WorldWideScience

Sample records for active contour models

  1. Active contour model based on force field analysis

    Institute of Scientific and Technical Information of China (English)

    HOU Zhi-qiang; HAN Chong-zhao

    2006-01-01

    The traditional snake initial contour should be close to the true boundary of an object of interest in an image;otherwise,an incorrect result will be obtained.Next,active contours have difficulties progressing into boundary concavities.Moreover,the traditional snake as well as almost all of its improved methods can be easily obtained from the local minimum because snake models are nonconvex.An active contour model based on force field analysis (FFA),namely,FFA snake model,is presented in this paper.Based on analyzing force distribution rules of the distance potential force field,a standard is introduced here to distinguish the false one from contour points.The result is not considered as the final solution when the snake energy is minimal.Furthermore,estimation and calculation should be made according to the established standard;only then can the result be considered final.Thus,the snake is prevented from running into the local minimum.The simulation results show that the FFA snake model has a large capture range and can move a snake into the boundary concavities,and that it is able to obtain the object of interest's contour precisely.Compared with the gradient vector flow snake,this new model has a low computational cost.

  2. Application of Active Contour Model in Tracking Sequential Nearshore Waves

    Institute of Scientific and Technical Information of China (English)

    Yu-Hung HSIAO; Min-Chih HUANG

    2009-01-01

    In the present study,a generalized active contour model of gradient vector flow is combined with the video techniques of Argus system to delineate and track sequential nearshore wave crest profdes in the shoaling process,up to their breaking on the shorehne.Previous applications of active contour models to water wave problems are limited to controllable wave tank experiments.By contrast,our application in this study is in a nearshore field environment where oblique images obtained under natural and varying condition of ambient light are employed.Existing Argus techniques produce plane image data or time series data from a selected small subset of discrete pixels.By contrast,the active contour model produces line image data along continuous visible curves such as wave crest profdes.The combination of these two existing techniques,the active contour model and Argus methodologies,facilitates the estimates of the direction wave field and phase speeds within the whole area covered by camera.These estimates are useful for the purpose of inverse calculation of the water depth.Applications of the present techniques to Hsi-tzu bay where a beach restoration program is currently undertaken are illustrated.This extension of Argus video techniques provides new application of optical remote sensing to study the hydrodynamics and morphology of a nearshore environment.

  3. A Novel Global Threshold-Based Active Contour Model

    Directory of Open Access Journals (Sweden)

    Nuseiba M. Altarawneh

    2014-02-01

    Full Text Available n this paper, we propose a novel global threshold- based active contour model which employs a new edge-stopping function that controls the direction of the evolution and stops the evolving contour at weak or blurred edges. The model is implemented usi ng selective binary and Gaussian filtering regularized level set (SBGFRLS method. The method has a selective local or global segmentation property. It selectively penalizes the level set fu nction to be a binary function. This is followed by using a Gaussian function to regularize it. The Gau ssian filters smooth the level set function and afford the evolution more stability. The contour co uld be initialized anywhere inside the image to extract object boundaries. The proposed method perf orms well when the intensities inside and outside the object are homogenous. Our method is te sted on synthetic, medical and Arabic- characters images with satisfactory results

  4. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm.

    Science.gov (United States)

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-02-15

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation.

  5. A B-spline active contour model based on finite element method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A B-spline active contour model based on finite element method is presented, into which the advantages of a B-spline active contour attributing to its fewer parameters and its smoothness is built accompanied with reduced computational complexity and better numerical stability resulted from the finite element method. In this model, a cubic B-spline segment is taken as an element, and the finite element method is adopted to solve the energy minimization problem of the B-spline active contour, thus to implement image segmentation. Experiment results verify that this method is efficient for B-spline active contour, which attains stable, accurate and faster convergence.

  6. Active Contour Model Coupling with Higher Order Diffusion for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Guodong Wang

    2014-01-01

    Full Text Available Active contour models are very popular in image segmentation. Different features such as mean gray and variance are selected for different purpose. But for image with intensity inhomogeneities, there are no features for segmentation using the active contour model. The images with intensity inhomogeneities often occurred in real world especially in medical images. To deal with the difficulties raised in image segmentation with intensity inhomogeneities, a new active contour model with higher-order diffusion method is proposed. With the addition of gradient and Laplace information, the active contour model can converge to the edge of the image even with the intensity inhomogeneities. Because of the introduction of Laplace information, the difference scheme becomes more difficult. To enhance the efficiency of the segmentation, the fast Split Bregman algorithm is designed for the segmentation implementation. The performance of our method is demonstrated through numerical experiments of some medical image segmentations with intensity inhomogeneities.

  7. GLOBAL THRESHOLD AND REGION-BASED ACTIVE CONTOUR MODEL FOR ACCURATE IMAGE SEGMENTATION

    OpenAIRE

    Nuseiba M. Altarawneh; Suhuai Luo; Brian Regan; Changming Sun; Fucang Jia

    2014-01-01

    In this contribution, we develop a novel global threshold-based active contour model. This model deploys a new edge-stopping function to control the direction of the evolution and to stop the evolving contour at weak or blurred edges. An implementation of the model requires the use of selective binary and Gaussian filtering regularized level set (SBGFRLS) method. The method uses either a selective local or global segmentation property. It penalizes the level set function to force ...

  8. A Nonparametric Shape Prior Constrained Active Contour Model for Segmentation of Coronaries in CTA Images

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2014-01-01

    Full Text Available We present a nonparametric shape constrained algorithm for segmentation of coronary arteries in computed tomography images within the framework of active contours. An adaptive scale selection scheme, based on the global histogram information of the image data, is employed to determine the appropriate window size for each point on the active contour, which improves the performance of the active contour model in the low contrast local image regions. The possible leakage, which cannot be identified by using intensity features alone, is reduced through the application of the proposed shape constraint, where the shape of circular sampled intensity profile is used to evaluate the likelihood of current segmentation being considered vascular structures. Experiments on both synthetic and clinical datasets have demonstrated the efficiency and robustness of the proposed method. The results on clinical datasets have shown that the proposed approach is capable of extracting more detailed coronary vessels with subvoxel accuracy.

  9. Template-Based Active Contours

    OpenAIRE

    Mogali, Jayanth Krishna; Pediredla, Adithya Kumar; Seelamantula, Chandra Sekhar

    2013-01-01

    We develop a generalized active contour formalism for image segmentation based on shape templates. The shape template is subjected to a restricted affine transformation (RAT) in order to segment the object of interest. RAT allows for translation, rotation, and scaling, which give a total of five degrees of freedom. The proposed active contour comprises an inner and outer contour pair, which are closed and concentric. The active contour energy is a contrast function defined based on the intens...

  10. Implicit Active Contour Model with Local and Global Intensity Fitting Energies

    Directory of Open Access Journals (Sweden)

    Xiaozeng Xu

    2013-01-01

    Full Text Available We propose a new active contour model which integrates a local intensity fitting (LIF energy with an auxiliary global intensity fitting (GIF energy. The LIF energy is responsible for attracting the contour toward object boundaries and is dominant near object boundaries, while the GIF energy incorporates global image information to improve the robustness to initialization of the contours. The proposed model not only can provide desirable segmentation results in the presence of intensity inhomogeneity but also allows for more flexible initialization of the contour compared to the RSF and LIF models, and we give a theoretical proof to compute a unique steady state regardless of the initialization; that is, the convergence of the zero-level line is irrespective of the initial function. This means that we can obtain the same zero-level line in the steady state, if we choose the initial function as a bounded function. In particular, our proposed model has the capability of detecting multiple objects or objects with interior holes or blurred edges.

  11. Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy

    OpenAIRE

    Ming Gu; Renfang Wang

    2016-01-01

    A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the inpu...

  12. Fractional Differentiation-Based Active Contour Model Driven by Local Intensity Fitting Energy

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-01-01

    Full Text Available A novel active contour model is proposed for segmentation images with inhomogeneity. Firstly, fractional order filter is defined by eight convolution masks corresponding to the image orientation in the eight compass directions. Then, the fractional order differentiation image is obtained and applied to the level set method. Secondly, we defined a new energy functional based on local image information and fractional order differentiation image; the proposed model not only can describe the input image more accurately but also can deal with intensity inhomogeneity. Local fitting term can enhance the ability of the model to deal with intensity inhomogeneity. The defined penalty term is used to reduce the occurrence of false boundaries. Finally, in order to eliminate the time-consuming step of reinitialization and ensure stable evolution of level set function, the Gaussian filtering method is used. Experiments on synthetic and real images show that the proposed model is efficient for images with intensity inhomogeneity and flexible to initial contour.

  13. Iterative weighted average diffusion as a novel external force in the active contour model

    Science.gov (United States)

    Mirov, Ilya S.; Nakhmani, Arie

    2016-03-01

    The active contour model has good performance in boundary extraction for medical images; particularly, Gradient Vector Flow (GVF) active contour model shows good performance at concavity convergence and insensitivity to initialization, yet it is susceptible to edge leaking, deep and narrow concavities, and has some issues handling noisy images. This paper proposes a novel external force, called Iterative Weighted Average Diffusion (IWAD), which used in tandem with parametric active contours, provides superior performance in images with high values of concavity. The image gradient is first turned into an edge image, smoothed, and modified with enhanced corner detection, then the IWAD algorithm diffuses the force at a given pixel based on its 3x3 pixel neighborhood. A forgetting factor, φ, is employed to ensure that forces being spread away from the boundary of the image will attenuate. The experimental results show better behavior in high curvature regions, faster convergence, and less edge leaking than GVF when both are compared to expert manual segmentation of the images.

  14. An Active Contour for Range Image Segmentation

    OpenAIRE

    Khaldi Amine; Merouani Hayet Farida

    2012-01-01

    In this paper a new classification of range image segmentation method is proposed according to the criterion of homogeneity which obeys the segmentation, then, a deformable model-type active contour “Snake” is applied to segment range images.

  15. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures

    Science.gov (United States)

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  16. An Active Contour Model Based on Adaptive Threshold for Extraction of Cerebral Vascular Structures.

    Science.gov (United States)

    Wang, Jiaxin; Zhao, Shifeng; Liu, Zifeng; Tian, Yun; Duan, Fuqing; Pan, Yutong

    2016-01-01

    Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract whole cerebral vessel trees, including the thin vessels. PMID:27597878

  17. Fast hybrid fitting energy-based active contour model for target detection

    Institute of Scientific and Technical Information of China (English)

    Dengwei Wang; Tianxu Zhang; Luxin Yan

    2011-01-01

    A novel hybrid fitting energy-based active contour model in the level set framework is proposed.The method fuses the region and boundary information of the target to achieve accurate and robust detection performance.A special extra term that penalizes the deviation of the level set function from a signed distance function is also included in our method. This term allows the time-consuming redistancing operation to be removed completely.Moreover,a fast unconditionally stable numerical scheme is introduced to solve the problem.Experimental results on real infrared images show that our method can improve target detection performance efficiently in terms of the number of iterations and the wasted central processing unit(CPU) time.

  18. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    Science.gov (United States)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  19. Towards Stabilizing Parametric Active Contours

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor;

    2014-01-01

    Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will conver...

  20. A Waterline Extraction Method from Remote Sensing Image Based on Quad-tree and Multiple Active Contour Model

    Directory of Open Access Journals (Sweden)

    YU Jintao

    2016-09-01

    Full Text Available After the characteristics of geodesic active contour model (GAC, Chan-Vese model(CV and local binary fitting model(LBF are analyzed, and the active contour model based on regions and edges is combined with image segmentation method based on quad-tree, a waterline extraction method based on quad-tree and multiple active contour model is proposed in this paper. Firstly, the method provides an initial contour according to quad-tree segmentation. Secondly, a new signed pressure force(SPF function based on global image statistics information of CV model and local image statistics information of LBF model has been defined, and then ,the edge stopping function(ESF is replaced by the proposed SPF function, which solves the problem such as evolution stopped in advance and excessive evolution. Finally, the selective binary and Gaussian filtering level set method is used to avoid reinitializing and regularization to improve the evolution efficiency. The experimental results show that this method can effectively extract the weak edges and serious concave edges, and owns some properties such as sub-pixel accuracy, high efficiency and reliability for waterline extraction.

  1. Target Region Location Based on Texture Analysis and Active Contour Model

    Institute of Scientific and Technical Information of China (English)

    YANG Zhaoxuan; BAI Zhuofu; WU Jiapeng; CHEN Yang

    2009-01-01

    Traditional texture region location methods with Gabor features are often limited in the selection of Gabor filters and fail to deal with the target which contains both texture and non-texture parts.Thus,to solve this problem,a two-step new model was proposed.In the first step,the original features extracted by Gabor filters are applied to training a self-organizing map (SOM) neural network and a novel merging scheme is presented to achieve the clustering.A back propagation (BP) network is used as a classifier to locate the target region approximately.In the second step,Chan-Vese active contour model is applied to detecting the boundary of the target region accurately and morphological processing is used to create a connected domain whose convex hull can cover the target region.In the experiments,the proposed method is demonstrated accurate and robust in localizing target on texture database and practical barcode location system as well.

  2. A validated active contour method driven by parabolic arc model for detection and segmentation of mitochondria.

    Science.gov (United States)

    Tasel, Serdar F; Mumcuoglu, Erkan U; Hassanpour, Reza Z; Perkins, Guy

    2016-06-01

    Recent studies reveal that mitochondria take substantial responsibility in cellular functions that are closely related to aging diseases caused by degeneration of neurons. These studies emphasize that the membrane and crista morphology of a mitochondrion should receive attention in order to investigate the link between mitochondrial function and its physical structure. Electron microscope tomography (EMT) allows analysis of the inner structures of mitochondria by providing highly detailed visual data from large volumes. Computerized segmentation of mitochondria with minimum manual effort is essential to accelerate the study of mitochondrial structure/function relationships. In this work, we improved and extended our previous attempts to detect and segment mitochondria from transmission electron microcopy (TEM) images. A parabolic arc model was utilized to extract membrane structures. Then, curve energy based active contours were employed to obtain roughly outlined candidate mitochondrial regions. Finally, a validation process was applied to obtain the final segmentation data. 3D extension of the algorithm is also presented in this paper. Our method achieved an average F-score performance of 0.84. Average Dice Similarity Coefficient and boundary error were measured as 0.87 and 14nm respectively.

  3. An Active Contour for Range Image Segmentation

    Directory of Open Access Journals (Sweden)

    Khaldi Amine

    2012-06-01

    Full Text Available In this paper a new classification of range image segmentation method is proposed according to the criterion of homogeneity which obeys the segmentation, then, a deformable model-type active contour “Snake” is applied to segment range images.

  4. An Active Contour for Range Image Segmentation

    Directory of Open Access Journals (Sweden)

    Khaldi Amine

    2012-07-01

    Full Text Available In this paper a new classification of range image segmentation method is proposed according to the criterion of homogeneity which obeys the segmentation, then, a deformable model-type active contour “Snake” is applied to segment range images.

  5. Active Contour with A Tangential Component

    CERN Document Server

    Wang, Junyan

    2012-01-01

    Conventional edge-based active contours often require the normal component of an edge indicator function on the optimal contours to approximate zero, while the tangential component can still be significant. In real images, the full gradients of the edge indicator function along the object boundaries are often small. Hence, the curve evolution of edge-based active contours can terminate early before converging to the object boundaries with a careless contour initialization. We propose a novel Geodesic Snakes (GeoSnakes) active contour that requires the full gradients of the edge indicator to vanish at the optimal solution. Besides, the conventional curve evolution approach for minimizing active contour energy cannot fully solve the Euler-Lagrange (EL) equation of our GeoSnakes active contour, causing a Pseudo Stationary Phenomenon (PSP). To address the PSP problem, we propose an auxiliary curve evolution equation, named the equilibrium flow (EF) equation. Based on the EF and the conventional curve evolution, w...

  6. Incorporating Prior Shape into Geometric Active Contours for Face Contour Detection

    Institute of Scientific and Technical Information of China (English)

    HUANGFuzhen; SUJianbo; XIYugeng

    2004-01-01

    In this paper a new method that incorporates prior shape information into geometric active contours for face contour detection is proposed. As in general a human face can be treated as an ellipse with a little shape variation, the prior face shape is represented as an elliptical curve. By combining the prior face shape with the powerful geometric active model proposed by Chan and Vese, the improved geometric active model can retain all the advantage of the Chan-Vese model and can detect face contours in images with complex backgrounds accurately even if the image is noisy. Moreover, by implementing the new model in a variational level set framework, automatic topological changes of the model can be achieved naturally and the transformation parameters that map the face boundary to the prior shape can be roughly estimated simultaneously. The experimental results show our procedure to be eiTicient.

  7. Automatic Detection of Adenocarcinoma using Active Contours

    Directory of Open Access Journals (Sweden)

    NeelapalaAnilKumar

    2013-09-01

    Full Text Available CT scan is the one of the image representation for abdomen, where the tumour to be located and specified effectively with clarity, by the medical expert. This role can be hold by using one of the image processing techniques called segmentation. Image segmentation is the technique which isolates the image into different regions to simplify the image and identify the Tumour easily. Image segmentation has been extensively studied by various approaches. This work, focus on the one of the image segmentation technique with a new regularization term that yields an unsupervised segmentation model which identifies different Tumour locations in a given CT image. Active contours form a boundary around a particular part of the image based on an energy function. The energy function may include intensity values of pixels or gradient values. Chen-Vase method of active contour algorithm is adopted for image segmentation. The segmentation is done after properly masking of CT scan image. The cancer prone area is generalized prior to the masking of the image. Effected abdomen cancer can be identified for better analysis of medical experts using image processing MATLAB tools. This paper describes a new method to detect and extract the features in CT scan images, which shows good performance in detection of difficult features. And the developed technique makes use of major image processing methods and fundamentals to detect the cancer with minimum possible human interaction.

  8. Automated Contour Detection for Intravascular Ultrasound Image Sequences Based on Fast Active Contour Algorithm

    Institute of Scientific and Technical Information of China (English)

    DONG Hai-yan; WANG Hui-nan

    2006-01-01

    Intravascular ultrasound can provide high-resolution real-time crosssectional images about lumen, plaque and tissue. Traditionally, the luminal border and medial-adventitial border are traced manually. This process is extremely timeconsuming and the subjective difference would be large. In this paper, a new automated contour detection method is introduced based on fast active contour model.Experimental results found that lumen and vessel area measurements after automated detection showed good agreement with manual tracings with high correlation coefficients (0.94 and 0.95, respectively) and small system difference ( -0.32 and 0.56, respectively). So it can be a reliable and accurate diagnostic tool.

  9. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    Science.gov (United States)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  10. Incorporating patch subspace model in Mumford-Shah type active contours.

    Science.gov (United States)

    Wang, Junyan; Chan, Kap Luk

    2013-11-01

    In this paper, we propose a unified energy minimization model for segmentation of non-smooth image structures, e.g., textures, based on Mumford-Shah functional and linear patch model. We consider that image patches of a non-smooth image structure can be modeled by a patch subspace, and image patches of different non-smooth image structures belong to different patch subspaces, which leads to a computational framework for segmentation of non-smooth image structures. Motivated by the Mumford-Shah model, we show that this segmentation framework is equivalent to minimizing a piecewise linear patch reconstruction energy. We also prove that the error of segmentation is bounded by the error of the linear patch reconstruction, meaning that improving the linear patch reconstruction for each region leads to reduction of the segmentation error. In addition, we derive an algorithm for the linear patch reconstruction with proven global optimality and linear rate of convergence. The segmentation in our method is achieved by minimizing a single energy functional without requiring predefined features. Hence, compared with the previous methods that require predefined texture features, our method can be more suitable for handling general textures in unsupervised segmentation. As a by-product, our method also produces a dictionary of optimized orthonormal descriptors for each segmented region. We mainly evaluate our method on the Brodatz textures. The experiments validate our theoretical claims and show the clear superior performance of our methods over other related methods for segmentation of the textures. PMID:23893721

  11. A robust active contour edge detection algorithm based on local Gaussian statistical model for oil slick remote sensing image

    Science.gov (United States)

    Jing, Yu; Wang, Yaxuan; Liu, Jianxin; Liu, Zhaoxia

    2015-08-01

    Edge detection is a crucial method for the location and quantity estimation of oil slick when oil spills on the sea. In this paper, we present a robust active contour edge detection algorithm for oil spill remote sensing images. In the proposed algorithm, we define a local Gaussian data fitting energy term with spatially varying means and variances, and this data fitting energy term is introduced into a global minimization active contour (GMAC) framework. The energy function minimization is achieved fast by a dual formulation of the weighted total variation norm. The proposed algorithm avoids the existence of local minima, does not require the definition of initial contour, and is robust to weak boundaries, high noise and severe intensity inhomogeneity exiting in oil slick remote sensing images. Furthermore, the edge detection of oil slick and the correction of intensity inhomogeneity are simultaneously achieved via the proposed algorithm. The experiment results have shown that a superior performance of proposed algorithm over state-of-the-art edge detection algorithms. In addition, the proposed algorithm can also deal with the special images with the object and background of the same intensity means but different variances.

  12. 基于区域显著性的活动轮廓分割模型%An Active Contour Model Based on Region Saliency for Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    白雪飞; 王文剑; 梁吉业

    2012-01-01

    Image segmentation refers to the process of partitioning an image into some no-overlapped meaningful regions, and it is vital for the higher-level image processing such as image analysis and understanding. During the past few decades, there has been substantial progress in the field of image segmentation and its application. Recently, segmentation algorithms based on active contours have been given wide attention by many internal and foreign researchers due to their variable forms, flexible structure and excellent performance. However, most available active contour models suffer from lacking adaptive initial contour and priori information of target region. In this paper, an active contour model for image segmentation based on visual saliency detection mechanism is proposed. Firstly, priori shape information of target objects in input images which is used to describe the initial curve adaptively is extracted with the visual saliency detection method in order to reduce the influence of initial contour position. Furthermore, the proposed active model can segment images adaptively and automatically, and the segmented results accord with the property of human visual perception. Experimental results demonstrate that the proposed model can achieve better segmentation results than some traditional active contour models. Meanwhile it requires less iteration and is much more computationally efficient.%提出一种新的活动轮廓分割模型,结合视觉显著性检测机制自动获取待分割图像中目标物体的先验形状信息,并自适应地构造初始轮廓,从而降低了初始轮廓位置对分割算法的影响.同时实现了活动轮廓模型对图像的自适应分割和自动分割,使得分割结果更符合人类视觉感知特性.实验结果表明,该模型有较好的分割效果,迭代次数少,且运行时间短.

  13. Active contour-based visual tracking by integrating colors, shapes, and motions.

    Science.gov (United States)

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame. PMID:23288333

  14. Multiple LREK active contours for knee meniscus ultrasound image segmentation.

    Science.gov (United States)

    Faisal, Amir; Ng, Siew-Cheok; Goh, Siew-Li; George, John; Supriyanto, Eko; Lai, Khin W

    2015-10-01

    Quantification of knee meniscus degeneration and displacement in an ultrasound image requires simultaneous segmentation of femoral condyle, meniscus, and tibial plateau in order to determine the area and the position of the meniscus. In this paper, we present an active contour for image segmentation that uses scalable local regional information on expandable kernel (LREK). It includes using a strategy to adapt the size of a local window in order to avoid being confined locally in a homogeneous region during the segmentation process. We also provide a multiple active contours framework called multiple LREK (MLREK) to deal with multiple object segmentation without merging and overlapping between the neighboring contours in the shared boundaries of separate regions. We compare its performance to other existing active contour models and show an improvement offered by our model. We then investigate the choice of various parameters in the proposed framework in response to the segmentation outcome. Dice coefficient and Hausdorff distance measures over a set of real knee meniscus ultrasound images indicate a potential application of MLREK for assessment of knee meniscus degeneration and displacement. PMID:25910057

  15. Statistical modeling of violin bowing parameter contours

    OpenAIRE

    Maestre G??mez, Esteban

    2009-01-01

    We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B??ezier cubic curve segments. Considering different articulations, dynamics, and contexts, a number of n...

  16. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    Energy Technology Data Exchange (ETDEWEB)

    Fritscher, Karl D., E-mail: Karl.Fritscher@umit.at; Sharp, Gregory [Department for Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Peroni, Marta [Paul Scherrer Institut, Villigen 5232 (Switzerland); Zaffino, Paolo; Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100 (Italy); Schubert, Rainer [Institute for Biomedical Image Analysis, Private University of Health Sciences, Medical Informatics and Technology, Hall in Tirol 6060 (Austria)

    2014-05-15

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  17. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    Science.gov (United States)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  18. RBF neural network and active circles based algorithm for contours extraction

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhiheng; Zeng Delu; Xie Shengli

    2007-01-01

    For the contours extraction from the images, active contour model and self-organizing map based approach are popular nowadays. But they are still confronted with the problems that the optimization of energy function will trap in local minimums and the contour evolutions greatly depend on the initial contour selection. Addressing to these problems, a contours extraction algorithm based on RBF neural network is proposed here. A series of circles with adaptive radius and center is firstly used to search image feature points that are scattered enough. After the feature points are clustered, a group of radial basis functions are constructed. Using the pixels' intensities and gradients as the input vector, the final object contour can be obtained by the predicting ability of the neural network. The RBF neural network based algorithm is tested on three kinds of images, such as changing topology, complicated background, and blurring or noisy boundary. Simulation results show that the proposed algorithm performs contours extraction greatly.

  19. Region-based active contour with noise and shape priors

    CERN Document Server

    Lecellier, François; Fadili, Jalal; Aubert, Gilles; Revenu, Marinette; Saloux, Eric

    2008-01-01

    In this paper, we propose to combine formally noise and shape priors in region-based active contours. On the one hand, we use the general framework of exponential family as a prior model for noise. On the other hand, translation and scale invariant Legendre moments are considered to incorporate the shape prior (e.g. fidelity to a reference shape). The combination of the two prior terms in the active contour functional yields the final evolution equation whose evolution speed is rigorously derived using shape derivative tools. Experimental results on both synthetic images and real life cardiac echography data clearly demonstrate the robustness to initialization and noise, flexibility and large potential applicability of our segmentation algorithm.

  20. Visually-salient contour detection using a V1 neural model with horizontal connections

    CERN Document Server

    Loxley, P N

    2011-01-01

    A convolution model which accounts for neural activity dynamics in the primary visual cortex is derived and used to detect visually salient contours in images. Image inputs to the model are modulated by long-range horizontal connections, allowing contextual effects in the image to determine visual saliency, i.e. line segments arranged in a closed contour elicit a larger neural response than line segments forming background clutter. The model is tested on 3 types of contour, including a line, a circular closed contour, and a non-circular closed contour. Using a modified association field to describe horizontal connections the model is found to perform well for different parameter values. For each type of contour a different facilitation mechanism is found. Operating as a feed-forward network, the model assigns saliency by increasing the neural activity of line segments facilitated by the horizontal connections. Alternatively, operating as a feedback network, the model can achieve further improvement over sever...

  1. Adaptive active contour model for weak boundary extraction%自适应分割弱边缘的活动轮廓模型

    Institute of Scientific and Technical Information of China (English)

    戚世乐; 王美清

    2013-01-01

    An adaptive active contour model for weak boundary extraction was proposed to improve LI′s distance preser-ving level set method.Besides, the adaptive force was proved to be bi-directional.The mean gray value of the image was added in the coefficient of the proposed model, so that the adaptive force could shrink or expand adaptively accord-ing to the position of the evolution curve.The experimental results showed that the proposed method could overcome the problem of LI′s model, which was that the initial contour must be fully enclosed by or contained within the target ob-ject.It was robust with the position of the initial contour and noise, and could segment multi-target images.%改进LI的保持距离水平集方法,提出自适应分割弱边缘的活动轮廓模型,并证明自适应力的双向性。模型中自适应力的系数加入图像的灰度均值,根据演化曲线的位置自适应的收缩或扩张。结果表明,该方法克服了原LI模型初始轮廓必须完全包围或含在目标物体内的问题,可以任意设置初始轮廓大小及位置,能够分割多目标图像,具有较强的抗噪性。

  2. Extended Active Contour Algorithm Based on Color Variance

    Institute of Scientific and Technical Information of China (English)

    Seung-tae LEE; Young-jun HAN; Hern-soo HAHN

    2010-01-01

    General active contour algorithm,which uses the intensity of the image,has been used to actively segment chjects.Because the cbjects have a similar intensity but different colors,it is difficult to segment any object from the others.Moreover,this algorithm can only be used in the simple environment since it is very sensitive to noise.In order to solve these problems.This paper proposes an extended active contour algarithm based on a color variance.In complex images,the color variance energy as the image energy is introduced into the general active contour algorithm.Experimental results show that the proposed active contour algorithm is very effective in various environments.

  3. Probabilistic contour extraction based on shape prior model

    Institute of Scientific and Technical Information of China (English)

    FAN Xin; LIANG De-qun

    2005-01-01

    Statistical shape prior model is employed to construct the dynamics in probabilistic contour estimation.By applying principal component analysis,plausible shape samples are efficiently generated to predict contour samples.Based on the shape-dependent dynamics and probabilistic image model,a particle filter is used to estimate the contour with a specific shape.Compared with the deterministic approach with shape information,the proposed method is simple yet more effective in extracting contours from images with shape variations and occlusion.

  4. 基于Chan-Vese分段平滑的分裂新模型%A New Splitting Active Contour Framework Based on Chan-Vese Piecewise Smooth Model

    Institute of Scientific and Technical Information of China (English)

    李灿飞; 王耀南; 刘国才

    2008-01-01

    On the basis of the Chan-Vese model, a new splitting active contour method for image segmentation is presented. The main idea following is to divide an image into two parts at every iteration, which is similar to the procedure of cell splitting. Then, the model is able to detect all the objects or details in the image. In addition, it enjoys the merit of processing any specific region in the image, even the inconsecutive one. This directly leads to the improvement of computing efficiency whereas segmentation is limited to region of interest (ROI) rather than the whole image. Furthermore, due to the regional constraint of operation, our model outperforms the existing multiphase Chan-Vese model in terms of sensitivity to the initialization. The principle of our model is described in detail, and the method is implemented under the level set framework. Experiments on both synthetic and medical images are carried out, and the comparative results to Chan-Vese model and multiphase Chan-Vese model are also shown.

  5. Contour-Based Surface Reconstruction using MPU Implicit Models.

    Science.gov (United States)

    Braude, Ilya; Marker, Jeffrey; Museth, Ken; Nissanov, Jonathan; Breen, David

    2007-03-01

    This paper presents a technique for creating a smooth, closed surface from a set of 2D contours, which have been extracted from a 3D scan. The technique interprets the pixels that make up the contours as points in ℝ(3) and employs Multi-level Partition of Unity (MPU) implicit models to create a surface that approximately fits to the 3D points. Since MPU implicit models additionally require surface normal information at each point, an algorithm that estimates normals from the contour data is also described. Contour data frequently contains noise from the scanning and delineation process. MPU implicit models provide a superior approach to the problem of contour-based surface reconstruction, especially in the presence of noise, because they are based on adaptive implicit functions that locally approximate the points within a controllable error bound. We demonstrate the effectiveness of our technique with a number of example datasets, providing images and error statistics generated from our results.

  6. A FUZZY FILTERING MODEL FOR CONTOUR DETECTION

    Directory of Open Access Journals (Sweden)

    T.C. Rajakumar

    2011-04-01

    Full Text Available Contour detection is the basic property of image processing. Fuzzy Filtering technique is proposed to generate thick edges in two dimensional gray images. Fuzzy logic is applied to extract value for an image and is used for object contour detection. Fuzzy based pixel selection can reduce the drawbacks of conventional methods(Prewitt, Robert. In the traditional methods, filter mask is used for all kinds of images. It may succeed in one kind of image but fail in another one. In this frame work the threshold parameter values are obtained from the fuzzy histogram of the input image. The Fuzzy inference method selects the complete information about the border of the object and the resultant image has less impulse noise and the contrast of the edge is increased. The extracted object contour is thicker than the existing methods. The performance of the algorithm is tested with Peak Signal Noise Ratio(PSNR and Complex Wavelet Structural Similarity Metrics(CWSSIM.

  7. Contour integration and segmentation with a new lateral connections model

    Science.gov (United States)

    Cai, Chao

    2011-11-01

    Automatically target contour detection from cluttered scenes is a very difficult task for computer vision. Humans, however, have a much better background suppress ability. The preceding models could not implement such a task very well. In this letter, an effective contour integration method based on human visual perception mechanism is proposed. The algorithm combines the properties of primary visual cortex and psychology researching results to simulate the contour perception of the V1 cortex. The new lateral connection based computational model have a better texture suppress ability, while, target's contour is enhanced. Compared with traditional methods, experiments show that the new method implement a more reasonable simulation of the V1 function structure, availably enhance the target's contour while suppress the cluttered background, obtain a balance between over and lose detection, besides, it has better accuracy with less computational complexity and time-consuming.

  8. Brain MR image segmentation using local and global intensity fitting active contours/surfaces.

    Science.gov (United States)

    Wang, Li; Li, Chunming; Sun, Quansen; Xia, Deshen; Kao, Chiu-Yen

    2008-01-01

    In this paper, we present an improved region-based active contour/surface model for 2D/3D brain MR image segmentation. Our model combines the advantages of both local and global intensity information, which enable the model to cope with intensity inhomogeneity. We define an energy functional with a local intensity fitting term and an auxiliary global intensity fitting term. In the associated curve evolution, the motion of the contour is driven by a local intensity fitting force and a global intensity fitting force, induced by the local and global terms in the proposed energy functional, respectively. The influence of these two forces on the curve evolution is complementary. When the contour is close to object boundaries, the local intensity fitting force became dominant, which attracts the contour toward object boundaries and finally stops the contour there. The global intensity fitting force is dominant when the contour is far away from object boundaries, and it allows more flexible initialization of contours by using global image information. The proposed model has been applied to both 2D and 3D brain MR image segmentation with promising results.

  9. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model.

    Science.gov (United States)

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  10. Statistical region-based active contours with exponential family observations

    CERN Document Server

    Lecellier, François; Fadili, Jalal; Aubert, Gilles; Revenu, Marinette

    2008-01-01

    In this paper, we focus on statistical region-based active contour models where image features (e.g. intensity) are random variables whose distribution belongs to some parametric family (e.g. exponential) rather than confining ourselves to the special Gaussian case. Using shape derivation tools, our effort focuses on constructing a general expression for the derivative of the energy (with respect to a domain) and derive the corresponding evolution speed. A general result is stated within the framework of multi-parameter exponential family. More particularly, when using Maximum Likelihood estimators, the evolution speed has a closed-form expression that depends simply on the probability density function, while complicating additive terms appear when using other estimators, e.g. moments method. Experimental results on both synthesized and real images demonstrate the applicability of our approach.

  11. Adaptive Contour Model for Real-Time Foreground Detection

    Institute of Scientific and Technical Information of China (English)

    HUANG Ying; DING Xiaoqing

    2005-01-01

    A multiscale foreground detection method was developed to segment moving objects from a stationary background. The algorithm is based on a fixed-mesh-based contour model, which starts at the bounding box of the difference map between an input image and its background and ends at a final contour. An adaptive algorithm was developed to calculate an appropriate energy threshold to control the contours to identify the foreground silhouettes. Experiments show that this method more successfully ignores the negative influence of image noise to obtain an accurate foreground map than other foreground detection algorithms. Most shadow pixels are also eliminated by this method.

  12. 基于核特征距离的局部活动轮廓模型%Active contour model by kernel-induced distance fitting energy

    Institute of Scientific and Technical Information of China (English)

    朱晓舒; 孙权森; 夏德深

    2012-01-01

    提出了一种基于核特征距离局部活动轮廓分割模型.在模型中使用核特征距离来构造局部拟合能量,从而可以获取精确的局部图像特征,可以分割存在灰度不均匀的图像.并通过引入水平集规范项以避免水平集演化的重新初始化,提高了分割的效率.实验结果表明,本模型可以很好地克服灰度不均匀性,同时在分割精度上有了较大的提升,特别是分割速度比LBF模型快1.3 ~1.5倍.%This paper proposed a new active contour model based on kernel-induced distance for image segmentation. It introduced a local fitting energy with a kernel-induced distance, which enabled the extraction of accurate local image information. Therefore,this model could be used to segment images with intensity inhomogeneity. In addition,it used the level set regularizing term to avoid expensive reinitialiation of the evolving level set and improved the segmentation speed. Experimental results demonstrate that the proposed algorithm can overcome intensity inhomogeneity,and get the more accurate segmentation result, especially there is about 1.3 to 1.5 times faster "than the LBF model.

  13. Segmentation of Coronal Holes Using Active Contours Without Edges

    CERN Document Server

    Boucheron, L E; McAteer, R T J

    2016-01-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. As the source of the fast solar wind, the detection and characterization of these regions is important for both testing theories of their formation and evolution and from a space weather perspective. Coronal holes are detected in full disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind ...

  14. 基于混合能量活动轮廓模型的人脸分割方法∗%Face Segmentation Based on a Hybrid Energy Based Active Contour Model

    Institute of Scientific and Technical Information of China (English)

    龚勋; 王国胤; 李天瑞; 李昕昕; 夏冉; 冯林

    2013-01-01

    Influenced by factors like facial features, accessories, facial outer contours are extracted by the traditional geometric active contour models and conatin depressions and result in fragmentation, etc. To address these problems, according to the characteristics of human face image, the study proposes a hybrid energy based geometric active contour model via combining the energies of contour outer tension force and skin color with the global energy. First an outwards tension force, computed by neighborhoods of contour points, is added to the contour. This force makes the curve insusceptible to the facial features and accessories, but move towards to the facial outer contour. As skin color is the major feature of a human face. Skin color energy is integrated to ensure a more robust algorithm. Finally, an improved skin tone detection model is proposed based on the single Gaussian function. It could generate initial position that are close to the real facial contour, laying a good foundation for contour evolution. The proposed method gives essentially accurate face segmentations on two public face databases. Take the manually segmentations as the ground truth, the proposed method compares favorably to both traditional global and local energy algorithms. Next a more challenging set containing 100 faces of life photos with variances in pose is introduced with illumination and backgrounds. Segmentation results have validated that the proposed method could extract outer facial contour steadily and accurately under such variances.%  由于受到面部五官、饰物等因素的影响,传统几何活动轮廓模型获取人脸外轮廓会产生凹陷、分片等现象。针对人脸图像的特点,将边缘外张力能量及肤色能量与全局能量结合,提出一种基于混合能量泛函的几何活动轮廓模型,有效地避免了这些问题。首先,根据演化曲线的邻域信息赋予边缘点向外的张力,使曲线能够克服面部特征及

  15. Multiple Active Contours Driven by Particle Swarm Optimization for Cardiac Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel image segmentation method based on multiple active contours driven by particle swarm optimization (MACPSO. The proposed method uses particle swarm optimization over a polar coordinate system to increase the energy-minimizing capability with respect to the traditional active contour model. In the first stage, to evaluate the robustness of the proposed method, a set of synthetic images containing objects with several concavities and Gaussian noise is presented. Subsequently, MACPSO is used to segment the human heart and the human left ventricle from datasets of sequential computed tomography and magnetic resonance images, respectively. Finally, to assess the performance of the medical image segmentations with respect to regions outlined by experts and by the graph cut method objectively and quantifiably, a set of distance and similarity metrics has been adopted. The experimental results demonstrate that MACPSO outperforms the traditional active contour model in terms of segmentation accuracy and stability.

  16. Motion Geometric Active Contours: Tracking Nonrigid Objects in Clutter Background

    Institute of Scientific and Technical Information of China (English)

    Cen Feng (岑峰); Qi Feihu

    2003-01-01

    MGAC (Motion Geometric Active Contours), a new variational framework of geometric active contours to track multiple nonrigid moving objects in the clutter background in image sequences is presented. This framework, incorporating with the motion edge information, consists of motion detection and tracking stages. At the motion detection stage, the motion edge map provides an approximate edge map of the moving objects. Then, a tracking stage, merely using the static edge information, is considered to improve the motion detection result. Force field regularization method is used to extend the capture range of the edge attraction force field in both stages. Experiments demonstrate that the proposed framework is valid for tracking multiple nonrigid objects in the clutter background.

  17. 基于C-V主动轮廓模型的“陡峭”边界的微藻图像分割%Microalgae image with “steep” boundary segmentation based on C-V active contour model

    Institute of Scientific and Technical Information of China (English)

    张丽梅; 张红; 罗钟铉; 董云影

    2013-01-01

    The images of some marine microalgae were segmented by a C-V active contour model of Chan and Vese whose improved model was described in this paper. When the curvature of the main boundaries of microalga images was changed greatly, namely the main boundaries were of " steep" , it is very difficult to obtain the boundary of the microalgae images by C-V active contour model directly. In the improved C-V active contour model, the rough initial boundaries were drawn through the man-machine interactive pattern at the zero level set, the symbolic function was introduced in the initial zero level set to define internal and external energy, and appropriate parameters were adjusted to execute the process of the evolution of the image boundary. The comparison between the two models for the typical marine microalga image boundaries revealed that for the microalga images with "steep" boundary it is difficult to obtain their boundaries or their boundaries slowly by C-V active contour model. The boundaries of the microalga images were quickly obtained as well as a lot of information of the boundaries when the improved C-V active contour model was used for the microalga image with "steep" boundary. The results showed die effectiveness of die improved C-V active contour model, indicating diat this provides a new skill for the segmentation of microalga images.%采用Chan和Vese的C-V主动轮廓模型以及本文中改进的C-V主动轮廓模型对几类典型的海洋微藻图像进行了分割.当微藻图像的主要边界曲率变化较大,即主边界“陡峭”时,直接使用C-V主动轮廓模型难以获得微藻图像的边界.在改进的C-V主动轮廓模型中,通过人机交互绘制粗略的初始边界,并将其设定为初始零水平集,将符号函数引入到初始水平集中定义内外能量,再通过适当的参数调整进行图像边界的演化.将采用两种模型算法获取典型的海洋微藻图像边界的过程进行对比可知,对于带“陡

  18. Segmentation of Coronal Holes Using Active Contours Without Edges

    Science.gov (United States)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-10-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  19. Segmentation of Coronal Holes Using Active Contours Without Edges

    Science.gov (United States)

    Boucheron, L. E.; Valluri, M.; McAteer, R. T. J.

    2016-09-01

    An application of active contours without edges is presented as an efficient and effective means of extracting and characterizing coronal holes. Coronal holes are regions of low-density plasma on the Sun with open magnetic field lines. The detection and characterization of these regions is important for testing theories of their formation and evolution, and also from a space weather perspective because they are the source of the fast solar wind. Coronal holes are detected in full-disk extreme ultraviolet (EUV) images of the corona obtained with the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA). The proposed method detects coronal boundaries without determining any fixed intensity value in the data. Instead, the active contour segmentation employs an energy-minimization in which coronal holes are assumed to have more homogeneous intensities than the surrounding active regions and quiet Sun. The segmented coronal holes tend to correspond to unipolar magnetic regions, are consistent with concurrent solar wind observations, and qualitatively match the coronal holes segmented by other methods. The means to identify a coronal hole without specifying a final intensity threshold may allow this algorithm to be more robust across multiple datasets, regardless of data type, resolution, and quality.

  20. Comprehensive contour prediction model of work rolls in hot wide strip mill

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wang; Quan Yang; Anrui He; Renzhong Wang

    2007-01-01

    The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the accuracy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying requirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.

  1. Automatic Segmentation of Nature Object Using Salient Edge Points Based Active Contour

    Directory of Open Access Journals (Sweden)

    Shangbing Gao

    2015-01-01

    Full Text Available Natural image segmentation is often a crucial first step for high-level image understanding, significantly reducing the complexity of content analysis of images. LRAC may have some disadvantages. (1 Segmentation results heavily depend on the initial contour selection which is a very skillful task. (2 In some situations, manual interactions are infeasible. To overcome these shortcomings, we propose a novel model for unsupervised segmentation of viewer’s attention object from natural images based on localizing region-based active model (LRAC. With aid of the color boosting Harris detector and the core saliency map, we get the salient object edge points. Then, these points are employed as the seeds of initial convex hull. Finally, this convex hull is improved by the edge-preserving filter to generate the initial contour for our automatic object segmentation system. In contrast with localizing region-based active contours that require considerable user interaction, the proposed method does not require it; that is, the segmentation task is fulfilled in a fully automatic manner. Extensive experiments results on a large variety of natural images demonstrate that our algorithm consistently outperforms the popular existing salient object segmentation methods, yielding higher precision and better recall rates. Our framework can reliably and automatically extract the object contour from the complex background.

  2. 基于模糊速度函数的活动轮廓模型的肺结节分割%A Segmentation Algorithm of Pulmonary Nodules Using Active Contour Model Based on Fuzzy Speed Function

    Institute of Scientific and Technical Information of China (English)

    陈侃; 李彬; 田联房

    2013-01-01

    Pulmonary nodules are potential manifestation of lung cancer.In order to detect juxta-vascular pulmonary nodules and ground glass opacity pulmonary nodules in computer-aided diagnosis (CAD) system,the above two types of pulmonary nodules need to be accurately segmented.At present,the segmentation algorithm of pulmonary nodules using traditional active contour model may cause boundary leakage.In order to avoid this phenomenon,a new segmentation algorithm of pulmonary nodules using active contour model based on fuzzy speed function is proposed in this paper.First,the fuzzy membership degree in fuzzy speed function is calculated by using the fuzzy clustering algorithm,which uses gray feature and local shape index.Second,a fuzzy speed function is incorporated into the active contour model.At the boundary of pulmonary nodules,tbe fuzzy speed function equals zero and the evolution of the contour curve stops,so that the accurate segmentation of pulmonary nodules is completed.Experimental results show that the proposed algorithm can achieve accurate segmentation of juxta-vascular pulmonary nodules and ground glass opacity pulmonary nodules.%肺结节是肺癌在早期阶段的表现形式.利用计算机辅助诊断(Computer-aided diagnosis,CAD)技术对血管粘连型肺结节和磨玻璃型肺结节进行检测,需要对这两类肺结节进行准确的分割.目前基于传统活动轮廓模型的肺结节分割算法,存在边界泄露现象.对此,本文提出一种基于模糊速度函数的活动轮廓模型的肺结节分割算法.首先,采用结合灰度特征和局部形态特征的模糊聚类算法,计算模糊速度函数中的模糊隶属度;其次,将模糊速度函数引入到活动轮廓模型中,在肺结节的边界处,该速度函数为零,轮廓曲线停止演变,从而完成肺结节的分割.实验结果表明,本文提出的算法可以精确地分割血管粘连肺结节和磨玻璃型肺结节.

  3. An efficient topology adaptation system for parametric active contour segmentation of 3D images

    Science.gov (United States)

    Abhau, Jochen; Scherzer, Otmar

    2008-03-01

    Active contour models have already been used succesfully for segmentation of organs from medical images in 3D. In implicit models, the contour is given as the isosurface of a scalar function, and therefore topology adaptations are handled naturally during a contour evolution. Nevertheless, explicit or parametric models are often preferred since user interaction and special geometric constraints are usually easier to incorporate. Although many researchers have studied topology adaptation algorithms in explicit mesh evolutions, no stable algorithm is known for interactive applications. In this paper, we present a topology adaptation system, which consists of two novel ingredients: A spatial hashing technique is used to detect self-colliding triangles of the mesh whose expected running time is linear with respect to the number of mesh vertices. For the topology change procedure, we have developed formulas by homology theory. During a contour evolution, we just have to choose between a few possible mesh retriangulations by local triangle-triangle intersection tests. Our algorithm has several advantages compared to existing ones: Since the new algorithm does not require any global mesh reparametrizations, it is very efficient. Since the topology adaptation system does not require constant sampling density of the mesh vertices nor especially smooth meshes, mesh evolution steps can be performed in a stable way with a rather coarse mesh. We apply our algorithm to 3D ultrasonic data, showing that accurate segmentation is obtained in some seconds.

  4. Liver segmentation with new supervised method to create initial curve for active contour.

    Science.gov (United States)

    Zareei, Abouzar; Karimi, Abbas

    2016-08-01

    The liver performs a critical task in the human body; therefore, detecting liver diseases and preparing a robust plan for treating them are both crucial. Liver diseases kill nearly 25,000 Americans every year. A variety of image segmentation methods are available to determine the liver's position and to detect possible liver tumors. Among these is the Active Contour Model (ACM), a framework which has proven very sensitive to initial contour delineation and control parameters. In the proposed method based on image energy, we attempted to obtain an initial segmentation close to the liver's boundary, and then implemented an ACM to improve the initial segmentation. The ACM used in this work incorporates gradient vector flow (GVF) and balloon energy in order to overcome ACM limitations, such as local minima entrapment and initial contour dependency. Additionally, in order to adjust active contour control parameters, we applied a genetic algorithm to produce a proper parameter set close to the optimal solution. The pre-processing method has a better ability to segment the liver tissue during a short time with respect to other mentioned methods in this paper. The proposed method was performed using Sliver CT image datasets. The results show high accuracy, precision, sensitivity, specificity and low overlap error, MSD and runtime with few ACM iterations. PMID:27286186

  5. A statistics-based pitch contour model for Mandarin speech.

    Science.gov (United States)

    Chen, Sin-Horng; Lai, Wen-Hsing; Wang, Yih-Ru

    2005-02-01

    A statistics-based syllable pitch contour model for Mandarin speech is proposed. This approach takes the mean and the shape of a syllable log-pitch contour as two basic modeling units and considers several affecting factors that contribute to their variations. The affecting factors include the speaker, prosodic state (which essentially represents the high-level linguistic components of F0 and will be explained more clearly in Sec. I), tone, and initial and final syllable classes. The parameters of the two modeling units were automatically estimated using the expectation-maximization (EM) algorithm. Experimental results showed that the root mean squared errors (RMSEs) obtained in the closed and open tests in the reconstructed pitch period were 0.362 and 0.373 ms, respectively. This model provides a way to separate the effects of several major factors. All of the inferred values of the affecting factors were in close agreement with our prior linguistic knowledge. It also gives a quantitative and more complete description of the coarticulation effect of neighboring tones rather than conventional qualitative descriptions of the tone sandhi rules. In addition, the model can provide useful cues to determine the prosodic phrase boundaries, including those occurring at intersyllable locations, with or without punctuation marks. PMID:15759710

  6. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation.

    Science.gov (United States)

    Wang, Li; Li, Chunming; Sun, Quansen; Xia, Deshen; Kao, Chiu-Yen

    2009-10-01

    In this paper, we propose an improved region-based active contour model in a variational level set formulation. We define an energy functional with a local intensity fitting term, which induces a local force to attract the contour and stops it at object boundaries, and an auxiliary global intensity fitting term, which drives the motion of the contour far away from object boundaries. Therefore, the combination of these two forces allows for flexible initialization of the contours. This energy is then incorporated into a level set formulation with a level set regularization term that is necessary for accurate computation in the corresponding level set method. The proposed model is first presented as a two-phase level set formulation and then extended to a multi-phase formulation. Experimental results show the advantages of our method in terms of accuracy and robustness. In particular, our method has been applied to brain MR image segmentation with desirable results.

  7. 引入局部信息的带钢缺陷图像凸优化活动轮廓分割模型%Convex Active Contour Segmentation Model of Strip Steel Defects Image Based on Local Information

    Institute of Scientific and Technical Information of China (English)

    宋克臣; 颜云辉; 彭怡书; 董德威

    2012-01-01

    In order to solve problems existing in Chan-Vese model and local binary fitting (LBF) model, such as model sensitivity to the initial contour position and running slow in the segmentation of strip steel defect image, a novel model local information-based convex active contour (LICAC) is proposed. By converting non-convex optimization problem to a convex optimization problem via convex optimization technology , and applying the Split Bregman method for fast solution, the issues of the sensitivity to the initial contour position occurring in Chan-Vese model and LBF model are solved. With introduction of the local information, the new model is efficient in the segmentation of the strip surface defect image which is non-uniform gray. By using this model to segment single-target region strip defect image, four common defect categories, including weld, rust, holes and scratches are experimented, and experimental results show that the segmentation effect and operation time of the proposed model are better than the rest two kinds. In addition, this model can also be used to segment multi-target regions defect image, four common defect categories are experimented, including scratches, inclusion, pitting, and wrinkles, and experimental results have verified the validity of the model.%为解决Chan-Vese模型和局部二元拟合(Local binary fitting,LBF)模型在带钢缺陷图像分割时存在的对初始轮廓位置敏感、运行速度较慢等问题,提出引入局部信息的带钢缺陷图像凸优化活动轮廓分割模型(Local information convex active contour,LICAC).该模型利用凸优化技术将一个非凸的分割模型转变为凸优化问题,并采用Split Bregman方法对问题进行快速求解,从而解决Chan-Vese模型和LBF模型对初始轮廓位置敏感等问题.通过引入图像局部信息,该模型可以有效分割灰度不均匀的带钢表面缺陷图像.使用该模型分别对焊缝、黄斑、孔洞和划伤等4大类单个带钢缺陷

  8. 3D Filament Network Segmentation with Multiple Active Contours

    Science.gov (United States)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  9. Predictive Modeling of Complex Contoured Composite Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The existing HDWLT (pictured) contoured composite structure design, its analyses and manufacturing tools, will be used to validate key analyses inputs through...

  10. Evaluating geodesic active contours in microcalcifications segmentation on mammograms.

    Science.gov (United States)

    Duarte, Marcelo A; Alvarenga, Andre V; Azevedo, Carolina M; Calas, Maria Julia G; Infantosi, Antonio F C; Pereira, Wagner C A

    2015-12-01

    Breast cancer is the most commonly occurring type of cancer among women, and it is the major cause of female cancer-related deaths worldwide. Its incidence is increasing in developed as well as developing countries. Efficient strategies to reduce the high death rates due to breast cancer include early detection and tumor removal in the initial stages of the disease. Clinical and mammographic examinations are considered the best methods for detecting the early signs of breast cancer; however, these techniques are highly dependent on breast characteristics, equipment quality, and physician experience. Computer-aided diagnosis (CADx) systems have been developed to improve the accuracy of mammographic diagnosis; usually such systems may involve three steps: (i) segmentation; (ii) parameter extraction and selection of the segmented lesions and (iii) lesions classification. Literature considers the first step as the most important of them, as it has a direct impact on the lesions characteristics that will be used in the further steps. In this study, the original contribution is a microcalcification segmentation method based on the geodesic active contours (GAC) technique associated with anisotropic texture filtering as well as the radiologists' knowledge. Radiologists actively participate on the final step of the method, selecting the final segmentation that allows elaborating an adequate diagnosis hypothesis with the segmented microcalcifications presented in a region of interest (ROI). The proposed method was assessed by employing 1000 ROIs extracted from images of the Digital Database for Screening Mammography (DDSM). For the selected ROIs, the rate of adequately segmented microcalcifications to establish a diagnosis hypothesis was at least 86.9%, according to the radiologists. The quantitative test, based on the area overlap measure (AOM), yielded a mean of 0.52±0.20 for the segmented images, when all 2136 segmented microcalcifications were considered. Moreover, a

  11. Model Predictive Approach to Precision Contouring Control for Feed Drive Systems

    Directory of Open Access Journals (Sweden)

    A. E. M.

    2010-01-01

    Full Text Available Problem statement: High precision machining requires high capability of multi-axis feed drive systems to follow specified contour accurately. Although each feed drive axis is controlled independently in many industrial applications such as X-Y tables and Computer Numerical Control (CNC machines, machining precision is evaluated by error components orthogonal to desired contour curve. Contouring controller design is required for precision machining, which should consider disturbance and dynamics variation such as friction, cutting force and workpiece mass change. Approach: This study applied model predictive design to contouring control systems. Model predictive control utilized an explicit process model and tracking error dynamics to predict the future behavior of a plant and hence it is effective for precision machining in machine tool feed drives. To improve the contouring performance, a new performance index was proposed in which error components orthogonal to the desired contour curve are more important than tracking errors with respect to each feed drive axis. Controller parameters were calculated in real time by solving an optimization problem. Results: The proposed controller was evaluated by computer simulation for circular and non-circular trajectories. Weighting factors of performance index terms were used as tuning factors of the proposed controller. Simulation results showed that a better contouring performance can be obtained by choosing of the weighting factors in performance index items appropriately. Conclusion/Recommendations: A model predictive contouring controller for biaxial feed drive systems was presented. Simulation results demonstrated that the proposed approach can significantly improve the contouring accuracy.

  12. Calculation of Actual LAI Based on Projection Algorithm and Active Contour Model%基于投影算法和活动轮廓模型的真实叶面积指数计算

    Institute of Scientific and Technical Information of China (English)

    高纪青; 云挺; 薛联凤

    2014-01-01

    In order to obtain accurate actual leaf area index (LAIa),this paper presented a method based on plane projection algorithm and geodesic active contour models.At first,the point cloud data of the tree acquired by laser scanning were zoomed on the surface of a sphere by appropriate scaling.Then,through stereographic projection and Lambert azimuthal equal-area projection,the spherical image was projected onto the plane,with the geography latitude line concept to characterize zenith angle of the leaves of different heights,and to get leaf angle through statistical methods.After that,through the geodesic active contour model,the projected leaf image was segmented to obtain porosity.Calculating effective leaf area index according to Beer-Lambert law,and LAIa was got through effectively slicing which solved the problem of overlapping leaves.The measurement data were finally compared with manually measured LAIa,and the method was proved to be accurate and feasible.%为了准确获得树木的真实叶面积指数(LAIa),提出一种基于投影算法和测地线活动轮廓模型的计算方法.首先对激光扫描仪获取的树木点云数据通经一定比例缩放在一个球的上表面,再通过球极平面投影和Lambert方位角等面积投影将上球面图像投射到平面上,借助地理学上纬度线的概念来表征不同高度叶子的天顶角,通过统计学方法获取叶倾角,然后用测地线活动轮廓模型对投影后的图像进行叶面部分分割,获取孔隙率.根据Beer-Lambert定律即可计算有效叶面积指数(LAIe).真实叶面积指数的获取则通过有效地分层处理,解决叶子的重叠问题.最后将得到数据与实测叶面积指数进行比较,证明该方法的准确性、可行性.

  13. Fast Texture Segmentation Based on Semi-Local Region Descriptor and Active Contour

    Institute of Scientific and Technical Information of China (English)

    Nawal Houhou; Jean-Philippe Thiran; Xavier Bresson

    2009-01-01

    In this paper, we present an efficient approach for unsupervised segmentation of natural and textural images based on the extraction of image features and a fast active contour segmentation model. We address the problem of textures where neither the gray-level information nor the boundary information is adequate for object extraction. This is often the case of natural images composed of both homogeneous and textured regions. Because these images cannot be in general directly processed by the gray-level information, we propose a new texture descriptor which intrinsically defines the geometry of textures using semi-local image information and tools from differential geometry. Then, we use the popular Kullback-Leibler distance to design an active contour model which distinguishes the background and textures of interest. The existence of a minimizing solution to the proposed segmentation model is proven. Finally, a texture segmentation algorithm based on the Split-Bregman method is introduced to extract meaningful objects in a fast way. Promising synthetic and real-world results for gray-scale and color images are presented.

  14. An active contour framework based on the Hermite transform for shape segmentation of cardiac MR images

    Science.gov (United States)

    Barba-J, Leiner; Escalante-Ramírez, Boris

    2016-04-01

    Early detection of cardiac affections is fundamental to address a correct treatment that allows preserving the patient's life. Since heart disease is one of the main causes of death in most countries, analysis of cardiac images is of great value for cardiac assessment. Cardiac MR has become essential for heart evaluation. In this work we present a segmentation framework for shape analysis in cardiac magnetic resonance (MR) images. The method consists of an active contour model which is guided by the spectral coefficients obtained from the Hermite transform (HT) of the data. The HT is used as model to code image features of the analyzed images. Region and boundary based energies are coded using the zero and first order coefficients. An additional shape constraint based on an elliptical function is used for controlling the active contour deformations. The proposed framework is applied to the segmentation of the endocardial and epicardial boundaries of the left ventricle using MR images with short axis view. The segmentation is sequential for both regions: the endocardium is segmented followed by the epicardium. The algorithm is evaluated with several MR images at different phases of the cardiac cycle demonstrating the effectiveness of the proposed method. Several metrics are used for performance evaluation.

  15. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    Directory of Open Access Journals (Sweden)

    J Farley Norman

    Full Text Available It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven" for 12 seconds and were required to indicate which of 12 (for bell peppers or 8 (for glavens simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette, specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions. The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision.

  16. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    Science.gov (United States)

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  17. A Context-Sensitive Active Contour for 2D Corpus Callosum Segmentation

    Directory of Open Access Journals (Sweden)

    Qing He

    2007-01-01

    Full Text Available We propose a new context-sensitive active contour for 2D corpus callosum segmentation. After a seed contour consisting of interconnected parts is being initialized by the user, each part will start to deform according to its own motion law derived from high-level prior knowledge, and is constantly aware of its own orientation and destination during the deformation process. Experimental results demonstrate the accuracy and robustness of our algorithm.

  18. Flux Tensor Constrained Geodesic Active Contours with Sensor Fusion for Persistent Object Tracking

    Directory of Open Access Journals (Sweden)

    Filiz Bunyak

    2007-08-01

    Full Text Available This paper makes new contributions in motion detection, object segmentation and trajectory estimation to create a successful object tracking system. A new efficient motion detection algorithm referred to as the flux tensor is used to detect moving objects in infrared video without requiring background modeling or contour extraction. The flux tensor-based motion detector when applied to infrared video is more accurate than thresholding ”hot-spots”, and is insensitive to shadows as well as illumination changes in the visible channel. In real world monitoring tasks fusing scene information from multiple sensors and sources is a useful core mechanism to deal with complex scenes, lighting conditions and environmental variables. The object segmentation algorithm uses level set-based geodesic active contour evolution that incorporates the fusion of visible color and infrared edge informations in a novel manner. Touching or overlapping objects are further refined during the segmentation process using an appropriate shapebased model. Multiple object tracking using correspondence graphs is extended to handle groups of objects and occlusion events by Kalman filter-based cluster trajectory analysis and watershed segmentation. The proposed object tracking algorithm was successfully tested on several difficult outdoor multispectral videos from stationary sensors and is not confounded by shadows or illumination variations.

  19. Modeling of contours in wavelet domain for generalized lifting image compression

    OpenAIRE

    Rolon Garrido, Julio Cesar; Ortega, Antonio; Salembier Clairon, Philippe Jean

    2009-01-01

    This paper introduces the design of context-based models of contours in the wavelet domain, which are used to construct generalized lifting (GL) mappings for image compression. The GL context-based mapping may significantly reduce the signal energy and the resulting bitrate. Here, we propose a strategy to define a reduced set of structured models to design the GL. The models capture the contour structures and are contrast-invariant. Initial experimental results applying the strategy on ...

  20. A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection

    Directory of Open Access Journals (Sweden)

    Stéphanie Jehan-Besson

    2002-06-01

    Full Text Available We propose a 3-step algorithm for the automatic detection of moving objects in video sequences using region-based active contours. First, we introduce a very full general framework for region-based active contours with a new Eulerian method to compute the evolution equation of the active contour from a criterion including both region-based and boundary-based terms. This framework can be easily adapted to various applications, thanks to the introduction of functions named descriptors of the different regions. With this new Eulerian method based on shape optimization principles, we can easily take into account the case of descriptors depending upon features globally attached to the regions. Second, we propose a 3-step algorithm for detection of moving objects, with a static or a mobile camera, using region-based active contours. The basic idea is to hierarchically associate temporal and spatial information. The active contour evolves with successively three sets of descriptors: a temporal one, and then two spatial ones. The third spatial descriptor takes advantage of the segmentation of the image in intensity homogeneous regions. User interaction is reduced to the choice of a few parameters at the beginning of the process. Some experimental results are supplied.

  1. Active Contour Driven by Local Region Statistics and Maximum A Posteriori Probability for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Jiang

    2014-01-01

    Full Text Available This paper presents a novel active contour model in a variational level set formulation for simultaneous segmentation and bias field estimation of medical images. An energy function is formulated based on improved Kullback-Leibler distance (KLD with likelihood ratio. According to the additive model of images with intensity inhomogeneity, we characterize the statistics of image intensities belonging to each different object in local regions as Gaussian distributions with different means and variances. Then, we use the Gaussian distribution with bias field as a local region descriptor in level set formulation for segmentation and bias field correction of the images with inhomogeneous intensities. Therefore, image segmentation and bias field estimation are simultaneously achieved by minimizing the level set formulation. Experimental results demonstrate desirable performance of the proposed method for different medical images with weak boundaries and noise.

  2. Region-based geometric active contour for classification using hyperspectral remote sensing images

    Science.gov (United States)

    Yan, Lin

    2011-12-01

    The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model

  3. Real-time 3D medical structure segmentation using fast evolving active contours

    Science.gov (United States)

    Wang, Xiaotao; Wang, Qiang; Hao, Zhihui; Xu, Kuanhong; Guo, Ping; Ren, Haibing; Jang, Wooyoung; Kim, Jung-bae

    2014-03-01

    Segmentation of 3D medical structures in real-time is an important as well as intractable problem for clinical applications due to the high computation and memory cost. We propose a novel fast evolving active contour model in this paper to reduce the requirements of computation and memory. The basic idea is to evolve the brief represented dynamic contour interface as far as possible per iteration. Our method encodes zero level set via a single unordered list, and evolves the list recursively by adding activated adjacent neighbors to its end, resulting in active parts of the zero level set moves far enough per iteration along with list scanning. To guarantee the robustness of this process, a new approximation of curvature for integer valued level set is proposed as the internal force to penalize the list smoothness and restrain the list continual growth. Besides, list scanning times are also used as an upper hard constraint to control the list growing. Together with the internal force, efficient regional and constrained external forces, whose computations are only performed along the unordered list, are also provided to attract the list toward object boundaries. Specially, our model calculates regional force only in a narrowband outside the zero level set and can efficiently segment multiple regions simultaneously as well as handle the background with multiple components. Compared with state-of-the-art algorithms, our algorithm is one-order of magnitude faster with similar segmentation accuracy and can achieve real-time performance for the segmentation of 3D medical structures on a standard PC.

  4. Visual Quality Enhancement in Multispectral Optoacoustic Tomography using Active Contour Segmentation Priors

    CERN Document Server

    Mandal, Subhamoy; Razansky, Daniel

    2015-01-01

    Segmentation of biomedical images is essential for studying and characterizing anatomical structures, detection and evaluation of pathological tissues. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities of the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two co...

  5. Method for non-referential defect characterization using fractal encoding and active contours

    Science.gov (United States)

    Gleason, Shaun S.; Sari-Sarraf, Hamed

    2007-05-15

    A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.

  6. AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES

    OpenAIRE

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-01-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effect...

  7. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    Science.gov (United States)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  8. AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Q. Chen

    2016-06-01

    Full Text Available Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  9. Left Ventricle Segmentation in Magnetic Resonance Images with Modified Active Contour Method

    Directory of Open Access Journals (Sweden)

    Maryam Aghai Amirkhizi

    2013-08-01

    Full Text Available Desired segmentation of the image is a pivotal problem in image processing. Segmenting the left ventricle (LV in magnetic resonance images (MRIs is essential for evaluation of cardiac function. For the segmentation of cardiac MRI several methods have been proposed and implemented. Each of them has advantages and restrictions. A modified region-based active contour model was applied for segmentation of LV chamber. A new semi-automatic algorithm was suggested calculating the appropriate Balloon force according to mean intensity of the region of interest for each image. The database is included of 2,039 MR images collected from 18 children under 18. The results were compared with previous literatures according to two standards: Dice Metric (DM and Point to Curve (P2C. The obtained segmentation results are better than previously reported values in several literatures. In this study different points were used in cardiac cycle and several slice levels and classified into three levels: Base, Mid. and Apex. The best results were obtained at end diastole (ED in comparison with end systole (ES, and on base slice than other slices, because of LV bigger size in ED phase and base slice. With segmentation of LV MRI based on novel active contour and application of the suggested algorithm for balloon force calculation, the mean improvement of DM compared to Grosgeorge et al. is 19.6% in ED and 49.5% in ES phase. The mean improvement of P2C compared with the same literature respectively for ED and ES phase is 43.8% and 39.6%.

  10. Active Contours and Mumford-Shah Segmentation Based on Level Sets

    Institute of Scientific and Technical Information of China (English)

    NASSIR H.SALMAN; LIU Chong-qing(刘重庆)

    2003-01-01

    This paper is to detect regions (objects) boundaries, also to isolate and extract individual componentsfrom a medical image. This can be done using an active contours to detect regions in a given image, based on tech-niques of curve evolution, Mumford-Shah functional for segmentation and level sets. The paper classified the im-ages into different intensity regions based on Markov random field, then detected regions whose boundaries are notnecessarily defined by gradient by minimizing an energy of Mumford-Shah functional for segmentation which can beseen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes amean-curvature flow like evolving the active contour, which will stop on the desired boundary. The stopping termdoes not depend on the gradient of the image, as in the classical active contour and the initial curve of level set canbe anywhere in the image, and interior contours are automatically detected. The final image segmentation is oneclosed boundary per actual region in the image.

  11. Fairfax County Contours

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This layer contains contours that were derived from the digital terrain model made up of irregularly spaced mass points and breaklines. The contours are 5 foot...

  12. A Novel Model of F0 Contours Prediction for Continuous Speech

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    F0 (fundamental frequency) contour was studied under different prosodic environment in continuous speech and a novel model of F0 contours prediction was proposed. It describes syllabic F0 contour with two points, one curve and duration. The curve represents two optimal points of controlling parameters. The duration represents the syllabic duration. The prosodic characters of controlling parameters were analyzed by CART (Class and Regression Tree). A set of controlling parameters was analyzed, which reflects the linguistic environment and prosodic structure. Then it sets up the model of F0 contours prediction with the two optimal controlling parameters and F0 templates. The end pitch value of previous syllable as special prosodic parameters was used to keep the continuity of fore-and-aft syllable. It focuses on looking out the main prosodic clues hiding in F0 contours and applying it to simplify the model for prediction. The results of synthesis experiment show that the performance of the prediction method is appreciated.

  13. Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours.

    Science.gov (United States)

    Molnar, Csaba; Jermyn, Ian H; Kato, Zoltan; Rahkama, Vesa; Östling, Päivi; Mikkonen, Piia; Pietiäinen, Vilja; Horvath, Peter

    2016-01-01

    The identification of fluorescently stained cell nuclei is the basis of cell detection, segmentation, and feature extraction in high content microscopy experiments. The nuclear morphology of single cells is also one of the essential indicators of phenotypic variation. However, the cells used in experiments can lose their contact inhibition, and can therefore pile up on top of each other, making the detection of single cells extremely challenging using current segmentation methods. The model we present here can detect cell nuclei and their morphology even in high-confluency cell cultures with many overlapping cell nuclei. We combine the "gas of near circles" active contour model, which favors circular shapes but allows slight variations around them, with a new data model. This captures a common property of many microscopic imaging techniques: the intensities from superposed nuclei are additive, so that two overlapping nuclei, for example, have a total intensity that is approximately double the intensity of a single nucleus. We demonstrate the power of our method on microscopic images of cells, comparing the results with those obtained from a widely used approach, and with manual image segmentations by experts. PMID:27561654

  14. Reconstructing patient-specific cardiac models from contours via Delaunay triangulation and graph-cuts.

    Science.gov (United States)

    Wan, Min; Lim, Calvin; Zhang, Junmei; Su, Yi; Yeo, Si Yong; Wang, Desheng; Tan, Ru San; Zhong, Liang

    2013-01-01

    This study proposes a novel method to reconstruct the left cardiac structure from contours. Given the contours representing left ventricle (LV), left atrium (LA), and aorta (AO), re-orientation, contour matching, extrapolation, and interpolation are performed sequentially. The processed data are then reconstructed via a variational method. The weighted minimal surface model is revised to handle the multi-phase cases, which happens at the LV-LA-AO junction. A Delaunay-based tetrahedral mesh is generated to discretize the domain while the max-flow/min-cut algorithm is utilized as the minimization tool. The reconstructed model including LV, LA, and AO structure is extracted from the mesh and post-processed further. Numerical examples show the robustness and effectiveness of the proposed method.

  15. F0 Contour Modeling for Arabic Text-to-Speech Synthesis Using Fujisaki Parameters and Neural Networks

    Directory of Open Access Journals (Sweden)

    Zied Mnasri

    2011-02-01

    Full Text Available Speech synthesis quality depends on its naturalness and intelligibility. These abstract concepts are the concern of phonology. In terms of phonetics, they are transmitted by prosodic components, mainly the fundamental frequency (F0 contour. F0 contour modeling is performed either by setting rules or by investigating databases, with or without parameters and following a timely sequential path or a parallel and super-positional scheme. In this study, we opted to model the F0 contour for Arabic using the Fujisaki parameters to be trained by neural networks. Statistical evaluation was carried out to measure the predicted parameters accuracy and the synthesized F0 contour closeness to the natural one. Findings concerning the adoption of Fujisaki parameters to Arabic F0 contour modeling for text-to-speech synthesis were discussed. Keywords: F0 contour, Arabic TTS, Fujisaki parameters, neural networks, Phrase command, Accent command.

  16. F0 Contour Modeling for Arabic Text-to-Speech Synthesis Using Fujisaki Parameters and Neural Networks

    Directory of Open Access Journals (Sweden)

    Zied Mnasri, Fatouma Boukadida, Noureddine Ellouze

    2011-02-01

    Full Text Available Speech synthesis quality depends on its naturalness and intelligibility. Theseabstract concepts are the concern of phonology. In terms of phonetics, they aretransmitted by prosodic components, mainly the fundamental frequency (F0contour. F0 contour modeling is performed either by setting rules or byinvestigating databases, with or without parameters and following a timelysequential path or a parallel and super-positional scheme. In this study, we optedto model the F0 contour for Arabic using the Fujisaki parameters to be trained byneural networks. Statistical evaluation was carried out to measure the predictedparameters accuracy and the synthesized F0 contour closeness to the naturalone. Findings concerning the adoption of Fujisaki parameters to Arabic F0contour modeling for text-to-speech synthesis were discussed.

  17. Contouring error modeling and simulation of a four-axis motion control system

    Institute of Scientific and Technical Information of China (English)

    张代林; 张旭; 谢经明; 袁楚明; 陈幼平; 汤漾平

    2015-01-01

    A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.

  18. Chromosome Segmentation and Investigations using Generalized Gradient Vector Flow Active Contours

    Directory of Open Access Journals (Sweden)

    Albert Prabhu Britto

    2005-08-01

    Full Text Available We investigated Generalized Gradient Vector Flow Active Contours as a suitable boundary mapping technique for Chromosome spread images which have variability in shape and size, expecting to yield a robust segmentation scheme that can be used for segmentation of similar class of images based on optimal set of parameter values. It is found experimentally that a unique set of parameter values is required for boundary mapping each chromosome image. Characterization studies have established that each parameter has an optimal range of values within which good boundary mapping results can be obtained in similar class of images. Statistical testing validates the experimental results

  19. Work roll thermal contour prediction model of nonoriented electrical steel sheets in hot strip mills

    Institute of Scientific and Technical Information of China (English)

    Ningtao Zhao; Jianguo Cao; Jie Zhang; Yi Su; Tanli Yan; Kefeng Rao

    2008-01-01

    The demands for profile and flatness of nonoriented electrical steels are becoming more and more severe. The temperature field and thermal contour of work rolls are the key factors that affect the profile and flatness control in the finishing trains of the hot rolling. A theoretic mathematical model was built by a two-dimensional finite difference to calculate the temperature field and thermal contour at any time within the entire rolling campaign in the hot rolling process. To improve the calculating speed and precision,some special solutions were introduced, including the development of this model, the simplification of boundary conditions, the computation of heat transfer coefficient, and the narrower mesh along the edge of the strip. The effects of rolling pace and work roll shifting on the temperature field and thermal contour of work rolls in the hot rolling process were demonstrated. The calculated results of the prediction model are in good agreement with the measured ones and can be applied to guiding profde and flatness control of nonoriented electrical steel sheets in hot strip mills.

  20. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    Science.gov (United States)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(Fliver volumes.

  1. Non-Rigid Object Contour Tracking via a Novel Supervised Level Set Model.

    Science.gov (United States)

    Sun, Xin; Yao, Hongxun; Zhang, Shengping; Li, Dong

    2015-11-01

    We present a novel approach to non-rigid objects contour tracking in this paper based on a supervised level set model (SLSM). In contrast to most existing trackers that use bounding box to specify the tracked target, the proposed method extracts the accurate contours of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollution to the target model. Moreover, conventional level set models only emphasize the regional intensity consistency and consider no priors. Differently, the curve evolution of the proposed SLSM is object-oriented and supervised by the specific knowledge of the targets we want to track. Therefore, the SLSM can ensure a more accurate convergence to the exact targets in tracking applications. In particular, we firstly construct the appearance model for the target in an online boosting manner due to its strong discriminative power between the object and the background. Then, the learnt target model is incorporated to model the probabilities of the level set contour by a Bayesian manner, leading the curve converge to the candidate region with maximum likelihood of being the target. Finally, the accurate target region qualifies the samples fed to the boosting procedure as well as the target model prepared for the next time step. We firstly describe the proposed mechanism of two-phase SLSM for single target tracking, then give its generalized multi-phase version for dealing with multi-target tracking cases. Positive decrease rate is used to adjust the learning pace over time, enabling tracking to continue under partial and total occlusion. Experimental results on a number of challenging sequences validate the effectiveness of the proposed method. PMID:26099142

  2. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    International Nuclear Information System (INIS)

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  3. 基于混合主动轮廓模型和区域间差别最大化的细胞弱边界分割%HYBRID ACTIVE CONTOUR MODEL AND INTER-REGIONAL DIFFERENCE MAXIMIZATION BASED CELL WEAK BORDER SEGMENTATION

    Institute of Scientific and Technical Information of China (English)

    赵明珠; 陈胜勇; 管秋

    2011-01-01

    Accurate segmentation is the key to image processing and analysis. However there are problems with microscopic cell images like target contour obscure or existing weak borders etc. Which usually produces unsatisfactory segmenting results. To tackle the problem,the paper proposes a hybrid active contour model and inter-regional difference maximization based cell weak border segmentation method. The method conforms to region maximization principle, taking local and global gray information as model's driving force, on the one hand ensures the detection of global dissimilarities, and on the other hand captures local differences. The models energy functional are composed of local and global fitting items by introducing a strategy weight parameter which makes use of graded information to explain how do local fitting items and global fitting items combine together to form hybrid fitting items. Experimental results indicate that the hybrid active contour model and inter-regional difference maximization based cell segmentation method can effectively capture weak borders and separate cell nucleus apart.%准确分割是图像处理与分析的关键.然而显微细胞图像的目标轮廓模糊、存在弱边界等问题,使得分割结果往往不尽人意.针对这一问题,提出基于混合主动轮廓模型和区域间差别最大化的细胞弱边界分割方法.该模型根据区域最大化的原则,并采用局部和全局灰度信息作模型的驱动力,在确保检测出全局差异的同时,捕捉到局部差异性.模型的能量泛函是由局部和全局拟合项组成的,并引入策略权重参数,这个参数利用梯度信息来解释局部拟合项和全局拟合项是如何组成混合拟合项的.实验结果表明,这种基于混合主动轮廓模型和区域间差别最大化的细胞分割方法能有效地捕获弱边界并分割出细胞核.

  4. Distributed Contour Trees

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  5. Analytical Study on Fundamental Frequency Contours of Thai Expressive Speech Using Fujisaki's Model

    Directory of Open Access Journals (Sweden)

    Suphattharachai Chomphan

    2010-01-01

    Full Text Available Problem statement: In spontaneous speech communication, prosody is an important factor that must be taken into account, since the prosody effects on not only the naturalness but also the intelligibility of speech. Focusing on synthesis of Thai expressive speech, a number of systems has been developed for years. However, the expressive speech with various speaking styles has not been accomplished. To achieve the generation of expressive speech, we need to model the fundamental frequency (F0 contours accurately to preserve the speech prosody. Approach: Therefore this study proposes an analysis of model parameters for Thai speech prosody with three speaking styles and two genders which is a preliminary work for speech synthesis. Fujisaki's modeling; a powerful tool to model the F0 contour has been adopted, while the speaking styles of happiness, sadness and reading have been considered. Seven derived parameters from the Fujisaki's model are as follows. The first parameter is baseline frequency which is the lowest level of F0 contour. The second and third parameters are the numbers of phrase commands and tone commands which reflect the frequencies of surges of the utterance in global and local levels, respectively. The fourth and fifth parameters are phrase command and tone command durations which reflect the speed of speaking and the length of a syllable, respectively. The sixth and seventh parameters are amplitudes of phrase command and tone command which reflect the energy of the global speech and the energy of local syllable. Results: In the experiments, each speaking style includes 200 samples of one sentence with male and female speech. Therefore our speech database contains 1200 utterances in total. The results show that most of the proposed parameters can distinguish three kinds of speaking styles explicitly. Conclusion: From the finding, it is a strong evidence to further apply the successful parameters in the speech synthesis systems or

  6. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor;

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied...... to weld pool tracking and the presented results verified its feasibility....

  7. B-Spline Active Contour with Handling of Topology Changes for Fast Video Segmentation

    Directory of Open Access Journals (Sweden)

    Frederic Precioso

    2002-06-01

    Full Text Available This paper deals with video segmentation for MPEG-4 and MPEG-7 applications. Region-based active contour is a powerful technique for segmentation. However most of these methods are implemented using level sets. Although level-set methods provide accurate segmentation, they suffer from large computational cost. We propose to use a regular B-spline parametric method to provide a fast and accurate segmentation. Our B-spline interpolation is based on a fixed number of points 2j depending on the level of the desired details. Through this spatial multiresolution approach, the computational cost of the segmentation is reduced. We introduce a length penalty. This results in improving both smoothness and accuracy. Then we show some experiments on real-video sequences.

  8. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu [Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Reamer, Courtney B.; Mohler, Emile R. [Department of Medicine, Division of Cardiovascular Medicine, Section of Vascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-02-15

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  9. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    International Nuclear Information System (INIS)

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  10. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  11. Integrating multiscale polar active contours and region growing for microcalcifications segmentation in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Arikidis, N S; Karahaliou, A; Skiadopoulos, S; Panagiotakis, G; Costaridou, L [University of Patras, Department of Medical Physics, Faculty of Medicine, University of Patras, 265 00, Patras (Greece); Likaki, E [University of Patras, Department of Radiology, Faculty of Medicine, University of Patras, 265 00, Patras (Greece)], E-mail: Costarid@upatras.gr

    2009-07-15

    Morphology of individual microcalcifications is an important clinical factor in microcalcification clusters diagnosis. Accurate segmentation remains a difficult task due to microcalcifications small size, low contrast, fuzzy nature and low distinguishability from surrounding tissue. A novel application of active rays (polar transformed active contours) on B-spline wavelet representation is employed, to provide initial estimates of microcalcification boundary. Then, a region growing method is used with pixel aggregation constrained by the microcalcification boundary estimates, to obtain the final microcalcification boundary. The method was tested on dataset of 49 microcalcification clusters (30 benign, 19 malignant), originating from the DDSM database. An observer study was conducted to evaluate segmentation accuracy of the proposed method, on a 5-point rating scale (from 5:excellent to 1:very poor). The average accuracy rating was 3.98{+-}0.81 when multiscale active rays were combined to region growing and 2.93{+-}0.92 when combined to linear polynomial fitting, while the difference in rating of segmentation accuracy was statistically significant (p < 0.05)

  12. Integrating multiscale polar active contours and region growing for microcalcifications segmentation in mammography

    Science.gov (United States)

    Arikidis, N. S.; Karahaliou, A.; Skiadopoulos, S.; Likaki, E.; Panagiotakis, G.; Costaridou, L.

    2009-07-01

    Morphology of individual microcalcifications is an important clinical factor in microcalcification clusters diagnosis. Accurate segmentation remains a difficult task due to microcalcifications small size, low contrast, fuzzy nature and low distinguishability from surrounding tissue. A novel application of active rays (polar transformed active contours) on B-spline wavelet representation is employed, to provide initial estimates of microcalcification boundary. Then, a region growing method is used with pixel aggregation constrained by the microcalcification boundary estimates, to obtain the final microcalcification boundary. The method was tested on dataset of 49 microcalcification clusters (30 benign, 19 malignant), originating from the DDSM database. An observer study was conducted to evaluate segmentation accuracy of the proposed method, on a 5-point rating scale (from 5:excellent to 1:very poor). The average accuracy rating was 3.98±0.81 when multiscale active rays were combined to region growing and 2.93±0.92 when combined to linear polynomial fitting, while the difference in rating of segmentation accuracy was statistically significant (p < 0.05).

  13. Hand Gesture Contour Tracking Based on Skin Color Probability and State Estimation Model

    Directory of Open Access Journals (Sweden)

    Qiu-yu Zhang

    2009-12-01

    Full Text Available Considering the deficiency of accurate hand gesture contour inaccessible and inefficiency in complex dynamic background in existing methods of hand gesture tracking, a two dimensional skin color probability forecast method is proposed. Based on this, a hand gesture segmentation method of multi-mode and a hand gesture tracking method of state estimation are extended. When hand gesture is segmented, to locate the accurate hand gesture position, this paper combines the Skin Color Probability distribution with the statistical motion information of image blocking. Then the hand region is initiated by the region growth method and the hand gesture segmentation is realized. When hand gesture is tracked, the pixel’s state model is built to estimate the state of pixels after watershed computation. Then the current blocking frame is adaptive threshold segmented and the hand gesture tracking is realized. Experiments show that this method has a strong anti-noise ability in complex background. In addition, it has a better application effect in segment and tracking the hand gesture contour accurately in a real-time way.

  14. Model Predictive Approach to Precision Contouring Control for Feed Drive Systems

    OpenAIRE

    A. E. M.; N. Uchyiama,

    2010-01-01

    Problem statement: High precision machining requires high capability of multi-axis feed drive systems to follow specified contour accurately. Although each feed drive axis is controlled independently in many industrial applications such as X-Y tables and Computer Numerical Control (CNC) machines, machining precision is evaluated by error components orthogonal to desired contour curve. Contouring controller design is required for precision machining, which should consider disturbance and dynam...

  15. Automatic bootstrapping and tracking of object contours.

    Science.gov (United States)

    Chiverton, John; Xie, Xianghua; Mirmehdi, Majid

    2012-03-01

    A new fully automatic object tracking and segmentation framework is proposed. The framework consists of a motion-based bootstrapping algorithm concurrent to a shape-based active contour. The shape-based active contour uses finite shape memory that is automatically and continuously built from both the bootstrap process and the active-contour object tracker. A scheme is proposed to ensure that the finite shape memory is continuously updated but forgets unnecessary information. Two new ways of automatically extracting shape information from image data given a region of interest are also proposed. Results demonstrate that the bootstrapping stage provides important motion and shape information to the object tracker. This information is found to be essential for good (fully automatic) initialization of the active contour. Further results also demonstrate convergence properties of the content of the finite shape memory and similar object tracking performance in comparison with an object tracker with unlimited shape memory. Tests with an active contour using a fixed-shape prior also demonstrate superior performance for the proposed bootstrapped finite-shape-memory framework and similar performance when compared with a recently proposed active contour that uses an alternative online learning model. PMID:21908256

  16. Algorithm for quantifying advanced carotid artery atherosclerosis in humans using MRI and active contours

    Science.gov (United States)

    Adams, Gareth; Vick, G. W., III; Bordelon, Cassius; Insull, William; Morrisett, Joel

    2002-05-01

    A new algorithm for measuring carotid artery volumes and estimating atherosclerotic plaque volumes from MRI images has been developed and validated using pressure-perfusion-fixed cadaveric carotid arteries. Our method uses an active contour algorithm with the generalized gradient vector field force as the external force to localize the boundaries of the artery on each MRI cross-section. Plaque volume is estimated by an automated algorithm based on estimating the normal wall thickness for each branch of the carotid. Triplicate volume measurements were performed by a single observer on thirty-eight pairs of cadaveric carotid arteries. The coefficient of variance (COV) was used to quantify measurement reproducibility. Aggregate volumes were computed for nine contiguous slices bounding the carotid bifurcation. The median (mean +/- SD) COV for the 76 aggregate arterial volumes was 0.93% (1.47% +/- 1.52%) for the lumen volume, 0.95% (1.06% +/- 0.67%) for the total artery volume, and 4.69% (5.39% +/- 3.97%) for the plaque volume. These results indicate that our algorithm provides repeatable measures of arterial volumes and a repeatable estimate of plaque volume of cadaveric carotid specimens through analysis of MRI images. The algorithm also significantly decreases the amount of time necessary to generate these measurements.

  17. Assessment of carotid diameter and wall thickness in ultrasound images using active contours improved by a multiresolution technique

    Science.gov (United States)

    Gutierrez, Marco A.; Pilon, Paulo E.; Lage, Silvia G.; Kopel, Liliane; Carvalho, Ricardo T.; Furuie, Sergio S.

    2002-04-01

    Carotid vessel ultrasound imaging is a reliable non-invasive technique to measure the arterial morphology. Vessel diameter, intima-media thickness (IMT) of the far wall and plaque presence can be reliably determined using B-mode ultrasound. In this paper we describe a semi-automatic approach to measure artery diameter and IMT based on an active contour technique improved by a multiresolution analysis. The operator selects a region-of-interest (ROI) in a series of carotid images obtained from B-mode ultrasound. This set of images is convolved with the corresponding partial derivatives of the Gaussian filter. The filter response is used to compute a 2D gradient magnitude image in order to refine the vessel's boundaries. Using an active contour technique the vessel's border is determined automatically. The near wall media-adventitia (NWMA), far wall media-adventitia (FWMA) and far wall lumen-intima (FWLI) borders are obtained by a least-square fitting of the active contours result. The distance between NWMA and FWLI (vessel diameter) and between FWLI and FWMA (far wall intima-media thickness) are obtained for all images and the mean value is computed during systole and diastole. The proposed method is a reliable and reproducible way of assessing the vessel diameter and far wall intima-media thickness of the carotid artery.

  18. Contour Tones.

    Science.gov (United States)

    Yip, Moira

    1989-01-01

    Argues that contour tones in East Asian languages behave as melodic units consisting of a root node [upper] dominating a branching specification. It is also argued that, with upper as the tonal root node, no more than two rising or falling tones will contrast underlying. (49 references) (JL)

  19. On ground states and Gibbs measures of Ising type models on a Cayley tree: A contour argument

    International Nuclear Information System (INIS)

    We consider the Ising model with competing J1 and J3 interactions with spin values ±1, on a Cayley tree of order 2 (with 3 neighbors). We study the structure of the ground states and verify the Peierls condition for the model. Our second result gives a description of Gibbs measures for ferromagnetic Ising model with J1 2 = 0, using a contour argument which we also develop in the paper. (author)

  20. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA

    Science.gov (United States)

    Banerjee, Amit; Panigrahi, Brajesh; Pohit, G.

    2016-04-01

    In the present work, dynamic response of cracked Timoshenko beam with functionally graded material properties are obtained by a numerical technique using Ritz approximation. In order to verify the applicability and performance of the formulation, comparisons of the present numerical method with three-dimensional FEM models are made. Crack is assumed to be transverse and open throughout the vibration cycle. Two different crack detection techniques have been proposed. Results obtained by the numerical technique are used in both of the crack detection techniques. In the first technique, the frequency contours with respect to crack location and size are plotted and the intersection of contours of different modes helps in the prediction of crack location and size. In the second technique, crack is modelled using response surface methodology (RSM). The sum of the squared errors between the numerical and RSM regression model natural frequencies is used as the objective function. This objective function is minimised using genetic algorithm optimisation technique. Both the crack detection techniques and the numerical analysis have shown good agreement with each other.

  1. Feed-forward active contour analysis for improved brachial artery reactivity testing.

    Science.gov (United States)

    Pugliese, Daniel N; Sehgal, Chandra M; Sultan, Laith R; Reamer, Courtney B; Mohler, Emile R

    2016-08-01

    The object of this study was to utilize a novel feed-forward active contour (FFAC) algorithm to find a reproducible technique for analysis of brachial artery reactivity. Flow-mediated dilation (FMD) is an important marker of vascular endothelial function but has not been adopted for widespread clinical use given its technical limitations, including inter-observer variability and differences in technique across clinical sites. We developed a novel FFAC algorithm with the goal of validating a more reliable standard. Forty-six healthy volunteers underwent FMD measurement according to the standard technique. Ultrasound videos lasting 5-10 seconds each were obtained pre-cuff inflation and at minutes 1 through 5 post-cuff deflation in longitudinal and transverse views. Automated segmentation using the FFAC algorithm with initial boundary definition from three different observers was used to analyze the images to measure diameter/cross-sectional area over the cardiac cycle. The %FMD was calculated for average, minimum, and maximum diameters/areas. Using the FFAC algorithm, the population-specific coefficient of variation (CV) at end-diastole was 3.24% for transverse compared to 9.96% for longitudinal measurements; the subject-specific CV was 15.03% compared to 57.41%, respectively. For longitudinal measurements made via the conventional method, the population-specific CV was 4.77% and subject-specific CV was 117.79%. The intraclass correlation coefficient (ICC) for transverse measurements was 0.97 (95% CI: 0.95-0.98) compared to 0.90 (95% CI: 0.84-0.94) for longitudinal measurements with FFAC and 0.72 (95% CI: 0.51-0.84) for conventional measurements. In conclusion, transverse views using the novel FFAC method provide less inter-observer variability than traditional longitudinal views. Improved reproducibility may allow adoption of FMD testing in a clinical setting. The FFAC algorithm is a robust technique that should be evaluated further for its ability to replace the

  2. Feed-forward active contour analysis for improved brachial artery reactivity testing.

    Science.gov (United States)

    Pugliese, Daniel N; Sehgal, Chandra M; Sultan, Laith R; Reamer, Courtney B; Mohler, Emile R

    2016-08-01

    The object of this study was to utilize a novel feed-forward active contour (FFAC) algorithm to find a reproducible technique for analysis of brachial artery reactivity. Flow-mediated dilation (FMD) is an important marker of vascular endothelial function but has not been adopted for widespread clinical use given its technical limitations, including inter-observer variability and differences in technique across clinical sites. We developed a novel FFAC algorithm with the goal of validating a more reliable standard. Forty-six healthy volunteers underwent FMD measurement according to the standard technique. Ultrasound videos lasting 5-10 seconds each were obtained pre-cuff inflation and at minutes 1 through 5 post-cuff deflation in longitudinal and transverse views. Automated segmentation using the FFAC algorithm with initial boundary definition from three different observers was used to analyze the images to measure diameter/cross-sectional area over the cardiac cycle. The %FMD was calculated for average, minimum, and maximum diameters/areas. Using the FFAC algorithm, the population-specific coefficient of variation (CV) at end-diastole was 3.24% for transverse compared to 9.96% for longitudinal measurements; the subject-specific CV was 15.03% compared to 57.41%, respectively. For longitudinal measurements made via the conventional method, the population-specific CV was 4.77% and subject-specific CV was 117.79%. The intraclass correlation coefficient (ICC) for transverse measurements was 0.97 (95% CI: 0.95-0.98) compared to 0.90 (95% CI: 0.84-0.94) for longitudinal measurements with FFAC and 0.72 (95% CI: 0.51-0.84) for conventional measurements. In conclusion, transverse views using the novel FFAC method provide less inter-observer variability than traditional longitudinal views. Improved reproducibility may allow adoption of FMD testing in a clinical setting. The FFAC algorithm is a robust technique that should be evaluated further for its ability to replace the

  3. 基于Snake算法的气道内超声序列图像的边界提取%Edge Extraction of EBUS Sequential Images Based on Active Contour Model

    Institute of Scientific and Technical Information of China (English)

    郝立巍; 程远雄; 汪天富; 陈思平

    2012-01-01

    Objective:An endobronchial ultrasound is a procedure to provide further information to diagnose or determine the stage of a lung tumor and allow doctors to view regions of your lungs that have traditionally required more invasive surgical procedures to evaluate. In this paper, a new Snake model is proposed to extract edges in Endobronchial Ultrasound (EBUS). Methods:As a dimensionless quantity, local phase is invariant to changes in image brightness and contrast. In the proposed method, local phase is introduced into Snake model as image energy component. Results:Empirical evaluations of the performance of our algorithm relative to other edge extraction method are presented. Experiment results shows that our method presents comparable performances compared to the methods. Conclusions: The proposed Snake method can effectively extract edges in EBUS sequential images.%目的:气道内超声能为肺部肿瘤提供更多的诊断信息,能让医生以对病人伤害很小的方式检视患者肺部,而无需采用传统的有创手术方式.本文提出了一种能用于气道内超声边界提取的新的Snake算法模型.方法:作为非方向性指标,局部相位具有图像的亮度及对比度无关性.本文拟在Snake模型中引入局部相位,以设计其新的图像能量公式.结果:本文所提出的算法与现有的超声边界提取算法进行了提取结果对比.实验结果表明本文所提出的算法优于现有的算法.结论:本文所提出的新算法能有效地对气道内超声图像提取边界.

  4. Contourlet-based active contour model for PET image segmentation

    NARCIS (Netherlands)

    Abdoli, M.; Dierckx, R. A. J. O.; Zaidi, H.

    2013-01-01

    Purpose: PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the pres

  5. Contour detection by surround suppression of texture

    NARCIS (Netherlands)

    Petkov, Nicolai; Tavares, JMRS; Jorge, RMN

    2007-01-01

    Based on a keynote lecture at Complmage 2006, Coimbra, Oct. 20-21, 2006, an overview is given of our activities in modelling and using surround inhibition for contour detection. The effect of suppression of a line or edge stimulus by similar surrounding stimuli is known from visual perception studie

  6. Contour Completion Without Region Segmentation.

    Science.gov (United States)

    Ming, Yansheng; Li, Hongdong; He, Xuming

    2016-08-01

    Contour completion plays an important role in visual perception, where the goal is to group fragmented low-level edge elements into perceptually coherent and salient contours. Most existing methods for contour completion have focused on pixelwise detection accuracy. In contrast, fewer methods have addressed the global contour closure effect, despite psychological evidences for its importance. This paper proposes a purely contour-based higher order CRF model to achieve contour closure, through local connectedness approximation. This leads to a simplified problem structure, where our higher order inference problem can be transformed into an integer linear program and be solved efficiently. Compared with the methods based on the same bottom-up edge detector, our method achieves a superior contour grouping ability (measured by Rand index), a comparable precision-recall performance, and more visually pleasing results. Our results suggest that contour closure can be effectively achieved in contour domain, in contrast to a popular view that segmentation is essential for this purpose. PMID:27168599

  7. IDENTIFICATION OF TYPES AND MODELS OF AIRCRAFT USING ASC-ANALYSIS OF THEIR SILHOUETTES (CONTOURS (GENERALIZATION, ABSTRACTION, CLASSIFICATION AND IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2015-12-01

    Full Text Available The article discusses the application of automated system-cognitive analysis (ASC-analysis, its mathematical model which is system theory of information and its software tool, which is intellectual system called "Eidos" for solving problems related to identification of types and models of aircraft by their silhouettes on the ground, to be more precise, their external contours: 1 digitization of scanned images of aircraft and creation of their mathematical models; 2 formation of mathematical models of specific aircraft with the use of the information theory; 3 modeling of the generalized images of various aircraft types and models and their graphic visualization; 4 comparing an image of a particular plane with generalized images of various aircraft types and models, and quantifying the degree of similarities and differences between them, i.e., the identification of the type and model of airplane by its silhouette (contour on the ground; 5 quantification of the similarities and differences of the generalized images of the planes with each other, i.e., clusterconstructive analysis of generalized images of various aircraft types and models. The article gives a new approach to digitizing images of aircraft, based on the use of the polar coordinate system, the center of gravity of the image and its external contour. Before digitizing images, we may use their transformation, standardizing the position of the images, their sizes (resolution, distance and the angle of rotation (angle in three dimensions. Therefore, the results of digitization and ASC-analysis of the images can be invariant (independent relative to their position, dimensions and turns. The shape of the contour of a particular aircraft is considered as a noise information on the type and model of aircraft, including information about the true shape of the aircraft type and its model (clean signal and noise, which distort the real shape, due to noise influences, both of the means of

  8. An approach of crater automatic recognition based on contour digital elevation model from Chang'E Missions

    Science.gov (United States)

    Zuo, W.; Li, C.; Zhang, Z.; Li, H.; Feng, J.

    2015-12-01

    In order to provide fundamental information for exploration and related scientific research on the Moon and other planets, we propose a new automatic method to recognize craters on the lunar surface based on contour data extracted from a digital elevation model (DEM). First, we mapped 16-bits DEM to 256 gray scales for data compression, then for the purposes of better visualization, the grayscale is converted into RGB image. After that, a median filter is applied twice to DEM for data optimization, which produced smooth, continuous outlines for subsequent construction of contour plane. Considering the fact that the morphology of crater on contour plane can be approximately expressed as an ellipse or circle, we extract the outer boundaries of contour plane with the same color(gray value) as targets for further identification though a 8- neighborhood counterclockwise searching method. Then, A library of training samples is constructed based on above targets calculated from some sample DEM data, from which real crater targets are labeled as positive samples manually, and non-crater objects are labeled as negative ones. Some morphological feathers are calculated for all these samples, which are major axis (L), circumference(C), area inside the boundary(S), and radius of the largest inscribed circle(R). We use R/L, R/S, C/L, C/S, R/C, S/L as the key factors for identifying craters, and apply Fisher discrimination method on the sample library to calculate the weight of each factor and determine the discrimination formula, which is then applied to DEM data for identifying lunar craters. The method has been tested and verified with DEM data from CE-1 and CE-2, showing strong recognition ability and robustness and is applicable for the recognition of craters with various diameters and significant morphological differences, making fast and accurate automatic crater recognition possible.

  9. Effects of Noises on Fujisaki’s Model of Fundamental Frequency Contours for Thai Dialects

    Directory of Open Access Journals (Sweden)

    Suphattharachai Chomphan

    2012-01-01

    Full Text Available Problem statement: Modeling of fundamental frequency (F0 contour plays an important role on the natural speech processing, since F0 is an important speech feature defining the human speech prosody. In Thai, there are four main dialects spoken by Thai people residing in four core region including central, north, northeast and south regions. Environmental noises are also plays an important role in corrupting the speech quality. The study of effects of noises on modeling of F0 contour for Thai dialects will evaluate robustness of the modeling techniques. Approach: The Fujisaki’s model has been selected in this study because of its achievement in modeling of various Thai speech units. Four types of environmental noises are simulated with different levels of power. The differences among the model parameters of four Thai dialects have been summarized. This study proposes an analysis of model parameters for Thai speech prosody with four regional dialects and two genders and four types of noises. Seven derived parameters from the Fujisaki’s model are as follows. The first parameter is baseline frequency which is the lowest level of F0 contour. The second and third parameters are the numbers of phrase commands and tone commands which reflect the frequencies of surges of the utterance in global and local levels, respectively. The fourth and fifth parameters are phrase command and tone command durations which reflect the speed of speaking and the length of a syllable, respectively. The sixth and seventh parameters are amplitudes of phrase command and tone command which reflect the energy of the global speech and the energy of local syllable. Results: In the experiments, each regional dialect includes 10 samples of 10 sentences with male and female speech. Four types of noises include train, factory, car and air conditioner. Moreover, five levels of each type of noise are varied from 0-20 dB. The results show that most of the proposed parameters

  10. Model cortical association fields account for the time course and dependence on target complexity of human contour perception.

    Directory of Open Access Journals (Sweden)

    Vadas Gintautas

    2011-10-01

    Full Text Available Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas distributed among groups of randomly rotated fragments (clutter. The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms, followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least [Formula: see text] ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas.

  11. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  12. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  13. Tagged Vector Contour (TVC)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Tagged Vector Contour (TVC) dataset consists of digitized contours from the 7.5 minute topographic quadrangle maps. Coverage for the state is incomplete....

  14. CONTOUR 7 Preview catalog

    OpenAIRE

    Gelder, Hilde Van

    2015-01-01

    This is an online publication on the website of CONTOUR 7, including both the English and the Dutch versions of my catalog essay entitled Lessons from Moria / Lessen uit Moria. The weblink is: http://contour7.be/files/uploads/page/CONTOUR7_PREVIEW_FOOLING_UTOPIA_CATALOG.pdf.

  15. Human Lips-Contour Recognition and Tracing

    Directory of Open Access Journals (Sweden)

    Md. Hasan Tareque

    2014-01-01

    Full Text Available Human-lip detection is an important criterion for many automated modern system in present day. Like computerized speech reading, face recognition etc. system can work more precisely if human-lip can detect accurately. There are many processes for detecting human-lip. In this paper an approach is developed so that the region of a human-lip can be detected, we called it lip contour. For this a region-based Active Contour Model (ACM is introduced with watershed segmentation. In this model we used global energy terms instead of local energy terms because, global energy gives better convergence rate for malicious environment. At the time of ACM initialization by using H8 based on Lyapunov stability theory, the system gives more accurate and stable result.

  16. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenji; Kohlbrenner, Ryan; Epstein, Mark L.; Obajuluwa, Ademola M.; Xu Jianwu; Hori, Masatoshi [Department of Radiology, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2010-05-15

    Purpose: Computerized liver extraction from hepatic CT images is challenging because the liver often abuts other organs of a similar density. The purpose of this study was to develop a computer-aided measurement of liver volumes in hepatic CT. Methods: The authors developed a computerized liver extraction scheme based on geodesic active contour segmentation coupled with level-set contour evolution. First, an anisotropic diffusion filter was applied to portal-venous-phase CT images for noise reduction while preserving the liver structure, followed by a scale-specific gradient magnitude filter to enhance the liver boundaries. Then, a nonlinear grayscale converter enhanced the contrast of the liver parenchyma. By using the liver-parenchyma-enhanced image as a speed function, a fast-marching level-set algorithm generated an initial contour that roughly estimated the liver shape. A geodesic active contour segmentation algorithm coupled with level-set contour evolution refined the initial contour to define the liver boundaries more precisely. The liver volume was then calculated using these refined boundaries. Hepatic CT scans of 15 prospective liver donors were obtained under a liver transplant protocol with a multidetector CT system. The liver volumes extracted by the computerized scheme were compared to those traced manually by a radiologist, used as ''gold standard.''Results: The mean liver volume obtained with our scheme was 1504 cc, whereas the mean gold standard manual volume was 1457 cc, resulting in a mean absolute difference of 105 cc (7.2%). The computer-estimated liver volumetrics agreed excellently with the gold-standard manual volumetrics (intraclass correlation coefficient was 0.95) with no statistically significant difference (F=0.77; p(F{<=}f)=0.32). The average accuracy, sensitivity, specificity, and percent volume error were 98.4%, 91.1%, 99.1%, and 7.2%, respectively. Computerized CT liver volumetry would require substantially less

  17. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  18. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  19. The velocity snake: Deformable contour for tracking in spatio-velocity space

    Energy Technology Data Exchange (ETDEWEB)

    Peterfreund, N.

    1997-06-01

    The author presents a new active contour model for boundary tracking and position prediction of nonrigid objects, which results from applying a velocity control to the class of elastodynamical contour models, known as snakes. The proposed control term minimizes an energy dissipation function which measures the difference between the contour velocity and the apparent velocity of the image. Treating the image video-sequence as continuous measurements along time, it is shown that the proposed control results in an unbiased tracking. This is in contrast to the original snake model which is proven to be biased due to the image (object) velocity, thus resulting in high sensitivity to image clutter. The motion estimation further allows for position prediction of nonrigid boundaries. Based on the proposed control approach, the author proposes a new class of real time tracking contours, varying from models with batch-mode control estimation to models with real time adaptive controllers.

  20. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  1. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  2. Open Contours Extraction of Rotational Surface Oriented to Layer Measurement

    Institute of Scientific and Technical Information of China (English)

    亓利伟; 赵毅; 李明辉

    2003-01-01

    With layer-measured contours, an algorithm that can extract the contour segments from a rotational surface is presented. The extraction can be divided into two stages, i. e. the rough segmentation and the refinement. In the rough segmenting stage, an optimal contour matching method is put forward to find similar contour segment from another closed contour with respect to the seed contour. In the refining stage, an iterative way that can extract a circular arc precisely is presented based on parameters identification and contour-ends expanding/shrinking operation. The algorithm can extract the open contour segments from a rotational surface precisely, as demonstrated in the examples. Based on the work of this paper, further research, such as parameter identification of 3 - D surface and CAD model creation, can be conducted.

  3. Reconstruction of surfaces from planar contours through contour interpolation

    Science.gov (United States)

    Sunderland, Kyle; Woo, Boyeong; Pinter, Csaba; Fichtinger, Gabor

    2015-03-01

    Segmented structures such as targets or organs at risk are typically stored as 2D contours contained on evenly spaced cross sectional images (slices). Contour interpolation algorithms are implemented in radiation oncology treatment planning software to turn 2D contours into a 3D surface, however the results differ between algorithms, causing discrepancies in analysis. Our goal was to create an accurate and consistent contour interpolation algorithm that can handle issues such as keyhole contours, rapid changes, and branching. This was primarily motivated by radiation therapy research using the open source SlicerRT extension for the 3D Slicer platform. The implemented algorithm triangulates the mesh by minimizing the length of edges spanning the contours with dynamic programming. The first step in the algorithm is removing keyholes from contours. Correspondence is then found between contour layers and branching patterns are determined. The final step is triangulating the contours and sealing the external contours. The algorithm was tested on contours segmented on computed tomography (CT) images. Some cases such as inner contours, rapid changes in contour size, and branching were handled well by the algorithm when encountered individually. There were some special cases in which the simultaneous occurrence of several of these problems in the same location could cause the algorithm to produce suboptimal mesh. An open source contour interpolation algorithm was implemented in SlicerRT for reconstructing surfaces from planar contours. The implemented algorithm was able to generate qualitatively good 3D mesh from the set of 2D contours for most tested structures.

  4. Modeling pilot interaction with automated digital avionics systems: Guidance and control algorithms for contour and nap-of-the-Earth flight

    Science.gov (United States)

    Hess, Ronald A.

    1990-01-01

    A collection of technical papers are presented that cover modeling pilot interaction with automated digital avionics systems and guidance and control algorithms for contour and nap-of-the-earth flight. The titles of the papers presented are as follows: (1) Automation effects in a multiloop manual control system; (2) A qualitative model of human interaction with complex dynamic systems; (3) Generalized predictive control of dynamic systems; (4) An application of generalized predictive control to rotorcraft terrain-following flight; (5) Self-tuning generalized predictive control applied to terrain-following flight; and (6) Precise flight path control using a predictive algorithm.

  5. The Application of Lateral Inhibition Model in Image's Contour Enhancement and Design of Its Electro-Model

    Directory of Open Access Journals (Sweden)

    Hongwei Fu

    2009-12-01

    Full Text Available For overcoming the problems such as distortion and shift of object’s edge, easily losing the object detail information of methods in image edge detection, and satisfying higher demand for object detection in the modern war, a new image edge detection method was designed. LOG edge detection as a typical image processing method was introduced and the disadvantage of this model was analyzed firstly. Based on lateral inhibition theory, an acyclic lateral inhibition network model (ALINM based on biology vision information processing mechanism was designed. The feasibility of object detection by lateral inhibition model was analyzed, in order to express the advantage such as rapid calculation easily real time operation of ALINM, the calculation magnitude of circulation difference lateral inhibition model was analyzed. Besides the correctness of ALINM was confirmed with two input cells, its transfer function was deduced. An algorithm of image edge detection based on this model was established finally, lateral inhibition effect also was confirmed by one-dimension and two-dimension circuit model based ALINM. Simulative experiment with different parameters and physics experiment prove that acyclic lateral inhibition network model can be realized easily, it can preserve the farthest detail information of object and has faster calculation speed than LOG operator. ALINM and lateral inhibition theory provide a useful method based on biology vision for object detection under difficult imaging conditions.

  6. 基于两步几何主动轮廓的快速图像分割%Fast Image Segmentation Based on a Two-Stage Geometrical Active Contour

    Institute of Scientific and Technical Information of China (English)

    XIAO Chang-yan; ZHANG Su; CHEN Ya-zhu

    2005-01-01

    A fast two-stage geometric active contour algorithm for image segmentation is developed. First, the Eikonal equation problem is quickly solved using an improved fast sweeping method, and a criterion of local minimum of area gradient (LMAG) is presented to extract the optimal arrival time. Then, the final time function is passed as an initial state to an area and length minimizing flow model,which adjusts the interface more accurately and prevents it from leaking. For object with complete and salient edge, using the first stage only is able to obtain an ideal result, and this results in a time complexity of O ( M), where M is the number of points in each coordinate direction. Both stages are needed for convoluted shapes, but the computation cost can be drastically reduced. Efficiency of the algorithm is verified in segmentation experiments of real images with different feature.

  7. Intonation contour in synchronous speech

    Science.gov (United States)

    Wang, Bei; Cummins, Fred

    2003-10-01

    Synchronous Speech (Syn-S), obtained by having pairs of speakers read a prepared text together, has been shown to result in interesting properties in the temporal domain, especially in the reduction of inter-speaker variability in supersegmental timing [F. Cummins, ARLO 3, 7-11 (2002)]. Here we investigate the effect of synchronization among speakers on the intonation contour, with a view to informing models of intonation. Six pairs of speakers (all females) read a short text (176 words) both synchronously and solo. Results show that (1) the pitch accent height above a declining baseline is reduced in Syn-S, compared with solo speech, while the pitch accent location is consistent across speakers in both conditions; (2) in contrast to previous findings on duration matching, there is an asymmetry between speakers, with one speaker exerting a stronger influence on the observed intonation contour than the other; (3) agreement on the boundaries of intonational phrases is greater in Syn-S and intonation contours are well matched from the first syllable of the phrase and throughout.

  8. Capturing lightness between contours.

    Science.gov (United States)

    Vergeer, Mark; van Lier, Rob

    2010-01-01

    Homogeneously coloured bars may exhibit lightness differences at the intersections. A well-known example is the Hermann grid illusion, where crossing white bars on a black background show dark patches at the crossings. Jung (1973, Handbook of Sensory Physiology volume VII/3, pp 1-152) found that the dark patches persist when thin outlines are drawn at the intersections, and are even visible in foveal vision. Recently, it has been shown that making distortions to the contours of a Hermann grid-like configuration results in the disappearance of the illusory dark spots (Geier et al, 2008 Perception 37 651 665). We show that thin outlines at the crossings of the distorted Hermann grid induce lightness differences in the same direction as in the original Hermann grid illusion, even in foveal vision and in displays consisting of two crossing bars. Our experiments reveal that the induced lightness differences are independent of the luminance polarity and shape of the contours at the intersection. We suggest that the effect results from lateral inhibition and an additional spreading and capturing of these differences between luminance contours. A similar capturing between collinear contours may play a role in peripheral vision in the original Hermann grid.

  9. Contours, 2006 Contour Lines, Published in 2006, Johnson County, Iowa.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset as of 2006. It is described as '2006 Contour Lines'. Data by this publisher are often provided in State Plane coordinate system; in a Lambert...

  10. Bathymetric Contours - Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of a vector coverage of bathymetric contours with increasing resolution in coastal areas. Contours were derived from gridded National Ocean...

  11. SU-E-J-93: Development of Pre-Contoured Human Model Library in DICOM-RT Format for the Epidemiological Study of the Radiotherapy Patients

    International Nuclear Information System (INIS)

    Purpose: Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D beams-eye-view from the conventional simulator. To analyze the outcomes of such treatments for radiation late effects, 3D computational human models are often used in commercial treatment planning systems (TPSs). However, several underlying difficulties such as time-consuming manual delineation procedures of a large number of structures in the model have always limited its applications. Primary objective of this work was to develop a human model library for the epidemiological study by converting 3D-surface model organs to DICOM-RT format (DICOM-RT structure) using an in-house built software. We converted the ICRP reference human models to DICOM-RT models, which can be readily adopted for various dose calculations. Methods: MATLAB based code were utilized to convert the contour drawings extracted in text-format from the 3D graphic-tool, Rhinoceros into DICOM-RT structure format for 50 different organs of each model using a 16GB dual-core processor. The conversion periods were measured for each DICOM-RT models, and the reconstructed structure volumes were validated against the original 3D-surface models in the TPS. Ten reference hybrid whole-body models (8-pediatric and 2-adults) were automatically processed to create DICOM-RT computational human model library. Results: Mean contour conversion period was found to be 580 (N=2) and 394.5 (N=8) seconds for 50 organs in the adult and pediatric models respectively. A good agreement for large organs (NRMSD <1.0%) and small organs (NRMSD <7.7%) was also observed between the original volumes and corresponding DICOM-RT structure volumes of the organs. Conclusion: The ICRP reference human models were converted into DICOM-RT format to support the epidemiological study using a large cohort of conventional radiotherapy patients. Due to its DICOM-compatibility, the library may be implemented to many other different

  12. SU-E-J-93: Development of Pre-Contoured Human Model Library in DICOM-RT Format for the Epidemiological Study of the Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Pyakuryal, A; Lee, C [National Cancer Institute, Rockville, MD (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Pelletier, C [East Carolina University, Greenville, NC (United States); Jung, J [East Carolina Univ, Greenville, NC (United States)

    2015-06-15

    Purpose: Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D beams-eye-view from the conventional simulator. To analyze the outcomes of such treatments for radiation late effects, 3D computational human models are often used in commercial treatment planning systems (TPSs). However, several underlying difficulties such as time-consuming manual delineation procedures of a large number of structures in the model have always limited its applications. Primary objective of this work was to develop a human model library for the epidemiological study by converting 3D-surface model organs to DICOM-RT format (DICOM-RT structure) using an in-house built software. We converted the ICRP reference human models to DICOM-RT models, which can be readily adopted for various dose calculations. Methods: MATLAB based code were utilized to convert the contour drawings extracted in text-format from the 3D graphic-tool, Rhinoceros into DICOM-RT structure format for 50 different organs of each model using a 16GB dual-core processor. The conversion periods were measured for each DICOM-RT models, and the reconstructed structure volumes were validated against the original 3D-surface models in the TPS. Ten reference hybrid whole-body models (8-pediatric and 2-adults) were automatically processed to create DICOM-RT computational human model library. Results: Mean contour conversion period was found to be 580 (N=2) and 394.5 (N=8) seconds for 50 organs in the adult and pediatric models respectively. A good agreement for large organs (NRMSD <1.0%) and small organs (NRMSD <7.7%) was also observed between the original volumes and corresponding DICOM-RT structure volumes of the organs. Conclusion: The ICRP reference human models were converted into DICOM-RT format to support the epidemiological study using a large cohort of conventional radiotherapy patients. Due to its DICOM-compatibility, the library may be implemented to many other different

  13. 视频图像活动轮廓目标检测跟踪研究%Improved Active Contour Algorithm for Target Tracking and Positioning

    Institute of Scientific and Technical Information of China (English)

    胡继强

    2012-01-01

    Study the problem of target tracking and positioning accuracy. The traditional algorithms are difficult to effectively meet the target, which usually occur in the image scaling, rotation and shearing, etc. The paper proposed a target tracking method based on active contour orientation detection algorithm. In this method, we selected the ap propriate sliding window, used inter-frame difference to determine the video object motion regions, and used morpho logical filter to eliminate residual noise. Then, according to the features that target in activity profile has a high gray value, an adaptive threshold was used to determine the center of the sliding window target. When the sliding window traverse through the whole image, we can get the target location results. The simulation results show that the improved algorithm can not only eliminate the revealed background in difference image to obtain precise contours of moving vid eo objects, but also carried out multi-target segmenting and tracking, and is of some practical value.%研究视频图像目标跟踪定位精确度问题.由于在图像中通常会发生缩放,造成图像目标模糊不清.传统的目标跟踪算法该类算法仅以目标发生平移运动为假设前提,图像质量差.为解决上述问题,提出了一种活动轮廓目标跟踪定位检测算法.首先选择合适的滑窗,采用减背景法来确定视频对象的运动区域,采用卡尔曼形态滤波来消除残余的噪声,然后针对目标在活动轮廓局部内具有较高灰度值的特征,通过自适应阈值来判别滑窗中心位置是否存在目标.当滑窗遍历整幅图像后,就可以得到目标的定位结果.仿真结果表明,改进算法不仅能够消除差分图像中的显露背景,从而得到运动视频对象精确的轮廓,并且可进行多目标的分割与跟踪,具有一定的实际应用价值.

  14. Connection Skeleton Extraction Based on Contour Connectedness

    Institute of Scientific and Technical Information of China (English)

    CHEN Mang; LIU Yun-cai

    2008-01-01

    A stable skeleton is very important to some applications such as vehicle navigation, object represent and pattern recognition. The connection skeleton is just one that not only can be computed stably but also can figure the connectivity structure of contour. A new method named continuous connectivity detection and a new model named approximate regular polygon (ARP) were proposed for connection skeleton extraction. Both the method and the model were tested by the real maps of road network including flyovers, interchanges and other common object contours. Satisfactory results were obtained.

  15. Prostate contouring in MRI guided biopsy.

    Science.gov (United States)

    Vikal, Siddharth; Haker, Steven; Tempany, Clare; Fichtinger, Gabor

    2009-03-27

    With MRI possibly becoming a modality of choice for detection and staging of prostate cancer, fast and accurate outlining of the prostate is required in the volume of clinical interest. We present a semi-automatic algorithm that uses a priori knowledge of prostate shape to arrive at the final prostate contour. The contour of one slice is then used as initial estimate in the neighboring slices. Thus we propagate the contour in 3D through steps of refinement in each slice. The algorithm makes only minimum assumptions about the prostate shape. A statistical shape model of prostate contour in polar transform space is employed to narrow search space. Further, shape guidance is implicitly imposed by allowing only plausible edge orientations using template matching. The algorithm does not require region-homogeneity, discriminative edge force, or any particular edge profile. Likewise, it makes no assumption on the imaging coils and pulse sequences used and it is robust to the patient's pose (supine, prone, etc.). The contour method was validated using expert segmentation on clinical MRI data. We recorded a mean absolute distance of 2.0 ± 0.6 mm and dice similarity coefficient of 0.93 ± 0.3 in midsection. The algorithm takes about 1 second per slice. PMID:21132083

  16. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    International Nuclear Information System (INIS)

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer

  17. Active contour modes Crisp: new technique for segmentation of the lungs in CT images; Modelo de contorno ativo Crisp: nova tecnica de segmentacao dos pulmoes em imagens de TC

    Energy Technology Data Exchange (ETDEWEB)

    Reboucas Filho, Pedro Pedrosa; Cortez, Paulo Cesar [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Pneumologia

    2011-12-15

    This paper proposes a new active contour model (ACM), called ACM Crisp, and evaluates the segmentation of lungs in computed tomography (CT) images. An ACM draws a curve around or within the object of interest. This curve changes its shape, when some energy acts on it and moves towards the edges of the object. This process is performed by successive iterations of minimization of a given energy, associated with the curve. The ACMs described in the literature have limitations when used for segmentations of CT lung images. The ACM Crisp model overcomes these limitations, since it proposes automatic initiation and new external energy based on rules and radiological pulmonary densities. The paper compares other ACMs with the proposed method, which is shown to be superior. In order to validate the algorithm a medical expert in the field of Pulmonology of the Walter Cantidio University Hospital from the Federal University of Ceara carried out a qualitative analysis. In these analyses 100 CT lung images were used. The segmentation efficiency was evaluated into 5 categories with the following results for the ACM Crisp: 73% excellent, without errors, 20% acceptable, with small errors, and 7% reasonable, with large errors, 0% poor, covering only a small part of the lung, and 0% very bad, making a totally incorrect segmentation. In conclusion the ACM Crisp is considered a useful algorithm to segment CT lung images, and with potential to integrate medical diagnosis systems. (author)

  18. Using active contour models for feature extraction in camera-based seam tracking of arc welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren;

    2009-01-01

    In the recent decades much research has been performed in order to allow better control of arc welding processes, but the success has been limited, and the vast majority of the industrial structural welding work is therefore still being made manually. Closed-loop and nearly-closed-loop control of...

  19. From Inpainting to Active Contours

    DEFF Research Database (Denmark)

    Lauze, Francois Bernard; Nielsen, Mads

    2008-01-01

    Abstract   Background subtraction is an elementary method for detection of foreground objects and their segmentations. Obviously it requires an observation image as well as a background one. In this work we attempt to remove the last requirement by reconstructing the background from the observation...

  20. Detection of elliptical contours

    International Nuclear Information System (INIS)

    This dissertation describes the quantitation of myocardial perfusion defects in planar thallium-201 scintigrams. To be able to quantify the distribution of 201Tl in the myocardium as imaged by the scintigram, accurate delineation of the target object is a prerequisite. The distribution of the radionuclide within the contour of the left ventricle can be described by application of circumferential profiles. By comparing the computed circumferential profile with those of normal subjects, humans with no evidence of coronary artery disease, segments of the left ventricle with decreased bloodflow can be detected. In practice there is no real standard to compare with, and due to noise and biological variations, it is not always possible to make a definite decision regarding the presence of a defect in the distribution of the radionuclide. The value and limitations of the developed quantification procedure are discussed. Some future developments are suggested. 108 refs.; 57 figs.; 5 tabs

  1. The role of "contrast enhancement" in the detection and appearance of visual contours.

    Science.gov (United States)

    Hess, R F; Dakin, S C; Field, D J

    1998-03-01

    We test the proposition that the appearance and detection of visual contours is based on an increase in the perceived contrast of contour elements. First we show that detection of contours is quite possible in the presence of very high levels of variability in contrast. Second we show that inclusion in a contour does not induce Gabor patches to appear to be of higher contrast than patches outside of a contour. These results suggest that, contrary to a number of current models, contrast or its assumed physiological correlate (the mean firing rate of early cortical neurons) is not the determining information for identifying the contour.

  2. Recognizing the authenticity of emotional expressions: F0 contour matters when you need to know.

    Science.gov (United States)

    Drolet, Matthis; Schubotz, Ricarda I; Fischer, Julia

    2014-01-01

    Authenticity of vocal emotion expression affects emotion recognition and brain activity in the so-called Theory of Mind (ToM) network, which is implied in the ability to explain and predict behavior by attributing mental states to other individuals. Exploiting the variability of the fundamental frequency (F0 contour), which varies more (higher contour) in play-acted expressions than authentic ones, we examined whether contour biases explicit categorization toward a particular authenticity or emotion category. Moreover, we tested whether contour modulates blood-oxygen-level dependent (BOLD) response in the ToM network and explored the role of task as a top-down modulator. The effects of contour on BOLD signal were analyzed by contrasting high and low contour stimuli within two previous fMRI studies that implemented emotion and authenticity rating tasks. Participants preferentially categorized higher contour stimuli as play-acted and lower contour stimuli as sad. Higher contour was found to up-regulate activation task-independently in the primary auditory cortex. Stimulus contour and task were found to interact in a network including medial prefrontal cortex, with an increase in BOLD signal for low-contour stimuli during explicit perception of authenticity and an increase for high-contour stimuli during explicit perception of emotion. Contour-induced BOLD effects appear to be purely stimulus-driven in early auditory and intonation perception, while being strongly task-dependent in regions involved in higher cognition.

  3. Contours - MO 2012 Greene County NE 1ft Contours (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the northeast portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  4. Contours - MO 2012 Greene County SE 1ft Contours (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the southeast portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  5. Contours - MO 2012 Greene County NW 1ft Contours (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the northwest portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  6. Contours - MO 2012 Greene County SW 1ft Contours (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — 1ft contour file for the southwest portion of Greene County, Missouri. This file was created using the USGS corrected elevation data from the 2011 LiDAR flight. It...

  7. Contours - MO 2012 Greene County 5ft Contours (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — 5ft cartographic contour file for Greene County, Missouri. This file was created using the elevation data from the 2011 LiDAR flight. It includes indexes for 10,...

  8. Contours--Offshore Aptos, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Aptos map area, California. The vector data file is...

  9. Visualizing Contour Trees within Histograms

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Many of the topological features of the isosurfaces of a scalar volume field can be compactly represented by its contour tree. Unfortunately, the contour trees of most real-world volume data sets are too complex to be visualized by dot-and-line diagrams. Therefore, we propose a new visualization...... that is suitable for large contour trees and efficiently conveys the topological structure of the most important isosurface components. This visualization is integrated into a histogram of the volume data; thus, it offers strictly more information than a traditional histogram. We present algorithms...... to automatically compute the graph layout and to calculate appropriate approximations of the contour tree and the surface area of the relevant isosurface components. The benefits of this new visualization are demonstrated with the help of several publicly available volume data sets....

  10. Contours--Offshore Monterey, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents bathymetric contours for several seafloor maps of the Monterey Canyon and Vicinity map area, California. The raster data file is...

  11. Multivariate elliptically contoured autoregressive process

    OpenAIRE

    Taras Bodnar; Arjun K. Gupta

    2014-01-01

    In this paper, we introduce a new class of elliptically contoured processes. The suggested process possesses both the generality of the conditional heteroscedastic autoregressive process and the elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the link between the conditional time varying behavior of the covariance matrix of the returns and the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the non-dia...

  12. Automatic liver contouring for radiotherapy treatment planning

    Science.gov (United States)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-09-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems. The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours. The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  13. A variational approach for object contour tracking

    OpenAIRE

    Papadakis, Nicolas; Mémin, Etienne; Cao, Frederic

    2005-01-01

    International audience In this paper we describe a new framework for the tracking of closed curves described through implicit surface modeling. The approach proposed here enables a continuous tracking along an image sequence of deformable object contours. Such an approach is formalized through the minimization of a global spatio-temporal continuous cost functional stemming from a Bayesian Maximum a posteriori estimation of a Gaussian probability distribution. The resulting minimization seq...

  14. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    Science.gov (United States)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  15. Development of a contour meter

    International Nuclear Information System (INIS)

    The dosimetric calculation in patients that receive radiotherapy treatment it requires the one knowledge of the geometry of some anatomical portions, which differs from a patient to another. Making reference to the specific case of mammary neoplasia, one of the measurements that is carried out on the patient is the acquisition of the contour of the breast, which is determined from a point marked on the breastbone until another point marked on the lateral of the thorax, below the armpit, with the patient located in the irradiation position. This measurement is carried out with the help of a mechanical contour meter that is a device conformed by a series of wires with a polymeric coating, which support on the breast of the patient and it reproduces its form. Then it is transported in the more careful possible form on a paper and the contour is traced with a tracer one. The geometric error associated to this procedure is of ±1 cm, which is sensitive of being reduced. The present work finds its motivation in the patient's radiological protection radiotherapy. The maximum error in dose allowed in radiotherapeutic treatments is 5%. It would be increase the precision and with it to optimize the treatment received by the patient, reducing the error in the acquisition process of the mammary contour. With this objective, a digital device is designed whose operation is based in the application of a spatial transformation on a picture of the mammary contour, which corrects the geometric distortion introduced in the process of the photographic acquisition. An algorithm that allows to obtain a front image (without distortion) of the plane of the contour was developed. A software tool especially developed carries out the processing of the digital images. The maximum geometric error detected in the validation process is 2 mm located on a small portion of the contour. (Author)

  16. 龈缘轮廓三维统计模型建模技术研究%Research on Modeling Technology of 3D Statistical Model for Gingival Contours

    Institute of Scientific and Technical Information of China (English)

    吴婷; 廖文和; 戴宁

    2012-01-01

    为建立龈缘轮廓统计模型,提出了一种利用三角网格牙颌模型进行龈缘形态建模的方法.首先对牙颌模型进行离散曲率分析、最短路径搜索来探测龈缘特征线;根据特征线的微分特性进行单颗牙龈缘划分;然后通过B样条曲线拟合构建出每颗牙齿封闭光滑的龈缘轮廓线,并利用曲线的控制顶点作为龈缘训练形状向量;最后通过对形状训练集进行主成分分析来建立统计形状模型.实验结果表明该方法不仅能够自动而快速地提取出单颗牙齿龈缘轮廓,而且建立的统计模型能够正确而有效地捕获牙弓以及龈缘形态的重要变化特征.%A novel and automatic shape modeling methodology for gingivaL contours from dental triangle meshes was proposed to build a 3D statistical model. The gingival feature lines were first obtained from the 3D dental model through a discrete curvature analysis and shortest path searching algorithm. Based on the gingival line differential characteristics, the feature lines were partitioned to demarcate the gingival line of each individual tooth. Through B - spline curve approximation to form the closed and smooth gingival contour of each tooth, the shape vector for training the model was then achieved using the control points of the B-spline curves. Finally,the statistical shape model was constructed through principle component analysis on the training set of the gingival shape vector. Experimental results demonstrate that this method can detect the gingival contours automatically and fastly,and the statistical model can capture the important variations effectively in arch and gingival morphology.

  17. A fast quantum mechanics based contour extraction algorithm

    Science.gov (United States)

    Lan, Tian; Sun, Yangguang; Ding, Mingyue

    2009-02-01

    A fast algorithm was proposed to decrease the computational cost of the contour extraction approach based on quantum mechanics. The contour extraction approach based on quantum mechanics is a novel method proposed recently by us, which will be presented on the same conference by another paper of us titled "a statistical approach to contour extraction based on quantum mechanics". In our approach, contour extraction was modeled as the locus of a moving particle described by quantum mechanics, which is obtained by the most probable locus of the particle simulated in a large number of iterations. In quantum mechanics, the probability that a particle appears at a point is equivalent to the square amplitude of the wave function. Furthermore, the expression of the wave function can be derived from digital images, making the probability of the locus of a particle available. We employed the Markov Chain Monte Carlo (MCMC) method to estimate the square amplitude of the wave function. Finally, our fast quantum mechanics based contour extraction algorithm (referred as our fast algorithm hereafter) was evaluated by a number of different images including synthetic and medical images. It was demonstrated that our fast algorithm can achieve significant improvements in accuracy and robustness compared with the well-known state-of-the-art contour extraction techniques and dramatic reduction of time complexity compared to the statistical approach to contour extraction based on quantum mechanics.

  18. Contour Propagation With Riemannian Elasticity Regularization

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Sapru, W.;

    2011-01-01

    guided corrections. This study compares manual delineations in replanning CT scans of head-and-neck patients to automatic contour propagation using deformable registration with Riemannian regularization. The potential benefit of locally assigned regularization parameters according to tissue type...... the planning CT onto the rescans and correcting to reflect actual anatomical changes. For deformable registration, a free-form, multi-level, B-spline deformation model with Riemannian elasticity, penalizing non-rigid local deformations, and volumetric changes, was used. Regularization parameters was defined...... regularization parameters was performed. For each replanning scan, the volume of the manually delineated and automatically propagated GTV was determined and Dice’s coefficient was calculated between segmentations from the propagated contours and manual delineations. Results: The replanning segmentations showed...

  19. Contour detection combined with depth information

    Science.gov (United States)

    Xiao, Jie; Cai, Chao

    2015-12-01

    Many challenging computer vision problems have been proven to benefit from the incorporation of depth information, to name a few, semantic labellings, pose estimations and even contour detection. Different objects have different depths from a single monocular image. The depth information of one object is coherent and the depth information of different objects may vary discontinuously. Meanwhile, there exists a broad non-classical receptive field (NCRF) outside the classical receptive field (CRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. Based on the findings and researches, a biological-inspired contour detection model which combined with depth information is proposed in this paper.

  20. Contour Estimation by Array Processing Methods

    Directory of Open Access Journals (Sweden)

    Bourennane Salah

    2006-01-01

    Full Text Available This work is devoted to the estimation of rectilinear and distorted contours in images by high-resolution methods. In the case of rectilinear contours, it has been shown that it is possible to transpose this image processing problem to an array processing problem. The existing straight line characterization method called subspace-based line detection (SLIDE leads to models with orientations and offsets of straight lines as the desired parameters. Firstly, a high-resolution method of array processing leads to the orientation of the lines. Secondly, their offset can be estimated by either the well-known method of extension of the Hough transform or another method, namely, the variable speed propagation scheme, that belongs to the array processing applications field. We associate it with the method called "modified forward-backward linear prediction" (MFBLP. The signal generation process devoted to straight lines retrieval is retained for the case of distorted contours estimation. This issue is handled for the first time thanks to an inverse problem formulation and a phase model determination. The proposed method is initialized by means of the SLIDE algorithm.

  1. Shape reconstruction from apparent contours theory and algorithms

    CERN Document Server

    Bellettini, Giovanni; Paolini, Maurizio

    2015-01-01

    Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.

  2. Body Image and Body Contouring Procedures.

    Science.gov (United States)

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures. PMID:27634782

  3. Body Image and Body Contouring Procedures.

    Science.gov (United States)

    Sarwer, David B; Polonsky, Heather M

    2016-10-01

    Dissatisfaction with physical appearance and body image is a common psychological phenomena in Western society. Body image dissatisfaction is frequently reported by those who have excess body weight, but also is seen in those of normal body weight. For both groups of individuals, this dissatisfaction impacts self-esteem and quality of life. Furthermore, it is believed to be the motivational catalyst to a range of appearance-enhancing behaviors, including weight loss efforts and physical activity. Body image dissatisfaction is also believed to play a role in the decision to seek the wide range of body contouring procedures offered by aesthetic physicians. Individuals who seek these procedures typically report increased body image dissatisfaction, focus on the feature they wish to alter with treatment, and often experience improvement in body image following treatment. At the same time, extreme body image dissatisfaction is a symptom of a number of recognized psychiatric disorders. These include anorexia nervosa, bulimia nervosa, and body dysmorphic disorder (BDD), all of which can contraindicate aesthetic treatment. This special topic review paper provides an overview of the relationship between body image dissatisfaction and aesthetic procedures designed to improve body contouring. The review specifically focuses on the relationship of body image and body weight, as well as the presentation of body image psychopathology that would contraindicate aesthetic surgery. The overall goal of the paper is to highlight the clinical implications of the existing research and provide suggestions for future research on the psychological aspects of body contouring procedures.

  4. Multivariate elliptically contoured autoregressive process

    Directory of Open Access Journals (Sweden)

    Taras Bodnar

    2014-05-01

    Full Text Available In this paper, we introduce a new class of elliptically contoured processes. The suggested process possesses both the generality of the conditional heteroscedastic autoregressive process and the elliptical symmetry of the elliptically contoured distributions. In the empirical study we find the link between the conditional time varying behavior of the covariance matrix of the returns and the time variability of the investor’s coefficient of risk aversion. Moreover, it is shown that the non-diagonal elements of the dispersion matrix are slowly varying in time.

  5. Topological Cacti: Visualizing Contour-based Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio

    2011-05-26

    Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introduce a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.

  6. Active Shape Models Using Scale Invariant Feature Transform

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database.

  7. Illusory contour formation survives crowding.

    Science.gov (United States)

    Lau, Jonathan Siu Fung; Cheung, Sing-Hang

    2012-06-12

    Flanked objects are difficult to identify using peripheral vision due to visual crowding, which limits conscious access to target identity. Nonetheless, certain types of visual information have been shown to survive crowding. Such resilience to crowding provides valuable information about the underlying neural mechanism of crowding. Here we ask whether illusory contour formation survives crowding of the inducers. We manipulated the presence of illusory contours through the (mis)alignment of the four inducers of a Kanizsa square. In the inducer-aligned condition, the observers judged the perceived shape (thin vs. fat) of the illusory Kanizsa square, manipulated by small rotations of the inducers. In the inducer-misaligned condition, three of the four inducers (all except the upper-left) were rotated 90°. The observers judged the orientation of the upper-left inducer. Crowding of the inducers worsened observers' performance significantly only in the inducer-misaligned condition. Our findings suggest that information for illusory contour formation survives crowding of the inducers. Crowding happens at a stage where the low-level featural information is integrated for inducer orientation discrimination, but not at a stage where the same information is used for illusory contour formation.

  8. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  9. Application Of Moire Contour Fringes To Study Nycticebus Coucany

    Science.gov (United States)

    Ren-xiang, Zhang; Ming, Lu; Zu-yun, Lan; Wen-ji, Qu

    1984-12-01

    In this paper we have studied the moire contour fringes of the skull and femur knee joint of Nycticebus coucany and obtained the following results: 1. The skull's value K is very useful for comparative study with the different kinds of Primate. 2. The moire contour fringes of the tibia facies of knee joint is convex on one side while the other side is concave. 3. At the same condition the grade of the first moire contour fringe of connection on the femur knee joint between the two condyles and its angle β are smaller than Hylobates concolor leucongeuys. This study is significant, because: 1. The evolution of skull may be related with the increased value K. 2. The moire contour fringes of the Nycticebus coucany's tibia and femur knee joint have lower range of activity. 3. From the moire contour fringes of knee, the Nycticebus coucany and. Hylobates concolor leucongeuys are of one kind. But the moire contour Nycticebus of tibia is different form.

  10. Auto-propagation of contours for adaptive prostate radiation therapy

    International Nuclear Information System (INIS)

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future

  11. Body Contouring After Major Weight Loss

    Science.gov (United States)

    ... Blog Plastic Surgery Statistics ASPS TV News Program History of Plastic Surgery For Medical Professionals ... Major Weight Loss Body Contouring After Major Weight Loss For Men and Women Body contouring following major weight loss improves the ...

  12. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Directory of Open Access Journals (Sweden)

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  13. Dependence of V2 illusory contour response on V1 cell properties and topographic organization.

    Science.gov (United States)

    Cohen, Amelia; Buia, Calin; Tiesinga, Paul

    2014-06-01

    An illusory contour is an image that is perceived as a contour in the absence of typical contour characteristics, such as a change in luminance or chromaticity across the stimulus. In cats and primates, cells that respond to illusory contours are sparse in cortical area V1, but are found in greater numbers in cortical area V2. We propose a model capable of illusory contour detection that is based on a realistic topographic organization of V1 cells, which reproduces the responses of individual cell types measured experimentally. The model allows us to explain several experimentally observed properties of V2 cells including variability in orientation tuning and inducer spacing preference. As a practical application, the model can be used to estimate the relationship between the severity of a cortical injury in the primary visual cortex and the deterioration of V2 cell responses to real and illusory contours. PMID:24801874

  14. Splines, contours and SVD subroutines

    International Nuclear Information System (INIS)

    Portability of Fortran code is a major concern these days, since hardware and commercial software change faster than the codes themselves. Hence, using public domain, portable, mathematical subroutines is imperative. Here we present a collection of subroutines we have used in the past, and found to be particularly useful. They are: 2-dimensional splines, contour tracing of flux surface (based on 2-D spline), and singular Value Matrix Decomposition (for Chi-square minimization)

  15. Grouping by proximity in haptic contour detection.

    Directory of Open Access Journals (Sweden)

    Krista E Overvliet

    Full Text Available We investigated the applicability of the Gestalt principle of perceptual grouping by proximity in the haptic modality. To do so, we investigated the influence of element proximity on haptic contour detection. In the course of four sessions ten participants performed a haptic contour detection task in which they freely explored a haptic random dot display that contained a contour in 50% of the trials. A contour was defined by a higher density of elements (raised dots, relative to the background surface. Proximity of the contour elements as well as the average proximity of background elements was systematically varied. We hypothesized that if proximity of contour elements influences haptic contour detection, detection will be more likely when contour elements are in closer proximity. This should be irrespective of the ratio with the proximity of the background elements. Results showed indeed that the closer the contour elements were, the higher the detection rates. Moreover, this was the case independent of the contour/background ratio. We conclude that the Gestalt law of proximity applies to haptic contour detection.

  16. Motion estimation of elastic articulated objects from image contours

    Institute of Scientific and Technical Information of China (English)

    PAN Hai-lang; DAI Yue-wei; SHI Lei

    2008-01-01

    A new method of elastic articulated objects (human bodies) modeling was presented based on a new conic curve. The model includes 3D object deform able curves which can represent the deformation of human occluding contours. The deformation of human occluding contour can be represented by adjusting only four de-formation parameters for each limb. Then, the 3D deformation parameters are determined by corresponding 2Dcontours from a sequence of stereo images. The algorithm presented in this paper includes deform able conic curve parameters determination and the plane, 3D conic curve lying on, parameter determination.

  17. Theory on the molecular characteristic contour(Ⅰ)——A new approach to defining molecular characteristic contour

    Institute of Scientific and Technical Information of China (English)

    赵东霞; 杨忠志

    1999-01-01

    Based on the classical turning point of electron movement in a molecule, a model for defining the molecular characteristic boundary contour is advanced. By using an accurate ab initio MELD program and an auxiliary program, some electron parameters in a molecule, such as the potential felt by an electron, have been evaluated. According to our model and definition, the molecular characteristic contour of the equilibrium geometry configuration is drawn and a vivid intuitive picture for describing the forming or breaking of a chemical bond is displayed.

  18. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  19. Antenna surface contour control system

    Science.gov (United States)

    Ahl, Elvin L.; Miller, James B.

    1989-03-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  20. A Robust Algorithm of Contour Extraction for Vehicle Tracking

    Institute of Scientific and Technical Information of China (English)

    FANZhimin; ZHOUJie; GAODashan

    2003-01-01

    Contour extraction of moving vehicle is an important and challenging issue in traffic surveillance. In this paper, a robust algorithm is proposed for contour ex-traction and moving vehicle tracking. First, we establish a modified snake model and utilize the directional infor-mation of the edge map to guide the snaxels' behavior.Then an adaptive shape restriction is embedded into the algorithm to govern the scope of the snake's motion, and Kalman filter is employed to estimate spatio-temporal rela-tionship between successive frames. In addition~ multiple refinements are suggested to compensate for the snake's vulnerability to fake edges. All of them contribute to a ro-bust overall performance in contour extraction and vehicle tracking. Experimental results in real traffic scene prove the effectiveness of our algorithm.The comparison with conventional snakes is also provided.

  1. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2–CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring

  2. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    Science.gov (United States)

    Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.

    2015-06-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on

  3. Contours, Two Foot Contours, Published in 2007, Not Applicable scale, Dunn County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at Not Applicable scale, was produced all or in part from LIDAR information as of 2007. It is described as 'Two Foot Contours'....

  4. NY_GOME_CONTOURS: New York Bight and Gulf of Maine bathymetric contours

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This bathymetric shapefile contains 10 m contours for the continental shelf and 100 m beyond the 200 m shelf edge. The contours have been derived from the National...

  5. A United Image Force for Deformable Models and Direct Transforming Geometric Active Contorus to Snakes by Level Sets

    CERN Document Server

    Lu, Hongyu

    2012-01-01

    The image force in active contours plays a key role for shape recovery in medical image analysis. The image force constructed from the heat diffusion model can not indicate segment the image accurately through it exhibits a uniform distribution of force field around the object. The features of the image force based on electrostatic field model are opposite. Firstly, this study introduces a fusion scheme of these two image forces, which capable of extracting the object boundary with high precision and fast speed. Till now, there is no satisfied analysis of the relationship between Snakes and Geometric Active Contour. The second contribution of this study indicates that the GAC model can be deduced directly from Snakes models. It proves that the each term in GAC and Snakes is correspondent and has the same function. These two models are only expressed using different mathematics.

  6. Contours of New Economic Theory

    Directory of Open Access Journals (Sweden)

    Garry Jacobs

    2015-05-01

    Full Text Available The need for a paradigm change in economic thought has been well established, but the contours and fundamental characteristics of a new paradigm in economic theory are yet to be worked out. This article views this transition as an inevitable expression of the maturation of the social sciences into an integrated trans-disciplinary science of society founded on common underlying principles, premises and processes. It calls for evolution of human-centered, value-based economic theory whose objective is to maximize human economic security, welfare and well-being rather than economic growth. It emphasizes the determinative role of fundamental creative social processes expressing in all fields of human endeavor. It argues for extending the boundaries of economics to encompass the entire gamut of political, legal, social, psychological, intellectual, organizational and ecological factors that directly and indirectly contribute to economic security, welfare and well-being. The article concludes with a list of anticipated practical implications.

  7. Sodium Deoxycholate for Submental Contouring.

    Science.gov (United States)

    Humphrey, S; Beleznay, K; Beleznay, J D A

    2016-09-01

    The chin and jaw line are integral parts of an individual's aesthetic profile, and the presence of submental fat detracts from this and can lead to displeasure with one's facial appearance. While liposuction and cosmetic surgery are regarded as the gold standard in treating submental fat, surgical intervention is not appealing to all patients and has potential surgical complications including longer recovery, and contour irregularities. Despite ample advances in aesthetic medicine to enhance the appearance of the face, very little is available in non-invasive options to reduce submental fat that has been supported by robust evidence. ATX-101, a proprietary formulation of deoxycholic acid that is synthetically derived, has been extensively explored in a vigorous clinical development program that has established the safety and efficacy of the injectable. It has recently received approval by regulatory authorities in Canada (Belkyra™) and the US (Kybella®) for the treatment of submental fat. PMID:27603325

  8. Ladder contours are undetectable in the periphery: a crowding effect?

    Science.gov (United States)

    May, Keith A; Hess, Robert F

    2007-10-29

    We studied the perceptual integration of contours consisting of Gabor elements positioned along a smooth path, embedded among distractor elements. Contour elements either formed tangents to the path ("snakes") or were perpendicular to it ("ladders"). Perfectly straight snakes and ladders were easily detected in the fovea but, at an eccentricity of 6 degrees , only the snakes were detectable. The disproportionate impairment of peripheral ladder detection remained when we brought foveal performance away from ceiling by jittering the orientations of the elements. We propose that the failure to detect peripheral ladders is a form of crowding, the phenomenon observed when identification of peripherally located letters is disrupted by flanking letters. D. G. Pelli, M. Palomares, and N. J. Majaj (2004) outlined a model in which simple feature detectors are followed by integration fields, which are involved in tasks, such as letter identification, that require the outputs of several detectors. They proposed that crowding occurs because small integration fields are absent from the periphery, leading to inappropriate feature integration by large peripheral integration fields. We argue that the "association field," which has been proposed to mediate contour integration (D. J. Field, A. Hayes, & R. F. Hess, 1993), is a type of integration field. Our data are explained by an elaboration of Pelli et al.'s model, in which weak ladder integration competes with strong snake integration. In the fovea, the association fields were small, and the model integrated snakes and ladders with little interference. In the periphery, the association fields were large, and integration of ladders was severely disrupted by interference from spurious snake contours. In contrast, the model easily detected snake contours in the periphery. In a further demonstration of the possible link between contour integration and crowding, we ran our contour integration model on groups of three-letter stimuli

  9. 对数似然图像分割的快速主动轮廓跟踪算法%Fast active contour tracking algorithm based on log-likelihood image segmentation

    Institute of Scientific and Technical Information of China (English)

    杨华; 陈善静; 曾凯; 张红

    2012-01-01

    针对跟踪目标尺度变化问题,提出了基于灰度对数似然图像分割的快速主动轮廓跟踪算法.改进的主动轮廓跟踪算法将根据以目标与背景的颜色差异而建立的对数似然图对图像进行阈值分割和数学形态学处理,再将Kalman滤波器结合到主动轮廓跟踪算法进行目标跟踪.改进的主动轮廓跟踪算法对目标分割准确,轮廓特征显著,跟踪效果稳定,算法能很好地适应跟踪目标尺度变化.通过Kalman滤波器对目标位置点的预测减少了主动轮廓跟踪算法收敛的迭代次数,使算法的运算效率提高了33%左右.%A fast active contour tracking(ACT) algorithm based on log-likelihood image segmentation has been proposed to solve the scale change problem in the process of target tracking. The algorithm adopts the log-likelihood image segmentation method, which segments images according to their log-likelihood images built based on the color difference between target and background, and the mathematical morphology method, and tracks the target with conventional ACT algorithm combined with Kalman filter. It tracks the target precisely with distinct contour features and stable tracking performance, and can well adapt to the target scale change. The Kalman filter adopted reduces the number of iterations for algorithm convergence through its forecast of the target position, and thus the fast ACT algorithm is about 33% more efficient than the conventional one.

  10. Contour extracting networks in early extrastriate cortex

    NARCIS (Netherlands)

    Dumoulin, Serge O.; Hess, Robert F.; May, Keith A.; Harvey, Ben M.; Rokers, Bas; Barendregt, Martijn

    2014-01-01

    Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ''association field'' proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour i

  11. RFP for the Comet Nuclei Tour (CONTOUR)

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio;

    1999-01-01

    This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....

  12. Contour Detection Operators Based on Surround Inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve contour detection in images of natural scenes. We augment a Gabor energy operator with non-CRF inhibition. The resulting contour operator responds strongly to isolated lines,

  13. Specific activities and radioactive contour maps of natural and anthropogenic radionuclides in beach sand samples (Patong, Kamala, Kata, Karon and Nai Yang) after tsunami disaster in Phuket province, Thailand

    International Nuclear Information System (INIS)

    Specific activities of natural (40K, 226Ra and 232Th) and anthropogenic (137Cs) radionuclides in 155 beach sand samples collected from Patong, Kamala, Kata, Karon and Nai Yang beaches, which were affected by the 2004 tsunami disaster, in Phuket province, Thailand, have been studied and measured. Experimental results were obtained by using a high-purity germanium detector and gamma spectrometry analysis system. Gamma ray from radioactive standard sources Cesium-137 (137Cs), Cobalt-60 (60Co) and Barium-133 (133Ba) were used to calibrate the measurement system. KCl, two well-known (IAEA/RGU-1 and IAEA/RGTh-1) and IAEA/SL-2 reference materials obtained from the International Atomic Energy Agency were used to analyze and compute the 40K, 226Ra, 232Th and 137Cs specific activities in samples from five beaches. The measuring time of each sample is 10,800 s. It was found that the average specific activity of 40K in these areas (2459.14 ± 171.71 Bq/kg) was rather high. Furthermore, the results were also used to evaluate the absorbed dose rates in air (D), the radium equivalent (Raeq), the external hazard index (Hex) and the annual effective dose rate (AEDout) in all beach areas. Moreover, experimental results were compared with the Office of Atoms for Peace research data, Thailand as well as with global radioactivity measurements and evaluations. All of the calculated values (40K, 226Ra, 232Th and 137Cs) were also compared with the recommended values which were proposed by the Organization for Economic Cooperation and Development (Exposure to radiation from natural radioactivity in building materials, 1979) and United Nations Scientific Committee on the Effects of Atomic Radiation (Sources, effects and risk of ionizing radiation, 1988; Exposure from natural sources of radiation, 1993; Sources, effects and risk of ionizing radiation, 2000). The data can be also used to create the radioactive contour maps of the investigated area. (author)

  14. Event-Based Activity Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2004-01-01

    We present and discuss a modeling approach that supports event-based modeling of information and activity in information systems. Interacting human actors and IT-actors may carry out such activity. We use events to create meaningful relations between information structures and the related activit...

  15. Optical contouring of an acrylic surface for non-intrusive diagnostics in pipe-flow investigations

    Science.gov (United States)

    de Witt, Benjamin J.; Coronado-Diaz, Haydee; Hugo, Ronald J.

    2008-07-01

    In this work, an acrylic surface was optically contoured to correct for the optical distortion caused by a transparent pipe wall. This method can be applied to non-invasive viewing/imaging techniques for fluid flow experiments. Software tools were developed to aid in the design of an optically contoured acrylic test section for pipe-flow experiments. Numerical models were computed for a standard acrylic pipe, inner diameter 57.15 mm, with water enclosed. An optical contour prototype was machined on a 5-axis CNC machine, and polished with 1-15 μm diamond paste, alleviating any surface imperfections without significantly altering the contoured surface. Experiments were then performed to measure the emerging optical wavefront and was found to emerge planar when utilizing the optical contour. It was determined that the wavefront was corrected to within ten wavelengths of a Helium-Neon (He-Ne) laser beam.

  16. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models......This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...

  17. Contours, This Layer was derived from the USGS National Elevation Dataset (NED) based on 7.5 minute Digital Elevation Model (DEM) image files., Published in 1999, 1:24000 (1in=2000ft) scale, Atlanta Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 1999. It is described as 'This Layer was...

  18. Bathymetric Contours, A precursor to this dataset was developed as a surface for numerical wave modeling., Published in 1994, 1:24000 (1in=2000ft) scale, Louisiana State University.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Bathymetric Contours dataset, published at 1:24000 (1in=2000ft) scale as of 1994. It is described as 'A precursor to this dataset was developed as a surface...

  19. Automatic Extraction of Femur Contours from Calibrated X-Ray Images using Statistical Information

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2007-09-01

    Full Text Available Automatic identification and extraction of bone contours from x-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated x-ray images. The automatic initialization to align the 3D model with the x-ray images is solved by an Estimation of Bayesian Network Algorithm to fit a simplified multiple component geometrical model of the proximal femur to the x-ray data. Landmarks can be extracted from the geometrical model for the initialization of the 3D statistical model. The contour extraction is then accomplished by a joint registration and segmentation procedure. We iteratively updates the extracted bone contours and an instanced 3D model to fit the x-ray images. Taking the projected silhouettes of the instanced 3D model on the registered x-ray images as templates, bone contours can be extracted by a graphical model based Bayesian inference. The 3D model can then be updated by a non-rigid 2D/3D registration between the 3D statistical model and the extracted bone contours. Preliminary experiments on clinical data sets verified its validity.

  20. Automatic Detection of Adenocarcinoma using Active Contours

    OpenAIRE

    NeelapalaAnilKumar; M. SatyaAnuradha; Pilla Srinivas; Ravuri Daniel

    2013-01-01

    CT scan is the one of the image representation for abdomen, where the tumour to be located and specified effectively with clarity, by the medical expert. This role can be hold by using one of the image processing techniques called segmentation. Image segmentation is the technique which isolates the image into different regions to simplify the image and identify the Tumour easily. Image segmentation has been extensively studied by various approaches. This work, focus on the one of the image se...

  1. Coronal loop detection and salient contour group extraction from solar images

    Science.gov (United States)

    Durak, Nurcan

    2011-01-01

    This dissertation addresses two different problems: 1) coronal loop detection from solar images: and 2) salient contour group extraction from cluttered images. In the first part, we propose two different solutions to the coronal loop detection problem. The first solution is a block-based coronal loop mining method that detects coronal loops from solar images by dividing the solar image into fixed sized blocks, labeling the blocks as "Loop" or "Non-Loop", extracting features from the labeled blocks, and finally training classifiers to generate learning models that can classify new image blocks. The block-based approach achieves 64% accuracy in 10-fold cross validation experiments. To improve the accuracy and scalability, we propose a contour-based coronal loop detection method that extracts contours from cluttered regions, then labels the contours as "Loop" and "Non-Loop", and extracts geometric features from the labeled contours. The contour-based approach achieves 85% accuracy in 10-fold cross validation experiments, which is a 20% increase compared to the block-based approach. In the second part, we propose a method to extract semi-elliptical open curves from cluttered regions. Our method consists of the following steps: obtaining individual smooth contours along with their saliency measures; then starting from the most salient contour, searching for possible grouping options for each contour; and continuing the grouping until an optimum solution is reached. Our work involved the design and development of a complete system for coronal loop mining in solar images, which required the formulation of new Gestalt perceptual rules and a systematic methodology to select and combine them in a fully automated judicious manner using machine learning techniques that eliminate the need to manually set various weight and threshold values to define an effective cost function. After finding salient contour groups, we close the gaps within the contours in each group and perform

  2. Contours--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Pigeon Point map area, California. The vector data file is...

  3. Water-table contours of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of water-table contours for Nevada. These data were created as part of an effort to provide statewide information on water table and depth to...

  4. Contours--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3254) of the Offshore of Ventura map...

  5. Contours--Offshore of Santa Barbara, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3281 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3281) of the Offshore of Santa Barbara...

  6. Contours--Offshore Santa Cruz, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Santa Cruz map area, California. The vector data file is...

  7. Contours-Offshore of Bodega Head, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bodega Head map area, California. The vector data file...

  8. Contours--Offshore of San Francisco, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of San Francisco map area, California. The vector data file...

  9. Contours--Monterey Canyon and Vicinity, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents bathymetric contours for several seafloor maps of the Monterey Canyon and Vicinity map area, California. The raster data file is...

  10. Contours, Published in unknown, Sheboygan county.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset as of unknown. Data by this publisher are often provided in Sheboygan County Coordinate Grid coordinate system; in a Mercator projection; The...

  11. Contours--Offshore Coal Oil Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3302 presents bathymetric contours for several seafloor maps of Offshore Coal Oil Point, California (vector data file is included in...

  12. Contours--Offshore of Pacifica, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Pacifica map area, California. The vector data file is...

  13. Transgressive Contours--Bolinas to Pescadero, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the transgressive contours for the Bolinas to Pescadero, California, region. The vector file is included in...

  14. Contours--Offshore of Bolinas, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Bolinas map area, California. The vector data file is...

  15. Contours--Offshore of Fort Ross, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Fort Ross map area, California. The vector data file is...

  16. Contours Offshore of Tomales Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Tomales Point map area, California. The vector data file...

  17. Modified Contour-Improved Perturbation Theory

    OpenAIRE

    Cvetic, Gorazd; Loewe, Marcelo; Martinez, Cristian; Valenzuela, Cristian

    2010-01-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard "contour improved" method based on a derivative expansion of the Adler function. The approach eliminates ambiguities coming from the existence of different integral expressions for the semihadronic tau decay ratio. Compared to the standard method, renormalization scale dependence is by more than a factor two weaker in modified contour improved p...

  18. Windows and Facades Retrieval using Similarity on Graph of Contours

    OpenAIRE

    Haugeard, Jean-Emmanuel; Philipp-Foliguet, Sylvie; Precioso, Frédéric

    2009-01-01

    International audience The development of street-level geoviewers become recently a very active and challenging research topic. In this context, the detection, representation and classification of windows can be beneficial for the identification of the respective facade. In this paper, a novel method for windows and facade retrieval is presented. This method, based on a similarity of graph of contours, introduces a new kernel on graph for inexact graph matching. We design a kernel similari...

  19. Perception of illusory contours enhanced in motion

    Institute of Scientific and Technical Information of China (English)

    倪睿; 王志宏; 吴新年; 汪云九; 李东光

    2003-01-01

    Investigation on illusory contours is important for understanding the mechanisms un-derlying the object recognition of human visual system. Numerous researches have shown that illusory contours formed in motion and stereopsis are generated by the unmatched features. Here we conduct three psychophysical experiments to test if Kanizsa illusory contours are also caused by unmatched information. Different types of motion (including horizontal translation, radial ex-panding and shrinking) are utilized in the experiments. The results show that no matter under what kind of motion, when figures or background move separately illusory contours are perceived stronger, and there is no significant difference between the perceived strength in these two types of motion. However, no such enhancement of perceived strength is found when figures and background move together. It is found that the strengthened unmatched features generate the enhancement effect of illusory contour perception in motion. Thus the results suggest that the process of unmatched information in visual system is a critical step in the formation of illusory contours.

  20. Specific Activities and Radioactive Contour Maps of Natural (238U, 232Th, 226Ra and 40K ) and Anthropogenic (137Cs) Radionuclides in Beach Sand Samples Collected from Nai Yang Beach of Phuket Province After Tsunai Disaster

    International Nuclear Information System (INIS)

    Full text: Specific activities of natural (238U, 232Th, 226Ra and 40K) and artificial anthropogenic (137Cs) radionuclides in 50 beach sand samples collected from Nai Yang beach in Phuket province which was effected from 2004 tsunami disaster, have been studied and measured. Experimental results were obtained by using a high-purity germanium (HPGe) detector and gamma spectrometry analysis system and also evaluated by using the standard reference materials IAEA/RGU-1, IAEA/RGTh-1, KCL and SL-2 which were obtained from Department of Physics, Faculty of Science, Prince of Songkhla University Hat Yai Campus. Experimental set-up and measurements were operated and carried out at Nuclear and Material Physics Laboratory in Department of Physics, Faculty of Science, Thaksin University Songkhla Campus. It was found that, the beach sand specific activity ranges from 862.50 to 3,356.35 Bq/kg for 40K, 3.51- 28.58 Bq/kg for 226Ra, 10.15 to 30.22 Bq/kg for 232Th and 0.00 to 2.39 Bq/kg for 137Cs with mean values of 1,843.03 ± 152.49 Bq/kg, 14.88 ± 3.30 Bq/kg, 19.19 ± 2.80 Bq/kg and 0.14 ± 0.11 Bq/kg, respectively. Furthermore, the results were also used to evaluate the absorbed dose rates in air (D), the radium equivalent (Raeq), the external hazard index (Hex) and the annual effective dose rate (AED) in all beach area. Moreover, experimental results were also compared to the Office of Atoms for Peace (OAP) research data, Thailand and global radioactivity measurements and evaluation, the recommended values which were proposed by the Organization for Economic Cooperation and Development (OECD, 1979) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 1988, 1993, 2000). Specific activities of natural and artificial anthropogenic radionuclides in all of Nai Yang beach sand samples could be also used to create the radioactive contour maps

  1. Reconstruction of 3D Surface Contour Model of Object Based on Convex Hull%基于凸包的物体三维表面轮廓模型的构建

    Institute of Scientific and Technical Information of China (English)

    乔海峰; 王林豪

    2013-01-01

    In this dissertation, A method was presented to get the approximate surface contour model of the object based on con?vex hull. Through doing convex hull operation on scattered point sets gained from various method which was pretreated could obtain surface extreme point of the object.Then rebuilt the surface of the object according to these points.In this article taking Vi?sual C++ 6.0 for platform,using visualization class library VTK,we also did computer simulation of this method.and got a compa?rable ideal result.%该文提出了一种以凸包为基础来表达物体表面近似轮廓模型的方法.通过对由各种方式所得的散乱点集进行预处理,然后进行凸包运算,求得物体表面轮廓极值点,再依据这些点进行物体表面的三维重建.该文以Visual C++6.0为开发平台,采用可视化类库VTK,对这一方法进行计算机仿真,取得了较为理想的效果.

  2. Study of detonation wave contours in EFP warhead

    OpenAIRE

    Xu-dong Zu; Zheng-xiang Huang; Chuan-sheng Zhu; Qiang-qiang Xiao

    2016-01-01

    An analytical model for calculating the propagation time of shock wave in a wave shaper is presented in this study. The calculated results show that the contours of three typical detonation waves, such as conical detonation wave, spherical detonation wave, and planar detonation wave, can be formed in the main charge by changing the thickness of wave shaper. The results show that the planar detonation wave do better than the conical detonation and the spherical detonation wave in increasing...

  3. Variation in contour and cancer of stomach

    International Nuclear Information System (INIS)

    There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double- contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (P=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32.1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastric ulcer

  4. Variation in contour and cancer of stomach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hong; Hwang, Seon Moon [Asan Medical Center, Asan (Korea, Republic of); Yoon, Kwon Ha [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    1999-04-01

    There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double- contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (P=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32.1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastric ulcer.

  5. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-time and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding

  6. Prostate Contouring Variation: Can It Be Fixed?

    International Nuclear Information System (INIS)

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  7. Development of a CONTOUR-METER

    International Nuclear Information System (INIS)

    Dose calculation in patients undergoing radiotherapy treatments requires the knowledge of their anatomical geometry.Making reference to the specific case of breast cancer, one of the measurement that are made on the patients is the acquisition of the breast's contour, determined in an axial plane from a point marked on the breastbone until another point marked on the thorax side under the armpit.This measurement is normally made with a mechanic contour-meter: a device formed by a series of plastic-covered wires designed to be applied on the patient's skin copying the breast contour after it deformation.The geometrical error associated with this procedure is ± 1 cm. The precision of the dose calculation could be increased acquiring a breast contour more accurate.This objective was achieved developing a method based on breast images from a digital camera.The algorithms to obtain an axial-plane image of the contour from digital photographs taken from arbitrary positions were developed.A geometric transformation is applied to the photograph to correct for perspective distortions, obtaining a frontal - undistorted image (axial-plane image).A software tool to make all the image processing was developed under MatLab.The maximum geometrical error detected during the validation of the process was 2 mm

  8. Active Learning for Player Modeling

    DEFF Research Database (Denmark)

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad

    2015-01-01

    Learning models of player behavior has been the focus of several studies. This work is motivated by better understanding of player behavior, a knowledge that can ultimately be employed to provide player-adapted or personalized content. In this paper, we propose the use of active learning for player...... experience modeling. We use a dataset from hundreds of players playing Infinite Mario Bros. as a case study and we employ the random forest method to learn mod- els of player experience through the active learning approach. The results obtained suggest that only part of the dataset (up to half the size...

  9. Surface reconstruction from sparse fringe contours

    Energy Technology Data Exchange (ETDEWEB)

    Cong, G.; Parvin, B.

    1998-08-10

    A new approach for reconstruction of 3D surfaces from 2D cross-sectional contours is presented. By using the so-called ''Equal Importance Criterion,'' we reconstruct the surface based on the assumption that every point in the region contributes equally to the surface reconstruction process. In this context, the problem is formulated in terms of a partial differential equation (PDE), and we show that the solution for dense contours can be efficiently derived from distance transform. In the case of sparse contours, we add a regularization term to insure smoothness in surface recovery. The proposed technique allows for surface recovery at any desired resolution. The main advantage of the proposed method is that inherent problems due to correspondence, tiling, and branching are avoided. Furthermore, the computed high resolution surface is better represented for subsequent geometric analysis. We present results on both synthetic and real data.

  10. Modified Contour-Improved Perturbation Theory

    CERN Document Server

    Cvetic, Gorazd; Martinez, Cristian; Valenzuela, Cristian

    2010-01-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard "contour improved" method based on a derivative expansion of the Adler function. The approach eliminates ambiguities coming from the existence of different integral expressions for the semihadronic tau decay ratio. Compared to the standard method, renormalization scale dependence is by more than a factor two weaker in modified contour improved perturbation theory. The last term of the expansion is reduced, and renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2$%$ lower than the "contour improved" value. We find $\\alpha_s(M_Z^2)=0.1211\\pm 0.0010$.

  11. Tongue contour extraction from ultrasound images based on deep neural network

    OpenAIRE

    Jaumard-Hakoun, Aurore; Xu, Kele; Roussel-Ragot, Pierre; Dreyfus, Gérard; Denby, Bruce

    2016-01-01

    Studying tongue motion during speech using ultrasound is a standard procedure, but automatic ultrasound image labelling remains a challenge, as standard tongue shape extraction methods typically require human intervention. This article presents a method based on deep neural networks to automatically extract tongue contour from ultrasound images on a speech dataset. We use a deep autoencoder trained to learn the relationship between an image and its related contour, so that the model is able t...

  12. Conversion of contours to cartesian grids

    DEFF Research Database (Denmark)

    Mann, Jakob; Broe, Brian Riget

    A robust and efficient method of calculating a cartesian grid of heights or roughnesses from contour line maps is developed. The purpose of the grids is to serve as input for atmospheric flow solvers such as WAsP Engineering or EllipSys3D. The method builds on Delaunay triangulation constrained t...... to include all contour segments in the triangulation. It is furthermore refined to avoid spurious flat areas produced by the Delaunay triangulation. Robust ways to extrapolate beyond the convex hull of the map points are provided....

  13. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    Science.gov (United States)

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system. PMID:19965162

  14. A new approach of drawing airport noise contours on computer based on Surfer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bang-jun; GUO Chun-yan; Di Guo-qing

    2004-01-01

    Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The LwEcPN (weighted equivalent continuous perceive noise level) recommended by ICAO(International Civil Aviation Organization ) is adopted as airport noise rating parameter in this paper. With the help of various mathematical models in the software Surfer, noise contours can be drawn automatically by the completed program in Visual C++ Code. Corrections for thrust, velocity, atmospheric temperature, humidity and lateral ground attenuation are also considered in the new method, which can improve the efficiency of drawing contours. An example of its use for drawing noise contours of an airport in Zhejiang Province of China is proposed and the predictions and the measurements show agreements well.

  15. Mask Iterative Hard Thresholding Algorithms for Sparse Image Reconstruction of Objects with Known Contour

    CERN Document Server

    Dogandzic, Aleksandar; Qiu, Kun

    2011-01-01

    We develop mask iterative hard thresholding algorithms (mask IHT and mask DORE) for sparse image reconstruction of objects with known contour. The measurements follow a noisy underdetermined linear model common in the compressive sampling literature. Assuming that the contour of the object that we wish to reconstruct is known and that the signal outside the contour is zero, we formulate a constrained residual squared error minimization problem that incorporates both the geometric information (i.e. the knowledge of the object's contour) and the signal sparsity constraint. We first introduce a mask IHT method that aims at solving this minimization problem and guarantees monotonically non-increasing residual squared error for a given signal sparsity level. We then propose a double overrelaxation scheme for accelerating the convergence of the mask IHT algorithm. We also apply convex mask reconstruction approaches that employ a convex relaxation of the signal sparsity constraint. In X-ray computed tomography (CT),...

  16. Emphasis: an active management model

    International Nuclear Information System (INIS)

    The Institute of Nuclear Materials Management was founded and has grown on the basis of promoting professionalism in the nuclear industry. This paper is concerned with professional management of nuclear material. The paper introduces the reader to Emphasis, an active management model. The management model provides the framework to assist a manager in directing his available resources. Emphasis provides for establishing goals, identifying and selecting objectives, matching objectives to specific personnel, preparing and monitoring action plans, and evaluating results. The model stresses crisis prevention by systematically administering and controlling resources. A critical requirement for implementation of the model is the desire to manage, to be in charge of the situation. The nuclear industry does need managers - people who realize the sensitive nature of the industry, professionals who insist on improved performance

  17. Analysis of CVC roll contour and determination of roll crown

    Institute of Scientific and Technical Information of China (English)

    Guang Xu; Xianjun Liu; Jiarong Zhao; Junwei Xiong

    2007-01-01

    Mathematical analysis of continuous variable crown (CVC) roll contour used in CSP production line was conducted and the roll contour function of CVC roll was obtained. The validation with actual CVC roll contour shows that the calculation values of the roll contour function and the actual roll contour parameters given by equipment provider are the same, which proves that the roll contour function of CVC rolls given in this article is correct. The nonlinear relationship between the roll crown of CVC rolls and roll shift amounts was deduced. The concept of crown extremum was given.

  18. Contours--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 5 [in figs. 1, 2, 3], 7, 10, SIM 3261) of the...

  19. Some Contour Integrals Involving Generalised Hypergeometric Function

    Directory of Open Access Journals (Sweden)

    S. D. Bajpai

    1970-04-01

    Full Text Available Contour integral involving Fox's H-function and modified Bessel function of the first kind has been calculated. Some important properties and particular cases of H-function, which is a generalization of G-function, have been derived and discussed.

  20. Contours--Offshore of San Gregorio, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the bathymetric contours for several seafloor maps (see sheets 1, 2, 3, 7, 10, SIM 3306) of the Offshore of San Gregorio map...

  1. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A [Duke University Medical Center, Durham, NC (United States); Ge, Y [University of North Carolina at Charlotte, Charlotte, NC (United States)

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH

  2. Subsidence Contours for South Louisiana; UTM 15N NAD83; LRA (2005); [subsidence_contours

    Data.gov (United States)

    Louisiana Geographic Information Center — The GIS data shapefile represents average subsidence contour intervals (0.02 cm/year over 10,000 years) for Coastal LA derived from the following: Kulp, M.A., 2000,...

  3. Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation.

    Science.gov (United States)

    Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt

    2016-09-01

    Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target's contour on a screen. The subjects' performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects'. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject's discrimination performance was affected by the fixation position in much the same way as the model's.

  4. USGS Elevation Contours Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Elevation Contours service from The National Map (TNM) consists of contours generated for the conterminous United States from 1- and 1/3 arc-second...

  5. [External contour acquisition system for radiotherapy: an original solution].

    Science.gov (United States)

    Létourneau, D; Brochet, F; Bohémier, R; Gagnon, J

    2000-01-01

    A contour acquisition system has been designed in radiotherapy at the Sagamie Hospital complex (Chicoutimi, Québec) to measure the external contours of the patients who do not need a CT exam. This measuring system can produce transversal, sagittal or coronal patient contours in the treatment position. The absolute accuracy of the system is +/- 1 mm. The contours produced by this equipment can be transferred electronically or on paper to the planning system.

  6. Control of Open Contour Formations of Autonomous Underwater Vehicles

    OpenAIRE

    Uwe Zimmer; Shahab Kalantar

    2008-01-01

    In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end p...

  7. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Uwe Zimmer

    2008-11-01

    Full Text Available In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end points using general curve evolution theory but will also propose appropriate motions for the end robots of an open chain.

  8. Contours, contours 500 ft, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'contours 500 ft'....

  9. Contours, contours 5m tc, Published in 2009, 1:24000 (1in=2000ft) scale, Tooele County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'contours 5m tc'....

  10. Contours, Tagged Vector Contours obtained from DASC, Published in 2003, 1:24000 (1in=2000ft) scale, Reno County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale as of 2003. It is described as 'Tagged Vector Contours obtained from DASC'. Data by this publisher...

  11. Contours, 2 foot contours, Published in 2010, 1:1200 (1in=100ft) scale, Green Lake County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from LIDAR information as of 2010. It is described as '2 foot contours'....

  12. Contours, contours 100 ft, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'contours 100 ft'....

  13. Automatic Segmentation of Vertebrae from Radiographs: A Sample-Driven Active Shape Model Approach

    DEFF Research Database (Denmark)

    Mysling, Peter; Petersen, Peter Kersten; Nielsen, Mads;

    2011-01-01

    Segmentation of vertebral contours is an essential task in the design of automatic tools for vertebral fracture assessment. In this paper, we propose a novel segmentation technique which does not require operator interaction. The proposed technique solves the segmentation problem in a hierarchical...... manner. In a first phase, a coarse estimate of the overall spine alignment and the vertebra locations is computed using a shape model sampling scheme. These samples are used to initialize a second phase of active shape model search, under a nonlinear model of vertebra appearance. The search...... is constrained by a conditional shape model, based on the variability of the coarse spine location estimates. The technique is evaluated on a data set of manually annotated lumbar radiographs. The results compare favorably to the previous work in automatic vertebra segmentation, in terms of both segmentation...

  14. Musical Pattern Design Using Contour Icons

    OpenAIRE

    Cullen, Charlie; Coyle, Eugene

    2006-01-01

    This paper considers the use of Contour Icons in the design and implementation of musical patterns, for the purposes of detection and recognition. Research work had endeavoured to deliver musical patterns that were both distinct and memorable, and to this end a set of basic melodic shapes were introduced using a Sonification application called TrioSon that had been designed for the purpose. Existing work in the field (such as that concerning Earcon design) has considered the mechanisms by whi...

  15. The hydrological impact of contour trenching in Vietnam

    Science.gov (United States)

    Pramana, K. E. R.; Ertsen, M. W.; Uhlenbrook, S.; de Laat, P.; Nonner, J.

    2009-04-01

    At the foothill in the driest rural area in Vietnam, at Ninh Thuan province, poor farmers cultivate up-land crops during the wet season. The area is about 9 hectares of deforested land with a slope up to 8% and has a geology surface of crusted sands and gravels. Water is scarce during the dry season and runs off rapidly during the wet season. Hence, to provide sustainable water resources and support crop growth, a project started in 2007 aiming introducing contour trenching. The main purpose of contour trenching is to trap run off, increase soil moisture for vegetation growth and recharge the groundwater. In order to investigate the impact of the trenches, a field monitoring program was initiated measuring rainfall, soil moisture content, surface water levels and groundwater levels. Recorded annual rainfall reached 600 mm. The groundwater levels are relatively deep and constant at -8 and -10 meters. The soil moisture content ranged from 3% at the driest condition to 37% below the trench at ponding. Water levels in trenches differed from uphill to downhill with higher levels at the first trench uphill. After ponding, water in the trenches infiltrates within a period of days. In this contribution, available field measurements are analyzed in two ways. First, runoff is analyzed. Immediately after significant rainfall events, the observed ponding levels in the trenches with defined uphill runoff areas can be related to the rainfall. The results show reduction of runoff coefficients per trench in downhill direction. Second, the two dimension numerical saturated-unsaturated model Hydrus 2-D was used to simulate the soil moisture content measurements. Model results confirm that infiltration is a quick process in this area with its loamy sand soils. Based on these analyzes, potential of contour trenches for local water retention and groundwater recharge will be discussed.

  16. Augmented active surface model for the recovery of small structures in CT.

    Science.gov (United States)

    Bradshaw, Andrew Philip; Taubman, David S; Todd, Michael J; Magnussen, John S; Halmagyi, G Michael

    2013-11-01

    This paper devises an augmented active surface model for the recovery of small structures in a low resolution and high noise setting, where the role of regularization is especially important. The emphasis here is on evaluating performance using real clinical computed tomography (CT) data with comparisons made to an objective ground truth acquired using micro-CT. In this paper, we show that the application of conventional active contour methods to small objects leads to non-optimal results because of the inherent properties of the energy terms and their interactions with one another. We show that the blind use of a gradient magnitude based energy performs poorly at these object scales and that the point spread function (PSF) is a critical factor that needs to be accounted for. We propose a new model that augments the external energy with prior knowledge by incorporating the PSF and the assumption of reasonably constant underlying CT numbers. PMID:24048014

  17. Influence of anatomic reference on the buccal contour of prosthetic crowns

    Directory of Open Access Journals (Sweden)

    Flávia Sabrina Queirós Vasconcelos

    2009-09-01

    Full Text Available During clinical practice, when performing prosthetic rehabilitation with single crowns, improper reproduction of the dental contour by the dental laboratory is a common occurrence. Therefore, the present study evaluated the fidelity of the reproduction of the buccal contour in an upper left canine performed by three Dental Prosthesis Technicians (DPT using the indirect laminate veneer technique. First, the DPTs confected the veneers based on a model obtained from the upper arch of a dental dummy, containing a replica of an upper left canine with a prosthetic preparation for a laminate veneer. Then, the same DPTs received other identical models, now with the replica of the upper left canine with no preparation, to be used as an anatomical reference for confecting the laminate veneers. The laminate veneers were then bonded to the plaster models and had their buccal contour individually measured. Measurements were also made of the buccal contour of the reference canine. The data were analyzed by ANOVA and the t-test (p = 0.05. Results showed 100% of buccal overcontour when the laminate veneers were compared to the reference canine, regardless of which DPT confected the veneer and regardless of using or not the anatomical reference. The DPTs who participated in the present study were unable to acomplish a faithful anatomical reproduction of the buccal contour, creating an overcontour in all samples. This situation may be responsible for increasing the probability of periodontal and esthetic harm in clinical practice.

  18. Impact of region contouring variability on image-based focal therapy evaluation

    Science.gov (United States)

    Gibson, Eli; Donaldson, Ian A.; Shah, Taimur T.; Hu, Yipeng; Ahmed, Hashim U.; Barratt, Dean C.

    2016-03-01

    Motivation: Focal therapy is an emerging low-morbidity treatment option for low-intermediate risk prostate cancer; however, challenges remain in accurately delivering treatment to specified targets and determining treatment success. Registered multi-parametric magnetic resonance imaging (MPMRI) acquired before and after treatment can support focal therapy evaluation and optimization; however, contouring variability, when defining the prostate, the clinical target volume (CTV) and the ablation region in images, reduces the precision of quantitative image-based focal therapy evaluation metrics. To inform the interpretation and clarify the limitations of such metrics, we investigated inter-observer contouring variability and its impact on four metrics. Methods: Pre-therapy and 2-week-post-therapy standard-of-care MPMRI were acquired from 5 focal cryotherapy patients. Two clinicians independently contoured, on each slice, the prostate (pre- and post-treatment) and the dominant index lesion CTV (pre-treatment) in the T2-weighted MRI, and the ablated region (post-treatment) in the dynamic-contrast- enhanced MRI. For each combination of clinician contours, post-treatment images were registered to pre-treatment images using a 3D biomechanical-model-based registration of prostate surfaces, and four metrics were computed: the proportion of the target tissue region that was ablated and the target:ablated region volume ratio for each of two targets (the CTV and an expanded planning target volume). Variance components analysis was used to measure the contribution of each type of contour to the variance in the therapy evaluation metrics. Conclusions: 14-23% of evaluation metric variance was attributable to contouring variability (including 6-12% from ablation region contouring); reducing this variability could improve the precision of focal therapy evaluation metrics.

  19. Pin guidance of reconstruction plate contour: an expanded role of external fixation.

    Science.gov (United States)

    Jaquet, Yves; Higgins, Kevin M; Enepekides, Danny J

    2011-09-01

    This article presents a modification of intraoperative external fixation for mandibular reconstruction with free tissue flaps. This technique is indicated when preregistration of the reconstruction plate is not possible due to transmandibular tumor extension. Once standard external fixation has been carried out and prior to segmental mandibulectomy, additional pins are fixed to the connecting rod that delineate the mandibular contour in three-dimensional (3D) space. Following mandibulectomy, these pins allow accurate contouring of the reconstruction plate and improved restoration of mandibular contour, projection, and dental occlusion. A step-by-step description of the technique using models and intraoperative photos is presented. This method of mandibular reconstruction is a simple and time-effective alternative to intraoperative computer navigation and 3D modeling in select cases of oral carcinoma where tumor infiltration of the outer mandibular cortex precludes prebending of the reconstruction plates. PMID:22024840

  20. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Moghaddas

    2013-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  1. Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

    Directory of Open Access Journals (Sweden)

    Hossein Abachizadeh

    2012-09-01

    Full Text Available Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper right first molar and second premolar were modeled. Proximal boxes were designed and restored with universal Z250 and packable P60 composite resins (3M ESPE using two matrix systems: flat Tofflemire matrix and precurved sectional matrix. Finally models were evaluated under loads of 200 and 400 Newton at 90 degrees angle and the results were graphically illustrated in the form of Von Misses stresses. Results: In general the stress obtained under 400 Newton load was significantly greater than the stress of models under 200 Newton load. Von Misses stress distribution pattern of two different Z250 and P60 composites were very similar in all modes of loading and proximal contour. In all analyzed models there was a significant difference between models restored with Tofflemire matrix with flat contour and models restored with sectional matrix with curved contour. This difference was greater in first molar than second premolar. Conclusion: Use of a contoured matrix band results in less stress in class II composite resin restorations.

  2. Large bulk-yard 3D measurement based on videogrammetry and projected contour aiding

    Science.gov (United States)

    Ou, Jianliang; Zhang, Xiaohu; Yuan, Yun; Zhu, Xianwei

    2011-07-01

    Fast and accurate 3D measurement of large stack-yard is important job in bulk load-and-unload and logistics management. Stack-yard holds its special characteristics as: complex and irregular shape, single surface texture and low material reflectivity, thus its 3D measurement is quite difficult to be realized by traditional non-contacting methods, such as LiDAR(LIght Detecting And Ranging) and photogrammetry. Light-section is good at the measurement of small bulk-flow but not suitable for large-scale bulk-yard yet. In the paper, an improved method based on stereo cameras and laser-line projector is proposed. The due theoretical model is composed from such three key points: corresponding point of contour edge matching in stereo imagery based on gradient and epipolar-line constraint, 3D point-set calculating for stereo imagery projected-contour edge with least square adjustment and forward intersection, then the projected 3D-contour reconstructed by RANSAC(RANdom SAmpling Consensus) and contour spatial features from 3D point-set of single contour edge. In this way, stack-yard surface can be scanned easily by the laser-line projector, and certain region's 3D shape can be reconstructed automatically by stereo cameras on an observing position. Experiment proved the proposed method is effective for bulk-yard 3D measurement in fast, automatic, reliable and accurate way.

  3. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.

    Directory of Open Access Journals (Sweden)

    Tobias Brosch

    2015-10-01

    Full Text Available The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology. Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and

  4. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.

    Science.gov (United States)

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R

    2015-10-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies.

  5. What is in a contour map? A region-based logical formalization of contour semantics

    Science.gov (United States)

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    Contours maps (such as topographic maps) compress the information of a function over a two-dimensional area into a discrete set of closed lines that connect points of equal value (isolines), striking a fine balance between expressiveness and cognitive simplicity. They allow humans to perform many common sense reasoning tasks about the underlying function (e.g. elevation).

  6. Two Cases of Lower Body Contouring with

    Directory of Open Access Journals (Sweden)

    Hyun Ho Han

    2012-01-01

    Full Text Available Massive weight loss results in skin excess, leading to an unsatisfying body contour. Variousthigh lift procedures can correct flabby skin in the lower leg. We present a lower bodycontouring technique with a report on two patients. The procedure is determined by the bodycontour of the patient. As the skin excess in the thigh area tended to appear mostly on themedial side, a vertical medial thigh lift was considered. Moreover, for patients with a pear/guitar-shaped body contour, we added the spiral thigh lift for skin excess in the buttocks andthe lateral thigh area. The extent of tissue to excise was determined by pinching the patientin a standing position. The inferior skin flap was fixed to non-movable tissue, which was helpfulfor lifting the tissue and preventing the widening of the scar. After the operation, a drain waskept for 3 to 4 days. A compressive garment was used after removing the drain. There wereno complications. The patients were discharged 6 to 8 days after the operation. In conclusion,skin excess, especially in the lower body, can be corrected by a thigh lift combining severalprocedures, varying from person to person.

  7. Memory for pure tone sequences without contour.

    Science.gov (United States)

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26903419

  8. Is accommodation colorblind? Focusing chromatic contours.

    Science.gov (United States)

    Wolfe, J M; Owens, D A

    1981-01-01

    Two adjacent regions define an edge if they differ in either color or luminance. If the difference is purely chromatic, the edge is said to be isoluminant. Isoluminant contours are often perceptually unstable. Perhaps some of this instability could be explained if isoluminant contours were difficult to bring into focus. To test this hypothesis, a vernier optometer was used to measure the accuracy of steady-state accommodation for the vertical boundary of a red-green bipartite field. This edge was presented at optical distances of 0, 1.5, 3.0, and 4.5 diopters, with brightness contrasts between the two hemifields of 0% (isoluminant), 15%, 58%, and 100%. Accommodation was essentially unresponsiveness to the isoluminant edge and exhibited increasing focusing accuracy with increased brightness contrast. Control experiments replicated this finding for red-orange, green-blue, and white-white fields. These results imply that luminance contrast is a necessary stimulus for monocular accommodation. Inappropriate accommodation may be a factor contributing to the perceptual instability of isoluminant patterns. PMID:7255083

  9. Wound Image Analysis Using Contour Evolution

    Directory of Open Access Journals (Sweden)

    K. Sundeep Kumar

    2014-05-01

    Full Text Available The aim of the algorithm described in this paper is to segment wound images from the normal and classify them according to the types of the wound. The segmentation of wounds extravagates color representation, which has been followed by an algorithm of grayscale segmentation based on the stack mathematical approach. Accurate classification of wounds and analyzing wound healing process is a critical task for patient care and health cost reduction at hospital. The tissue uniformity and flatness leads to a simplified approach but requires multispectral imaging for enhanced wound delineation. Contour Evolution method which uses multispectral imaging replaces more complex tools such as, SVM supervised classification, as no training step is required. In Contour Evolution, classification can be done by clustering color information, with differential quantization algorithm, the color centroids of small squares taken from segmented part of the wound image in (C1,C2 plane. Where C1, C2 are two chrominance components. Wound healing is identified by measuring the size of the wound through various means like contact and noncontact methods of wound. The wound tissues proportion is also estimated by a qualitative visual assessment based on the red-yellow-black code. Moreover, involving all the spectral response of the tissue and not only RGB components provides a higher discrimination for separating healed epithelial tissue from granulation tissue.

  10. Pose Estimation using a Hierarchical 3D Representation of Contours and Surfaces

    DEFF Research Database (Denmark)

    Buch, Anders Glent; Kraft, Dirk; Kämäräinen, Joni-Kristian;

    2013-01-01

    We present a system for detecting the pose of rigid objects using texture and contour information. From a stereo image view of a scene, a sparse hierarchical scene representation is reconstructed using an early cognitive vision system. We define an object model in terms of a simple context...... descriptor of the contour and texture features to provide a sparse, yet descriptive object representation. Using our descriptors, we do a search in the correspondence space to perform outlier removal and compute the object pose. We perform an extensive evaluation of our approach with stereo images...... of a variety of real-world objects rendered in a controlled virtual environment. Our experiments show the complementary role of 3D texture and contour information allowing for pose estimation with high robustness and accuracy....

  11. 一种基于二次变换运动预测的有损分割图轮廓编码%A Lossy Contour-Based Representation of Segmentation Maps Using Quadratic Transformations Motion Prediction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the context of object-oriented video coding, the encoding of segmentation maps defined by contour networks is particularly critical. In this paper, we present a lossy contour network encoding algorithm where both the rate distortion contour encoding based on maximum operator and the prediction error for the current frame based on quadratic motion model are combined into a optimal polygon contour network compression scheme. The bit rate for the contour network can be further reduced by about 20% in comparison with that in the optimal polygonal boundary encoding scheme using maximum operator in the rate distortion sense.

  12. A new algorithm of brain volume contours segmentation

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2003-01-01

    This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a method for contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. The experimental results showes the segmentation based on 3D brain volume and 2D CT slices. The main creative contributions in this paper are: (1) contours segmentation algorithm; (2) edge detector; (3) algorithm evaluation.

  13. Contour plotting programs for printer and Calcomp plotter

    International Nuclear Information System (INIS)

    Contour plotting programs for plotting contour diagrams on printers or Calcomp plotters are described. The subroutines also exist in versions that are useful for the special application of finding minima and saddlepoints of nuclear potential energy surfaces generated by the subroutine PETR3 of another program package. For the general user, however, the most interesting aspect of the plotting package is probably the possibility of generating printer contour plots. The plotting of printer contour plots is a very fast and convenient way of displaying two-dimensional functions. 3 figures

  14. Modeling of active beam units with Modelica

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Vorre, Anders;

    2015-01-01

    This paper proposes an active beam model suitable for building energy simulations with the programming language Modelica. The model encapsulates empirical equations derived by a novel active beam terminal unit that operates with low-temperature heating and high-temperature cooling systems....... Measurements from a full-scale experiment are used to compare the thermal behavior of the active beam with the one predicted by simulations. The simulation results show that the model corresponds closely with the actual operation. The model predicts the outlet water temperature of the active beam...... with a maximum mean absolute error of 0.18 °C. In term of maximum mean absolute percentage error, simulation results differ by 0.9%. The methodology presented is general enough to be applied for modeling other active beam units. Modeling of active beam units with Modelica. Available from: https...

  15. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture.

    Science.gov (United States)

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin

    2013-06-18

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness--the valence dimension of the affect circumplex--accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain.

  16. A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence

    Institute of Scientific and Technical Information of China (English)

    Chu-hua HUANG; Dong-ming LU; Chang-yu DIAO

    2016-01-01

    To speed up the reconstruction of 3D dynamic scenes in an ordinary hardware platform, we propose an efficient framework to reconstruct 3D dynamic objects using a multiscale-contour-based interpolation from multi-view videos. Our framework takes full advantage of spatio-temporal-contour consistency. It exploits the property to interpolate single contours, two neighboring contours which belong to the same model, and two contours which belong to the same view at different times, cor-responding to point-, contour-, and model-level interpolations, respectively. The framework formulates the interpolation of two models as point cloud transport rather than non-rigid surface deformation. Our framework speeds up the reconstruction of a dynamic scene while improving the accuracy of point-pairing which is used to perform the interpolation. We obtain a higher frame rate, spatio-temporal-coherence, and a quasi-dense point cloud sequence with color information. Experiments with real data were conducted to test the efficiency of the framework.

  17. Modeling Students' Units Coordinating Activity

    OpenAIRE

    Boyce, Steven James

    2014-01-01

    Primarily via constructivist teaching experiment methodology, units coordination (Steffe, 1992) has emerged as a useful construct for modeling students' psychological constructions pertaining to several mathematical domains, including counting sequences, whole number multiplicative conceptions, and fractions schemes. I describe how consideration of units coordination as a Piagetian (1970b) structure is useful for modeling units coordination across contexts. In this study, I extend teaching ...

  18. India-Pakistan: Contours of Relationship

    Directory of Open Access Journals (Sweden)

    Devika Mittal

    2016-06-01

    Full Text Available Even after about 70 years of separation, India and Pakistan continue to live in the prison of the past. The rhetoric of partition is still alive in the memory of the people of both the countries. They have constructed fixed, unchanging and competing images for each other. While Pakistan became an Islamic Republic, India adopted secularism, thereby, negating the two-nation theory. The ‘differences’ along with memories of partition has made Indian and Pakistani to remain in permanent hostile situation. The leaders of the two countries try to settle their disputes but fails because of lack of support from their social and political institutions. Since its coming into power in 2014, the NDA government under the Indian Prime Minister, Mr. Narendra Modi has managed to engage the Pakistani establishment, despite many problems between the two countries. This article tries to highlight upon the contours of relationships post-2014.

  19. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  20. Modeling Workflow Using UML Activity Diagram

    Institute of Scientific and Technical Information of China (English)

    Wei Yinxing(韦银星); Zhang Shensheng

    2004-01-01

    An enterprise can improve its adaptability in the changing market by means of workflow technologies. In the build time, the main function of Workflow Management System (WFMS) is to model business process. Workflow model is an abstract representation of the real-world business process. The Unified Modeling Language (UML) activity diagram is an important visual process modeling language proposed by the Object Management Group (OMG). The novelty of this paper is representing workflow model by means of UML activity diagram. A translation from UML activity diagram to π-calculus is established. Using π-calculus, the deadlock property of workflow is analyzed.

  1. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES

    Energy Technology Data Exchange (ETDEWEB)

    M. PRIME; A. GONZALES

    2000-06-01

    We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.

  2. Computational Models for Analysis of Illicit Activities

    DEFF Research Database (Denmark)

    Nizamani, Sarwat

    Numerous illicit activities happen in our society, which, from time to time affect the population by harming individuals directly or indirectly. Researchers from different disciplines have contributed to developing strategies to analyze such activities, in order to help law enforcement agents dev...... population globally sensitive to specific world issues. The models discuss the dynamics of population in response to such issues. All the models presented in the thesis can be combined for a systematic analysis of illicit activities.......Numerous illicit activities happen in our society, which, from time to time affect the population by harming individuals directly or indirectly. Researchers from different disciplines have contributed to developing strategies to analyze such activities, in order to help law enforcement agents...... devise policies to minimize them. These activities include cybercrimes, terrorist attacks or violent actions in response to certain world issues. Beside such activities, there are several other related activities worth analyzing, for which computational models have been presented in this thesis...

  3. Discursive Positionings and Emotions in Modelling Activities

    Science.gov (United States)

    Daher, Wajeeh

    2015-01-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their…

  4. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    involved. We argue that progress in students’ conceptual learning needs to be conceptualised separately from that of progress in their modelling competency. Findings are that modelling activities open a window to the students’ images of the mathematical concepts involved; that modelling activities can......Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  5. Residual stress measurement of EB-welded plates with contour method. Part 2: FEM analysis of contour profiles

    Energy Technology Data Exchange (ETDEWEB)

    Romppanen, A.-J.; Immonen, E. [Process Flow Oy, Turku (Finland)

    2013-12-15

    The residual stresses formed as a result of Electronic Beam welding (EB-welding) in copper are investigated by Posiva. In the present study, residual stresses of EB-welded copper plates were studied with contour method. In the method eleven copper plates (X436 - X440 and X453 - X458) were cut in half with wire electric discharge machining (EDM) after which the deformation due to stress relaxation was measured with coordinate measurement system. The measured data was then used as boundary displacement data for the FEM analyses, in which the corresponding residual stresses were calculated. Before giving the corresponding displacement boundary conditions to the FE models, the deformation data was processed and smoothed appropriately. The residual stress levels of the copper plates were found to be around 40 - 55 MPa at maximum. This corresponds to other reported residual stress measurements and current state of knowledge with this material in Posiva. (orig.)

  6. Evaluating a Model of Youth Physical Activity

    Science.gov (United States)

    Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary

    2010-01-01

    Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…

  7. Modelling Typical Online Language Learning Activity

    Science.gov (United States)

    Montoro, Carlos; Hampel, Regine; Stickler, Ursula

    2014-01-01

    This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…

  8. Target Contour Recovering for Tracking People in Complex Environments

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2012-01-01

    Full Text Available Recovering people contours from partial occlusion is a challenging problem in a visual tracking system. Partial occlusions would bring about unreasonable contour changes of the target object. In this paper, a novel method is presented to detect partial occlusion on people contours and recover occluded portions. Unlike other occlusion detection methods, the proposed method is only based on contours, which makes itself more flexible to be extended for further applications. Experiments with synthetic images demonstrate the accuracy of the method for detecting partial occlusions, and experiments on real-world video sequence are also carried out to prove that the method is also good enough to be used to recover target contours.

  9. The activity model of legal psychologist

    OpenAIRE

    N.V. Bogdanovich,; V.A. Chernushevich

    2014-01-01

    We propose an activity model of legal psychologist work. As a basis for the construction of the system of legal psychologist activity, we use trajectory of teenager living in the legal field. As the main activities within their respective specializations, we highlighted prevention, maintenance and rehabilitation. We define the main activities necessary for the development within the FGOSIII specialization 050407 “Pedagogy and Psychology of deviant behavior”: general and pathopsychologic diagn...

  10. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  11. Activity transport models for PWR primary circuits

    International Nuclear Information System (INIS)

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR's. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.)

  12. Prostate segmentation with local binary patterns guided active appearance models

    Science.gov (United States)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Vilanova, Joan C.; Meriaudeau, Fabrice

    2011-03-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient segmentation of the prostate in TRUS images could be challenging in the presence of heterogeneous intensity distribution inside the prostate gland, and other imaging artifacts like speckle noise, shadow regions and low Signal to Noise Ratio (SNR). In this work, we propose to enhance the texture features of the prostate region using Local Binary Patterns (LBP) for the propagation of a shape and appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model of the propagating contour is derived from Principal Component Analysis (PCA) of the prior shape and texture information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve an optimal segmentation. The proposed method achieves a mean Dice Similarity Coefficient (DSC) value of 0.94+/-0.01 and a mean segmentation time of 0.68+/-0.02 seconds when validated with 70 TRUS images of 7 datasets in a leave-one-patient-out validation framework. Our method performs computationally efficient and accurate prostate segmentation in the presence of intensity heterogeneities and imaging artifacts.

  13. 基于力场分析的主动轮廓模型%Active Contour Models Based on Force Field Analysis

    Institute of Scientific and Technical Information of China (English)

    侯志强; 韩崇昭

    2004-01-01

    传统Snake模型存在的缺点是, 其初始轮廓必须靠近图像中感兴趣目标的真实边缘,否则会得到错误结果,且由于Snake模型的非凸性,结果不能进入感兴趣目标的深凹部分,很容易陷入局部极小点.由此该文提出一种基于力场分析的主动轮廓模型,详细分析了基于欧氏距离变换的距离势能力场分布,归纳出感兴趣目标上真轮廓点与假轮廓点的判别标准.建立了由曲线能量到最终结果的有效方法,避免了Snake陷入局部极小点. 实验结果表明,该模型具有较大的捕获区域,能够进入感兴趣目标的深凹部分,准确提取感兴趣目标的轮廓. 与GVFSnake模型相比, 该模型具有很小的计算量.

  14. Remark on C-V active contours model%C-V活动轮廓模型的一个注记

    Institute of Scientific and Technical Information of China (English)

    申小娜; 林琼

    2010-01-01

    Chan-Vese提出的"无边活动轮廓"模型(C-V模型)是一个著名的基于区域的图像分割模型,它是基于Mumford-Shah泛函和二值PC函数(目标区域取一个值,背景区域取另一个值)解决图像分割问题的.在C-V模型中,定义能量泛函的面积项的系数被要求为非负值,这个要求限制了模型适用的范围.实验研究表明:面积项系数取负值时,C-V模型能够分割某些原来不适用的图像.

  15. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    OpenAIRE

    ZARPALAS, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on to...

  16. Discursive positionings and emotions in modelling activities

    Science.gov (United States)

    Daher, Wajeeh

    2015-11-01

    Mathematical modelling is suggested as an activity through which students engage in meaningful mathematics. In the current research, the modelling activity of a group of four seventh-grade students was analysed using the discursive analysis framework. The research findings show that the positionings and emotions of the group members during their participation in the modelling activity changed as the activity proceeded. Overall, it can be said that three of the four group members acted as insiders, while the fourth acted as an outsider, and only, towards the end of the group's work on the activity, he acted as an insider. Moreover, the research findings point at four factors that affected the group members' positionings and emotions during the modelling activity: the member's characteristics, the member's history of learning experiences, the activity characteristics and the modelling phases. Furthermore, the different positionings of the group members in the different modelling phases were accompanied by different emotions experienced by them, where being an insider and a collaborator resulted in positive emotions, while being an outsider resulted in negative emotions.

  17. Material properties from contours: New insights on object perception.

    Science.gov (United States)

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. PMID:26072333

  18. The contour method: a new approach in experimental mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory

    2009-01-01

    The recently developed contour method can measure complex residual-stress maps in situations where other measurement methods cannot. This talk first describes the principle of the contour method. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contour of the resulting new surface, which will not be flat if residual stresses are relaxed by the cutting, is then measured. Finally, a conceptually simple finite element analysis determines the original residual stresses from the measured contour. Next, this talk gives several examples of applications. The method is validated by comparing with neutron diffraction measurements in an indented steel disk and in a friction stir weld between dissimilar aluminum alloys. Several applications are shown that demonstrate the power of the contour method: large aluminum forgings, railroad rails, and welds. Finally, this talk discusses why the contour method is significant departure from conventional experimental mechanics. Other relaxation method, for example hole-drilling, can only measure a 1-D profile of residual stresses, and yet they require a complicated inverse calculation to determine the stresses from the strain data. The contour method gives a 2-D stress map over a full cross-section, yet a direct calculation is all that is needed to reduce the data. The reason for these advantages lies in a subtle but fundamental departure from conventional experimental mechanics. Applying new technology to old methods like will not give similar advances, but the new approach also introduces new errors.

  19. Improvement on strip flatness of cold temper mills by modifying roll contour shape

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Li; Jie Zhang; Xianlin Chen; Jianguo Cao; Haixia Li

    2004-01-01

    A study on roll gap profile (strip profile) control was accomplished in a 1700 mm single-stand temper mill. Some critical problems such as the deviation of work roll contour caused by grinding and wear, the effectiveness of work roll bending were discussed. Using a finite element model, the effects of roll contours (ground and wear) on strip profile were investigated. The roll bending effect on strip thickness was also analyzed. It is pointed out that there are some special features of flatness control in the temper mill: during temper rolling, roll deformation is slight due to small rolling load, and the loaded roll gap profile mainly depends on work roll contour, while the backup roll has a little effect on gap crown; the effect of bending force on gauge can not be ignored due to the coupling between flatness control and gauge control. A new roll contour arrangement adaptable to the mill was presented and has been put into practical production. The application of the new set of rolls showed some good results: larger crown control range of work roll bender, higher rolling stability, better strip profile and flatness quality.

  20. Three-dimensional Quantitative Structure-activity Relationship Models of HIV-1 Integrase Inhibitors of DKAs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mei-Qing; ZHAO Wen-Na; LU Shao-Yong

    2012-01-01

    As one of the three viral encoded enzymes of HIV-1 infection, HIV-1 integrase has become an attractive drug target for the treatment. Diketoacid compounds (DKAs) are one kind of potent and selective inhibitors of HIV-1 IN. In the present work, two three-dimensional QSAR techniques (CoMFA and CoMSIA) were employed to correlate the molecular structure with the activity of inhibiting the strand transfer for 147 DKAs. The all-oritation search (AOS) and all-placement search (APS) were used to optimize the CoMFA model. The diketo and keto-enol tautomers of DKAs were also used to establish the CoMFA models. The results indicated that the enol was the dominant conformation in the HIV-1 IN and DKAs complexes. It can provide a new method and reference to identify the bioactive conformation of drugs by using QSAR analysis. The best CoMSIA model, with five fields combined, implied that the hydrophobic field is very important as well as the steric and electrostatic fields. All models indicated favorable internal validation. A comparative analysis with the three models demonstrated that the CoMFA model seems to be more predictive. The contour maps could afford steric, electrostatic, hydrophobic and H-bond information about the interaction of ligand-receptor complex visually. The models would give some useful guidelines for designing novel and potent HIV-1 integrase inhibitors.

  1. Activity-based resource capability modeling

    Institute of Scientific and Technical Information of China (English)

    CHENG Shao-wu; XU Xiao-fei; WANG Gang; SUN Xue-dong

    2008-01-01

    To analyse and optimize a enterprise process in a wide scope, an activity-based method of modeling resource capabilities is presented. It models resource capabilities by means of the same structure as an activity, that is, resource capabilities are defined by input objects, actions and output objects. A set of activity-based re-source capability modeling rules and matching rules between an activity and a resource are introduced. This method can not only be used to describe capability of manufacturing tools, but also capability of persons and applications, etc. It unifies methods of modeling capability of all kinds of resources in an enterprise and supports the optimization of the resource allocation of a process.

  2. Contour tracking and corner detection in a logic programming environment

    DEFF Research Database (Denmark)

    Bell, Benjamin; Pau, L. F.

    1990-01-01

    The added functionality such as contour tracking and corner detection which logic programming lends to standard image operators is described. An environment for implementing low-level imaging operations with Prolog predicates is considered. Within this environment, higher-level image predicates...... (contour tracking and corner detection) are constructed. The emphasis is not on building better corner detectors, but on presenting ways of using the unification and backtracking features of logic programming for these tasks. The performance of this implementation of contour tracking and corner detection...

  3. Details of Side Load Test Data and Analysis for a Truncated Ideal Contour Nozzle and a Parabolic Contour Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2010-01-01

    Two cold flow subscale nozzles were tested for side load characteristics during simulated nozzle start transients. The two test article contours were a truncated ideal and a parabolic. The current paper is an extension of a 2009 AIAA JPC paper on the test results for the same two nozzle test articles. The side load moments were measured with the strain tube approach in MSFC s Nozzle Test Facility. The processing techniques implemented to convert the strain gage signals into side load moment data are explained. Nozzle wall pressure profiles for separated nozzle flow at many NPRs are presented and discussed in detail. The effect of the test cell diffuser inlet on the parabolic nozzle s wall pressure profiles for separated flow is shown. The maximum measured side load moments for the two contours are compared. The truncated ideal contour s peak side load moment was 45% of that of the parabolic contour. The calculated side load moments, via mean-plus-three-standard-deviations at each nozzle pressure ratio, reproduced the characteristics and absolute values of measured maximums for both contours. The effect of facility vibration on the measured side load moments is quantified and the effect on uncertainty is calculated. The nozzle contour designs are discussed and the impact of a minor fabrication flaw in the nozzle contours is explained.

  4. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.;

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  5. Modelling the Active Hearing Process in Mosquitoes

    Science.gov (United States)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  6. Bathymetric Contours for Prairie Rose Lake, Shelby County, Iowa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Prairie Rose Lake in Shelby Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of...

  7. Bathymetric Contours for Lake Minnewashta, Dickinson County, Iowa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Lake Minnewashta in Dickinson Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Lake...

  8. Bathymetric Contours for Littlefield Lake, Audubon County, Iowa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Littlefield Lake in Audubon Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of...

  9. Bathymetric Contours for Nine Eagles Lake, Decatur County, Iowa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Nine Eagles Lake in Decatur Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Nine...

  10. Bathymetric Contours for Lake Darling, Washington County, Iowa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Lake Darling in Washington Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Lake...

  11. Bathymetric Contours for Upper Gar Lake, Dickinson County, Iowa

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital bathymetry contours for Upper Gar Lake in Dickinson Co., Iowa. The U.S. Geological Survey conducted a bathymetric survey of Upper...

  12. Contours--Offshore of Half Moon Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Half Moon map area, California. The vector data file is...

  13. Automatic Contour Extraction from 2D Neuron Images

    CERN Document Server

    Leandro, J J G; Costa, L da F

    2008-01-01

    The current work describes a novel system devised for automatic contour extraction of 2D branching structures images obtained from 3D neurons. Most contour-based methods for neuronal cell shape analysis fall short of suitable representation of such cells because overlaps between neuronal processes prevent traditional contour following algorithms from entering the innermost cell regions. The herein-proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of subtree seed pixels and critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking algorithm iteratively labels all valid pixel branches, up to a critical region, where the algorithm determines the suitable direction to proceed. Our algorithm has been found to exhibit robustness even for images with close parallel segments. Experimental resul...

  14. Transgressive Contours--Salt Point to Drakes Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the transgressive contours for the Salt Point to Drakes Bay, California, region. The vector file is included in...

  15. Contours--Offshore of Salt Point Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Salt Point map area, California. The vector data file is...

  16. Transgressive Contours--Pigeon Point to South Monterey Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the transgressive contours for the Pigeon Point to South Monterey Bay, California, region. The vector file is included in...

  17. Contours Offshore of Point Reyes Map Map Area, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore of Point Reyes map area, California. The vector data file...

  18. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    Science.gov (United States)

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  19. Active Gel Model of Amoeboid Cell Motility

    CERN Document Server

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  20. Modeling of Activated Sludge Floc Characteristics

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Mustafa

    2009-01-01

    Full Text Available Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii Study the effect of bulk concentrations of oxygen and nitrates, power input and substrates diffusivity on the portion aerobic portion of the floc. Approach: An appropriate mathematical model based on heterogeneous modeling is developed for activated sludge flocs. The model was taking into account three growth processes: Carbon oxidation, nitrification and de-nitrification in terms of four components: substrate, nitrate, ammonia, and oxygen. The model accounts for the internal and external mass transfer limitations and relates the external mass transfer resistance with power input. The floc model equations were two- point boundary value differential equations. Therefore a central finite difference method is employed. Results: The percentage aerobic portion increased with increasing with oxygen bulk concentrations and power input and decreases when the bulk concentration of ammonia and substrate increases. Both will compete to consume the internal oxygen by autotrophic and heterotrophic bacteria through aerobic growth processes. The biofloc activity through the profiles was either totally active or partially active. The totally active biofloc is either totally aerobic or aerobic and anoxic together. Conclusions: The heterogeneous floc model was able to describe the biofloc characteristics and reflects the real phenomena existing in the activated sludge processes.

  1. Contour tracking and corner detection in a logic programming environment

    OpenAIRE

    Bell, Benjamin; Pau, L. F.

    1990-01-01

    The added functionality such as contour tracking and corner detection which logic programming lends to standard image operators is described. An environment for implementing low-level imaging operations with Prolog predicates is considered. Within this environment, higher-level image predicates (contour tracking and corner detection) are constructed. The emphasis is not on building better corner detectors, but on presenting ways of using the unification and backtracking features of logic prog...

  2. Contour tracking control for the REMUS autonomous underwater vehicle

    OpenAIRE

    Van Reet, Alan R.

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation. Use of a contour tracking control algorithm in lieu of preprogrammed waypoint navigation offers distinct advantages within new challenges. The difficult nature of this problem lies in the non-trivial connection between the necessary corrective action and the feedback error used in traditional co...

  3. Melodic Contour Identification Reflects the Cognitive Threshold of Aging

    OpenAIRE

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older ad...

  4. Projection lithography with distortion compensation using reticle chuck contouring

    Science.gov (United States)

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  5. A fast contour descriptor algorithm for supernova imageclassification

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  6. Visual search of illusory contours: Shape and orientation effects

    Directory of Open Access Journals (Sweden)

    Gvozdenović Vasilije

    2008-01-01

    Full Text Available Illusory contours are specific class of visual stimuli that represent stimuli configurations perceived as integral irrespective of the fact that they are given in fragmented uncompleted wholes. Due to their specific features, illusory contours gained much attention in last decade representing prototype of stimuli used in investigations focused on binding problem. On the other side, investigations of illusory contours are related to problem of the level of their visual processing. Neurophysiologic studies show that processing of illusory contours proceed relatively early, on the V2 level, on the other hand most of experimental studies claim that illusory contours are perceived with engagement of visual attention, binding their elements to whole percept. This research is focused on two experiments in which visual search of illusory contours are based on shape and orientation. The main experimental procedure evolved the task proposed by Bravo and Nakayama where instead of detection, subjects were performing identification of one among two possible targets. In the first experiment subjects detected the presence of illusory square or illusory triangle, while in the second experiment subject were detecting two different orientations of illusory triangle. The results are interpreted in terms of visual search and feature integration theory. Beside the type of visual search task, search type proved to be dependent of specific features of illusory shapes which further complicate theoretical interpretation of the level of their perception.

  7. Contours, Green Co 10' Contours, Published in 2005, 1:4800 (1in=400ft) scale, MSA Professional Services.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Orthoimagery information as of 2005. It is described as 'Green Co 10'...

  8. A possible analogy between contours in mathematics--as exemplified by Cauchy's integral formula--and contours in the arts.

    Science.gov (United States)

    Gerr, S

    1982-01-01

    An attempt is made to draw an analogy between contour drawing and a particular mathematical theorem. The analogy is seen to depend on the fact that both methods use definite values along a contour to imply a totality of values within the contour; thus, the use of a part to suggest the whole, by way of a hypothetical 'gestalt-like integration' in the case of the art contour, and the usual process of mathematical integration in the case of Cauchy's formula. Examples illustrating the analogy are drawn from a wide range of artistic work: a modern American drawing, a Cro-Magnon cave painting, and two Chinese works. The traditional Chinese philosophy of painting is invoked in support of the analogy because of its explicit emphasis on the primacy of outline drawing in Chinese painting. Some speculations are offered on further development and application of the analogy. PMID:7182805

  9. Contours - CONTOURS_24K_USGS_ADRIAN: Elevation Contours from 7.5-Minute Topographic Quadrangle Maps, Grouped into the 30' x 1째 Adrian Quadrangle, Indiana, Michigan, and Ohio (United States Geological Survey, 1:24,000, Line Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — CONTOURS_24K_USGS_ADRIAN is a shapefile containing elevation contours produced at a scale of 1:24,000, grouped into a 30' x 1째 quadrangle block. Elevation values...

  10. Elevation Contour Analysis and Water body Extraction for Finding Water Scarcity Locations using DEM

    OpenAIRE

    Kodge, B. G.; P.S Hiremath

    2014-01-01

    The presents study was aimed to create new methods for extraction and analysis of land elevation contour lines, automatic extraction of water bodies (river basins and lakes), from the digital elevation models (DEM) of a test area. And extraction of villages which are fell under critical water scarcity regions for agriculture and drinking water with respect to their elevation data and available natural water resources.

  11. An approach to predicting bowing control parameter contours in violin performance

    OpenAIRE

    Maestre E.; Ramirez R.

    2010-01-01

    We present a machine learning approach to modeling bowing control parameter contours in violin performance. Using accurate sensing techniques we obtain relevant timbre-related bowing control parameters such as bow transversal velocity, bow pressing force, and bow-bridge distance of each performed note. Each performed note is represented by a curve parameter vector and a number of note classes are defined. The principal components of the data represented by the set of curve p...

  12. Automatic contour-based road network design for optimized wind farm micrositing

    OpenAIRE

    Gu, H.; Wang, J.; Lin, Q; Gong, Q

    2015-01-01

    © 2014 IEEE. Constructing the access roads between wind turbines requires a significant cost when a wind farm is built in hills or mountains. An optimized design of road network can substantially reduce construction costs and increase investment returns. In this paper, we consider a challenging problem of the road network design for a wind farm with complex topography. An automatic contour-based model is developed for road network design, and is incorporated into the optimization of wind farm...

  13. Loudness Perception in the Domestic Cat: Reaction Time Estimates of Equal Loudness Contours and Recruitment Effects

    OpenAIRE

    May, Bradford J.; Little, Nicole; Saylor, Stephanie

    2009-01-01

    The domestic cat is the primary physiological model of loudness coding and recruitment. At present, there are no published descriptions of loudness perception in this species. This study used a reaction time task to characterize loudness perception in six behaviorally trained cats. The psychophysical approach was based on the assumption that sounds of equal loudness elicit responses of equal latency. The resulting equal latency contours reproduced well-known features of human equal loudness c...

  14. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    OpenAIRE

    Jacques Demongeot; Yannick Fouquet; Muhammad Tayyab; Nicolas Vuillerme

    2009-01-01

    BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological co...

  15. Changes of contour of the spine caused by load carrying.

    Science.gov (United States)

    Vacheron, J J; Poumarat, G; Chandezon, R; Vanneuville, G

    1999-01-01

    The development of new leisure activities such as walking has spread the use of the backpack as a means of carrying loads. The aim of this work was to present a way of defining the movements imposed on the trunk by this type of load carrying. A 20 kg load situated at the thoracic level (T9) of the trunk, was placed in a backpack (2.5 kg). The 12 subjects were average mountain guides of Auvergne region, intermediate level and complete beginners. External markers were glued to the projecting contours of the spinous processes of the C7, T7, T12, L3 and S1 vertebrae, the shin and the external occipital tuberosity (EOT). Using a Vicon 140 3-D system we measured the effective mobility of the different spinal segments in the sagittal plane during one step. For every subject, we noticed a significant decrease of the effective inter-segmental mobility (EISM) between S1-L3-T12 (p next level between L3-T12-T7 (p < .05). An increase of the EISM between T7-C7-EOT was noted (p < .05). We supposed that strength loss of the back muscles and/or angular oscillations of the trunk could be a common cause of symptoms during backpacking. The subjects using this type of load carrying have to adopt an adequate position of the lumbar, dorsal and cervical vertebrae. PMID:10399210

  16. The activity model of legal psychologist

    Directory of Open Access Journals (Sweden)

    N.V. Bogdanovich,

    2014-08-01

    Full Text Available We propose an activity model of legal psychologist work. As a basis for the construction of the system of legal psychologist activity, we use trajectory of teenager living in the legal field. As the main activities within their respective specializations, we highlighted prevention, maintenance and rehabilitation. We define the main activities necessary for the development within the FGOSIII specialization 050407 “Pedagogy and Psychology of deviant behavior”: general and pathopsychologic diagnostics, development activity and psychological education, psycho-correction, psychological counseling. Accordingly, we define the types of psychological practices. We highlight the motivational and integrative practice (teaching introductory and trainee. We propose a system of training modules, ensuring the formation of the necessary competencies. The modules feature is their focus on practice (the association of training courses with the main types of psychological practice.

  17. Cell survival and iso-effect contours in irradiated tissues

    International Nuclear Information System (INIS)

    Cell population kinetic parameters derived from radiobiological experiments and analysis of clinical data can be used to compute cellular surviving fractions in irradiated tumours and normal tissues. A three-component model of cellular radiation lethality, capable of simulating irreparable lethal events, reversible or sublethal effects and tissue repopulation processes, has proved adequate for clinical purposes. On this basis, computer programs have been developed for generating iso-effect (iso-survival) functions for various fractionation intervals in several tissues and tumours; for determining surviving fractions, equivalent single doses, and probabilities of response with specified fractionation schemes; and for optimizing treatment by identifying the procedure giving the highest probability of uncomplicated cure for a given tumour type growing in a specified location. If the relevant parameters for each of the tissues traversed by the beam, the physical dose absorbed at each point of interest, and the size, number and sequence of fractional doses reaching that point are known, then a series of computations of cellular surviving fractions can be made and used to draw iso-effect contours as a supplement to the physical isodose distribution in the same region. Procedures for both physical and biological optimization of the whole treatment plan are suggested. (author)

  18. Patterns in biofilms: From contour undulations to fold focussing

    Science.gov (United States)

    Ben Amar, Martine; Wu, Min

    2014-11-01

    Morphologies of soft materials in growth, swelling or drying have been extensively studied recently. Shape modifications occur as the size varies transforming ordinary spheres, cylinders and thin plates into more or less complex objects. Here we consider the genesis of biofilm patterns when a simple disc containing initially bacteria with moderate adhesion to a rigid substrate grows according to very simple rules. The initial circular geometry is lost during the growth expansion, contour undulations and buckling appear, ultimately a rather regular periodic focussing of folds repartition emerges. We theoretically predict these morphological instabilities as bifurcations of solutions in elasticity, characterized by typical driving parameters established here. The substrate plays a critical role limiting the geometry of the possible modes of instabilities and anisotropic growth, adhesion and toughness compete to eventually give rise to wrinkling, buckling or both. Additionally, due to the substrate, we show that the ordinary buckling modes, vertical deviation of thin films, are not observed in practice and a competitive pattern with self-focussing of folds can be found analytically. These patterns are reminiscent of the blisters of delamination in material sciences and explain recent observations of bacteria biofilms. The model presented here is purely analytical, is based on a neo-Hookean elastic energy, and can be extended without difficulties and applied to polymer materials.

  19. Brightness/darkness induction and the genesis of a contour

    Science.gov (United States)

    Roncato, Sergio

    2014-01-01

    Visual contours often result from the integration or interpolation of fragmented edges. The strength of the completion increases when the edges share the same contrast polarity (CP). Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP). The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different gray shades. These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in is blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this “solution” by the visual system. PMID:25368570

  20. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    Science.gov (United States)

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  1. Contours, 2' Contours for Iredell County provided by 2003 NC Floodplain Mapping Program data, Published in 2007, 1:4800 (1in=400ft) scale, Iredell County GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from LIDAR information as of 2007. It is described as '2' Contours for...

  2. Contours, Two-foot contours for Oconee County, Georgia, Published in 2006, 1:12000 (1in=1000ft) scale, Northeast Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as 'Two-foot contours...

  3. Contours, 10ft contours of Lowndes County, GA, Published in 1999, 1:7200 (1in=600ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:7200 (1in=600ft) scale as of 1999. It is described as '10ft contours of Lowndes County, GA'. Data by this publisher are often...

  4. Contours, Two-foot contours for Athens-Clarke County, Georgia, Published in 2005, 1:12000 (1in=1000ft) scale, Northeast Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2005. It is described as 'Two-foot contours...

  5. Contours, 2 foot contours for the entire MCCOG MPA area., Published in 2003, 1:600 (1in=50ft) scale, Madison County Council of Governments.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2003. It is described as '2 foot contours for...

  6. Contours, Two-foot contours for Morgan County, Georgia, Published in 2006, 1:12000 (1in=1000ft) scale, Northeast Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:12000 (1in=1000ft) scale, was produced all or in part from LIDAR information as of 2006. It is described as 'Two-foot contours...

  7. Contour Cluster Shape Analysis for Building Damage Detection from Post-earthquake Airborne LiDAR

    Directory of Open Access Journals (Sweden)

    HE Meizhang

    2015-04-01

    Full Text Available Detection of the damaged building is the obligatory step prior to evaluate earthquake casualty and economic losses. It's very difficult to detect damaged buildings accurately based on the assumption that intact roofs appear in laser data as large planar segments whereas collapsed roofs are characterized by many small segments. This paper presents a contour cluster shape similarity analysis algorithm for reliable building damage detection from the post-earthquake airborne LiDAR point cloud. First we evaluate the entropies of shape similarities between all the combinations of two contour lines within a building cluster, which quantitatively describe the shape diversity. Then the maximum entropy model is employed to divide all the clusters into intact and damaged classes. The tests on the LiDAR data at El Mayor-Cucapah earthquake rupture prove the accuracy and reliability of the proposed method.

  8. Concepts of disability: the Activity Space Model.

    Science.gov (United States)

    Kopec, J A

    1995-03-01

    This paper describes a new conceptual framework for functional assessment, the Activity Space Model (ASM). According to this model, functional impairments may lead to restrictions in an individual's activity space, a multidimensional space that represents human potential for activity. For each elementary ability, restrictions in the corresponding dimension of the activity space can be evaluated by deriving a difficulty curve that depicts the relationship between the level of performance and the psychophysical cost of activity. The effect of disease on daily functioning is explained in terms of a tradeoff between the psychophysical cost and the value of each act of behavior to the disabled individual. These two constructs are measured on the same scale and expressed in units of difficulty. The location of each task within the activity space in relation to the difficulty curve determines whether it will be performed or avoided at a given point in time. The ASM has both theoretical and practical implications. It offers a new, integrated perspective on disability and suggests new strategies for developing and evaluating functional assessment measures.

  9. Application and evaluation of universal kriging for optimal contouring of groundwater levels

    Indian Academy of Sciences (India)

    B V N P Kambhammettu; Praveena Allena; James P King

    2011-06-01

    This paper deals with the application of universal kriging to interpolate water table elevations from their measurements at random locations. Geographic information system tools were used to generate the continuous surface of water table elevations for the Carlsbad area alluvial aquifer located to the southeast of New Mexico, USA.Water table elevations in the 38 monitoring wells that are common to 1996 and 2003 irrigation years follows normal distribution. A generalized MATLAB^® code was developed to generate omni-directional and directional semi-variograms (at 22.5° intervals). Low-order polynomials were used to model the trend as the water table profile exhibits a south-east gradient. Different theoretical semivariogram models were tried to select the base semi-variogram for performing geostatistical interpolation. The contour maps of water table elevations exhibit significant decrease in the water table from 1996 to 2003. Statistical analysis performed on the estimated contours revealed that the decrease in water table is between 0.6 and 4.5 m at 90% confidence. The estimation variance contours show that the error in estimation was more than 8m2 in the west and south-west portions of the aquifer due to the absence of monitoring wells.

  10. Mathematical model of radon activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Zambianchi, Pedro, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy, E-mail: denyak@gmail.com [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil)

    2015-07-01

    Present work describes a mathematical model that quantifies the time dependent amount of {sup 222}Rn and {sup 220}Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of {sup 222}Rn and {sup 220}Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since {sup 220}Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to {sup 222}Rn, only. Furthermore, the model also addresses the activity of {sup 220}Rn and {sup 222}Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements. Some preliminary comparison of experimental data and theoretical calculations is presented. Obtained transient and steady-state solutions could be used for planning of Rn in soil gas measurements as well as for accuracy assessment of obtained results together with efficiency evaluation of chosen measurements procedure. (author)

  11. Kinetic model of excess activated sludge thermohydrolysis.

    Science.gov (United States)

    Imbierowicz, Mirosław; Chacuk, Andrzej

    2012-11-01

    Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. PMID:22951329

  12. Infants' perception of subjective contours from apparent motion.

    Science.gov (United States)

    Yamaguchi, Masami K; Kanazawa, So; Okamura, Hiromi

    2008-01-01

    We examined infants' perception of subjective contours in Subjective-Contour-from-Apparent-Motion (SCAM) stimuli [e.g., Cicerone, C. M., Hoffman, D. D., Gowdy, P. D., & Kim, J. S. (1995). The perception of color from motion. Perception & Psychophysics, 57, 761-777] using the preferential looking technique. The SCAM stimulus is composed of random dots which are assigned two different colors. Circular region assigned one color moved apparently, keeping all dots' location unchanged. In the SCAM stimulus, adults can perceive subjective color spreading and subjective contours in apparent motion (http://c-faculty.chuo-u.ac.jp/ approximately ymasa/okamura/ibd_demo.html). In the present study, we conducted two experiments by using this type of SCAM stimulus. A total of thirty-six 3-8-month-olds participated. In experiment 1, we presented two stimuli to the infants side by side: a SCAM stimulus consisting of different luminance, and a non-SCAM stimulus consisting of isoluminance dots. The results indicated that the 5-8-month-olds showed preference for the SCAM stimuli. In experiments 2 and 3, we confirmed that the infants' preference for the SCAM stimulus was not generated by the local difference and local change made by luminance of dots but by the subjective contours. These results suggest that 5-8-month-olds were able to perceive subjective contours in the SCAM stimuli. PMID:17727955

  13. Incorporating Stream Features into Groundwater Contouring Tools Within GIS.

    Science.gov (United States)

    Bannister, Roger; Kennelly, Patrick

    2016-03-01

    Hydrogeologists often are called upon to estimate surfaces from discrete, sparse data points. This estimation is often accomplished by manually drawing contours on maps using interpolation methods between points of known value while accounting for features known to influence the water table's surface. By contrast, geographic information systems (GIS) are good at creating smooth continuous surfaces from limited data points and allowing the user to represent the resulting surface resulting with contours, but these automated methods often fail to meet the expectations of many hydrogeologists because they do not include knowledge of other influences on the water table. In this study, we seek to fill this gap in the GIS-based methodology for hydrogeologists through an interactive tool that shapes an interpolated surface based on additional knowledge of the water table inferred from gaining or losing streams. The modified surface is reflected in water table contours that, for example, "V" upstream for gaining streams, and can be interactively adjusted to fit the user's expectations. By modifying not only the contours but also the associated interpolated surface, additional contours will follow the same trend, and the modified surface can be used for other analyses like calculating average gradients and flow paths. The tool leverages Esri's ArcGIS Desktop software, building upon a robust suite of mapping tools. We see this as a prototype for other tools that could be developed for hydrogeologists to account for variations in the water table inferred from local topographic trends, pumping or injection wells, and other hydrogeologic features.

  14. OPTIMIZATION METHOD ON IMPELLER MERIDIONAL CONTOUR AND 3D BLADE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An optimization method for 3D blade and meridional contour of centrifugal or mixed-flow impeller based on the 3D viscous computational fluid dynamics (CFD) analysis is proposed. The blade is indirectly parameterized using the angular momentum and calculated by inverse design method. The design variables are separated into two categories: the meridional contour design variables and the blade design variables. Firstly, only the blade is optimized using genetic algorithm with the meridional contour remained constant. The artificial neural network (ANN) techniques with the training sample data schemed according to design of experiment theory are adopted to construct the response relation between the blade design variables and the impeller performance. Then, based on the ANN approximated relation between the meridional contour design variables and impeller performance, the meridional contour is optimized. Fewer design variables and less calculation effort is required in this method that may be widely used in the optimization of three-dimension impellers. An optimized impeller in a mixed-flow pump, where the head and the efficiency are enhanced by 12.9% and 4.5% respectively, confirms the validity of this newly proposed method.

  15. Coherent Photon Scattering and Direct Imaging of the Iso-frequency Contours in Large-area Photonic Crystal Slabs

    CERN Document Server

    Regan, Emma C; Zhen, Bo; Kaminer, Ido; Hsu, Chia Wei; Shen, Yichen; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    While the absorption of light can be enhanced using optical resonances in a photonic crystal slab, the characteristics of resonance-enhanced scattering are much less studied. Here, we present an analytical model of resonance-enhanced photon scattering from generic fabrication errors and surface roughness, which agrees well with our experimental results. This phenomenon provides a new method to measure the photonic band structure and to directly map the iso-frequency contours of large-area photonic crystal slabs. Additionally, the iso-frequency contours provide information about the characteristics of the disorder and serve as a feedback tool to improve fabrication processes.

  16. The characterization of the hole-contour and plume ejection in the laser drilling with various inclination angles

    Science.gov (United States)

    Yao, Kuan-Chung; Lin, Jehnming

    2013-06-01

    The contours of the drilling-hole for the laser drilling at various inclination angles were investigated in this study. A simple model was proposed to estimate the drilling-hole shape and it was verified with experiments in pulsed laser drilling process. The contour dimensions of the drilling hole are significantly affected by laser power and inclination angle, and there is a good agreement between the simulation and measurement. Furthermore the laser induced plume on the graphite substrate heated by a Nd-YAG pulsed laser at various inclination angles was visualized experimentally. It can be found that the plume ejection is mainly normal to the substrate surface without the shielding gas.

  17. Phase Transitions in Model Active Systems

    Science.gov (United States)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  18. Performance comparisons of contour-based corner detectors.

    Science.gov (United States)

    Awrangjeb, Mohammad; Lu, Guojun; Fraser, Clive S

    2012-09-01

    Corner detectors have many applications in computer vision and image identification and retrieval. Contour-based corner detectors directly or indirectly estimate a significance measure (e.g., curvature) on the points of a planar curve, and select the curvature extrema points as corners. While an extensive number of contour-based corner detectors have been proposed over the last four decades, there is no comparative study of recently proposed detectors. This paper is an attempt to fill this gap. The general framework of contour-based corner detection is presented, and two major issues-curve smoothing and curvature estimation, which have major impacts on the corner detection performance, are discussed. A number of promising detectors are compared using both automatic and manual evaluation systems on two large datasets. It is observed that while the detectors using indirect curvature estimation techniques are more robust, the detectors using direct curvature estimation techniques are faster. PMID:22645267

  19. Scattering Suppression and Absorption Enhancement in Contour Nanoantennas

    CERN Document Server

    Onal, E Doruk

    2015-01-01

    The expanding application spectrum of plasmonic nanoantennas demand versatile design approaches to tailor the antenna properties for specific requirements. The design efforts primarily concentrate on shifting the operation wavelength or enhancing the local fields by manipulating the size and shape of the nanoantenna. Here, we propose a design path to control the absorption and scattering characteristics of a dipole nanoantenna by introducing a hollow region inside the nanostructure. The resulting contour geometry can significantly suppress the scattering of the dipole nanoantenna and enhance its absorption simultaneously. Both the dipole and the contour dipole nanoantenna couple to equivalent amount of the incident radiation. The dipole nanoantenna scatters 84% of the coupled power (absorbs the remaining 16%) whereas the contour dipole structure scatters only 28% of the coupled power (absorbs the remaining 72%). This constitutes the transformation from scatter to absorber nanoantenna. The scattering of a cont...

  20. A method for automatically constructing the initial contour of the common carotid artery

    Directory of Open Access Journals (Sweden)

    Yara Omran

    2013-10-01

    Full Text Available In this article we propose a novel method to automatically set the initial contour that is used by the Active contours algorithm.The proposed method exploits the accumulative intensity profiles to locate the points on the arterial wall. The intensity profiles of sections that intersect the artery show distinguishable characterstics that make it possible to recognize them from the profiles of sections that do not intersect the artery walls. The proposed method is applied on ultrasound images of the transverse section of the common carotid artery, but it can be extended to be used on the images of the longitudinal section. The intensity profiles are classified using Support vector machine algorithm, and the results of different kernels are compared. The extracted features used for the classification are basically statistical features of the intensity profiles. The echogenicity of the arterial lumen, and gives the profiles that intersect the artery a special shape that helps recognizing these profiles from other general profiles.The outlining of the arterial walls may seem a classic task in image processing. However, most of the methods used to outline the artery start from a manual, or semi-automatic, initial contour.The proposed method is highly appreciated in automating the entire process of automatic artery detection and segmentation.

  1. Digital Elevation Model (DEM), DEM created from LIDAR data collected in the spring of 2009 as part of an MPO aerial/contour collection., Published in 2009, 1:600 (1in=50ft) scale, City of Bismarck.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Digital Elevation Model (DEM) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2009. It is described as...

  2. SU-E-T-561: Monte Carlo-Based Organ Dose Reconstruction Using Pre-Contoured Human Model for Hodgkins Lymphoma Patients Treated by Cobalt-60 External Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Pelletier, C [East Carolina University, Greenville, NC (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Kim, J [University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Pyakuryal, A; Lee, C [National Cancer Institute, Rockville, MD (United States)

    2015-06-15

    Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to the XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

  3. An Enhanced Active contour based Segmentation for Fingerprint Extraction

    Directory of Open Access Journals (Sweden)

    S.Uma maheswari

    2012-09-01

    Full Text Available Fingerprint Segmentation is one of the critical and important steps in Automatic Fingerprint Recognition System (AFIS. It is a process that separates the fingerprint image into two regions, theforeground and background. The foreground region will have the fingerprint region containing features for recognition and the background region is the unwanted region which can be excluded from further process. In this paper some of the frequently used existing methods are analyzed and implemented. Then all these methods are combined in a sequential manner to propose an enhanced segmentation method. Finally the proposed method is evaluated and compared with the existing algorithm. Experimental results proved that the efficiency of the proposed method is higher than those of the previously described methods.

  4. Complications following body contouring surgery after massive weight loss

    DEFF Research Database (Denmark)

    Hasanbegovic, Emir; Sørensen, Jens Ahm

    2014-01-01

    Bariatric surgery is a way to achieve lasting weight loss in the obese. Body contouring surgery seeks to alleviate some of the discomfort caused by the excessive loose skin following massive weight loss. Higher complication rates are described in this type of surgery when done post......-bariatric. The purpose of this article is to compare complication rates of body contouring surgery when performed on patients with weight loss due to bariatric surgery compared to patients who lost weight due to dietary changes and/or exercise....

  5. Ideality contours and thermodynamic regularities in supercritical molecular fluids

    Science.gov (United States)

    Desgranges, Caroline; Margo, Abigail; Delhommelle, Jerome

    2016-08-01

    Using Expanded Wang-Landau simulations, we calculate the ideality contours for 3 molecular fluids (SF6, CO2 and H2O). We analyze how the increase in polarity, and thus, in the strength of the intermolecular interactions, impacts the contours and thermodynamic regularities. This effect results in the increase in the Boyle and H parameters, that underlie the Zeno line and the curve of ideal enthalpy. Furthermore, a detailed analysis reveals that dipole-dipole interactions lead to much larger enthalpic contributions to the Gibbs free energy. This accounts for the much higher temperatures and pressures that are necessary for supercritical H2O to achieve ideal-like thermodynamic properties.

  6. Isoline retrieval: An optimal sounding method for validation of advected contours

    CERN Document Server

    Mills, Peter

    2012-01-01

    The study of chaotic mixing is important for its potential to improve our understanding of fluid systems. Contour advection simulations provide a good model of the phenomenon by tracking the evolution of one or more contours or isolines of a trace substance to a high level of precision. The most accurate method of validating an advected contour is to divide the tracer concentration into discrete ranges and perform a maximum likelihood classification, a method that we term, "isoline retrieval." Conditional probabilities generated as a result provide excellent error characterization. In this study, a water vapour isoline of 0.001 mass-mixing-ratio is advected over five days in the upper troposphere and compared with high-resolution AMSU (Advanced Microwave Sounding Unit) satellite retrievals. The goal is to find the same fine-scale, chaotic mixing in the isoline retrievals as seen in the advection simulations. Some of the filaments generated by the simulations show up in the conditional probabilities as areas o...

  7. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  8. Active Appearance Model Based Hand Gesture Recognition

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM). For this work, the proposed algorithm is conposed of constructing AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues.Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted.Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.

  9. On a Quantum Model of Brain Activities

    Science.gov (United States)

    Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.

    2010-01-01

    One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.

  10. MODEL OF ACTIVITY OF THE ENTERPRISE AS MODEL OF ACTIVITY OF THE HUMAN: SEARCH ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ruslan Flerovich Vildanov

    2014-09-01

    Full Text Available Actualized demand of manufactury company's efficiency from the point of quality charachteristics. Reveal unbreakable connection of man and organisation, on example of the comparative analysis of man's and manufacture company's activities. Studing models of company's and men's activities in order to reveal similarity. In order of their implementation to the economics assumes opportunity of using scientific methods, which use for studying functions, vital activities and behavior of the men.

  11. Development of a generic activities model of command and control

    OpenAIRE

    Stanton, NA; Baber, C; Walker, GH; Houghton, RJ; McMaster, R.; Stewart, R; Harris, D.; Jenkins, DP; Young, MS; Salmon, PM

    2008-01-01

    This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model w...

  12. New method of contour-based mask-shape compiler

    Science.gov (United States)

    Matsuoka, Ryoichi; Sugiyama, Akiyuki; Onizawa, Akira; Sato, Hidetoshi; Toyoda, Yasutaka

    2007-10-01

    We have developed a new method of accurately profiling a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, it is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method for a DFM solution in which two dimensional data are extracted for an error free practical simulation by precise reproduction of a real mask shape in addition to the mask data simulation. The flow centering around the design data is fully automated and provides an environment where optimization and verification for fully automated model calibration with much less error is available. It also allows complete consolidation of input and output functions with an EDA system by constructing a design data oriented system structure. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.

  13. Modelling of Activated Sludge Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Kurtanjeka, Ž.

    2008-02-01

    Full Text Available Activated sludge wastewater treatment is a highly complex physical, chemical and biological process, and variations in wastewater flow rate and its composition, combined with time-varying reactions in a mixed culture of microorganisms, make this process non-linear and unsteady. The efficiency of the process is established by measuring the quantities that indicate quality of the treated wastewater, but they can only be determined at the end of the process, which is when the water has already been processed and is at the outlet of the plant and released into the environment.If the water quality is not acceptable, it is already too late for its improvement, which indicates the need for a feed forward process control based on a mathematical model. Since there is no possibility of retracing the process steps back, all the mistakes in the control of the process could induce an ecological disaster of a smaller or bigger extent. Therefore, models that describe this process well may be used as a basis for monitoring and optimal control of the process development. This work analyzes the process of biological treatment of wastewater in the Velika Gorica plant. Two empirical models for the description of the process were established, multiple linear regression model (MLR with 16 predictor variables and piecewise linear regression model (PLR with 17 predictor variables. These models were developed with the aim to predict COD value of the effluent wastewater at the outlet, after treatment. The development of the models is based on the statistical analysis of experimental data, which are used to determine the relations among individual variables. In this work are applied linear models based on multiple linear regression (MLR and partial least squares (PLR methods. The used data were obtained by everyday measurements of the quantities that indicate the quality of the input and output water, working conditions of the plant and the quality of the activated sludge

  14. An adaptive multi-feature segmentation model for infrared image

    Science.gov (United States)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  15. A method of dealing polygon's self-intersection contour in SLA

    Institute of Scientific and Technical Information of China (English)

    GAO Yong-qiang; MO Jian-hua; HUANG Shu-huai

    2007-01-01

    The contour of the slices of SLA parts is composed of a great deal of small lines. When offsetting the contour to compensate for the radius of laser spot, many self-intersection contours come into being, which decrease the precision of formed parts. A new lemma to judge the local self-intersection contour and the global self-intersection contour separately is put forward, according to which self-intersection contour can be removed reliably. Meanwhile, a new beam offsetting algorithm for SLA parts is described, which brings about good results in the practical manufacturing process.

  16. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    Science.gov (United States)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  17. Luminance contours can gate afterimage colors and 'real' colors

    NARCIS (Netherlands)

    Anstis, S.; Vergeer, M.L.T.; Lier, R.J. van

    2012-01-01

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The c

  18. Contour detection based on nonclassical receptive field inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    2003-01-01

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the prim

  19. The role of non-CRF inhibition in contour detection

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.; Skala,

    2003-01-01

    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve the performance of contour detectors. Non-CRF inhibition is exhibited by 80% of the orientation selective neurons in the primary visual cortex of macaque monkeys and has been

  20. Topology Optimization - Improved Checker-Board Filtering With Sharp Contours

    DEFF Research Database (Denmark)

    Pedersen, Christian Gejl; Lund, Jeppe Jessen; Damkilde, Lars;

    2006-01-01

    In topology optimization it is mandatory to use a filtering technique in order to prevent checker-boarder solutions. The paper examines a new filtering principle and demonstrates an improved sharpness in the contours. This was not realized in the original proposal of the filter. Furthermore...

  1. Temperature Contours and Ghost-Surfaces for Chaotic Magnetic Fields

    International Nuclear Information System (INIS)

    Steady state solutions for anisotropic heat transport in a chaotic magnetic field are determined numerically and compared to a set of 'ghost-surfaces', surfaces constructed via an action-gradient flow between the minimax and minimizing periodic orbits. The ghost-surfaces are in remarkable agreement with the temperature contours.

  2. Integrability and Wilson loops: the wavy line contour

    CERN Document Server

    Cagnazzo, A

    2013-01-01

    The Wilson loop with a wavy line contour is studied using integrable methods. The auxiliary problem is solved and the Lax operator is built to first order in perturbation theory, considering a small perturbation from the straight line. Finally the spectral curve of the solution is considered.

  3. Design of a Vibrotactile Vest for Contour Perception

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-11-01

    Full Text Available A vibrotactile array is a promising human computer interface which could display graphical information to users in a tactile form. This paper presents the design and testing of an image contour display system with a vibrotactile array. The tactile image display system is attached to the back of the user. It converts visual graphics into 2D tactile images and allows subjects to feel the contours of objects through vibration stimulus. The system consists of a USB camera, 48 (6×8 vibrating motors and an embedded control system. The image is captured by the camera and the 2D contour is extracted and transformed into vibrotactile stimuli using a temporal‐spatial dynamic coding method. Preliminary experiments were carried out and the optimal parameters of the vibrating time and duration were explored. To evaluate the feasibility and robustness of this vibration mode, letters were also tactilely displayed and the recognition rate about the alphabet letter display was investigated. It was shown that under the condition of no pre‐training for the subjects, the recognition rate was 82%. Such a recognition rate is higher than that of the scanning mode (47.5% and the improved handwriting mode (76.8%. The results indicated that the proposed method was efficient in conveying the contour information to the visually impaired by means of vibrations.

  4. Experimental Investigation of Convoluted Contouring for Aircraft Afterbody Drag Reduction

    Science.gov (United States)

    Deere, Karen A.; Hunter, Craig A.

    1999-01-01

    An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M < 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.

  5. Modeling Aspects Of Activated Sludge Processes Part I: Process Modeling Of Activated Sludge Facilitation And Sedimentation

    International Nuclear Information System (INIS)

    Process modeling of activated sludge flocculation and sedimentation reviews consider the activated sludge floc characteristics such as: morphology viable and non-viable cell ratio density and water content, bio flocculation and its kinetics were studied considering the characteristics of bio flocculation and explaining theory of Divalent Cation Bridging which describes the major role of cations in bio flocculation. Activated sludge flocculation process modeling was studied considering mass transfer limitations from Clifft and Andrew, 1981, Benefild and Molz 1983 passing Henze 1987, until Tyagi 1996 and G. Ibrahim et aI. 2002. Models of aggregation and breakage of flocs were studied by Spicer and Pratsinis 1996,and Biggs 2002 Size distribution of floes influences mass transfer and biomass separation in the activated sludge process. Therefore, it is of primary importance to establish the role of specific process operation factors, such as sludge loading dynamic sludge age and dissolved oxygen, on this distribution with special emphasis on the formation of primary particles

  6. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  7. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Jaswal, Jasbir [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); D' Souza, Leah; Johnson, Marjorie [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); Tay, KengYeow [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Fung, Kevin; Nichols, Anthony [Department of Otolaryngology, Head & Neck Surgery, Victoria Hospital, London, Ontario (Canada); Landis, Mark [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Leung, Eric [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Kassam, Zahra [Department of Diagnostic Radiology, St. Joseph' s Health Care London, London, Ontario (Canada); Willmore, Katherine [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); D' Souza, David; Sexton, Tracy [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Palma, David A., E-mail: david.palma@lhsc.on.ca [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada)

    2015-03-15

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  8. Standardization of surgical techniques used in facial bone contouring.

    Science.gov (United States)

    Lee, Tae Sung

    2015-12-01

    Since the introduction of facial bone contouring surgery for cosmetic purposes, various surgical methods have been used to improve the aesthetics of facial contours. In general, by standardizing the surgical techniques, it is possible to decrease complication rates and achieve more predictable surgical outcomes, thereby increasing patient satisfaction. The technical strategies used by the author to standardize facial bone contouring procedures are introduced here. The author uses various pre-manufactured surgical tools and hardware for facial bone contouring. During a reduction malarplasty or genioplasty procedure, double-bladed reciprocating saws and pre-bent titanium plates customized for the zygomatic body, arch and chin are used. Various guarded oscillating saws are used for mandibular angloplasty. The use of double-bladed saws and pre-bent plates to perform reduction malarplasty reduces the chances of post-operative asymmetry or under- or overcorrection of the zygoma contours due to technical faults. Inferior alveolar nerve injury and post-operative jawline asymmetry or irregularity can be reduced by using a guarded saw during mandibular angloplasty. For genioplasty, final placement of the chin in accordance with preoperative quantitative analysis can be easily performed with pre-bent plates, and a double-bladed saw allows more procedural accuracy during osteotomies. Efforts by the surgeon to avoid unintentional faults are key to achieving satisfactory results and reducing the incidence of complications. The surgical techniques described in this study in conjunction with various in-house surgical tools and modified hardware can be used to standardize techniques to achieve aesthetically gratifying outcomes. PMID:26346781

  9. Contour-based object orientation estimation

    Science.gov (United States)

    Alpatov, Boris; Babayan, Pavel

    2016-04-01

    Real-time object orientation estimation is an actual problem of computer vision nowadays. In this paper we propose an approach to estimate an orientation of objects lacking axial symmetry. Proposed algorithm is intended to estimate orientation of a specific known 3D object, so 3D model is required for learning. The proposed orientation estimation algorithm consists of 2 stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. It minimizes the training image set. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy (mean error value less than 6°) in all case studies. The real-time performance of the algorithm was also demonstrated.

  10. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING

    Directory of Open Access Journals (Sweden)

    Brînduşa-Antonela SBÎRCEA

    2011-01-01

    Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.

  11. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, R; Yang, J; Pan, T; Milgrom, S; Pinnix, C; Shi, A; Yang, J; Liu, Y; Nguyen, Q; Gomez, D; Dabaja, B; Balter, P; Court, L; Liao, Z [MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fused using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need

  12. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    Science.gov (United States)

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  13. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    Science.gov (United States)

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  14. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    Directory of Open Access Journals (Sweden)

    Jonghoon Seo

    2016-03-01

    Full Text Available Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  15. Texture Guided Active Appearance Model Propagation for Prostate Segmentation

    Science.gov (United States)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Vilanova, Joan C.; Meriaudeau, Fabrice

    Fusion of Magnetic Resonance Imaging (MRI) and Trans Rectal Ultra Sound (TRUS) images during TRUS guided prostate biopsy improves localization of the malignant tissues. Segmented prostate in TRUS and MRI improve registration accuracy and reduce computational cost of the procedure. However, accurate segmentation of the prostate in TRUS images can be a challenging task due to low signal to noise ratio, heterogeneous intensity distribution inside the prostate, and imaging artifacts like speckle noise and shadow. We propose to use texture features from approximation coefficients of Haar wavelet transform for propagation of a shape and appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model of the propagating contour is derived from Principal Component Analysis of prior shape and texture informations of the prostate from the training data. The parameters are then modified with prior knowledge of the optimization space to achieve optimal prostate segmentation. The proposed method achieves a mean Dice Similarity Coefficient value of 0.95±0.01, and mean segmentation time of 0.72±0.05 seconds when validated on 25 TRUS images, grabbed from video sequences, in a leave-one-out validation framework. Our proposed model performs computationally efficient accurate prostate segmentation in presence of intensity heterogeneity and imaging artifacts.

  16. Computer-assisted delineation of lung tumor regions in treatment planning CT images with PET/CT image sets based on an optimum contour selection method

    International Nuclear Information System (INIS)

    To assist radiation oncologists in the delineation of tumor regions during treatment planning for lung cancer, we have proposed an automated contouring algorithm based on an optimum contour selection (OCS) method for treatment planning computed tomography (CT) images with positron emission tomography (PET)/CT images. The basic concept of the OCS is to select a global optimum object contour based on multiple active delineations with a level set method around tumors. First, the PET images were registered to the planning CT images by using affine transformation matrices. The initial gross tumor volume (GTV) of each lung tumor was identified by thresholding the PET image at a certain standardized uptake value, and then each initial GTV location was corrected in the region of interest of the planning CT image. Finally, the contours of final GTV regions were determined in the planning CT images by using the OCS. The proposed method was evaluated by testing six cases with a Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs contoured by radiation oncologists and the proposed method. The average three-dimensional DSC for the six cases was 0.78 by the proposed method, but only 0.34 by a conventional method based on a simple level set method. The proposed method may be helpful for treatment planners in contouring the GTV regions. (author)

  17. An approach for activity-based DEVS model specification

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2016-01-01

    activity-based behavior modeling of parallel DEVS atomic models. We consider UML activities and actions as fundamental units of behavior modeling, especially in the presence of recent advances in the UML 2.5 specifications. We describe in detail how to approach activity modeling with a set of elemental...

  18. Theory and modeling of active brazing.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C.

    2013-09-01

    Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding.

  19. Models of the stochastic activity of neurones

    CERN Document Server

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  20. Calf Contouring with Endoscopic Fascial Release, Calf Implant, and Structural Fat Grafting

    Directory of Open Access Journals (Sweden)

    Ercan Karacaoglu, MD

    2013-08-01

    Conclusions: A novel endoscopic approach for lower leg contouring is discussed. Endoscopic fasciotomy technique with calf implant and structural fat grafting for improved lower leg aesthetics is a simple, effective, reliable, and predictable technique for calf contouring.

  1. U.S. Atlantic East Coast bathymetry contours (EGLORIA_CNT)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The bathymetric contours, which comprise this GIS data layer, contains contours for the U.S. Atlantic East Coast. The dataset was created for use with the USGS...

  2. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  3. TU-C-17A-04: BEST IN PHYSICS (THERAPY) - A Supervised Framework for Automatic Contour Assessment for Radiotherapy Planning of Head- Neck Cancer

    International Nuclear Information System (INIS)

    Purpose: Precise contour delineation of tumor targets and critical structures from CT simulations is essential for accurate radiotherapy (RT) treatment planning. However, manual and automatic delineation processes can be error prone due to limitations in imaging techniques and individual anatomic variability. Tedious and laborious manual verification is hence needed. This study develops a general framework for automatically assessing RT contours for head-neck cancer patients using geometric attribute distribution models (GADMs). Methods: Geometric attributes (centroid and volume) were computed from physician-approved RT contours of 29 head-neck patients. Considering anatomical correlation between neighboring structures, the GADM for each attribute was trained to characterize intra- and interpatient structure variations using principal component analysis. Each trained GADM was scalable and deformable, but constrained by the principal attribute variations of the training contours. A new hierarchical model adaptation algorithm was utilized to assess the RT contour correctness for a given patient. Receiver operating characteristic (ROC) curves were employed to evaluate and tune system parameters for the training models. Results: Experiments utilizing training and non-training data sets with simulated contouring errors were conducted to validate the framework performance. Promising assessment results of contour normality/abnormality for the training contour-based data were achieved with excellent accuracy (0.99), precision (0.99), recall (0.83), and F-score (0.97), while corresponding values of 0.84, 0.96, 0.83, and 0.9 were achieved for the non-training data. Furthermore, the areas under the ROC curves were above 0.9, validating the accuracy of this test. Conclusion: The proposed framework can reliably identify contour normality/abnormality based upon intra- and inter-structure constraints derived from clinically-approved contours. It also allows physicians to

  4. Modeling active memory: Experiment, theory and simulation

    Science.gov (United States)

    Amit, Daniel J.

    2001-06-01

    Neuro-physiological experiments on cognitively performing primates are described to argue that strong evidence exists for localized, non-ergodic (stimulus specific) attractor dynamics in the cortex. The specific phenomena are delay activity distributions-enhanced spike-rate distributions resulting from training, which we associate with working memory. The anatomy of the relevant cortex region and the physiological characteristics of the participating elements (neural cells) are reviewed to provide a substrate for modeling the observed phenomena. Modeling is based on the properties of the integrate-and-fire neural element in presence of an input current of Gaussian distribution. Theory of stochastic processes provides an expression for the spike emission rate as a function of the mean and the variance of the current distribution. Mean-field theory is then based on the assumption that spike emission processes in different neurons in the network are independent, and hence the input current to a neuron is Gaussian. Consequently, the dynamics of the interacting network is reduced to the computation of the mean and the variance of the current received by a cell of a given population in terms of the constitutive parameters of the network and the emission rates of the neurons in the different populations. Within this logic we analyze the stationary states of an unstructured network, corresponding to spontaneous activity, and show that it can be stable only if locally the net input current of a neuron is inhibitory. This is then tested against simulations and it is found that agreement is excellent down to great detail. A confirmation of the independence hypothesis. On top of stable spontaneous activity, keeping all parameters fixed, training is described by (Hebbian) modification of synapses between neurons responsive to a stimulus and other neurons in the module-synapses are potentiated between two excited neurons and depressed between an excited and a quiescent neuron

  5. An experimental and analytical study of flow through a supersonic open channel with contoured floor

    Science.gov (United States)

    Saheli, F. P.; Dunn, B.; Marrs, K.; Kumar, A.; Peery, K. M.

    1984-01-01

    A wind tunnel experiment was performed to study the characteristics of supersonic airflow (M(infinity) = 2.5-3.86) through an open channel with a contoured floor. The measured static pressures along the centerline of the channel floor exhibited an unexpected rise at the end of the channel. Complex three-dimensional interactions of compression and expansion waves within the channel coupled with external flow perturbations caused by model/tunnel wall interference were the suspected sources of this flow behavior. Three-dimensional inviscid flow analysis procedures were used to investigate and explain this phenomenon. The results of the computations and the experiment are presented and discussed.

  6. Eyeglasses lens contour extraction from facial images using an efficient shape description.

    Science.gov (United States)

    Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu

    2013-10-10

    This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach.

  7. Eyeglasses Lens Contour Extraction from Facial Images Using an Efficient Shape Description

    Directory of Open Access Journals (Sweden)

    Diana Borza

    2013-10-01

    Full Text Available This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach.

  8. Computational Modeling of Fluorescence Loss in Photobleaching

    DEFF Research Database (Denmark)

    Hansen, Christian Valdemar; Schroll, Achim; Wüstner, Daniel

    2015-01-01

    sequences as reaction– diffusion systems on segmented cell images. The cell geometry is extracted from microscopy images using the Chan–Vese active contours algorithm [8]. The PDE model is subsequently solved by the automated Finite Element software package FEniCS [20]. The flexibility of FEniCS allows...

  9. Polygonal Approximation of Contour Shapes Using Corner Detectors

    OpenAIRE

    Hermilo Sánchez‐Cruz; Ernesto Bribiesca

    2009-01-01

    A great amount of corner detectors that appear in literature are based on using the Freeman chain code of eight directions,which is used to represent contour shapes. We propose a new method for corner detection based on a three‐symbol chain coderepresentation, which requires lower storage memory and an easy way to obtain shape corners. We compare it with fiveexisting methods, which are well known in the literature, giving our method a better performance. Furthermore, in order toreconstruct th...

  10. Yet another method for triangulation and contouring for automated cartography

    Science.gov (United States)

    De Floriani, L.; Falcidieno, B.; Nasy, G.; Pienovi, C.

    1982-01-01

    An algorithm is presented for hierarchical subdivision of a set of three-dimensional surface observations. The data structure used for obtaining the desired triangulation is also singularly appropriate for extracting contours. Some examples are presented, and the results obtained are compared with those given by Delaunay triangulation. The data points selected by the algorithm provide a better approximation to the desired surface than do randomly selected points.

  11. Impact of contour hedgerows on maize yields in the Philippines

    OpenAIRE

    Shively, Gerald E.

    1998-01-01

    Metadata only record This paper investigates the impact of contour hedgerows on maize yields. The author applies and agricultural production function to assess data from upland Philippine maize farms and hedgerows of double rows of the nitrogen-fixing species Desmodium rensonii and Flemengia macrophylla. Although the findings show a positive long term impact on maize yields, the short term impact of hedgerows is negative; they reduce land available for cultivation and decrease productivity...

  12. Contours et limites de la comptabilité nationale

    OpenAIRE

    Cassiers, Isabelle

    1998-01-01

    La comptabilité nationale est un instrument qui repose sur nombre de choix et de conventions comptables si bien que la représentation de la vie économique et sociale qu'elle propose demeure partielle. Ces limites sont souvent oubliées dans les interprétations des données économiques. Retour sur les contours exacts du système de comptabilité nationale.

  13. Performance Evaluation of Autonomous Contour Following Algorithms for Industrial Robot

    OpenAIRE

    Prabuwono, Anton Satria; Said, Samsi; Burhanuddin; Sulaiman, Riza

    2010-01-01

    In this study, the performance evaluations of autonomous contour following task with three different algorithms have been performed for Adept SCARA robot. A prototype of smart tool integrated with sensor has been designed. It can be attached and reattached into robot gripper and interfaced through I/O pins of Adept robot controller for automated robot teaching operation. The algorithms developed were tested on a semicircle object of 40 millimeter radius. The semicircle object was selected bec...

  14. Contour tracking and probabilistic segmentation of tissue phase mapping MRI

    Science.gov (United States)

    Chitiboi, Teodora; Hennemuth, Anja; Schnell, Susanne; Chowdhary, Varun; Honarmand, Amir; Markl, Michael; Linsen, Lars; Hahn, Horst

    2016-03-01

    Many cardiovascular diseases manifest as an abnormal motion pattern of the heart muscle (myocardium). Local cardiac motion can be non-invasively quantified with magnetic resonance imaging (MRI), using methods such as tissue phase mapping (TPM), which directly measures the local myocardial velocities over time with high temporal and spatial resolution. The challenges for routine clinical use of TPM for the diagnosis and monitoring of cardiac function lie in providing a fast and accurate myocardium segmentation and a robust quantitative analysis of the velocity field. Both of these tasks are difficult to automate on routine clinical data because of the reduced contrast in the presence of noise. In this work, we propose to address these challenges with a segmentation approach that combines smooth, iterative contour displacement and probabilistic segmentation using particle tracing, based on the underlying velocity field. The proposed solution enabled the efficient and reproducible segmentation of TPM datasets from 27 patients and 14 volunteers, showing good potential for routine use in clinical studies. Our method allows for a more reliable quantitative analysis of local myocardial velocities, by giving a higher weight to velocity vectors corresponding to pixels more likely to belong to the myocardium. The accuracy of the contour propagation was evaluated on nine subjects, showing an average error smaller than the spatial resolution of the image data. Statistical analysis concluded that the difference between the segmented contours and the ground truths was not significantly higher than the variability between the manual ground truth segmentations.

  15. On progress of nuclear activation model calculations

    International Nuclear Information System (INIS)

    Progress of work on improved methods of nuclear model calculations for nuclear activation data carried out at IFIN-HH in 2003-2004 is reported. In order to provide accurate predictions of further interest for the European Activation File (EAF-2005), no use of normalization or free parameters are involved. Model calculations carried out by using the computer codes EMPIRE-II and STAPRE-H have been validated by analysis of activation cross sections of all W and Ta stable isotopes and compared with the corresponding predictions obtained with the code TALYS. The accurate description of these reaction cross sections is obtained by using a consistent local parameter set, being fully due to the start of proton pre-equilibrium contribution due to the partial wave l = 7ℎ at incident energies of ∼ 14 MeV. This feature makes possible a faster increase of the STAPRE-H results for the (n,p) reaction cross sections just around this energy, while at 20 MeV they are in between the EMPIRE-II and TALYS predictions. It is thus pointed out the need for additional experimental data in the energy range above 15 MeV, similar to previous measurements at, e.g., JRC/IRMM. It is also shown that enlargement actions already in due course may have lower effectiveness concerning the preservation and development of knowledge and capabilities at Romanian R and D institutes as well as their integration into existing EC/JRC programmes and EU networks. While from the beginning EC asked CEEC to improve their R and D infrastructure to better benefit from the enlargement process, no real step forward has been done in this respect in Romania. The present conditions at IFIN-HH well below the limits making possible a real work have made thus not possible a further co-operation with JRC/IRMM, where we found previously the best opportunities for a sound common work, simply because no study completion may be done now in Bucharest. (author)

  16. Time contour expression of limited range phenomena on stack chart; Jugo chart jo deno kyokuchi gensho jikan contour

    Energy Technology Data Exchange (ETDEWEB)

    Kametani, T.

    1997-05-27

    Time contour expression of limited range phenomena on stack chart is examined for further improvement on the result of the ultimate interpretation in the seismic reflection survey. The policy is made clear from the beginning that local phenomena are to be discussed, and data prior CMP stacking is interpreted in detail. For this purpose, it is effective to make use of the time contour expression in the midpoint-offset plane simultaneously with the CMP and COP panels. For the review of data prior to CMP stacking, it is convenient to use the CMP (CDP) stacking chart in which the data is arranged methodically. In this chart, all the channels which are crude data prior to stacking are plotted on midpoint-offset coordinates, which plane is called the MOD (Midpoint Offset Domain) panel. Various panels can be chosen unrestrictedly, and their mutual relations can be easily grasped. When data points are given a time axis, they can be expressed in a time contour. Studies are conducted about the underground structure, multiple reflection paths divided by it, and characteristics of detour reflection attributable to faults. 4 refs., 9 figs.

  17. A review of methods of analysis in contouring studies for radiation oncology

    International Nuclear Information System (INIS)

    Full text: Inter-observer variability in anatomical contouring is the biggest contributor to uncertainty in radiation treatment planning. Contouring studies are frequently performed to investigate the differences between multiple contours on common datasets. There is, however, no widely accepted method for contour comparisons. The purpose of this study is to review the literature on contouring studies in the context of radiation oncology, with particular consideration of the contouring comparison methods they employ. A literature search, not limited by date, was conducted using Medline and Google Scholar with key words; contour, variation, delineation, inter/intra observer, uncertainty and trial dummy-run. This review includes a description of the contouring processes and contour comparison metrics used. The use of different processes and metrics according to tumour site and other factors were also investigated with limitations described. A total of 69 relevant studies were identified. The most common tumour sites were prostate (26), lung (10), head and neck cancers (8) and breast (7).The most common metric of comparison was volume used 59 times, followed by dimension and shape used 36 times, and centre of volume used 19 times. Of all 69 publications, 67 used a combination of metrics and two used only one metric for comparison. No clear relationships between tumour site or any other factors that may in Auence the contouring process and the metrics used to compare contours were observed from the literature. Further studies are needed to assess the advantages and disadvantages of each metric in various situations.

  18. A Contour-Guided Deformable Image Registration Algorithm for Adaptive Radiotherapy

    CERN Document Server

    Gu, Xuejun; Wang, Jing; Yordy, John; Mell, Loren; Jia, Xun; Jiang, Steve B

    2013-01-01

    In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto propagated contours on the treatment CT may contain relatively large errors, especially in low contrast regions. A clinician inspection and editing of the propagated contours are frequently needed. The edited contours are able to meet the clinical requirement for adaptive therapy; however, the DVF is still inaccurate and inconsistent with the edited contours. The purpose of this work is to develop a contour-guided deformable image registration (CG-DIR) algorithm to improve the accuracy and consistency of the DVF for adaptive radiotherapy. Incorporation of the edited contours into the registration algorithm is realized by regularizing the objective function of the original demons algorithm with a term of intensity matching between the delineated structures set pairs. The CG-DIR a...

  19. The precision of visual memory for a complex contour shape measured by a freehand drawing task.

    Science.gov (United States)

    Osugi, Takayuki; Takeda, Yuji

    2013-03-01

    Contour information is an important source for object perception and memory. Three experiments examined the precision of visual short-term memory for complex contour shapes. All used a new procedure that assessed recall memory for holistic information in complex contour shapes: Participants studied, then reproduced (without cues), a contoured shape by freehand drawing. In Experiment 1 memory precision was measured by comparing Fourier descriptors for studied and reproduced contours. Results indicated survival of lower (holistic) frequency information (i.e., ⩽5cycles/perimeter) and loss of higher (detail) frequency information. Secondary tasks placed demands on either verbal memory (Experiment 2) or visual spatial memory (Experiment 3). Neither secondary task interfered with recall of complex contour shapes, suggesting that the memory system maintaining holistic shape information was independent of both the verbal memory system and the visual spatial memory subsystem of visual short-term memory. The nature of memory for complex contour shape is discussed. PMID:23296198

  20. Cardiac modeling using active appearance models and morphological operators

    Science.gov (United States)

    Pfeifer, Bernhard; Hanser, Friedrich; Seger, Michael; Hintermueller, Christoph; Modre-Osprian, Robert; Fischer, Gerald; Muehlthaler, Hannes; Trieb, Thomas; Tilg, Bernhard

    2005-04-01

    We present an approach for fast reconstructing of cardiac myocardium and blood masses of a patient's heart from morphological image data, acquired either MRI or CT, in order to estimate numerically the spread of electrical excitation in the patient's atria and ventricles. The approach can be divided into two main steps. During the first step the ventricular and atrial blood masses are extracted employing Active Appearance Models (AAM). The left and right ventricular blood masses are segmented automatically after providing the positions of the apex cordis and the base of the heart. Because of the complex geometry of the atria the segmentation process of the atrial blood masses requires more information as the ventricular blood mass segmentation process of the ventricles. We divided, for this reason, the left and right atrium into three divisions of appearance. This proved sufficient for the 2D AAM model to extract the target blood masses. The base of the heart, the left upper and left lower pulmonary vein from its first up to its last appearance in the image stack, and the right upper and lower pulmonary vein have to be marked. After separating the volume data into these divisions the 2D AAM search procedure extracts the blood masses which are the main input for the second and last step in the myocardium extraction pipeline. This step uses morphologically-based operations in order to extract the ventricular and atrial myocardium either directly by detecting the myocardium in the volume block or by reconstructing the myocardium using mean model information, in case the algorithm fails to detect the myocardium.

  1. Toward a model of neuropsychological activity.

    Science.gov (United States)

    Ardila, A; Galeano, L M; Rosselli, M

    1998-12-01

    The main purpose of this research was to establish the intercorrelations existing among different psychological and neuropsychological test scores in a normal and homogeneous population. A second purpose was to attempt further step in the component analysis of cognitive activity measured by means of neuropsychological tests. A comprehensive neuropsychological test battery was assembled and individually administered to a 300-subject sample, aged 17-25 year-old. All of them were right-handed male university students. The battery included some basic neuropsychological tests directed to assess language, calculation abilities, spatial cognition, praxic abilities, memory, perceptual abilities, and executive functions. In addition, the Wechsler Adult Intelligence Scale was administered. Forty-one different scores were calculated. Correlations among the different test scores were analyzed. It was found that some of the tests presented a quite complex intecorrelation system, whereas other tests presented few or no significant correlations. Mathematical ability tests and orthography knowledge represented the best predictors of Full Scale IQ. A factor analysis with varimax rotation disclosed five factors (verbal, visuoperceptual, executive function, fine movements, and memory) accounting for 63.6% of the total variance. Implications of these results for a neuropsychological model about brain organization of cognition were analyzed. PMID:9951709

  2. Loudness perception in the domestic cat: reaction time estimates of equal loudness contours and recruitment effects.

    Science.gov (United States)

    May, Bradford J; Little, Nicole; Saylor, Stephanie

    2009-06-01

    The domestic cat is the primary physiological model of loudness coding and recruitment. At present, there are no published descriptions of loudness perception in this species. This study used a reaction time task to characterize loudness perception in six behaviorally trained cats. The psychophysical approach was based on the assumption that sounds of equal loudness elicit responses of equal latency. The resulting equal latency contours reproduced well-known features of human equal loudness contours. At the completion of normal baseline measures, the cats were exposed to intense sound to investigate the behavioral correlates of loudness recruitment, the abnormally rapid growth of loudness that is commonly associated with hearing loss. Observed recruitment effects were similar in magnitude to those that have been reported in hearing-impaired humans. Linear hearing aid amplification is known to improve speech intelligibility but also exacerbate recruitment in impaired listeners. The effects of speech spectra and amplification on recruitment were explored by measuring the growth of loudness for natural and amplified vowels before and after sound exposure. Vowels produced more recruitment than tones, and the effect was exacerbated by the selective amplification of formant structure. These findings support the adequacy of the domestic cat as a model system for future investigations of the auditory processes that underlie loudness perception, recruitment, and hearing aid design. PMID:19198944

  3. Nontangent, Developed Contour Bulkheads for a Wing-Body Single Stage Launch Vehicle

    Science.gov (United States)

    Wu, K. Chauncey; Lepsch, Roger A., Jr.

    1999-01-01

    Dry weights for a SSTO vehicle which incorporates nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.41 4 aspect ratio ellipsoidal bulkheads, Weights, volumes and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weight of a vehicle which incorporates the optimized bulkheads is predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle s three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of 4365 Ib (2.2 percent) from the 200,679 Ib baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. During the vehicle- level analysis, modified bulkhead designs are first analyzed, then incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 Ib, a 2.6 percent reduction from the baseline value. These results suggest that nontangent, developed contour bulkheads may provide substantial weight savings for SSTO vehicles.

  4. A word by any other intonation: fMRI evidence for implicit memory traces for pitch contours of spoken words in adult brains.

    Directory of Open Access Journals (Sweden)

    Michael Inspector

    Full Text Available OBJECTIVES: Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. EXPERIMENTAL DESIGN: Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i All words presented in a set flat monotonous pitch contour (ii Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii Each word had a different arbitrary pitch contour in each of its repetition. PRINCIPAL FINDINGS: The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41, temporal areas (BA 21 22 bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. CONCLUSIONS: Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words.

  5. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.

    Science.gov (United States)

    Nguyen, T-Q; Buckley, J M; Ames, C; Deviren, V

    2011-02-01

    Intraoperative contouring of posterior rods in lumbar arthrodesis constructs introduces stress concentrations that can substantially reduce fatigue life. The sensitivity of titanium (Ti) and stainless steel (SS) to intraoperative contouring has been established in the literature; however, notch sensitivity has yet to be quantified for cobalt chrome (CoCr), which is now being advocated for use in posterior arthrodesis constructs. The goal of this study is to evaluate the sensitivity of CoCr rods to intraoperative contouring for posterior lumbar screwrod arthrodesis constructs. In this paper lumbar bilateral vertebrectomy models are constructed based on ASTM F1717-01 with curved rods (26-30 degrees total curvature) and poly-axial pedicle screws. Three types of constructs are assembled: first, 5.5 mm SS rods with SS screws (6.5 x 35 mm), second, 6.0 mm Ti rods with Ti screws (7.5 x 35 mm), and third, 6.0 mm CoCr rods with Ti screws (7.5 x 35 mm). All specimens are tested at 4 Hz in dynamic axial compression-bending with a load ratio of ten and maximum load levels of 250, 400, and 700 N until run-out at 2 000 000 cycles. Results are presented that show that the fatigue life of CoCr constructs tend to be greater than Ti constructs at all levels. At the 400 N maximum loading, CoCr lasts an average of 350 000 cycles longer than the Ti constructs. The CoCr constructs are able to sustain the 250 N load until run-out at 2 000 000 cycles but they fail at high load levels (maximum 700 N). The CoCr constructs fail at the neck of the Ti screw at high loads whereas Ti screws fail at the notch induced by contouring. Since CoCr is compatible with magnetic resonance imaging and has high static strength characteristics, the results of this study suggest that it may be an appropriate substitute for Ti. PMID:21428153

  6. Effectiveness of Human Atrial Natriuretic Peptide Supplementation in Pulmonary Edema Patients Using the Pulse Contour Cardiac Output System

    OpenAIRE

    Sakamoto, Yuichiro; Mashiko, Kunihiro; Saito, Nobuyuki; Matsumoto, Hisashi; Hara, Yoshiaki; Kutsukata, Noriyoshi; Yokota, Hiroyuki

    2010-01-01

    Purpose Atrial natriuretic peptide (ANP) has a variety of pharmacologic effects, including natriuresis, diuresis, vasodilatation, and suppression of the renin-angiotensin system. A recent study showed that ANP infusion improved hypoxemia and pulmonary hypertension in a lung injury model. On the other hand, the pulse contour cardiac output (PiCCO™) system (Pulsion Medical Systems, Munich, Germany) allows monitoring of the intravascular volume status and may be used to guide volume therapy in s...

  7. Melodic Contour Identification Reflects the Cognitive Threshold of Aging

    Science.gov (United States)

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p < 0.05 for Δpre - on task; p < 0.01 for Δon – post task) rather than the older adult group (n.s for Δpre - on task; n.s for Δon – post task). We further concluded that the oxyHb difference was present in the brain regions near the right dorsolateral prefrontal cortex. Taken together, these findings suggest that CIT2 (i.e., the melodic contour task in the target-like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  8. Tracking the critical offshore conditions leading to marine inundation via active learning of full-process based models

    Science.gov (United States)

    Rohmer, Jeremy; Idier, Deborah; Bulteau, Thomas; Paris, François

    2016-04-01

    From a risk management perspective, it can be of high interest to identify the critical set of offshore conditions that lead to inundation on key assets for the studied territory (e.g., assembly points, evacuation routes, hospitals, etc.). This inverse approach of risk assessment (Idier et al., NHESS, 2013) can be of primary importance either for the estimation of the coastal flood hazard return period or for constraining the early warning networks based on hydro-meteorological forecast or observations. However, full-process based models for coastal flooding simulation have very large computational time cost (typically of several hours), which often limits the analysis to a few scenarios. Recently, it has been shown that meta-modelling approaches can efficiently handle this difficulty (e.g., Rohmer & Idier, NHESS, 2012). Yet, the full-process based models are expected to present strong non-linearities (non-regularities) or shocks (discontinuities), i.e. dynamics controlled by thresholds. For instance, in case of coastal defense, the dynamics is characterized first by a linear behavior of the waterline position (increase with increasing offshore conditions), as long as there is no overtopping, and then by a very strong increase (as soon as the offshore conditions are energetic enough to lead to wave overtopping, and then overflow). Such behavior might make the training phase of the meta-model very tedious. In the present study, we propose to explore the feasibility of active learning techniques, aka semi-supervised machine learning, to track the set of critical conditions with a reduced number of long-running simulations. The basic idea relies on identifying the simulation scenarios which should both reduce the meta-model error and improve the prediction of the critical contour of interest. To overcome the afore-described difficulty related to non-regularity, we rely on Support Vector Machines, which have shown very high performance for structural reliability

  9. ACTIVITY ANALYSIS WITH HIDDEN MARKOV MODEL FOR AMBIENT ASSISTED LIVING

    Directory of Open Access Journals (Sweden)

    Dietmar Bruckner

    2012-06-01

    Full Text Available In an Ambient Assisted Living (AAL project the activities of the user will be analyzed. The raw data is from a motion detector. Through data processing the huge amount of dynamic raw data was translated to state data. With hidden Markov model, forward algorithm to analyze these state data the daily activity model of the user was built. Thirdly by comparing the model with observed activity sequences, and finding out the similarities between them, defined the best adapt routine in the model. Furthermore an activity routine net was built and used to compare with the hidden Markov model.

  10. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  11. Camera motion estimation by tracking contour deformation: Precision analysis

    OpenAIRE

    Alenyà, Guillem; Torras, Carme

    2010-01-01

    An algorithm to estimate camera motion from the progressive deformation of a tracked contour in the acquired video stream has been previously proposed. It relies on the fact that two views of a plane are related by an affinity, whose 6 parameters can be used to derive the 6 degrees-of-freedom of camera motion between the two views. In this paper we evaluate the accuracy of the algorithm. Monte Carlo simulations show that translations parallel to the image plane and rotations about the optical...

  12. SOl-based radial-contour-mode micromechanical disk resonator

    Institute of Scientific and Technical Information of China (English)

    Jia Yingqian; Zhao Zhengping; Yang Yongjun; Hu Xiaodong; Li Qian

    2011-01-01

    This paper reports a radial-contour-mode micromechanical disk resonator for radio frequency applications.This disk resonator with a gold plated layer as the electrodes,was prepared on a silicon-on-insulator wafer,which is supported by an anchor on another silicon wafer through Au-Au thermo-compression bonding.The gap between the disk and the surrounding gold electrodes is 100 nm.The radius of the disk is 20 μm and the thickness is 4.5μm.In results,the resonator shows a resonant frequency of 143 MHz and a quality factor of 5600 in vacuum.

  13. Laser Welding Of Contoured Thin-Wall Housings

    Science.gov (United States)

    Spiegel, Lyle B.; Oleksiak, Carl E.

    1991-01-01

    Superalloy parts joined with less distortion. Carbon dioxide laser beam directed by optics in numerically controlled robot arm welds shell-type turbopump housings having complicated shapes. 5-kW laser, following single programmed three-dimensional pass, produces high-quality, full-penetration weld pass in age-hardenable nickel superalloy. Operator easily programs robot by using teaching pendant to track weld joint and keeps laser focused on workpiece while following contour of shell. Shells welded in rapid succession, with minimal change in setup for each.

  14. Contour optimization of a planar broadband dipole using genetic algorithms

    OpenAIRE

    Vasylenko, Dmytro O.; Dubrovka, Fedor F.; Edenhofer, Peter

    2007-01-01

    The application of genetic algorithm (GA) optimization to the design and analysis for planar broadband dipoles of bow-tie type is presented. Primary attention is given to the analysis of the radiating contour profile of the bow-tie antenna. The planar dipole antenna is proposed for UWB communications in the frequency range 3.1-10.6 GHz. A printed design of the proposed antenna is defined for return loss < -10 dB and antenna gain > 2 dB over the whole frequency range.

  15. Array Processing and Fast Optimization Algorithms for Distorted Circular Contour Retrieval

    Directory of Open Access Journals (Sweden)

    Marot Julien

    2007-01-01

    Full Text Available A specific formalism for virtual signal generation permits to transpose an image processing problem to an array processing problem. The existing method for straight-line characterization relies on the estimation of orientations and offsets of expected lines. This estimation is performed thanks to a subspace-based algorithm called subspace-based line detection (SLIDE. In this paper, we propose to retrieve circular and nearly circular contours in images. We estimate the radius of circles and we extend the estimation of circles to the retrieval of circular-like distorted contours. For this purpose we develop a new model for virtual signal generation; we simulate a circular antenna, so that a high-resolution method can be employed for radius estimation. An optimization method permits to extend circle fitting to the segmentation of objects which have any shape. We evaluate the performances of the proposed methods, on hand-made and real-world images, and we compare them with generalized Hough transform (GHT and gradient vector flow (GVF.

  16. Characterization of microstructures using contour tree connectivity for fluid flow analysis.

    Science.gov (United States)

    Aydogan, Dogu Baran; Hyttinen, Jari

    2014-06-01

    Quantifying the connectivity of material microstructures is important for a wide range of applications from filters to biomaterials. Currently, the most used measure of connectivity is the Euler number, which is a topological invariant. Topology alone, however, is not sufficient for most practical purposes. In this study, we use our recently introduced connectivity measure, called the contour tree connectivity (CTC), to study microstructures for flow analysis. CTC is a new structural connectivity measure that is based on contour trees and algebraic graph theory. To test CTC, we generated a dataset composed of 120 samples and six different types of artificial microstructures. We compared CTC against the Euler parameter (EP), the parameter for connected pairs, the nominal opening dimension (dnom) and the permeabilities estimated using direct pore scale modelling. The results show that dnom is highly correlated with permeability (R2=0.91), but cannot separate the structural differences. The groups are best classified with feature combinations that include CTC. CTC provides new information with a different connectivity interpretation that can be used to analyse and design materials with complex microstructures. PMID:24671931

  17. Finite element models applied in active structural acoustic control

    OpenAIRE

    Oude Nijhuis, Marco H.H.; de Boer; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controller design. The reduced structural model is combined with an acoustic model which uses the radiation mode concept. For a test case consisting of a rectangular plate with one piezo patch the model re...

  18. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda;

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical...... University of Denmark (DTU). Test systems containing a single salt (NaCl), multiple salts, and mixed solvent aqueous electrolyte solutions were chosen. The performance of the activity coefficient models were compared regarding the accuracy of solid-liquid and vapor-liquid equilibrium calculations...

  19. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  20. Optimal pricing decision model based on activity-based costing

    Institute of Scientific and Technical Information of China (English)

    王福胜; 常庆芳

    2003-01-01

    In order to find out the applicability of the optimal pricing decision model based on conventional costbehavior model after activity-based costing has given strong shock to the conventional cost behavior model andits assumptions, detailed analyses have been made using the activity-based cost behavior and cost-volume-profitanalysis model, and it is concluded from these analyses that the theory behind the construction of optimal pri-cing decision model is still tenable under activity-based costing, but the conventional optimal pricing decisionmodel must be modified as appropriate to the activity-based costing based cost behavior model and cost-volume-profit analysis model, and an optimal pricing decision model is really a product pricing decision model construc-ted by following the economic principle of maximizing profit.

  1. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan;

    2013-01-01

    On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences......, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects....... Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings...

  2. Theory on the molecular characteristic contour (II)--Molecular intrinsic characteristic contours of several typical organic molecules

    Institute of Scientific and Technical Information of China (English)

    GONG; Lidong; ZHAO; Dongxia; YANG; Zhongzhi

    2005-01-01

    The molecular intrinsic characteristic contour (MICC) is defined based on the classical turning point of electron movement in a molecule. Three typical organic molecules, I.e. Methane, methanol and formic acid, were employed as examples for detailed introduction of our method. Investigations on the cross-sections of MICC provide important information about atomic size changing in the process of forming molecules. The electron density distributions on the MICCs of these molecules were calculated and shown for the first time. Results showed that the electron density distribution on the MICC correlates closely with molecular chemical properties, and it provides a new insight into molecular boundary.

  3. The contour method cutting assumption: error minimization and correction

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael B [Los Alamos National Laboratory; Kastengren, Alan L [ANL

    2010-01-01

    The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.

  4. Contoured-gap coaxial guns for imploding plasma liner experiments

    Science.gov (United States)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  5. A NOVEL FAST MOVING OBJECT CONTOUR TRACKING ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    An Guocheng; Yang Hao; Wu Zhenyang

    2009-01-01

    If a somewhat fast moving object exists in a complicated tracking environment, snake's nodes may fall into the inaccurate local minima. We propose a mean shift snake algorithm to solve this problem. However, if the object goes beyond the limits of mean shift snake module operation in successive sequences, mean shift snake's nodes may also fall into the local minima in their moving to the new object position. This paper presents a motion compensation strategy by using particle filter; therefore a new Particle Filter Mean Shift Snake (PFMSS) algorithm is proposed which combines particle filter with mean shift snake to fulfill the estimation of the fast moving object contour. Firstly, the fast moving object is tracked by particle filter to create a coarse position which is used to initialize the mean shift algorithm. Secondly, the whole relevant motion information is used to compensate the snake's node positions. Finally, snake algorithm is used to extract the exact object contour and the useful information of the object is fed back. Some real world sequences are tested and the results show that the novel tracking method have a good performance with high accuracy in solving the fast moving problems in cluttered background.

  6. Analysis of trabecular bone microstructure using contour tree connectivity.

    Science.gov (United States)

    Aydogan, Dogu Baran; Moritz, Niko; Aro, Hannu T; Hyttinen, Jari

    2013-01-01

    Millions of people worldwide suffer from fragility fractures, which cause significant morbidity, financial costs and even mortality. The gold standard to quantify structural properties of trabecular bone is based on the morphometric parameters obtained from microCT images of clinical bone biopsy specimens. The currently used image processing approaches are not able to fully explain the variation in bone strength. In this study, we introduce the contour tree connectivity (CTC) as a novel morphometric parameter to study trabecular bone quality. With CTC, we calculate a new connectivity measure for trabecular bone by using contour tree representation of binary images and algebraic graph theory. To test our approach, we use trabecular bone biopsies obtained from 55 female patients. We study the correlation of CTC with biomechanical test results as well as other morphometric parameters obtained from microCT. The results based on our dataset show that CTC is the 3rd best predictive feature of ultimate bone strength after bone volume fraction and degree of anisotropy. PMID:24579169

  7. Melodic Contour Identification Reflects the Cognitive Threshold of Aging.

    Science.gov (United States)

    Jeong, Eunju; Ryu, Hokyoung

    2016-01-01

    Cognitive decline is a natural phenomenon of aging. Although there exists a consensus that sensitivity to acoustic features of music is associated with such decline, no solid evidence has yet shown that structural elements and contexts of music explain this loss of cognitive performance. This study examined the extent and the type of cognitive decline that is related to the contour identification task (CIT) using tones with different pitches (i.e., melodic contours). Both younger and older adult groups participated in the CIT given in three listening conditions (i.e., focused, selective, and alternating). Behavioral data (accuracy and response times) and hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). Our findings showed cognitive declines in the older adult group but with a subtle difference from the younger adult group. The accuracy of the melodic CITs given in the target-like distraction task (CIT2) was significantly lower than that in the environmental noise (CIT1) condition in the older adult group, indicating that CIT2 may be a benchmark test for age-specific cognitive decline. The fNIRS findings also agreed with this interpretation, revealing significant increases in oxygenated hemoglobin (oxyHb) concentration in the younger (p like distraction) is an optimized task that could indicate the degree and type of age-related cognitive decline. PMID:27378907

  8. RESEARCH OF BASIFACIAL CONTOURING SCULPTURE BY MANDIBULAR ANGLE OSTECTOMY

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-lin; DAI Chuan-chang; ZHU Guo-xian; ZHANG Ying; JIN Yu-qing; WANG Wei; QI Chuan-liang

    2006-01-01

    Objective Mandibular angle ostectomy is usually applied to the facial contouring sculpture.We evaluated the various techniques in order to enhance the precision and avoid unnecessary damage. Methods Before operation the area and quantity resected bone were designed according to facial measurement, mandible pantomography and orthophoria and lateral localized radiograph of skull. The Incises of mandibular angle ostectomy included intraoral, retroauricular or intraoral associated with retroauricular. Howerer, the sagittal resection of mandible outer table was necessary in all intraoral incise. Results Single mandibular angle ostectomy was not satisfactory for the patients having mandible hypertrophy with over-width basifacial contouring. Mandibular angle ostectomy combined with the sagittal resection of outer table of mandibular angle were required. Good symmetry and ap pearance were gained in 206 cases. One case had facial paralysis. Two patients occured mandibular fracture during the operation. Three cases complicated angled deformity at mandible body. Conclusion Reduction mandibuloplasty should be selected depends on varied types of mandibular angle hypertrophy before operation.

  9. Some effects of intonation contour on sentence intelligibility

    Science.gov (United States)

    Hillenbrand, James M.

    2003-10-01

    This experiment was designed to measure the effects of pitch movement on sentence intelligibility. A source-filter synthesizer was used to generate three synthetic versions of 60 sentences drawn from the TIMIT multi-talker speech database: (1) an original pitch (OP) condition in which the fundamental frequency (F0) contour matched that of the original utterance, (2) a monotone pitch (MP) condition in which F0 was held constant at the median value measured from the original utterance, and (3) an inverted pitch (IP) condition in which the F0 contour was reflected around the median F0 value (i.e., pitch rises were changed to pitch drops, and vice versa). Results from 30 listeners showed a small but statistically reliable drop in intelligibility from the OP condition to either the MP or IP condition, with no difference between the MP and IP conditions. A second group of 22 listeners was tested on the same task, but with overall sentence intelligibility reduced by running all signals through a 2-kHz low-pass filter. As with the unfiltered signals, intelligibility was reduced for the MP and IP conditions relative to OP; however, the decrements in intelligibility were somewhat larger for the filtered signals, and inverting pitch caused a larger intelligibility decrement than flattening pitch.

  10. Ups and Downs in Auditory Development: Preschoolers' Sensitivity to Pitch Contour and Timbre.

    Science.gov (United States)

    Creel, Sarah C

    2016-03-01

    Much research has explored developing sound representations in language, but less work addresses developing representations of other sound patterns. This study examined preschool children's musical representations using two different tasks: discrimination and sound-picture association. Melodic contour--a musically relevant property--and instrumental timbre, which is (arguably) less musically relevant, were tested. In Experiment 1, children failed to associate cartoon characters to melodies with maximally different pitch contours, with no advantage for melody preexposure. Experiment 2 also used different-contour melodies and found good discrimination, whereas association was at chance. Experiment 3 replicated Experiment 2, but with a large timbre change instead of a contour change. Here, discrimination and association were both excellent. Preschool-aged children may have stronger or more durable representations of timbre than contour, particularly in more difficult tasks. Reasons for weaker association of contour than timbre information are discussed, along with implications for auditory development. PMID:25846115

  11. Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition.

    Science.gov (United States)

    Petkov, Nicolai; Subramanian, Easwar

    2007-12-01

    We study the orientation and speed tuning properties of spatiotemporal three-dimensional (3D) Gabor and motion energy filters as models of time-dependent receptive fields of simple and complex cells in the primary visual cortex (V1). We augment the motion energy operator with surround suppression to model the inhibitory effect of stimuli outside the classical receptive field. We show that spatiotemporal integration and surround suppression lead to substantial noise reduction. We propose an effective and straightforward motion detection computation that uses the population code of a set of motion energy filters tuned to different velocities. We also show that surround inhibition leads to suppression of texture and thus improves the visibility of object contours and facilitates figure/ground segregation and the detection and recognition of objects.

  12. Modelling an actively-cooled CPV system

    Science.gov (United States)

    Buonomano, A.; Mittelman, G.; Faiman, D.; Biryukov, S.; Melnichak, V.; Bukobza, D.; Kabalo, S.

    2012-10-01

    We have constructed a 7-node, 1-dimensional model of the heat flow in a water-cooled CPV receiver. The model is validated against data from a module exposed to solar irradiance at various concentrations up to 1,000X at the PETAL solar dish facility at Sede Boqer.

  13. Rodent model of activity-based anorexia.

    Science.gov (United States)

    Carrera, Olaia; Fraga, Ángela; Pellón, Ricardo; Gutiérrez, Emilio

    2014-04-10

    Activity-based anorexia (ABA) consists of a procedure that involves the simultaneous exposure of animals to a restricted feeding schedule, while free access is allowed to an activity wheel. Under these conditions, animals show a progressive increase in wheel running, a reduced efficiency in food intake to compensate for their increased activity, and a severe progression of weight loss. Due to the parallelism with the clinical manifestations of anorexia nervosa including increased activity, reduced food intake and severe weight loss, the ABA procedure has been proposed as the best analog of human anorexia nervosa (AN). Thus, ABA research could both allow a better understanding of the mechanisms underlying AN and generate useful leads for treatment development in AN.

  14. Wanted: Active Role Models for Today's Kids

    Science.gov (United States)

    ... be active," says Handles Franklin, one of the stars of the world-famous Harlem Globetrotters. "Something so ... More "Reducing Childhood Obesity" Articles Healthy Weight, Healthy Child / Get Involved How Parents and Kids Can Get ...

  15. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    OpenAIRE

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  16. Active illumination and appearance model for face alignment

    DEFF Research Database (Denmark)

    Kahraman, Fatih; Gokmen, M.; Darkner, Sune;

    2010-01-01

    Active Illumination and Appearance Model (AIA) which combines identity, illumination and shape components in a single model and allows us to control them, separately. One of the major advantage of the proposed AIA model is that efficient model fitting is achieved, whilst maintaining performance against...

  17. Finite element models applied in active structural acoustic control

    NARCIS (Netherlands)

    Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.

    2002-01-01

    This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll

  18. Theoretical and practical aspects of modelling activated sludge processes

    NARCIS (Netherlands)

    Meijer, S.C.F.

    2004-01-01

    This thesis describes the full-scale validation and calibration of a integrated metabolic activated sludge model for biological phosphorus removal. In chapters 1 and 2 the metabolic model is described, in chapters 3 to 6 the model is tested and in chapters 7 and 8 the model is put into practice. Cha

  19. Post-Bariatric Surgery Satisfaction and Body-Contouring Consideration after Massive Weight Loss

    OpenAIRE

    Saleh M Aldaqal; Ahmad M Makhdoum; Ali M Turki; Awan, Basim A; Osama A Samargandi; Hytham Jamjom

    2013-01-01

    Background: Following a bariatric surgery and massive weight-loss, the outcome is usually sullied by consequences on the body′s contour and redundant skin. Aims: We aimed to record the frequency of contour irregularities and quantify patients′ satisfaction with appearance and anticipations from body contouring surgery. Materials and Methods: The ethical committee at King Abdulaziz University Hospital approved the study, and patients were consented. A cross-sectional study targeting the post-b...

  20. A novel three-dimensional smile analysis based on dynamic evaluation of facial curve contour

    OpenAIRE

    Yi Lin; Han Lin; Qiuping Lin; Jinxin Zhang; Ping Zhu; Yao Lu; Zhi Zhao; Jiahong Lv; Mln Kyeong Lee; Yue Xu

    2016-01-01

    The influence of three-dimensional facial contour and dynamic evaluation decoding on factors of smile esthetics is essential for facial beauty improvement. However, the kinematic features of the facial smile contour and the contribution from the soft tissue and underlying skeleton are uncharted. Here, the cheekbone-maxilla contour and nasolabial fold were combined into a “smile contour” delineating the overall facial topography emerges prominently in smiling. We screened out the stable and un...

  1. Radar Monitoring: Modelling of Undeclared Activities

    International Nuclear Information System (INIS)

    A feasibility study in the framework of the German Support Programme investigates the applicability of the 3D radar method for the monitoring of a geological repository. The aim of technical solution is the detection and localization of clandestine underground mining activities. The radar system should form a kind of protective shield around a repository to detect and localize possible activities in an early stage and in a sufficient distance. To date radar monitoring in the context of geotechnical engineering is restricted to few applications, mainly in form of repetitive linear measurements. Repetitive surveys out of boreholes or drifts are conducted with disadvantages concerning safeguards requirements as high maintenance and positioning inaccuracies. In this study a static radar system is selected to omit these disadvantages. A monitoring system consisting of an array of static radar probes could probably be realized as a highly accurate, durable and low-maintenance automatic early warning system. In the past decade DMT has developed an unique 3D borehole radar used for the exploration in salt mines, at cavern sites and in limestone quarries. The knowledge of DMT can be used for a further development of a direction sensitive radar monitoring system. With the additional information of the direction, possible activities in the mine could not only be detected but also localized in 3D space. The detectability of different possible clandestine mining activities is investigated by simulations of radar wave propagation. The simulations involve the influence of baseline conditions and known activities to the data. The detectability of mining activities is analyzed by comparing different geometries of the activities, different layouts of the radar probes and accounts for different probe parameters. (author)

  2. Atmospheric transmittance model for photosynthetically active radiation

    Energy Technology Data Exchange (ETDEWEB)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana [Physics Department, West University of Timisoara, V Parvan 4, 300223 Timisoara (Romania); Pop, Nicolina [Department of Physical Foundations of Engineering, Politehnica University of Timisoara, V Parvan 2, 300223 Timisoara (Romania); Calinoiu, Delia [Mechanical Engineering Faculty, Politehnica University of Timisoara, Mihai Viteazu 1, 300222 Timisoara (Romania)

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  3. The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

    Science.gov (United States)

    Karakasli, Ahmet; Karaarslan, Ahmet A.; Ozcanhan, Mehmet Hilal; Ertem, Fatih; Erduran, Mehmet

    2016-01-01

    Objective Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, 20° kyphotic, and 20° lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of 5 mm min-1, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of 0.5° s-1 to an end point of 5.0°, in a torsion testing machine. Results Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae. PMID:27651858

  4. Space Object Tracking Method Based on a Snake Model

    Science.gov (United States)

    Zhan-wei, Xu; Xin, Wang

    2016-04-01

    In this paper, aiming at the problem of unstable tracking of low-orbit variable and bright space objects, adopting an active contour model, a kind of improved GVF (Gradient Vector Flow) - Snake algorithm is proposed to realize the real-time search of the real object contour on the CCD image. Combined with the Kalman filter for prediction, a new adaptive tracking method is proposed for space objects. Experiments show that this method can overcome the tracking error caused by the fixed window, and improve the tracking robustness.

  5. Ferromagnetic interaction model of activity level in workplace communication

    Science.gov (United States)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  6. An Active Reading Model for English Learners

    Institute of Scientific and Technical Information of China (English)

    徐岩; 张琳

    2008-01-01

    Acuve reading makes a reader interact with the text.It promotes learning,Acuve reading model actually presents six reading strategies that teachers should consider when teaching English to a class of non-native speakers.That guides both teachers and students in their working and learning.

  7. Electron Correlation Models for Optical Activity

    DEFF Research Database (Denmark)

    Höhn, E. G.; O. E. Weigang, Jr.

    1968-01-01

    A two-system no-overlap model for rotatory strength is developed for electric-dipole forbidden as well as allowed transitions. General equations which allow for full utilization of symmetry in the chromophore and in the environment are obtained. The electron correlation terms are developed in full...

  8. Polygonal Approximation of Contour Shapes Using Corner Detectors

    Directory of Open Access Journals (Sweden)

    Hermilo Sánchez‐Cruz

    2009-12-01

    Full Text Available A great amount of corner detectors that appear in literature are based on using the Freeman chain code of eight directions,which is used to represent contour shapes. We propose a new method for corner detection based on a three‐symbol chain coderepresentation, which requires lower storage memory and an easy way to obtain shape corners. We compare it with fiveexisting methods, which are well known in the literature, giving our method a better performance. Furthermore, in order toreconstruct the original shapes through polygonal approximations, we propose an error parameter to quantify the efficiency.This can be accomplished by considering the redundancy of points produced when looking for corners and when computing thedifference between the original region and the approximated polygon.

  9. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    Energy Technology Data Exchange (ETDEWEB)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-05-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object.

  10. Equivalence of Two Contour Prescriptions in Superstring Perturbation Theory

    CERN Document Server

    Sen, Ashoke

    2016-01-01

    Conventional superstring perturbation theory based on the world-sheet approach gives divergent results for the S-matrix whenever the total center of mass energy of the incoming particles exceeds the threshold of production of any final state consistent with conservation laws. Two systematic approaches have been suggested for dealing with this difficulty. The first one involves deforming the integration cycles over the moduli space of punctured Riemann surfaces into complexified moduli space. The second one treats the amplitude as a sum of superstring field theory Feynman diagrams and deforms the integration contours over loop energies of the Feynman diagram into the complex plane. In this paper we establish the equivalence of the two prescriptions to all orders in perturbation theory. Since the second approach is known to lead to unitary amplitudes, this establishes the consistency of the first prescription with unitarity.

  11. Managing CSCL Activity through networking models

    Directory of Open Access Journals (Sweden)

    Luis Casillas

    2014-04-01

    Full Text Available This study aims at managing activity carried out in Computer-Supported Collaborative Learning (CSCL environments. We apply an approach that gathers and manages the knowledge underlying huge data structures, resulting from collaborative interaction among participants and stored as activity logs. Our method comprises a variety of important issues and aspects, such as: deep understanding of collaboration among participants in workgroups, definition of an ontology for providing meaning to isolated data manifestations, discovering of knowledge structures built in huge amounts of data stored in log files, and development of high-semantic indicators to describe diverse primitive collaborative acts, and binding these indicators to formal descriptions defined in the collaboration ontology; besides our method includes gathering collaboration indicators from web forums using natural language processing (NLP techniques.

  12. Synaptic model for spontaneous activity in developing networks

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Rinzel, J.

    2005-01-01

    Spontaneous rhythmic activity occurs in many developing neural networks. The activity in these hyperexcitable networks is comprised of recurring "episodes" consisting of "cycles" of high activity that alternate with "silent phases" with little or no activity. We introduce a new model of synaptic...... dynamics that takes into account that only a fraction of the vesicles stored in a synaptic terminal is readily available for release. We show that our model can reproduce spontaneous rhythmic activity with the same general features as observed in experiments, including a positive correlation between...

  13. New method of 2-dimensional metrology using mask contouring

    Science.gov (United States)

    Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka

    2008-10-01

    We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.

  14. Bathymetric Contours, Lidar Contours, Published in 2008, 1:600 (1in=50ft) scale, LaCrosse County Zoning Planning & Land Information.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Bathymetric Contours dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from LIDAR information as of 2008. It is described as 'Lidar...

  15. Contours, Hawaii (Big Island) Hypsography - 40 ft Contour Interval, Published in 2004, 1:24000 (1in=2000ft) scale, U.S. Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Contours dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Orthoimagery information as of 2004. It is described as 'Hawaii...

  16. Bathymetric Contours - LAKE_BATHYMETRY_IDNR_IN: Bathymetric Contours for Selected Lakes in Indiana (Indiana Department of Natural Resources, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — LAKE_BATHYMETRY_IDNR_IN.SHP provides bathymetric contours for the following 85 lakes in Indiana, with depths calculated from the average shoreline of each lake:...

  17. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Abrams, Ross A. [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States); Bosch, Walter [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Roberge, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Haas, Rick L.M. [Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Catton, Charles N. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida Medical Center, Jacksonville, Florida (United States); Olsen, Jeffrey R. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Chen, Yen-Lin [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Finkelstein, Steven E. [Translational Research Consortium, 21st Century Oncology, Scottsdale, Arizona (United States); DeLaney, Thomas F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Wang, Dian [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States)

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  18. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    International Nuclear Information System (INIS)

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  19. Residual stresses in LENS[reg] components using neutron diffraction and contour method

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, P. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States)]. E-mail: partha@lanl.gov; Griffith, M.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Prime, M.B. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States); Holden, T.M. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States); Rogge, R.B. [National Research Council of Canada, Chalk River Laboratories Chalk River, Ont., K0J 1J0 (Canada); Edwards, J.M. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States); Sebring, R.J. [Los Alamos National Laboratory, Materials Science and Technology, Los Alamos, NM 87545 (United States)

    2005-06-15

    During manufacturing of components by laser engineered net shaping (LENS[reg]), a solid freeform fabrication process, the introduction of residual stresses causes deformation or in the worst case, cracking. The origin is attributed to thermal transients encountered during solidification. In the absence of reliable predictive models for the residual stresses, measurements are necessary. Residual stresses were measured in LENS[reg] samples of 316 stainless steel and Inconel 718 having simple geometrical shapes by both neutron diffraction and the contour methods. The results by the two methods are compared and discussed in the context of the growth direction during the LENS[reg] process. Surprisingly, the residual stresses are practically uni-axial, with high stresses in the growth direction.

  20. Modeling Aspects of Activated Sludge Processes Part l l: Mathematical Process Modeling and Biokinetics of Activated Sludge Processes

    International Nuclear Information System (INIS)

    Mathematical process modeling and biokinetics of activated sludge process were reviewed considering different types of models. It has been evaluated the task group models of ASMI. and 2, and 3 versioned by Henze et al considering the conditions of each model and the different processes of which every model consists. It is revealed that ASMI contains some defects avoided in ASM3. Relied on homogeneity, Models can be classified into homogenous models characterized by taking the activated sludge process as one phase. In this type of models, the internal mass transfer inside the floes was neglected.. Hence, the kinetic parameter produces can be considered inaccurate. The other type of models is the heterogeneous model This type considers the mass transfer operations in addition to the biochemical reaction processes; hence, the resulted kinetic parameters can be considered more accurate than that of homogenous type