse associated with periods of shallowing and steepening of subduction zones have been recognized in recent years in the Andes. Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge. These processes are related to the increase of the subduction angle during trench roll-back. The Payenia paleoflat-slab, in the southern Central Andes of Argentina and Chile (34°–37°S recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting, which are related to changes in the subduction geometry. The early stages are associated with magmatic expansion and migration, subsequent deformation and broken foreland. New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills. However, the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting. Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis. The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab. The crustal thickness of the Altiplano is over 60–80 km, whereas Payenia is less than 42 km in the axial part, and near 30 km in the retroarc foothills. The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km3 in an area larger than 40,000 km2, through 800 central vents and large fissures. These characteristics are unique in the entire present-day Andes.

  4. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  5. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    Science.gov (United States)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  6. In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Boehlert, C.J., E-mail: boehlert@egr.msu.edu [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Yin, D.D. [Key Laboratory of Advanced Materials Technology under Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ding, W.J. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-06-15

    The slip activity and slip interaction in tensile deformation of peak-aged cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C was investigated using in-situ scanning electron microscopy. Basal slip was the most likely system to be activated during the tensile deformation, while prismatic < a > and pyramidal < c + a > slip also contributed to the deformation. No twinning was observed. The number of non-basal slip systems accounted for ~ 36% of the total active slip systems for the cast alloy, while non-basal slip accounted for 12–17% of the total deformation observations in the extruded alloy. Multiple-slip was observed within grains, and the basal/prismatic pairing type dominated the multiple-slip observations. Slip transfer occurred across grain boundaries and most of the slip transfer observations showed basal-basal type. The involved slip systems of slip transfer pairs were always associated with the same < a > direction. The slip transfer occurred more easily at low angle boundaries (LABs) and boundaries with misorientations greater than 75°. - Highlights: • Slip deformation of a Mg-RE alloy at 250 °C was investigated using in-situ SEM. • The extruded-T5 GW103 alloy did not exhibit a high anisotropic behavior. • Multiple-slip was observed within grains, and basal/prismatic type dominated. • Slip transfer occurred and most of the observations showed basal-basal type. • Slip transfer occurred more easily at LABs and boundaries with misorientations > 75°.

  7. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia

    Science.gov (United States)

    Heinson, Graham S.; Direen, Nicholas G.; Gill, Rob M.

    2006-07-01

    The iron oxide copper-gold Olympic Dam deposit, situated along the margin of the Proterozoic Gawler craton, South Australia, is the world's largest uranium deposit and sixth-largest copper deposit; it also contains significant reserves of gold, silver, and rare earth elements. Gaining a better understanding of the mechanisms for genesis of the economic liberalization is fundamental for defining exploration models in similar crustal settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses Olympic Dam and the major crustal boundaries. In this paper we present results from 58 long-period (10 104 s) MT sites, with site spacing of 5 10 km. A two-dimensional inversion of MT data from 33 sites to a depth of 100 km shows four notable features: (1) sedimentary cover sequences with low resistivity (1000 Ω·m) Archean crustal core from a more conductive crust and mantle to the north (typically Olympic Dam, the upper-middle crust to ˜20 km is quite resistive (˜1000 Ω·m), but the lower crust is much more conductive (Olympic Dam, we image a low-resistivity region (Olympic Dam may be due to the upward movement of CO2-bearing volatiles near the time of deposit formation that precipitated conductive graphite liberalization along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.

  8. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  9. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  10. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    Science.gov (United States)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  11. Effective stress, friction and deep crustal faulting

    Science.gov (United States)

    Beeler, N.M.; Hirth, Greg; Thomas, Amanda M.; Burgmann, Roland

    2016-01-01

    Studies of crustal faulting and rock friction invariably assume the effective normal stress that determines fault shear resistance during frictional sliding is the applied normal stress minus the pore pressure. Here we propose an expression for the effective stress coefficient αf at temperatures and stresses near the brittle-ductile transition (BDT) that depends on the percentage of solid-solid contact area across the fault. αf varies with depth and is only near 1 when the yield strength of asperity contacts greatly exceeds the applied normal stress. For a vertical strike-slip quartz fault zone at hydrostatic pore pressure and assuming 1 mm and 1 km shear zone widths for friction and ductile shear, respectively, the BDT is at ~13 km. αf near 1 is restricted to depths where the shear zone is narrow. Below the BDT αf = 0 is due to a dramatically decreased strain rate. Under these circumstances friction cannot be reactivated below the BDT by increasing the pore pressure alone and requires localization. If pore pressure increases and the fault localizes back to 1 mm, then brittle behavior can occur to a depth of around 35 km. The interdependencies among effective stress, contact-scale strain rate, and pore pressure allow estimates of the conditions necessary for deep low-frequency seismicity seen on the San Andreas near Parkfield and in some subduction zones. Among the implications are that shear in the region separating shallow earthquakes and deep low-frequency seismicity is distributed and that the deeper zone involves both elevated pore fluid pressure and localization.

  12. Spatial and temporal patterns of deformation at the Tendaho geothermal prospect, Ethiopia

    Science.gov (United States)

    Temtime, Tesfaye; Biggs, Juliet; Lewi, Elias; Hamling, Ian; Wright, Tim; Ayele, Atalay

    2018-05-01

    Observations of ground deformation in East Africa have been fundamental for unveiling the tectonics of continental rifting, assessing the seismic and volcanic hazard to development, and identifying geothermal resources. Here we investigate the active natural and anthropogenic processes in the Tendaho Graben, Afar using Interferometric Synthetic Aperture Radar (InSAR) collected by the Envisat satellite in 2004-2010. We used the Poly-Interferometric Rate And time series Estimation (π-RATE) method to calculate displacement in satellite line-of-sight, and a least-square inversion to decompose the line-of-sight displacement into vertical and rift perpendicular components. We observe two zones of deformation: a 20 km wide circular region of subsidence located 10 km northeast of the town of Semera with a maximum displacement rate of ∼5 cm/yr; and elongated zone (50 km) of subsidence in the area of the geothermal prospect, maximum rate of ∼4 cm/yr. The temporal characteristics of subsidence varies between these zones, with an increase in subsidence rate observed in the circular region in August 2008. We used a Bayesian inversion to find the best fitting source models and compared this to locations of seismicity and other geophysical observations. The pattern of deformation is consistent with a combination of magmatic and geothermal processes, but there does not appear to be a direct link to a sequence of dyke intrusions during 2005-2010 at Manda Hararo graben ∼60 km away, but dynamic stress changes or deep crustal flow could account for the observations.

  13. Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO-SkyMed InSAR data

    Directory of Open Access Journals (Sweden)

    Stefano Salvi

    2012-10-01

    designed to provide the DPC with value-added information products in the different phases of the seismic cycle. During earthquake emergencies, its goal is to rapidly provide decision-support products, such as validated ground-displacement maps and seismic source models. This study reports the details of the activation of the SIGRIS system in the case of the Emilia sequence. It provides a description of the COSMO-SkyMed datasets and processing procedures, as well as selected interferometric results for the coseismic and post-seismic ground deformation. […

  14. Neotectonics and structure of the Himalayan deformation front in the Kashmir Himalaya, India: Implication in defining what controls a blind thrust front in an active fold-thrust belt

    Science.gov (United States)

    Gavillot, Y. G.; Meigs, A.; Yule, J. D.; Rittenour, T. M.; Malik, M. O. A.

    2014-12-01

    Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and most-recently accreted foreland basin. In Kashmir, the Himalayan Frontal thrust (HFT) is blind, characterized by a broad fold, the Suruin-Mastargh anticline (SMA), and displays no emergent faults cutting either limb. A lack of knowledge of the rate of shortening and structural framework of the SMA hampers quantifying the earthquake potential for the deformation front. Our study utilized the geomorphic expression of dated deformed terraces on the Ujh River in Kashmir. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Vector fold restoration of long terrace profiles indicates a deformation pattern characterized by regional uplift across the anticlinal axis and back-limb, and by fold limb rotation on the forelimb. Differential uplift across the fold trace suggests localized deformation. Dip data and stratigraphic thicknesses suggest that a duplex structure is emplaced at depth along the basal décollement, folding the overlying roof thrust and Siwalik-Muree strata into a detachment-like fold. Localized faulting at the fold axis explains the asymmetrical fold geometry. Folding of the oldest dated terrace, suggest that rock uplift rates across the SMA range between 2.0-1.8 mm/yr. Assuming a 25° dipping ramp for the blind structure on the basis of dip data constraints, the shortening rate across the SMA ranges between 4.4-3.8 mm/yr since ~53 ka. Of that rate, ~1 mm/yr is likely absorbed by minor faulting in the near field of the fold axis. Given that Himalaya-India convergence is ~18.8-11 mm/yr, internal faults north of the deformation front, such as the Riasi thrust absorbs more of the Himalayan shortening than does the HFT in Kashmir. We attribute a non-emergent thrust at the deformation front to reflect deformation controlled by pre-existing basin architecture in Kashmir, in which the thick succession

  15. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  16. Deformation styles and exhumation patterns in the Northern Iranian Plateau: New results from integrated balanced cross sections and low-temperature thermochronology (AHe and ZHe)

    Science.gov (United States)

    Balling, Philipp; Ballato, Paolo; Dunkl, István; Zeillinger, Gerold; Heidarzadeh, Ghasem; Ghasemi, Mohammad; Strecker, Manfred R.

    2014-05-01

    The Iranian Plateau is situated in the collision zone between the Arabian and Eurasian plates and forms a NW-SE elongated, 40- to 50-km-thick crustal block, delimited to the north by the Urmieh Dokhtar Volcanic Zone and to south by the High Zagros Mountains. The plateau is characterized by a series of basins and mountain ranges bounded by reverse and transpressive faults. These mountain ranges reflect a history of strong collisional deformation, with intensely faulted and folded Pre-Cambrian (basement) to Miocene (terrestrial sediments of the Upper Red Formation) rocks. Based on the structural evolution, high mean elevation of 2 km, and a crustal thickness of up to 56 km, the realm of the present-day plateau must have absorbed a significant fraction of past plate convergence between Eurasia and Arabia. However, according to seismic and GPS data active deformation is rather limited. In addition, the exact timing and style of deformation, the extent of crustal shortening and thickening on the northern Iranian Plateau during continental collision remain unclear. To address these issues we collected structural data and modeled deformation scenarios cross four mountain ranges that constitute the northern margin of the Iranian Plateau (NW Iran). The Tarom, Mah Neshan and Sultanije mountain ranges are NW-SE oriented, while the northernmost (Bozgosh) is E-W aligned. Due to the lack of subsurface data, several forward and backward models were generated with MOVE (Midland Valley, structural modelling software). The model with the simplest and most robust geological explanation of the field data was chosen. In addition, we combined our structural work with an apatite (U-Th)/He study (AHe) along two transects (Bozgosh, Mah Neshan) and Zircon (U-Th)/He data (ZHe) on higher exhumed locations. In the northern sector of the plateau late Cretaceous (or Paleocene?) rocks had been deposited unconformably onto older, deformed rocks. This suggests that the Arabia-Eurasia collision was

  17. Crustal evolution at mantle depths constrained from Pamir xenoliths

    Science.gov (United States)

    Kooijman, E.; Hacker, B. R.; Smit, M. A.; Kylander-Clark, A. R.; Ratschbacher, L.

    2012-12-01

    Lower crustal xenoliths erupted in the Pamir at ~11 Ma provide an exclusive opportunity to study the evolution of crust at mantle depths during a continent-continent collision. To investigate, and constrain the timing of, the petrologic processes that occurred during burial to the peak conditions (2.5-2.8 GPa, 1000-1100 °C; [1]), we performed chemical- and isotope analyses of accessory minerals in 10 xenoliths, ranging from eclogites to grt-ky-qtz granulites. In situ laser ablation split-stream ICPMS yielded 1) U-Pb ages, Ti concentrations and REE in zircon, 2) U/Th-Pb ages and REE in monazite, and 3) U-Pb ages and trace elements in rutile. In addition, garnet, and biotite and K-feldspar were dated using Lu-Hf and 40Ar/39Ar geochronology, respectively. Zircon and monazite U-(Th-)Pb ages are 101.9±1.8, 53.7±1.0, 39.1±0.8, 21.7±0.4, 18.2±0.5, 16.9±0.8, 15.1±0.3 (2σ) and 12.5-11.1 Ma; most samples showed several or all of these populations. The 53.7 Ma and older ages are xenocrystic or detrital. For younger ages, zircon and monazite in individual samples recorded different ages-although zircon in one rock and monazite in another can be the same age. The 39.1 Ma zircon and monazite mostly occur as inclusions in minerals of the garnet-bearing assemblage that represents the early, low-P stages of burial. Garnet Lu-Hf ages of 37.8±0.3 Ma support garnet growth at this time. Spinifex-like textures containing 21.7-11.1 Ma zircon and monazite record short-lived partial melting events during burial. Aligned kyanite near these patches indicates associated deformation. Zircons yielding ≤12.5 Ma exhibit increased Eu/Eu* and markedly decreased HREE concentrations, interpreted to record feldspar breakdown and omphacite growth during increasing pressure. Rutile U-Pb cooling ages are 10.8±0.3 Ma in all samples. This agrees with the weighted mean 40Ar/39Ar age of eight biotite, K-feldspar and whole rock separates of 11.00+0.16/-0.09 Ma. Rutile in eclogites provides Zr

  18. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    Science.gov (United States)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    documents a competition between shear zone widening and narrowing mechanisms, i.e. distributed and localized deformation, depending on the specific mineral phase and deformation mechanism active in each moment of the shear zone evolution. In addition, our mechanical data point to dynamic evolution of the studied brittle-ductile transition characterized by major weakening to strengths ˜10 MPa. Such non-steady-state evolution may be common in crustal shear zones especially when phase transformations are involved. References: Diamond, L. W., and A. Tarantola (2015), Interpretation of fluid inclusions in quartz deformed by weak ductile shearing: Reconstruction of differential stress magnitudes and pre-deformation fluid properties, Earth Planet. Sci. Lett., 417, 107-119. Mares, V. M., and A. K. Kronenberg (1993), Experimental deformation of muscovite, J. Struct. Geol., 15(9), 1061-1075. Paterson, M. S., and F. C. Luan (1990), Quartzite rheology under geological conditions, Geol. Soc. London, Spec. Publ., 54(1), 299-307. Stipp, M., and J. Tullis (2003), The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30(21), 1-5.

  19. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    Science.gov (United States)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  20. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    Science.gov (United States)

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This

  1. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  2. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  3. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    Science.gov (United States)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  4. Rheological and physical characteristics of crustal-scaled materials for centrifuge analogue modelling

    Science.gov (United States)

    Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.

    2016-05-01

    We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.

  5. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  6. Early estimation of epicenter seismic intensities according to co-seismic deformation

    OpenAIRE

    Weidong, Li; Chaojun, Zhang; Dahui, Li; Jiayong, He; Huizhong, Chen; Lomnitz, Cinna

    2010-01-01

    The absolute fault displacement in co-seismic deformation is derived assuming that location, depth, faulting mechanism and magnitude of the earthquake are known. The 2008 Wenchuan earthquake (M8.0) is used as an example to determine the distribution of seismic intensities using absolute displacement and a crustal model. We fnd that an early prediction of the distribution of seismic intensities after a large earthquake may be performed from the estimated absolute co-seismic displacements using...

  7. Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere

    OpenAIRE

    Wright, TJ; Elliott, JR; Wang, H; Ryder, I

    2013-01-01

    The last 20. years has seen a dramatic improvement in the quantity and quality of geodetic measurements of the earthquake loading cycle. In this paper we compile and review these observations and test whether crustal thickness exerts any control. We found 78 earthquake source mechanisms for continental earthquakes derived from satellite geodesy, 187 estimates of interseismic "locking depth", and 23 earthquakes (or sequences) for which postseismic deformation has been observed. Globally we est...

  8. The geophysical character of southern Alaska - Implications for crustal evolution

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  9. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    Science.gov (United States)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  10. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.

  11. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  12. Deformation bands, early markers of tectonic activity in front of a fold-and-thrust belt: Example from the Tremp-Graus basin, southern Pyrenees, Spain

    Science.gov (United States)

    Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie

    2018-05-01

    Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.

  13. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening

    Science.gov (United States)

    Agius, Matthew R.; Lebedev, Sergei

    2017-09-01

    Of the two debated, end-member models for the late-Cenozoic thickening of Tibetan crust, one invokes 'channel flow' (rapid viscous flow of the mid-lower crust, driven by topography-induced pressure gradients and transporting crustal rocks eastward) and the other 'pure shear' (faulting and folding in the upper crust, with viscous shortening in the mid-lower crust). Deep-crustal deformation implied by each model is different and would produce different anisotropic rock fabric. Observations of seismic anisotropy can thus offer a discriminant. We use broad-band phase-velocity curves-each a robust average of tens to hundreds of measurements-to determine azimuthal anisotropy in the entire lithosphere-asthenosphere depth range and constrain its amplitude. Inversions of the differential dispersion from path pairs, region-average inversions and phase-velocity tomography yield mutually consistent results, defining two highly anisotropic layers with different fast-propagation directions within each: the middle crust and the asthenosphere. In the asthenosphere beneath central and eastern Tibet, anisotropy is 2-4 per cent and has an NNE-SSW fast-propagation azimuth, indicating flow probably driven by the NNE-ward, shallow-angle subduction of India. The distribution and complexity of published shear wave splitting measurements can be accounted for by the different anisotropy in the mid-lower crust and asthenosphere. The estimated splitting times that would be accumulated in the crust alone are 0.25-0.8 s; in the upper mantle-0.5-1.2 s, depending on location. In the middle crust (20-45 km depth) beneath southern and central Tibet, azimuthal anisotropy is 3-5 and 4-6 per cent, respectively, and its E-W fast-propagation directions are parallel to the current extension at the surface. The rate of the extension is relatively low, however, whereas the large radial anisotropy observed in the middle crust requires strong alignment of mica crystals, implying large finite strain and

  14. Crustal fraction of moment of inertia in pulsars

    International Nuclear Information System (INIS)

    Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.

    2015-01-01

    In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar

  15. Deformation geometry and timing of theWupoer thrust belt in the NE Pamir and its tectonic implications

    Science.gov (United States)

    Cheng, Xiaogan; Chen, Hanlin; Lin, Xiubin; Yang, Shufeng; Chen, Shenqiang; Zhang, Fenfen; Li, Kang; Liu, Zelin

    2016-12-01

    The Pamir region, located to the northwest of the Tibetan Plateau, provides important information that can aid the understanding of the plateau's tectonic evolution. Here we present new findings on the deformation geometry and timing of the Wupoer thrust belt at the northeastern margin of Pamir. Field investigations and interpretations of seismic profiles indicate that the eastern portion of the Wupoer thrust belt is dominated by an underlying foreland basin and an overlying piggy-back basin. A regional unconformity occurs between the Pliocene (N2) and the underlying Miocene (N1) or Paleogene (Pg) strata associated with two other local unconformities between Lower Pleistocene (Q1) and N2 and between Middle Pleistocene (Q2-4) and Q1 strata. Results of structural restorations suggest that compressional deformation was initiated during the latest Miocene to earliest Pliocene, contributing a total shortening magnitude of 48.6 km with a total shortening rate of 48.12%, most of which occurred in the period from the latest Miocene to earliest Pliocene. These results, combined with previous studies on the Kongur and Tarshkorgan extensional system, suggest an interesting picture of strong piedmont compressional thrusting activity concurrent with interorogen extensional rifting. Combining these results with previously published work on the lithospheric architecture of the Pamir, we propose that gravitational collapse drove the formation of simultaneous extensional and compressional structures with a weak, ductile middle crustal layer acting as a décollement along which both the extensional and compressional faults merged.

  16. The atypical Caribbean-Colombia oceanic plateau and its role in the deformation of the Northern Andes

    Science.gov (United States)

    Ferrari, L.; Lopez-Martinez, M.; Petrone, C. M.; Serrano, L.

    2013-05-01

    The Late Cretaceous to Early Tertiary tectono-magmatic evolution of the Northern Andes has been strongly influenced by the dextral oblique interaction of the Caribbean-Colombian oceanic plateau (CCOP) with northwestern South America. This complex interaction has resulted in several pulses of transpressional deformation and crustal accretion to the South America plate but also in a widespread deformation in the plateau itself. In this peculiar type of orogeny one of the factors controlling the deformation is the crustal structure and thus the rheological profiles of the two lithospheric sections that interact. The genesis of the CCOP has been traditionally associated to the melting of the Galapagos plume head when it impacted the Farallon plate, which is supposed to have built an unsubductable and thick crustal section. This interpretation was based on the apparent clustering of ages at ~91-89 Ma for several obducted fragments of the CCOP in northwestern South America and in the Caribbean islands. However, seismic profiles show that magmatism added a very variable amount but no more than 10 km of igneous material to the original crust of the Farallon plate, making the CCOP much more irregular than other oceanic plateaus. Recent studies of key areas of the obducted part of the CCOP contradict the notion that the plateau formed by melting of a plume head at ~ 90 Ma. Particularly, new geochronologic data and petrologic modeling from the small Gorgona Island document a magmatic activity spanning the whole Late Cretaceous (98.7±7.7 to 64.4±5 Ma) and a progressive increase in the degree of melting and melt extraction with time. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, are also recognized in other areas of the CCOP, documenting a long period of igneous activity with peaks at 74-76, 80-82, and 88-90 Ma in decreasing order of importance. Even older, Early Cretaceous ages, have been reported for fragments in Costa Rica and Curaçao. A

  17. How deformation enhances mobility in a polymer glass

    Science.gov (United States)

    Lacks, Daniel

    2013-03-01

    Recent experiments show that deformation of a polymer glass can lead to orders-of-magnitude enhancement in the atomic level dynamics. To determine why this change in dynamics occurs, we carry out molecular dynamics simulations and energy landscape analyses. The simulations address the coarse-grained polystyrene model of Kremer and co-workers, and the dynamics, as quantified by the van Hove function, are examined as the glass undergoes shear deformation. In agreement with experiment, the simulations find that deformation enhances the atomic mobility. The enhanced mobility is shown to arise from two mechanisms: First, active deformation continually reduces barriers for hopping events, and the importance of this mechanism is modulated by the rate of thermally activated transitions between adjacent energy minima. Second, deformation moves the system to higher-energy regions of the energy landscape, characterized by lower barriers. Both mechanisms enhance the dynamics during deformation, and the second mechanism is also relevant after deformation has ceased.

  18. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System

    Science.gov (United States)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.

    2016-12-01

    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  19. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  20. Analysis of regional deformation and strain accumulation data adjacent to the San Andreas fault

    Science.gov (United States)

    Turcotte, Donald L.

    1991-01-01

    A new approach to the understanding of crustal deformation was developed under this grant. This approach combined aspects of fractals, chaos, and self-organized criticality to provide a comprehensive theory for deformation on distributed faults. It is hypothesized that crustal deformation is an example of comminution: Deformation takes place on a fractal distribution of faults resulting in a fractal distribution of seismicity. Our primary effort under this grant was devoted to developing an understanding of distributed deformation in the continental crust. An initial effort was carried out on the fractal clustering of earthquakes in time. It was shown that earthquakes do not obey random Poisson statistics, but can be approximated in many cases by coupled, scale-invariant fractal statistics. We applied our approach to the statistics of earthquakes in the New Hebrides region of the southwest Pacific because of the very high level of seismicity there. This work was written up and published in the Bulletin of the Seismological Society of America. This approach was also applied to the statistics of the seismicity on the San Andreas fault system.

  1. Crustal Gravitational Potential Energy Change and Subduction Earthquakes

    Science.gov (United States)

    Zhu, P. P.

    2017-05-01

    Crustal gravitational potential energy (GPE) change induced by earthquakes is an important subject in geophysics and seismology. For the past forty years the research on this subject stayed in the stage of qualitative estimate. In recent few years the 3D dynamic faulting theory provided a quantitative solution of this subject. The theory deduced a quantitative calculating formula for the crustal GPE change using the mathematic method of tensor analysis under the principal stresses system. This formula contains only the vertical principal stress, rupture area, slip, dip, and rake; it does not include the horizontal principal stresses. It is just involved in simple mathematical operations and does not hold complicated surface or volume integrals. Moreover, the hanging wall vertical moving (up or down) height has a very simple expression containing only slip, dip, and rake. The above results are significant to investigate crustal GPE change. Commonly, the vertical principal stress is related to the gravitational field, substituting the relationship between the vertical principal stress and gravitational force into the above formula yields an alternative formula of crustal GPE change. The alternative formula indicates that even with lack of in situ borehole measured stress data, scientists can still quantitatively calculate crustal GPE change. The 3D dynamic faulting theory can be used for research on continental fault earthquakes; it also can be applied to investigate subduction earthquakes between oceanic and continental plates. Subduction earthquakes hold three types: (a) crust only on the vertical up side of the rupture area; (b) crust and seawater both on the vertical up side of the rupture area; (c) crust only on the vertical up side of the partial rupture area, and crust and seawater both on the vertical up side of the remaining rupture area. For each type we provide its quantitative formula of the crustal GPE change. We also establish a simplified model (called

  2. The effect of deformation after backarc spreading between the rear arc and current volcanic front in Shikoku Basin obtained by seismic reflection survey

    Science.gov (United States)

    Yamashita, M.; Takahashi, N.; Nakanishi, A.; Kodaira, S.; Tamura, Y.

    2012-12-01

    Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Bonin (Ogasawara) Arc, is an important area to understand the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Especially, the crustal structure oft the east side of Shikoku Basin is complicated by colliding to the Izu Peninsula Japan Agency for Marine-Earth Science and Technology has been carried out many multi-channel seismic reflection surveys since 2004 in Izu-Bonin region. Kodaira et al. (2008) reported the results of a refraction seismic survey along a north-south profile within paleoarc in the rear arc (i.e., the Nishi-shichito ridge) about 150 km west of current volcanic front. According to their results, the variation relationship of crustal thickness between the rear arc and volcanic front is suggested the evidence of rifting from current volcanic arc. There is the en-echelon arrangement is located in the eastern side of Shikoku Basin from current arc to rear arc, and it is known to activate after ceased spreading at 15 Ma (Okino et al., 1994) of Shikoku Basin by geologic sampling of Ishizuka et al. (2003). Our MCS results are also recognized the recent lateral fault zone is located in east side of Shikoku Basin. We carried out high density grid multi-channel seismic reflection (MCS) survey using tuned airgun in order to obtain the relationship between the lateral faults and en-echelon arrangement in KR08-04 cruise. We identified the deformation of sediments in Shikoku Basin after activity of Kanbun seamount at 8 Ma in MCS profile. It is estimated to activate a part of the eastern side of Shikoku Basin after construction of en-echelon arrangement and termination of Shikoku Basin spreading. Based on analyses of magnetic and gravity anomalies, Yamazaki and Yuasa (1998

  3. Crustal-Scale Fault Interaction at Rifted Margins and the Formation of Domain-Bounding Breakaway Complexes: Insights From Offshore Norway

    Science.gov (United States)

    Osmundsen, P. T.; Péron-Pinvidic, G.

    2018-03-01

    The large-magnitude faults that control crustal thinning and excision at rifted margins combine into laterally persistent structural boundaries that separate margin domains of contrasting morphology and structure. We term them breakaway complexes. At the Mid-Norwegian margin, we identify five principal breakaway complexes that separate the proximal, necking, distal, and outer margin domains. Downdip and lateral interactions between the faults that constitute breakaway complexes became fundamental to the evolution of the 3-D margin architecture. Different types of fault interaction are observed along and between these faults, but simple models for fault growth will not fully describe their evolution. These structures operate on the crustal scale, cut large thicknesses of heterogeneously layered lithosphere, and facilitate fundamental margin processes such as deformation coupling and exhumation. Variations in large-magnitude fault geometry, erosional footwall incision, and subsequent differential subsidence along the main breakaway complexes likely record the variable efficiency of these processes.

  4. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  5. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  6. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  7. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    International Nuclear Information System (INIS)

    Milnes, A.G.; Gee, D.G.; Lund, C.E.

    1998-11-01

    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics

  8. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, A.G. [Bergen Univ. (Norway). Dept. of Geology; Gee, D.G.; Lund, C.E. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    1998-11-01

    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics 101 refs, 22 figs

  9. Data base and seismicity studies for Fagaras, Romania crustal earthquakes

    International Nuclear Information System (INIS)

    Moldovan, I.-A.; Enescu, B. D.; Pantea, A.; Constantin, A.; Bazacliu, O.; Malita, Z.; Moldoveanu, T.

    2002-01-01

    Besides the major impact of the Vrancea seismic region, one of the most important intermediate earthquake sources of Europe, the Romanian crustal earthquake sources, from Fagaras, Banat, Crisana, Bucovina or Dobrogea regions, have to be taken into consideration for seismicity studies or seismic hazard assessment. To determine the characteristics of the seismicity for Fagaras seismogenic region, a revised and updated catalogue of the Romanian earthquakes, recently compiled by Oncescu et al. (1999) is used. The catalogue contains 471 tectonic earthquakes and 338 induced earthquakes and is homogenous starting with 1471 for I>VIII and for I>VII starting with 1801. The catalogue is complete for magnitudes larger than 3 starting with 1982. In the studied zone only normal earthquakes occur, related to intracrustal fractures situated from 5 to 30 km depth. Most of them are of low energy, but once in a century a large destructive event occurs with epicentral intensity larger than VIII. The maximum expected magnitude is M GR = 6.5 and the epicenter distribution outlines significant clustering in the zones and on the lines mentioned in the tectonic studies. Taking into account the date of the last major earthquake (1916) and the return periods of severe damaging shocks of over 85 years it is to be expected very soon a large shock in the area. That's why a seismicity and hazard study for this zone is necessary. In the paper there are studied the b parameter variation (the mean value is 0.69), the activity value, the return periods, and seismicity maps and different histograms are plotted. At the same time there are excluded from the catalogue the explosions due to Campulung quarry. Because the catalogue contains the aftershocks for the 1916 earthquake for the seismicity studies we have excluded these shocks. (authors)

  10. Avalonian crustal controls on basin evolution: implications for the Mesozoic basins of the southern North Sea

    Science.gov (United States)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2015-04-01

    Little is known of the Southern North Sea Basin's (SNSB) Pre-Permian basement due to a lack of outcrop and cores. The nature and structure of the East Avalonian crust and lithosphere remain even less constrained in the absence of deep seismic (refraction) lines. However, various studies have hinted at the importance of the Reactivation of the Early Carboniferous fault network during each consecutive Mesozoic and Cenozoic tectonic phase, demonstrating the key role of weak zones from the Early Carboniferous structural grain in partitioning of structural deformation and vertical basin motions at various scales. Although the older basin history and the basement attract increasing attention, the Pre-Permian tectonics of the SNSB remains little studied with most attention focused on the Permian and younger history. The strong dispersal of existing constraints requires a comprehensive study from Denmark to the UK, i.e. the East Avalonian microplate, bordered by the Variscan Rheïc suture, the Atlantic and Baltica. Based on an extensive literature study and the reinterpretation of publicly available data, linking constraints from the crust and mantle to stratigraphic-sedimentological information, we complement the map of Early Carboniferous rifting of East Avalonia and propose a new tectonic scenario. From the reinterpretation of the boundary between Avalonia and Baltica we propose a new outline for the Avalonian microplate with implications for the tectonics of the North German Basin. Furthermore, we highlight the nature and extent of the major crustal/lithospheric domains with contrasting structural behaviour and the major boundaries that separate them. Results shed light on the effects of long lived differences in crustal fabric that are responsible for spatial heterogeneity in stress and strain magnitudes and zonations of fracturing, burial history and temperature history. The geomechanical control of large crustal-scale fault structures will provide the constraints

  11. Lateral variations in the crustal structure of the Indo-Eurasian collision zone

    Science.gov (United States)

    Gilligan, Amy; Priestley, Keith

    2018-05-01

    The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs Vsv. The

  12. Non extensive statistical physics applied in fracture-induced electric signals during triaxial deformation of Carrara marble

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    We have conducted room-temperature, triaxial compression experiments on samples of Carrara marble, recording concurrently acoustic and electric current signals emitted during the deformation process as well as mechanical loading information and ultrasonic wave velocities. Our results reveal that in a dry non-piezoelectric rock under simulated crustal pressure conditions, a measurable electric current (nA) is generated within the stressed sample. The current is detected only in the region beyond (quasi-)linear elastic deformation; i.e. in the region of permanent deformation beyond the yield point of the material and in the presence of microcracking. Our results extend to shallow crustal conditions previous observations of electric current signals in quartz-free rocks undergoing uniaxial deformation and support the idea of a universal electrification mechanism related to deformation. Confining pressure conditions of our slow strain rate (10-6 s-1) experiments range from the purely brittle regime (10 MPa) to the semi-brittle transition (30-100MPa) where cataclastic flow is the dominant deformation mechanism. Electric current is generated under all confining pressures,implying the existence of a current-producing mechanism during both microfracture and frictional sliding. Some differences are seen in the current evolution between these two regimes, possibly related to crack localisation. In all cases, the measured electric current exhibits episodes of strong fluctuations over short timescales; calm periods punctuated by bursts of strong activity. For the analysis, we adopt an entropy-based statistical physics approach (Tsallis, 1988), particularly suited to the study of fracture related phenomena. We find that the probability distribution of normalised electric current fluctuations over short time intervals (0.5 s) can be well described by a q-Gaussian distribution of a form similar to that which describes turbulent flows. This approach yields different entropic

  13. Upper mantle and crustal structure of the East Greenland Caledonides

    DEFF Research Database (Denmark)

    Schiffer, Christian; Balling, N.; Jacobsen, B. H.

    The East Greenland and Scandinavian Caledonides once formed a major coherent mountain range, as a consequence of the collision of the continents of Laurentia and Baltica. The crustal and upper mantle structure was furthermore influenced by several geodynamic processes leading to the formation of ...

  14. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    Science.gov (United States)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  15. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  16. Deep Crustal Melting and the Survival of Continental Crust

    Science.gov (United States)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.

  17. An Approach to the Crustal Thickness Inversion Problem

    Science.gov (United States)

    De Marchi, F.; Di Achille, G.

    2017-12-01

    We describe a method to estimate the crustal thickness of a planet and we apply it to Venus. As in the method of (Parker, 1972), modified by (Wieczorek & Phillips, 1998), the gravity field anomalies of a planet are assumed to be due to the combined effect of topography and relief on the crust-mantle interface. No assumptions on isostasy are necessary. In our case, rather than using the expansion of the powers of the relief in Taylor series, we model the gravitational field of topography/relief by means of a large number of prism-shaped masses covering the whole surface of the planet. Under the hypothesis that crustal and mantle densities are the same everywhere, we solve for the relief depths on the crust-mantle interface by imposing that observed and modeled gravity field at a certain reference spherical surface (external to the planet) must be equal. This method can be extended to the case of non-uniform densities. Finally, we calculate a map of the crustal thickness of Venus and compare our results with those predicted by previous work and with the global distribution of main geological features (e.g. rift zones, tesserae, coronae). We discuss the agremeent between our results and the main geodynamical and crustal models put forth to explain the origin of such features and the applicability of this method in the context of the mission VOX (Venus Origins Explore), proposed for NASA's NF4 call.

  18. Vertical crustal movements in Southern California, 1974 to 1978

    Science.gov (United States)

    Burford, R.O.; Gilmore, Thomas D.

    1984-01-01

    An extensive resurvey of most of the first-order leveling network in southern California, known as the Southern California Releveling Program (SCRP), was carried out during the first 5 months of 1978. The primary scientific purpose of these measurements was to rapidly update the vertical control record throughout a recently uplifted region of southern California in order to more thoroughly document the vertical component of tectonic movement and to provide a reliable base for comparison with future levelings. Analyses of historic first-order leveling results have clearly demonstrated that a broad crustal upwarping, largely contained within a region consisting of the Transverse Ranges province and an area along the intervening section of the San Andreas fault system, had developed between about 1959 and 1974. Unfortunately, there is strong evidence that parts of the 1978 SCRP data are contaminated by the effects of intrasurvey tectonic deformation, limited surficial failures, and, less certainly, magnetically induced systematic error associated with the use of automatic levels. However, any distortions in leveling results caused by these or other factors are not so serious as to render the SCRP data useless. In fact, the bulk of these data can be accepted at face value, and most of the remaining data can be incorporated with some caution to augment the more reliable parts of the network. The evaluation of the 1978 leveling is based on a combination of circuit-misclosures, local timing of the field observations, analysis of profiles of apparent height changes derived from comparisons with previous levelings, and an analysis of the position and orientation of the various routes in relation to the regional structural grain and the gradients of differential vertical motion established by previous investigations. Comparisons of the 1978 SCRP results with the latest of the previous surveys along each route retained in the analysis show that all but about one-third of the

  19. Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    Science.gov (United States)

    Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid

    2018-01-01

    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.

  20. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition?

    Science.gov (United States)

    Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo

    2013-05-01

    Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.

  1. Hydration of an active shear zone: Interactions between deformation, metasomatism and magmatism - the spinel-lherzolites from the Montferrier (southern France) Oligocene basalts

    International Nuclear Information System (INIS)

    Cabanes, N.; Briqueu, L.

    1987-01-01

    Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France). All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures (≤900 0 C) and strain rates of about 10 -18 to 10 -15 s -1 . Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50-70% of the investigated samples. Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al 2 O 3 : 55%) are observed within the range of 7-5 μm adjacent to the grain boundary. Finally, Sr isotopic data ( 87 Sr/ 86 Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma. (orig.)

  2. Crustal thickness and velocity structure across the Moroccan Atlas from long offset wide-angle reflection seismic data: The SIMA experiment

    Science.gov (United States)

    Ayarza, P.; Carbonell, R.; Teixell, A.; Palomeras, I.; Martí, D.; Kchikach, A.; Harnafi, M.; Levander, A.; Gallart, J.; Arboleya, M. L.; Alcalde, J.; Fernández, M.; Charroud, M.; Amrhar, M.

    2014-05-01

    The crustal structure and topography of the Moho boundary beneath the Atlas Mountains of Morocco has been constrained by a controlled source, wide-angle seismic reflection transect: the SIMA experiment. This paper presents the first results of this project, consisting of an almost 700 km long, high-resolution seismic profile acquired from the Sahara craton across the High and the Middle Atlas and the Rif Mountains. The interpretation of this seismic data set is based on forward modeling by raytracing, and has resulted in a detailed crustal structure and velocity model for the Atlas Mountains. Results indicate that the High Atlas features a moderate crustal thickness, with the Moho located at a minimum depth of 35 km to the S and at around 31 km to the N, in the Middle Atlas. Upper crustal shortening is resolved at depth through a crustal root where the Saharan crust underthrusts the northern Moroccan crust. This feature defines a lower crust imbrication that, locally, places the Moho boundary at ˜40-41 km depth in the northern part of the High Atlas. The P-wave velocity model is characterized by relatively low velocities, mostly in the lower crust and upper mantle, when compared to other active orogens and continental regions. These low deep crustal velocities together with other geophysical observables such as conductivity estimates derived from MT measurements, moderate Bouguer gravity anomaly, high heat flow, and surface exposures of recent alkaline volcanism lead to a model where partial melts are currently emplaced at deep crustal levels and in the upper mantle. The resulting model supports the existence of a mantle upwelling as mechanism that would contribute significantly to sustain the High Atlas topography. However, the detailed Moho geometry deduced in this work should lead to a revision of the exact geometry and position of this mantle feature and will require new modeling efforts.

  3. Role of coupled cataclasis-pressure solution deformation in microearthquake activity along the creeping segment of the SAF: Inferences from studies of the SAFOD core samples

    Science.gov (United States)

    Hadizadeh, J.; Gratier, J.; Renard, F.; Mittempregher, S.; di Toro, G.

    2009-12-01

    Rocks encountered in the SAFOD drill hole represent deformation in the southern-most extent of the creeping segment of the SAF north of the Parkfield. At the site and toward the northwest the SAF is characterized by aseismic creep as well as strain release through repeating microearthquakes Mmicroscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The observed microstructural deformation that is apparently relevant to the seismological data includes clear evidence of cyclic deformation events, cataclastic flow, and pressure solution creep with attendant vein sealing and fracture healing fabrics. Friction testing of drill cuttings and modeling by others suggest that the overall creep behavior in shale-siltstone gouge may be due to low bulk friction coefficient of 0.2-0.4 for the fault rock. Furthermore, the low resistivity zone extending to about 5km beneath the SAFOD-Middle Mountain area is believed to consist of a pod of fluid-filled fractured and porous rocks. Our microstructural data indicate that the foliated shale-siltstone cataclasites are, in a highly heterogeneous way, more porous and permeable than the host rock and therefore provide for structurally controlled enhanced fluid-rock interactions. This is consistent with the observed pressure solution deformation and the microstructural indications of transiently high fluid pressures. We hypothesize that while the friction laws defining stable sliding are prevalent in bulk deformation of the creeping segment, there exist the possibility of steady conditions for repetitive healing, dilation, and rupture of populations of stress-oriented patches due to operation of pressure solution creep along the fault zone. The limitation on the total area of the locked patches at any given time would be controlled primarily by the imposed tectonic and near field rates of slip and fluid flux within the local permeability structure. The available geophysical data for the

  4. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  5. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  6. Morphology and deformational history of Tellus Regio, Venus: Evidence for assembly and collision

    Science.gov (United States)

    Gilmore, M. S.; Head, J. W.

    2018-05-01

    Tessera terrain is the oldest stratigraphic unit on Venus, but its origin and evolution are inadequately understood. Here we have performed detailed mapping of Tellus Regio, the third largest tessera plateau on Venus. Tellus Regio is shown to have distinct marginal and interior facies. The east and west margins of Tellus rise up to 2 km above the interior and include ridges and troughs ∼5-20 km across, oriented parallel to the present plains-tessera boundary. Structures characteristic of the interior of Tellus are found within the eastern and western margins and are deformed by the margin-parallel ridges indicating their presence during the time of the formation of the current margins. These relationships suggest that the margins formed by the application of external horizontal compressional stresses at the edges of an already-existing tessera interior. Structural and stratigraphic relationships in southwest Tellus show the assembly of three structurally distinct tessera regions and intervening plains that are consistent with the collision of the southwest margin into the plateau interior. This requires that tessera terrain was formed regionally and collected into the present day Tellus plateau. The latest stages of activity in Tellus include volcanism and pervasive, distributed, 1-2 km wide graben, which may have been formed due to large-scale gravitational relaxation of the plateau topography. A large intratessera plains unit may have formed via crustal delamination. The collisional oroclinal deformation of the margins are most consistent with models that invoke mantle downwelling for the origin of Tellus Regio and other tessera plateaus with similar structural relationships.

  7. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  8. Formation Flying and Deformable Instruments

    Science.gov (United States)

    Rio, Yvon

    2009-05-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  9. New Interpretation of Crustal Extension Evidences on Mars

    Science.gov (United States)

    Grin, E. A.

    The record of early evolution of life on Earth has been obscured by extensive surface activity. On the opposite, large fractions of the martian surface date back to an early clement epoch favorable to the needs of biological systems [1]. The upper martian surface reflects a wide variety of modifying processes which destroy the geological context. However, due to endogenic causes acting after the end of the primordial bombardment, abundant extensional structures display vertical sequences of stratigraphic units from late Noachian to early Hesperian periods [2]. Deep structural incisions in the upper crust provide unaltered strata, open flanks, and slope deposits that favor the use of an autonomous lander-rover-penetrator The strategy for an exobiology search of such an optimum site should be guided by the recent attention devoted to extensional structures and their global significance [4]. Geological evidence supporting the martian crustal extension is suggested by abundant fractures associated with the dichotomy boundary northland-south upland, i.e., Aeolis Region, and peak igneous activity (Elysium bulge). As pointed out by [5], the system of fractures correlates with the endogenic origin of the dichotomy, as related to a major difference in the thicknessof the crust. Perpendicular to this boundary, fractures of deep graben testify to a general tectonic crust relaxation. The opening of the graben, joined with compressive wrinkles, is the signature of a dynamical pervasive stress regime that implies a large scale roll-over of the upper crust over the ductile interface of a more dense mantle. This general motion is not a transport of material, as there is no thickening on the boundary of the dichotomy. The horizontal movement is due to the gravitational mechanism and differential thermal convection cells in the upper crust over the slope of the anti-flexure rigid interface consequential to Elysium bulge. The fracturation occurs as the neutral zone of the crust rises

  10. Crustal processes of the Mid-Ocean Ridge

    Science.gov (United States)

    Ballard, Richard D.; Craig, H.; Edmond, J.; Einaudi, M.; Holcomb, R.; Holland, H.D.; Hopson, C.A.; Luyendyk, B.P.; Macdonald, K.; Morton, J.; Orcutt, J.; Sleep, N.

    1981-01-01

    Independent geological and geophysical investigations of the Mid-Ocean Ridge system have begun to focus on the nature of the magma chamber system underlying its central axis. Thermal models predict the existence of a steady-state chamber beneath a thin crustal lid ranging in thickness from 2 to 13 kilometers. The only aspect of the system that these models fail to account for is the extremely slow spreading rates. Seismological studies reveal the existence of a low-velocity zone beneath segments of the East Pacific Rise, which is thought to correspond to a chamber system having a half-width of approximately 5 to 10 kilometers. These estimates compare favorably with those derived separately through petrological investigations of deep-sea drilling results, various sampling programs, and field and laboratory studies of ophiolites. The chamber is thought to be wing-shaped and to remain continuously open; it is thought to be fed from the center while simultaneously solidifying at the sides as spreading carries the two halves apart. Progressive fractionation occurs by crystal settling coupled with repeated replenishment and magma mixing in an open steady-state system. Near-bottom studies reveal that the zone of extrusion above the chamber is narrow, but its eruptive history is cyclic in nature, in conflict with the predictions of a steady-state model. On-bottom gravity data at 21 ??N on the East Pacific Rise reveal a negative gravity anomaly that may be related to the uppermost part of the chamber. The anomaly is only 2 kilometers wide and 1 kilometer below the sea floor. This feature may be associated with a short-term upper magma reservoir. The cyclic volcanic activity is directly related to the active phase of hydrothermal circulation responsible for the observed negative thermal anomaly. The volume of water associated with this circulation is equal to the entire ocean volume passing through the accretion zone approximately every 8 million years. This is about 0

  11. Crustal processes of the mid-ocean ridge.

    Science.gov (United States)

    1981-07-03

    Independent geological and geophysical investigations of the Mid-Ocean Ridge system have begun to focus on the nature of the magma chamber system underlying its central axis. Thermal models predict the existence of a steady-state chamber beneath a thin crustal lid ranging in thickness from 2 to 13 kilometers. The only aspect of the system that these models fail to account for is the extremely slow spreading rates. Seismological studies reveal the existence of a low-velocity zone beneath segments of the East Pacific Rise, which is thought to correspond to a chamber system having a half-width of approximately 5 to 10 kilometers. These estimates compare favorably with those derived separately through petrological investigations of deep-sea drilling results, various sampling programs, and field and laboratory studies of ophiolites. The chamber is thought to be wing-shaped and to remain continuously open; it is thought to be fed from the center while simultaneously solidifying at the sides as spreading carries the two halves apart. Progressive fractionation occurs by crystal settling coupled with repeated replenishment and magma mixing in an open steady-state system. Near-bottom studies reveal that the zone of extrusion above the chamber is narrow, but its eruptive history is cyclic in nature, in conflict with the predictions of a steady-state model. On-bottom gravity data at 21 degrees N on the East Pacific Rise reveal a negative gravity anomaly that may be related to the uppermost part of the chamber. The anomaly is only 2 kilometers wide and 1 kilometer below the sea floor. This feature may be associated with a short-term upper magma reservoir. The cyclic volcanic activity is directly related to the active phase of hydrothermal circulation responsible for the observed negative thermal anomaly. The volume of water associated with this circulation is equal to the entire ocean volume passing through the accretion zone approximately every 8 million years. This is about 0

  12. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling

    Science.gov (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.

    2017-12-01

    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  13. Plasmas in the atmosphere, tectonics and earthquake: a possible link for the crustal diagnosis?

    Science.gov (United States)

    Straser, V.

    2017-12-01

    An important aspect in the crustal surmise is the potential link between luminous phenomena and the earthquake . The study want to added data to this new geophysics concepts. The method is based on the comparison approach and consist in the data connection on a field in the area of Po Plain (Italy) with professional equipment: cameras, video cameras, spectroscopes, ELF / VLF receivers, Geiger counters and EM fields detectors. The Luminous phenomena sighting is compared 24/7 online with INGV and USGS database. The results show the formation of 2 types of plasma near the soil: Spheroidal shape, yellow-orange, constant brightness, sudden appearances, elevation from the ground between 10 ° -20 °, no noise, no wake emitted, estimated size about 2m, and duration of few seconds. Spheroidal shape, intense red fuzzy coloration, constant brightness, sudden appearances and fast movements in a linear fashion or slow movements, elevation from the ground between 2° to 7 °, no noise, no waves emitted, estimated dimensions over 2m, with a duration from a few seconds to a few minutes. We suppose that the formation of gas, also radioactive such as radon, and the electric charges necessary to trigger plasma, are related to the crustal stress. The rocks are exposed to important tectonics efforts and the outcome is the air ionizations near the soil that produce plasma if there are gas. The appearance of plasma forerun the earthquake that will happen some days later. The Anomalous Luminous phenomena may be related to tectonic activity, and the area of investigation can become a "lab" for research in Physics and Geology for the crustal diagnosis of pre-seismic phase.

  14. Lithospheric Structure and Active Deformation in the Salton Trough from Coseismic and Postseismic Models of the 2010 Mw 7.2 El Mayor-Cucapah Earthquake

    Science.gov (United States)

    Fielding, E. J.; Huang, M. H.; Dickinson, H.; Freed, A. M.; Burgmann, R.; Gonzalez-Ortega, J. A.; Andronicos, C.

    2016-12-01

    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) Earthquake ruptured about 120 km along several NW-striking faults to the west of the Cerro Prieto Fault in the Salton Trough of Baja California, Mexico. We analyzed interferometric synthetic aperture radar (SAR), SAR and optical pixel offsets, and continuous and campaign GPS data to optimize an EMC coseismic rupture model with 9 fault segments, which fits the complex stru