WorldWideScience

Sample records for active compounds emitted

  1. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME.

    Science.gov (United States)

    Zini, C A; Augusto, F; Christensen, T E; Smith, B P; Caramão, E B; Pawliszy, J

    2001-10-01

    A procedure to monitor BVOC emitted by living plants using SPME technique is presented. For this purpose, a glass sampling chamber was designed. This device was employed for the characterization of biogenic volatile compounds emitted by leaves of Eucalyptus citriodora. After extraction with SPME fibers coated with PDMS/ DVB, it was possible to identify or detect 33 compounds emitted by this plant. A semiquantitative approach was applied to monitor the behavior of the emitted BVOC during 9 days. Circadian profiles of the variation in the concentration of isoprene were plotted. Using diffusion-based SPME quantitation, a recently introduced analytical approach, with extraction times as short as 15 s, it was possible to quantify subparts-per-billion amounts of isoprene emitted by this plant.

  2. Volatile organic compounds emitted byTrichodermaspecies mediate plant growth.

    Science.gov (United States)

    Lee, Samantha; Yap, Melanie; Behringer, Gregory; Hung, Richard; Bennett, Joan W

    2016-01-01

    Many Trichoderma species are applied as biofungicides and biofertilizers to agricultural soils to enhance crop growth. These filamentous fungi have the ability to reduce plant diseases and promote plant growth and productivity through overlapping modes of action including induced systemic resistance, antibiosis, enhanced nutrient efficiency, and myco-parasitism. Trichoderma species are prolific producers of many small metabolites with antifungal, antibacterial, and anticancer properties. Volatile metabolites of Trichoderma also have the ability to induce resistance to plant pathogens leading to improved plant health. In this study, Arabidopsis plants were exposed to mixtures of volatile organic compounds (VOCs) emitted by growing cultures of Trichoderma from 20 strains, representing 11 different Trichoderma species. We identified nine Trichoderma strains that produced plant growth promoting VOCs. Exposure to mixtures of VOCs emitted by these strains increased plant biomass (37.1-41.6 %) and chlorophyll content (82.5-89.3 %). Trichoderma volatile-mediated changes in plant growth were strain- and species-specific. VOCs emitted by T . pseudokoningii (CBS 130756) were associated with the greatest Arabidopsis growth promotion. One strain, T. atroviride (CBS 01-209), in our screen decreased growth (50.5 %) and chlorophyll production (13.1 %). Similarly, tomatoes exposed to VOCs from T. viride (BBA 70239) showed a significant increase in plant biomass (>99 %), larger plant size, and significant development of lateral roots. We also observed that the tomato plant growths were dependent on the duration of the volatile exposure. A GC-MS analysis of VOCs from Trichoderma strains identified more than 141 unique compounds including several unknown sesquiterpenes, diterpenes, and tetraterpenes. Plants grown in the presence of fungal VOCs emitted by different species and strains of Trichoderma exhibited a range of effects. This study demonstrates that the blend of volatiles

  3. Identification Odor Compounds Emitted During the Heating of Molding Sands

    Directory of Open Access Journals (Sweden)

    Faber J.

    2017-06-01

    Full Text Available The paper presents the results of analyzes of gases emitted during exposure to high temperature foundry molding sands, where binders are organic resins. As a research tool has been used special gas chromatograph designed to identify odorous compounds including the group of alkanes.

  4. Rays Emitted by Compounds of Uranium and of Thorium

    Indian Academy of Sciences (India)

    27 from 2 to 14. 20. 11 from 3 to 7 very active. All the uranium compounds studied are active, and are, in general, more active to the extent that they contain more uranium. The compounds of thorium are very active. Thorium oxide surpasses even metallic uranium in activity. It is remarkable that the two most active elements, ...

  5. Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil

    DEFF Research Database (Denmark)

    Clausen, P. A.; Knudsen, Henrik Nellemose; Larsen, K.

    2008-01-01

    The emission of odor active volatile organic compounds (VOCs) from a floor oil based on linseed oil, the linseed oil itself and a low-odor linseed oil was investigated by thermal desorption gas chromatography combined with olfactometry and mass spectrometry (TD-GC-O/MS). The oils were applied...... identified by GC-MS. While 92 VOCs were detected from the oil used in the floor oil, only 13 were detected in the low-odor linseed oil. The major odor active VOCs were aldehydes and carboxylic acids. Spearmen rank correlation of the GC-O profiles showed that the odor profile of the linseed oil likely...... influenced the odor profile of the floor oil based on this linseed oil....

  6. [Volatile organic compounds (VOCs) emitted from large furniture].

    Science.gov (United States)

    Tanaka-Kagawa, Toshiko; Furuta, Mitsuko; Shibatsuji, Masayoshi; Jinno, Hideto; Nishimura, Tetsuji

    2011-01-01

    Indoor air pollution by volatile organic compounds (VOCs), which may cause a hazardous influence on human being such as sick building (sick house) syndrome, has become a serious problem. In this study, VOCs emitted from nine pieces of home furniture, three sets of dining tables, three sets of chest of drawers and three sofas, were analyzed as potential sources of indoor air pollution by large chamber test method (JIS A 1911). Based on the emission rates of total VOC (TVOC), the impacts on the indoor TVOC was estimated by the sample model with a volume of 20 m3 and ventilation frequency of 0.5 times/h. The estimated TVOC increment values were exceeded the provisional target value for indoor air (400 microg/m3) in three sets of dining tables, one set of chest of drawer and one sofa. The estimated increment of formaldehyde were exceeded the guideline value (100 microg/m3) in one set of dining table, two sets of chest of drawers and one sofa. These results revealed that VOC emissions from furniture may influence significantly indoor air quality. Also, in this study, to establish the alternative method for large chamber test methods, emission rates from representative three parts of furniture unit were evaluated using the small chamber and emission rate from full-sized furniture was predicted. Emission rates of TVOC and formaldehyde predicted by small chamber test were 3-46% and 6-252% of the data obtained using large chamber test, respectively.

  7. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants

    Science.gov (United States)

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M.; Verheggen, François; Massart, Sébastien

    2017-01-01

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants. PMID:28508885

  8. First Characterisation of Volatile Organic Compounds Emitted by Banana Plants.

    Science.gov (United States)

    Berhal, Chadi; De Clerck, Caroline; Fauconnier, Marie-Laure; Levicek, Carolina; Boullis, Antoine; Kaddes, Amine; Jijakli, Haïssam M; Verheggen, François; Massart, Sébastien

    2017-05-16

    Banana (Musa sp.) ranks fourth in term of worldwide fruit production, and has economical and nutritional key values. The Cavendish cultivars correspond to more than 90% of the production of dessert banana while cooking cultivars are widely consumed locally around the banana belt production area. Many plants, if not all, produce Volatile Organic Compounds (VOCs) as a means of communication with their environment. Although flower and fruit VOCs have been studied for banana, the VOCs produced by the plant have never been identified despite their importance in plant health and development. A volatile collection methodology was optimized to improve the sensitivity and reproducibility of VOCs analysis from banana plants. We have identified 11 VOCs for the Cavendish, mainly (E,E)-α-farnesene (87.90 ± 11.28 ng/μl), methyl salicylate (33.82 ± 14.29) and 6-methyl-5-hepten-2-one (29.60 ± 11.66), and 14 VOCs for the Pacific Plantain cultivar, mainly (Z,E)-α-farnesene (799.64 ± 503.15), (E,E)-α-farnesene (571.24 ± 381.70) and (E) β ocimene (241.76 ± 158.49). This exploratory study paves the way for an in-depth characterisation of VOCs emitted by Musa plants.

  9. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, A.M. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil); Santos, A.G. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Natural Principles and Toxicology, Rodovia Araraquara-Jau, km 01, Araraquara (Brazil); Csipak, A.R.; Caliri, C.M.; Silva, I.C. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil); Arbex, M.A. [UNIFESP — Federal University of São Paulo, Paulista College of Medicine, Department of Internal Medicine, Rua Pedro de Toledo, 720, São Paulo (Brazil); Silva, F.S.; Marchi, M.R.R. [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Analytical Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Cavalheiro, A.J.; Silva, D.H.S.; Bolzani, V.S. [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Organic Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Soares, C.P., E-mail: soarescp@hotmail.com [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil)

    2012-12-15

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract—3.9, 7.5, or 15.0 mg/kg body weight (BW)—or with casearin X—0.3, 0.25, or 1.2 mg/kg BW—after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ► We assessed DNA protection of C. sylvestris ethanolic extract. ► We assessed DNA protection of casearin X. ► We used Tradescantia pallida micronucleus test as screening. ► We used comet assay and micronucleus test in mice. ► The compounds protected DNA against sugar cane burning pollutants.

  10. Study of compounds emitted during thermo-oxidative decomposition of polyester fabrics

    Directory of Open Access Journals (Sweden)

    Dzięcioł Małgorzata

    2016-03-01

    Full Text Available Compounds emitted during thermo-oxidative decomposition of three commercial polyester fabrics for indoor outfit and decorations (upholstery, curtains were studied. The experiments were carried out in a flow tubular furnace at 600°C in an air atmosphere. During decomposition process the complex mixtures of volatile and solid compounds were emitted. The main volatile products were carbon oxides, benzene, acetaldehyde, vinyl benzoate and acetophe-none. The emitted solid compounds consisted mainly of aromatic carboxylic acids and its derivatives, among which the greatest part took terephthalic acid, monovinyl terephthalate and benzoic acid. The small amounts of polycyclic aromatic hydrocarbons were also emitted. The emission profiles of the tested polyester fabrics were similar. The presence of toxic compounds indicates the possibility of serious hazard for people during fire.

  11. Development of method for identification of compounds emitted during thermal degradation of binders used in foundry

    Directory of Open Access Journals (Sweden)

    A. Bobrowski

    2011-07-01

    Full Text Available The aim of the research was to develop a method for identification of compounds emitted during thermal degradation of binders used in foundry. Research were performed with the use of Certified Reference Materials mixtures of semi-volatiles compounds with furfuryl alcohol and aldehyde. Furfuryl-urea resin samples were also used. Station for thermal degradation of materials used in foundry was designed and made. Thermal degradation process conditions and gas chromatograph coupled with high resolution mass spectrometry operating conditions were established. Organic compounds emitted during degradation were identified. The paper briefly represents the range of study and the results obtained for furfuryl-urea resin thermal degradation. Significant information about volatile and semi-volatile organic compounds emitted in different temperatures is also discussed.

  12. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  13. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii.

    Science.gov (United States)

    Fravel, Deborah R; Connick, William J; Grimm, Casey C; Lloyd, Steven W

    2002-06-19

    Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii were identified by solid phase microextraction followed by gas chromatography and mass spectometry. Both S. minor and S. sclerotiorum emitted 2-methylenebornane and 2-methylisoborneol. In addition, S. minor emitted mesityl oxide, gamma-butyrolactone, cis- and trans-linalool oxide, linalool, and trans-nerolidol. S. sclerotiorum emitted 2-methyl-2-bornene, 1-methylcamphene, and a diterpene with a molecular weight of 272. Sclerotium rolfsii did not emit any of these compounds but did emit delta-cadinene and cis-calamenene. Chemicals emitted by S. minor and S. sclerotiorum were tested to determine if they could stimulate germination of conidia of Sporidesmium sclerotivorum, a mycoparasite on sclerotia of Sclerotinia spp. Chemicals were tested at 1 part per billion to 100 parts per million, both in direct contact with conidia and near, but not in, physical contact. None of the chemicals alone nor a combination of all chemicals induced germination of conidia of S. sclerotivorum.

  14. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  15. Application of headspace for research volatile organic compounds emitted from building materials

    Directory of Open Access Journals (Sweden)

    Kultys Beata

    2018-01-01

    Full Text Available Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.

  16. Volatile organic compounds emitted from fungal-rotting beech (Fagus sylvatica)

    OpenAIRE

    Thakeow, Prodepran; Weißbecker, Bernhard; Schütz, Stefan

    2008-01-01

    Chemo-communication is an important mode of interaction within ecosystem. The living organism in the ecosystem can deliver signals to conspecifics, to co-organisms, and unintentionally to their enemies, by emitting the volatile organic compounds (VOCs) to the atmosphere. There are some insect-fungi-associations displaying interesting relationships. For example, some bark beetle species (PAINE et al. 1997) introduce fungi into the conifers during the attack process. Fungi take advantage by ass...

  17. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  18. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    Science.gov (United States)

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Effect of a fungal infection on the profile of volatile organic compounds emitted by plant roots.

    Science.gov (United States)

    Fiers, M; Lognay, G; Wathelet, J P; Fauconnier, M L; Jijakli, M H

    2012-01-01

    It is known since few years that the aerial and underground parts of the plants emit volatile organic compounds (VOCs) that can interact with other organisms of the environment. They are involved in the attraction of seed dispersers and pollinators, the repellence of enemies via direct or indirect mechanisms and the induction of defence systems in other parts of the same plant or in other plants in the vicinity (Dudareva et al., 2006). It has been shown previously that the VOCs spectrum emitted by plants hardly depends on their physiological state (Kant et al., 2009). However those phenomenons were poorly studied at the edaphic level. Thus, the Rhizovol project, a multidisciplinary project in Gembloux Agro-Bio Tech was set up to study the emissions of VOCs by plant roots and their interactions with other organisms of the rhizosphere. As a partner of this project, the Plant Pathology Unit of Gembloux Agro-Bio Tech chose to study the effect of a fungal infection on the profile of VOCs emitted by plant roots, based on three model organisms, barley (Hordeum vulgare L.), since it is a major crop in Belgium that can suffer a large range of aggressions, and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum, responsible for root and foot rots and seedling blight on cereals (Wiese, 1977). Later in the development, C. sativus produces elongate brown-black lesions (spot blotch) and F. culmorum induces head blight and produces mycotoxins that make the grain unsuitable for consumption (Nielsen et al., 2011). The objective of this work was to identify the VOCs emitted during the dual interactions between barley roots and a pathogenic fungus. The study was performed in two steps; first, the independent analyses of the VOCs emitted by each of the partners (C. sativus, F. culmorum and healthy barley roots), then the analyses of the VOCs spectrum emitted during dual interactions.

  20. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  1. Measurements of chlorinated volatile organic compounds emitted from office printers and photocopiers.

    Science.gov (United States)

    Kowalska, Joanna; Szewczyńska, Małgorzata; Pośniak, Małgorzata

    2015-04-01

    Office devices can release volatile organic compounds (VOCs) partly generated by toners and inks, as well as particles of paper. The aim of the presented study is to identify indoor emissions of volatile halogenated organic compounds into the office workspace environment. Mixtures of organic pollutants emitted by seven office devices, i.e. printers and copiers, were analyzed by taking samples in laboratory conditions during the operation of these appliances. Tests of volatile organic compound emissions from selected office devices were conducted in a simulated environment (test chamber). Samples of VOCs were collected using three-layered thermal desorption tubes. Separation and identification of organic pollutant emissions were made using thermal desorption combined with gas chromatography coupled to mass spectrometry. Test chamber studies indicated that operation of the office printer and copier would contribute to the significant concentration level of VOCs in typical office indoor air. Among the determined volatile halogenated compounds, only chlorinated organic compounds were identified, inter alia: trichloroethylene - carcinogenic - and tetrachloroethylene - possibly carcinogenic to human. The results show that daily exposure of an office worker to chemical factors released by the tested printing and copying units can be variable in terms of concentrations of VOCs. The highest emissions in the test chamber during printing were measured for ethylbenzene up to 41.3 μg m(-3), xylenes up to 40.5 μg m(-3) and in case of halogenated compounds the highest concentration for chlorobenzene was 6.48 μg m(-3). The study included the comparison of chamber concentrations and unit-specific emission rates of selected VOCs and the identified halogenated compounds. The highest amount of total VOCs was emitted while copying with device D and was rated above 1235 μg m(-3) and 8400 μg unit(-1) h(-1) on average.

  2. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2016-11-15

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. [Estimation and forecast of volatile organic compounds emitted from paint uses in China].

    Science.gov (United States)

    Wei, Wei; Wang, Shu-xiao; Hao, Ji-ming

    2009-10-15

    Based on the current consumptions and forecast consumptions of paints in China, using the volatile organic compounds (VOC) contents of paints calculated as emission factors, an emission inventory model was established to calculate provincial, sector-specific, and species-specific VOC emissions during 2005-2020. The results indicated that the VOC amount emitted from paint use was 1883 kt in 2005, of which aromatics, alcohol compounds, ester compounds, ether compounds and ketone compounds were the main species. The maximum incremental reactivity (MIR,O3/VOC) of VOC emitted in 2005 was about 3.6 g/kg, and the toxic VOC accounted for 31% of the total in weight. The VOC emissions would increase to 5673 kt in 2020 if there were no further control policies and actions taken. Therefore, it is essential to implement the VOC emission control from paint uses as soon as possible. Two control scenarios were developed to evaluate the potential of VOC emission reductions. In 2020, VOC emissions from paint uses might be controlled at 3 519 kt through the improvement of paints quality to the level of that in developed countries in 1990s and installation of waste gas treatment equipments in newly-built factories. VOC emissions could be further reduced to 2243 kt if the quality of decorative paint and wood paint would be improved to the current level of that in developed countries and all factories install waste gas treatment equipments. All these control measures also helpe to reduce the toxicity and atmospheric oxidation reactivity of VOC emissions.

  4. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action.

    Science.gov (United States)

    Sánchez-López, Ángela María; Baslam, Marouane; De Diego, Nuria; Muñoz, Francisco José; Bahaji, Abdellatif; Almagro, Goizeder; Ricarte-Bermejo, Adriana; García-Gómez, Pablo; Li, Jun; Humplík, Jan F; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Baroja-Fernández, Edurne; Pozueta-Romero, Javier

    2016-12-01

    It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms. © 2016 John Wiley & Sons Ltd.

  5. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth.

    Science.gov (United States)

    Lee, Samantha; Hung, Richard; Yap, Melanie; Bennett, Joan W

    2015-06-01

    Studying the effects of microbial volatile organic compounds (VOCs) on plant growth is challenging because the production of volatiles depends on many environmental factors. Adding to this complexity, the method of volatile exposure itself can lead to different responses in plants and may account for some of the contrasting results. In this work, we present an improved experimental design, a plate-within-a-plate method, to study the effects of VOCs produced by filamentous fungi. We demonstrate that the plant growth response to VOCs is dependent on the age of the plant and fungal cultures. Plants exposed to volatiles emitted by 5-day-old Trichoderma atroviride for 14 days exhibited inhibition, while plants exposed to other exposure conditions had growth promotion or no significant change. Using GC-MS, we compared fungal volatile emission of 5-day-old and 14-day-old T. atroviride. As the fungi aged, a few compounds were no longer detected, but 24 new compounds were discovered.

  6. Active targeting of tumor cells using light emitting bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E [School of Medicine, Chonnam National University, Gwangju (Korea, Republic of)

    2004-07-01

    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines.

  7. PTR-MS analysis of reference and plant-emitted volatile organic compounds

    Science.gov (United States)

    Maleknia, Simin D.; Bell, Tina L.; Adams, Mark A.

    2007-05-01

    Proton transfer reaction-mass spectrometry (PTR-MS) was applied to the analysis of a series of volatile organic compounds (VOCs) that emit from various plants. These include a group of alcohols (methanol, ethanol and butanol), carbonyl-containing compounds (acetic acid, acetone and benzaldehyde), isoprene, acetonitrile, tetrahydrofuran (THF), pyrazine, toluene and xylene and a series of terpenes (p-cymene, camphene, 2-carene, limonene, [beta]-myrcene, [alpha]-pinene, [beta]-pinene, [gamma]-tepinene and terpinolene) and oxygen-containing terpenes (1,8-cineole and linalool). These mass spectral data were compared to an electron ionization (EI) database identifying that not all PTR-MS fragments were common to EI. PTR-MS studies of these reference compounds were utilized to identify VOCs emitted from Eucalyptus grandis leaf at a temperature range of 30-100 °C. In addition to protonated molecules (M + H)+, abundant proton-bound dimers or trimers were detected for alcohols, acetone, acetonitrile and THF. Abundant fragment ions attributed to the loss of water from these proton-bound clusters were also observed. The stability of butyl (C4H9+ m/z 57) and acetyl (CH3CO+ m/z 43) fragment ions directed the proton-transfer reactions of butanol and acetic acid. Abundant (M + H)+ ions were detected for pyrazine, THF, toluene and xylene, as well as for all terpenes except those containing oxygen. For linalool and 1,8-cineole, the loss of water generated an abundant fragment ion at m/z 137. PTR-MS fragmentation patterns for terpenes were proposed for m/z 81 (C6H9+), 93 (C7H9+), 95 (C7H11+), 107 (C8H11+), 109 (C8H13+), 119 (C9H11+), 121 (C9H13+) and 137 (loss of water for oxygen-containing terpenes; C10H17+). The relative abundances of (M + H)+ and fragments for all terpenes (except linalool) were dependent on the drift tube voltage and the optimum voltage for detection of molecular ions was different for various terpenes.

  8. Benzimidazoles: A biologically active compounds

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2017-02-01

    Full Text Available Synthesis of commercially available benzimidazole involves condensation of o-phenylenediamine with formic acid. The most prominent benzimidazole compound in nature is N-riosyldimethylbenzimidazole, which serves as a axial ligand for cobalt in vitamin B12. The benzimidazole and its derivatives play a very important role as a therapeutic agent e.g. antiulcer and anthelmintic drugs. Apart from this the benzimidazole derivatives exhibit pharmacological activities such as antimicrobial, antiviral, anticancer, anti-inflammatory, analgesic, etc. The substituted benzimidazoles are summarized in this review to know about the chemistry as well as pharmacological activities.

  9. Analysis of relative concentration of ethanol and other odorous compounds (OCs emitted from the working surface at a landfill in China.

    Directory of Open Access Journals (Sweden)

    Dong Li

    Full Text Available Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons. The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree.

  10. Analysis of Relative Concentration of Ethanol and Other Odorous Compounds (OCs) Emitted from the Working Surface at a Landfill in China

    Science.gov (United States)

    Li, Dong; Lu, Wenjing; Liu, Yanjun; Guo, Hanwen; Xu, Sai; Ming, Zhongyuan; Wang, Hongtao

    2015-01-01

    Estimating odor emissions from landfill sites is a complicated task because of the various chemical and biological species that exist in landfill gases. In this study, the relative concentration of ethanol and other odorous compounds emitted from the working surface at a landfill in China was analyzed. Gas sampling was conducted at the landfill on a number of selected days from March 2012 to March 2014, which represented different periods throughout the two years. A total of 41, 59, 66, 54, 63, 54, 41, and 42 species of odorous compounds were identified and quantified in eight sampling activities, respectively; a number of 86 species of odorous compounds were identified and quantified all together in the study. The measured odorous compounds were classified into six different categories (Oxygenated compounds, Halogenated compounds, Terpenes, Sulfur compounds, Aromatics, and Hydrocarbons). The total average concentrations of the oxygenated compounds, sulfur compounds, aromatics, halogenated compounds, hydrocarbons, and terpenes were 2.450 mg/m3, 0.246 mg/m3, 0.203 mg/m3, 0.319 mg/m3, 0.530 mg/m3, and 0.217 mg/m3, respectively. The relative concentrations of 59 odorous compounds with respect to the concentration of ethyl alcohol (1000 ppm) were determined. The dominant contaminants that cause odor pollution around the landfill are ethyl sulfide, methyl mercaptan, acetaldehyde, and hydrogen sulfide; dimethyl disulfide and dimethyl sulfide also contribute to the pollution to a certain degree. PMID:25769100

  11. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    Science.gov (United States)

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. 40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams

    Science.gov (United States)

    2010-07-01

    ... Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G of Part 63 Protection of... Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table 34 to Subpart G of Part 63—Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams Chemical name CAS...

  13. Measurement of volatile organic compounds emitted in libraries and archives: an inferential indicator of paper decay?

    Directory of Open Access Journals (Sweden)

    Gibson Lorraine T

    2012-05-01

    Full Text Available Abstract Background A sampling campaign of indoor air was conducted to assess the typical concentration of indoor air pollutants in 8 National Libraries and Archives across the U.K. and Ireland. At each site, two locations were chosen that contained various objects in the collection (paper, parchment, microfilm, photographic material etc. and one location was chosen to act as a sampling reference location (placed in a corridor or entrance hallway. Results Of the locations surveyed, no measurable levels of sulfur dioxide were detected and low formaldehyde vapour (-3 was measured throughout. Acetic and formic acids were measured in all locations with, for the most part, higher acetic acid levels in areas with objects compared to reference locations. A large variety of volatile organic compounds (VOCs was measured in all locations, in variable concentrations, however furfural was the only VOC to be identified consistently at higher concentration in locations with paper-based collections, compared to those locations without objects. To cross-reference the sampling data with VOCs emitted directly from books, further studies were conducted to assess emissions from paper using solid phase microextraction (SPME fibres and a newly developed method of analysis; collection of VOCs onto a polydimethylsiloxane (PDMS elastomer strip. Conclusions In this study acetic acid and furfural levels were consistently higher in concentration when measured in locations which contained paper-based items. It is therefore suggested that both acetic acid and furfural (possibly also trimethylbenzenes, ethyltoluene, decane and camphor may be present in the indoor atmosphere as a result of cellulose degradation and together may act as an inferential non-invasive marker for the deterioration of paper. Direct VOC sampling was successfully achieved using SPME fibres and analytes found in the indoor air were also identified as emissive by-products from paper. Finally a new non

  14. Effects of some leaf-emitted volatile compounds on aphid population increase.

    Science.gov (United States)

    Hildebrand, D F; Brown, G C; Jackson, D M; Hamilton-Kemp, T R

    1993-09-01

    A role of some volatile compounds produced by plant tissues may be as defensive molecules against various pests, including arthropods. Volatile six-carbon compounds derived in plant tissue from polyunsaturated fatty acids via lipoxygenase/hydroperoxide lyase reduced tobacco aphid fecundity at certain concentrations when added to headspace vapor to which aphids were exposed. Both C6 aldehydes and alcohols were effective, with the alcohols having greater activity. (Z)-3-Hexenyl acetate at levels in the headspace similar to those of the alcohols and aldehydes did not reduce aphid fecundity. A 6-hr exposure period to the C6 aldehydes and alcohols was needed for maximum effect on the aphids feeding on tobacco leaves. Analysis of the direct versus indirect effects of these compounds indicates that the volatile aldehydes had both direct effects on aphid fecundity and indirect effects due to induced changes in the leaves upon which the aphids were feeding, while only indirect effects were observed for the alcohols. Tomato leaves have the capacity to produce volatile compounds at levels that impact aphid population increase, with the volatiles produced from crushed leaves having a much larger effect. The C6 aldehydes and alcohols may be components of the fecundity reduction seen with tomato volatiles; however, volatile terpenes showed no effect. These results can be of significance for the genetic alteration of plants for improved aphid resistance.

  15. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale

    Energy Technology Data Exchange (ETDEWEB)

    Owen, S.M.; Boissard, C.; Hewitt, C.N. [Institute of Environmental and Natural Sciences, Lancaster University, Lancaster (United Kingdom). Department of Environmental Science

    2001-07-01

    Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, {alpha}-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species' emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505gha{sup -1}h{sup -1} (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring, respectively). Emissions of isoprene ranged from 0.3 to 505gha{sup -1}h{sup -1} (macchia in Italy in late spring and autumn, and riverside in Spain in late spring, respectively) and {alpha}-pinene emissions ranged from 0.51 to 52.92gha{sup -1}h{sup -1} (garrigue in Spain in late spring, and forest in France in autumn, respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Gemista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers. (author)

  16. In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances

    Science.gov (United States)

    Tapanainen, Maija; Jalava, Pasi I.; Mäki-Paakkanen, Jorma; Hakulinen, Pasi; Happo, Mikko S.; Lamberg, Heikki; Ruusunen, Jarno; Tissari, Jarkko; Nuutinen, Kati; Yli-Pirilä, Pasi; Hillamo, Risto; Salonen, Raimo O.; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2011-12-01

    Residential wood combustion appliances emit large quantities of fine particles which are suspected to cause a substantial health burden worldwide. Wood combustion particles contain several potential health-damaging metals and carbon compounds such as polycyclic aromatic hydrocarbons (PAH), which may determine the toxic properties of the emitted particles. The aim of the present study was to characterize in vitro immunotoxicological and chemical properties of PM 1 ( Dp ≤ 1 μm) emitted from a pellet boiler and a conventional masonry heater. Mouse RAW264.7 macrophages were exposed for 24 h to different doses of the emission particles. Cytotoxicity, production of the proinflammatory cytokine TNF-α and the chemokine MIP-2, apoptosis and phases of the cell cycle as well as genotoxic activity were measured after the exposure. The type of wood combustion appliance had a significant effect on emissions and chemical composition of the particles. All the studied PM 1 samples induced cytotoxic, genotoxic and inflammatory responses in a dose-dependent manner. The particles emitted from the conventional masonry heater were 3-fold more potent inducers of programmed cell death and DNA damage than those emitted from the pellet boiler. Furthermore, the particulate samples that induced extensive DNA damage contained also large amounts of PAH compounds. Instead, significant differences between the studied appliances were not detected in measurements of inflammatory mediators, although the chemical composition of the combustion particles differed considerably from each other. In conclusion, the present results show that appliances representing different combustion technology have remarkable effects on physicochemical and associated toxicological and properties of wood combustion particles. The present data indicate that the particles emitted from incomplete combustion are toxicologically more potent than those emitted from more complete combustion processes.

  17. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana

    Science.gov (United States)

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography–mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases. PMID:24475190

  18. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hushna Ara Naznin

    Full Text Available Volatile organic compounds (VOC were extracted and identified from plant growth-promoting fungi (PGPF, Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS. Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp. significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst. Subsequently, m-cresol and methyl benzoate (MeBA were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA or Jasmonic acid (JA/ethylene (ET signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  19. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.

    Science.gov (United States)

    Naznin, Hushna Ara; Kiyohara, Daigo; Kimura, Minako; Miyazawa, Mitsuo; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-01-01

    Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases.

  20. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    Science.gov (United States)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  1. Antiplasmodial activity of some phenolic compounds from ...

    African Journals Online (AJOL)

    Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia. ... This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia. Methods: Tests were ... Six of them were evaluated for their antimalarial properties.

  2. Decreasing concentrations of volatile organic compounds (VOC) emitted following home renovations.

    Science.gov (United States)

    Herbarth, O; Matysik, S

    2010-04-01

    Volatile organic compounds (VOC) play an important role indoors since they have been linked to health symptoms and disorders. Particularly, after renovation activities, high indoor VOC concentrations have been observed. The study will give an indication, for the first time under real conditions, of the to-be-expected time frame for renovation-derived indoor pollution decreases when the exposure to it will reach a reference level. The decrease in the concentrations of investigated 26 VOC after renovations was assessed under real-life situations. Both the daily VOC concentration was measured by active sampling for 30 days in selected homes which had undergone various renovations and, as part of an epidemiologic study, the same VOC were collected monthly using passive samplers in 243 homes. An exponential function was used to interpret the concentration decay. The average time range which has to elapse following renovation activities before a guideline value or reference load is reached showed a time range between 2 and 8 weeks. This waiting time had at least be applicable to public buildings and institutions (especially relevant in case of nurseries, playschools etc.) with increasingly being implemented in private homes as well. Practical Implications After renovation an optimal waiting period had to be up to 60 days before the rooms will be used again. Fourteen days are possible, but increased ventilation is recommended. These had to be applicable at least for public buildings used by risk groups like young children. Renovations had to be carried out in summer season to ensure optimal ventilation to reduce the waiting time.

  3. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control.

    Science.gov (United States)

    Kandasamy, Dineshkumar; Gershenzon, Jonathan; Hammerbacher, Almuth

    2016-09-01

    Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized.

  5. The pollution characteristics of odor, volatile organochlorinated compounds and polycyclic aromatic hydrocarbons emitted from plastic waste recycling plants.

    Science.gov (United States)

    Tsai, Chung-Jung; Chen, Mei-Lien; Chang, Keng-Fu; Chang, Fu-Kuei; Mao, I-Fang

    2009-02-01

    Plastic waste treatment trends toward recycling in many countries; however, the melting process in the facilities which adopt material recycling method for treating plastic waste may emit toxicants and cause sensory annoyance. The objectives of this study were to analyze the pollution characteristics of the emissions from the plastic waste recycling plants, particularly in harmful volatile organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs), odor levels and critical odorants. Ten large recycling plants were selected for analysis of odor concentration (OC), volatile organic compounds (VOCs) and PAHs inside and outside the plants using olfactometry, gas chromatography-mass spectrometry and high performance liquid chromatography-fluorescence detector, respectively. The olfactometric results showed that the melting processes used for treating polyethylene/polypropylene (PE/PP) and polyvinyl chloride (PVC) plastic waste significantly produced malodor, and the odor levels at downwind boundaries were 100-229 OC, which all exceeded Taiwan's EPA standard of 50 OC. Toluene, ethylbenzene, 4-methyl-2-pentanone, methyl methacrylate and acrolein accounted for most odors compared to numerous VOCs. Sixteen organochlorinated compounds were measured in the ambient air emitted from the PVC plastic waste recycling plant and total concentrations were 245-553 microg m(-3); most were vinyl chloride, chloroform and trichloroethylene. Concentrations of PAHs inside the PE/PP plant were 8.97-252.16 ng m(-3), in which the maximum level were 20-fold higher than the levels detected from boundaries. Most of these recycling plants simply used filter to treat the melting fumes, and this could not efficiently eliminate the gaseous compounds and malodor. Improved exhaust air pollution control were strongly recommended in these industries.

  6. Platinum compounds with anti-tumour activity

    NARCIS (Netherlands)

    Plooy, A.C.M.; Lohman, P.H.M.

    1980-01-01

    Ten platinum (Pt) coordination complexes with different ligands, comprising both Pt(II) and Pt(IV) complexes of which the cis-compounds all possessed at least some anti-tumour activity and the trans-compounds were inactive, were tested as to their effect on cell survival and the induction and repair

  7. Application of inverse dispersion model for estimating volatile organic compounds emitted from the offshore industrial park

    Science.gov (United States)

    Tsai, M.; Lee, C.; Yu, H.

    2013-12-01

    In the last 20 years, the Yunlin offshore industrial park has significantly contributed to the economic development of Taiwan. Its annual production value has reached almost 12 % of Taiwan's GDP in 2012. The offshore industrial park also balanced development of urban and rural in areas. However, the offshore industrial park is considered the major source of air pollution to nearby counties, especially, the emission of Volatile Organic Compounds(VOCs). Studies have found that exposures to high level of some VOCs have caused adverse health effects on both human and ecosystem. Since both health and ecological effects of air pollution have been the subject of numerous studies in recent years, it is a critical issue in estimating VOCs emissions. Nowadays emission estimation techniques are usually used emissions factors in calculation. Because the methodology considered totality of equipment activities based on statistical assumptions, it would encounter great uncertainty between these coefficients. This study attempts to estimate VOCs emission of the Yunlin Offshore Industrial Park using an inverse atmospheric dispersion model. The inverse modeling approach will be applied to the combination of dispersion modeling result which input a given one-unit concentration and observations at air quality stations in Yunlin. The American Meteorological Society-Environmental Protection Agency Regulatory Model (AERMOD) is chosen as the tool for dispersion modeling in the study. Observed concentrations of VOCs are collected by the Taiwanese Environmental Protection Administration (TW EPA). In addition, the study also analyzes meteorological data including wind speed, wind direction, pressure and temperature etc. VOCs emission estimations from the inverse atmospheric dispersion model will be compared to the official statistics released by Yunlin Offshore Industrial Park. Comparison of estimated concentration from inverse dispersion modeling and official statistical concentrations will

  8. Activity measurement of phosphorus-32 in the presence of pure beta-emitting impurities

    CSIR Research Space (South Africa)

    Simpson, B

    2006-02-27

    Full Text Available Activity measurements undertaken at the CSIR's National Metrology Laboratory (NML) on a solution of the pure beta-emitting radionuclide phosphorus-32, which formed part of an international key comparison, are described. Since exploratory source...

  9. Gas chromatographic-mass spectrometric analysis of some potential toxicants amongst volatile compounds emitted during large-scale thermal degradation of poly(acrylonitrile-butadiene-styrene) plastic.

    Science.gov (United States)

    Shapi, M M; Hesso, A

    1991-01-02

    A number of compounds emitted during the thermal degradation of plastics are potentially toxic. This study was aimed at identifying the volatile compounds emitted during large-scale thermal degradation of poly(acrylonitrile-butadiene-styrene). About 5 g of the sample were degraded at between 25 and 470 degrees C in air and nitrogen in a device that can simulate temperature-programmed thermogravimetry. The volatiles were collected in dichloromethane using the solvent trap technique. Some of the 92 compounds identified by gas chromatography-mass spectrometry were found to have no hitherto documented toxicological profiles, even though they are potentially dangerous.

  10. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Fall, Ray; Karl, Thomas; Hansel, Armin; Jordan, Alfons; Lindinger, Werner

    1999-07-01

    Volatile organic compounds (VOCs) released from vegetation, including wound-induced VOCs, can have important effects on atmospheric chemistry. The analytical methods for measuring wound-induced VOCs, especially the hexenal family of VOCs (hexenals, hexenols, and hexenyl esters), are complicated by their chemical instability and the transient nature of their formation after leaf and stem wounding. Here we demonstrate that formation and emission of hexenal family compounds can be monitored on-line using proton-transfer-reaction mass spectrometry (PTR-MS), avoiding the need for preconcentration or chromatography. These measurements allow direct analysis of the rapid emission of the parent compound, (Z)-3-hexenal, within 1-2 s of wounding of aspen leaves and then its disappearance and the appearance of its metabolites including (E)-2-hexenal, hexenols, and hexenyl acetates. Similar results were seen in wounded beech leaves and clover. The emission of hexenal family compounds was proportional to the extent of wounding, was not dependent on light, occurred in attached or detached leaves, and was greatly enhanced as detached leaves dried out. Emission of (Z)-3-hexenal from detached drying aspen leaves averaged 500 μg C g-1 (dry leaf weight). Leaf wound compounds were not emitted in a nitrogen atmosphere but were released within seconds of reintroduction of oxygen; this indicates that there are not large pools of hexenyl compounds in leaves. The PTR-MS method also allows the simultaneous detection of less abundant hexanal family VOCs including hexanal, hexanol, and hexyl acetate and VOCs formed in the light (isoprene) or during anoxia (acetaldehyde). PTR-MS may be a useful tool for the analysis of VOC emissions resulting from grazing, herbivory, and other physical damage to vegetation, from harvesting of crops, and from senescing leaves.

  11. Analysis of the Compounds from the BTEX Group, Emitted During Thermal Decomposition of Alkyd Resin

    Directory of Open Access Journals (Sweden)

    M. Kubecki

    2012-09-01

    Full Text Available Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea–furfuryl, alkyd under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene, and also polycyclic aromatic hydrocarbons (PAH can be formed and released.The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditionsof formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulnessassessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000C – 13000C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for

  12. Antiplasmodial activity of some phenolic compounds from ...

    African Journals Online (AJOL)

    1,7-dihydroxyxanthone 1. Six of them were evaluated for their antimalarial properties. The most active compound, maclu- raxanthone, presented a very interesting activity, with an IC50 of 0.36 and 0.27 µg/mL with the F32 and FcM29 strains respectively. Conclusion: This work confirms that species of Allanblackia genus are ...

  13. Analysis of the Compounds from the BTEX Group, Emitted During Thermal Decomposition of Alkyd Resin

    Directory of Open Access Journals (Sweden)

    Kubecki M.

    2012-09-01

    Full Text Available Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea-furfuryl, alkyd under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene, and also polycyclic aromatic hydrocarbons (PAH can be formed and released.

  14. Activity of Polyphenolic Compounds against Candida glabrata

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2015-09-01

    Full Text Available Opportunistic mycoses increase the morbidity and mortality of immuno-compromised patients. Five Candida species have been shown to be responsible for 97% of worldwide cases of invasive candidiasis. Resistance of C. glabrata and C. krusei to azoles has been reported, and new, improved antifungal agents are needed. The current study was designed to evaluatethe activity of various polyphenolic compounds against Candida species. Antifungal activity was evaluated following the M27-A3 protocol of the Clinical and Laboratory Standards Institute, and antioxidant activity was determined using the DPPH assay. Myricetin and baicalein inhibited the growth of all species tested. This effect was strongest against C. glabrata, for which the minimum inhibitory concentration (MIC value was lower than that of fluconazole. The MIC values against C. glabrata for myricitrin, luteolin, quercetin, 3-hydroxyflavone, and fisetin were similar to that of fluconazole. The antioxidant activity of all compounds was confirmed, and polyphenolic compounds with antioxidant activity had the greatest activity against C. glabrata. The structure and position of their hydroxyl groups appear to influence their activity against C. glabrata.

  15. Effects of active, inactive and compounded Saccharomyces ...

    African Journals Online (AJOL)

    The objective of this research was to determine the effects of active, inactive and compounded Saccharomyces cerevisiae (SC) as natural feed additives on growth performance, visceral organs weight, insulin, thyroxin and growth hormone of Japanese quails. One day old Japanese quails allocated in 4 treatments by 4 ...

  16. Effects on perceived air quality and symptoms of exposure to microbially produced metabolites and compounds emitted from damp building materials.

    Science.gov (United States)

    Claeson, A-S; Nordin, S; Sunesson, A-L

    2009-04-01

    This work investigated perceived air quality and health effects from exposure to low to high levels of volatile organic compounds (VOCs) emitted from damp building materials and a mixture of molds growing on the materials. A mixture of Wallemia sebi, Fusarium culmorum, Penicillium chrysogenum, Ulocladium botrytis, and Aspergillus versicolor was inoculated on pine wood and particle board. In Study 1, each of 27 participants took part in two exposure conditions, one with air from molds growing on building materials (low levels of emissions from the building materials and the mold mixture) and one with blank air, both conditions during 60 min. In Study 2, each of 24 participants was exposed (10 min) four times in a 2 x 2 design randomly to air from moldy building materials (high levels) and blank, with and without nose-clip. The participants rated air quality and symptoms before, during, and after each exposure. Self-reported tear-film break-up time and attention and processing speed (Study 1) was also measured. Exposure to high VOC levels increased the reports of perceived poor air quality, and in the condition without nose-clip enhanced skin symptoms were also noted. No such outcome was observed when exposing the participants to low VOC levels. Emissions from building materials caused by dampness and microbial growth may be involved in indoor air health problems. This study showed that exposure to high levels of VOC emitted from damp building materials and a mixture of mold may cause perceived poor air quality. It also indicated that stimulation of chemical warning systems (the nasal chemosensory part of the trigeminal system and the olfactory system) may enhance skin symptoms.

  17. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Physiologically active substances from marine sponges IV: Heterocyclic compounds.

    Science.gov (United States)

    Chib, J S; Stempien, M F; Cecil, J T; Ruggieri, G D; Nigrelli, R F

    1977-07-01

    Several guanidine compounds were synthesized by the reaction of acid chlorides of thiophene and furan with guanidines. Some of these compounds showed antibiotic and cytotoxic activities. Series of pyrrole compounds were synthesized and found to have significant antibiotic activity.

  19. [Volatile organic compounds (VOCs) emitted from wood furniture--estimation of emission rate by passive flux sampler].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Furuta, Mitsuko; Shibatsuji, Masayoshi; Nishimura, Tetsuji

    2011-01-01

    The aim of this study was to evaluate aldehydes and other volatile organic compounds (VOCs) emission from furniture, which may cause hazardous influence on human being such as sick building/sick house syndrome. In this study, VOCs emitted from six kinds of wood furniture, including three set of dining tables and three beds, were analyzed by large chamber test method (JIS A 1911). Based on the emission rates of total VOCs (TVOC), the impacts on the indoor TVOC was estimated by the simulation model with volume of 20 m3 and ventilation frequency of 0.5 times/h. The estimated increment of formaldehyde were exceeded the guideline value (100 microg/m3) in one set of dining table and one bed. The estimated TVOC increment values were exceeded the provisional target value for indoor air (400 microg/m3) in two sets of dining tables and two beds. These results revealed that VOC emissions from wood furniture may influence significantly indoor air quality. Also, in this study, to establish the alternative method for large chamber test methods, emission rates from representative five areas of furniture unit were evaluated by passive sampling method using flux sampler and emission rate from full-sized furniture was predicted. Emission rates predicted by flux passive sampler were 10-106% (formaldehyde) and 8-141% (TVOC) of the data measured using large chamber test, respectively.

  20. Activity measurement of phosphorus-32 in the presence of pure beta-emitting impurities

    CSIR Research Space (South Africa)

    Simpson, BRS

    2006-01-01

    Full Text Available Authors describe the activity measurements undertaken at the CSIR’s National Metrology Laboratory on a solution of the pure beta emitting Radio nuclide phosphorus-32 that formed part of an international key comparison. Depending on the production...

  1. Antimicrobial activity of some potential active compounds against ...

    African Journals Online (AJOL)

    Antimicrobial activities of six potential active compounds (acetic acid, chitosan, catechin, gallic acid, lysozyme, and nisin) at the concentration of 500 g/ml against the growth of Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cerevisiae were determined. Lysozyme showed the highest ...

  2. Detection of the volatile organic compounds emitted from paints using optical fibre long period grating modified with the mesoporous nano-scale coating

    Science.gov (United States)

    Hromadka, Jiri; James, Stephen; Davis, Frank; Tatam, Ralph P.; Crump, Derrick; Korposh, Sergiy

    2015-09-01

    An optical fibre long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of a mixture of volatile organic compounds (VOCs). The sensing mechanism is based on the transduction of the refractive index change induced by the complexion of the VOCs with calixarene into a change in the form of the transmission spectrum of the LPG. An LPG, modified with a calixarene-infused coating comprising 5 cycles of silica nanoparticles/poly(allylamine hydrochloride) polycation (SiO2/PAH), was exposed to mixture of VOCs emitted from paint at conditions simulating ISO standards test (16000-10).

  3. Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco.

    Science.gov (United States)

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3.

  4. Association between photodynamic and carcinogenic activities in polycyclic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.S.; Small, M.; Falk, H.L.; Mantel, N.

    1964-06-01

    The photodynamic activities of 157 polycyclic compounds of wide structural range were determined, with the use of Paramecium caudatum. High photodynamic activity was largely confined to polycyclic compounds, either homocyclic or heterocyclic, with four or five fused rings. Significant absorption of light was shown to be prerequisite but not sufficient for high photodynamic activity. A significant statistical association between photodynamic activity and carcinogenicity was demonstrated. It was shown that compounds with high photodynamic activity had 4 times greater odds of being carcinogenic than compounds with low activity. However, the photodynamic assay cannot identify a particular polycyclic compound as being carcinogenic or noncarcinogenic.

  5. Light-emitting thin films of glassy forming organic compounds containing 2-tert-butyl-6-methyl-4H-pyran-4-ylidene

    Science.gov (United States)

    Vembris, Aivars; Pudzs, Kaspars; Muzikante, Inta

    2012-06-01

    Low molecular mass organic compounds which make thin films from volatile organic solutions would be great benefit in future organic light emitting systems. Two most important advantages could be mentioned. First - the repetition of synthesis of small molecules is better than for polymers. Second - wet casting methods could be used. In this work we are presenting optical, electroluminescence and amplified spontaneous emission properties of four original glassy forming compounds containing 2-tert-butyl-6-methyl-4H-pyran-4-ylidene fragment as backbone of the molecule. They has the same N,N-dialkylamino electron donating group with incorporated bulky trityloxy ethyl groups. The difference of these compounds is in electron acceptor group. One has 1H-indene-1,3(2H)-dione group, second has pyrimidine-2,4,6(1H,3H,5H)-trione group, third has malononitrile group and fourth has 2-ethyl-2-cyanoacetate. Absorption maximum of the compounds is between 420 and 500 nm and is red shifted from weaker acceptor group to stronger one. The electroluminescence efficiency for simple device ITO/PEDOT:PSS/Organic compound/BaF/Al is low. For the best one with malononitrile group it was 0.13 cd/A and 0.036 lm/W. It could be increased by optimising the sample geometry or adding addition layers for charge carrier transport and exciton blocking. But nevertheless the use of these compounds in organic light emitting devices in neat films is unlikely. Attached bulky trityloxy ethyl groups and tert-butyl group decrease interaction between the molecules thus allowing to obtain amplified spontaneous emission in neat thin films for all investigated compounds.

  6. Energy-recycling pixel for active-matrix organic light-emitting diode display

    Science.gov (United States)

    Yang, Che-Yu; Cho, Ting-Yi; Chen, Yen-Yu; Yang, Chih-Jen; Meng, Chao-Yu; Yang, Chieh-Hung; Yang, Po-Chuan; Chang, Hsu-Yu; Hsueh, Chun-Yuan; Wu, Chung-Chih; Lee, Si-Chen

    2007-06-01

    The authors report a pixel structure for active-matrix organic light-emitting diode (OLED) displays that has a hydrogenated amorphous silicon solar cell inserted between the driving polycrystalline Si thin-film transistor and the pixel OLED. Such an active-matrix OLED pixel structure not only exhibits a reduced reflection (and thus improved contrast) compared to conventional OLEDs but also is capable of recycling both incident photon energies and internally generated OLED radiation. Such a feature of energy recycling may be of use for portable/mobile electronics, which are particularly power aware.

  7. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Shang, Jingzhi; Cong, Chunxiao; Wang, Zilong; Peimyoo, Namphung; Wu, Lishu; Zou, Chenji; Chen, Yu; Chin, Xin Yu; Wang, Jianpu; Soci, Cesare; Huang, Wei; Yu, Ting

    2017-09-14

    Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS2 was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers.Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional.

  8. Ionic Surface Active Compounds in Atmospheric Aerosols

    Directory of Open Access Journals (Sweden)

    Jariya Sukhapan

    2002-01-01

    Full Text Available Surfactants in the atmosphere have several potential roles in atmospheric chemistry. They can form films on aqueous surfaces, which lowers the surface tension and possibly delays water evaporation and gaseous transportation across the aqueous interface. They can also increase the solubility of organic compounds in the aqueous phase. Recently, the decrease of surface tension in cloud growing droplets has been suggested as relevant to increases in the number of droplets of smaller size, potentially enhancing cloud albedo. Natural surfactants in the lung aid gas transfer and influence the dissolution rate of aerosol particles, so surfactants in atmospheric aerosols, once inhaled, may interact with pulmonary surfactants. Ambient aerosols were collected from the edge of Norwich, a small city in a largely agricultural region of England, and analysed for surfactants. Methylene blue, a conventional dye for detecting anionic surfactants, has been used as a colorimetric agent. The concentration of surfactants expressed as methylene blue active substances (MBAS is in the range of 6–170 pmol m-3(air. A negative correlation with chloride aerosol indicates that these surfactants are probably not the well-known surfactants derived from marine spray. A more positive correlation with aerosol nitrate and gaseous NOx supports an association with more polluted inland air masses. The surfactants found in aerosols seem to be relatively strong acids, compared with weaker acids such as the long-chain carboxylic acids previously proposed as atmospheric surfactants. Surfactants from the oxidation of organic materials (perhaps vegetation- or soil-derived seem a likely source of these substances in the atmosphere.

  9. Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants.

    Science.gov (United States)

    Webster, Ben; Gezan, Salvador; Bruce, Toby; Hardie, Jim; Pickett, John

    2010-01-01

    Ratios of volatile phytochemicals potentially offer a means for insects to recognise their host-plant species. However, for this to occur ratios of volatiles would need to be sufficiently consistent between plants and over time to constitute a host-characteristic cue. In this context we collected headspace samples from Vicia faba plants to determine how consistent ratios of key volatile phytochemicals used in host location by one of its insect pests, the black bean aphid, Aphis fabae, were. These were (E)-2-hexenal, (Z)-3-hexen-1-ol, 1-hexanol, benzaldehyde, 6-methyl-5-hepten-2-one, octanal, (Z)-3-hexen-1-yl acetate, (R)-linalool, methyl salicylate, decanal, undecanal, (E)-caryophyllene, (E)-beta-farnesene, (S)-germacrene D, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, which had previously been found to be electrophysiologically and behaviourally active to A. fabae. Although the quantities of volatiles produced by V. faba showed large between plant and diurnal variation, correlations between quantities of compounds indicated that the ratios of certain pairs of volatiles were very consistent. This suggests that there is a host-characteristic cue available to A. fabae in the form of ratios of volatiles. 2009 Elsevier Ltd. All rights reserved.

  10. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, M. [Universidade Federal de Itajubá, Rua Doutor Pereira Cabral 1303, 37500-903, Itajubá, MG (Brazil); Rodríguez-Ardila, A.; Garcia-Rissmann, A. [Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, Itajubá, MG, 37504-364 (Brazil); Sigut, T. A. A. [The University of Western Ontario, London, ON N6A 3K7 (Canada); Pradhan, A. K., E-mail: murilo.marinello@gmail.com [McPherson Laboratory, The Ohio State University, 140 W. 18th Ave., Columbus, OH 43210-1173 (United States)

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  11. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb

    Science.gov (United States)

    2014-01-01

    Background In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Methods Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. Results The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. Conclusion These results

  12. Persistence of active compounds of essential oils of Clausena ...

    African Journals Online (AJOL)

    After the evaluation of their insecticidal activity the persistence of each essential oil was observed every 2 days till 14 days. After the disappearance of their insecticidal activities, essential oil was re-extracted and their residual compounds were identified from treated grain and flour. The major compounds of C. anisata are, ...

  13. Synthesis and biological activity of some heterocyclic compounds ...

    Indian Academy of Sciences (India)

    A number of 1-substituted-2-methyl benzimidazole derivatives have been synthesized and tested for their antibacterial activities. The chemical structures of the newly synthesized compounds were verified on the basis of spectral and elemental methods of analyses. Investigation of antimicrobial activity of the compounds ...

  14. Psilostachyin C: a natural compound with trypanocidal activity

    NARCIS (Netherlands)

    Sulsen, V.P.; Frank, F.M.; Cazorla, S.I.; Barrera, P.; Freixa, B.; Vila, R.; Sosa, M.A.; Malchiodi, E.L.; Muschietti, L.V.; Martino, V.S.

    2011-01-01

    In this study, the antiprotozoal activity of the sesquiterpene lactone psilostachyin C was investigated. This natural compound was isolated from Ambrosia scabra by bioassay-guided fractionation and was identified by spectroscopic techniques. Psilostachyin C exerted in vitro trypanocidal activity

  15. Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence

    Directory of Open Access Journals (Sweden)

    Peng Xiao

    2018-02-01

    Full Text Available Recently, thermally activated delayed fluorescence (TADF organic light-emitting diodes (OLEDs have attracted both academic and industrial interest due to their extraordinary characteristics, such as high efficiency, low driving voltage, bright luminance, lower power consumption and potentially long lifetime. In this invited review, the fundamental concepts of TADF have been firstly introduced. Then, main approaches to realize WOLEDs based on TADF have been summarized. More specifically, the recent development of WOLEDs based on all TADF emitters, WOLEDs based on TADF and conventional fluorescence emitters, hybrid WOLEDs based on blue TADF and phosphorescence emitters and WOLEDs based on TADF exciplex host and phosphorescence dopants is highlighted. In particular, design strategies, device structures, working mechanisms and electroluminescent processes of the representative WOLEDs based on TADF are reviewed. Finally, challenges and opportunities for further enhancement of the performance of WOLEDs based on TADF are presented.

  16. Broadband light-emitting diode

    Science.gov (United States)

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  17. Antibacterial Activity of Phenolic Compounds Against the Phytopathogen Xylella fastidiosa

    OpenAIRE

    Maddox, Christina E.; Laur, Lisa M.; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiti...

  18. A new class of deep-blue emitting Cu(I) compounds--effects of counter ions on the emission behavior.

    Science.gov (United States)

    Gneuß, Timo; Leitl, Markus J; Finger, Lars H; Yersin, Hartmut; Sundermeyer, Jörg

    2015-12-14

    Three deep blue emitting Cu(I) compounds, [Cu(PPh3)tpym]PF6, [Cu(PPh3)tpym]BF4, and [Cu(PPh3)tpym]BPh4 (tpym = tris(2-pyridyl)methane, PPh3 = triphenylphosphine) featuring the tripodally coordinating tpym and the monodentate PPh3 ligands were studied with regard to their structural and photophysical properties. The compounds only differ in their respective counter ions which have a strong impact on the emission properties of the powder samples. For example, the emission quantum yield can be significantly increased for the neat material from less than 10% to more than 40% by exchanging BPh4(-) with PF6(-). These effects can be linked to different molecular packings which depend on the counter ion. In agreement with these results, it was found that the emission properties also strongly depend on the surrounding matrix environment which was elucidated by investigating photophysical properties of the compounds as powders, doped into a polymer matrix, and dissolved in a fluid solution, respectively. The observed differences in the emission behavior can be explained by different and pronounced distortions that occur in the excited state. These distortions are also displayed by density functional theory (DFT) calculations.

  19. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum).

    Science.gov (United States)

    Ángeles López, Yesenia Ithaí; Martínez-Gallardo, Norma Angélica; Ramírez-Romero, Ricardo; López, Mercedes G; Sánchez-Hernández, Carla; Délano-Frier, John Paul

    2012-11-01

    Volatile organic compounds (VOCs) emitted from plants in response to insect infestation can function as signals for the attraction of predatory/parasitic insects and/or repulsion of herbivores. VOCs also may play a role in intra- and inter-plant communication. In this work, the kinetics and composition of VOC emissions produced by tomato (Solanum lycopersicum) plants infested with the greenhouse whitefly Trialeurodes vaporariorum was determined within a 14 days period. The VOC emission profiles varied concomitantly with the duration of whitefly infestation. A total of 36 different VOCs were detected during the experiment, 26 of which could be identified: 23 terpenoids, plus decanal, decane, and methyl salicylate (MeSA). Many VOCs were emitted exclusively by infested plants, including MeSA and 10 terpenoids. In general, individual VOC emissions increased as the infestation progressed, particularly at 7 days post-infestation (dpi). Additional tunnel experiments showed that a 3 days exposure to VOC emissions from whitefly-infested plants significantly reduced infection by a biotrophic bacterial pathogen. Infection of VOC-exposed plants induced the expression of a likely tomato homolog of a methyl salicylate esterase gene, which preceded the expression of pathogenesis-related protein genes. This expression pattern correlated with reduced susceptibility in VOC-exposed plants. The observed cross-kingdom effect of plant-plant signaling via VOCs probably represents a generalized defensive response that contributes to increased plant fitness, considering that resistance responses to whiteflies and biotrophic bacterial pathogens in tomato share many common elements.

  20. Extraction and Antioxidant Activity of Phenolic Compounds from ...

    African Journals Online (AJOL)

    Purpose: To investigate the extraction and antioxidant activity of phenolic compounds from Okra flowers. Methods: The phenolic compounds in Okra flowers was obtained by traditional solvent extraction method and determined by Folin-Ciocalteu (FC) method. The extraction was optimized using response.

  1. Extraction and Antioxidant Activity of Phenolic Compounds from ...

    African Journals Online (AJOL)

    Purpose: To investigate the extraction and antioxidant activity of phenolic compounds from Okra flowers. Methods: The phenolic compounds in Okra flowers was obtained by traditional solvent extraction method and determined by Folin-Ciocalteu (FC) method. The extraction was optimized using response surface ...

  2. Biologically Active Compounds of Plant Foods: Prospective Impact ...

    African Journals Online (AJOL)

    Harmful compounds interfere with normal growth, reproduction, or health and reduce protein and carbohydrate utilization. The health benefits of selected substances from Ethiopian food crops need to be studied. Active compounds need to be isolated, identified and produced to explore their potential benefits with emphasis ...

  3. Cancer chemopreventive activity of compounds isolated from Waltheria indica.

    Science.gov (United States)

    Monteillier, Aymeric; Cretton, Sylvian; Ciclet, Olivier; Marcourt, Laurence; Ebrahimi, Samad Nejad; Christen, Philippe; Cuendet, Muriel

    2017-05-05

    Waltheria indica L. is traditionally used in several countries against inflammatory related diseases and cancer, mainly as a decoction of the aerial parts. The transcription factor NF-κB is known to induce tumor promotion and progression and is considered a major player in inflammation-driven cancers. Therefore, inhibitors of this pathway possess cancer chemopreventive and chemotherapeutic activities. This study aimed first to confirm the use of Waltheria indica as a traditional anti-inflammatory remedy by assessing the NF-κB inhibitory activity and then to identify the major bioactive compounds. The isolated compounds were also tested for their QR inducing property, a complementary strategy in cancer chemoprevention able to target tumor initiation. Finally, the relevance of in vitro results was examined by investigating the occurrence of the active compounds in traditional preparations. Compounds were isolated from the dichloromethane extract of the aerial parts using flash chromatography and semi-preparative HPLC. NF-κB inhibitory activity of pure compounds from Waltheria indica was assessed using a luciferase reporter assay in HEK293 cells. Their QR inducing activity was also assessed in Hepa1c1c7 cells. Twenty-nine compounds, of which 5 are new, were obtained from the dichloromethane extract and tested for their cancer chemoprevention activity. Eleven compounds inhibited NF-κB and/or induced QR in the low to mid µM range. Chrysosplenol E (20) was active in both tests. Two of the most potent NF-κB inhibitors, waltherione A (4) and waltherione C (5), as well as 20 were found in the traditional decoction, in which 4 and 5 were major compounds. The presence of potent NF-κB inhibitors and QR inducing compounds in the decoction of the aerial parts of Waltheria indica supports its traditional use in inflammatory-related diseases and cancer chemoprevention. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Bioactive compounds and antioxidant activity of pepper (Capsicum sp.) genotypes

    National Research Council Canada - National Science Library

    Carvalho, Ana Vânia; de Andrade Mattietto, Rafaella; de Oliveira Rios, Alessandro; de Almeida Maciel, Renan; Moresco, Karla Suzana; de Souza Oliveira, Thaise Cristine

    2015-01-01

    .... baccatum L. var. umbilicatum) were assayed for total phenolics, anthocyanins, carotenoids, vitamin C, and total antioxidant activity in order to determine their bioactive compound profile and to establish the correlations...

  5. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). NM Hussin, R Muse, S Ahmad, J Ramli, M Mahmood, MR Sulaiman, MYA Shukor, MFA Rahman, KNK Aziz ...

  6. Evaluation of biologically active compounds in Coleonema album

    OpenAIRE

    2008-01-01

    The undeniable efficacy of medicinal plants and wide range of biological activities attributed to plant secondary metabolites are an indication that plants can serve as an excellent pool of bioactive compounds with useful therapeutic properties. The South African flora is recognised as one of the richest centres of plant diversity in the world. From this enormous biodiversity a large number of species has the potential to yield pharmacologically active compounds. C. album is an indigenous pla...

  7. Phenolic Compounds and Antioxidant Activities of Liriope muscari

    Directory of Open Access Journals (Sweden)

    Shu Shan Du

    2012-02-01

    Full Text Available Five phenolic compounds, namely N-trans-coumaroyltyramine (1, N-trans-feruloyltyramine (2, N-trans-feruloyloctopamine (3, 5,7-dihydroxy-8-methoxyflavone (4 and (3S3,5,4′-trihydroxy-7-methoxy-6-methylhomoisoflavanone (5, were isolated from the fibrous roots of Liriope muscari (Liliaceae. Compounds 2–5 were isolated for the first time from the Liriope genus. Their in vitro antioxidant activities were assessed by the DPPH and ABTS scavenging methods with microplate assays. The structure-activity relationships of compounds 1–3 are discussed.

  8. Inhalation risk assessment of exposure to the selected volatile organic compounds (VOCs) emitted from the facilities of a steel plant.

    Science.gov (United States)

    Chiang, Hung L; Lin, Wen H; Lai, Jim S; Wang, Wei C

    2010-09-01

    Concentrations of volatile organic compounds (VOCs) were investigated in the workplace air of four processes: sintering, cokemaking, hot forming, and cold forming in an integrated iron and steel plant. In addition, the cancer risk was measured for workers in these 4 processes. Seven VOCs (chloroform, carbon tetrachloride, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, benzene, and ethylbenzene) were selected for cancer risk measurement. Trichloroethylene concentrations are high in the 4 processes, and carbon tetrachloride and tetrachloroethylene concentrations are high in both the cold and hot forming processes. The sequence of the total cancer risk of the 7 species was as follows: cokemaking > sintering > cold forming congruent with hot forming. About 66-93% of the cancer risk of the four processes was caused by trichloroethylene. The cancer risks (3.7 x 10(-3)-30 x 10(-3)) of the average VOC concentrations suggest that improvement of workplace air quality and protection of workers are necessary to reduce cancer risks.

  9. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS).

    Science.gov (United States)

    Mochalski, Paweł; Wiesenhofer, Helmut; Allers, Maria; Zimmermann, Stefan; Güntner, Andreas T; Pineau, Nicolay J; Lederer, Wolfgang; Agapiou, Agapios; Mayhew, Christopher A; Ruzsanyi, Veronika

    2018-02-15

    Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Structure Modification of an Active Azo-Compound as a Route to New Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Simona Concilio

    2017-05-01

    Full Text Available Some novel (phenyl-diazenylphenols 3a–g were designed and synthesized to be evaluated for their antimicrobial activity. A previously synthesized molecule, active against bacteria and fungi, was used as lead for modifications and optimization of the structure, by introduction/removal or displacement of hydroxyl groups on the azobenzene rings. The aim of this work was to evaluate the consequent changes of the antimicrobial activity and to validate the hypothesis that, for these compounds, a plausible mechanism could involve an interaction with protein receptors, rather than an interaction with membrane. All newly synthesized compounds were analyzed by 1H-NMR, DSC thermal analysis and UV-Vis spectroscopy. The in vitro minimal inhibitory concentrations (MIC of each compound was determined against Gram-positive and Gram-negative bacteria and Candida albicans. Compounds 3b and 3g showed the highest activity against S. aureus and C. albicans, with remarkable MIC values of 10 µg/mL and 3 µg/mL, respectively. Structure-activity relationship studies were capable to rationalize the effect of different substitutions on the phenyl ring of the azobenzene on antimicrobial activity.

  11. Health risk assessment of exposure to selected volatile organic compounds emitted from an integrated iron and steel plant.

    Science.gov (United States)

    Chang, E-E; Wei-Chi, Wang; Li-Xuan, Zeng; Hung-Lung, Chiang

    2010-12-01

    Workplace air samples from sintering, cokemaking, and hot and cold forming processes in the integrated iron and steel industry were analyzed to determine their volatile organic compound (VOC) concentration. Sixteen VOC species including three paraffins (cyclohexane, n-hexane, methylcyclohexane), five chlorinated VOC species (trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, chlorobenzene, 1,4-dichlorobenzene), and eight aromatics (benzene, ethylbenzene, styrene, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene) were selected to measure their noncancer risk for workers. Concentrations of toluene, xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, dichlorobenzene, and trichloroethylene were high in all four processes. Carbon tetrachloride and tetrachloroethylene concentrations were high in the hot and cold forming processes. The noncancer risk followed the increasing order: cokemaking > sintering > hot forming > cold forming. 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene contributed 44% to 65% and 13% to 20% of noncancer risk, respectively, for the four processes. Benzene accounted for a high portion of the noncancer risk in cokemaking. The hazard index (HI: 17-108) of the average VOC concentrations suggests that health risks can be reduced by improving workplace air quality and protecting workers.

  12. Analysis and quantitation of volatile organic compounds emitted from plastics used in museum construction by evolved gas analysis-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Samide, Michael J; Smith, Gregory D

    2015-12-24

    Construction materials used in museums for the display, storage, and transportation of artwork must be assessed for their tendency to emit harmful pollution that could potentially damage cultural treasures. Traditionally, a subjective metals corrosion test known as the Oddy test has been widely utilized in museums for this purpose. To augment the Oddy test, an instrumental sampling approach based on evolved gas analysis (EGA) coupled to gas chromatography (GC) with mass spectral (MS) detection has been implemented for the first time to qualitatively identify off-gassed pollutants under specific conditions. This approach is compared to other instrumental methods reported in the literature. This novel application of the EGA sampling technique yields several benefits over traditional testing, including rapidity, high sensitivity, and broad detectability of volatile organic compounds (VOCs). Furthermore, unlike other reported instrumental approaches, the EGA method was used to determine quantitatively the amount of VOCs emitted by acetate resins and polyurethane foams under specific conditions using both an external calibration method as well as surrogate response factors. EGA was successfully employed to rapidly characterize emissions from 12 types of common plastics. This analysis is advocated as a rapid pre-screening method to rule out poorly performing materials prior to investing time and energy in Oddy testing. The approach is also useful for rapid, routine testing of construction materials previously vetted by traditional testing, but which may experience detrimental formulation changes over time. As an example, a case study on batch re-orders of rigid expanded poly(vinyl chloride) board stock is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Potential therapeutic effects of functionally active compounds isolated from garlic.

    Science.gov (United States)

    Yun, Hyung-Mun; Ban, Jung Ok; Park, Kyung-Ran; Lee, Chong Kil; Jeong, Heon-Sang; Han, Sang Bae; Hong, Jin Tae

    2014-05-01

    The medicinal properties of functionally active organosulfur compounds such as allin, diallyl disulfide, S-allylmercaptocysteine, and S-trityl-L-cysteine isolated from garlic have received great attention from a large number of investigators who have studied their pharmacological effects for the treatment of various diseases. These organosulfur compounds are able to prevent for development of cancer, cardiovascular, neurological, and liver diseases as well as allergy and arthritis. There have been also many reports on toxicities and pharmacokinetics of these compounds. The aim of this study is to review a variety of experimental and clinical reports, and describe the effectiveness, toxicities and pharmacokinetics, and possible mechanisms of pharmaceutical actions of functionally active compounds isolated from garlic. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    Science.gov (United States)

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  15. Phenolic compounds and antioxidant activity of Macedonian red wines

    OpenAIRE

    Ivanova, Violeta; Hermosín-Gutiérrez, Isidro; Boros, Borbala; Stefova, Marina; Stafilov, Trajče; Vojnoski, Borimir; Dörnyei, Ágnes; Kilár, Ferenc

    2015-01-01

    The quantitative composition of phenolic compounds and antioxidant activity of Vranec, Merlot and Cabernet Sauvignon wines produced in 2006, 2007 and 2008 were determined and compared. The phenolic profile was established using high-performance liquid chromatography coupled with diode array detector and on line mass spectrometry (HPLC-DAD–ESI-MS and MS/MS) technique. A total of 65 phenolic compounds were determined in the wines including 14 anthocyanins, 18 pyranoanthocyanins, 16 flavonols, 8...

  16. Nematicidal Activity of Cassia and Cinnamon Oil Compounds and Related Compounds toward Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae)

    Science.gov (United States)

    Kong, Jeong-Ok; Lee, Sang-Myung; Moon, Yil-Seong; Lee, Sang-Gil; Ahn, Young-Joon

    2007-01-01

    The nematicidal activity of two cassia, Cinnamomum cassia, oils (Especial and true), four cinnamon, Cinnamomum zey-lanicum, oils (technical, #500, bark and green leaf), and their compounds (e.g., trans-cinnamaldehyde and trans-cinnamic acid) toward adult Bursaphelenchus xylophilus was examined by a direct contact bioassay. Results were compared with those of 34 related compounds. As judged by 24-hour LC50 values, two cassia oils (0.084–0.085 mg/ml) and four cinnamon oils (0.064–0.113 mg/ml) were toxic toward adult B. xylophilus. Of 45 test compounds, trans-cinnamaldehyde (0.061 mg/ml) was the most active nematicide, followed by ethyl cinnamate, α-methyl-trans-cinnamaldehyde, methyl cinnamate and allyl cinnamate (0.114–0.195 mg/ml). Potent nematicidal activity was also observed with 4-methoxycinnamonitrile, trans-4-methoxycinnamaldehyde, trans-2-methoxy-cinnamaldehyde, ethyl α-cyanocinnamate, cinnamonitrile and cinnamyl bromide (0.224–0.502 mg/ml). Structure-activity relationships indicate that structural characteristics, such as types of functional groups, saturation and carbon skeleton, appear to play a role in determining the toxicities to adult B. xylophilus. Cassia and cinnamon oils and test compounds described merit further study as potential nematicides or leads for the control of pine wilt disease caused by B. xylophilus. PMID:19259472

  17. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  18. Isolation of opioid-active compounds from Tabernaemontana pachysiphon leaves.

    Science.gov (United States)

    Ingkaninan, K; Ijzerman, A P; Taesotikult, T; Verpoorte, R

    1999-12-01

    A procedure for prefractionation of crude plant extracts by centrifugal partition chromatography (CPC) has been developed to enable rapid identification of known-positive compounds or false-positive compounds and to increase the chance of identifying minor unknown-active compounds. The study explored the use of CPC as a tool in the prefractionation step before investigation of bioactivity. Fractions obtained by CPC from an ethanolic extract of Tabernaemontana pachysiphon Stapf (Apocynaceae) were screened by means of an opiate-receptor-binding assay and an adenosine A1-receptor-binding assay. Fractions containing fatty acids, which had false-positive effects on the assay, were identified, as were unknown-positive fractions from which two opioid-active compounds, tubotaiwine and apparicine, were subsequently isolated. The affinities (Ki) of tubotaiwine and apparicine at the opiate receptor were 1.65 +/- 0.81 and 2.65 +/- 1.56 micromol, respectively. Both alkaloids had analgesic activity in the abdominal constriction test in mice. CPC prefractionation led to the rapid isolation of two opioid-active compounds, tubotaiwine and apparicine, from the unknown-positive fraction; false-positive fractions were rapidly identified. Both tubotaiwine and apparicine had affinity for adenosine receptors in the micromolar range and also had in-vivo analgesic activity in mice.

  19. Antimalarial activity of thioacridone compounds related to the acronycine alkaloid.

    Science.gov (United States)

    Dheyongera, James P; Geldenhuys, Werner J; Dekker, Theodor G; Matsabisa, Motlalepula G; Van der Schyf, Cornelis J

    2005-03-01

    A series of thioacridone compounds that were previously shown to have DNA binding interaction, were screened for antimalarial activity. The new compounds were assessed for in vitro antimalarial activity against a chloroquine sensitive (D10) strain of the malaria parasite Plasmodium falciparum, using a lactate dehydrogenase (PfLDH) assay. In the series, the IC(50) values ranged from 0.4 to 27 microg/ml. 1-(2-Dimethylaminoethylamino)-9(10H)-thioacridone was found to be the most potent against P. falciparum (D10) with an IC(50) value of 0.4 microg/ml. This compound was also evaluated against a South African chloroquine resistant (RSA 11) P. falciparum strain and was found to have an IC(50) value of 1 microg/ml, compared with 0.16 microg/ml for chloroquine. Quantitative structure-activity relationships of this series were also investigated and a multiple linear regression r(2) of 0.58 was found for the best fit equation. The most potent compound, 1-(2-dimethylaminoethylamino)-9(10H)-thioacridone, was docked into the chloroquine binding site of PfLDH and it was found that the slightly lower activity of this compound, compared with chloroquine, is likely due to steric interference within a restricted binding pocket.

  20. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    Science.gov (United States)

    Cicerale, Sara; Lucas, Lisa; Keast, Russell

    2010-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro) have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds. PMID:20386648

  1. Analyzing Promiscuity at the Level of Active Compounds and Targets.

    Science.gov (United States)

    Bajorath, Jürgen

    2016-12-01

    In the context of polypharmacology, promiscuity is defined as the ability of small molecules to specifically interact with multiple targets. In addition, promiscuity can also be viewed as a characteristic feature of targets by considering their ability to recognize structurally diverse molecules as well as compounds with multi-target activities. Promiscuity estimates can be obtained through systematic mining of compound activity data. Currently available volumes of activity data are so large that it should be possible to derive statistically sound trends from their analysis. However, confidence criteria must be carefully considered when drawing conclusions from compound data mining. Herein, the results of recent promiscuity analyses are presented in context, including studies that view promiscuity from a target perspective. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350 mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  4. [Relationship between antibacterial activity of aloe and its anthaquinone compounds].

    Science.gov (United States)

    Tian, Bing; Hua, Yue-jin; Ma, Xiao-qiong; Wang, Guan-lin

    2003-11-01

    To investigate the relationship between the antibacterial activity of aloe and its contents of anthaquinone compounds, measure and compale antibacterial activities of aloin and aloe-emodin, and analyse the effect of glycoside on the antibacterial activity of aloin. The antibacterial activities of the extracts from the outer leaf of Aloe saponaria Haw, aloin and aloe-emodin against three Gram-negative and two Gram-positive bacteria were investigated with the method of agar diffusion. The antibacterial effect of aloin on E. coli was further studied with scanning electron microscopy. The antibacterial activities of aloe showed to be dependent on the dose of anthraquinone, aloin (1 g x L(-1)) exhibited higher antibacterial activity [inhibition diameter > (7. 1 +/- 0.15) mm] than Aloe-emodin (inhibition diameter aloin changed the morphology of E. coli and damaged the outer cell structrue. Anthraquinone compounds are the active antibacterial components in aloe and aloin is the main active compound. The glycoside makes it easy for aloin to invade cells and enhances its activity.

  5. Compound

    Indian Academy of Sciences (India)

    UV-vis spectra showing solvent effects on compounds (6). Figure S4. UV-vis spectra showing solvent effects on compounds (9). Figure S5. UV-vis spectra showing solvent ___, acidic--- and basic -□- effects on compound (8) in CH2Cl2 solution. Table S1. 1H and 13C NMR spectral data of salicylaldimine Schiff bases (5-8).

  6. Colonic Marking With Near-Infrared, Light-Emitting, Diode-Activated Indocyanine Green for Laparoscopic Colorectal Surgery.

    Science.gov (United States)

    Nagata, Jun; Fukunaga, Yosuke; Akiyoshi, Takashi; Konishi, Tsuyoshi; Fujimoto, Yoshiya; Nagayama, Satoshi; Yamamoto, Noriko; Ueno, Masashi

    2016-02-01

    Accurate identification of the location of colorectal lesions is crucial during laparoscopic surgery. Endoscopic marking has been used as an effective preoperative marker for tumor identification. We investigated the feasibility and safety of an imaging method using near-infrared, light-emitting, diode-activated indocyanine green fluorescence in colorectal laparoscopic surgery. This was a single-institution, prospective study. This study was conducted in a tertiary referral hospital. We enrolled 24 patients who underwent laparoscopic surgery. Indocyanine green and India ink were injected into the same patients undergoing preoperative colonoscopy for colon cancer. During subsequent laparoscopic resection of colorectal tumors, the colon was first observed with white light. Then, indocyanine green was activated with a light-emitting diode at 760 nm as the light source. Near-infrared-induced fluorescence showed tumor location clearly and accurately in all 24 of the patients. All of the patients who underwent laparoscopic surgery after marking had positive indocyanine green staining at the time of surgery. Perioperative complications attributed to dye use were not observed. This study is limited by the cost of indocyanine green detection, the timing of the colonoscopy and tattooing in relation to the operation and identification with indocyanine green, and the small size of the series. These data suggest that our novel method for colonic marking with fluorescence imaging of near-infrared, light-emitting, diode-activated indocyanine green is feasible and safe. This method is useful, has no adverse effects, and can be used for perioperative identification of tumor location. Near-infrared, light-emitting, diode-activated indocyanine green has potential use as a colonic marking agent.

  7. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    Science.gov (United States)

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  8. Identification of Compounds and Insecticidal Activity of the Root of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Correspondence: E-mail: osayemwenre.erharuyi@uniben.edu,. JASEM ISSN 1119-8362. All rights reserved. J. Appl. Sci. Environ. Manage. April. 2017. Vol. 21 (2) 281-287. Full-text Available Online at www.ajol.info and www.bioline.org.br/ja. Identification of Compounds and Insecticidal Activity of the Root of Pride of ...

  9. Comparison of biochemical compounds and antioxidant activities in ...

    African Journals Online (AJOL)

    Date palm bunch fading disorder, the cause of which remains unknown, is among the most harmful disorders affecting date production. In this study the contents of several biochemical compounds and antioxidant enzyme activity were measured in both faded and non-faded bunches. The experiment was conducted in a ...

  10. Effect of physiologically active compounds on growth and yield of ...

    African Journals Online (AJOL)

    Effect of physiologically active compounds on growth and yield of spring wheat. MA Wailare. Abstract. No Abstract. Bowen Journal of Agriculture Vol. 3 (1) 2006: pp. 16-20. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Article Metrics. Metrics Loading ... Metrics powered ...

  11. Extraction and antioxidant activity of phenolic compounds from ...

    African Journals Online (AJOL)

    Purpose: To use response surface methodology to optimize the extraction of the phenolic compounds in wheat bran treated by steam explosion, and to determine the antioxidant activity of the extract obtained. Methods: By using response surface methodology, the effects of extraction time, methanol concentration, ...

  12. Phenolic compounds and antioxidant activities in some fruits and ...

    African Journals Online (AJOL)

    Levels of total phenolic compounds (TPC), proanthocyanidins (PAs) and antioxidant activities among sixteen fruits and vegetables commonly consumed in Burkina Faso were determined. Levels of TPC ranged from 0.21 to 3.33 mg of gallic acid equivalent per gram of fresh matter. The highest contents in TPC were found in ...

  13. Anti-Inflammatory Activity of Compounds Isolated from Plants

    Directory of Open Access Journals (Sweden)

    R.M. Perez G.

    2001-01-01

    Full Text Available This review shows over 300 compounds isolated and identified from plants that previously demonstrated anti-inflammatory activity. They have been classified in appropriate chemical groups and data are reported on their pharmacological effects, mechanisms of action, and other properties.

  14. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa.

    Science.gov (United States)

    Maddox, Christina E; Laur, Lisa M; Tian, Li

    2010-01-01

    Xylella fastidiosa is a pathogenic bacterium that causes diseases in many crop species, which leads to considerable economic loss. Phenolic compounds (a group of secondary metabolites) are widely distributed in plants and have shown to possess antimicrobial properties. The anti-Xylella activity of 12 phenolic compounds, representing phenolic acid, coumarin, stilbene and flavonoid, was evaluated using an in vitro agar dilution assay. Overall, these phenolic compounds were effective in inhibiting X. fastidiosa growth, as indicated by low minimum inhibitory concentrations (MICs). In addition, phenolic compounds with different structural features exhibited different anti-Xylella capacities. Particularly, catechol, caffeic acid and resveratrol showed strong anti-Xylella activities. Differential response to phenolic compounds was observed among X. fastidiosa strains isolated from grape and almond. Elucidation of secondary metabolite-based host resistance to X. fastidiosa will have broad implication in combating X. fastidiosa-caused plant diseases. It will facilitate future production of plants with improved disease resistance properties through genetic engineering or traditional breeding approaches and will significantly improve crop yield.

  15. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    Science.gov (United States)

    Klongkumnuankarn, Pornprom; Busaranon, Kesarin; Chanvorachote, Pithi; Sritularak, Boonchoo; Jongbunprasert, Vichien; Likhitwitayawuid, Kittisak

    2015-01-01

    Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8), moscatilin (1), gigantol (3), lusianthridin (4), and dendroflorin (6) showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant. PMID:25685168

  16. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    Directory of Open Access Journals (Sweden)

    Pornprom Klongkumnuankarn

    2015-01-01

    Full Text Available Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8, moscatilin (1, gigantol (3, lusianthridin (4, and dendroflorin (6 showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant.

  17. Exploring Compound Promiscuity Patterns and Multi-Target Activity Spaces

    Science.gov (United States)

    Hu, Ye; Gupta-Ostermann, Disha; Bajorath, Jürgen

    2014-01-01

    Compound promiscuity is rationalized as the specific interaction of a small molecule with multiple biological targets (as opposed to non-specific binding events) and represents the molecular basis of polypharmacology, an emerging theme in drug discovery and chemical biology. This concise review focuses on recent studies that have provided a detailed picture of the degree of promiscuity among different categories of small molecules. In addition, an exemplary computational approach is discussed that is designed to navigate multi-target activity spaces populated with various compounds. PMID:24688751

  18. EXPLORING COMPOUND PROMISCUITY PATTERNS AND MULTI-TARGET ACTIVITY SPACES

    Directory of Open Access Journals (Sweden)

    Ye Hu

    2014-01-01

    Full Text Available Compound promiscuity is rationalized as the specific interaction of a small molecule with multiple biological targets (as opposed to non-specific binding events and represents the molecular basis of polypharmacology, an emerging theme in drug discovery and chemical biology. This concise review focuses on recent studies that have provided a detailed picture of the degree of promiscuity among different categories of small molecules. In addition, an exemplary computational approach is discussed that is designed to navigate multi-target activity spaces populated with various compounds.

  19. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    Science.gov (United States)

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  20. Amber light-emitting diode comprising a group III-nitride nanowire active region

    Science.gov (United States)

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  1. Plant compounds insecticide activity against Coleoptera pests of stored products

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Marcio Dionizio; Picanco, Marcelo Coutinho; Guedes, Raul Narciso Carvalho; Campos, Mateus Ribeiro de; Silva, Gerson Adriano; Martins, Julio Claudio [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal]. E-mail: marcio.dionizio@gmail.com; picanco@ufv.br; guedes@ufv.br; mateusc3@yahoo.com.br; agronomiasilva@yahoo.com.br

    2007-07-15

    The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD{sub 50} from 2.72 to 39.71 mg g{sup -1} a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis. (author)

  2. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  3. Natural products as a resource for biologically active compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod)/sub 3/ is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous /sup 13/C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the /sup 1/H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants.

  4. Structure-activity relationship of aliphatic compounds for nematicidal activity against pine wood nematode (Bursaphelenchus xylophilus).

    Science.gov (United States)

    Seo, Seon-Mi; Kim, Junheon; Kim, Eunae; Park, Hye-Mi; Kim, Young-Joon; Park, Il-Kwon

    2010-02-10

    Nematicidal activity of aliphatic compounds was tested to determine a structure-activity relationship. There was a significant difference in nematicidal activity among functional groups. In a test with alkanols and 2E-alkenols, compounds with C(8)-C(11) chain length showed 100% nematicidal activity against pine wood nematode, Bursaphelenchus xylophilus , at 0.5 mg/mL concentration. C(6)-C(10) 2E-alkenals exhibited >95% nematicidal activity, but the other compounds with C(11)-C(14) chain length showed weak activity. Nematicidal activity of alkyl acetates with C(7)-C(11) chain length was strong. Compounds belonging to hydrocarbons, alkanals, and alkanoic acetates showed weak activity at 0.5 mg/mL concentration. Nematicidal activity of active compounds was determined at lower concentrations. At 0.25 mg/mL concentration, whole compounds except C(8) alkanol, C(8) 2E-alkenol, and C(7) alkanoic acid showed >80% nematicidal activity. C(9)-C(11) alkanols, C(10)-C(11) 2E-alkenols, C(8)-C(9) 2E-alkenals, and C(9)-C(10) alkanoic acids showed >80% nematicidal activity at 0.125 mg/mL concentration. Only C(11) alkanol exhibited strong nematicidal activity at 0.0625 mg/mL concentration, the lowest concentration that was tested.

  5. Two new compounds from Crataegus pinnatifida and their antithrombotic activities.

    Science.gov (United States)

    Zhou, Chen-Chen; Huang, Xiao-Xiao; Gao, Pin-Yi; Li, Fei-Fei; Li, Dian-Ming; Li, Ling-Zhi; Song, Shao-Jiang

    2014-01-01

    One new sesquiterpene, (1α,4aβ,8aα)-1-isopropanol-4a-methyl-8-methylenedecahydronaphthalene (1), with one new phenylpropanoid, threo-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-ol (2), along with four known phenylpropanoids were isolated from Crataegus pinnatifida. The structures of compounds 1 and 2 were elucidated on the basis of 1D, 2D NMR analyses, and HR-ESI-MS. The antithrombotic activity in vitro of all isolates was assayed, and only compound 1 exhibited potent antithrombotic activity by inhibiting platelet aggregation in rat plasma by 81.4% at 1 mg/ml.

  6. Anticancer activity of botanical compounds in ancient fermented beverages (review).

    Science.gov (United States)

    McGovern, P E; Christofidou-Solomidou, M; Wang, W; Dukes, F; Davidson, T; El-Deiry, W S

    2010-07-01

    Humans around the globe probably discovered natural remedies against disease and cancer by trial and error over the millennia. Biomolecular archaeological analyses of ancient organics, especially plants dissolved or decocted as fermented beverages, have begun to reveal the preliterate histories of traditional pharmacopeias, which often date back thousands of years earlier than ancient textual, ethnohistorical, and ethnological evidence. In this new approach to drug discovery, two case studies from ancient Egypt and China illustrate how ancient medicines can be reconstructed from chemical and archaeological data and their active compounds delimited for testing their anticancer and other medicinal effects. Specifically, isoscopoletin from Artemisia argyi, artemisinin from Artemisia annua, and the latter's more easily assimilated semi-synthetic derivative, artesunate, showed the greatest activity in vitro against lung and colon cancers. In vivo tests of these compounds previously unscreened against lung and pancreatic cancers are planned for the future.

  7. Anti-staphylococcus activity of Ibicella lutea compounds

    OpenAIRE

    Wallace, Federico; Vázquez, Álvaro

    2011-01-01

    Ibicella lutea (Lindl.) Van Eselt. (Martyniaceae) is the sole species of the genus Ibicella from the small Martyniaceae family comprising just 3 genera (Martynia, Proboscidea and Ibicella) with 13 species. In Uruguay, where the plant grows freely, it is called “cuerno del diablo” (Devil’s horn) and its infusion is used in popular medicine as an antimicrobial for the treatment of eyes and skin infections. In this work we present the antibacterial activity of two compounds iso...

  8. Polymer application for separation/filtration of biological active compounds

    Science.gov (United States)

    Tylkowski, B.; Tsibranska, I.

    2017-06-01

    Membrane technology is an important part of the engineer's toolbox. This is especially true for industries that process food and other products with their primary source from nature. This review is focused on ongoing development work using membrane technologies for concentration and separation of biologically active compounds, such as polyphenols and flavonoids. We provide the readers not only with the last results achieve in this field but also, we deliver detailed information about the membrane types and polymers used for their preparation.

  9. Anti-Bacterial Activity of Phenolic Compounds against Streptococcus pyogenes

    OpenAIRE

    Sabrina Mace; Lisbeth Truelstrup-Hansen; Vasantha Rupasinghe, H. P.

    2017-01-01

    Background: Worldwide, Streptococcus pyogenes is the leading cause of bacterial pharyngitis. To reduce the use of antibiotics, antimicrobial phytochemical-containing remedies, which have long been in use in traditional medicine, may provide new approaches for management of streptococcal pharyngitis. The objective of this study was to assess the inhibitory activities of 25 natural phenolic compounds against three strains of S. pyogenes. Methods: After an initial screening, the minimum inhibito...

  10. Bioactive compounds and antioxidant activity analysis during orange vinegar production

    Directory of Open Access Journals (Sweden)

    Cristina Verónica DAVIES

    Full Text Available Abstract Citrus fruits are significant sources of bioactive compounds, such as ascorbic acid, polyphenols and carotenoids, due to their antioxidant properties important for human nutrition. In addition, since oranges possess high sugar content (8-15%, making vinegars from alcoholic orange substrates, with functional characteristics is a possible development of novel products. The aim of this research work was to analyze changes in ascorbic acid, total phenolics, total carotenoids and antioxidant activity during orange vinegar processing. In order to analyze the influence of acetification and aging in these characteristics, samples were taken in three stages: orange alcoholic substrate for acetification (SNA, young orange vinegar or recently obtained (Vn0 and orange vinegar after six month-aging in bottles (Vn6. Statistically significant differences (p < 0.05 were found among bioactive compounds concentrations; antioxidant activity decreased along the process, but total phenolics and carotenoids remained constant during aging period (Vn0-Vn6. The highest reduction was recorded during the acetification stage, possibly due to components oxidation caused by continuous air flow to the system. A higher contribution (p < 0.05 to antioxidant activity was associated to ascorbic acid and phenolic compounds concentration.

  11. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition.

    Science.gov (United States)

    Locatelli, D A; Nazareno, M A; Fusari, C M; Camargo, A B

    2017-04-01

    The antioxidant properties and the main beneficial organosulphur compounds of home-cooked garlic samples were studied in order to establish relationships between them. Antioxidant activity was tested by free radical scavenging against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS+), Fe(III) reducing ability (FRAP) and linoleic acid co-oxidation initiated by soybean lipoxygenase in a micelle system. DPPH, ABTS and FRAP assays showed the highest activity for raw garlic samples, while β-carotene bleaching assay yielded the highest activity for stir-fried garlic. Pure organosulphur compounds tested by DPPH, FRAP and β-carotene bleaching assays showed that allicin had an antiradical action mechanism, as well as iron reducing capacity; while antioxidant activity was the main mechanism for ajoenes and 2-VD. To our knowledge, this study is the first demonstration that home-cooked garlic retains its antioxidant activity, and, at the same time, elucidates the mechanisms involved in this activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identification by gas chromatography-mass spectrometry of the volatile organic compounds emitted from the wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber.

    Science.gov (United States)

    Ewen, Richard J; Jones, Peter R H; Ratcliffe, Norman M; Spencer-Phillips, Peter T N

    2004-07-01

    Volatile organic compounds (VOCs) emitted by two wood-rotting basidiomycete fungi, Serpula lacrymans (dry rot fungus) and Coniophora puteana (cellar fungus), and the timber of Pinus sylvestris (Scots pine), were identified. Several volatile collection techniques were employed including dichloromethane solvent extraction, solid-phase microextraction (SPME) and thermal desorption of VOCs entrained on Tenax GR. In addition, a new method of solid sample injection (SSI) is described which utilises a low injector temperature and an all-glass deactivated injector liner designed to minimise both the formation of pyrolysis products and analyte degradation. All the volatile compounds collected were analysed using electron impact capillary gas chromatography-mass spectrometry (GC-MS) on HP-5, HP-Innowax and beta-cyclodextrin columns. SSI and Tenax thermal desorption were found to be the most effective extraction methods. A total of 19 VOCs were observed from S. lacrymans grown on glass slides and pine, 15 from C. puteana grown on glass slides and 12 from P. sylvestris timber. S. lacrymans was found to emit, in low abundance, six unique VOCs, of which 2-methylbutanal was the greatest. The major volatile compound emitted by S. lacrymans was 1-octen-3-ol, which was also found in lower abundance from C. puteana. Six VOCs, including diethylene glycol and 4-methyl methylbenzoate, were found to be unique to C. puteana, all in medium abundance: From P. sylvestris, the major volatiles identified were S-alpha-pinene and 3-carene.

  13. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  14. Sulfur-containing heterocyclic compounds with potential antidiabetic activity

    Directory of Open Access Journals (Sweden)

    E. A. Savateeva

    2014-12-01

    Full Text Available The essential link in the pathogenesis of diabetes mellitus and its complications is a non-enzymatic glycosylation of proteins. However, modern endocrinology lacks of clinically effective pharmaceuticals for its correction. The screening of 23 derivatives of 1,3,4-thiadiazine the ability to inhibit the reaction of non-enzymatic glycosylation of proteins in vitro was held, and 11 the most active compounds of them were selected, also the relationship «structure – activity» was investigated. An essential part of the pathogenesis of diabetes mellitus and its complications is non-enzymatic glycosylation of proteins. However, modern endocrinology lacks clinically effective medicines for its correction.

  15. Relationship structure-antioxidant activity of hindered phenolic compounds

    Directory of Open Access Journals (Sweden)

    Weng, X. C.

    2014-12-01

    Full Text Available The relationship between the structure and the antioxidant activity of 21 hindered phenolic compounds was investigated by Rancimat and DPPH· tests. 3-tert-butyl-5-methylbenzene-1,2-diol is the strongest antioxidant in the Rancimat test but not in the DPPH· test because its two hydroxyl groups have very strong steric synergy. 2,6-Ditert-butyl-4-hydroxy-methylphenol exhibits a strong antioxidant activity as 2,6-ditertbutyl- 4-methoxyphenol does in lard. 2,6-Ditert-butyl-4- hydroxy-methylphenol also exhibits stronger activity than 2-tert-butyl-4- methoxyphenol. The methylene of 2,6-ditert-butyl-4-hydroxy-methylphenol can provide a hydrogen atom to active free radicals like a phenolic hydroxyl group does because it is greatly activated by both the aromatic ring and hydroxyl group. Five factors affect the antioxidant activities of the phenolic compounds: how stable the phenolic compound free radicals are after providing hydrogen atoms; how many hy drogen atoms each of the phenolic compounds can provide; how fast the phenolic compounds provide hydrogen atoms; how easily the phenolic compound free radicals can combine with more active free radicals, and whether or not a new antioxidant can form after the phenolic compound provides hydrogen atoms.La relación entre estructura y la actividad antioxidante de 21 compuestos fenólicos con impedimentos estéricos fue investigado mediante ensayos con Rancimat y DPPH·. El 3-terc-butil-5-metilbenceno-1,2-diol es el antioxidante más potente en los ensayos mediante Rancimat pero no mediante ensayos con DPPH·, porque sus dos grupos hidroxilo tienen una fuerte sinergia estérica. El 2,6-Di-terc-butil-4-hidroxi-metil-fenol mostró una actividad antioxidante tan fuerte como el 2,6-di-ter-butil-4-metoxifenol en ensayos con manteca de cerdo. El 2,6-di-terc-butil-4-hidroxi-metilfenol también mostró una actividad más fuerte que el 2-terc-butil-4-metoxifenol. El grupo metileno del 2,6-di-ter-butil-4-hidroxi

  16. E. fischeriana Root Compound Dpo Activates Antiviral Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jingxuan Chen

    2017-10-01

    Full Text Available E. fischeriana has long been used as a traditional Chinese medicine. Recent studies reported that some compounds of E. fischeriana exhibited antimicrobial and immune enhance activity. Innate immune system is essential for the immune surveillance of inner and outer threats, initial host defense responses and immune modulation. The role of natural drug compounds, including E. fischeriana, in innate immune regulation is largely unknown. Here we demonstrated that E. fischeriana compound Dpo is involved in antiviral signaling. The genome wide RNA-seq analysis revealed that the induction of ISGs by viral infection could be synergized by Dpo. Consistently, Dpo enhanced the antiviral immune responses and protected the mice from death during viral infection. Dpo however was not able to rescue STING deficient mice lethality caused by HSV-1 infection. The enhancement of ISG15 by Dpo was also impaired in STING, IRF3, IRF7, or ELF4 deficient cells, demonstrating that Dpo activates innate immune responses in a STING/IRFs/ELF4 dependent way. The STING/IRFs/ELF4 axis is therefore important for Dpo induced ISGs expression, and can be used by host to counteract infection.

  17. Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds.

    Science.gov (United States)

    Pignatello, J J; Mitch, William A; Xu, Wenqing

    2017-08-15

    Pyrogenic carbonaceous matter (PCM) includes environmental black carbon (fossil fuel soot, biomass char), engineered carbons (biochar, activated carbon), and related materials like graphene and nanotubes. These materials contact organic pollutants due to their widespread presence in the environment or through their use in various engineering applications. This review covers recent advances in our understanding of adsorption and chemical reactions mediated by PCM and the links between these processes. It also covers adsorptive processes previously receiving little attention and ignored in models such as steric constraints, physicochemical effects of confinement in nanopores, π interactions of aromatic compounds with polyaromatic surfaces, and very strong hydrogen bonding of ionizable compounds with surface functional groups. Although previous research has regarded carbons merely as passive sorbents, recent studies show that PCM can promote chemical reactions of sorbed contaminants at ordinary temperature, including long-range electron conduction between molecules and between microbes and molecules, local redox reactions between molecules, and hydrolysis. PCM may itself contain redox-active functional groups that are capable of oxidizing or reducing organic compounds and of generating reactive oxygen species (ROS) from oxygen, peroxides, or ozone. Amorphous carbons contain persistent free radicals that may play a role in observed redox reactions and ROS generation. Reactions mediated by PCM can impact the biogeochemical fate of pollutants and lead to useful strategies for remediation.

  18. Imidazolium compounds are active against all stages of Trypanosoma cruzi.

    Science.gov (United States)

    Faral-Tello, Paula; Liang, Mary; Mahler, Graciela; Wipf, Peter; Robello, Carlos

    2014-03-01

    Imidazolium salts are best known for their applications in organic synthesis as room-temperature ionic liquids, or as precursors of stable carbenes, but they also show important biological properties such as anti-oxidative effects, induction of mitochondrial membrane permeabilisation and inhibition of the infection cycle of Plasmodium falciparum. For these reasons, and since chemotherapy for Chagas disease is inefficient, the aim of this study was to test the use of imidazolium compounds against the kinetoplastid haemoflagellate aetiological agent for this disease, namely Trypanosoma cruzi. The results show that five of the tested compounds are more effective than the reference drug benznidazole against the epimastigote and trypomastigote forms of T. cruzi. Moreover, intracellular amastigotes were also affected by the compounds, which showed lower toxicity in host cells. Transmission electron microscopy analysis demonstrated that the tested agents induced alterations of the kinetoplast and particularly of the mitochondria, leading to extraordinary swelling of the organelle. These results further demonstrate that the test agents with the best profile are those bearing symmetrical bulky substituents at N(1) and N(3), displaying promising activity against all forms of T. cruzi, interesting selectivity indexes and exceptional activity at low doses. Accordingly, these agents represent promising candidates for the treatment of Chagas disease. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  19. Anti-Bacterial Activity of Phenolic Compounds against Streptococcus pyogenes

    Directory of Open Access Journals (Sweden)

    Sabrina Mace

    2017-05-01

    Full Text Available Background: Worldwide, Streptococcus pyogenes is the leading cause of bacterial pharyngitis. To reduce the use of antibiotics, antimicrobial phytochemical-containing remedies, which have long been in use in traditional medicine, may provide new approaches for management of streptococcal pharyngitis. The objective of this study was to assess the inhibitory activities of 25 natural phenolic compounds against three strains of S. pyogenes. Methods: After an initial screening, the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC of the nine most effective phenolic compounds were determined. The effect of four compounds with the lowest MIC and MBC on streptococcal growth and biofilm formation was also studied. Results: 1,2-Naphthoquinone and 5-hydroxy-1,4-naphthoquinone elicited the greatest anti-S. pyogenes activities with MICs ranging from 0.39 to 6.25 µg mL−1 and MBCs of 100 µg mL−1. Both naphthoquinones inhibited the biofilm formation at concentrations ranging from 12.5 to 50 µg mL−1. Biofilm reduction and altered bacterial cell structures were visible in scanning electron microscopy images of naphthoquinone-treated cells. Conclusion: In conclusion, 1,2-naphthoquinone and 5-hydroxy-1,4-naphthoquinone inhibit S. pyogenes and should be further investigated as candidates for the management of streptococcal pharyngitis.

  20. Platelet anti-aggregation activities of compounds from Cinnamomum cassia.

    Science.gov (United States)

    Kim, Sun Young; Koo, Yean Kyoung; Koo, Ja Yong; Ngoc, Tran Minh; Kang, Sam Sik; Bae, KiHwan; Kim, Yeong Sik; Yun-Choi, Hye Sook

    2010-10-01

    Cinnamomum cassia is a well-known traditional medicine for improvement of blood circulation. An extract of this plant showed both platelet anti-aggregation and blood anti-coagulation effects in preliminary testing. Among the 13 compounds obtained from this plant, eugenol (2), amygdalactone (4), cinnamic alcohol (5), 2-hydroxycinnamaldehyde (7), 2-methoxycinnamaldehyde (8), and coniferaldehyde (9) showed 1.5-73-fold greater inhibitory effects than acetylsalicylic acid (ASA) on arachidonic acid (AA)-induced aggregation (50% inhibitory concentration [IC₅₀] = 3.8, 5.16, 31.2, 40.0, 16.9, and 0.82 μM, respectively, vs. 60.3 μM) and 6.3-730-fold stronger effect than ASA on U46619 (a thromboxane A₂ mimic)-induced aggregation (IC₅₀ = 3.51, 33.9, 31.0, 51.3, 14.6, and 0.44 μM, respectively, vs. 321 μM). The other compounds, coumarin (3), cinnamaldehyde (6), cinnamic acid (10), icariside DC (11), and dihydrocinnacasside (12), also inhibited (2.5 to four times greater than ASA) U46619-induced aggregation. In addition, compounds 2, 4, 5, 6, 7, 8, and 9 were 1.3-87 times more effective than ASA against epinephrine-induced aggregation (IC₅₀ = 1.86, 1.10, 37.7, 25.0, 16.8, 15.3, and 0.57 μM, respectively, vs. 50.0 μM). However, the 13 compounds were only very mildly effective against blood coagulation, if at all. In conclusion, compounds 2, 4, 8, and 9 showed stronger inhibitory potencies than others on AA-, U46619-, and epinephrine-induced platelet aggregation. Eugenol (2) and coniferaldehyde (9) were the two of the most active anti-platelet constituents of C. cassia.

  1. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    Science.gov (United States)

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  2. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Rowse

    Full Text Available We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS to light emitting diode (LED street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes, or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.

  3. Pharmacologically active compounds in the environment and their chirality.

    Science.gov (United States)

    Kasprzyk-Hordern, Barbara

    2010-11-01

    Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental

  4. Bioassay Guided Isolation of Active Compounds from Alchemilla barbatiflora Juz.

    Directory of Open Access Journals (Sweden)

    Gülin Renda

    2018-01-01

    Full Text Available The aerial parts of Alchemilla L. species (Rosaceae are used internally as diuretic, laxative, tonic and externally for wound healing in Turkish folk medicine. Antioxidant effects of the extracts, fractions and isolated compounds from the aerial parts of A. barbatiflora Juz. were investigated with following methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH, and superoxide radical scavenging (SOD, phosphomolibdenum-reducing antioxidant power (PRAP, ferric-reducing antioxidant power (FRAP assays. In addition, tyrosinase, α-glucosidase and acetylcholinesterase inhibition activities of samples were analyzed. The methanol extract from the aerial parts of plant was consecutively fractionated into four subextracts; n-hexane, chloroform, and remaining water extracts. Further studies were carried out on the most active water subextract and the fractions obtained from water subextract with column chromatography. Phytochemical studies on active fractions of the water subextract led to the isolation of seven metabolites including catechin (1 and a catechin dimer; procyanidin B3 (2, a flavonol glucuronide; quercetin-3-O- β-D-glucuronic acid (miquelianin (3 with flavonoid glycosides; quercetin-3-O- β-D-galactoside (hyperoside (4, quercetin-3-O- β-D-arabinoside (guaiaverin (5, kaempferol-3-O-β-D-xylopyranoside (6 and kaempferol-3-O -(6″-coumaroyl-β-D-glycoside (tiliroside (7. Their structures were elucidated by spectral techniques (1D and 2D NMR. The experimental data verified that procyanidin B3 displayed remarkable enzyme inhibitory activity among the whole isolated compounds.

  5. Anti-cancer activity of compounds from Cassia garrettiana heartwood

    Directory of Open Access Journals (Sweden)

    Supreeya Yuenyongsawad

    2014-04-01

    Full Text Available The ethanol extract of Cassia garrettiana heartwood showed marked inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB cells. Therefore, its extract and compounds were investigated for their anticancer effect using the Sulforhodamine B (SRB assay. The ethanol extract of C. garrettiana heartwood was separated to give five compounds which are chrysophanol (1, piceatannol (2, aloe-emodin (3, emodin (4 and cassigarol E (5. Of the tested samples, chrysophanol (1 showed the highest anti-cancer activity against KB cells (IC50 = 0.045 g/mL, aloe emodin (3 was the most active against HT-29 (IC50 = 0.29 g/mL, emodin (4 was against HeLa cells (IC50 = 0.82 g/mL, and cassigarol E (5 was active against MCF-7 (IC50 = 0.021 g/mL, whereas piceatannol (2 was inactive in all tested cell lines. This is the first report of anti-cancer effect against HT-29, HeLa, MCF-7 and KB cells of C. garrettiana heartwood.

  6. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  7. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    Directory of Open Access Journals (Sweden)

    Armin Oskoueian

    2012-01-01

    Full Text Available Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts. The obtained total phenolics value for methanolic Citrus aurantium bloom extract was 4.55 ± 0.05 mg gallic acid equivalent (GAE/g dry weight (DW, and for total flavonoids it was 3.83 ± 0.05 mg rutin equivalent/g DW. In addition, the RP-HPLC analyses of phenolics and flavonoids indicated the presence of gallic acid, pyrogallol, syringic acid, caffeic acid, rutin, quercetin and naringin as bioactive compounds. The antioxidant activity of Citrus aurantium bloom were examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH assay and the ferric reducing/antioxidant potential (FRAP. The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of Citrus aurantium bloom at a concentration of 300 μg/mL, with values of 55.3% and 51.7%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. Furthermore, the anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract. Apart from that, the anticancer activity of the methanolic extract was investigated in vitro against human cancer cell lines (MCF-7; MDA-MB-231, human colon adenocarcinoma (HT-29 and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to

  8. Extremely Randomized Machine Learning Methods for Compound Activity Prediction.

    Science.gov (United States)

    Czarnecki, Wojciech M; Podlewska, Sabina; Bojarski, Andrzej J

    2015-11-09

    Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called 'extremely randomized methods'-Extreme Entropy Machine and Extremely Randomized Trees-for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their 'non-extreme' competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  9. BIOLOGICALLY ACTIVE COMPOUNDS OF ARTEMISIA ANNUA. SESQUITERPENE LACTONES

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2016-01-01

    Full Text Available Artemisia annua is an herblike annual plant which has been used in Chinese folk medicine for more than 2,000 years. In 1970-s sesquiterpene lactones of artemisinin was isolated from the aboveground part of this plant. Today it is the most efficient known natural and synthetic compound for malaria treatment.The purpose of the study was the review of the information from the open sources about the study for sesquiterpene lactones of Artemisia annua referring to its pharmacological activity.Methods. The study was carried out using informational and search engines (PubMed, ScholarGoogle, library databases (eLibrary, Cyberleninca, and the results of our own researches.Results. It was established that apart from the essential oil and phenolic compounds, aboveground part of Artemisia annua, it contains a significant amount of sesquiterpene lactones. Qualitative content and quantitative composition of sesquiterpene lactones varies depending on the ecological and geographic factors, plants growing phase, cultivation technology, drying methods etc. Well-known pharmacological studies of the extracts from Artemisia annua herb with sesquiterpene lactones, as well as individual compounds of this group characterize this type of raw materials as a perspective source for more profound research.Conclusion. Our analysis of the open materials on the sesquiterpene lactones of Artemisia annua, including phytochemical and pharmacological ones, allows characterization of the Artemisia annua herb as a perspective source for new drugs working out.

  10. Extremely Randomized Machine Learning Methods for Compound Activity Prediction

    Directory of Open Access Journals (Sweden)

    Wojciech M. Czarnecki

    2015-11-01

    Full Text Available Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  11. Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity.

    Science.gov (United States)

    Shults, Elvira E; Shakirov, Makhmut M; Pokrovsky, Mikhail A; Petrova, Tatijana N; Pokrovsky, Andrey G; Gorovoy, Petr G

    2017-02-01

    Twenty-one phenolic compounds (1-21) including dihydrocinnamic acid, isoflavonoids, flavonoids, coumestans, pterocarpans, chalcones, isoflavan and isoflaven, were isolated from the roots of Glycyrrhiza pallidiflora Maxim. Phloretinic acid (1), chrysin (6), 9-methoxycoumestan (8), isoglycyrol (9), 6″-O-acetylanonin (19) and 6″-O-acetylwistin (21) were isolated from G. pallidiflora for the first time. Isoflavonoid acetylglycosides 19, 21 might be artefacts that could be produced during the EtOAc fractionation process of whole extract. Compounds 2-4, 10, 11, 19 and 21 were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Isoflavonoid calycosin (4) showed the best potency against human T-cell leukaemia cells MT-4 (CTD50, 2.9 μM). Pterocarpans medicarpin (10) and homopterocarpin (11) exhibit anticancer activity in micromolar range with selectivity on the human monocyte cells U-937. The isoflavan (3R)-vestitol (16) was highly selective on the lymphoblastoid leukaemia cells CEM-13 and was more active than the drug doxorubicin.

  12. Production of N-13 labeled compounds with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazutoshi; Sasaki, Motoji; Yoshida, Yuichiro; Haradahira, Terushi; Inoue, Osamu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    Nitrogen-13 was produced by irradiating ultra pure water saturated with a pure gas (N2, O2, He, H2) with 18 MeV protons. Ion species generated by irradiation were analyzed with radio ion chromatography systems. An automated equipment was developed to synthesize anhydrous (13N)NH3 as a synthetic precursor and (13N)p-nitrophenyl carbamate ((13N)NPC) as a model compound, using the (13N)NH3. The radiochemical yield and specific activity of (13N)NPC was high enough to carry out the receptor study with PET. (author)

  13. Phenolic compounds and antioxidant activity of edible flowers

    OpenAIRE

    Skrajda, Marta Natalia

    2017-01-01

    Skrajda Marta Natalia. Phenolic compounds and antioxidant activity of edible flowers. Journal of Education, Health and Sport. 2017;7(8):946-956. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.995637 http://ojs.ukw.edu.pl/index.php/johs/article/view/4877 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 1223 (26.01.2017). 1223 Journal of Education, Health and Sport eISSN 2391-8306 7...

  14. BIOLOGICALLY ACTIVE COMPOUNDS OF ARTEMISIA ANNUA. SESQUITERPENE LACTONES

    OpenAIRE

    D. A. Konovalov; O. M. Shevchuk; L. A. Logvinenko; A. A. Khamilo

    2016-01-01

    Artemisia annua is an herblike annual plant which has been used in Chinese folk medicine for more than 2,000 years. In 1970-s sesquiterpene lactones of artemisinin was isolated from the aboveground part of this plant. Today it is the most efficient known natural and synthetic compound for malaria treatment.The purpose of the study was the review of the information from the open sources about the study for sesquiterpene lactones of Artemisia annua referring to its pharmacological activity.Meth...

  15. Laccase catalyzed synthesis of iodinated phenolic compounds with antifungal activity.

    Directory of Open Access Journals (Sweden)

    Julian Ihssen

    Full Text Available Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials.

  16. Large-scale assessment of activity landscape feature probabilities of bioactive compounds.

    Science.gov (United States)

    Kayastha, Shilva; Dimova, Dilyana; Iyer, Preeti; Vogt, Martin; Bajorath, Jürgen

    2014-02-24

    Activity landscape representations integrate pairwise compound similarity and potency relationships and provide direct access to characteristic structure-activity relationship features in compound data sets. Because pairwise compound comparisons provide the foundation of activity landscape design, the assessment of specific landscape features such as activity cliffs has generally been confined to the level of compound pairs. A conditional probability-based approach has been applied herein to assign most probable activity landscape features to individual compounds. For example, for a given data set compound, it was determined if it would preferentially engage in the formation of activity cliffs or other landscape features. In a large-scale effort, we have determined conditional activity landscape feature probabilities for more than 160,000 compounds with well-defined activity annotations contained in 427 different target-based data sets. These landscape feature probabilities provide a detailed view of how different activity landscape features are distributed over currently available bioactive compounds.

  17. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    Science.gov (United States)

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  19. Antioxidant activity and phenolic compounds from Colchicum luteum ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... compound 1 (21 mg) and compound 2 (14 g). The fraction that was obtained from CHCl3 / MeOH (50: 50) was then subjected to repeated column chromatography over silica gel eluting with CHCl3. / MeOH; (40: 60) to offered compound 3 (13 mg) and compound 4. (17 mg). Characterization of colchicine (1).

  20. Antinociceptive activity and preliminary structure-activity relationship of chalcone-like compounds.

    Science.gov (United States)

    Corrêa, Rogério; Fenner, Bruna Proiss; Buzzi, Fátima de Campos; Cechinel Filho, Valdir; Nunes, Ricardo José

    2008-01-01

    Chalcones belong to a class of alpha,beta,-unsaturated aromatic ketones which occur abundantly in nature, especially in plants. They are promising and interesting compounds due to their vast applications in pharmaceuticals, agriculture and industry. Several studies have shown that these compounds exert important biological activities in different experimental models. The present work deals with the antinociceptive activity, evaluated against the writhing test, of three series of chalcone-like compounds obtained by the Claisen-Schmidt condensation, using different aldehydes and substituted acetophenones. The results reveal that the compounds synthesized show a significant antinociceptive effect compared with nonsteroidal drugs such as aspirin, paracetamol and diclofenac. They also show that the electronic demand of the substituents is the dominant factor of the biological activity.

  1. [Effect of coordinational germanium compounds on enzyme synthesis and activity].

    Science.gov (United States)

    Seĭfullina, I I; Martsinko, E E; Batrakova, O A; Borzova, N V; Ivanko, E V; Varbanets, L D

    2002-01-01

    Germanium complexes (IV) with succinic (H2Suc), oxyethyliminodiacetic (H2Oeida) and iminodisuccinic (H4Ids) acids as well as homo- and heteroligand germanium complexes (IV)--products of interaction of triammonium salt of oxyethylidendiphosphonic acid ((NH4)3HL) and oxyacids: tartaric (H4Tart), citric (H4Citr), trioxyglutaric (H4Toglut) acids have been synthesized. Composition of the obtained complexes: [Ge(OH)2(NaSuc)2].2H2O (I); [Ge(OH) (Oeida).H2O].H2O (II); [Ge(OH)2(NaHIds)2] (III); [Ge(OH)2(NH4)3HL) (H2Tart)] (IV); [Ge(OH)2(NH4)3HL) (H2Citr)] (V); [Ge(OH)2(NH4)3HL) (H2Toglut)] (VI); [Ge(OH)2((NH4)2HL)2] (VII); [Ge (OH)2((NH4)2HL)2] (VII); [Ge(OH)2 (H2O)2(NH4) HL] (VIII) has been determined. The capability of the synthesized compounds has been studied to affect synthesis and activity of the following enzymes: collagenase, alpha-N-acetylgalactosaminidase (alpha-GalNAc-ase) and alpha-galactosidase (alpha-Gal-ase). It has been established that the complexes II-VIII activate biosynthesis of alpha-Gal-ase and alpha-GalNAc-ase, while germanium dioxide (IX) and complex I possess considerable inhibiting effect on synthesis of the above enzymes. It has been also established that all the compounds except for IV increased the activity of both alpha-Gal-ase and alpha-GalNAc-ase. All the considered complexes demonstrated similar reaction with respect to collagenase: they inhibited both synthesis and activity.

  2. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    Science.gov (United States)

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, Seunghyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-03-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine.

  3. Antifungal activity of tautomycin and related compounds against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Chen, Xiaolong; Zhu, Xiaohui; Ding, Yicheng; Shen, Yinchu

    2011-08-01

    The potential of tautomycin to control oilseed rape stem rot was investigated in this paper. Tautomycin produced by Streptomyces spiroverticillatus strongly inhibited Sclerotinia sclerotiorum, which causes oilseed rape stem rot. Tautomycin showed great inhibition of the mycelial growth of S. sclerotiorum on potato dextrose agar (PDA) plates. The values of EC(50) and MIC were 3.26 × 10(-4) mM and 6.52 × 10(-4) mM, respectively. Tautomycin treatment also resulted in morphological abnormalities of S. sclerotiorum such as hyphal swellings and abnormally branched shapes, which were observed microscopically. Sclerotia of S. sclerotiorum soaked in the tautomycin solution for 24 h remained viable, but their ability to undergo myceliogenic germination on PDA plates was completely inhibited when the concentration of tautomycin reached 6.52 × 10(-4) mM. Tautomycin-treated oilseed rape leaves were found to have a low incidence of leaf blight caused by S. sclerotiorum. The activity of the protein phosphatase (PP) in S. sclerotiorum decreased by 41.6% and 52.6% when treated with 3.30 × 10(-4) mM and 6.52 × 10(-4) mM tautomycin, respectively. Cellular constituents also leaked from S. sclerotiorum cells incubated with tautomycin. The results suggest that the antimicrobial activity of tautomycin is due to the inhibition of the PP and then a change of membrane permeability. This paper also investigated related compounds that possess either a maleic anhydride or maleic acid moiety. Results showed 2,3-dimethylmaleic anhydride, diphenylmaleic anhydride and dimethyl maleate demonstrated significant activity against S. sclerotiorum. The values of EC(50) for these three compounds were 0.31 mM, 0.15 mM and 3.99 mM, respectively. The MIC values obtained for these compounds were 1.11 mM, 0.56 mM and 9.58 mM, respectively.

  4. Relationship between Zingiberaceae Leaves Compounds and its Tyrosinase Activity

    Directory of Open Access Journals (Sweden)

    Irmanida Batubara

    2016-11-01

    Full Text Available The leaves of Zingiberaceae family has not been much explored its potential, especially as a skin lightening. The relationship between total anthocyanins, chlorophyll, carotenoids and tannins contents of Zingiberaceae leaves and tyrosinase activity were determined. Ten species of Zingiberaceae were separated by n-hexane and the residues were extracted with ethyl acetate. The total anthocyanins, chlorophyll, carotenoids, tannins contents and the activities of ethyl acetate extracts were determined by spectrometric method. The tyrosinase inhibition was determined by using L-tyrosine (monophenolase and L-DOPA (diphenolase substrates. The most active extract was the leaves extract of Zingiber purpureum which exhibited 82.86% for monophenolase inhibition and the leaves extract of Curcuma zedoaria which exhibited 90.20% for diphenolase inhibition. The correlation between carotenoids content and monophenolase inhibition was 52%, while between tannin content and diphenolase inhibition was only 15%. Therefore, among 10 leaves species of Zingiberaceae, Zingiber purpureum Roscoe and Curcuma zedoaria leaves are the most potential for tyrosinase inhibitors and can be developed as whitening agent.How to CiteBatubara, I., Kartika, Y. & Darusman, L. K. (2016. Relationship between Zingiberaceae Leaves Compounds and its Tyrosinase Activity. Biosaintifika: Journal of Biology & Biology Education, 8(3, 371-377. 

  5. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  6. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil.

    Science.gov (United States)

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Di Maio, Ilona; Selvaggini, Roberto; Taticchi, Agnese

    2013-12-20

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  7. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Science.gov (United States)

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Maio, Ilona Di; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  8. Search for gamma-ray-emitting active galactic nuclei in the Fermi-LAT unassociated sample using machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Doert, M. [Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund (Germany); Errando, M., E-mail: marlene.doert@tu-dortmund.de, E-mail: errando@astro.columbia.edu [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States)

    2014-02-10

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band. It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm is also presented, that takes into account the differences between associated and unassociated gamma-ray sources. Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the number of unassociated gamma-ray sources and contribute to a more complete characterization of the population of gamma-ray emitting AGNs.

  9. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  10. [The release of biologically active compounds from peat peloids].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated.

  11. Volatile compounds and antioxidative activity of Porophyllum tagetoides extracts.

    Science.gov (United States)

    Jimenez, M; Guzman, A P; Azuara, E; Garcia, O; Mendoza, M R; Beristain, C I

    2012-03-01

    Porophyllum tagetoides is an annual warm-weather herb that has an intense typical smell. Its leaves are commonly used in soup preparation and traditional medicine for treatment of inflammatory diseases. Its volatile compounds and antioxidant properties were evaluated in crude, aqueous and ethanol leaf extract and an oil emulsion using different antioxidant assays in vitro, such as: DPPH radical scavenging activity, redox potential, polyphenol content, reducing power and optical density. A high antioxidative activity was found when comparing leaves with stems. The crude extract from leaves showed a very high reducing power (2.88 ± 0.20 O.D.) and DPPH radical-scavenging activity (54.63 ± 4.80%), in concordance with a major concentration of vitamin C (23.97 ± 0.36 mg/100 g). Instead, the highest polyphenol content (264.54 ± 2.17 mg GAE/g of sample) and redox potential (561.23 ± 0.15 mV) were found by the ethanol and aqueous extract, respectively. Aldehydes and terpenes such as nonanal, decanal, trans-pineno, β-myrcene and D-limonene were the major volatiles found. This study suggests that Porophyllum tagetoides extracts could be used as antioxidants.

  12. Hop pellets as an interesting source of antioxidant active compounds

    Directory of Open Access Journals (Sweden)

    Andrea Holubková

    2013-02-01

    Full Text Available Hop is a plant used by humankind for thousands of years. This plant is one of the main and indispensable raw materials for the beer production. It is used for various dishes preparation in the cuisine. Hop is also used to inhibit bacterial contamination. The hop extracts are used for its sedative, antiseptic and antioxidant properties in medicine, as a part of many phytopharmaceuticals. The present paper have focused on the extraction of polyphenolic compounds from 4 samples of hop pellets varieties of Aurora, Saaz, Lublin and Saphir, on the analyzing of bioactive substances (polyphenolics and flavonoids in prepared extracts and on the determination of antioxidant activity.  The highest content of polyphenolic substances was determined in the sample Lublin (153.06 mg gallic acid (GAE/g and Saaz (151.87 mg GAE/g. The amount of flavonoids in the samples  was descending order Saaz > Saphir > Aurora > Lublin. Hops, as plant, is known by high content of antioxidant active substances. Antioxidant activity was determined using three independent spectrofotometric methods, radical scavenging assays using 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical and ferric reducing antioxidant power (FRAP. The sample Aurora showed the highest ability to scavenge of ABTS radical cation. Antioxidant activity continued to decline in a row Saphir> Lublin> Saaz. The same trend was also observed by using the FRAP assay. The most effective DPPH radical scavengering activity had the sample Saaz a Saphir (p>0.05.doi:10.5219/270 Normal 0 21 false false false SK X-NONE X-NONE

  13. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds.

    Directory of Open Access Journals (Sweden)

    Sophie Crevecoeur

    Full Text Available Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.

  14. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds

    Science.gov (United States)

    Vincent, Warwick F.; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie

    2017-01-01

    Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic. PMID:29182670

  15. Phenolic compounds from the leaves of Breynia officinalis and their tyrosinase and melanogenesis inhibitory activities.

    Science.gov (United States)

    Sasaki, Ayano; Yamano, Yoshi; Sugimoto, Sachiko; Otsuka, Hideaki; Matsunami, Katsuyoshi; Shinzato, Takakazu

    2017-12-20

    From the EtOAc-soluble fraction of a MeOH extract of the leaves of Breynia officinalis, five new compounds (1-5) along with 11 known compounds (6-16) were isolated. The structures of the new compounds were elucidated by spectroscopic methods and compounds 1-3 were found to be acylated hydroquinone apiofuranosylglucopyranosides, while compound 4 was an acylated hydroquinone glucopyranoside. Compound 5 was shown to be butyl p-coumarate and this seems to be its first isolation from a natural source. The tyrosinase inhibitory activity of all of the isolated compounds was assayed, and the activity was significant in p-coumarate derivatives. The most active compound, compound 3, also inhibited melanogenesis in an in vivo whole animal model, zebrafish.

  16. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...... developments in the synthesis of macrocycles, with an emphasis on chemistry developed to generate libraries of putative biologically active compounds....

  17. Pomegranate Fruit as a Rich Source of Biologically Active Compounds

    Science.gov (United States)

    Sreekumar, Sreeja; Sithul, Hima; Muraleedharan, Parvathy; Azeez, Juberiya Mohammed; Sreeharshan, Sreeja

    2014-01-01

    Pomegranate is a widely used plant having medicinal properties. In this review, we have mainly focused on the already published data from our laboratory pertaining to the effect of methanol extract of pericarp of pomegranate (PME) and have compared it with other relevant literatures on Punica. Earlier, we had shown its antiproliferative effect using human breast (MCF-7, MDA MB-231), and endometrial (HEC-1A), cervical (SiHa, HeLa), and ovarian (SKOV3) cancer cell lines, and normal breast fibroblasts (MCF-10A) at concentration of 20–320 μg/mL. The expressions of selected estrogen responsive genes (PR, pS2, and C-Myc) were downregulated by PME. Unlike estradiol, PME did not increase the uterine weight and proliferation in bilaterally ovariectomized Swiss-Albino mice models and its cardioprotective effects were comparable to that of 17β-estradiol. We had further assessed the protective role of PME on skeletal system, using MC3T3-E1 cells. The results indicated that PME (80 μg/mL) significantly increased ALP (Alkaline Phosphatase) activity, supporting its suggested role in modulating osteoblastic cell differentiation. The antiosteoporotic potential of PME was also evaluated in ovariectomized (OVX) rodent model. The results from our studies and from various other studies support the fact that pomegranate fruit is indeed a source of biologically active compounds. PMID:24818149

  18. Antioxidative activities and active compounds of extracts from Catalpa plant leaves.

    Science.gov (United States)

    Xu, Hongyu; Hu, Gege; Dong, Juane; Wei, Qin; Shao, Hongbo; Lei, Ming

    2014-01-01

    In order to screen the Catalpa plant with high antioxidant activity and confirm the corresponding active fractions from Catalpa ovata G. Don, C. fargesii Bur., and C. bungei C. A. Mey., total flavonoid contents and antioxidant activities of the extracts/fractions of Catalpa plant leaves were determined. The determined total flavonoid content and antioxidant activity were used as assessment criteria. Those compounds with antioxidant activity were isolated with silica gel column chromatography and ODS column chromatography. Our results showed that the total flavonoid content in C. bungei C. A. Mey. (30.07 mg/g · DW) was the highest, followed by those in C. fargesii Bur. (25.55 mg/g · DW) and C. ovata G. Don (24.96 mg/g · DW). According to the determination results of total flavonoid content and antioxidant activity in 3 clones of leaves of C. bungei C. A. Mey., the total flavonoid content and antioxidant activity in crude extracts from C. bungei C. A. Mey. 6 (CA6) leaves were the highest. Moreover, the results showed that the total flavonoid content and antioxidant activities of ethyl acetate (EA) fraction in ethanol crude extracts in CA6 leaves were the highest, followed by n-butanol, petroleum ether (PE), and water fractions. Two flavonoid compounds with antioxidant activity were firstly isolated based on EA fraction. The two compounds were luteolin (1) and apigenin (2), respectively.

  19. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  20. Colonic tattooing using fluorescence imaging with light-emitting diode-activated indocyanine green: a feasibility study.

    Science.gov (United States)

    Watanabe, Makoto; Tsunoda, Akira; Narita, Kazuhiro; Kusano, Mitsuo; Miwa, Mitsuharu

    2009-01-01

    We investigated the feasibility of a fluorescence imaging technique using light-emitting diode (LED)-activated indocyanine green (ICG) fluorescence. Indocyanine green injections were given to patients undergoing preoperative colonoscopy for early colon cancer or colon adenoma. During subsequent laparotomy, the colon was first observed with the naked eye, and then using a prototype machine with a charge-coupled device (CCD) video camera equipped with a cutoff filter and a LED at a wavelength of 760 nm as the light source. LED-induced fluorescence showed tumor localization clearly and accurately in all ten patients (100%) enrolled in this study, whereas it was seen with the naked eye as a green spot in only two patients (20%) (P = 0.0077; Wilcoxon's signed-rank test). There were no complications of LED-induced fluorescence and no inflammatory signs were noted on the hematoxylin-eosin-stained slides for the identified injection sites in the resected specimens. Colonic tattooing using this fluorescence imaging technique of LED-activated ICG fluorescence is a new concept of colonic marking based on the characteristics that ICG is a near infrared fluorescent dye, and is useful, without any adverse effects, to identify perioperatively the tumor localization.

  1. PeV neutrinos from intergalactic interactions of cosmic rays emitted by active galactic nuclei.

    Science.gov (United States)

    Kalashev, Oleg E; Kusenko, Alexander; Essey, Warren

    2013-07-26

    The observed very high energy spectra of distant blazars are well described by secondary gamma rays produced in line-of-sight interactions of cosmic rays with background photons. In the absence of the cosmic-ray contribution, one would not expect to observe very hard spectra from distant sources, but the cosmic ray interactions generate very high energy gamma rays relatively close to the observer, and they are not attenuated significantly. The same interactions of cosmic rays are expected to produce a flux of neutrinos with energies peaked around 1 PeV. We show that the diffuse isotropic neutrino background from many distant sources can be consistent with the neutrino events recently detected by the IceCube experiment. We also find that the flux from any individual nearby source is insufficient to account for these events. The narrow spectrum around 1 PeV implies that some active galactic nuclei can accelerate protons to EeV energies.

  2. Antioxidant activity and phenolic compounds from Colchicum luteum ...

    African Journals Online (AJOL)

    The ethanolic extract from corms of the Colchicum luteum Baker (Liliaceae) was investigated phytochemically. During phytochemical studies, compounds 1 - 4 were isolated from the n-butanol fraction. These compounds were identified as colchicines 1, β - Lumicolchicine 2, chlorogenic acid 3 and 3', 4', ...

  3. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    Directory of Open Access Journals (Sweden)

    Sona Skrovankova

    2015-10-01

    Full Text Available Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry, and Ericaceae (blueberry, cranberry, belong to the best dietary sources of bioactive compounds (BAC. They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

  4. Biological activity of terpene compounds produced by biotechnological methods.

    Science.gov (United States)

    Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

    2016-01-01

    Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences.

  5. Fluorescence Properties and Synthesis of Green-Emitting Tb3+-Activated Amorphous Calcium Silicate Phosphor by Ultraviolet Irradiation of 378 nm

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kojima

    2012-01-01

    Full Text Available The excitation wavelength of conventional Tb3+-activated phosphor is near 270 nm. This study describes novel green-emitting Tb3+-activated amorphous calcium silicate by ultraviolet excitation at 378 nm. The Tb3+-activated amorphous calcium silicate was prepared by heating a sample of Tb3+-activated calcium silicate hydrate (CSH at 900°C for 30 minutes. The emission wavelength of the resulting phosphor was 544 nm. The optimum excitation wavelength within the range 300–400 nm was 378 nm. The Tb3+-activated amorphous calcium silicate emitted green by ultraviolet irradiation. The optimum initial Tb/Ca atomic ratio of this phosphor was about 0.5. A mechanism for the action of the phosphor is proposed, in which Tb3+ ions existing in the layer of the CSH lead to loss of water molecules and OH groups.

  6. SPME applied to the study of volatile organic compounds emitted by three species of Eucalyptus in situ. Solid-phase micro extraction.

    Science.gov (United States)

    Zini, Cláudia A; Augusto, Fabio; Christensen, Eva; Caramão, Elina B; Pawliszyn, Janusz

    2002-12-04

    Headspace solid-phase microextraction coupled to gas chromatography/ion trap mass spectrometry-65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) was used to identify and monitor the emission patterns of biogenic volatile organic compounds from leaves of Eucalyptus dunnii, Eucalyptus saligna, and Eucalyptus citriodora in situ. Short extractions (1 min) were performed every 30 min for periods of 8-10 h during 24 days taking advantage of the high capacity of this porous polymer coating. Forty-two compounds were detected and 20 identified in the headspace of E. saligna leaves, and 19 of 27 compounds were identified in the headspace of E. dunnii leaves. The emission pattern of (E)-beta-ocimene and rose oxide suggests that they may play a bioactive role in Eucalyptus.

  7. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds.

    Science.gov (United States)

    Alves, Maria José; Ferreira, Isabel C F R; Dias, Joana; Teixeira, Vânia; Martins, Anabela; Pintado, Manuela

    2013-01-01

    The present review reports the antifungal activity of mushroom extracts and isolated compounds including high (e.g. peptides and proteins) and low (e.g. sesquiterpenes and other terpenes, steroids, organic acids, acylcyclopentenediones and quinolines) molecular weight compounds. Most of the studies available on literature focused on screening of antifungal activity of mushroom extracts, rather than of isolated compounds. Data indicate that mushroom extracts are mainly tested against different Candida species, while mushroom compounds are mostly tested upon other fungi. Therefore, the potential of these compounds might be more useful in food industry than in clinics. Oudemansiella canarii and Agaricus bisporus methanolic extracts proved to be the most active mushroom extracts against Candida spp. Grifolin, isolated from Albatrellus dispansus, seemed to be the most active compound against phytopathogenic fungi. Further studies should be performed in order to better understand the mechanism of action of this and other antifungal compounds as well as safety issues.

  8. Identification and Profiling of Active Compounds from Golden Apple Snail’s Egg Pigments

    Directory of Open Access Journals (Sweden)

    Asadatun Abdullah

    2017-08-01

    Full Text Available Golden apple snail (Pomacea canaliculata has been known as rice corps pest due to high adaptability and reproductive power. Utilization of Pomacea canaliculata’s eggs as raw materials in the food and health industry is one of the efforts to eradicate the pest snail. This study was aimed to identify the active compounds contained in the extract pigments of Pomacea canaliculata’s eggs. The methods of this study were extraction of pigments using acetone and methanol, analyzing the active compound (secondary metabolite qualitatively, TLC to determine pigment components and LC-MS/MS to identify active compounds semi quantitatively. The results showed that active compounds in the methanol extract contain 11 carotenoid pigments of xanthophyl group, two carotenoid pigments of carotene group, and 2 active compounds in nonpigmented form, whereas the acetone extract contain 11 pigmentcarotenoids of xanthophyl group and 2 compounds active in non-pigment form.

  9. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    KAUST Repository

    Gutiérrez-Heredia, Gerardo

    2010-10-04

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/ parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 μA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 μA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O 3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas \\'parylene only\\' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented. © 2010 IOP Publishing Ltd.

  10. High-efficiency diphenylsulfon derivatives-based organic light-emitting diode exhibiting thermally activated delayed fluorescence

    CERN Document Server

    Lee, Geon Hyeong

    2016-01-01

    Novel thermally activated delayed fluorescence (TADF) material with diphenyl sulfone (DPS) as an electron acceptor and 3,6-dimethoxycarbazole (DMOC) and 1,3,6,8-Tetramethyl-9H-carbazole (TMC) as electron donors were investigated theoretically for a blue organic light emitting diode (OLED) emitter. We calculate the energies of the first singlet (S1) and first triplet (T1)-excited states of TADF materials by performing density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations on the ground state using a dependence on charge transfer amounts for the optimal Hartree-Fock percentage in the exchange-correlation of TD-DFT. The calculated {\\Delta}EST values of TMC-DPS (0.094 eV) was smaller than DMOC-DPS (0.386 eV) because of the large dihedral angles between the donor and accepter moieties. We show that TMC-DPS would have a suitable blue OLED emitter, because it has a large dihedral angle that creates a small spatial overlap between the HOMO and the LUMO and, consequently, the small {\\Delta}EST an...

  11. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  12. INFLUENCE OF INORGANIC COMPOUNDS ON THE PROCESS OF PHOTOCATALYSIS OF BIOLOGICALLY ACTIVE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek

    2017-07-01

    Full Text Available Constant increase in concentration of organic micropollutants in the water environment influences the development of methods for their effective elimination from various matrices released into aquatic ecosystems. One of widely described in literature processes for the decomposition of hardly-biodegradable pollutants is the process of heterogeneous photocatalysis. The paper presents the influence of inorganic substances on the decomposition of polycyclic aromatic hydrocarbons (anthracene and benzo[a]pyrene, industrial admixtures - octylphenol and pharmaceutical compounds - diclofenac in the photocatalysis process conducted in the presence of TiO2. It has been shown that the presence of Cl- ions did not affect the photochemical reaction of the micropollutant decomposition. Whereas, the presence of CO3(2-, SO4(2- and HPO4(2- ions inhibited the decolonization of octylphenol and diclofenac, while the degradation efficiency of anthracene and benzo[a]pyrene was reduced only by the presence of CO3(2- and HCO3- anions. The photooxidation of micropollutants in solutions containing Al(3+ oraz Fe(3+ cations proceeded with a much lower efficiency than that for solution without inorganic compounds. The analysis of the kinetics of the photocatalytic decomposition of selected micropollutants show a decrease in the reaction rate constant and an increase in their half-life due to the blocking of theactive semiconductor centers by inorganic compounds. In addition,the toxicological analysis inducated the generation of micropollutant oxidation by-products, which aggravate the quality of treated aqueous solutions.

  13. Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds

    National Research Council Canada - National Science Library

    Gideon C. Okpokwasili; Christian Okechukwu Nweke

    2010-01-01

    .... At low concentrations, 2-nitrophenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol and 3,5-dimethylphenol stimulated dehydrogenase activity and at sufficient concentrations, phenolic compounds...

  14. Compositions comprising a polypeptide having cellulolytic enhancing activity and an organic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2017-05-30

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and an organic compound. The present invention also relates to methods of using the compositions.

  15. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2017-09-05

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  16. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-10-04

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  17. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  18. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  19. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  20. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  1. Analyzing compound activity records and promiscuity degrees in light of publication statistics.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2016-01-01

    For the generation of contemporary databases of bioactive compounds, activity information is usually extracted from the scientific literature. However, when activity data are analyzed, source publications are typically no longer taken into consideration. Therefore, compound activity data selected from ChEMBL were traced back to thousands of original publications, activity records including compound, assay, and target information were systematically generated, and their distributions across the literature were determined. In addition, publications were categorized on the basis of activity records. Furthermore, compound promiscuity, defined as the ability of small molecules to specifically interact with multiple target proteins, was analyzed in light of publication statistics, thus adding another layer of information to promiscuity assessment. It was shown that the degree of compound promiscuity was not influenced by increasing numbers of source publications. Rather, most non-promiscuous as well as promiscuous compounds, regardless of their degree of promiscuity, originated from single publications, which emerged as a characteristic feature of the medicinal chemistry literature.

  2. Volatile compounds profile of Bromeliaceae flowers

    OpenAIRE

    SOUZA, Everton Hilo de; Massarioli, Adna P; Moreno, Ivani A. M.; Souza, Fernanda V. D.; Ledo, Carlos A.S.; Severino M de Alencar; Martinelli,Adriana P.

    2016-01-01

    Volatile compounds play a vital role in the life cycle of plants, possessing antimicrobial and anti-herbivore activities, and with a significant importance in the food, cosmetic, chemical, and pharmaceutical industry. This study aimed to identify the volatile compounds emitted by flowers of thirteen species belonging to four genera of Bromeliaceae, using headspace solid-phase micro-extraction and detection by gas chromatography-mass spectrometry. A total of 71 volatile compounds belonging to ...

  3. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  4. Synthesis and Biological Activity of New 1,3-Dioxolanes as Potential Antibacterial and Antifungal Compounds

    Directory of Open Access Journals (Sweden)

    Hatice Başpınar Küçük

    2011-08-01

    Full Text Available A series of new enantiomerically pure and racemic 1,3-dioxolanes 1-8 was synthesized in good yields and short reaction times by the reaction of salicylaldehyde with commercially available diols using a catalytic amount of Mont K10. Elemental analysis and spectroscopic characterization established the structure of all the newly synthesized compounds. These compounds were tested for their possible antibacterial and antifungal activity. Biological screening showed that all the tested compounds, except 1, show excellent antifungal activity against C. albicans, while most of the compounds have also shown significant antibacterial activity against S. aureus, S. epidermidis, E. faecalis and P. aeruginosa.

  5. Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction.

    Science.gov (United States)

    Nishio, Teiji; Miyatake, Aya; Inoue, Kazumasa; Gomi-Miyagishi, Tomoko; Kohno, Ryosuke; Kameoka, Satoru; Nakagawa, Keiichi; Ogino, Takashi

    2008-01-01

    Proton therapy is a form of radiotherapy that enables concentration of dose on a tumor by use of a scanned or modulated Bragg peak. Therefore, it is very important to evaluate the proton-irradiated volume accurately. The proton-irradiated volume can be confirmed by detection of pair-annihilation gamma rays from positron-emitting nuclei generated by the nuclear fragmentation reaction of the incident protons on target nuclei using a PET apparatus. The activity of the positron-emitting nuclei generated in a patient was measured with a PET-CT apparatus after proton beam irradiation of the patient. Activity measurement was performed in patients with tumors of the brain, head and neck, liver, lungs, and sacrum. The 3-D PET image obtained on the CT image showed the visual correspondence with the irradiation area of the proton beam. Moreover, it was confirmed that there were differences in the strength of activity from the PET-CT images obtained at each irradiation site. The values of activity obtained from both measurement and calculation based on the reaction cross section were compared, and it was confirmed that the intensity and the distribution of the activity changed with the start time of the PET imaging after proton beam irradiation. The clinical use of this information about the positron-emitting nuclei will be important for promoting proton treatment with higher accuracy in the future.

  6. What is the likelihood of an active compound to be promiscuous? Systematic assessment of compound promiscuity on the basis of PubChem confirmatory bioassay data.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2013-07-01

    Compound promiscuity refers to the ability of small molecules to specifically interact with multiple targets, which represents the origin of polypharmacology. Promiscuity is thought to be a widespread characteristic of pharmaceutically relevant compounds. Yet, the degree of promiscuity among active compounds from different sources remains uncertain. Here, we report a thorough analysis of compound promiscuity on the basis of more than 1,000 PubChem confirmatory bioassays, which yields an upper-limit assessment of promiscuity among active compounds. Because most PubChem compounds have been tested in large numbers of assays, data sparseness has not been a limiting factor for the current analysis. We have determined that there is an overall likelihood of ∼50% of an active PubChem compound to interact with two or more targets. The probability to interact with more than five targets is reduced to 7.6%. On average, an active PubChem compound was found to interact with ∼2.5 targets. Moreover, if only activities consistently detected in all assays available for a given target were considered, this ratio was further reduced to ∼2.3 targets per compound. For comparison, we have also analyzed high-confidence activity data from ChEMBL, the major public repository of compounds from medicinal chemistry, and determined that an active ChEMBL compound interacted on average with only ∼1.5 targets. Taken together, our results indicate that the degree of compound promiscuity is lower than often assumed.

  7. Biological active compounds from actinomycetes isolated from soil ...

    African Journals Online (AJOL)

    sunny

    2014-12-03

    Dec 3, 2014 ... compounds and biocontrol agents would have been favored by ... Plug of tested plant pathogens (C. gloeosporioides and. Colletotrichum ... Table 1. Inhibition profile produce by actinomycetes. Pathogen. Isolates inhibition profile (x). Total number of isolates which produce inhibition zone. No inhibition.

  8. Ovicidal and adulticidal activities of Cinnamomum zeylanicum bark essential oil compounds and related compounds against Pediculus humanus capitis (Anoplura: Pediculicidae).

    Science.gov (United States)

    Yang, Young-Cheol; Lee, Hoi-Seon; Lee, Si Hyeock; Clark, J Marshall; Ahn, Young-Joon

    2005-12-01

    The toxicity of cinnamon, Cinnamomum zeylanicum, bark essential oil compounds against eggs and adult females of human head louse, Pediculus humanus capitis, was examined using direct contact and vapour phase toxicity bioassays and compared with the lethal activity of their related compounds, benzyl alcohol, cinnamic acid, cinnamyl acetate, 4-hydroxybenzaldehyde and salicylaldehyde, as well as two widely used pediculicides, d-phenothrin and pyrethrum. In a filter-paper contact toxicity bioassay with female lice at 0.25 mg/cm(2), benzaldehyde was 29- and 27-fold more toxic than pyrethrum and d-phenothrin, respectively, as judged by median lethal time (LT(50)) values. Salicylaldehyde was nine and eight times more active than pyrethrum and d-phenothrin, respectively. Pediculicidal activity of linalool was comparable with that of d-phenothrin and pyrethrum. Cinnamomum bark essential oil was slightly less effective than either d-phenothrin or pyrethrum. Benzyl alcohol and (E)-cinnamaldehyde exhibited moderate pediculicidal activity. After 24h of exposure, no hatching was observed with 0.063 mg/cm(2) salicylaldehyde, 0.125 mg/cm(2) benzaldehyde, 0.5mg/cm(2)Cinnamomum bark essential oil, 1.0 mg/cm(2) (E)-cinnamaldehyde, and 1.0 mg/cm(2) benzyl cinnamate. Little or no ovicidal activity was observed with d-phenothrin or pyrethrum. In vapour phase toxicity tests with female lice, benzaldehyde and salicylaldehyde were much more effective in closed containers than in open ones, indicating that the mode of delivery of these compounds was largely due to action in the vapour phase. Neither d-phenothrin nor pyrethrum exhibited fumigant toxicity. Cinnamomum bark essential oil and test compounds described merit further study as potential pediculicides or ovicides for the control of P. h. capitis.

  9. Leishmanicidal and cytotoxic activities of extracts and naturally-occurring compounds from two Lauraceae species.

    Science.gov (United States)

    Sánchez-Suárez, Jeysson; Coy-Barrera, Ericsson; Cuca, Luis Enrique; Delgado, Gabriela

    2011-02-01

    The in vitro leishmanicidal effects of ethanolic extracts and fifteen naturally-occurring compounds (five lignans, eight neolignans, a diterpene and a dihydrochalcone), obtained from Pleurothyrium cinereum and Ocotea macrophylla, were evaluated on promastigotes of Leishmania panamensis and L. braziliensis. In addition, in order to determine the selective action on Leishmania species as a safety principle, in vitro cytotoxicity on J774 cells was also evaluated for test compounds and extracts. One extract and seven compounds showed activity against Leishmania parasites at different levels. Dihydroflavokawin B (8) was found to be the most potent antileishmanial compound on both parasites, whilst (+)-otobaphenol (14), was found to be the most selective compound on L. panamensis.

  10. Fabrication, structure and photoluminescence properties of Eu3+-activated red-emitting Ba2Gd2Si4O13 phosphors for solid-state lighting

    Science.gov (United States)

    Lü, Tian-shuai; Xu, Xu-hui; Wang, Da-jian; Sun, Liang; Qiu, Jian-bei

    2014-03-01

    Eu3+-activated red-emitting Ba2Gd2Si4O13 phosphors are prepared via microwave (MW) synthesis and solid-state (SS) method. The structural and luminescent properties of phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) spectra and scanning electron microscopy (SEM). Upon 393 nm excitation, compared with the sample sintered by SS method, luminescence enhancement is observed in the sample synthesized by MW method. The mechanism of MW synthesis process is discussed in detail. Results indicate that the PL enhancement is probably related to the concave-convex phosphor surfaces and uniform grains, which may reinforce scattering of excitation light. Our research may further promote the understanding of MW synthesis and extend the application of Eu3+-activated Ba2Gd2Si4O13 in white light-emitting diodes.

  11. Molecular Descriptors Family on Structure Activity Relationships 2. Insecticidal Activity of Neonicotinoid Compounds

    Directory of Open Access Journals (Sweden)

    Sorana BOLBOACĂ

    2005-01-01

    Full Text Available The neonicotinoids are the newest major class of insecticides modeled after the basic nicotine molecule having improved insecticide activity and generally low toxicity. The insecticidal activities of neonicotinoids were previous studied using 3D and standard partial least squares regression models. The paper describes the ability of the MDF SAR methodology in prediction of insecticidal activities of neonicotinoid compounds. The best MDF SAR bi-varied model was validated on training and test sets and its ability on prediction of insecticidal activity was compared with previous reported models. Even if the MDF SAR methodology is complex and time consuming the results worth the effort because they are statistical significant better then previous reported results.

  12. Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity

    Science.gov (United States)

    McFarland, Madalyn M.; Zach, Sydney J.; Wang, Xiaofang; Potluri, Lakshmi-Prasad; Neville, Andrew J.; Vennerstrom, Jonathan L.

    2016-01-01

    Toxoplasma gondii is a ubiquitous apicomplexan parasite capable of infecting humans and other animals. Current treatment options for T. gondii infection are limited and most have drawbacks, including high toxicity and low tolerability. Additionally, no FDA-approved treatments are available for pregnant women, a high-risk population due to transplacental infection. Therefore, the development of novel treatment options is needed. To aid this effort, this review highlights experimental compounds that, at a minimum, demonstrate inhibition of in vitro growth of T. gondii. When available, host cell toxicity and in vivo data are also discussed. The purpose of this review is to facilitate additional development of anti-Toxoplasma compounds and potentially to extend our knowledge of the parasite. PMID:27600037

  13. Theoretical Study of Some Nitrososulfamide Compounds with Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Madi Fatiha

    2004-09-01

    Full Text Available The lowest-energy conformations of four 2-chloroethylnitrososulfamides were determined using the MM+ molecular mechanics method as implemented in Hyperchem 6.0. Some of the calculated structural parameters, angles and bonds lengths were compared with the crystal structure data of N-nitroso-N-(2-chloroethyl-N’-sulfamoyl- proline. Using MM+, AM1 and PM3 the anti conformation was predicted to be more stable than the syn conformation in each of these compounds. With these methods we found that the relative energy of the transition state (TS was considerably higher, but with the ab initio method using RHF with minimal basic function STO-3G we found that the syn conformation is predicted to be slightly more stable. The determination of some atomic charges of a selection of atoms on the syn, anti and TS structures of the various compounds provided some details about the nature of the transition state.

  14. Antioxidant activity and phenolic compounds in selected herbs.

    Science.gov (United States)

    Zheng, W; Wang, S Y

    2001-11-01

    The antioxidant capacities (oxygen radical absorbance capacity, ORAC) and total phenolic contents in extracts of 27 culinary herbs and 12 medicinal herbs were determined. The ORAC values and total phenolic contents for the medicinal herbs ranged from 1.88 to 22.30 micromol of Trolox equivalents (TE)/g of fresh weight and 0.23 to 2.85 mg of gallic acid equivalents (GAE)/g of fresh weight, respectively. Origanum x majoricum, O. vulgare ssp. hirtum, and Poliomintha longiflora have higher ORAC and phenolic contents as compared to other culinary herbs. The ORAC values and total phenolic content for the culinary herbs ranged from 2.35 to 92.18 micromol of TE/g of fresh weight and 0.26 to 17.51 mg of GAE/g of fresh weight, respectively. These also were much higher than values found in the medicinal herbs. The medicinal herbs with the highest ORAC values were Catharanthus roseus, Thymus vulgaris, Hypericum perforatum, and Artemisia annua. A linear relationship existed between ORAC values and total phenolic contents of the medicinal herbs (R = 0.919) and culinary herbs (R = 0.986). High-performance liquid chromatography (HPLC) coupled with diode-array detection was used to identify and quantify the phenolic compounds in selected herbs. Among the identified phenolic compounds, rosmarinic acid was the predominant phenolic compound in Salvia officinalis, Thymus vulgaris, Origanum x majoricum, and P. longiflora, whereas quercetin-3-O-rhamnosyl-(1 --> 2)-rhamnosyl-(1 --> 6)-glucoside and kaempferol-3-O-rhamnosyl-(1 --> 2)-rhamnosyl-(1 --> 6)-glucoside were predominant phenolic compounds in Ginkgo biloba leaves.

  15. Bioactive compounds and antioxidant activity analysis of Malaysian pineapple cultivars

    Science.gov (United States)

    Chiet, Chong Hang; Zulkifli, Razauden Mohamed; Hidayat, Topik; Yaakob, Harisun

    2014-03-01

    Pineapple industry is one of the important agricultural sectors in Malaysia with 76 cultivars planted throughout the country. This study aims to generate useful nutritional information as well as evaluating antioxidant properties of different pineapple commercial cultivars in Malaysia. The bioactive compound content and antioxidant capacity of `Josapine', `Morris' and `Sarawak' pineapple (Ananas comosus) were studied. The pineapple varieties were collected at commercial maturity stage (20-40% yellowish of fruit peel) and the edible portion of the fruit was used as sample for evaluation. The bioactive compound of the fruit extracts were evaluated by total phenolic and tannin content assay while the antioxidant capacity was determined by ferric reducing antioxidant power (FRAP). From the results obtained, total phenolic and tannin content was highest for `Josapine' followed by `Morris' and `Sarawak'. With respect to FRAP, `Josapine' showed highest reducing capacity, followed by `Morris' and then `Sarawak' having the least value. The bioactive compounds content are positively correlated with the antioxidant capacities of the pineapple extracts. This result indicates that the total phenolics and tannin content present in the pineapples may contribute to the antioxidant capacity of the pineapples.

  16. Radiosensitization of Escherichia coli and Salmonella typhi in presence of active compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, M. E-mail: monique.lacroix@inrs-iaf.uquebec.ca; Chiasson, F.; Borsa, J.; Ouattara, B

    2004-10-01

    The radiosensitization of Escherichia coli and Salmonella typhi in ground beef was evaluated in the presence of 18 active compounds. Medium fat ground beef (23% fat) was inoculated with E. coli or S. typhi and each active compound was added separately at various concentrations. For E. coli, the most efficient compounds were trans-cinnamaldehyde, thymol and thyme. For S. typhi, the most efficient compounds was trans-cinnamaldehyde, carvacrol and thymol. The addition of tetrasodium pyrophosphate, carvacrol and ascorbic acid had no effect on the irradiation sensitivity of E. coli. For S. typhi, only ascorbic acid had no effect.

  17. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.

    Science.gov (United States)

    Kim, Seokwon; Kubec, Roman; Musah, Rabi A

    2006-03-08

    A total of 18 organosulfur compounds originating from Petiveria alliacea L. roots have been tested for their antibacterial and antifungal activities. These represent compounds occurring in fresh homogenates as well as those present in various macerates, extracts and other preparations made from Petiveria alliacea. Of the compounds assayed, the thiosulfinates, trisulfides and benzylsulfinic acid were observed to be the most active, with the benzyl-containing thiosulfinates exhibiting the broadest spectrum of antimicrobial activity. The effect of plant sample preparation conditions on the antimicrobial activity of the extract is discussed.

  18. Design, synthesis and cytotoxic activity of certain novel chalcone analogous compounds.

    Science.gov (United States)

    El-Meligie, S; Taher, Azza T; Kamal, Aliaa M; Youssef, A

    2017-01-27

    A series of chalcone analogous compounds were designed and synthesized. Replacing/substituting the enone or ethylenic bridge of the parent chalcone with rigid heterocyclic moieties or substituted aromatic amines gave nineteen target compounds. Their cytotoxic activities were screened against both breast and liver cancer cells as well as breast and liver normal cells. Target compounds were also evaluated for their inhibition activity of tubulin beta polymerization. Target compound 2e, 3a, 3b, 3c, 4a-4d, 5a, 5b and 6 showed broad spectrum excellent anticancer activity against both MCF-7 and HepG2. Compound 4a showed the most TUBb inhibition activity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor.

    Science.gov (United States)

    Qi, Fanghua; Li, Anyuan; Inagaki, Yoshinori; Kokudo, Norihiro; Tamura, Sumihito; Nakata, Munehiro; Tang, Wei

    2011-03-01

    The skin of the toad Bufo bufo gargarizans Cantor is known to be rich in bufadienolides, peptides and alkaloids. It has been found to be a source of some extracts and biologically active compounds with antitumor activity. Cinobufacini (Huachansu), a Chinese medicine prepared from the dried toad skin, has been widely used in clinical therapy for various cancers in China. Bufadienolides, such as bufalin, cinobufagin, resibufogenin, and telocinobufagin, are the major active compounds derived from the toad skin. They are the maker biologically active compounds of cinobufagin while the antitumor activity of cinobufagin may be due to this kind of components. Experimental research has suggested that cinobufacini and its active compounds (e.g. bufalin and cinobufagin) exhibit significant antitumor activity, including inhibition of cell proliferation, induction of cell differentiation, induction of apoptosis, disruption of the cell cycle, inhibition of cancer angiogenesis, reversal of multi-drug resistance, and regulation of the immune response. Clinical data have indicated that cinobufacini may have effective anticancer activity with low toxicity and few side effects. Data to date suggest it may also enhance quality of life for patients with cancer. Thus, this review briefly summarizes recent studies on the anticancer activity of cinobufacini and some of its active compounds from the skin of the toad Bufo bufo gargarizans Cantor. This might provide additional evidence for further study of the extracts and active compounds from the toad skin in cancer treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Is nitrate an endocrine active compound in fish?

    DEFF Research Database (Denmark)

    Mose, M. P.; Kinnberg, Karin Lund; Bjerregaard, Poul

    were exposed to nitrate and nitrite from hatch to sexual maturation (60 d) and sex ratio and vitellogenin concentrations were determined. Juvenile brown trout were exposed in a short-term experiment and the concentrations of vitellogenin were determined. The sex ratio in zebrafish was not affected......Nitrate and nitrite taken up into fish may be reduced to NO which is known to be a signalling compound in the organism contributing to the regulation of i.e. steroid synthesis. Exposure of male rats to nitrate and nitrite results in reduced plasma concentrations of testosterone (also nitrate...

  1. Determination of phenolic compounds and antioxidant activity in leaves from wild Rubus L. species.

    Science.gov (United States)

    Oszmiański, Jan; Wojdyło, Aneta; Nowicka, Paulina; Teleszko, Mirosława; Cebulak, Tomasz; Wolanin, Mateusz

    2015-03-18

    Twenty-six different wild blackberry leaf samples were harvested from various localities throughout southeastern Poland. Leaf samples were assessed regarding their phenolic compound profiles and contents by LC/MS QTOF, and their antioxidant activity by ABTS and FRAP. Thirty-three phenolic compounds were detected (15 flavonols, 13 hydroxycinnamic acids, three ellagic acid derivatives and two flavones). Ellagic acid derivatives were the predominant compounds in the analyzed leaves, especially sanguiin H-6, ellagitannins, lambertianin C, and casuarinin. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. The highest level of phenolic compounds was measured for R. perrobustus, R. wimmerianus, R. pedemontanus and R. grabowskii. The study showed that wild blackberry leaves can be considered a good source of antioxidant compounds. There is clear potential for the utilization of blackberry leaves as a food additive, medicinal source or herbal tea.

  2. Determination of Phenolic Compounds and Antioxidant Activity in Leaves from Wild Rubus L. Species

    Directory of Open Access Journals (Sweden)

    Jan Oszmiański

    2015-03-01

    Full Text Available Twenty-six different wild blackberry leaf samples were harvested from various localities throughout southeastern Poland. Leaf samples were assessed regarding their phenolic compound profiles and contents by LC/MS QTOF, and their antioxidant activity by ABTS and FRAP. Thirty-three phenolic compounds were detected (15 flavonols, 13 hydroxycinnamic acids, three ellagic acid derivatives and two flavones. Ellagic acid derivatives were the predominant compounds in the analyzed leaves, especially sanguiin H-6, ellagitannins, lambertianin C, and casuarinin. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. The highest level of phenolic compounds was measured for R. perrobustus, R. wimmerianus, R. pedemontanus and R. grabowskii. The study showed that wild blackberry leaves can be considered a good source of antioxidant compounds. There is clear potential for the utilization of blackberry leaves as a food additive, medicinal source or herbal tea.

  3. Determination of Phenolic Compounds and Antioxidant Activity in Leaves from Wild Rubus L. Species

    OpenAIRE

    Oszmiański, Jan; Wojdyło, Aneta; Nowicka, Paulina; Teleszko, Mirosława; Cebulak, Tomasz; Wolanin, Mateusz

    2015-01-01

    Twenty-six different wild blackberry leaf samples were harvested from various localities throughout southeastern Poland. Leaf samples were assessed regarding their phenolic compound profiles and contents by LC/MS QTOF, and their antioxidant activity by ABTS and FRAP. Thirty-three phenolic compounds were detected (15 flavonols, 13 hydroxycinnamic acids, three ellagic acid derivatives and two flavones). Ellagic acid derivatives were the predominant compounds in the analyzed leaves, especially ...

  4. Activity artifacts in drug discovery and different facets of compound promiscuity

    OpenAIRE

    Jürgen Bajorath

    2014-01-01

    Compounds with apparent activity in a variety of assays might disable target proteins or produce false assay signals in the absence of specific interactions. In some instances, such effects are easy to detect, in others they are not. Observed promiscuity of compounds might be due to such non-specific assay artifacts. By contrast, promiscuity might also result from specific interactions with multiple targets. In the latter case, promiscuous compounds can be attractive candidates for certain th...

  5. Design of an activity landscape view taking compound-based feature probabilities into account.

    Science.gov (United States)

    Zhang, Bijun; Vogt, Martin; Bajorath, Jürgen

    2014-09-01

    Activity landscapes (ALs) of compound data sets are rationalized as graphical representations that integrate similarity and potency relationships between active compounds. ALs enable the visualization of structure-activity relationship (SAR) information and are thus computational tools of interest for medicinal chemistry. For AL generation, similarity and potency relationships are typically evaluated in a pairwise manner and major AL features are assessed at the level of compound pairs. In this study, we add a conditional probability formalism to AL design that makes it possible to quantify the probability of individual compounds to contribute to characteristic AL features. Making this information graphically accessible in a molecular network-based AL representation is shown to further increase AL information content and helps to quickly focus on SAR-informative compound subsets. This feature probability-based AL variant extends the current spectrum of AL representations for medicinal chemistry applications.

  6. Odour-active compounds in guava (Psidium guajava L. cv. Red Suprema).

    Science.gov (United States)

    Pino, Jorge A; Bent, Leandra

    2013-09-01

    Solid phase microextraction and simultaneous distillation-extraction combined with GC-FID, GC/MS, aroma extract dilution analysis and odour activity values were used to analyse volatile compounds from guava (Psidium guajava L. cv. Red Suprema) and to estimate the most odour-active compounds. The analysis led to the detection of 141 compounds, 121 of which were positively identified. The composition of guava fruit volatiles included 43 esters, 37 terpenes, 18 aldehydes, 16 alcohols, ten acids, six ketones, four furans and seven miscellaneous compounds. Seventeen odorants were considered as odour-active compounds, with (E)-β-ionone, ethyl hexanoate, ethyl butanoate, hexanal, (Z)-3-hexenal, hexyl acetate, (E)-2-hexenal and limonene contributing most to the typical guava aroma of this cultivar. © 2013 Society of Chemical Industry.

  7. Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids.

    Science.gov (United States)

    Wang, Hui; Yuan, Haijian; Li, Shujun; Li, Zhuo; Jiang, Mingyue

    2016-02-01

    The purpose of this study was to synthesize hydrophilic cinnamaldehyde Schiff base compounds and investigate those bioactivity. A total of 24 Schiff base compounds were synthesized using a simple approach with 3 cinnamaldehyde derivates and 8 amino acids as raw materials. The structures of synthesized compounds were confirmed using FTIR, (1)HNMR, HRMS purity and melting point. The antimicrobial activities of new compounds were evaluated with fluconazole and ciprofloxacin as the control against Aspergillus niger, Penicillium citrinum, Escherichia coli and Staphylococcus aureus. Findings show that major compounds exhibited significant bioactivity. Results from the structure-activity relationship suggest that both -p-Cl on benzene ring of cinnamaldehyde and the number of -COOK of amino acid salts significantly contributed to antimicrobial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view

    Science.gov (United States)

    Nguyen, Tuyen; Montemor, M. Fátima

    2017-11-01

    Metal compound based hybrid electrochemical energy storage (HEES) is currently emerging as a highly promising solution to provide enhanced storage capacity and high power performance. Properties of metal compound based redox active electrodes, including chemical composition, morphology, crystal structure and conductivity govern the performance of storage devices. In this perspective, we highlight the recent advances on HEES and discuss possible strategies to explore further the electrochemical response and to improve the storage performance. Redox active binders and redox active electrolytes, operating together with metal compound based electrodes, to provide additional charge storage will also be discussed.

  9. Effects of extraction methods of phenolic compounds from Xanthium strumarium L. and their antioxidant activity

    Directory of Open Access Journals (Sweden)

    R. Scherer

    2014-03-01

    Full Text Available The effect of extraction methods and solvents on overall yield, total phenolic content, antioxidant activity, and the composition of the phenolic compounds in Xanthium strumarium extracts were studied. The antioxidant activity was determined by using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH, and the composition of the phenolic compounds was determined by HPLC-DAD and LC/MS. All results were affected by the extraction method, especially by the solvent used, and the best results were obtained with the methanol extract. The methanolic and ethanolic extracts exhibited strong antioxidant activity, and the chlorogenic and ferulic acids were the most abundant phenolic compounds in the extracts.

  10. AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs).

    Science.gov (United States)

    Feng, Xin Jiang; Peng, Jinghong; Xu, Zheng; Fang, Renren; Zhang, Hua-Rong; Xu, Xinjun; Li, Lidong; Gao, Jianhua; Wong, Man Shing

    2015-12-30

    A series of fluorene derivatives end-capped with diphenylamino and oxadiazolyl were synthesized, and their photophysical and electrochemical properties are reported. Aggregation-induced emission (AIE) effects were observed for the materials, and bipolar characteristics of the molecules are favored with measurement of carrier mobility and calculation of molecular orbitals using density functional theory (DFT). Using the fluorene derivatives as emitting-layer, nondoped organic light-emitting devices (OLEDs) have been fabricated by spin-coating in the configuration ITO/PEDOT:PSS(35 nm)/PVK(15 nm)/PhN-OF(n)-Oxa(80 nm)/SPPO13(30 nm)/Ca(8 nm)/Al(100 nm) (n = 2-4). The best device with PhN-OF(2)-Oxa exhibits a maximum luminance of 14 747 cd/m(2), a maximum current efficiency of 4.61 cd/A, and an external quantum efficiency (EQE) of 3.09% in the blue region. Investigation of the correlation between structures and properties indicates that there is no intramolecular charge transfer (ICT) increase in these molecules with the increase of conjugation length. The device using material of the shortest conjugation length as emitting-layer gives the best electroluminescent (EL) performances in this series of oligofluorenes.

  11. Acquisition of compound words in Chinese-English bilingual children: Decomposition and cross-language activation

    NARCIS (Netherlands)

    Cheng, C.; Wang, M.; Perfetti, C.A.

    2011-01-01

    This study investigated compound processing and cross-language activation in a group of Chinese–English bilingual children, and they were divided into four groups based on the language proficiency levels in their two languages. A lexical decision task was designed using compound words in both

  12. Synthesis and biological activity of some heterocyclic compounds ...

    Indian Academy of Sciences (India)

    Administrator

    antiprotozoal. 20,21 and anti-hepatitis B virus activity. 22. In addition, a large number of antibiotics contain the 2-azetidinone. (commonly known as β-lactam) moiety. 23 such as penicillin, cephalosporin and carbapenem (figure 2). It is also associated with a variety of therapeutic activities. 24–28. In continuation of our work to.

  13. Antiprotozoal activities of compounds isolated from croton lobatus l ...

    African Journals Online (AJOL)

    In a preliminary evaluation of ethnobotanically selected Beninese medicinal plants for their in vitro antiplasmodial activity, the methanolic extract of the aerial parts of C. lobatus was found to have significant activity against P. falciparum, antileishmainal and antiprotoazoal assays carried out on some of the isolated ...

  14. Antimicrobial Activities against Periodontopathic Bacteria of Pittosporum tobira and Its Active Compound

    Directory of Open Access Journals (Sweden)

    Jung-Hyun Oh

    2014-03-01

    Full Text Available The study of medicinal plants for treatment of periodontitis is of great value to establish their efficacy as sources of new antimicrobial drugs. Five hundred and fifty eight Korean local plant extracts were screened for antibacterial activity against representative periodontopathic bacteria such as Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum. Among the various medicinal plants, the alcohol extract of Pittosporum tobira, which significantly exhibited antibacterial effect for all tested strains, showed the highest activity in the antimicrobial assays. NMR analyses revealed that R1-barrigenol, a triterpene sapogenin, was the most effective compound in P. tobira. These results demonstrated that P. tobira possesses antimicrobial properties and would be beneficial for the prevention and treatment of periodontitis.

  15. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and Anticancer Activities

    Science.gov (United States)

    Roth, Howard S.; Hergenrother, Paul J.

    2016-01-01

    PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an in-depth discussion of four derivatives on which extensive studies have been performed. PMID:26630918

  16. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and their Anticancer Activities.

    Science.gov (United States)

    Roth, Howard S; Hergenrother, Paul J

    2016-01-01

    PAC-1 induces the activation of procaspase-3 in vitro and in cell culture by chelation of inhibitory labile zinc ions via its ortho-hydroxy-N-acylhydrazone moiety. First reported in 2006, PAC-1 has shown promise in cell culture and animal models of cancer, and a Phase I clinical trial in cancer patients began in March 2015 (NCT02355535). Because of the considerable interest in this compound and a well-defined structure-activity relationship, over 1000 PAC-1 derivatives have been synthesized in an effort to vary pharmacological properties such as potency and pharmacokinetics. This article provides a comprehensive examination of all PAC-1 derivatives reported to date. A survey of PAC-1 derivative libraries is provided, with an indepth discussion of four derivatives on which extensive studies have been performed.

  17. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  18. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Directory of Open Access Journals (Sweden)

    Euna eOh

    2015-10-01

    Full Text Available The increasing resistance of Campylobacter to clinically-important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN. Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  19. Isolation and Antimicrobial Activity of Flavonoid Compounds from Mahagony Seeds (Swietenia macrophylla, King)

    Science.gov (United States)

    Mursiti, S.; Supartono

    2017-02-01

    Flavonoid is one of the secondary metabolites compounds in mahogany seeds. Mahogany seeds can be used as an antimicrobial. This study aims to determine the antimicrobial activity of flavonoid compounds from mahogany seeds against Escherichia coli (E.coli) and Bacillus cereus (B.cereus). Isolation of flavonoid compounds done step by step. First, the maceration using n-hexane, then with methanol. The methanol extract was dissolved in ethyl acetate and aquadest, then separated. Ethyl acetate extract evaporated Flavonoid compounds were. The testing of antimicrobial activity of flavonoid compounds using the absorption method. The results showed that the antimicrobial activity of flavonoid compounds from mahogany seeds shows the inhibitory activity and provide clear zone against bacteria E.coli with value Inhibitory Regional Diameter 18.50 mm respectively, and 14.50 mm to the bacteria. Based on the results of the study, it can be concluded that flavonoid compounds from mahogany seeds have antimicrobial activity against E.coli and B.cereus.

  20. Baltic cyanobacteria- A source of biologically active compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Mazur-Marzec, H.; Błaszczyk, A; Felczykowska, A; Hohlfeld, N; Kobos, J.; Toruńska-Sitarz, A; PrabhaDevi; Montalva`o, S.; DeSouza, L.; Tammela, P.; Mikosik, A; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.

    and chemotypes were tested in a wide variety of assays. The cyanobacteria showed strain-specific differences in the induced effects. The extracts from Nodularia spumigena CCNP1401 were active in the highest number of tests, including protease and phosphatase...

  1. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. ... derived from fruits, vegetables and herbs have been reported to ..... Antimicobial and insecticidal activities of essential oil isolated from.

  2. Mechanistic investigations on the activation of peroxides by manganese compounds

    OpenAIRE

    Rothbart, Sabine

    2012-01-01

    Despite the complexity of the structure and chemistry in catalytic peroxide activation, the reactivity of complex organometallic catalysts can sometimes be reproduced by much simpler models. In this context, this works aim was to find, investigate and improve simple Mn based systems for the activation of two commonly used peroxides for homogeneous bleach processes and, in particular, to contribute to a more detailed mechanistic understanding of these processes in aqueous solution with the hel...

  3. Quantitative Structure – Antioxidant Activity Relationships of Flavonoid Compounds

    OpenAIRE

    Károly Héberger; Judit Jakus; Orsolya Farkas

    2004-01-01

    A quantitative structure – antioxidant activity relationship (QSAR) study of 36 flavonoids was performed using the partial least squares projection of latent structures (PLS) method. The chemical structures of the flavonoids have been characterized by constitutional descriptors, two-dimensional topological and connectivity indices. Our PLS model gave a proper description and a suitable prediction of the antioxidant activities of a diverse set of flavonoids having clustering tendency....

  4. Eu3+-activated Y2MoO6: a narrow band red-emitting phosphor with strong near-UV absorption.

    Science.gov (United States)

    He, Xianghong; Bian, Danping; Wang, Hao; Xu, Jian

    2013-01-01

    Near-UV excited narrow line red-emitting phosphors, Eu(3+)-activated Y2MoO6 systems, were synthesized using a simple molten salt reaction. The structure and photoluminescence characteristics were investigated using X-ray powder diffraction, UV-Vis absorption and fluorescent spectrophotometry. The excitation spectra show strong broad-band absorptions in the near-UV to blue light regions which match the radiation of near-UV light-emitting diode chips well. Under excitation of either near-UV or blue light, intense red emission with a main peak of 611 nm is observed, ascribed to the (5)D0-(7)F2 transition of Eu(3+) ions; the optimal doping concentration is 20 mol%. The chromaticity coordinates (x = 0.65, y = 0.34) of the as-obtained phosphor are very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that this material is a promising red-emitting phosphor candidate for white-LEDs based on near-UV LED chips. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Acaricidal activity of eugenol based compounds against scabies mites.

    Directory of Open Access Journals (Sweden)

    Cielo Pasay

    2010-08-01

    Full Text Available Human scabies is a debilitating skin disease caused by the "itch mite" Sarcoptes scabiei. Ordinary scabies is commonly treated with topical creams such as permethrin, while crusted scabies is treated with topical creams in combination with oral ivermectin. Recent reports of acaricide tolerance in scabies endemic communities in Northern Australia have prompted efforts to better understand resistance mechanisms and to identify potential new acaricides. In this study, we screened three essential oils and four pure compounds based on eugenol for acaricidal properties.Contact bioassays were performed using live permethrin-sensitive S. scabiei var suis mites harvested from pigs and permethrin-resistant S. scabiei var canis mites harvested from rabbits. Results of bioassays showed that clove oil was highly toxic against scabies mites. Nutmeg oil had moderate toxicity and ylang ylang oil was the least toxic. Eugenol, a major component of clove oil and its analogues--acetyleugenol and isoeugenol, demonstrated levels of toxicity comparable to benzyl benzoate, the positive control acaricide, killing mites within an hour of contact.The acaricidal properties demonstrated by eugenol and its analogues show promise as leads for future development of alternative topical acaricides to treat scabies.

  6. Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens.

    Science.gov (United States)

    Cueva, C; Mingo, S; Muñoz-González, I; Bustos, I; Requena, T; del Campo, R; Martín-Álvarez, P J; Bartolomé, B; Moreno-Arribas, M V

    2012-06-01

    To investigate the effect of seven wine phenolic compounds and six oenological phenolic extracts on the growth of pathogenic bacteria associated with respiratory diseases (Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella catarrhalis, Enterococcus faecalis, Streptococcus sp Group F, Streptococcus agalactiae and Streptococcus pneumoniae). Antimicrobial activity was determined using a microdilution method and quantified as IC(50) . Mor. catarrhalis was the most susceptible specie to phenolic compounds and extracts. Gallic acid and ethyl gallate were the compounds that showed the greatest antimicrobial activity. Regarding phenolic extracts, GSE (grape seed extract) and GSE-O (oligomeric-rich fraction from GSE) were the ones that displayed the strongest antimicrobial effects. Results highlight the antimicrobial properties of wine phenolic compounds and oenological extracts against potential respiratory pathogens. The antimicrobial activity of wine phenolic compounds was influenced by the type of phenolic compounds. Gram-negative bacteria were more susceptible than Gram-positive bacteria to the action of phenolic compounds and extracts; however, the effect was species-dependent. The ability to inhibit the growth of respiratory pathogenic bacteria as shown by several wine phenolic compounds and oenological extracts warrants further investigations to explore the use of grape and wine preparations in oral hygiene. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  7. Theoretical and experimental study on lipophilicity and wound healing activity of ginger compounds

    Directory of Open Access Journals (Sweden)

    Mohammed Afroz Bakht

    2014-04-01

    Conclusions: Experimentally determined lipophilicity (RMO values were correlated with log P determined by software's and found satisfactory. Lipophilicity (RMO is a useful parameter for the determination and prediction of biological activity of ginger compounds.

  8. Bioactive compounds and antioxidant activity during maturation of strawberry guava fruit

    National Research Council Canada - National Science Library

    Dantas, Ana Lima; Silva, Silvanda de Melo; Lima, Maria Auxiliadora Coêlho de; Dantas, Renato Lima; Mendonça, Rejane Maria Nunes

    2013-01-01

    The objective of this work was to evaluate bioactive compounds and antioxidant activity of the fruit of strawberry-guava genotypes during maturation, and identify the characteristics that influenced...

  9. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  10. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya.

    Science.gov (United States)

    Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A

    2017-04-01

    The antimicrobial properties of morel compounds from wild edible mushrooms (Morchella esculenta and Verpa bohemica) from Kashmir valley was investigated against different clinical pathogens. The butanol crude fraction of most popular or true morel M. esculenta showed highest 19 mm IZD against E.coli while as same fraction of Verpa bohemica exhibited 15 mm IZD against same strain. The ethyl acetate and butanol crude fractions of both morels also exhibited good antifungal activity with highest IZD shown against A. fumigates. The three morel compounds showed quite impressive anti bacterial and fungal activities. The Cpd 3 showed highest inhibitory activity almost equivalent to the synthetic antibiotics used as control. The MIC/MBC values revealed the efficiency of isolated compounds against the pathogenic strains. In the current study significant inhibitory activity of morel compounds have been obtained paying the way for their local use from ancient times. Copyright © 2017. Published by Elsevier Ltd.

  11. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides.

    Science.gov (United States)

    Mulero, J; Martínez, G; Oliva, J; Cermeño, S; Cayuela, J M; Zafrilla, P; Martínez-Cachá, A; Barba, A

    2015-08-01

    The effect of treating grapes with six fungicides, applied under critical agricultural practices (CAP) on levels of phenolic compounds and antioxidant activity of red wines of Monastrell variety was studied. Vinifications were performed through addition of active dry yeast (ADY). Measurement of phenolic compounds was made with HPLC-DAD. Determination of antioxidant activity was through reaction of the wine sample with the DPPH radical. The wine prepared from grapes treated with quinoxyfen shows a greater increase of phenolic compounds than the control wine. In contrast, the wine obtained from grapes treated with trifloxystrobin showed lower total concentration of phenolic compounds, including stilbenes, whilst treatments with kresoxim-methyl, fluquinconazole, and famoxadone slightly reduced their content. Hence, the use of these last four fungicides could cause a decrease in possible health benefits to consumers. Antioxidant activity hardly varied in the assays with quinoxyfen, fluquinconazole and famoxadone, and decreased in the other wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Peyman Mikaili

    2013-10-01

    Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents.

  13. In Vitro Rumen Degradability of Phenolic Compound and Antioxidant Activity of Moringa oleifera Leaf

    Directory of Open Access Journals (Sweden)

    Badriyah

    2017-10-01

    Full Text Available The research was aimed to study the degradability of phenolic compounds and antioxidant activity of moringa leaves (Moringa oleifera in the rumen in vitro. Moringa and Leucaena (Leucaena leucocephala, as a comparison leaves were incubated in goat rumen liquid for 48 h in vitro. The in vitro degradabilities of dry matter, phenolic compounds and antioxidant activity in moringa leaf and lamtoro leaf were compared using the T-test. The dry matter degradability of moringa leaf was higher (p<0,05 than Leucaena leaf. The phenolic compound degradability of moringa leaf was lower (P<0,05 than Leucaena leaf. The decrease in antioxidant activity of moringa leaf was smaller than Leucaena leaf after incubation in the goat’s rumen. The incubation of moringa and leucaena leaves in rumen may reduce the phenolic compounds availability, and thus lowering their antioxidan activity.

  14. New Benzimidazole-1,2,4-Triazole Hybrid Compounds: Synthesis, Anticandidal Activity and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Hülya Karaca Gençer

    2017-03-01

    Full Text Available Owing to the growing need for antifungal agents, we synthesized a new series 2-((5-(4-(5-substituted-1H-benzimidazol-2-ylphenyl-4-substituted-4H-1,2,4-triazol-3-ylthio-1-(substitutedphenylethan-1-one derivatives, which were tested against Candida species. The synthesized compounds were characterized and elucidated by FT-IR, 1H-NMR, 13C-NMR and HR-MS spectroscopies. The synthesized compounds were screened in vitro anticandidal activity against Candida species by broth microdiluation methods. In vitro cytotoxic effects of the final compounds were determined by MTT assay. Microbiological studies revealed that compounds 5m, 5o, 5r, 5t, 5y, 5ab, and 5ad possess a good antifungal profile. Compounds 5w was the most active derivative and showed comparable antifungal activity to those of reference drugs ketoconazole and fluconazole. Cytotoxicity evaluation of compounds 5m, 5o, 5r, 5w, 5y, 5ab and 5ad showed that compounds 5w and 5ad were the least cytotoxic agents. Effects of these two compounds against ergosterol biosynthesis were observed by LC-MS-MS method, which is based on quantification of ergosterol level in C. albicans. Compounds 5w and 5d inhibited ergosterol biosynthesis concentration dependently. A fluorescence microscopy study was performed to visualize effect of compound 5w against C. albicans at cellular level. It was determined that compound 5w has a membrane damaging effect, which may be related with inhibition of biosynthesis of ergosterol.

  15. Aroma-Active Compounds in Jinhua Ham Produced With Different Fermentation Periods

    Directory of Open Access Journals (Sweden)

    Xiao-Sheng Liu

    2014-11-01

    Full Text Available The aroma-active compounds in Jinhua ham processed and stored for 9, 12, 15 and 18 months were extracted by dynamic headspace sampling (DHS and solvent-assisted flavor evaporation (SAFE and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS. In GC-O-MS, volatile compounds were identified based on their mass spectrum, linear retention index (LRI, odor properties, or reference compound comparisons. The results showed that a total number of 81 aroma-active compounds were identified by GC-O-MS. Among them, acids (such as acetic acid, butanoic acid and 3-methylbutanoic acid, saturated aldehydes (such as hexanal, heptanal, octanal and 3-methylbutanal, benzene derivatives (such as benzeneacetic acid, ester and lactone (such as γ-nonalactone and γ-decalactone were identified as critical compounds in Jinhua ham aroma. The results also indicated that the type and content of the odorants increased significantly with the duration of the fermentation period.

  16. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    Science.gov (United States)

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ANALYSIS OF COENZYME A ACTIVATED COMPOUNDS IN ACTINOMYCETES

    Science.gov (United States)

    Cabruja, Matías; Lyonnet, Bernardo Bazet; Millán, Gustavo; Gramajo, Hugo; Gago, Gabriela

    2016-01-01

    Acyl-CoAs are crucial compounds involved in essential metabolic pathways such as the Krebs cycle, lipid, carbohydrate and amino acid metabolism and they are also key signal molecules involved in the transcriptional regulation of lipid biosynthesis in many organisms. In this study we took advantage of the high selectivity of mass spectrometry and developed an ion-pairing reverse-phase high pressure liquid chromatography electrospray ionization high resolution mass spectrometry (IP-RP-HPLC/ESI-HRMS) method to carry on a comprehensive analytical determination of the wide range of fatty acyl-CoAs present in actinomycetes. The advantage of using a QTOF spectrometer resides in the excellent mass accuracy over a wide dynamic range and measurements of the true isotope pattern that can be used for molecular formula elucidation of unknown analytes. As a proof of concept we used this assay to determine the composition of the fatty acyl-CoA pools in Mycobacterium, Streptomyces and Corynebacterium species, revealing an extraordinary difference in fatty acyl-CoA amounts and species distribution between the three genera and between the two species of mycobacteria analyzed; including the presence of different chain-length carboxy-acyl-CoAs, key substrates of mycolic acid biosynthesis. The method was also used to analyze the impact of two fatty acid synthase inhibitors on the acyl-CoAs profile of Mycobacterium smegmatis which showed some unexpected low levels of C24 acyl-CoAs in the isoniazid treated cells. This robust, sensitive and reliable method should be broadly applicable in the studies of the wide range of bacteria metabolisms in which acyl-CoA molecules participate. PMID:27270600

  18. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Directory of Open Access Journals (Sweden)

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  19. Three new resin glycosides compounds from Argyreia acuta and their α-glucosidase inhibitory activity.

    Science.gov (United States)

    Wang, Li; Yan, You-Shao; Cui, Hong-Hua; Yin, Yong-Qin; Pan, Jie-Tao; Yu, Bang-Wei

    2017-03-01

    Three new phenolic compounds, acutacoside C (1), acutacoside D (2) and acutacoside E (3) were isolated from the aerial part of Argyreia acuta. The oligosaccharide chain was composed of two glucoses and three rhamnoses, and the aglycone was (11S)-hydroxyhexadecanoic acid (jalapinolic acid). The core of the three compounds was operculinic acid B, which was rare in resin glycosides. Their structures were established by a combination of spectroscopic and chemical methods. Compounds 1-3 have been evaluated for inhibitory activity against α-glucosidase, which all showed weak inhibitory activities.

  20. Identification of the phenolic compounds contributing to antibacterial activity in ethanol extracts of Brazilian red propolis.

    Science.gov (United States)

    Inui, Saori; Hatano, Ai; Yoshino, Megumi; Hosoya, Takahiro; Shimamura, Yuko; Masuda, Shuichi; Ahn, Mok-Ryeon; Tazawa, Shigemi; Araki, Yoko; Kumazawa, Shigenori

    2014-01-01

    The purpose of this study is to identify the quantity and antibacterial activity of the individual phenolic compounds in Brazilian red propolis. Quantitative analysis of the 12 phenolic compounds in Brazilian red propolis was carried out using reversed-phase high-performance liquid chromatography. The main phenolic compounds in Brazilian red propolis were found to be (3S)-vestitol (1), (3S)-neovestitol (2) and (6aS,11aS)-medicarpin (4) with quantities of 72.9, 66.9 and 30.8 mg g of ethanol extracts(- 1), respectively. Moreover, the antibacterial activities of each compound against Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa were evaluated by measuring the minimum inhibitory concentrations. In particular, compound 4 exhibited the most potent antibacterial activity among all the assayed compounds against selected bacteria, indicating that 4 is the most active compound in Brazilian red propolis extracts. Thus, Brazilian red propolis may be used as food additives and pharmaceuticals to protect against bacteria.

  1. Design, Synthesis, and Biological Activities of Novel Pyrazole Oxime Compounds Containing a Substituted Pyridyl Moiety

    Directory of Open Access Journals (Sweden)

    Cuili Chen

    2017-05-01

    Full Text Available In this paper, in order to find novel biologically active pyrazole oximes, a series of pyrazole oxime compounds bearing a substituted pyridyl unit were prepared. Bioassays showed that some target compounds were found to have good acaricidal activity against Tetranychus cinnabarinus at a concentration of 500 μg/mL, compound 9q especially displayed potent acaricidal activity against T. cinnabarinus when the concentration was reduced to 100 μg/mL. Interestingly, most target compounds possessed excellent insecticidal activities against Oriental armyworm at 500 μg/mL. Moreover, some compounds were active against Aphis medicaginis and Nilaparvata lugens at 500 μg/mL. Additionally, compounds 9b, 9g, 9l, 9p, 9q, 9r, 9s, 9t, 9u, and 9v displayed significant antiproliferative activities against HepG2 cells with IC50 values of 1.53–17.27 μM, better than that of the control 5-fluorouracil (IC50 = 35.67 μM.

  2. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    Science.gov (United States)

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Volatile compounds and biological activities of aerial parts of ...

    African Journals Online (AJOL)

    ... and β-carotene-linoleic acid assays while antimicrobial activity was screened using the disk diffusion method against a panel of six bacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebseilla pneumonia, Agrobacterium tumefaciens) and four fungal strains (Candida albicans, ...

  4. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... The antifungal activity of methanolic, ethanolic and boiling water extracts of Barringtonia racemosa leaves, sticks and barks ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. INTRODUCTION ..... availability at low cost, and low toxicity to humans give the phenolic acids and ...

  5. Antioxidant activity of plant extracts containing phenolic compounds.

    Science.gov (United States)

    Kähkönen, M P; Hopia, A I; Vuorela, H J; Rauha, J P; Pihlaja, K; Kujala, T S; Heinonen, M

    1999-10-01

    The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.

  6. Antibacterial and antioxidant activity of three compounds isolated ...

    African Journals Online (AJOL)

    Azaanthraquinone showed the most interesting activity with minimum inhibitory concentrations values of 7.5 μg/ml, 19 μg/ml, 38 μg/ml and 150 μg/ml on Dermatophilus congolensis, Staphylococcus aureus, Enteroccocus feacalis, Escherichia coli and Pseudomonas aeruginosa, respectively. On the other hand, the three ...

  7. Identification of Compounds and Insecticidal Activity of the Root of ...

    African Journals Online (AJOL)

    Caesalpinia pulcherrima (Caesalpiniaceae) is an ornamental plant with several ethnomedicinal uses. The present study was designed to investigate the brine shrimp cytotoxicity and insecticidal activity of oil obtained from C. pulcherrima root. The powdered root was extracted with methanol and then defatted with petroleum ...

  8. Phenolic compounds and biological activity of Capsicum annuum L ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate antifungal and antioxidant activities of vegetable extracts (Capsicum annuum L. cv. Dora, cv. Strizanka, cv. Morava), grown in Serbia. Different experimental models have included the determination content of total phenolics, total flavonoids, antioxidant capacity and minimum ...

  9. Relationships Between Bioactive Compound Content and the Antiplatelet and Antioxidant Activities of Six Allium Vegetable Species

    Directory of Open Access Journals (Sweden)

    Hebe Vanesa Beretta

    2017-01-01

    Full Text Available Allium sp. vegetables are widely consumed for their characteristic flavour. Additionally, their consumption may provide protection against cardiovascular disease due to their antiplatelet and antioxidant activities. Although antiplatelet and antioxidant activities in Allium sp. are generally recognised, comparative studies of antiplatelet and antioxidant potency among the main Allium vegetable species are lacking. Also, the relationship between organosulfur and phenolic compounds and these biological activities has not been well established. In this study, the in vitro antiplatelet and antioxidant activities of the most widely consumed Allium species are characterised and compared. The species total organosulfur and phenolic content, and the HPLC profiles of 11 phenolic compounds were characterised and used to investigate the relationship between these compounds and antiplatelet and antioxidant activities. Furthermore, antiplatelet activities in chives and shallot have been characterised for the first time. Our results revealed that the strongest antiplatelet agents were garlic and shallot, whereas chives had the highest antioxidant activity. Leek and bunching onion had the weakest both biological activities. Significantly positive correlations were found between the in vitro antiplatelet activity and total organosulfur (R=0.74 and phenolic (TP content (R=0.73, as well as between the antioxidant activity and TP (R=0.91 and total organosulfur content (R=0.67. Six individual phenolic compounds were associated with the antioxidant activity, with catechin, epigallocatechin and epicatechin gallate having the strongest correlation values (R>0.80. Overall, our results suggest that both organosulfur and phenolic compounds contribute similarly to Allium antiplatelet activity, whereas phenolics, as a whole, are largely responsible for antioxidant activity, with broad variation observed among the contributions of individual phenolic compounds.

  10. Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2014-01-01

    Full Text Available This paper proposes a novel pixel circuit design and driving method for active-matrix organic light-emitting diode (AM-OLED displays that use low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs as driving element. The automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE simulator was used to verify that the proposed pixel circuit, which comprises five transistors and one capacitor, can supply uniform output current. The voltage programming method of the proposed pixel circuit comprises three periods: reset, compensation with data input, and emission periods. The simulated results reflected excellent performance. For instance, when ΔVTH=±0.33 V, the average error rate of the OLED current variation was low (<0.8%, and when ΔVTH_OLED=+0.33 V, the error rate of the OLED current variation was 4.7%. Moreover, when the I×R (current × resistance drop voltage of a power line was 0.3 V, the error rate of the OLED current variation was 5.8%. The simulated results indicated that the proposed pixel circuit exhibits high immunity to the threshold voltage deviation of both the driving poly-Si TFTs and OLEDs, and simultaneously compensates for the I×R drop voltage of a power line.

  11. Biological activities of a new compound isolated from the aerial parts ...

    African Journals Online (AJOL)

    The results showed that the compound possess moderate inhibitory activity against urease (43.3 %) and chymotrypsin (39.8 %) enzymes. Vitexcarpan also showed moderate (48 %) in vitro antiinflammatory activity using activated human neutrophils. Keywords: Vitex agnus castus, vitexcarpan urease, chymotrypsin, anti- ...

  12. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.

    Science.gov (United States)

    Syahidah, A; Saad, C R; Hassan, M D; Rukayadi, Y; Norazian, M H; Kamarudin, M S

    2017-01-01

    The problems of bacterial diseases in aquaculture are primarily controlled by antibiotics. Medicinal plants and herbs which are seemed to be candidates of replacements for conventional antibiotics have therefore gained increasing interest. Current study was performed to investigate the presence of phytochemical constituents, antibacterial activities and composition of antibacterial active compounds in methanolic extract of local herb, Piper betle . Qualitative phytochemical analysis was firstly carried out to determine the possible active compounds in P. betle leaves methanolic extract. The antibacterial activities of major compounds from this extract against nine fish pathogenic bacteria were then assessed using TLC-bioautography agar overlay assay and their quantity were determined simultaneously by HPLC method. The use of methanol has proved to be successful in extracting numerous bioactive compounds including antibacterial compounds. The TLC-bioautography assay revealed the inhibitory action of two compounds which were identified as hydroxychavicol and eugenol. The $-caryophyllene however was totally inactive against all the tested bacterial species. In this study, the concentration of hydroxychavicol in extract was found to be 374.72±2.79 mg g-1, while eugenol was 49.67±0.16 mg g-1. Based on these findings, it could be concluded that hydroxychavicol and eugenol were the responsible compounds for the promising antibacterial activity of P. betle leaves methanolic extract. This inhibitory action has significantly correlated with the amount of the compounds in extract. Due to its potential, the extract of P. betle leaves or it compounds can be alternative source of potent natural antibacterial agents for aquaculture disease management.

  13. A glimpse on biological activities of tellurium compounds

    Directory of Open Access Journals (Sweden)

    Rodrigo L. O. R. Cunha

    2009-09-01

    Full Text Available Tellurium is a rare element which has been regarded as a toxic, non-essential trace element and its biological role is not clearly established to date. Besides of that, the biological effects of elemental tellurium and some of its inorganic and organic derivatives have been studied, leading to a set of interesting and promising applications. As an example, it can be highlighted the uses of alkali-metal tellurites and tellurates in microbiology, the antioxidant effects of organotellurides and diorganoditellurides and the immunomodulatory effects of the non-toxic inorganic tellurane, named AS-101, and the plethora of its uses. Inasmuch, the nascent applications of organic telluranes (organotelluranes as protease inhibitors and its applications in disease models are the most recent contribution to the scenario of the biological effects and applications of tellurium and its compounds discussed in this manuscript.O telúrio é um elemento não-essencial raro que vem sendo considerado tóxico, e o seu papel biológico é ainda pouco esclarecido. Apesar disso, os efeitos biológicos do telúrio elementar e de alguns derivados inorgânicos e orgânicos que têm sido estudados revelam um conjunto de aplicações diversificadas interessantes e promissoras. Como exemplo, pode-se destacar os usos de teluritos e teluratos de metais alcalinos em microbiologia, o efeito antioxidante de teluretos e diteluretos orgânicos, os efeitos imunomodulatórios e a diversidade de usos correlacionados a este efeito de uma telurana inorgânica denominada AS-101. Ademais, as aplicações de teluranas orgânicas (organoteluranas como inibidoras de proteases e as aplicações em modelos de doenças compõem a mais recente contribuição ao cenário dos efeitos e aplicações biológicas do telúrio e seus compostos discutidas neste manuscrito.

  14. Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model

    Science.gov (United States)

    Nouar, Abderrahim; Benmessaoud, Ibtissem; Koutchoukali, Ouahiba; Koutchoukali, Mohamed Salah

    2016-03-01

    The crystallization from solution of an active pharmaceutical ingredient requires the knowledge of the solubility in the entire temperature range investigated during the process. However, during the development of a new active ingredient, these data are missing. Its experimental determination is possible, but tedious. UNIFAC Group contribution method Fredenslund et al. (Vapor-liquid equilibria using UNIFAC: a group contribution method, 1977; AIChE J 21:1086, 1975) can be used to predict this physical property. Several modifications on this model have been proposed since its development in 1977, modified UNIFAC of Dortmund Weidlich et al. (Ind Eng Chem Res 26:1372, 1987), Gmehling et al. (Ind Eng Chem Res 32:178, 1993), Pharma-modified UNIFAC Diedrichs et al. (Evaluation und Erweiterung thermodynamischer Modelle zur Vorhersage von Wirkstofflöslichkeiten, PhD Thesis, 2010), KT-UNIFAC Kang et al. (Ind Eng Chem Res 41:3260, 2002), ldots In this study, we used UNIFAC model by considering the linear temperature dependence of interaction parameters as in Pharma-modified UNIFAC and structural groups as defined by KT-UNIFAC first-order model. More than 100 binary datasets were involved in the estimation of interaction parameters. These new parameters were then used to calculate activity coefficient and solubility of some molecules in various solvents at different temperatures. The model gives better results than those from the original UNIFAC and shows good agreement between the experimental solubility and the calculated one.

  15. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758

  16. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  17. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  18. In vitro antitrypanosomal activity of some phenolic compounds from propolis and lactones from Fijian Kawa (Piper methysticum).

    Science.gov (United States)

    Otoguro, Kazuhiko; Iwatsuki, Masato; Ishiyama, Aki; Namatame, Miyuki; Nishihara-Tsukashima, Aki; Kiyohara, Hiroaki; Hashimoto, Toshihiro; Asakawa, Yoshinori; Omura, Satoshi; Yamada, Haruki

    2012-07-01

    During our search to discover new antitrypanosomal compounds, eight known plant compounds (three phenolic compounds and five kawa lactones) were evaluated for in vitro activity against Trypanosoma brucei brucei. Among them, we found two phenolic compounds and three kawa lactones possessing an α-pyrone influenced antitrypanosomal property. In particular, β-phenethyl caffeate, farnesyl caffeate and dihydrokawain exhibited high or moderate selective and potent antitrypanosomal activity in vitro. We detail here the antitrypanosomal activity and cytotoxicities of the compounds, in comparison with two commonly used antitrypanosomal drugs (eflornithine and suramin). Our findings represent the first report of the promising trypanocidal activity of these compounds.

  19. THE ANTIBACTERIAL ACTIVITY OF WATER APPLE LEAVES ACTIVE COMPOUND (Syzygium zeylanicum AGAINST Escherichia coli AND Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    - Hamidah

    2017-07-01

    Full Text Available Escherichia coli is one of the bacteria that cause infections in the human digestive tract such as diarrhea, while Staphylococcus aureus is one of the bacteria that cause infections in the skin injury such as boils and pimples. This study used Syzygium zeylanicum leaves because it has potential as a antibacterial because it contains active compounds. This study aimed was determine the antibacterial activity of the fraction and the active compound in Syzygium zeylanicum leaves against Escherichia coli and Staphylococcus aureus. Research conducted on November 2015 to January 2016. The method used in this research were extraction by maceration, fractionation by liquid fractionation, antibacterial activity test, and determination of minimum inhibitory concentration with the diffusion method and isolation of active compounds by column chromatography method. The bacteria used in this test are Escherichia coli and Staphylococcus aureus. Data are presented in tabular form based on the average value of the inhibition diameter and deviation standard. The results of this research showed the water methanol active fraction against the bacteria that used in this test. The methanol water fraction had obtained one antibacterial compound in bottle 1,3,5 which shows the value of tannin Rf 0,416. The minimum inhibitory concentration of water methanol of water apple leaves is 1000 µg/mL for Escherichia coli and 500 µg/mL for  Staphylococcus aureus. The minimum  inhibitory concentration of the active  compound  to  Escherichia  coli  and  Staphylococcus  aureus  in  500  µg/mL.  The fraction and the active compound of water apple leaves have an antibacterial activity with Escherichia coli and Staphylococcus aureus and the active compound is tannin.

  20. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  1. Antiprotozoal and Antimycobacterial Activities of Pure Compounds from Aristolochia elegans Rhizomes

    Science.gov (United States)

    Jiménez-Arellanes, Adelina; León-Díaz, Rosalba; Meckes, Mariana; Tapia, Amparo; Molina-Salinas, Gloria María; Luna-Herrera, Julieta; Yépez-Mulia, Lilián

    2012-01-01

    We analyzed the antimycobacterial activity of the hexane extract of rhizomes from Aristolochia elegans. Some compounds of this extract were purified and tested against a group of drug-resistant Mycobacterium tuberculosis strains. We also evaluated their antiprotozoal activities. The hexane extract was active against M. tuberculosis H37Rv at a MIC = 100 μg mL−1; the pure compounds eupomatenoid-1, fargesin, and (8R,8′R,9R)-cubebin were active against M. tuberculosis H37Rv (MIC = 50 μg mL−1), while fargesin presented activity against three monoresistant strains of M. tuberculosis H37Rv and a MDR clinical isolate of M. tuberculosis (MIC < 50 μg mL−1). Both the extract and eupomatenoid-1 were very active against E. histolytica and G. lamblia (IC50 < 0.624 μg mL−1); in contrast, fargesin and (8R,8′R,9R)-cubebin were moderately active (IC50 < 275 μg mL−1). In this context, two compounds responsible for the antimycobacterial presented by A. elegans are fargesin and cubebin, although others may exert this activity also. In addition to the antimycobacterial activity, the hexane extract has important activity against E. histolytica and G. lamblia, and eupomatenoid-1 is one of the compounds responsible for the antiparasite activity. PMID:22454670

  2. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies.

    Science.gov (United States)

    Alves, M J; Ferreira, I C F R; Froufe, H J C; Abreu, R M V; Martins, A; Pintado, M

    2013-08-01

    Although the antimicrobial activity of extracts from several mushroom species has been reported, studies with the individual compounds present in that extracts are scarce. Herein, the antimicrobial activity of different phenolic compounds identified and quantified in mushroom species from all over the world was evaluated. Furthermore, a structure-activity relationship (SAR) analysis and molecular docking studies were performed, in order to provide insights into the mechanism of action of potential antimicrobial drugs for resistant micro-organisms. 2,4-Dihydroxybenzoic and protocatechuic acids were the phenolic compounds with higher activity against the majority of Gram-negative and Gram-positive bacteria. Furthermore, phenolic compounds inhibited more MRSA than methicillin-susceptible Staphylococcus aureus. MRSA was inhibited by 2,4-dihydroxybenzoic, vanillic, syringic (MICs = 0.5 mg ml(-1) ) and p-coumaric (MIC = 1 mg ml(-1) ) acids, while these compounds at the same concentrations had no inhibitory effects against methicillin-susceptible Staph. aureus. The presence of carboxylic acid (COOH), two hydroxyl (OH) groups in para and ortho positions of the benzene ring and also a methoxyl (OCH3 ) group in the meta position seems to be important for anti-MRSA activity. Phenolic compounds could be used as antimicrobial agents, namely against some micro-organisms resistant to commercial antibiotics. © 2013 The Society for Applied Microbiology.

  3. Olive oils from Algeria: Phenolic compounds, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Laincer, F.

    2014-03-01

    Full Text Available The phenolic compositions, antioxidant and antimicrobial activities against six bacteria of phenolic extracts of olive oil varieties from eleven Algerian varieties were investigated. The antioxidant activity was assessed by determining the scavenging effect on the DPPH and ABTS.+ radicals. The antimicrobial activity was measured as a zone of inhibition and minimum inhibitory concentration (MIC on human harmful and foodborne pathogens. The results show that total phenols was significantly (p .+ radicals (r = 0.76. Among the bacteria tested, S. aureus and to a lesser extent B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg·mL-1 and 1.2 to 1.8 mg·mL-1, respectively. The results reveal that Algerian olive oils may constitute a good source of antioxidant and antimicrobial agents.Se ha estudiado la composición fenólica y las actividades antioxidante y antimicrobiana, contra seis bacterias, de extractos de aceites de oliva de once variedades argelinas. La actividad antioxidante se evaluó mediante la determinación del efecto captador de radicales de DPPH y ABTS.+. La actividad antimicrobiana se midió como zona de inhibición y como concentración inhibitoria mínima (MIC sobre bacterias perjudiciales humanas y agentes patógenos transmitidos por los alimentos. Los resultados mostraron que los fenoles totales está significativamente (p .+ (r= 0,76. Entre las bacterias ensayadas, S. aureus y, en menor grado B. subtilis mostraron la mayor sensibilidad; el MIC varió de 0,6 a 1,6 mg·mL-1 y 1,2 a 1,8 mg·mL-1 respectivamente. Los resultados muestran que los aceites de oliva argelinos pueden constituir una buena fuente de antioxidantes y agentes antimicrobianos.

  4. Rhodomyrtone (rom) is a membrane-active compound.

    Science.gov (United States)

    Saising, Jongkon; Nguyen, Minh Thu; Härtner, Thomas; Ebner, Patrick; Al Mamun Bhuyan, Abdulla; Berscheid, Anne; Muehlenkamp, Melanie; Schäkermann, Sina; Kumari, Nimerta; Maier, Martin E; Voravuthikunchai, Supayang P; Bandow, Julia; Lang, Florian; Brötz-Oesterhelt, Heike; Götz, Friedrich

    2018-01-06

    Particularly in Asia medicinal plants with antimicrobial activity are used for therapeutic purpose. One such plant-derived antibiotic is rhodomyrtone (Rom) isolated from Rhodomyrtus tomentosa leaves. Rom shows high antibacterial activity against a wide range of Gram-positive bacteria, however, its mode of action is still unclear. Reporter gene assays and proteomic profiling experiments in Bacillus subtilis indicate that Rom does not address classical antibiotic targets like translation, transcription or DNA replication, but acts at the cytoplasmic membrane. In Staphylococcus aureus, Rom decreases the membrane potential within seconds and at low doses, causes release of ATP and even the excretion of cytoplasmic proteins (ECP), but does not induce pore-formation as for example nisin. Lipid staining revealed that Rom induces local membrane damage. Rom's antimicrobial activity can be antagonized in the presence of a very narrow spectrum of saturated fatty acids (C15:0, C16:0, or C18:0) that most likely contribute to counteract the membrane damage. Gram-negative bacteria are resistant to Rom, presumably due to reduced penetration through the outer membrane and its neutralization by LPS. Rom is cytotoxic for many eukaryotic cells and studies with human erythrocytes showed that Rom induces eryptosis accompanied by erythrocyte shrinkage, cell membrane blebbing, and membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Rom's distinctive interaction with the cytoplasmic membrane reminds on the amphipathic, alpha-helical peptides, the phenol-soluble modulins (PSMs), and renders Rom an important tool for the investigation of membrane physiology. Copyright © 2018. Published by Elsevier B.V.

  5. Comparison of biochemical compounds and antioxidant activities in ...

    African Journals Online (AJOL)

    of 50% NBT reduction by monitoring absorbance at 560 nm. Polyphenol oxidase. Polyphenol oxidase activity was estimated as described by Singh et al. (1999). The reaction mixture consisted of. 2 ml of 0.01 M pyrogallol, 1.5 ml phosphate buffer (68.5 ml of 0.2 M NaH2PO4 and 31.5 ml of 0.2 M NaHPO4, pH 6.5) and 0.5 ml ...

  6. Antioxidant activity and phytochemical compounds of snake fruit (Salacca Zalacca)

    Science.gov (United States)

    Suica-Bunghez, I. R.; Teodorescu, S.; Dulama, I. D.; Voinea, O. C.; imionescu, S.; Ion, R. M.

    2016-06-01

    Snake fruit (Salacca zalacca) is a palm tree species, which is found in Malaysia and Indonesia. This study was conducted to investigate and compare the composition, total phenolic, flavonoid, tanins and monoterpenoids contents in the core and shell fruits. Concentration values of extracts were obtained from standard curves obtained. Antioxidant activity was determined using DPPH method. For all methods it was used the UV-VIS Specord M40, using different wavelength. The infrared spectral analysis was carried out to caracterized the type of functional group existent in snake fruit parts (shell and core).

  7. One lignanoid compound and four triterpenoid compounds with anti-inflammatory activity from the leaves of Elaeagnus oldhamii maxim.

    Science.gov (United States)

    Liao, Chi-Ren; Ho, Yu-Ling; Huang, Guan-Jhong; Yang, Chang Syun; Chao, Che-Yi; Chang, Yuan-Shiun; Kuo, Yueh-Hsiung

    2013-10-25

    One lignanoid compound, isoamericanol B (1), along with four triterpenoid compounds-cis-3-O-p-hydroxycinnamoyloleanolic acid (2), trans-3-O-p-hydroxy cinnamoyloleanolic acid (3), cis-3-O-p-hydroxycinnamoylursolic acid (4), trans-3-O-p-hydroxycinnamoylursolic acid (5) have been isolated for the first time from the leaves of Elaeagnus oldhamii Maxim. Compounds 1-4 significantly inhibited the expression of NO (nitric oxide) produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The IC50 value for inhibition of nitrite production of compound 1 was about 10.3 ± 0.4 μg/mL. In the cell viability test, however, among compounds 1-4 compound 1 did not significantly change cell viability. Therefore, in this study compound 1 possessed anti-inflammatory effects. The result suggests compound 1 as a potential lead compound for the treatment of inflammatory diseases.

  8. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    Science.gov (United States)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  9. Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties.

    Science.gov (United States)

    Wang, Bao-Lei; Shi, Yan-Xia; Zhang, Shu-Jun; Ma, Yi; Wang, Hong-Xue; Zhang, Li-Yuan; Wei, Wei; Liu, Xing-Hai; Li, Yong-Hong; Li, Zheng-Ming; Li, Bao-Ju

    2016-07-19

    A series of novel carboxamide compounds 19a-19j, 20a-20j and 22a-22d containing piperazine and arylsulfonyl moieties have been synthesized. The bioassay results showed that some compounds exhibited favorable herbicidal activities against dicotyledonous plants and many of them possessed excellent antifungal activities. Among 24 novel compounds, some showed superiority over the commercial fungicides Chlorothalonil, Dimethomorph, Thiophanate-methyl, Iprodione, and Zhongshengmycin at 500 mg/L concentration. Some compounds also exhibited high KARI inhibitory activity at 100 μg/mL concentration and could be used as new KARI lead inhibitors for further studies. Moreover, SAR of these new compounds were comprehensively investigated using different computational methods in which 3D-QSAR model obtained provided useful information for further structural optimization for the discovery of new fungicides. The results of this research will contribute to explore comprehensive biological activities of piperazine-containing compounds in different areas of chemistry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    Science.gov (United States)

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  11. Terpenoid bioactive compound from Streptomyces rochei (M32): taxonomy, fermentation and biological activities.

    Science.gov (United States)

    Pazhanimurugan, Raasaiyah; Radhakrishnan, Manikkam; Shanmugasundaram, Thangavel; Gopikrishnan, Venugopal; Balagurunathan, Ramasamy

    2016-10-01

    The present study emphasized the production of biologically active terpenoid compound from Streptomyces rochei M32, which was isolated from Western Ghats ecosystem, South India. The presence of resistant genes like mecA, vanA of Staphylococcus aureus and bla SHV, bla TEM of Pseudomonas aeruginosa was confirmed by molecular studies. The isolated compound from Streptomyces rochei M32 inhibited wide range of standard and clinical drug resistant pathogens and enteric pathogens. The rice bran supplemented basal medium influenced the active compound production on 8th day of fermentation and yielded 1875 mg of crude extract from 10 g of rice bran substrate. Purification and characterization of crude ethyl acetate extract was achieved by preparative thin layer chromatography. The active fraction was identified as terpenoid class compound by chemical screening. Based on the results of spectral studies (NMR, LC-MS, FTIR, etc.), the active compound was tentatively identified as 1, 19-bis (3-hydroxyazetidin-1-yl) nonadeca-5, 14-diene-1, 8, 12, 19-tetraone with molecular weight 462.41 g/mol. Minimum inhibitory concentration value ranges between 7.6 and 31.2 µg/mL against test organisms was observed. The cytotoxicity results on cervical cancer (HeLa) cell line showed IC50 value of 2.034 µg/mL. The corresponding compound is not previously reported from any microbial resources.

  12. Innovative cosmeceuticals: sirtuin activators and anti-glycation compounds.

    Science.gov (United States)

    Farris, Patricia K

    2011-09-01

    Skin aging is a combination of natural aging with superimposed photoaging. Naturally aged skin is thin, fragile and finely wrinkled whereas photoaged skin is rough and thickened with deep coarse wrinkles. In addition photoaging is characterized by mottled pigmentation, solar lentigines, telangectasias and a loss of elasticity. The science behind skin aging has exploded in the past decade. Skin aging has now been defined on both a cellular and molecular level. The study of genomics in aging skin provides us with potential targets as points for intervention. In this regard, the science behind skin aging becomes a platform for the development of new anti-aging strategies and products. In this paper two new and emerging approaches to treat aging skin will be discussed. Sirtuin activating and anti-glycation products are already being marketed by cosmetic and pharmaceutical companies. These anti-aging approaches are backed by basic science research and the ingredients used are supported by proof of concept studies although clinical trials are often lacking. It is this bench to beauty counter approach to cosmeceuticals that remains an industry standard today. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Immunomodulatory and cellular antioxidant activities of pure compounds from Teucrium ramosissimum Desf.

    Science.gov (United States)

    Nasr-Bouzaiene, Nouha; Sassi, Aicha; Bedoui, Ahmed; Krifa, Mounira; Chekir-Ghedira, Leila; Ghedira, Kamel

    2016-06-01

    Evaluation of the immunomodulatory activity of plant compounds is an interesting and growing area of research. Teucrium ramosissimum Desf. is a native and endemic medicinal plant from the South of Tunisia traditionally used for the treatment of many diseases. The anti-inflammatory activity of apigenin-7-glucoside, genkwanin, and naringenin isolated from T. ramosissimum were assayed. The phagocytic activities of macrophage and lymphocyte proliferation were investigated in the absence and presence of mitogens (lipopolysaccharide [LPS] or lectin). Depending on the concentrations, the compounds affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide (NO) release. The tested compounds enhance significantly splenocyte proliferation, either with or without mitogen stimulation. In studies to assess any potential effects of apigenin-7-glucoside, genkwanin, and naringenin on innate immunity, the results showed that these compounds significantly enhanced the killing activity of natural killer (NK) cells and cytotoxic activity of the T lymphocyte (CTL) isolated from splenocytes. These results suggest that T. ramosissimum compounds such as apigenin-7-glucoside, genkwanin, and naringenin may be potentially useful for modulating immune cell functions in physiological and pathological conditions.

  14. In vitro anti-HCV activities of Saxifraga melanocentra and its related polyphenolic compounds.

    Science.gov (United States)

    Zuo, Guo-Ying; Li, Zheng-Quan; Chen, Li-Rong; Xu, Xiao-Jie

    2005-01-01

    The aim of this study was to search for new natural anti-HCV agents from Chinese herbal medicine. Bioactivity-guided extraction and isolation methods were used. Active part and pure compounds were obtained from ethanolic extract of Saxifraga melanocentra Franch. and their in vitro inhibitory activities (IC50) against HCV NS3 serine protease were tested by enzyme-linked immunosorbent assay. Results showed that the polyphenolic ethyl acetate part of the herbal extract was the most active, and from this 18 polyphenols representing active compounds were isolated and identified. IC50 values of these compounds and five related ones were obtained. A broad-degree of anti-HCV activity was observed among them in the following order: gallated esters of D-glucose and rutin (0.68-4.86 microM)> flavonoids (33.11-370.37 microM)> gallic acid and its methyl and ethyl esters, Bergenin and others (over 1000 microM). The most active compound was 1,2,3,4,6-penta-O-galloyl-beta-D-glucoside (0.68 microM). In conclusion, polyphenols were responsible for the anti-HCV constitution of S. melanocentra, and multigallated esters of D-glucose possessed the strongest inhibition against HCV NS3 serine protease and little cytotoxic effect, suggesting the potential use of these compounds for designing and developing drugs for treatment of the viral infection.

  15. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure-activity relationship analysis.

    Science.gov (United States)

    Gallucci, M N; Carezzano, M E; Oliva, M M; Demo, M S; Pizzolitto, R P; Zunino, M P; Zygadlo, J A; Dambolena, J S

    2014-04-01

    To evaluate the antifungal activity and to analyse the structure-activity relationship of eleven natural phenolic compounds against four Candida species which are resistant to fluconazole. Four different species of Candida isolates were used: Candida albicans, Candida krusei, Candida tropicalis and Candida dubliniensis. The phenolic compound carvacrol showed the highest anti-Candida bioactivity, followed by thymol and isoeugenol. The obtained minimum inhibitory concentration (MIC) values obtained were used in a quantitative structure-activity relationship (QSAR) analysis where the electronic, steric, thermodynamic and topological descriptors served as dependent variables. According to the descriptors obtained in this QSAR study, the antifungal activity of phenols has a first action specific character which is based on their interaction with plasma or mitochondrial membranes. The second action is based on a steric descriptor-the maximal and minimal projection of the area-which could explain the inability of some phenolic compounds to be biotransformed to quinones methylene by Candida species. According to the descriptors obtained in this QSAR study, the anti-Candida activity of ortho-substituted phenols is due to more than one action mechanism. The anti-Candida activity of phenolic compounds can be predicted by their molecular properties and structural characteristics. These results could be employed to predict the anti-Candida activity of new phenolic compounds in the search for new alternatives or complementary therapies to combat against candidiasis. © 2014 The Society for Applied Microbiology.

  16. Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions and isolated compounds.

    Science.gov (United States)

    Tittikpina, Nassifatou Koko; Nana, Frédéric; Fontanay, Stéphane; Philippot, Stéphanie; Batawila, Komlan; Akpagana, Koffi; Kirsch, Gilbert; Chaimbault, Patrick; Jacob, Claus; Duval, Raphaël Emmanuel

    2018-02-15

    Pterocarpus erinaceus has been chosen based on ethnobotanical surveys carried out in the Tchamba district of the Republic of Togo. Investigation of the antibacterial as well as cytotoxic activities of whole extracts, fractions and compounds isolated from the leaves, trunk bark and roots of Pterocarpus erinaceus. Bio-guided fractionation of the raw extracts of plant parts and subsequent isolation of compounds from active fractions using normal phase open column chromatography. The broth microdilution method was used to evaluate the antibacterial activity, based on the determination of Minimal Inhibitory Concentrations (MICs) against several bacterial species representative of the most commonly encountered infectious diseases worldwide. The cytotoxicity of the raw extract and the most active fractions on a human non-cancerous cell (namely MRC-5) was estimated with a MTT assay. The chemical structure of the compounds isolated was elucidated using a combination of advanced Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). All extracts and fractions tested have shown good activities against Gram-positive bacteria (including Methicillin-Resistant Staphylococcus aureus, MRSA) and against Pseudomonas aeruginosa with MIC values ranging from 32µg/mL to 256µg/mL. In contrast, extracts were not toxic to MRC-5 cells. Four compounds have been isolated: Compound 1 (friedeline); Compound 2 (2,3 dihydroxypropyloctacosanoate); Compound 3 (a mixture of β-sitosterol, stigmasterol and campesterol); Compound 4 (β-sitosteryl-β-D-glucopyranoside) and shown to be active against some of the bacteria tested. They were active with MIC equal to 4µg/mL against strains of S. aureus (including MRSA). To the best of our knowledge, all of them except friedeline have never been reported in this plant species. P. erinaceus is confirmed as a plant harboring promising antibacterial activity with activities against serious human pathogens at very low concentrations. Some of the

  17. Inhibitory effect of Sphagnum palustre extract and its bioactive compounds on aromatase activity

    Directory of Open Access Journals (Sweden)

    Hee Jeong Eom

    2016-09-01

    Full Text Available Sphagnum palustre (a moss has been traditionally used in Korea for the cure of several diseases such as cardiac pain and stroke. In this research, the inhibitory effect of S. palustre on aromatase (cytochrome P450 19, CYP19 activity was studied. [1β-3H] androstenedione was used as a substrate and incubated with S. palustre extract and recombinant human CYP19 in the presence of NADPH. S. palustre extract inhibited aromatase in a concentration-dependent manner (IC50 value: 36.4 ± 8.1 µg/mL. To elucidate the major compounds responsible for the aromatase inhibitory effects of S. palustre extract, nine compounds were isolated from the extract and tested for their inhibition of aromatase activity. Compounds 1, 6, and 7 displayed aromatase inhibition, while the inhibition by the other compounds was negligible.

  18. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  19. Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria.

    Science.gov (United States)

    Takara, Kensaku; Ushijima, Kenji; Wada, Koji; Iwasaki, Hironori; Yamashita, Masatsugu

    2007-01-01

    During the course of our research into the use of cane by-products from sugar manufacturing, we have studied the isolation and structural determination of bioactive compounds present in sugarcane molasses. In this study, dehydrodiconiferylalcohol-9'-O-beta-D-glucopyranoside (1) and isoorientin-7, 3'-O-dimethyl ether (2) were isolated as antibacterial active compounds against cariogenic bacteria. Their structures were elucidated by (1)H-NMR, (13)C-NMR and ESI-MS. The activities of these isolated compounds against Streptococcus mutans and Streptococcus sobrinus were assessed by a minimum inhibitory concentration (MIC) test. The MICs of compounds 1 and 2 against both S. mutans and S. sobrinus were >4 mg/mL and 4 mg/mL, respectively.

  20. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities.

    Science.gov (United States)

    Zhang, Xiao-Li; Guo, Yu-Shan; Wang, Chun-Hua; Li, Guo-Qiang; Xu, Jiao-Jiao; Chung, Hau Yin; Ye, Wen-Cai; Li, Yao-Lan; Wang, Guo-Cai

    2014-01-01

    In the present study, six new phenolic compounds (1-6) along with five known ones were isolated from the ethanol extract of the whole plants of Origanum vulgare. The structures of the new compounds were identified on the basis of extensive spectroscopic analyses (UV, IR, NMR, and HRESIMS) and acid hydrolysis. Twenty-one phenolic compounds isolated from O. vulgare in our previous and present studies were evaluated for their in vitro antioxidant activity using 2,2-diphenyl-1-picryhydrazyl (DPPH) radical-scavenging and ferric-reducing antioxidant power (FRAP) assays; twelve of them including two new compounds exhibited significant antioxidant activity comparable to that of ascorbic acid. In addition, the antiviral effects against respiratory syncytial virus (RSV), Coxsackie virus B3 (CVB3) and herpes simplex virus type 1 (HSV-1) were tested by cytopathic effect (CPE) reduction assay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Performance of Conventional Activated Sludge to Remove Nitrogen Compounds from Tomato Factory Wastewater

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2012-10-01

    Full Text Available Today discharge of raw or treated wastewater containing nutrients (nitrogen and phosphorus compounds to the surface water causing an Utrification phenomenon, will be due to excessive growth of algae in the receptive water source. Each of the of wastewater treatment system, providing principled design and operation can be reduced nutrients to standard level [1]. The purpose of this study was to evaluate the efficacy of conventional activated sludge systems to remove nitrogen compounds from wastewater of Kermanshah Rojintak tomato factory and comparison of the final effluent quality with discharge standards to water resource and reuse it in agricultural irrigation in term of nitrogen compounds are considered.

  2. RESEARCH REGARDING THE POTENTIAL ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS ON PLANTS GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OANA-IRINA PATRICIU

    2017-06-01

    Full Text Available It is well known that growth and morphogenesis of plant tissue cultures can be improved by small amounts of some organic compounds. Heterocyclic compounds such as chromanones and thiazoles derivatives, valuable because of their potential biological activities, have also been reported as pesticides, herbicides and plant-growth regulators. In the present study, different concentrations of chromanones and thiazoles derivatives were employed to evaluate their effects on plantlets growth of Ocimum basilicum L. and Echinacea purpurea L. The studied compounds were proved to be growth inhibitors at high concentrations. A growth stimulation effect was registered at low concentration.

  3. The Effect of Humidity on the Collection Efficiency for Oxygenated Compounds Absorbed on Activated Charcoal

    Science.gov (United States)

    1990-08-01

    activated carbon for industrial hygiene purposes is based on coconut shell chemically activated by zinc chloride. (7) The action of the activating agent...a back-up section. The activated charcoal is a 20/40 mesh and generally coconut based. The surface area of SKC 20/40 mesh charcoal is between 1150...the physical and chemical characteristics for the four compounds. ൪ Sampling Devices SKC Lot # 120 charcoal tubes utilizing 20/40 mesh coconut based

  4. Synthesis and biological activity of sulfur compounds showing structural analogy with combretastatin A-4

    Directory of Open Access Journals (Sweden)

    Edson dos A. dos Santos

    2013-01-01

    Full Text Available We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenylthio]benzene (12, while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904, and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthiobenzene (10 and 1,2,3-trimethoxy-4-[(4-methoxyphenyl sulfinyl]benzene (15.

  5. Synthesis and biological activity of sulfur compounds showing structural analogy with combretastatin A-4

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Edson dos A. dos; Prado, Paulo C.; Carvalho, Wanderley R. de; Lima, Ricardo V. de; Beatriz, Adilson; Lima, Denis P. de, E-mail: denis.lima@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Departamento de Quimica; Hamel, Ernest [Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD (United States); Dyba, Marzena A. [Basic Science Program , SAIC-Frederick, Inc., Structural Biophysics Laboratory National Cancer Institute, Frederick, MD (United States); Albuquerque, Sergio [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas

    2013-09-01

    We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904),and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15). (author)

  6. An expedient synthesis and screening for antiacetylcholinesterase activity of piperidine embedded novel pentacyclic cage compounds.

    Science.gov (United States)

    Kumar, Raju Suresh; Almansour, Abdulrahman I; Arumugam, Natarajan; Osman, Hasnah; Ali, Mohamed Ashraf; Basiri, Alireza; Kia, Yalda

    2014-03-01

    The aim of this study was to synthesize and evaluate diazapentacyclic analogs for their acetylcholinesterase (AChE) inhibitory activity. The pentacyclic analogs were synthesized by one-pot three-component domino reactions in a microwave synthesizer. Most of the compounds exhibited moderate to good AChE inhibitory activity, compound 5i showed potent inhibitory activity with IC50 1.12 ± 0.01 µM and this may provide a new lead for developing potential inhibitors for Alzheimer's disease.

  7. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel

    OpenAIRE

    Mphahlele, Rebogile R.; Fawole, Olaniyi A; Makunga, Nokwanda P.; Opara, Umezuruike L.

    2016-01-01

    Background The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Methods Dried pomegranate peels with the initial moisture content of 70.30?% wet basis were prepared by freeze an...

  8. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  9. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening.

    Science.gov (United States)

    Andriani, Grasiella; Chessler, Anne-Danielle C; Courtemanche, Gilles; Burleigh, Barbara A; Rodriguez, Ana

    2011-08-01

    Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS) to test compounds for activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 µM. We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 µM) that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing parasites can be very useful to prioritize compounds early in the chain of development.

  10. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening.

    Directory of Open Access Journals (Sweden)

    Grasiella Andriani

    2011-08-01

    Full Text Available Novel technologies that include recombinant pathogens and rapid detection methods are contributing to the development of drugs for neglected diseases. Recently, the results from the first high throughput screening (HTS to test compounds for activity against Trypanosoma cruzi trypomastigote infection of host cells were reported. We have selected 23 compounds from the hits of this HTS, which were reported to have high anti-trypanosomal activity and low toxicity to host cells. These compounds were highly purified and their structures confirmed by HPLC/mass spectrometry. The compounds were tested in vitro, where about half of them confirmed the anti-T. cruzi activity reported in the HTS, with IC50 values lower than 5 µM. We have also adapted a rapid assay to test anti-T. cruzi compounds in vivo using mice infected with transgenic T. cruzi expressing luciferase as a model for acute infection. The compounds that were active in vitro were also tested in vivo using this assay, where we found two related compounds with a similar structure and low in vitro IC50 values (0.11 and 0.07 µM that reduce T. cruzi infection in the mouse model more than 90% after five days of treatment. Our findings evidence the benefits of novel technologies, such as HTS, for the drug discovery pathway of neglected diseases, but also caution about the need to confirm the results in vitro. We also show how rapid methods of in vivo screening based in luciferase-expressing parasites can be very useful to prioritize compounds early in the chain of development.

  11. Toward Efficient and Metal-Free Emissive Devices: A Solution-Processed Host-Guest Light-Emitting Electrochemical Cell Featuring Thermally Activated Delayed Fluorescence.

    Science.gov (United States)

    Lundberg, Petter; Lindh, E Mattias; Tang, Shi; Edman, Ludvig

    2017-08-30

    The next generation of emissive devices should preferably be efficient, low-cost, and environmentally sustainable, and as such utilize all electrically generated excitons (both singlets and triplets) for the light emission, while being free from rare metals such as iridium. Here, we report on a step toward this vision through the design, fabrication, and operation of a host-guest light-emitting electrochemical cell (LEC) featuring an organic thermally activated delayed fluorescence (TADF) guest that harvests both singlet and triplet excitons for the emission. The rare-metal-free active material also consists of a polymeric electrolyte and a polymeric compatibilizer for the facilitation of a cost-efficient and scalable solution-based fabrication, and for the use of air-stable electrodes. We report that such TADF-LEC devices can deliver uniform green light emission with a maximum luminance of 228 cd m-2 when driven by a constant-current density of 770 A m-2, and 760 cd m-2 during a voltage ramp, which represents a one-order-of-magnitude improvement in comparison to previous TADF-emitting LECs.

  12. Dioxin-like activity of environmental compounds in human blood and environmental samples

    DEFF Research Database (Denmark)

    Long, Manhai; Bonefeld-Jørgensen, Eva Cecilie

    2012-01-01

    and humans. We found that some pesticides, plasticizers and phytoestrogens can activate the AhR, and the combined effect of compounds with no or weak AhR potency cannot be ignored. The significant DL-activity in the wastewater effluent indicates the treatment is not sufficient to prevent contamination...

  13. [Progress in study of flavonoids from Annonaceae and biological activities of these compounds].

    Science.gov (United States)

    Hu, Chun-Mei; Wu, Jiu-Hong

    2007-05-01

    More than 50 new flavonoids derived from Annonaceae are reported in the last two decades. Many genuses in Annonaceae contain flavonoids having structural novelty and broad pharmacological activities. Due to the pharmacological interest of some of these compounds, chemical investigations on this topic have grown considerably in the decades. Here the biological activities of some of these flavonoids are also briefly discussed.

  14. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum.

    Science.gov (United States)

    Li, Wei; Lee, Sang Hyun; Jang, Hae Dong; Ma, Jin Yeul; Kim, Young Ho

    2017-01-11

    Hericium erinaceum , commonly called lion's mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate ( 6 ), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1 - 5 and five sterols 7 - 11 . The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, ¹D-NMR (¹H, 13 C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1 - 11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1 , 3 , and 4 showed potent reducing capacity. Moreover, compounds 1 , 2 , 4 , and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  15. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6, was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1–5 and five sterols 7–11. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT and 2D-NMR (COSY, HMQC, HMBC, and NOESY spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1–11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity. Moreover, compounds 1, 2, 4, and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  16. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2014-01-01

    Full Text Available Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol, small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

  17. Tyfon as a valuable forage crop and a prospective source of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Гур’єва

    2015-10-01

    Full Text Available Plants are an inexhaustible source of biologically active compounds. Traditional medicinal plants and relatively new hybrid plants are used for phytomedicines’ obtaining. Tyfon is one of such plants. It is a hybrid of Chinese cabbage and turnip which is used in fodder production. This culture is valuable due to the presence of a large predictable resource base.Goal. The aim of our work was a profound phytochemical study of tyfon plant material, as well as the study of pharmacological activity of phytosubstances on its basis.Methods. The qualitative analysis was carried out using quality reactions and thin-layer chromatography. The quantitative analysis of the biologically active compounds content was carried out by the means of gravimetric, titrimetric, spectrophotometric methods and gas chromatography.Results. The presence of carbohydrates, carbonic acids, amino acids, flavonoids, tannins, steroidal compounds, carotenoids, chlorophylls, sulfur-containing compounds as well as the compounds of a volatile fraction was determined as a result of the study. On the basis of experiments carried out the method of a thick extract obtaining was substantiated and its acute toxicity and anabolic activity was determined. The polysaccharide complex of tyfon leaves, having immune stimulating activity, was obtained.Conclusions. The plant material of tyfon is prospective for obtaining substances on its basis and carrying out their further pharmacological study

  18. Synthesis of new biologically active compounds containing linked thiazolyl-thiazolidinone heterocycles

    Directory of Open Access Journals (Sweden)

    Nagaraj Adki

    2012-01-01

    Full Text Available A new series of 1,3-benzothiazol-2-yl-1,3-thiazolan-4-one 5a-j has been synthesized by the reaction of 2-(4-methylphenyl-3-(5,5,7-trimethyl-4,5,6,7-tetrahydro-1,3-benzothiazol-2-yl-1,3-thiazolan-4-one 4 with aryl aldehydes. Chemical structures of all the new compounds were established by IR, 1H, 13C NMR, MS and elemental data. The compounds 5a-j were evaluated for their antibacterial activity against Gram-positive bacteria viz. Bacillus subtilis (MTCC 441, Bacillus sphaericus (MTCC 11, Staphylococcus aureus (MTCC 96 and Gram-negative bacteria viz. Pseudomonas aeruginosa (MTCC 741, Klebsiella aerogenes (MTCC 39, Chromobacterium violaceum (MTCC 2656. Amongst them, compounds containing [(4-chlorophenylmethyli- dene] moiety 5b, [(3-nitrophenylmethylidene] moiety 5d and [(2-thienylmethylidene] moiety 5j showed significant antibacterial activity, almost equal/more than the activity of the standard drug Streptomycin. Further, the compounds 5a-j were also screened for their antifungal activity against Candida albicans (ATCC 10231, Aspergillus fumigatus (HIC 6094, Trichophyton rubrum (IFO 9185, and Trichophyton mentagrophytes (IFO 40996. Most of these new compounds showed appreciable activity against test bacteria and fungi and emerged as potential molecules for further development.

  19. Antioxidant, 5-Lipoxygenase Inhibitory and Cytotoxic Activities of Compounds Isolated from the Ferula lutea Flowers

    Directory of Open Access Journals (Sweden)

    Mansour Znati

    2014-10-01

    Full Text Available A phytochemical investigation of the Ferula lutea (Poir. Maire flowers has led to the isolation of a new compound, (E-5-ethylidenefuran-2(5H-one-5-O-β-D-glucopyranoside (1, designated ferunide, 4-hydroxy-3-methylbut-2-enoic acid (2, reported for the first time as a natural product, together with nine known compounds, verbenone-5-O-β-D-glucopyranoside (3, 5-O-caffeoylquinic acid (4, methyl caffeate (5, methyl 3,5-O-dicaffeoylquinate (6, 3,5-O-dicaffeoylquinic acid (7, isorhamnetin-3-O-α-L-rhamnopyranosyl(1→6-β-D-glucopyranoside, narcissin (8, (−-marmesin (9, isoimperatorin (10 and 2,3,6-trimethylbenzaldehyde (11. Compounds 3–10 were identified for the first time in Ferula genus. Their structures were elucidated by spectroscopic methods, including 1D and 2D NMR experiments, mass spectroscopy and X-ray diffraction analysis (compound 2, as well as by comparison with literature data. The antioxidant, anti-inflammatory and cytotoxic activities of isolated compounds were evaluated. Results showed that compound 7 exhibited the highest antioxidant activity with IC50 values of 18 ± 0.5 µmol/L and 19.7 ± 0.7 µmol/L by DPPH radical and ABTS radical cation, respectively. The compound 6 exhibited the highest anti-inflammatory activity with an IC50 value of 5.3 ± 0.1 µmol/L against 5-lipoxygenase. In addition, compound 5 was found to be the most cytotoxic, with IC50 values of 22.5 ± 2.4 µmol/L, 17.8 ± 1.1 µmol/L and 25 ± 1.1 µmol/L against the HCT-116, IGROV-1 and OVCAR-3 cell lines, respectively.

  20. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds.

    Science.gov (United States)

    Pendota, S C; Aderogba, M A; Ndhlala, A R; Van Staden, J

    2013-07-09

    Buddleja salviifolia leaves are used for the treatment of eye infections and neurodegenerative conditions by various tribes in South Africa. This study was designed to isolate the phenolic constituents from the leaf extracts of Buddleja salviifolia and evaluate their antimicrobial and acetylcholinesterase (AChE) activities. Three phenolic compounds were isolated from the ethyl acetate fraction of a 20% aqueous methanol leaf extract of Buddleja salviifolia using Sephadex LH-20 and silica gel columns. Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: mass spectrometry (ESI-TOF-MS) and NMR (1D and 2D). The extracts and isolated compounds were evaluated for antimicrobial and acetylcholinesterase activities using the microdilution technique. The bacteria used for the antimicrobial assays were Gram-positive Bacillus subtilis and Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The isolated compounds were characterized as: 4'-hydroxyphenyl ethyl vanillate (1) a new natural product, acteoside (2) and quercetin (3). The crude extract, fractions and the isolated compounds from the leaves of the plant exhibited a broad spectrum of antibacterial activity. The EtOAc fraction exhibited good activity against Bacillus subtilis and Staphylococcus aureus with MIC values ranging from 780.0 to 390.0 µg/mL. Isolated compound 2 exhibited good activity against Staphylococcus aureus with an MIC value of 62.5 µg/mL. The hexane and DCM fractions of leaves showed the best activity against Candida albicans with MIC and MFC values of 390.0 µg/mL. In the AChE inhibitory test, among the tested extracts, the hexane fraction was the most potent with an IC50 value of 107.4 µg/mL, whereas for the isolated compounds, it was compound (3) (quercetin) with an IC50 value of 66.8 µg/mL. Activities demonstrated by the extracts and isolated compounds support the ethnopharmacological use of Buddleja salviifolia against eye

  1. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum).

    Science.gov (United States)

    Sandoval-Castro, Claudia Jaqueline; Valdez-Morales, Maribel; Oomah, B Dave; Gutiérrez-Dorado, Roberto; Medina-Godoy, Sergio; Espinosa-Alonso, L Gabriela

    2017-06-01

    Bioactive compounds and antioxidant activity were evaluated from industrial Jalapeño pepper byproducts and simulated non processed byproducts from two Mexican states (Chihuahua and Sinaloa) to determine their value added potential as commercial food ingredients. Aqueous 80% ethanol produced about 13% of dry extract of polar compounds. Total phenolic content increased and capsaicin and dihydrocapsaicin decreased on scalding samples (80 °C, 2 min) without affecting ascorbic acid. The major phenolic compounds, rutin, epicatechin and catechin comprised 90% of the total compounds detected by HPLC of each Jalapeño pepper byproducts. ORAC analysis showed that the origin and scalding process affected the antioxidant activity which correlated strongly with capsaicin content. Although scalding decreased capsaicinoids (up to 42%), phenolic content by (up to 16%), and the antioxidant activity (variable). Jalapeño pepper byproduct is a good source of compounds with antioxidant activity, and still an attractive ingredient to develop useful innovative products with potential food/non-food applications simultaneously reducing food loss and waste.

  2. Inhibitory effect by new monocyclic 4-alkyliden-beta-lactam compounds on human platelet activation.

    Science.gov (United States)

    Pavanetto, Martina; Zarpellon, Alessandro; Giacomini, Daria; Galletti, Paola; Quintavalla, Arianna; Cainelli, Gianfranco; Folda, Alessandra; Scutari, Guido; Deana, Renzo

    2007-08-01

    In the present study some new beta-lactam compounds were screened for their ability to inhibit human platelet activation. In particular four compounds differing in the group on the nitrogen atom of the azetidinone ring were investigated. A beta-lactam having an ethyl 2-carboxyethanoate N-bound group was demonstrated to inhibit, in the micromolar range, both the Ca(2+) release from endoplasmic reticulum, induced either by thrombin or by the ATPase inhibitor thapsigargin, and the Ca(2+) entry in platelets driven by emptying the endoplasmic reticulum. The compound also inhibited the platelet aggregation induced by a variety of physiological agonists including ADP, collagen, thrombin and thrombin mimetic peptide TRAP. The beta-lactam reduced the phosphorylation of pleckstrin (apparent MW 47 kDa), elicited by thrombin but not by the protein kinase C activator phorbol ester. Accordingly it did not significantly affect the aggregation evoked by phorbol ester or Ca(2+) ionophore. It was concluded that the beta-lactam likely exerts its anti-platelet-activating action by hampering the agonist induced cellular Ca(2+) movements. The beta-lactam concentration, which significantly inhibited platelet activation, only negligibly affected the cellular viability. Even if it is still premature to draw definitive conclusions, the present results suggest that this new compound might constitute a tool of potential clinical interest and the starting-point for the synthesis of new more beneficial anti-thrombotic compounds.

  3. Phenolic compounds and antioxidant activity of two bean cultivars (Phaseolus vulgaris L. submitted to cooking

    Directory of Open Access Journals (Sweden)

    Maira Oliveira Silva

    2017-10-01

    Full Text Available Abstract The common bean (Phaseolus vulgaris L. is a source of nutrients and contains phenolic compounds that act as antioxidants. The aim of the present study was to determine the phenolic compounds and tannins in two bean cultivars (Phaseolus vulgaris L.: the biofortified carioca bean (Pontal and the common bean (commercial. The antioxidant activity of the phenolic compounds and their fractions was also measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS methods. The thermal processing decreased the phenolic compounds, tannins and the antioxidant activity of beans. The Pontal cultivar exhibited higher levels of phenolic compounds even after cooking. For cooked beans, higher antioxidant activity was observed in the commercial beans by the DPPH method. Regarding to the fractions, in general, lower values of antioxidant activity by DPPH were observed for beans after cooking, except for fraction 6 of the Pontal bean and fraction 3 of the commercial bean. For fraction 4 no significant differences were observed by the ABTS method for both cultivars after thermal processing.

  4. A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides.

    Science.gov (United States)

    Sultana, Nasim; Afolayan, A J

    2007-08-01

    Arctotis arctotoides is a perennial herb used medicinally for the treatment of various ailments in the Eastern Cape, South Africa. Different extracts of the plant were investigated for their antimicrobial constituents. This led to the isolation and identification of a new daucosterol derivative 3-O-[beta-D-(6'-nonadeanoate)glucopyranosyl]-beta-sitosterol and seven known compounds namely: serratagenic acid, stigmasterol, daucosterol, zaluzanin D, dehydrocostuslactone, nepetin, and pedalitin. The structures of the compounds were elucidated on the basis of spectral analysis, including homo and hetero nuclear correlation NMR experiments (COSY, NOESY, HMQC, HMBC) and mass spectra as well as by comparison with available data in the literature. The compounds exhibited antibacterial activity except stigmasterol, daucosterol and dehydrocostuslactone. Nepetin was the most active against Bacillus subtilis and Staphylococcus aureus with the minimum inhibitory concentrations of 4 microg mL( - 1) and 31 microg mL( - 1), respectively, while others exhibited moderate activity.

  5. Molecular docking for thrombolytic activity of some isolated compounds from Clausena lansium.

    Directory of Open Access Journals (Sweden)

    Arkajyoti Paul

    2017-03-01

    Full Text Available Clausena lansium (Family- Rutaceae is commonly known as wampee, is found in fallow lands throughout Bangladesh. Our aim of the study to performed molecular docking studies to identify potential binding affinities of the phytocompounds from Clausena lansium, namely Clausemarin B, Clausenaline C, Clausenaline E, Murrayanine, vanillic acid and Xanthotoxol for searching of lead molecule for thrombolytic activity. A wide range of docking score found during molecular docking by Schrodinger. Clausemarin B , Clausenaline C , Clausenaline E, Murrayanine , vanillic acid and Xanthotoxol showed the docking score -6.926, -4.041, -4.889 , -4.356, -3.007 and -5.816 respectively. Among all the compounds Clausemarin B showed the best docking score. So, Clausemarin B is the best compounds for thrombolytic activity, as it possessed the best value in Molecular docking. Further in vivo investigation need to identify the thrombolytic activity of isolated compounds from Clausena lansium.

  6. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  7. The utilization of some iron and zinc compounds as regulators of catalase activity at Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Efremova, N.

    2013-11-01

    Full Text Available The main aim of this study was to examine the impact of some zinc and iron compounds as oxidative stress factors on catalase activity, which is known to be important defense system of microorganisms to metal stress. For the investigation was used baker's yeast strain - Saccharomyces cerevisiae CNMN-Y-11 previously selected as a source of protein and catalase. The obtained results have revealed that compounds of iron and zinc with citrate and acetate contributes to the accumulation of yeast biomass and have beneficial effect on the catalase activity at selected yeast strain. The maximum increase of catalase activity in yeast biomass was established in case of iron and zinc citrate supplementation to the nutritive medium in optimal concentration of 15.0 mg/l. Results of the present study could be used for the elaboration of new procedures of catalase obtaining by directed synthesis with the utilization of selected metal compounds.

  8. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2012-01-01

    Adsorption kinetics of two organic compounds on four types of carbonaceous adsorbents (a granular activated carbon [HD4000], an activated carbon fiber [ACF10], a single-walled carbon nanotube [SWNT], and a multiwalled carbon nanotube [MWNT]) was examined in aqueous solutions. The times needed for the adsorption to reach apparent equilibrium on the four carbons followed the order of ACF10 > HD4000 > SWNT > MWNT. Ultrasonication of the carbon nanotubes (CNTs) accelerated their adsorption kinetics but had no effect on their equilibrium adsorption capacities. The pseudo-second order model (PSOM) provided good fitting for the kinetic data. The fitting of kinetic data with the intraparticle diffusion model indicated that external mass transfer controls the sorption process in the organic compound-CNT systems, whereas intraparticle diffusion dominates in the sorption of organic compounds onto activated carbons. Copyright © 2011 SETAC.

  9. Synthesis, characterization and in vitro anti-invasive activity screening of polyphenolic and heterocyclic compounds.

    Science.gov (United States)

    Parmar, Virinder S; Sharma, Nawal K; Husain, Mofazzal; Watterson, Arthur C; Kumar, Jayant; Samuelson, Lynne A; Cholli, Ashok L; Prasad, Ashok K; Kumar, Ajay; Malhotra, Sanjay; Kumar, Naresh; Jha, Amitabh; Singh, Amarjit; Singh, Ishwar; Himanshu; Vats, Archana; Shakil, Najam A; Trikha, Smriti; Mukherjee, Shubasish; Sharma, Sunil K; Singh, Sanjay K; Kumar, Ajay; Jha, Hriday N; Olsen, Carl E; Stove, Christophe P; Bracke, Marc E; Mareel, Marc M

    2003-03-20

    Invasion is the hallmark of malignant tumors, and is responsible for the bad prognosis of the untreated cancer patients. The search for anti-invasive treatments led us to screen compounds of different classes for their effect in an assay for invasion. Thirty-nine new compounds synthesized in the present study along with 56 already reported compounds belonging mainly to the classes of lactones, pyrazoles, isoxazoles, coumarins, desoxybenzoins, aromatic ketones, chalcones, chromans, isoflavanones have been tested against organotypic confronting cultures of invasive human MCF-7/6 mammary carcinoma cells with embryonic chick heart fragments in vitro. Three of them (a pyrazole derivative, an isoxazolylcoumarin and a prenylated desoxybenzoin) inhibited invasion at concentrations as low as 1 microM; instead of occupying and replacing the heart tissue within 8 days, the MCF-7/6 cells grew around the heart fragments and left it intact, when treated with these compounds. At the anti-invasive concentration of 1 microM, the three compounds did not affect the growth of the MCF-7/6 cells, as shown in the sulforhodamine B assay. Aggregate formation on agar was not stimulated by any of the three anti-invasive compounds, making an effect on the E-cadherin/catenin complex improbable. This is an invasion suppressor that can be activated in MCF-7/6 cells by a number of other molecules. Our data indicate that some polyphenolic and heterocyclic compounds are anti-invasive without being cytotoxic for the cancer cells.

  10. Synthesis, characterization, investigation of biological activity and theoretical studies of hydrazone compounds containing choloroacetyl group

    Science.gov (United States)

    Cukurovali, Alaaddin; Yilmaz, Engin

    2014-10-01

    In this study, three new hydrazide-hydrazone derivative compounds which contain choloroacetyl group have been synthesized and characterized. In the characterization, spectral techniques such as IR, 1H NMR, 13C NMR and UV-Vis spectroscopy techniques were used. Antibacterial effects of the synthesized compounds were investigated against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the theoretical calculations Gaussian 09 software was used with the DFT/6-311+(d,p) basis set. Experimental X-ray analysis of compounds has not been studied. Theoretical bond lengths of synthesized compounds were compared with experimental bond lengths of a similar compound. Theoretical and experimental bond lengths are in good agreement with R2: 0.896, 0.899 and 0.900 for compounds 1, 2, and 3, respectively. For antibacterial activity, the most effective one was found to be N‧-(4-bromobenzylidene)-2-chloro-N-(4-(3-methyl-3-phenylcyclobutyl)-thiazol-2-yl) acetohydrazide against P.aeroginaosa ATTC 27853, among the studied compounds.

  11. A new parameter to simultaneously assess antioxidant activity for multiple phenolic compounds present in food products.

    Science.gov (United States)

    Yang, Hong; Xue, Xuejia; Li, Huan; Tay-Chan, Su Chin; Ong, Seng Poon; Tian, Edmund Feng

    2017-08-15

    In this work, we established a new methodology to simultaneously assess the relative reaction rates of multiple antioxidant compounds in one experimental set-up. This new methodology hypothesizes that the competition among antioxidant compounds towards limiting amount of free radical (in this article, DPPH) would reflect their relative reaction rates. In contrast with the conventional detection of DPPH decrease at 515nm on a spectrophotometer, depletion of antioxidant compounds treated by a series of DPPH concentrations was monitored instead using liquid chromatography coupled with quadrupole time-of-flight (LC-QTOF). A new parameter, namely relative antioxidant activity (RAA), has been proposed to rank these antioxidants according to their reaction rate constants. We have investigated the applicability of RAA using pre-mixed standard phenolic compounds, and also extended this application to two food products, i.e. red wine and green tea. It has been found that RAA correlates well with the reported k values. This new parameter, RAA, provides a new perspective in evaluating antioxidant compounds present in food and herbal matrices. It not only realistically reflects the antioxidant activity of compounds when co-existing with competitive constituents; and it could also quicken up the discovery process in the search for potent yet rare antioxidants from many herbs of food/medicinal origins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Parallel synthesis and biological evaluation of 837 analogues of procaspase-activating compound 1 (PAC-1).

    Science.gov (United States)

    Hsu, Danny C; Roth, Howard S; West, Diana C; Botham, Rachel C; Novotny, Chris J; Schmid, Steven C; Hergenrother, Paul J

    2012-01-09

    Procaspase-Activating Compound 1 (PAC-1) is an ortho-hydroxy N-acyl hydrazone that enhances the enzymatic activity of procaspase-3 in vitro and induces apoptosis in cancer cells. An analogue of PAC-1, called S-PAC-1, was evaluated in a veterinary clinical trial in pet dogs with lymphoma and found to have considerable potential as an anticancer agent. With the goal of identifying more potent compounds in this promising class of experimental therapeutics, a combinatorial library based on PAC-1 was created, and the compounds were evaluated for their ability to induce death of cancer cells in culture. For library construction, 31 hydrazides were condensed in parallel with 27 aldehydes to create 837 PAC-1 analogues, with an average purity of 91%. The compounds were evaluated for their ability to induce apoptosis in cancer cells, and through this work, six compounds were discovered to be substantially more potent than PAC-1 and S-PAC-1. These six hits were further evaluated for their ability to relieve zinc-mediated inhibition of procaspase-3 in vitro. In general, the newly identified hit compounds are two- to four-fold more potent than PAC-1 and S-PAC-1 in cell culture, and thus have promise as experimental therapeutics for treatment of the many cancers that have elevated expression levels of procaspase-3.

  13. Antimicrobial Activity of the Phenolic Compounds of Prunus mume against Enterobacteria.

    Science.gov (United States)

    Mitani, Takahiko; Ota, Kana; Inaba, Nobuya; Kishida, Kunihiro; Koyama, Hajime A

    2018-01-01

    Mume fruit, the Japanese apricot (Prunus mume SIEB. et ZUCC.), is popular in Japan and is mostly consumed in the pickled form called umeboshi. This fruit is known to have anti-microbial properties, but the principal constituents responsible for the antimicrobial properties have not yet been elucidated. We investigated the antimicrobial activities of the phenolic compounds in P. mume against enterobacteria. In this study, growth inhibitory activities were measured as an index of the antibacterial activities. The phenolic compounds were prepared from a byproduct of umeboshi called umesu or umezu (often translated as "mume vinegar"). Umesu or umezu phenolics (UP) contain approximately 20% phenolic compounds with p-coumaric acid as a standard and do not contain citric acid. We observed the inhibitory effects of UP against the growth of some enterobacteria, at a relatively high concentration (1250-5000 µg/mL). Alkali hydrolysates of UP (AHUP) exhibited similar antibacterial activities, but at much lower concentrations of 37.5-300 µg/mL. Since AHUP comprises hydroxycinnamic acids such as caffeic acid, p-coumaric acid, and ferulic acid, the antibacterial activities of each of these acids were examined. Our study shows that the phenolic compounds in P. mume other than citric acid contribute to its antimicrobial activity against enterobacteria in the digestive tract.

  14. Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, J.D.; Adams, R.P.

    Recent efforts to discover phytochemicals that could substitute for petroleum-derived fuels and industrial feedstocks have not given much attention to the potential of these same phytochemicals to provide sources of biologically active compounds. The suitability of extraction products made to assess specific plants as potential botanochemical sources has been evaluated for use in screening procedures for evidence of biologically active compounds. Screening procedures for antibacterial, antifungal and toxic properties are discussed. Screening results are presented for extracts of nearly 80 species of plants from the southeastern United States and southern Great Plains that had previously been evaluated as sources of botanochemicals.

  15. Adsorption of phenolic compounds by activated carbon--a critical review.

    Science.gov (United States)

    Dabrowski, A; Podkościelny, P; Hubicki, Z; Barczak, M

    2005-02-01

    Adsorption of phenol and its derivatives on activated carbons is considered based on numerous papers related to this issue. Special attention is paid to the effects of carbon surface functionalities, pH of solution and heterogeneity effects that accompany adsorption of phenolic compounds. Moreover, in this paper the most important aspects are overviewed referring to irreversible adsorption of phenols and impact of different substituents of phenolic compounds on their uptake by activated carbons is considered. Finally, some remarks pertaining to applications of novel adsorbents for phenol adsorption are discussed and illustrated by means of a few examples.

  16. Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents

    Directory of Open Access Journals (Sweden)

    Somchai Rice

    2015-12-01

    Full Text Available Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1 compound identification, (2 gas chromatography (GC column retention times, (3 mass spectral data, (4 odor descriptors from 2 databases, (5 human odor detection thresholds from 2 databases, (6 calculated odor activity values, and (7 subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values. For further interpretation and discussion, see Rice and Koziel [1] and Rice [2].

  17. Identification and antioxidant activity test of bioactive compound produced from ethanol extract of temukunci (Boesenbergia rotunda)

    Science.gov (United States)

    Atun, Sri; Handayani, Sri; Frindryani, Luthfi Fitri

    2017-08-01

    The aims of this study are to identify and to analyze antioxidant activity of bioactive compounds in ethanol extract of temukunci (Boesenbergia rotunda) rhizome. This research method was carried out by maceration of 3 kg dryed powder of B. rotunda in ethanol. The extract was concentrated using a vacuum evaporator. White crystals obtained from ethanol extract further recrystallized to produce as much as 80 mg of pure compound. Identification of pure compound was obtained using UV-Vis, IR, and 1H-NMR. The antioxidant activity of ethanol extracts, pure compounds, and ascorbic acid (positive control) were obtained using DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The UV-Vis spectra showed λmax 287.40 and 214.20 nm, the IR spectra showed absorption C=C aromatic group at 1571.66 cm-1, C=O carbonyl at 1639.37 cm-1 and CO at 1153.35 cm-1. 1H-NMR spectra showed a group monosubtituted benzene, benzene tetrasubstituted, proton of hydroxyl group, proton of methoxyl group, one proton oxyalkyl, and two protons alkyl. The spectroscopic data showed the compound is pinostrobin (5-hydroxy-7-metoxyiflavanone). The antioxidant activity (IC50) of the ethanol extracts from B. rotunda rhizome, pinostrobin, and ascorbic acid (positive control) were 92.6; 62.84; and 3.7 µg/mL repectively. The study showed that the ethanol extract of B. rotunda rhizome and bioactive compounds have high antioxidant activity, but their activity lower than ascorbic acid.

  18. Anti-HIV activities of the compounds isolated from Polygonum cuspidatum and Polygonum multiflorum.

    Science.gov (United States)

    Lin, Hong-Wei; Sun, Ming-Xue; Wang, Yun-Hua; Yang, Liu-Meng; Yang, Ying-Ruo; Huang, Ning; Xuan, Li-Jiang; Xu, Ya-Ming; Bai, Dong-Lu; Zheng, Yong-Tang; Xiao, Kai

    2010-06-01

    The 70 % EtOH extract of Polygonum cuspidatum showed inhibitory action against HIV-1-induced syncytium formation at non-cytotoxic concentrations in vitro with a 50 % effective concentration (EC(50)) of 13.94 +/- 3.41 microg/mL. Through bioactivity-guided fractionation, 20 phenolic compounds, including eight stilbenoids, were isolated from the roots of Polygonum cuspidatum, and their anti-HIV-1 activities were evaluated. Results showed that compounds 1, 13, 14, and 16 demonstrated fairly strong antiviral activity against HIV-1-induced cytopathic effects in C8166 lymphocytes at non-cytotoxic concentrations, with EC (50) values of 4.37 +/- 1.96 microg/mL, 19.97 +/- 5.09, 14.4 +/- 1.34 microg/mL, and 11.29 +/- 6.26 microg/mL and therapeutic index (TI) values of 8.12, > 10.02, > 13.89, and > 17.71, respectively. Other compounds showed either weak or no effects. Compound 6 also showed weak inhibition (153.42 +/- 19.25 microg/mL); however, it possesses very good water solubility and showed almost no cytotoxicity (> 2000 microg/mL), therefore achieving a fairly good TI (13.04). The activities of the two compounds (3 and 18) from Polygonum multiflorum were also assayed. The relationship between molecular structures and their bioactivities was also discussed. Georg Thieme Verlag KG Stuttgart-New York.

  19. Performance of phenol-acclimated activated sludge in the presence of various phenolic compounds

    Science.gov (United States)

    Lim, Jun-Wei; Tan, Je-Zhen; Seng, Chye-Eng

    2013-06-01

    The objective of this study was to evaluate the performance of phenol-acclimated activated sludge in the presence of various phenolic compounds in the separated batch reactors. The phenol-acclimated activated sludge was observed to be capable of completely removing phenol, o-cresol, m-cresol, and 4-chlorophenol. Nevertheless, in the presence of 2-chlorophenol and 3-chlorophenol merely at 50 mg/L, incomplete removal of these phenolic compounds were noticed. The specific oxygen uptake rate patterns obtained for phenol, o-cresol, m-cresol, and 4-chlorophenol could be used to approximate the end point of these phenolic compounds removal as well as to monitor the growth of biomass. As the 2-chlorophenol and 3-chlorophenol were only partially removed in the mixed liquor, the patterns of specific oxygen uptake rate attained for these phenolic compounds were not feasible for the similar estimation. The calculated toxicity percentages show the toxicity effects of phenolic compounds on the phenol-acclimated activated sludge followed the order of 2-chlorophenol ≈ 3-chlorophenol > 4-chlorophenol > o-cresol ≈ m-cresol > phenol.

  20. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening

    Directory of Open Access Journals (Sweden)

    Mantsyzov AB

    2012-09-01

    Full Text Available Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Université Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSOM

  1. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    Science.gov (United States)

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; pkale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Saleh Abu-Lafi

    2017-01-01

    Full Text Available The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW. The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.

  3. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

    Science.gov (United States)

    Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

    2014-12-01

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively. Copyright © 2014. Published by Elsevier B.V.

  4. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.

    Science.gov (United States)

    Dicko, Mamoudou H; Gruppen, Harry; Traore, Alfred S; van Berkel, Willem J H; Voragen, Alphons G J

    2005-04-06

    The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties.

  5. Antibacterial activity of the alkaloid extract and isolated compounds from Croton bonplandianum Baill. (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    A. BURGOS

    2015-01-01

    Full Text Available ABSTRACT The antibacterial activity of the alkaloid extract from the leaves of Croton bonplandianum Baill. and its main compounds, sparsiflorine and crotsparine, was tested against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by the resazurin microtitre-plate method. Pure compounds were identified by spectroscopic techniques, mainly 1D and 2D NMR. The alkaloid extract showed activity particularly against the S. aureus and P. aeruginosa. Regarding the pure compounds, the crotsparine was inactive against the microorganisms assayed, whereas the sparsiflorine indicated a moderate activity similar to the alkaloid extract. The Pseudomonas aeruginosa was the most sensitive of the tested microorganisms with MIC of 0.141 mg/mL. The results suggest that the activity of the extract may be credited mainly to the presence of the sparsiflorine. Although the activity of the sparsiflorine does not get close to the antimicrobial drugs in clinical use, it still could be a lead compound for the development of new antibacterial substances.

  6. Insights into structure and activity of natural compound inhibitors of pneumolysin.

    Science.gov (United States)

    Li, Hongen; Zhao, Xiaoran; Deng, Xuming; Wang, Jianfeng; Song, Meng; Niu, Xiaodi; Peng, Liping

    2017-02-06

    Pneumolysin is the one of the major virulence factor of the bacterium Streptococcus pneumoniae. In previous report, it is shown that β-sitosterol, a natural compound without antimicrobial activity, is a potent antagonist of pneumolysin. Here, two new pneumolysin natural compound inhibitors, with differential activity, were discovered via haemolysis assay. To explore the key factor of the conformation for the inhibition activity, the interactions between five natural compound inhibitors with differential activity and pneumolysin were reported using molecular modelling, the potential of mean force profiles. Interestingly, it is found that incorporation of the single bond (C22-C23-C24-C25) to replace the double bond (hydrocarbon sidechain) improved the anti-haemolytic activity. In view of the molecular modelling, binding of the five inhibitors to the conserved loop region (Val372, Leu460, and Tyr461) of the cholesterol binding sites led to stable complex systems, which was consistent with the result of β-sitosterol. Owing to the single bond (C22-C23-C24-C25), campesterol and brassicasterol could form strong interactions with Val372 and show higher anti-haemolytic activity, which indicated that the single bond (C22-C23-C24-C25) in inhibitors was required for the anti-haemolytic activity. Overall, the current molecular modelling work provides a starting point for the development of rational design and higher activity pneumolysin inhibitors.

  7. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits

    Directory of Open Access Journals (Sweden)

    Jan Oszmiański

    2015-06-01

    Full Text Available Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF and antioxidant activity (ferric reducing ability of plasma (FRAP and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones. In samples, where pressurized liquid extraction (PLE was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%, flavonols (max. 44% and anthocyanins (max. 29%, than after extraction by the ultrasonic technique extraction (UAE method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids.

  8. Inorganic tin compounds do not induce micronuclei in human lymphocytes in the absence of metabolic activation.

    Science.gov (United States)

    Damati, Artemis; Vlastos, Dimitris; Philippopoulos, Athanassios I; Matthopoulos, Demetrios P

    2014-04-01

    The genotoxic evaluation (in vitro analysis) of a series of eight inorganic tin(II) and tin(IV) compounds [tin(II) acetate, tin(II) chloride, tin(II) ethylhexanoate, tin(II) oxalate, tin(II) oxide, tin(IV) acetate, tin(IV) chloride and tin(IV) oxide], for the detection of micronuclei in human blood lymphocytes, was performed in the absence of metabolic activation by the cytokinesis-block micronucleus assay. Human lymphocytes were treated for over one cell cycle (31 hours), with concentrations ranging from 1 to 75 μM (1, 5, 10, 20, 50 and 75 μM), of tin(II) and tin(IV) salts dissolved in dimethyl sulfoxide. The above-listed concentrations cover the values that have been detected in humans with no occupational exposure to tin compounds. The experimental results show the absence of genotoxicity for all inorganic compounds tested in the specific concentrations and experimental conditions. Cytotoxic effects of tin(II) and tin(IV) compounds were evaluated by the determination of cytokinesis block proliferation index and cytotoxicity percentage. Our observations on the cytotoxicity pattern of the tested tin(II) and tin(IV) compounds indicate that they are cytotoxic in several tested concentrations to human lymphocytes treated in vitro. The observed differences in cytotoxicity of each tested compound might reflect differences in their chemical structure.

  9. Target prediction for an open access set of compounds active against Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Francisco Martínez-Jiménez

    Full Text Available Mycobacterium tuberculosis, the causative agent of tuberculosis (TB, infects an estimated two billion people worldwide and is the leading cause of mortality due to infectious disease. The development of new anti-TB therapeutics is required, because of the emergence of multi-drug resistance strains as well as co-infection with other pathogens, especially HIV. Recently, the pharmaceutical company GlaxoSmithKline published the results of a high-throughput screen (HTS of their two million compound library for anti-mycobacterial phenotypes. The screen revealed 776 compounds with significant activity against the M. tuberculosis H37Rv strain, including a subset of 177 prioritized compounds with high potency and low in vitro cytotoxicity. The next major challenge is the identification of the target proteins. Here, we use a computational approach that integrates historical bioassay data, chemical properties and structural comparisons of selected compounds to propose their potential targets in M. tuberculosis. We predicted 139 target--compound links, providing a necessary basis for further studies to characterize the mode of action of these compounds. The results from our analysis, including the predicted structural models, are available to the wider scientific community in the open source mode, to encourage further development of novel TB therapeutics.

  10. Infrared decontamination of oregano: effects on Bacillus cereus spores, water activity, color, and volatile compounds.

    Science.gov (United States)

    Eliasson, Lovisa; Libander, Patrik; Lövenklev, Maria; Isaksson, Sven; Ahrné, Lilia

    2014-12-01

    Infrared (IR) heating, a novel technology for decontaminating oregano, was evaluated by investigating the reduction of inoculated Bacillus cereus spores and the effect on water activity (a(w)), color, and headspace volatile compounds after exposure to IR treatment. Conditioned oregano (a(w) 0.88) was IR-treated in a closed heating unit at 90 and 100 °C for holding times of 2 and 10 min, respectively. The most successful reduction in B. cereus spore numbers (5.6 log units) was achieved after a holding time of 10 min at 90 °C, while treatment at 100 °C for the same time resulted in a lower reduction efficiency (4.7 log units). The lower reduction at 100 °C was probably due to a reduced aw (aw 0.76) during IR treatment or possibly to the alteration or loss of volatile compounds possessing antimicrobial properties. The green color of oregano was only slightly affected, while the composition of volatile compounds was clearly altered by IR heating. However, two of the key aroma compounds, carvacrol and thymol, were only slightly affected, compared to the effect on the other studied compounds, indicating that the typical oregano aroma can likely be preserved. In conclusion, IR heating shows potential for the successful decontamination of oregano without severe alteration of its color or the key aroma compounds, carvacrol and thymol. © 2014 Institute of Food Technologists®

  11. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    Science.gov (United States)

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  12. Lipoxygenase inhibitory activity of crude bark extracts and isolated compounds from Commiphora berryi.

    Science.gov (United States)

    Kumari, Ramesh; Meyyappan, Arumugam; Selvamani, Palanisamy; Mukherjee, Joydeep; Jaisankar, Parasuraman

    2011-10-31

    Commiphora berryi is traditionally used for the treatment of cold and fever as well as for wound healing in the southern parts of India. The present study was designed to investigate in vitro soybean lipoxygenase inhibitory activity of crude extracts and compounds isolated from Commiphora berryi. The bark of Commiphora berryi was extracted with different organic solvents and subjected to chromatographic separation for isolation of bioactive compounds. Structures of isolated compounds were elucidated by spectroscopic methods. The anti-inflammatory activity of bark extracts and bioactive compounds were assessed by in vitro soybean lipoxygenase (SBL) assay. 3β-Hydroxyglutin-5-ene (1), friedelin (2), cycloeucaneol (3) nimbiol (4), sugiol (5), surianol (6), daucosterol (7) and ursolic acid (8) were isolated from crude bark extracts of the Commiphora berryi. The structure of nimbiol (4) was also confirmed by single crystal X-ray analysis. The petroleum ether, methanol, chloroform and ethyl acetate extracts of bark of Commiphora berryi showed SBL inhibitory activity with the IC(50) values of 15.3, 54.2, 71.5 and 87.8 μg/ml respectively. Among all the isolates, friedelin (2) showed significant SBL inhibitory activity with IC(50) 35.8 μM. The overall results provide evidence that the studied plant might be a potential source of anti-inflammatory agents. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Combined removal of sulfur compounds and nitrate by autotrophic denitrication in bioaugmented activated sludge system

    NARCIS (Netherlands)

    Manconi, I.; Carucci, A.; Lens, P.N.L.

    2007-01-01

    An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters

  14. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    Science.gov (United States)

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  15. Removal of pharmaceutically active compounds in constructed wetlands: mechanisms and application

    NARCIS (Netherlands)

    He, Yujie

    2017-01-01

    A constructed wetland (CW) is an integrated and enhanced version of natural ecosystem for fate and transport of pharmaceutically active compounds (PhAC). This thesis demonstrates removal mechanisms of PhACs in CWs and their application as post-treatment processes to eliminate PhACs from wastewater

  16. In vitro antioxidant activity of new thiophene ring-based compounds ...

    African Journals Online (AJOL)

    In vitro antioxidant activity of new thiophene ring-based compounds. Sridhara Murthy, Mohammed Naseeruddin Inamdar, Shamanna Mohan, Rajesh Kale. Abstract. Free radicals are implicated in causation of various histo-pathological disturbances like myocardial ischemia injury, cancer, neurodegenerative diseases, ...

  17. Phonological and Semantic Activation in Reading Two-Kanji Compound Words.

    Science.gov (United States)

    Morita, Aiko; Matsuda, Fumiko

    2000-01-01

    Examined whether phonological information was activated automatically in processing two kanji compound words. In one experiment, participants judged whether pairs of words were homophones, while others judged whether pairs were synonyms. In the second, participants were asked to make one of the two judgments, as in experiment one. Findings support…

  18. Thyroid in a jar: towards an integrated in vitro testing strategy for thyroid-active compounds

    NARCIS (Netherlands)

    Jomaa, B.

    2015-01-01

      Jomaa, B. (2015). Thyroid in a Jar: Towards an Integrated In Vitro Testing Strategy for Thyroid-Active Compounds. PhD thesis, Wageningen University, the Netherlands Abstract The aim of this thesis was to find in vitro and toxicogenomics-based alternatives to

  19. A Survey of Plants with Anti-HIV Active Compounds and their Modes ...

    African Journals Online (AJOL)

    Administrator

    jacalin-related lectin that binds to glycosylated viral envelopes blocked HIV-1 entry into cells , and. Phytolacca americana pokeweed antiviral protein (PAP), a 29 KDa ribosome-inactivating protein that. 46 removes adenine from rRNA was found to be a potent microbicide . Table 1: Plants with active compounds and modes ...

  20. BASIC SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME PHOSPHORCONTATNING ORGANIC COMPOUNDS CONTAINING FRAGMENTS OF UREA AND TRYHLORETILAMID

    Directory of Open Access Journals (Sweden)

    Gushylyk B.

    2013-10-01

    Full Text Available Data about directions of synthesis and use of the phosphororganic compounds in technics, biology and medicine is presented in the paper. Antimicrobial activity of 51 phosphororganic salts and ilides containing urine and threechlor ethylenamide has been studied. Perspective of the development of effective antimicrobial substances has been determined

  1. Combined electrochemical degradation and activated carbon adsorption treatments for wastewater containing mixed phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, D.; Palanivelu, K.; Balasubramanian, N. [Anna University, Madras (India). Center for Environmental Studies

    2005-01-01

    Electrochemical degradation of mixed phenolic compounds present in coal conversion wastewater was investigated in the presence of chloride as supporting electrolyte. Initially, the degradation experiments were conducted separately with 300 mg/L of individual phenolic compound in the presence of 2500 mg/L chloride using Ti/TiO{sub 2}-RuO{sub 2}-IrO{sub 2} anode at 5.4 A/dm{sup 2} current density. Comparison of the experimental results of the chemical oxygen demand (COD) removal versus charge indicated that the order of decreasing COD removal for various phenolic compounds as catechol {gt} resorcinol {gt} m-cresol {gt} o-cresol {gt} phenol {gt} p-cresol. Degradation of the mixture of phenolic compounds and high-pressure liquid chromatography (HPLC) determinations at various stages of electrolysis showed that phenolic compounds were initially converted into benzoquinone and then to lower molecular weight aliphatic compounds. The COD and the total organic carbon (TOC) removal were 83 and 58.9% after passing 32 Ah/L with energy consumption of 191.6 kWh/kg of COD removal. Experiments were also conducted to remove adsorbable organic halogens (AOX) content in the treated solution using granular activated carbon. The optimum conditions for the removal of AOX was at pH 3.0, 5 mL/min flow rate and 31.2 cm bed height. Based on the investigation, a general scheme of treatment of mixed phenolic compounds by combined electrochemical and activated carbon adsorption treatment is proposed.

  2. Identification of active compounds in vegetal extracts based on correlation between activity and HPLC-MS data.

    Science.gov (United States)

    Roldán, Cristina; de la Torre, Angel; Mota, Sonia; Morales-Soto, Aránzazu; Menéndez, Javier; Segura-Carretero, Antonio

    2013-01-15

    We propose a method identifying candidates for active compounds in vegetal extracts. From a collection of samples, the method requires, for each sample, a HPLC-MS analysis and a measurement of the activity. By applying a correlation analysis between the activity and the chromatographic area for each interval of elution time and m/z ratio, the peaks corresponding to candidates for active compounds can be identified. Additionally, when peaks are identified, a model can be estimated to predict the activity in new samples. Both methods are evaluated in one experiment involving the phenolic extract (PE) from 22 samples of extra virgin olive oil (EVOO) where the activity is a cytotoxicity index against JIMT-1 breast cancer cells. In this experiment, the samples were separated into two disjunct partitions: one was used for training (identification of candidates and estimation of prediction model), while the other was used for validation (by comparing the predicted and the measured activities). Three compounds were identified as candidates to be responsible for the cytotoxicity of the EVOO-PE against JIMT-1 cells. The prediction model provided an accurate estimation of the activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A Quantum Chemical and Statistical Study of Cytotoxic Activity of Compounds Isolated from Curcuma zedoaria

    Directory of Open Access Journals (Sweden)

    Omer Abdalla Ahmed Hamdi

    2015-04-01

    Full Text Available A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure–activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR; principal component analysis (PCA; and hierarchical cluster analysis (HCA. SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2 vary from 0%–55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay.

  4. Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae

    Directory of Open Access Journals (Sweden)

    Ngadjui Bonaventure T

    2011-05-01

    Full Text Available Abstract Background Artocarpus communis is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antimicrobial activities of the methanol extract (ACB and compounds isolated from the bark of this plant, namely peruvianursenyl acetate C (1, α-amyrenol or viminalol (2, artonin E (4 and 2-[(3,5-dihydroxy-(Z-4-(3-methylbut-1-enylphenyl]benzofuran-6-ol (5. Methods The liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC and the minimal microbicidal concentration (MMC, against seven bacterial and one fungal species. Results The MIC results indicated that ACB as well as compounds 4 and 5 were able to prevent the growth of all tested microbial species. All other compounds showed selective activities. The lowest MIC value of 64 μg/ml for the crude extract was recorded on Staphylococcus aureus ATCC 25922 and Escherichia coli ATCC 8739. The corresponding value of 32 μg/ml was recorded with compounds 4 and 5 on Pseudomonas aeruginosa PA01 and compound 5 on E. coli ATCC 8739, their inhibition effect on P. aeruginosa PA01 being more than that of chloramphenicol used as reference antibiotic. Conclusion The overall results of this study provided supportive data for the use of A. communis as well as some of its constituents for the treatment of infections associated with the studied microorganisms.

  5. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Science.gov (United States)

    Mikaili, Peyman; Maadirad, Surush; Moloudizargari, Milad; Aghajanshakeri, Shahin; Sarahroodi, Shadi

    2013-01-01

    Objective(s): Garlic (Allium sativum L. family Liliaceae) is well known in Iran and its leaves, flowers, and cloves have been used in traditional medicine for a long time. Research in recent decades has shown widespread pharmacological effects of A. sativum and its organosulfur compounds especially Allicin. Studies carried out on the chemical composition of the plant show that the most important constituents of this plant are organosulfur compounds such as allicin, diallyl disulphide, S-allylcysteine, and diallyl trisulfide. Allicin represents one of the most studied among these naturally occurring compounds. In addition to A. sativum, these compounds are also present in A. hirtifolium (shallot) and have been used to treat various diseases. This article reviews the pharmacological effects and traditional uses of A. sativum, A. hirtifolium, and their active constituents to show whether or not they can be further used as potential natural sources for the development of novel drugs. Materials and Methods: For this purpose, the authors went through a vast number of sources and articles and all needed data was gathered. The findings were reviewed and classified on the basis of relevance to the topic and a summary of all effects were reported as tables. Conclusion: Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents. PMID:24379960

  6. Study of the Biological Activity of Novel Synthetic Compounds with Antiviral Properties against Human Rhinoviruses

    Directory of Open Access Journals (Sweden)

    Raffaello Pompei

    2011-04-01

    Full Text Available Picornaviridae represent a very large family of small RNA viruses, some of which are the cause of important human and animal diseases. Since no specific therapy against any of these viruses currently exists, palliative symptomatic treatments are employed. The early steps of the picornavirus replicative cycle seem to be privileged targets for some antiviral compounds like disoxaril and pirodavir. Pirodavir’s main weakness is its cytotoxicity on cell cultures at relatively low doses. In this work some original synthetic compounds were tested, in order to find less toxic compounds with an improved protection index (PI on infected cells. Using an amino group to substitute the oxygen atom in the central chain, such as that in the control molecule pirodavir, resulted in decreased activity against Rhinoviruses and Polioviruses. The presence of an -ethoxy-propoxy- group in the central chain (as in compound I-6602 resulted in decreased cell toxicity and in improved anti-Rhinovirus activity. This compound actually showed a PI >700 on HRV14, while pirodavir had a PI of 250. These results demonstrate that modification of pirodavir’s central hydrocarbon chain can lead to the production of novel derivatives with low cytotoxicity and improved PI against some strains of Rhinoviruses.

  7. Carrier accumulation in the active region and its impact on the device performance of InGaN-based light-emitting diodes

    Science.gov (United States)

    Han, Dong-Pyo; Shim, Jong-In; Shin, Dong-Soo

    2017-12-01

    Carrier recombination and transport processes play key roles in determining optoelectronic performance characteristics such as the efficiency droop and forward voltage in InGaN/GaN multiple-quantum-well (MQW) light-emitting diodes (LEDs). In this work, we investigate the dominant carrier transport and recombination processes inside and outside the MQW region as functions of injection current from the viewpoint of carrier-energy-loss mechanisms. It is experimentally shown that carrier accumulation and subsequent spill-over at MQW active layers due to the insufficient carrier recombination rate, mainly the radiative recombination rate, explain the dependences of both the efficiency droop and the forward voltage on the injection current.

  8. Synthesis and photoluminescence properties of Eu2+ activated CaO ceramic powders for near-ultraviolet chip based white light emitting diodes

    Science.gov (United States)

    Hao, Zhendong; Wang, Ying; Zhang, Liangliang; Pan, Guohui; Zhang, Xia; Wu, Huajun; Luo, Yongshi; Zhang, Jiahua

    2017-09-01

    In this paper, we synthesized series of Eu2+ activated CaO ceramic powders by conventional solid state reaction. Using NH4Cl as a reducing additives, the Eu3+ has been successfully reduced to Eu2+. An intense blue emission peaked at 460 nm from Eu2+ was observed. The luminescent intensity of the doping-optimized CaO:Eu2+ sample can be as high as 106% of commercial BAM blue phosphor under 400 nm near-ultraviolet (NUV) excitation. The effect of Eu2+ and NH4Cl contents on photoluminescence properties and crystal phase formation have been investigated, respectively. The thermal stable property which is an important performance for LED application has also been measured. The emission intensity at 120 °C can maintain 94% of that at room temperature. Our results suggest that CaO: Eu2+ ceramic powder could be used as a promising blue emitting phosphor for NUV chip based white LEDs.

  9. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting.

    Science.gov (United States)

    Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž

    2016-11-01

    The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  11. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Science.gov (United States)

    Sztiller-Sikorska, Malgorzata; Koprowska, Kamila; Majchrzak, Kinga; Hartman, Mariusz; Czyz, Malgorzata

    2014-01-01

    Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti

  12. Compounds from Sorindeia juglandifolia (Anacardiaceae exhibit potent anti-plasmodial activities in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Kamkumo Raceline G

    2012-11-01

    Full Text Available Abstract Background Discovering new lead compounds against malaria parasites is a crucial step to ensuring a sustainable global pipeline for effective anti-malarial drugs. As far as we know, no previous phytochemical or pharmacological investigations have been carried out on Sorindeia juglandifolia. This paper describes the results of an anti-malarial activity-driven investigation of the fruits of this Cameroonian plant. Methods Air-dried fruits were extracted by maceration using methanol. The extract was fractionated by flash chromatography followed by column chromatography over silica gel, eluting with gradients of hexane-ethyl acetate mixtures. Resulting fractions and compounds were tested in vitro against the Plasmodium falciparum chloroquine-resistant strain W2, against field isolates of P. falciparum, and against the P. falciparum recombinant cysteine protease falcipain-2. Promising fractions were assessed for acute toxicity after oral administration in mice. One of the promising isolated compounds was assessed in vivo against the rodent malaria parasite Plasmodium berghei. Results The main end-products of the activity-guided fractionation were 2,3,6-trihydroxy benzoic acid (1 and 2,3,6-trihydroxy methyl benzoate (2. Overall, nine fractions tested against P. falciparum W2 and falcipain-2 were active, with IC50 values of 2.3-11.6 μg/ml for W2, and 1.1-21.9 μg/ml for falcipain-2. Purified compounds (1 and (2 also showed inhibitory effects against P. falciparum W2 (IC50s 16.5 μM and 13.0 μM and falcipain-2 (IC50s 35.4 and 6.1 μM. In studies of P. falciparum isolates from Cameroon, the plant fractions demonstrated IC50 values of 0.14-19.4 μg/ml and compounds (1 and (2 values of 6.3 and 36.1 μM. In vivo assessment of compound (1 showed activity against P. berghei strain B, with mean parasitaemia suppressive dose and curative dose of 44.9 mg/kg and 42.2 mg/kg, respectively. Active fractions were found to be safe in mice after oral

  13. Antiviral Activities and Putative Identification of Compounds in Microbial Extracts from the Hawaiian Coastal Waters

    Science.gov (United States)

    Tong, Jing; Trapido-Rosenthal, Hank; Wang, Jun; Wang, Youwei; Li, Qing X.; Lu, Yuanan

    2012-01-01

    Marine environments are a rich source of significant bioactive compounds. The Hawaiian archipelago, located in the middle of the Pacific Ocean, hosts diverse microorganisms, including many endemic species. Thirty-eight microbial extracts from Hawaiian coastal waters were evaluated for their antiviral activity against four mammalian viruses including herpes simplex virus type one (HSV-1), vesicular stomatitis virus (VSV), vaccinia virus and poliovirus type one (poliovirus-1) using in vitro cell culture assay. Nine of the 38 microbial crude extracts showed antiviral potencies and three of these nine microbial extracts exhibited significant activity against the enveloped viruses. A secosteroid, 5α(H),17α(H),(20R)-beta-acetoxyergost-8(14)-ene was putatively identified and confirmed to be the active compound in these marine microbial extracts. These results warrant future in-depth tests on the isolation of these active elements in order to explore and validate their antiviral potential as important therapeutic remedies. PMID:22611351

  14. Antiviral Activities and Putative Identification of Compounds in Microbial Extracts from the Hawaiian Coastal Waters

    Directory of Open Access Journals (Sweden)

    Yuanan Lu

    2012-02-01

    Full Text Available Marine environments are a rich source of significant bioactive compounds. The Hawaiian archipelago, located in the middle of the Pacific Ocean, hosts diverse microorganisms, including many endemic species. Thirty-eight microbial extracts from Hawaiian coastal waters were evaluated for their antiviral activity against four mammalian viruses including herpes simplex virus type one (HSV-1, vesicular stomatitis virus (VSV, vaccinia virus and poliovirus type one (poliovirus-1 using in vitro cell culture assay. Nine of the 38 microbial crude extracts showed antiviral potencies and three of these nine microbial extracts exhibited significant activity against the enveloped viruses. A secosteroid, 5α(H,17α(H,(20R-beta-acetoxyergost-8(14-ene was putatively identified and confirmed to be the active compound in these marine microbial extracts. These results warrant future in-depth tests on the isolation of these active elements in order to explore and validate their antiviral potential as important therapeutic remedies.

  15. Synthesis and Broad-Spectrum Antiviral Activity of Some Novel Benzo-Heterocyclic Amine Compounds

    Directory of Open Access Journals (Sweden)

    Da-Jun Zhang

    2014-01-01

    Full Text Available A series of novel unsaturated five-membered benzo-heterocyclic amine derivatives were synthesized and assayed to determine their in vitro broad-spectrum antiviral activities. The biological results showed that most of our synthesized compounds exhibited potent broad-spectrum antiviral activity. Notably, compounds 3f (IC50 = 3.21–5.06 μM and 3g (IC50 = 0.71–34.87 μM showed potent activity towards both RNA viruses (influenza A, HCV and Cox B3 virus and a DNA virus (HBV at low micromolar concentrations. An SAR study showed that electron-withdrawing substituents located on the aromatic or heteroaromatic ring favored antiviral activity towards RNA viruses.

  16. Impact of hydrogen peroxide activated by lighting-emitting diode/laser system on enamel color and microhardness: An in situ design

    Directory of Open Access Journals (Sweden)

    Ana Barbara Araujo Loiola

    2016-01-01

    Full Text Available Background: Hydrogen peroxide (HP at lower concentration can provide less alteration on enamel surface and when combined with laser therapy, could decrease tooth sensitivity. This in situ study evaluated the influence of 15% and 35% HP gel activated by lighting-emitting diode (LED/laser light for in-office tooth bleaching. Materials and Methods: Forty-four bovine enamel slabs were polished and subjected to surface microhardness (load of 25 g for 5 s. The specimens were placed in intraoral palatal devices of 11 volunteers (n = 11. Sample was randomly distributed into four groups according to the bleaching protocol: 15% HP, 15% HP activated by LED/laser, 35% HP, and 35% HP activated by LED/laser. The experimental phase comprised 15 days and bleaching protocols were performed on the 2 nd and 9 th days. Surface microhardness (KHN and color changes were measured and data were analyzed by ANOVA (α = 0.05. Results: There were no significant differences in microhardness values neither in color alteration of enamel treated with 15% HP and 35% HP activated or not by LED/laser system (P > 0.05. Conclusions: Both concentrations of HP (15 or 35%, regardless of activated by an LED/laser light, did not affect the surface microhardness and had the same effectiveness in enamel bleaching.

  17. Synthesis of Heteroaromatic Compounds by Oxidative Aromatization Using an Activated Carbon/Molecular Oxygen System

    Directory of Open Access Journals (Sweden)

    Masahiko Hayashi

    2009-08-01

    Full Text Available A variety of heteroaromatic compounds, such as substituted pyridines, pyrazoles, indoles, 2-substituted imidazoles, 2-substituted imidazoles, 2-arylbenzazoles and pyrimidin-2(1H-ones are synthesized by oxidative aromatization using the activated carbon and molecular oxygen system. Mechanistic study focused on the role of activated carbon in the synthesis of 2-arylbenzazoles is also discussed. In the final section, we will disclose the efficient synthesis of substituted 9,10-anthracenes via oxidative aromatization.

  18. Antitumor activities of extracts and compounds from the roots of Daphne tangutica Maxim.

    Science.gov (United States)

    Zhang, Wei; Zhang, Wei-Dong; Zhang, Chuan; Liu, Run-Hui; Li, Ting-Zhao; Fu, Peng; Shan, Lei

    2007-11-01

    The antitumor activities of the crude extracts of Daphne tangutica Maxim. (Thymelaeaceae) and some compounds were investigated in vivo for the first time. The eight tested samples exhibited inhibition in mice transplanted with sarcoma S180. Of the eight samples, two samples DTE-2 (mixture of daphnodorin E and daphnodorin F) and DTE-3 (syringin) were noted to have the most marked antitumor activity. Copyright (c) 2007 John Wiley & Sons, Ltd.

  19. Phenolic compounds from Halimodendron halodendron (Pall.) voss and their antimicrobial and antioxidant activities.

    Science.gov (United States)

    Wang, Jihua; Lou, Jingfeng; Luo, Chao; Zhou, Ligang; Wang, Mingan; Wang, Lan

    2012-01-01

    Halimodendron halodendron has been used as forage in northwestern China for a long time. Its young leaves and flowers are edible and favored by indigenous people. In this study, eleven phenolic compounds were bioassay-guided and isolated from the aerial parts of H. halodendron for the first time. They were identified by means of physicochemical and spectrometric analysis as quercetin (1), 3,5,7,8,4'-pentahydroxy-3'-methoxy flavone (2), 3-O-methylquercetin (3), 3,3'-di-O-methylquercetin (4), 3,3'-di-O-methylquercetin-7-O-β-d-glucopyranoside (5), isorhamentin-3-O-β-d-rutinoside (6), 8-O-methylretusin (7), 8-O-methylretusin-7-O-β-d-glucopyranoside (8), salicylic acid (9), p-hydroxybenzoic acid (ferulic acid) (10), and 4-hydroxy-3-methoxy cinnamic acid (11). They were sorted as flavonols (1-6), soflavones (7 and 8), and phenolic acids (9-11). Among the compounds, flanools 1-4 revealed a strong antibacterial activity with minimum inhibitory concentration (MIC) values of 50-150 μg/mL, and median inhibitory concentration (IC(50)) values of 26.8-125.1 μg/mL. The two isoflavones (7 and 8) showed moderate inhibitory activity on the test bacteria. Three phenolic acids (9, 10 and 11) showed strong antibacterial activity with IC(50) values of 28.1-149.7 μg/mL. Antifungal activities of the compounds were similar to their antibacterial activities. All these phenolic compounds showed significant antimicrobial activity with a broad spectrum as well as antioxidant activity based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and β-carotene-linoleic acid bleaching assays. In general, the flavonol aglycones with relatively low polarity exhibited stronger activities than the glycosides. The results suggest the potential of this plant as a source of functional food ingredients and provide support data for its utilization as forage as well.

  20. Structure-activity of antifungal compounds inspired by aminobisabolenes from the sponge Halichondria sp.

    Science.gov (United States)

    Jamison, Matthew T; Macho, Jocelyn; Molinski, Tadeusz F

    2016-11-01

    Structure-activity relationships of the antifungal aminobisabolene natural product, 1 isolated from Halichondria sp., and synthetic analogs were explored, in parallel with the antidermatophytic allylamine, Terbinafine®, against a panel of pathogenic fungi: Candida spp., Cryptococcus spp. and Trichophyton rubrum. Interpretation of the results suggest different modes of action in antifungal activity for the two classes of compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis and Antifungal Activity of Novel Triazole Compounds Containing Piperazine Moiety

    OpenAIRE

    Wang, Yanwei; Xu, Kehan; Bai, Guojing; Huang, Lei; Wu, Qiuye; Pan, Weihua; Yu, Shichong

    2014-01-01

    Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51). Their structures were characterized by 1H-NMR, 13C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi.

  2. Synthesis and antifungal activity of novel triazole compounds containing piperazine moiety.

    Science.gov (United States)

    Wang, Yanwei; Xu, Kehan; Bai, Guojing; Huang, Lei; Wu, Qiuye; Pan, Weihua; Yu, Shichong

    2014-07-31

    Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51). Their structures were characterized by (1)H-NMR, (13)C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi.

  3. Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities

    OpenAIRE

    Thitilertdecha, Nont; Teerawutgulrag, Aphiwat; Kilburn, Jeremy D.; Rakariyatham, Nuansri

    2010-01-01

    Nephelium lappaceum is a tropical fruit whose peel possesses antioxidant properties. Experiments on the isolation and identification of the active constituents were conducted, and on their antioxidant activity using a lipid peroxidation inhibition assay. The methanolic extract of N. lappaceum peels exhibited strong antioxidant properties. Sephadex LH-20 chromatography was utilized in the isolation of each constituent and the antioxidant properties of each was studied. The isolated compounds w...

  4. Bioactive compounds and antioxidant activity of conilon coffee submitted to different degrees of roasting

    OpenAIRE

    Morais, Sérgio Antônio Lemos de; Aquino, Francisco José Tôrres de; Nascimento, Priscilla Mendes do; Nascimento, Evandro Afonso do; Chang, Roberto

    2009-01-01

    The bioactive compounds and antioxidant activity presented by Conilon coffee (C. Canephora) variety, produced in the Espírito Santo State, Brazil, were quantified. The light roast coffee showed the highest level of total phenols, trigonelline, caffeic and chlorogenic acids. The proanthocyanidin level was the highest for dark roast coffee, while caffeine level didn't show significative changes for the light and middle roast coffees. All the Conilon coffee extracts showed antioxidant activity d...

  5. Anti-leishmanial activities of extracts and isolated compounds from Drechslera rostrata and Eurotium tonpholium.

    Science.gov (United States)

    Awaad, Amani S; Al-Zaylaee, Haifa M; Alqasoumi, Saleh I; Zain, Mohamed E; Aloyan, Ebtesam M; Alafeefy, Ahmed M; Awad, Elham S H; El-Meligy, Reham M

    2014-05-01

    The fungal extract of Drechslera rostrata and Eurotium tonpholium showed a significant anti-leishmanial activity against Leishmania major; IC50 was 28.8 and 28.2 μg/mL, respectively. Seven compounds, five from D. rostrata (H1-H5) and two from E. tonpholium (H6 and H7), were isolated and identified using different spectroscopic analysis including (1) HNMR, (13) CNMR, Hetero-nuclear multiple bond connectivity (HMBC), Hetero-nuclear Multiple Quantum Correlation (HMQC), and EI-MS. The isolated compounds are: di-2-ethylhexyl phthalate (1), (22E)-5α,8α-epidioxyergosta-6,22-diene-3β-ol (2),1,3,8-trihydroxy-6-methyl-nthraquinone (3), aloe-emodine 8-O-glucopyranoside(4), 2R, 3R,4R,5R hexane 1, 2, 3, 4, 5, 6 hexole (Mannitol) (5), 1,8-dihydroxy-3-methoxy-6-methyl-anthraquinone (6) and 1, 4, 5-trihydroxy-7-methoxy-2-methyl-anthraquinone (7). However, compounds (1) and (6) showed activity against L. major with IC50 of 3.2 and 10.38 µg/mL, respectively. On the other hand, oral administration of the two extracts (100 mg/kg) and compounds 1 and 6 (50 mg/kg) showed very good activity when compared with the anti-leishmanial drug Pentostam (125 mg/kg). Interestingly, the complete heeling activity of the extracts and compounds (1) and (6) was obtained after 13-17 days of treatment, while complete healing activity of Pentostam was obtained after 28 days. No alteration on liver and kidney functions was recorded on animals treated with the two extracts for 15 consecutive days. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study.

    Science.gov (United States)

    Zhu, Qiuling; Wen, Keke; Feng, Songyan; Guo, Xugeng; Zhang, Jinglai

    2018-03-05

    Based upon two thermally activated delayed fluorescence (TADF) emitters 1 and 2, compounds 3-6 have been designed by replacing the carbazol group with the bis(4-biphenyl)amine one (3 and 4) and introducing the electron-withdrawing CF3 group into the acceptor unit of 3 and 4 (5 and 6). It is found that the present calculations predict comparable but relatively large energy differences (approximate 0.5eV) between the lowest singlet S1 and triplet T1 states (∆EST) for the six targeted compounds. In order to explain the highly-efficient TADF behavior observed in compounds 1 and 2, the"triplet reservoir" mechanism has been proposed. In addition, the fluorescence rates of all six compounds are very large, in 107-108 orders of magnitude. According to the present calculations, it is a reasonable assumption that the newly designed compounds 3-6 could be considered as the potential TADF emitters, which needs to be further verified by experimental techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Activity-Guided Isolation of Antioxidant Compounds from Andrographis stenophylla Leaf

    Directory of Open Access Journals (Sweden)

    Neelaveni Thangavel

    2010-01-01

    Full Text Available The antioxidant potency of various extracts of Andrographis stenophylla leaf was evaluated in vitro using ferric thiocyanate method. Reductive ability and free radical scavenging activity of the extracts were also investigated. Amounts of phenolic compounds in each of the extracts were determined using Folin-Ciocalteau reagent and compared to observe the correlation between antioxidant activities and total phenolic content. Methanol extract exhibited maximum antioxidant activity and was found to contain 2% of total phenolic compounds. Methanol extract was subjected to column chromatographic separation over silica gel G using ethyl acetate: formic acid: acetic acid: water. Fractions thus obtained were screened for their antioxidant activity. Among the eleven fractions screened, fraction C was more active than the standard butylated hydroxyanisole. Fraction C on further fractionation with n-butanol: acetic acid: water afforded two flavanoids namely acacetine and isosakuranetine. Fraction A was also shown to possess good antioxidant activity which was developed using TLC and indicated the presence of a terpenoid, Andrographolide. The structures of the isolated compounds were confirmed by UV, IR, MS, 1H and 13C NMR spectral data. This is the first report wherein Andrographolide, Acacetine and Isosakuranetine are isolated from Andrographis stenophylla leaf.

  8. [Mutagenic Activity of Four Aminoazo Compounds with Different Carcinogenicity for Rat Liver in the Ames Test].

    Science.gov (United States)

    Frolova, T S; Sinitsyna, O I; Kaledin, V I

    2015-01-01

    In this paper in the bacterial Ames test we compared the mutagenicity of four aminoazo compounds, previously studied by other researchers and used for activation of rat liver enzymes, with the carcinogenicity in the rat liver. It was found that in the Ames test they have mutagenic activity, however, this activity does not correlate quantitatively with rat sensitivity to their hepatocarcinogenic action. Thus, the most active carcinogen 3'-methyl-4-dimethylaminoazobenzene causes mutations almost 2.5 times less than weakly carcinogenic ortho-aminoazotoluene, and exactly the same number of mutations as non-carcinogenic N,N-diethyl-4-aminoazobenzene.

  9. In vitro antifungal activities of bis(alkylpyridinium)alkane compounds against pathogenic yeasts and molds.

    Science.gov (United States)

    Chen, Sharon C-A; Biswas, Chayanika; Bartley, Robyn; Widmer, Fred; Pantarat, Namfon; Obando, Daniel; Djordjevic, Julianne T; Ellis, David H; Jolliffe, Katrina A; Sorrell, Tania C

    2010-08-01

    Ten bis(alkylpyridinium)alkane compounds were tested for antifungal activity against 19 species (26 isolates) of yeasts and molds. We then determined the MICs and minimum fungicidal concentrations (MFCs) of four of the most active compounds (compounds 1, 4, 5, and 8) against 80 Candida and 20 cryptococcal isolates, in comparison with the MICs of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, and caspofungin, using Clinical Laboratory and Standards Institutes broth microdulition M27-A3 (yeasts) or M38-A2 (filamentous fungi) susceptibility protocols. The compounds were more potent against Candida and Cryptococcus spp. (MIC range, 0.74 to 27.9 microg/ml) than molds (0.74 to 59.7 microg/ml). MICs against Exophiala were 0.37 to 5.9 microg/ml and as low as 1.48 microg/ml for Scedosporium but >or=25 microg/ml for zygomycetes, Aspergillus, and Fusarium spp. Compounds 1, 4, 5, and 8 exhibited good fungicidal activity against Candida and Cryptococcus, except for Candida parapsilosis (MICs of >44 mug/ml). Geometric mean (GM) MICs were similar to those of amphotericin B and lower than or comparable to fluconazole GM MICs but 10- to 100-fold greater than those for the other azoles. GM MICs against Candida glabrata were <1 microg/ml, significantly lower than fluconazole GM MICs (P<0.001) and similar to those of itraconazole, posaconazole, and voriconazole (GM MIC range of 0.4 to 1.23 microg/ml). The GM MIC of compound 4 against Candida guilliermondii was lower than that of fluconazole (1.69 microg/ml versus 7.48 microg/ml; P=0.012). MICs against Cryptococcus neoformans and Cryptococcus gattii were similar to those of fluconazole. The GM MIC of compound 4 was significantly higher for C. neoformans (3.83 mug/ml versus 1.81 microg/ml for C. gattii; P=0.015). This study has identified clinically relevant in vitro antifungal activities of novel bisalkypyridinium alkane compounds.

  10. TLC-bioautography directed isolation of antibacterial compounds from active fractionation of Ferula ferulioides.

    Science.gov (United States)

    Sun, Zhong-Lin; Liu, Tao; Wang, Shuang-Ying; Ji, Xiao-Yue; Mu, Qing

    2018-01-30

    A novel optimised isolation method, TLC-bioautography, was evaluated and utilised in this research. Antibacterial compounds which were isolated from the dichloromethane extract of Ferula ferulioides (Steud.) Korovin were detected by means of the method. Their structures were elucidated by extensive spectral and chemical methods. Their antibacterial activities against drug-resistant Staphylococcus aureus (S. aureus) strains were evaluated with broth microdilution method, and the results proved that TLC-bioautography was an effective and highly efficient way to screen natural compounds from plant extracts against drug-resistant strains.

  11. Antibiofilm Activity, Compound Characterization, and Acute Toxicity of Extract from a Novel Bacterial Species of Paenibacillus

    Directory of Open Access Journals (Sweden)

    Saad Musbah Alasil

    2014-01-01

    Full Text Available The effectiveness of many antimicrobial agents is currently decreasing; therefore, it is important to search for alternative therapeutics. Our study was carried out to assess the in vitro antibiofilm activity using microtiter plate assay, to characterize the bioactive compounds using Ultra Performance Liquid Chromatography-Diode Array Detection and Liquid Chromatography-Mass Spectrometry and to test the oral acute toxicity on Sprague Dawley rats of extract derived from a novel bacterial species of Paenibacillus strain 139SI. Our results indicate that the crude extract and its three identified compounds exhibit strong antibiofilm activity against a broad range of clinically important pathogens. Three potential compounds were identified including an amino acid antibiotic C8H20N3O4P (MW 253.237, phospholipase A2 inhibitor C21H36O5 (MW 368.512, and an antibacterial agent C14H11N3O2 (MW 253.260. The acute toxicity test indicates that the mortality rate among all rats was low and that the biochemical parameters, hematological profile, and histopathology examination of liver and kidneys showed no significant differences between experimental groups P>0.05. Overall, our findings suggest that the extract and its purified compounds derived from novel Paenibacillus sp. are nontoxic exhibiting strong antibiofilm activity against Gram-positive and Gram-negative pathogens that can be useful towards new therapeutic management of biofilm-associated infections.

  12. CARBOHYDRATES, PHENOLIC COMPOUNDS AND ANTIOXIDANT ACTIVITY IN PULP AND PEEL OF 15 BANANA CULTIVARS

    Directory of Open Access Journals (Sweden)

    CÉSAR FERNANDES AQUINO

    Full Text Available ABSTRACT The aim of this study was to quantify and compare the levels of carbohydrates and phenolic compounds and the antioxidant activity in the pulp and peel of 15 banana cultivars in two ripening stages. Four bunches per cultivar were harvested in the pre-climacteric stage, six fruits were used by sample unit. Fruits were analyzed in the pre-climacteric stage and after ripening. Total, reducing and non-reducing soluble sugars, starch, phenolic compounds and antioxidant activity were evaluated. Cultivar and ripening stage influenced all characteristics analyzed. Unripe pulp and peel had small percentage of sugar, but high percentage of starch, especially ‘Terrinha’ and ‘Marmelo’ cultivars. AAB and ABB cultivars presented the highest percentages of starch, when compared to AA and AAA cultivars. For the phenolic compounds, the highest content was observed in ripe peel, followed by ripe pulp and unripe peel and pulp, highlighting ‘Terrinha’ cultivar in all parts and stages evaluated. The antioxidant potential was higher in ripe peel, followed by unripe peel, ripe and unripe pulp. Fruits of Terrinha, Marmelo, Maçã, Ouro and Caru-Verde cultivars showed the highest carbohydrate contents, and phenolic compounds or antioxidant activity, justifying future actions in the expansion of planting and consumption of these fruits.

  13. Antialgal and antilarval activities of bioactive compounds extracted from the marine dinoflagellate Amphidinium carterae

    Science.gov (United States)

    Kong, Xianyu; Han, Xiurong; Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2016-12-01

    With the global ban on the application of organotin-based marine coatings by the International Maritime Organization, the development of environmentally friendly, low-toxic and nontoxic antifouling compounds for marine industries has become an urgent need. Marine microorganisms have been considered as a potential source of natural antifoulants. In this study, the antifouling potential of marine dinoflagellate Amphidinium carterae, the toxic and red-tide microalgae, was investigated. We performed a series of operations to extract the bioactive substances from Amphidinium carterae and tested their antialgal and antilarval activities. The crude extract of Amphidinium carterae showed significant antialgal activity and the EC50 value against Skeletonema costatum was 55.4 μg mL-1. After purification, the isolated bioactive substances (the organic extract C) exhibited much higher antialgal and antilarval activities with EC50 of 12.9 μg mL-1 against Skeletonema costatum and LC50 of 15.1 μg mL-1 against Amphibalanus amphitrite larvae. Subsequently, IR, Q-TOFMS, and GC-MS were utilized for the structural elucidation of the bioactive compounds, and a series of unsaturated and saturated 16- to 22-carbon fatty acids were detected. The data suggested the bioactive compounds isolated from Amphidinium carterae exhibited a significant inhibiting effect against the diatom Skeletonema costatum and Amphibalanus amphitrite larvae, and could be substitutes for persistent, toxic antifouling compounds.

  14. Herbicidal activity of pure compound isolated from rhizosphere inhabiting Aspergillus flavus.

    Science.gov (United States)

    Khattak, Saeed Ullah; Lutfullah, Ghosia; Iqbal, Zafar; Rehman, Irshad Ur; Ahmad, Jamshaid; Khan, Abid Ali

    2017-05-11

    In the quest for bioactive natural products of fungal origin, Aspergillus flavus was isolated from rhizosphere of Mentha piperita using Potato Dextrose Agar (PDA) and Czapec Yeast Broth (CYB) nutrient media for metabolites production. In total, three different metabolites were purified using HPLC/LCMS and the structures were established using 500 Varian NMR experiments. Further the isolated metabolites in different concentrations (10, 100, 1000 μg/mL) were tested for herbicidal activity using Completely Randomized design (CRD) against the seeds of Silybum marianum and Avena fatua which are major threats to wheat crop in Pakistan. Among the isolated metabolites, one compound was found active against the test weed species whose activity is reported in the present work. The chemical name of the compound is 2-(1, 4-dihydroxybutan-2-yl)-1, 3-dihydroxy-6, 8-dimethoxyanthracene-9, 10(4aH, 9aH)-dione with mass of 388. Results showed that all seeds germinated in control treatment; however, with the metabolite treated, the growth was retarded to different levels in all parts of the weeds. At a dose of 1000 μg/mL of the pure compound, 100% seeds of S. marianum and 60% seeds of A. fatua were inhibited. Interestingly, the pure compound exhibited less inhibition of 10% towards the seeds of common wheat (Triticum aestivum).

  15. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    Science.gov (United States)

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  16. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity.

    Science.gov (United States)

    Lee, Wonhwa; Kim, Mi-Ae; Park, InWha; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-11-01

    Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo(L-Pro-L-Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 2. Model prediction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative pharmaceutically active compounds (PhACs) naproxen and carbamazepine and one endocrine disrupting compound (EDC) nonylphenol was studied in pilot-scale granular activated carbon (GAC) adsorbers using post-sedimentation (PS) water from a full-scale drinking water treatment plant. The GAC adsorbents were coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. Acidic naproxen broke through fastest while nonylphenol was removed best, which was consistent with the degree to which fouling affected compound removals. Model predictions and experimental data were generally in good agreement for all three compounds, which demonstrated the effectiveness and robustness of the pore and surface diffusion model (PSDM) used in combination with the time-variable parameter approach for predicting removals at environmentally relevant concentrations (i.e., ng/L range). Sensitivity analyses suggested that accurate determination of film diffusion coefficients was critical for predicting breakthrough for naproxen and carbamazepine, in particular when high removals are targeted. Model simulations demonstrated that GAC carbon usage rates (CURs) for naproxen were substantially influenced by the empty bed contact time (EBCT) at the investigated conditions. Model-based comparisons between GAC CURs and minimum CURs for powdered activated carbon (PAC) applications suggested that PAC would be most appropriate for achieving 90% removal of naproxen, whereas GAC would be more suitable for nonylphenol. 25 refs., 4 figs., 1 tab.

  18. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    Science.gov (United States)

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  19. Phenolic compounds in drumstick peel for the evaluation of antibacterial, hemolytic and photocatalytic activities.

    Science.gov (United States)

    Surendra, T V; Roopan, Selvaraj Mohana; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Sridharan, Makuteswaran

    2016-08-01

    Most of the wastes emitted from the food processing industries are not utilized for any further purpose. The economic value of the food waste is very less when compared to the collection or reuse or discard. To increase the economic value we have to design the food waste as useful product or applicable in most of the current field. Nothing is waste in this world with this concept we have investigated the phytochemical analysis of drumstick peel (Moringa oleifera). The result supports the presence of phenols, alkaloids, flavanoids, glycosides and tannins. Since various functional groups containing molecules are present in the extract; it has been further subjected to antibacterial and hemolytic activities. To analysis the antibacterial studies we have employed human pathogenic Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterium. The result of antibacterial activity clearly shows that it possesses significant activity on both bacterial cultures. The hemolytic activity was performed on red blood cells (RBCs). From this result we observed that drumstick peel extract has been considered as non-toxic on RBCs. Malachite green was selected to perform photocatalytic activity. The results stated that the drumstick peel extract possessed good behaviour towards photocatalytic investigation. The malachite green was degraded upto 99.7% using drumstick peel extract. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Novel Compounds with new Anti-Ulcergenic Activity from Convolvulus pilosellifolius Using Bio-Guided Fractionation.

    Science.gov (United States)

    Awaad, Amani S; Al-Refaie, Asmaa; El-Meligy, Reham; Zain, Mohamed; Soliman, Hesham; Marzoke, Mohamed S; El-Sayed, Nabil

    2016-12-01

    Oral administration of the total alcohol extract of Convolvulus pilosellifolius Desr. (250 and 500 md/kg) showed potent anti-ulcerogenic activity in absolute ethanol-induced ulcer model in rats; it showed percent protection of control ulcer by 69.2 and 84.6%, respectively, while standard ranitidine (100 mg/kg) exhibited 46.2%. Bio-guided work leads to isolation of two novel compounds (1 and 2), which were identified through 1 H, 13 C NMR, HMPC, HMQC and DEPT as: methyl 2-(hydroxymethyl) octanoate, named as amanitate, and 16-amino-9,13-dimethyl-17-(prop-1-en-2-yl)-hexadecahydro-1H-cyclopenta[a] phenanthren-3-ol, named as asmatol. Both compounds (50 mg/kg) possessed anti-ulcerogenic activity with 95.4% and 55.84% protection, respectively. Two known compounds (3 and 4) were also isolated and identified through comparison with authentic samples and confirmed through different NMR techniques as kampeferol and quercetin. These compounds also showed anti-ulcerogenic activity with 78.38% and 5.38% protection, respectively. The cytoprotective mechanism explains the potent anti-ulcerogenic activity of the total alcohol extract and the isolated compounds. The extract was highly safe as the LD50 was more than 5000 mg/kg. These results were well supported by the sub-chronic toxicity study, as the extract (500 mg/kg) administrated orally to rats for 35 consecutive days showed no alteration in the liver and kidney functions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    Science.gov (United States)

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Antileishmanial, antimalarial and antimicrobial activities of the extract and isolated compounds from Austroplenckia populnea (Celastraceae).

    Science.gov (United States)

    Andrade, Sérgio F; da Silva Filho, Ademar A; de O Resende, Dimas; Silva, Márcio L A; Cunha, Wilson R; Nanayakkara, N P Dhammika; Bastos, Jairo Kenupp

    2008-01-01

    Austroplenckia populnea (Celastraceae), known as "marmelinho do campo", is used in Brazilian folk medicine as antimicrobial, anti-inflammatory, and antitumoural agent. The aim of the present work was to evaluate the antimicrobial, antileishmanial and antimalarial activities of the crude hydroalcoholic extract of A. populnea (CHE) and some of its isolated compounds. The phytochemical study of the CHE was carried out affording the isolation of methyl populnoate (1), populnoic acid (2), and stigmast-5-en-3-O-beta-(D-glucopyranoside) (3). This is the first time that the presence of compound 3 in A. populnea is reported. The results showed that the CHE presents antifungal and antibacterial activities, especially against Candida glabrata and Candida albicans, for which the CHE showed IC50 values of 0.7 microg mL(-1) and 5.5 microg mL(-1), respectively, while amphotericin B showed an IC50 value of 0.1 microg mL(-1) against both microorganisms. Compounds 1-3 were inactive against all tested microorganisms. In the antileishmanial activity test against Leishmania donovani, the CHE showed an IC50 value of 52 microg mL(-1), while compounds 2 and 3 displayed an IC50 value of 18 microg mL(-1) In the antimalarial assay against Plasmodium falciparum (D6 and W2 clones), it was observed that all evaluated samples were inactive. In order to compare the effect on the parasites with the toxicity to mammalian cells, the cytotoxicity activity of the isolated compounds was evaluated against Vero cells, showing that all evaluated samples exhibited no cytotoxicity at the maximum dose tested.

  3. BIOACTIVE COMPOUNDS AND ANTIOXIDANT ACTIVITY OF PINEAPPLE FRUIT OF DIFFERENT CULTIVARS

    Directory of Open Access Journals (Sweden)

    ESTER ALICE FERREIRA

    Full Text Available ABSTRACT Pineapple is widely consumed and appreciated not only due to its taste and aroma, and also to its nutritional, functional and antioxidant properties, including its vitamin C and carotenoid contents. Brazil is one of the largest world’ pineapple producer, and Pérola and Smooth Cayenne cultivars are the most commonly grown and marketed, but their susceptibility to fusariosis can compromise cultivation. New cultivars resistant to this pathogen are available to meet the demands of pineapple producers and consumers. The aim of this study was to evaluate the content of bioactive compounds and antioxidant activity of pineapple fruits of Imperial, Victoria, IAC Fantástico and Gomo de Mel cultivars, as well as traditional Pérola and Smooth Cayenne cultivars. Fruits grown in the Triângulo Mineiro region were evaluated by colorimetry, determination of ascorbic acid and phenolic compounds by spectrometry, antioxidant activity by ABTS and carotenoid profile by HPLC. Regarding color, Gomo de Mel cultivar showed lower brightness and higher value of parameter b*, indicating a more intense yellow color in this fruit. This result is consistent with the highest carotenoid concentration in this cultivar. Another cultivar that stood out was Imperial, which, while maintaining high carotenoid levels, also showed high concentrations of vitamin C and phenolic compounds, and higher antioxidant activity. Victoria cultivar showed low levels of bioactive compounds and antioxidant activity, even lower than IAC Fantástico cultivar, which showed levels of bioactive compounds similar to traditional Pérola and Smooth Cayenne cultivars.

  4. Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities.

    Science.gov (United States)

    Thitilertdecha, Nont; Teerawutgulrag, Aphiwat; Kilburn, Jeremy D; Rakariyatham, Nuansri

    2010-03-09

    Nephelium lappaceum is a tropical fruit whose peel possesses antioxidant properties. Experiments on the isolation and identification of the active constituents were conducted, and on their antioxidant activity using a lipid peroxidation inhibition assay. The methanolic extract of N. lappaceum peels exhibited strong antioxidant properties. Sephadex LH-20 chromatography was utilized in the isolation of each constituent and the antioxidant properties of each was studied. The isolated compounds were identified as ellagic acid (EA) (1), corilagin (2) and geraniin (3). These compounds accounted for 69.3% of methanolic extract, with geraniin (56.8%) as the major component, and exhibited much greater antioxidant activities than BHT in both lipid peroxidation (77-186 fold) and DPPH* (42-87 fold) assays. The results suggest that the isolated ellagitannins, as the principal components of rambutan peels, could be further utilized as both a medicine and in the food industry.

  5. Identification of Major Phenolic Compounds from Nephelium lappaceum L. and Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Nuansri Rakariyatham

    2010-03-01

    Full Text Available Nephelium lappaceum is a tropical fruit whose peel possesses antioxidant properties. Experiments on the isolation and identification of the active constituents were conducted, and on their antioxidant activity using a lipid peroxidation inhibition assay. The methanolic extract of N. lappaceum peels exhibited strong antioxidant properties. Sephadex LH-20 chromatography was utilized in the isolation of each constituent and the antioxidant properties of each was studied. The isolated compounds were identified as ellagic acid (EA (1, corilagin (2 and geraniin (3. These compounds accounted for 69.3% of methanolic extract, with geraniin (56.8% as the major component, and exhibited much greater antioxidant activities than BHT in both lipid peroxidation (77-186 fold and DPPH• (42-87 fold assays. The results suggest that the isolated ellagitannins, as the principal components of rambutan peels, could be further utilized as both a medicine and in the food industry.

  6. Bioassay-Guided Isolation of Compounds from Datura stramonium with TRAIL-Resistance Overcoming Activity.

    Science.gov (United States)

    Karmakar, Utpal K; Toume, Kazufumi; Ishikawa, Naoki; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Ishibashi, Masami

    2016-02-01

    TRAIL is a potent inducer of apoptosis in most cancer cells, but not in normal cells, and therefore has deserved intense interest as a promising agent for cancer therapy. In the search for bioactive natural products for overcoming TRAIL-resistance, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionation of the MeOH extract of Datura stramonium leaves led to the isolation of three alkaloids--scopolamine (1), trigonelline (2), and tyramine (3). Compounds 1, 2, and 3 exhibited TRAIL-resistance overcoming activity at 50, 150, and 100 µM, respectively in TRAIL-resistant AGS cells.

  7. Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin

    Directory of Open Access Journals (Sweden)

    Shyi-Neng Lou

    2017-01-01

    Full Text Available Kumquat and calamondin are two small-size citrus fruits. Owing to their health benefits, they are traditionally used as folk medicine in Asian countries. However, the research on flavonoids and biological activities of kumquat and calamondin have received less attention. This review summarizes the reported quantitative and qualitative data of phenolic compositions in these two fruits. Effects of maturity, harvest time, various solvent extractions and heat treatment of phenolic compositions, and bioactivities were discussed; distributions of the forms of phenolic compounds existing in kumquat and calamondin were also summarized. Furthermore, biological activities, including antioxidant, antityrosinase, antimicrobial, antitumor, and antimetabolic disorder effects, have also been discussed. Effective phenolic components were proposed for a certain bioactivity. It was found that C-glycoside flavonoids are dominant phenolic compounds in kumquat and calamondin, unlike in other citrus fruits. Up to now, biological activities and chemical characteristics of C-glycoside flavonoids in kumquat and calamondin are largely unknown.

  8. Anti-complement activity of isolated compounds from the roots of Clerodendrum bungei Steud.

    Science.gov (United States)

    Kim, Soo-Ki; Cho, Sang-Buem; Moon, Hyung-In

    2010-11-01

    To determine the anti-complement activity of natural diterpenes, chromatographic separation of the acetone-soluble fraction from the roots of Clerodendrum bungei (Verbenaceae) led to the isolation of five diterpenoids. An acetone-soluble extract of the roots of C. bungei exhibited significant anti-complement activity on the classical pathway complement system, which was expressed as total hemolytic activity. Five compounds isolated from the roots of C. bungei, namely 12-O-β-d-glucopyranosyl-3,11,16-trihydroxyabieta-8,11,13-triene (1), 3,12-O-β-d-diglucopyranosyl-11,16-dihydroxyabieta-8,11,13-triene (2), ajugaside A (3), uncinatone (4) and 19-hydroxyteuvincenone F (5). Compounds 1, 2, 3, 4 and 5 showed inhibitory activity against complement system with 50% inhibitory concentrations (IC(50)) values of 24 µm, 138 µm, 116 µm, 87 µm and 232 µm. Among the compounds tested, 1 showed the most potent anti-complement activity (IC(50), 24 µm). Copyright © 2010 John Wiley & Sons, Ltd.

  9. Rhenium(I) tricarbonyl compounds of bioactive thiosemicarbazones: Synthesis, characterization and activity against Trypanosoma cruzi.

    Science.gov (United States)

    Rodríguez Arce, Esteban; Machado, Ignacio; Rodríguez, Belén; Lapier, Michel; Zúñiga, María Carolina; Maya, Juan Diego; Olea Azar, Claudio; Otero, Lucía; Gambino, Dinorah

    2017-05-01

    American Trypanosomiasis is a chronic infection discovered and described in 1909 by the Brazilian scientist Carlos Chagas. It is caused by the protozoan parasite Trypanosoma cruzi. Although it affects about 10million people in Latin America, the current chemotherapy is still inadequate. The discovery of new drugs is urgently needed. Our group is focused on the development of prospective metal-based drugs mainly based on bioactive ligands and pharmacologically interesting metal ions. In this work three new rhenium(I) tricarbonyl compounds fac-[ReI(CO)3Br(HL)] where HL=5-nitrofuryl containing thiosemicarbazones were synthesized and fully characterized in solution and in the solid state. The in vitro evaluation of the compounds on T. cruzi trypomastigotes (Dm28c strain) showed that the Re(I) compounds are 8 to 15 times more active than the reference drug Nifurtimox and show a 4 to 17 fold increase in activity in respect to the free (HL) ligands. Obtained compounds also show good selectivity indexes (IC50 endothelial cells Ea.hy926/IC50 T. cruzi (Dm28c tripomastigotes)). 1H NMR and MS studies, performed with time, showed that the fac-[Re(CO)3Br(HL)] species convert into the dimers [Re2(CO)6(L)2] in solution. Crystal structure of [ReI2(CO)6(L2)2], the product of complexes' dimerization, was solved. Related to the mechanism of action, the studied compounds do not generate radical oxygen species in the parasite (as 5-nitrofuryl derived thiosemicarbazones do) probably due to the unfavorable nitro reduction potential of the generated dimeric species. On the contrary, the compounds produce a decrease of the oxygen consumption rate of the parasites, maybe inhibiting their mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts.

    Science.gov (United States)

    Peiretti, Pier Giorgio; Meineri, Giorgia; Gai, Francesco; Longato, Erica; Amarowicz, Ryszard

    2017-09-01

    Phenolic compounds were extracted from pumpkin (Cucurbita pepo) seed and amaranth (Amaranthus caudatus) grain into 80% (v/v) methanol. The extracts obtained were characterised by the contents of total phenolic compounds (TPC), trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant power (FRAP) and antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical. The content of individual phenolic compounds was determined by HPLC-DAD method. Pumpkin seeds showed the higher content of TPC than that from amaranth. The TEAC values of both extracts were similar each other. The lower value of FRAP was observed for pumpkin seed. Phenolic compound present in amaranth grain exhibited strongest antiradical properties against DPPH radical. Several peaks were present on the HPLC chromatograms of two extracts. The UV-DAD spectra confirmed the presence of vanillic acid derivatives in the amaranth grain. The three main phenolic compound present in pumpkin seed were characterised by UV-DAD spectra with maximum at 258, 266 and 278 nm.

  11. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  12. Antibiofilm, Antioxidant, Antimutagenic Activities and Phenolic Compounds of Allium orientale BOISS.

    Directory of Open Access Journals (Sweden)

    Ozgur Ceylan

    2015-12-01

    Full Text Available ABSTRACT This is the first study to investigate the antibiofilm, antioxidant and antimutagenic activities and phenolic compounds of Allium orientale. Antimicrobial activity of ethanolic extracts of A. orientale was determined by a broth microdilution method. Antibiofilm activity was evaluated by microplate biofilm assay. The antioxidant activity was determined using three complementary assays; namely, DPPH scavenging, β-carotene-linoleic acid, and total phenolic compounds assays. Phenolic compounds were evaluated by reverse-phase high-performance liquid chromatography. The antimutagenic effect of extracts was analyzed by the Ames test. In RP-HPLC analysis, (+-catechin, apigenin and caffeic acid were identified as major phenolic compounds in the aerial parts of A. orientale. The aerial parts extract possessed the highest total phenolic content (120.979 ± 1.05 mg gallic acid equivalent/g, which were in good correlation with its significant DPPH (IC50 42.18 ± 1.68 mg/mL and lipid peroxidation (89.98 ± 0.69% at 10 mg/mL concentration capacities. A. orientale exhibited potent antimicrobial activity against the organisms tested with MICs ranging from 3.125 to 25 mg/mL. Escherichia coli biofilm formation was inhibited maximum by the aerial parts extract to an extent of 68.51%. The strongest antimutagenic activity was observed at 2.5 mg/plate concentration of aerial parts extract against Salmonella typhimurium TA98.These results suggested that the ethanolic extract of the aerial parts of A.orientale could become useful supplement for pharmaceutical products as a new antioxidant, antibiofilm and antimutagenic agent.

  13. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    Directory of Open Access Journals (Sweden)

    Anas Subarnas

    2011-04-01

    Full Text Available Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L. leaves, lemongrass (Cymbopogon citrates L. herbs, ki lemo (Litsea cubeba L. bark, and laja gowah (Alpinia malaccencis Roxb. rhizomes on locomotor activity in mice and identify the active component(s that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%, 0.1 (55.72%, 0.5 (60.75%, and 0.1 mL/cage (47.09%, respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  14. SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease.

    Science.gov (United States)

    Khan, Reas S; Dine, Kimberly; Das Sarma, Jayasri; Shindler, Kenneth S

    2014-01-02

    Multiple sclerosis (MS) is characterized by central nervous system inflammation and demyelination, and increasing evidence demonstrates significant neuronal damage also occurs and is associated with permanent functional impairment. Current MS therapies have limited ability to prevent neuronal damage, suggesting additional neuroprotective therapies are needed. Compounds that activate the NAD+-dependent SIRT1 deacetylase prevent neuronal loss in an autoimmune-mediated MS model, but the mechanism of this effect is unknown, and it is unclear whether SIRT1 activating compounds exert similar effects in demyelinating disease induced by other etiologies. We measured neuronal loss in C57BL/6 mice inoculated with a neurotropic strain of mouse hepatitis virus, MHV-A59, that induces an MS-like disease. Oral treatment with the SIRT1 activating compound SRTAW04 significantly increased SIRT1 activity within optic nerves and prevented neuronal loss during optic neuritis, an inflammatory demyelinating optic nerve lesion that occurs in MS and its animal models. MHV-A59 induced neuronal loss was associated with reactive oxygen species (ROS) accumulation, and SRTAW04 treatment significantly reduced ROS levels while promoting increased expression of enzymes involved in mitochondrial function and reduction of ROS. SRTAW04 exerted similar protective effects in EAE spinal cords, with decreased demyelination. Results demonstrate that SIRT1 activating compounds prevent neuronal loss in viral-induced demyelinating disease similar to their effects in autoimmune-mediated disease. One mechanism of this neuroprotective effect involves increasing mitochondrial biogenesis with reduction of oxidative stress. SIRT1 activators represent a potential neuroprotective therapy for MS. Understanding common mechanisms of these effects in distinct disease models will help identify targets for more specific therapies.

  15. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-11-01

    Full Text Available Abstract Background Dioscorea bulbifera is an African medicinal plant used to treat microbial infections. In the present study, the methanol extract, fractions (DBB1 and DBB2 and six compounds isolated from the bulbils of D. bulbifera, namely bafoudiosbulbins A (1, B (2, C (3, F (4, G (5 and 2,7-dihydroxy-4-methoxyphenanthrene (6, were tested for their antimicrobial activities against Mycobacteria and Gram-negative bacteria involving multidrug resistant (MDR phenotypes expressing active efflux pumps. Methods The microplate alamar blue assay (MABA and the broth microdilution methods were used to determine the minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of the above samples. Results The results of the MIC determinations indicated that when tested alone, the crude extract, fractions DBB1 and DBB2 as well as compounds 2 to 5 were able to prevent the growth of all the fifteen studied microorganisms, within the concentration range of 8 to 256 μg/mL. The lowest MIC value for the methanol extract and fractions (16 μg/mL was obtained with DBB1 and DBB2 on E, coli AG100A and DBB2 on Mycobacterium tuberculosis MTCS2. The lowest value for individual compounds (8 μg/mL was recorded with compound 3 on M. smegmatis and M. tuberculosis ATCC and MTCS2 strains respectively. The activity of the samples on many MDR bacteria such as Enterobacter aerogenes EA289, CM64, Klebsiella pneumoniae KP63 and Pseudomonas aeruginosa PA124 was better than that of chloramphenicol. When tested in the presence of the efflux pump inhibitor against MDR Gram-negative bacteria, the activity of most of the samples increased. MBC values not greater than 512 μg/mL were recorded on all studied microorganisms with fraction DBB2 and compounds 2 to 5. Conclusions The overall results of the present investigation provided evidence that the crude extract D. bulbifera as well as some of the compounds and mostly compounds 3 could be considered as potential

  16. Dissolved Compounds Excreted by Copepods Reshape the Active Marine Bacterioplankton Community Composition

    Directory of Open Access Journals (Sweden)

    Valentina P. Valdés

    2017-11-01

    Full Text Available Copepods are important suppliers of bioreactive compounds for marine bacteria through fecal pellet production, sloppy feeding, and the excretion of dissolved compounds. However, the interaction between copepods and bacteria in the marine environment is poorly understood. We determined the nitrogen and phosphorus compounds excreted by copepods fed with two natural size-fractionated diets (<20- and 20–150-μm in the upwelling zone of central/southern Chile in late summer and spring. We then assessed the biogeochemical response of the bacterial community and its structure, in terms of total and active cells, to enrichment by copepod-excreted dissolved compounds. Results revealed that copepods actively excreted nitrogen and phosphorus compounds, mainly in the form of ammonium and dissolved organic phosphorus (DOP, reaching excretion rates of 2.6 and 0.05 μmol L−1h−1, respectively. In both periods, the maximum excretion rates were associated with the 20–150-μm size fraction, but particularly during spring, when a higher organic matter quality was observed in excretion products compared to late summer. There were higher excretion rates of dissolved free amino acids (DFAAs from copepods fed with the <20-μm size fraction, mainly histidine (HIS in late summer and glutamic acid (GLU in spring. A shift in the composition of the active bacterial community was observed between periods and treatments, which was associated with the response of the common seawater surface phyla Proteobacteria and Bacteroidetes. The specific bacterial activity (16S rRNA:rDNA suggested a different response to the two size-fractionated diets. In late summer, Betaproteobacteria and Bacteroidetes were stimulated by the treatment enriched with excretion products derived from the 20–150-μm and <20-μm size fractions, respectively. In spring, Alphaproteobacteria were active in the treatment enriched with the excretion products of copepods fed with the <20-μm size

  17. Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells.

    Science.gov (United States)

    Shen, Ye; Xie, Chen; Gu, Yangshun; Li, Xiuyi; Tong, Jianping

    2016-04-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the aged people. The latest systemic review of epidemiological investigations revealed that excessive light exposure increases the risk of AMD. With the drastically increasing use of high-energy light-emitting diodes (LEDs) light in our domestic environment nowadays, it is supposed to pose a potential oxidative threat to ocular health. Retinal pigment epithelium (RPE) is the major ocular source of pathological cytokines, which regulate local inflammation and angiogenesis. We hypothesized that high-energy LED light might disrupt the pathological cytokine expression of retinal pigment epithelium (RPE), contributing to the pathogenesis of AMD. Primary human RPE cells were isolated from eyecups of normal eye donors and seeded into plate wells for growing to confluence. Two widely used multichromatic white light-emitting diodes (LEDs) with correlated color temperatures (CCTs) of 2954 and 7378 K were used in this experiment. The confluent primary RPE cells were under white LEDs light exposure until 24 h. VEGF-A, IL-6, IL-8 and MCP-1 proteins and mRNAs were measured using an ELISA kit and RT-PCR, respectively. Activation of mitogen-activated protein kinases (MAPKs), Akt, Janus kinase (JAK)2 and Nuclear factor (NF)-κB signal pathways after LEDs illumination were evaluated by western blotting analysis. The level of reactive oxygen species (ROS) using chloromethyl- 2',7'-dichlorodihydrofluorescein diacetate. Inhibitors of relevant signal pathways and anti-oxidants were added to the primary RPE cells before LEDs illumination to evaluate their biological functions. We found that 7378 K light, but not 2954 K upregulated the VEGF-A, IL-6, IL-8 and downregulated MCP-1 proteins and mRNAs levels in a time-dependent manner. In parallel, initial activation of MAPKs and NF-κB signal pathways were also observed after 7378 K light exposure. Mechanistically, antioxidants for eliminating reactive oxygen

  18. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Sassi, Aicha; Abed, Besma; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.

  19. Antibacterial and Cytotoxic Activity of Extracts and Isolated Compounds from Myrciariaferruginea (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Cinthia Costa de Lima

    2017-01-01

    Full Text Available This study evaluated for the first time the antibacterial activity, cell viability and migration ability on 3T3 murine fibroblast cells of extracts and isolated compounds [lupeol (1, hexamethylcoruleoellagic acid (2 and a mixture of 1 and betulinaldehyde (3] of Myrciaria ferruginea. In antibacterial assays extracts were susceptible only against S. aureus (MIC 500 μg/mL and S. epidermidis (MIC ranging from 7.8 to 500 μg/mL and compounds 1-3have shown no significant activity. In trials for c ell viability, with exception of MeOH-H 2O fraction from leaves (viable cells > 90%, both the crude extract and other fractions showed inhibition of cell growth (viable cells ≤ 80% at 15.625 and 31.25 μg/mL; while the samples from stems, with the exception of CHCl 3 fraction that showed strong cytotoxic effect at the lowest concentration tested (15.625 μg/mL, the other fractions were not cytotoxic. Compounds (1-3 inhibited cell viability in dose dependent manner (15.625 to 500 μg/mL. Mixture containing 1 and 3 showed inhibitions only in concentrations greater than 62.5 μg/mL while compound 2 decreased from the lowest concentration tested. In scratch wound assay, these compoundsnot increased the population of fibroblasts at concentrations less than 62.5 μg/mL.

  20. Phenolic compounds and antioxidant activity in red fruits produced in organic farming

    Directory of Open Access Journals (Sweden)

    Susana M. A. Soutinho

    2014-01-01

    Full Text Available In this work were studied three red fruits (raspberry, gooseberry and blueberry produced in organic mode, to evaluate the variations in the content of phenolic compounds and antioxidant capacity along maturation. The phenols were extracted from the fruits with two solvents (methanol and acetone and were quantified by the Folin-Ciocalteu method. The antioxidant activity was determined with two methods (HPPH and ABTS. Furthermore, HPLC was used to identify and quantify some phenolic compounds present in the fruits analyzed. The results showed that the total phenolic compounds in all fruits decreased along maturation, either in the methanol or acetone extracts (23 % and 20 % reduction, on average, for methanol and acetone extracts, respectively, although in methanol extracts the levels of phenolic compounds were always higher (0.54 and 0.21 mg GAE/g. The blueberry showed higher level of total phenolics in methanol extract (average 0.67 mg GAE/g, while in the acetone extract it was gooseberry (average 0.31 mg GAE/g. At the end of maturation, all fruits studied had similar values of antioxidant capacity as determined by DPPH method (0.52 mmol Trolox/g. For the ABTS method, blueberries showed higher values of antioxidant activity (6.01 mmol Trolox/g against 3.01 and 2.66 mmol Trolox/g, for raspberry and gooseberry, respectively. Furthermore, the HPLC analysis allowed to identify monomeric anthocyanins and phenolic acids in the three fruits studied.

  1. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  2. Highly fluorinated 2,2'-biphenols and related compounds: relationship between substitution pattern and herbicidal activity.

    Science.gov (United States)

    Francke, Robert; Reingruber, Rüdiger; Schollmeyer, Dieter; Waldvogel, Siegfried R

    2013-05-22

    A broad range of halogenated 2,2'-biphenols was tested for applicability as crop protection agents. The activity of these compounds toward four typical pest plants was observed after application by spraying of diluted solutions. Despite their rather simple structure, it was found that the studied compounds reveal a surprisingly high herbicidal impact. To gain a better understanding of the structure-activity relationship, specific sites of the molecule were chemically modified and the core structures thus gradually changed. The influence of the substitution pattern on the herbicidal properties is discussed, and conclusions on the active site of the biphenol structure are drawn. It was observed that type and position of the halogen substituents have a significant influence on the activity of the core structure. The hydroxy functionalities play a crucial role for the effectiveness of the tested compounds. Because the blocking of the hydroxy moiety leads to dramatically deteriorated performances, the presence of these functionalities on the aromatic ring seems to be indispensable.

  3. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    Directory of Open Access Journals (Sweden)

    Celia Chávez-Mendoza

    2015-06-01

    Full Text Available Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L. using the cultivar/rootstock combinations: Jeanette/Terrano (yellow, Sweet/Robusto (green, Fascinato/Robusto (red, Orangela/Terrano (orange, and Fascinato/Terrano (red. The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05 between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September.

  4. Synthesis, algal inhibition activities and QSAR studies of novel gramine compounds containing ester functional groups

    Science.gov (United States)

    Li, Xia; Yu, Liangmin; Jiang, Xiaohui; Xia, Shuwei; Zhao, Haizhou

    2009-05-01

    2,5,6-Tribromo-1-methylgramine (TBG), isolated from bryozoan Zoobotryon pellucidum was shown to be very efficient in preventing recruitment of larval settlement. In order to improve the compatibility of TBG and its analogues with other ingredients in antifouling paints, structural modification of TBG was focused mainly on halogen substitution and N-substitution. Two halogen-substitute gramines and their derivatives which contain ester functional groups at N-position of gramines were synthesized. Algal inhibition activities of the synthesized compounds against algae Nitzschia closterium were evaluated and the Median Effective Concentration (EC50) range was 1.06-6.74 μg ml-1. Compounds that had a long chain ester group exhibited extremely high antifouling activity. Quantitive Structure Activity Relationship (QSAR) studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors and biological activity of the synthesized compounds. The results show that the toxicity (log (1/EC50)) is correlated well with the partition coefficient log P. Thus, these products have potential function as antifouling agents.

  5. Bioactive Compounds and Antioxidant Activity in Different Grafted Varieties of Bell Pepper

    Science.gov (United States)

    Chávez-Mendoza, Celia; Sanchez, Esteban; Muñoz-Marquez, Ezequiel; Sida-Arreola, Juan Pedro; Flores-Cordova, Maria Antonia

    2015-01-01

    Grafting favors the presence of bioactive compounds in the bell pepper, but many species and varieties have not yet been analyzed in this sense, including commonly grafted varieties. The aim of the present study is to characterize the content in β-carotenes, vitamin C, lycopene, total phenols, and the antioxidant activity of bell pepper (Capsicum annum L) using the cultivar/rootstock combinations: Jeanette/Terrano (yellow), Sweet/Robusto (green), Fascinato/Robusto (red), Orangela/Terrano (orange), and Fascinato/Terrano (red). The plants were grown in a net-shading system and harvested on three sampling dates of the same crop cycle. The results show statistical differences (p ≤ 0.05) between cultivar/rootstock combinations and sampling dates for the content in bioactive compounds and antioxidant activity. Fascinato/Robusto presented the highest concentration of lycopene and total phenols as well as the greatest antioxidant activity of all cultivar/rootstock combinations evaluated. In addition, it was found that the best sampling time for the peppers to have the highest concentrations of bioactive compounds and antioxidant activity was September. PMID:26783714

  6. Synthesis of Hydroxide-TiO2 Compounds with Photocatalytic Activity for Degradation of Phenol

    Science.gov (United States)

    Contreras-Ruiz, J. C.; Martínez-Gallegos, S.; Ordoñez, E.; González-Juárez, J. C.; García-Rivas, J. L.

    2017-03-01

    Photocatalytic degradation of phenol using titanium dioxide (TiO2), either alone or in combination with other materials, has been tested. Mg/Al hydrotalcites prepared by two methods using inorganic (HC) or organic (HS) chemical reagents, along with mixed oxides produced by calcination of these products (HCC and HSC), were mixed with titanium isopropoxide to obtain hydroxide-TiO2 compounds (HCC-TiO2 and HSC-TiO2) and their photocatalytic activity tested in solutions of 10 mg/L phenol at 120 min under illumination at λ UV = 254 nm with power of 4 W or 8 W. The obtained materials were characterized by various techniques, revealing that TiO2 was incorporated into the mixed oxides of the calcined hydrotalcite to form the above-mentioned compounds. The photocatalytic test results indicate that the activity of HCC-TiO2 can be attributed to increased phenol adsorption by hydrotalcite for transfer to the active photocatalytic phase of the impregnated TiO2 particles, while the better results obtained for HSC-TiO2 are due to greater catalyst impregnation on the surface of the calcined hydrotalcite, reducing the screening phenomenon and achieving HSC-TiO2 degradation of up to 21.0% at 8 W. Reuse of both compounds indicated tight combination of HCC or HSC with TiO2, since in four successive separation cycles there was little reduction of activity, being associated primarily with material loss during recovery.

  7. Acaricidal activity of compounds from Cinnamomum camphora (L.) Presl against the carmine spider mite, Tetranychus cinnabarinus.

    Science.gov (United States)

    Chen, Yijuan; Dai, Guanghui

    2015-11-01

    Tetranychus cinnabarinus (Boisduval) is one of the most important, highly polyphagous pests of a wide range of field and greenhouse crops throughout the world. The control of this mite is still based primarily on the use of synthetic chemical pesticides. In this study, we screened eight plant extracts from China and evaluated the natural compounds showing acaricidal properties from the plant extract, considering their potential use as an alternative to synthetic pesticides. In bioassay screening assays, the Cinnamomum camphora (L.) Presl extract showed significantly greater acaricidal activity against T. cinnabarinus than the other seven plant extracts tested. Five compounds were identified from the C. camphora extract via repeated column chromatography and gas chromatography-mass spectrometry analysis. All the compounds presented acaricidal activity, with 2,4-di-tert-butylphenol and ethyl oleate exhibiting the greatest activity. At 7 days after treatment in a potted seedling experiment, the LC50 values of 2,4-di-tert-butylphenol and ethyl oleate were found to be 1850.94 and 2481.65 mg kg(-1) respectively. Microscopic observations showed that the mites displayed the symptomology of poisoning. These results demonstrated that the C. camphora extract and its two active components show the potential to be developed as new natural acaricides for controlling carmine spider mites. © 2014 Society of Chemical Industry.

  8. Ultrasound-assisted extraction of phenolic compounds from Phyllanthus emblica L. and evaluation of antioxidant activities.

    Science.gov (United States)

    Tsai, C-C; Chou, C-H; Liu, Y-C; Hsieh, C-W

    2014-10-01

    The objective of this study was to optimize ultrasound-assisted extraction of phenolic compounds from Phyllanthus emblica. Extracts obtained by UAE were evaluated for their antioxidant activities. Extraction experiments were carried out with three factors and three levels namely extraction time (varying from 15 to 60 min), ethanol concentration (varying from 50 to 90%) and frequency (varying from 28 to 56 kHz). The results showed that the UAE optimal conditions of extracting total phenol components were as follows: 15 min of extraction time, 60°C of extraction temperature, 70% of ethanol concentration, 56 kHz of ultrasonic frequency and a 1: 50 solid to solvent ratio. Under optimal conditions, the leaching-out rate of phenolic compounds was up to 55.34 mg g(-1) , and the yield of crude extract of P. emblica was up to 56.82%. The results reveal that the yield of phenolic compounds of UAE (56.82%) is higher than that of conventional solvent extraction (16.78%). Furthermore, the antioxidant activities of ethanol extracts obtained by UAE were evaluated in terms of activities of DPPH (1,1'-diphenyl-2-2'-picrylhydrazyl) radical scavenging activity, total antioxidant activity, metal chelating activity, and reducing power. P. emblica extracts obtained by UAE showed high antioxidant activity (26.00, 50.11 and 115.91 μg mL(-1) of IC50 values for DPPH radicals, total antioxidant ability and chelating ability of ferrous ion). The result of this study showed that UAE was a suitable method for the extraction of total phenolic compounds. Moreover, the author's main finding in this work is the fact that phenolic compounds from P. emblica show excellent antioxidant activity in multi-test systems. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  10. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    Science.gov (United States)

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  11. Synthesis and antioxidant activity of two novel tetraphenolic compounds derived from toluhydroquinone and tertiary butylhydroquinone

    Directory of Open Access Journals (Sweden)

    Jiang, Z. W.

    2014-06-01

    Full Text Available Two novel compounds bearing four hydroxyphenyl groups were synthesized by the acid-catalyzed condensation reaction of glyoxal with toluhydroquinone (THQ or tertiary butylhydroquinone (TBHQ, respectively. The antioxidant activity of the newly synthesized compounds was assessed by the Rancimat test, a 2,2-diphenyl 1-picrylhydrazyl (DPPH assay and reducing power assay. In the Rancimat antioxidant test using lard oil as substrate, the performance of two newly synthesized compounds was superior to TBHQ at 140 °C. It was suggested that two newly synthesized compounds can be used to improve the oxidative stability of lipid products during high temperature processing. With regard to the DPPH radical scavenging activity and reducing power, the performance of synthesized compounds was inferior to their mother compounds, respectively. The results show that the DPPH radical scavenging activity and reducing power of a compound did not correlate with its ability to retard lipid oxidation.Dos nuevos compuestos con cuatro grupos hidroxifenilo se sintetizaron mediante reacción de condensación catalizada por glioxal con toluhidroquinona (THQ o terbutilhidroquinona (TBHQ, respectivamente. La actividad antioxidante de los compuestos sintetizados se evaluó mediante Rancimat, método del 2,2-difenil-1-picrilhidrazil (DPPH y poder reductor. Para el ensayo de Rancimat se usó manteca de cerdo como sustrato, la efectividad de los dos compuestos recién sintetizados fue superior a la del TBHQ a 140 °C. Se sugiere que los compuestos sintetizados se pueden utilizar para mejorar la estabilidad oxidativa de productos lipídicos durante el procesamiento a alta temperatura. Con respecto a la actividad de eliminación de radicales DPPH y poder reductor, la efectividad de los compuestos sintetizados fue inferior a los compuestos matrices. Los resultados mostraron que la actividad de eliminación de radicales DPPH y poder reductor de un compuesto no se correlacionó con su

  12. Allergy-Inducing Chromium Compounds Trigger Potent Innate Immune Stimulation Via ROS-Dependent Inflammasome Activation.

    Science.gov (United States)

    Adam, Christian; Wohlfarth, Jonas; Haußmann, Maike; Sennefelder, Helga; Rodin, Annette; Maler, Mareike; Martin, Stefan F; Goebeler, Matthias; Schmidt, Marc

    2017-02-01

    Chromium allergy is a common occupational skin disease mediated by chromium (VI)-specific T cells that induce delayed-type hypersensitivity in sensitized individuals. Additionally, chromium (VI) can act as an irritant. Both responses critically require innate immune activation, but if and how chromium (VI) elicits this signal is currently unclear. Using human monocytes, primary human keratinocytes, and murine dendritic cells we show that chromium (VI) compounds fail to trigger direct proinflammatory activation but potently induce processing and secretion of IL-1β. IL-1β release required priming by phorbol-ester or toll-like receptor stimulation and was prevented by inhibition of K+ efflux, NLRP3 depletion or caspase-1 inhibition, identifying chromium (VI) as a hapten activator of the NLRP3 inflammasome. Inflammasome activation was initiated by mitochondrial reactive oxygen species production triggered by chromium (VI), as indicated by sensitivity to treatment with the ROS scavenger N-acetyl cysteine and a coinciding failure of K+ efflux, caspase-1, or NLRP3 inhibition to prevent mitochondrial reactive oxygen species accumulation. IL-1β release further correlated with cytotoxicity that was secondary to reactive oxygen species, K+ efflux, and NLRP3 activation. Trivalent chromium was unable to induce mitochondrial reactive oxygen species production, inflammasome activation, and cytotoxicity, suggesting that oxidation state-specific differences in mitochondrial reactivity may determine inflammasome activation and allergic/irritant capacity of different chromium compounds. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Synthesis and Antiplasmodial Activity of 2-(4-Methoxyphenyl-4-Phenyl-1,10-Phenanthroline Derivative Compounds

    Directory of Open Access Journals (Sweden)

    Nazudin

    2012-08-01

    Full Text Available A unique of synthetic methods was employed to prepare 2-(4-methoxyphenyl-4-phenyl-1,10-phenanthroline (5 derivatives from 4-methoxy-benzaldehyde (1, acetophenone (2, and 8-aminoquinoline (4 with aldol condensation and cyclization reactions. The derivatives were tested through antiplasmodial test. The synthesis of derivatives compound 5 was conducted in three steps. The 3-(4-methoxyphenyl-1-phenylpropenone 3 was synthesized through aldol condensation of 1 and 2 which has a yield of 96.42%. The compound 5 was synthesized through cyclization of compound 4 and 3 with 84.55% yield. The derivative of compound 5 was synthesized from compound 5 using DMS and DES reagents which refluxed for 21 and 22 h, to produce (1-N-methyl-9-(4-methoxyphenyl-7-phenyl-1,10-phenanthrolinium sulfate (6 and (1-N-ethyl-9-(4-methoxyphenyl-7-phenyl-1,10-phenanthrolinium sulfate (7 with 91.42 and 86.36% yields, respectively. Results of in vitro testing of antiplasmodial activity of compound 5 derivatives (i.e., compound 6 and 7 against chloroquine-resistant P. falciparum FCR3 strain showed that compound 7 had higher antimalarial activity than compounds 5 and 6. Whereas, results of in vitro testing against chloroquine-sensitive P. falciparum D10 strain showed that compound 6 has higher antimalarial activity than compounds 5 and 7.

  14. Antioxidant activities of isolated compounds from stems of Mimosa invisa Mart. ex Colla

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Rosane M. [Departamento de Quimica e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil); Alves, Clayton Q.; David, Jorge M.; Rezende, Larissa C. de; Lima, Luciano S., E-mail: jmdavid@ufba.br [Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); David, Juceni P. [Faculdade de Farmacia, Universidade Federal da Bahia, Salvador, BA (Brazil); Queiroz, Luciano P. de [Departamento de Ciencias Biologicas, Universidade Estadual de Feira de Santana, BA (Brazil)

    2012-07-01

    This work describes the phytochemical study of stems of Mimosa invisa (Mimosaceae) and the evaluation of the antioxidant potential of isolated compounds. Chromatographic techniques were employed to isolate salicifoliol, pinoresinol, quercetin, quercetin-3-Orhamnopyranosyl, quercetin-3-O-arabinofuranosyl lupeol, -amyrin, sitosterol, p-hydroxy coumaric acid, 4-hydroxy-3-methoxy benzaldehyde (vanillin), 4-hydroxy-3,5-dimethoxy benzaldehyde, 4-hydroxy-3-methoxy benzoic acid and 4',6,7- trimethoxy flavonol. The latter had been previously described but the spectrometric data shown indicated the structure required review. The antioxidant activity of the compounds was evaluated by the DPPH test and capability of NBT reduction by superoxide radicals. Quercetin glycosides showed lower antioxidant potential than quercetin and, salicifoliol was found to be more active than pinoresinol. (author)

  15. Antioxidant activities of isolated compounds from stems of Mimosa invisa Mart. ex Colla

    Directory of Open Access Journals (Sweden)

    Rosane M. Aguiar

    2012-01-01

    Full Text Available This work describes the phytochemical study of stems of Mimosa invisa (Mimosaceae and the evaluation of the antioxidant potential of isolated compounds. Cromatografic techniques were employed to isolate salicifoliol, pinoresinol, quercetin, quercetin-3-O-rhamnopyranosyl, quercetin-3-O-arabinofuranosyl lupeol, β-amyrin, sitosterol, p-hydroxy coumaric acid, 4-hydroxy-3-methoxy benzaldehyde (vanillin, 4-hydroxy-3,5-dimethoxy benzaldehyde, 4-hydroxy-3-methoxy benzoic acid and 4',6,7- trimethoxy flavonol. The latter had been previously described but the spectrometric data shown indicated the structure required review. The antioxidant activity of the compounds was evaluated by the DPPH test and capability of NBT reduction by superoxide radicals. Quercetin glycosides showed lower antioxidant potential than quercetin and, salicifoliol was found to be more active than pinoresinol.

  16. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  17. Quantitative Structure Activity Relationship of Cinnamaldehyde Compounds against Wood-Decaying Fungi

    Directory of Open Access Journals (Sweden)

    Dongmei Yang

    2016-11-01

    Full Text Available Cinnamaldehyde, of the genius Cinnamomum, is a major constituent of the bark of the cinnamon tree and possesses broad-spectrum antimicrobial activity. In this study, we used best multiple linear regression (BMLR to develop quantitative structure activity relationship (QSAR models for cinnamaldehyde derivatives against wood-decaying fungi Trametes versicolor and Gloeophyllun trabeum. Based on the two optimal QSAR models, we then designed and synthesized two novel cinnamaldehyde compounds. The QSAR models exhibited good correlation coefficients: R2Tv = 0.910 for Trametes versicolor and R2Gt = 0.926 for Gloeophyllun trabeum. Small errors between the experimental and calculated values of two designed compounds indicated that these two QSAR models have strong predictability and stability.

  18. [Effects of plant growth regulator mepiquat chloride on content of active compounds in Scutellaria baicalensis].

    Science.gov (United States)

    Hu, Guo-Qiang; Zhang, Xue-Wen; Li, Min-Hui; Song, Guo-Hu; Yuan, Yuan; Lin, Shu-Fang; Wu, Zhi-Gang

    2012-11-01

    To study the effect of plant growth regulator mepiquat chloride (DPC) on the growing development of plant and the content of active compounds in Scutellaria baicalensis. After spraying DPC during the seedling period, the length of taproot, fresh weight of root, diameter of taproot and the length of stem were measured. The contents of baicalin, baicalein and wogonin were determined by HPLC, respectively. Total flavonoids and scavenging DPPH were determined with ultraviolet spectrophotometry. After spraying DPC, fresh weight of S. baicalensis root was significant increased, and root diameter was also increased. The contents of baicalin and total flavonoids were significantly increased and baicalein and wogonin were decreased remarkably. Compared with controls, scavenging activity of ethanol extracts on DPPH free radical was no significant changed after spraying DPC. Plant growth regulator DPC could regulate the growth on the ground and underground effectively, and could enhance the content of flavonoids compounds of S. baicalensis.

  19. Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1.

    Science.gov (United States)

    Wang, Changlu; Wang, Zhifang; Qiao, Xi; Li, Zhenjing; Li, Fengjuan; Chen, Mianhua; Wang, Yurong; Huang, Yufang; Cui, Haiyan

    2013-04-01

    Streptomyces sp. TD-1 was identified as Streptomyces alboflavus based on its morphological characteristics, physiological properties, and 16S rDNA gene sequence analysis. The antifungal activity of the volatile-producing S. alboflavus TD-1 was investigated. Results showed that volatiles generated by S. alboflavus TD-1 inhibited storage fungi Fusarium moniliforme Sheldon, Aspergillus flavus, Aspergillus ochraceus, Aspergillus niger, and Penicillum citrinum in vitro. GC/MS analysis revealed that 27 kinds of volatile organic compounds were identified from the volatiles of S. alboflavus TD-1 mycelia, among which the most abundant compound was 2-methylisoborneol. Dimethyl disulfide was proved to have antifungal activity against F. moniliforme by fumigation in vitro. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    Science.gov (United States)

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion.

  1. Quantitative Structure Activity Relationship of Cinnamaldehyde Compounds against Wood-Decaying Fungi.

    Science.gov (United States)

    Yang, Dongmei; Wang, Hui; Yuan, Haijian; Li, Shujun

    2016-11-17

    Cinnamaldehyde, of the genius Cinnamomum, is a major constituent of the bark of the cinnamon tree and possesses broad-spectrum antimicrobial activity. In this study, we used best multiple linear regression (BMLR) to develop quantitative structure activity relationship (QSAR) models for cinnamaldehyde derivatives against wood-decaying fungi Trametes versicolor and Gloeophyllun trabeum. Based on the two optimal QSAR models, we then designed and synthesized two novel cinnamaldehyde compounds. The QSAR models exhibited good correlation coefficients: R²Tv = 0.910 for Trametes versicolor and R²Gt = 0.926 for Gloeophyllun trabeum. Small errors between the experimental and calculated values of two designed compounds indicated that these two QSAR models have strong predictability and stability.

  2. CLINICAL AND PHYSIOLOGICAL ACTIVITY OF «NUTRILON 1 WITH PREBIOTICS IMMUNOFORTIS» COMPOUND (2 YEAR FOLLOW UP

    Directory of Open Access Journals (Sweden)

    T.G. Reshetova

    2008-01-01

    Full Text Available Clinical and physiological activity of «Nutrilon 1 with prebiotics immunofortis» compound in children of first year of life was analyzed. This compound has prolonged prebiotic and immunomodulatory activity.Key words: children of first year of life, nutrition, prebiotics.

  3. Coordination modes of bridge carboxylates in dinuclear manganese compounds determine their catalase-like activities.

    Science.gov (United States)

    Jiang, Xiaojun; Liu, Hui; Zheng, Bing; Zhang, Jingyan

    2009-10-28

    To explore the role of bridge carboxylate coordination modes on the catalase-like activities of dinuclear manganese compounds, [Mn(II)2(bpmapa)2(H2O)2](ClO4)2 (1), [Mn(II)2(pbpmapa)2(H2O)2](ClO4)2 (2), and [Mn(II)2(bpmaa)2(H2O)3](ClO4)2 (3) (bpmapa = [bis(2-pyridylmethyl)amino]propionic acid, pbpmapa = alpha-phenyl-beta-[bis(2-pyridylmethyl)amino]propionic acid, and bpmaa = [bis(2-pyridylmethyl)amino]acetic acid), in which Mn(II)-Mn(II) centers have a similar coordination sphere but different carboxylate-Mn bridging modes have been synthesized and structurally characterized by single X-ray diffraction, UV-visible, IR, and EPR spectroscopies, and their catalase-like activities were investigated. Studies of their catalytic activities and the influence of the nitrogenous bases on their catalytic activities indicated that the carboxylate-Mn coordination mode was crucial in H2O2 deprotonation, and eventually in H2O2 disproportionation. Compound 1 with a bidentate carboxylate bridge showed higher catalase-like activity than 2 and 3, in which the carboxylate groups have a monodentate bridging mode. The deprotonation ability of the carboxylate anion was determined by the O-C-O angle and the distance between the weakly bound oxygen of the bridging carboxylate to the manganese ion. The smaller the angle, and the shorter the distance, the stronger the basicity that the carboxylate anion exhibits. The bidentate mu-1,1 bridging coordination mode functionally mimicked the glutamate residues at the manganese catalase active site. Our results suggested that increasing the basicity of the bridging carboxylate ligand of the catalase model compounds will increase their deprotonation ability and lead to more active catalase mimics.

  4. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare

    Directory of Open Access Journals (Sweden)

    Daiane Einhardt Blank

    2017-05-01

    Full Text Available The equine arteritis virus (EAV is responsible by an important respiratory and reproductive disease in equine populations and there is no specific antiviral treatment available. The objective of this study was to investigate the activity of an ethanolic crude extract of Origanum vulgare (EEO and of isolated compound caffeic acid, p-coumaric acid, rosmarinic acid, quercetin, luteolin, carnosol, carnosic acid, kaempferol and apigenin against EAV. The assays were performed using non-cytotoxic concentrations. The antiviral activity was monitored initially by cytopathic effect inhibition (CPE assay in RK13 cells in the presence or absence of EEO. Pre-incubated cells with EEO were also examined to show prophylactic effect. Direct viral inactivation by EEO and isolated compounds was evaluated by incubation at 37°C or 20°C. After the incubation period, the infectivity was immediately determined by virus titrations on cell cultures and expressed as 50% tissue culture infective dose (TCID50/100 µL. There was significant virucidal activity of EEO and of the compounds caffeic acid, p-coumaric acid, quercetin, carnosic acid and kaempferol. When EEO was added after infection, EEO inhibited the virus growth in infected cells, as evidenced by significant reduction of the viral titre. The results provide evidence that the EEO exhibit an inhibitory effect anti-EAV. Among the main compounds evaluated, caffeic acid, p-coumaric acid, carnosic acid, kaempferol and mainly quercetin, contributed to the activity of EEO. EEO may represent a good prototype for the development of a new antiviral agent, presenting promising for combating arteriviruses infections.

  5. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells.

    Science.gov (United States)

    Wu, Jian; Yi, Wenshi; Jin, Linhong; Hu, Deyu; Song, Baoan

    2012-08-31

    Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  6. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2012-08-01

    Full Text Available Abstract Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide and late apoptotic cells (Annexin V+/PI+ increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  7. Investigation of aryl isonitrile compounds with potent, broad-spectrum antifungal activity.

    Science.gov (United States)

    Mohammad, Haroon; Kyei-Baffour, Kwaku; Younis, Waleed; Davis, Dexter C; Eldesouky, Hassan; Seleem, Mohamed N; Dai, Mingji

    2017-06-01

    Invasive fungal infections present a formidable global public health challenge due to the limited number of approved antifungal agents and the emergence of resistance to the frontline treatment options, such as fluconazole. Three fungal pathogens of significant concern are Candida, Cryptococcus, and Aspergillus given their propensity to cause opportunistic infections in immunocompromised individuals. New antifungal agents composed of unique chemical scaffolds are needed to address this public health challenge. The present study examines the structure-activity relationship of a set of aryl isonitrile compounds that possess broad-spectrum antifungal activity primarily against species of Candida and Cryptococcus. The most potent derivatives are capable of inhibiting growth of these key pathogens at concentrations as low as 0.5µM. Remarkably, the most active compounds exhibit an excellent safety profile and are non-toxic to mammalian cells even at concentrations up to 256µM. The present study lays the foundation for further investigation of aryl isonitrile compounds as a new class of antifungal agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Directory of Open Access Journals (Sweden)

    Muhammad Redzuan Hairuddin

    2011-07-01

    Full Text Available The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L., mango (Mangifera indica L., papaya (Carica papaya L., muskmelon (Cucumis melo L., and watermelon Citruluss lanatus (Thunb. were investigated. Significant (p < 0.05 differences, for the amounts of total phenolic compounds (TPC, were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05 change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05 higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05 but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  9. The content of sensory active compounds and flavour of several types of yogurts

    Directory of Open Access Journals (Sweden)

    Eva Vítová

    2010-01-01

    Full Text Available The aim of this work was to identify and quantify several sensory active compounds in various types of yogurts using gas chromatography and simultaneously to judge their influence on flavour of yogurts using sensory analysis. In total 4 types of white and 10 types of flavoured yogurts (creamy and low-fat with various flavourings, produced in Dairy Valašské Meziříčí, Ltd., were analysed. The highest content of sensory active compounds (P < 0.05 was found in strawberry yogurts, with high amount of ethyl butyrate. Excepting ethanol no significant differences (P < 0.05 were found between low-fat and creamy varieties. The total content of sensory active compounds in white yogurts was significantly (P < 0.05 lower than in flavoured fruit types. The highest content was in low-fat and lowest in white bio yoghurts. Flavour of yogurts was evaluated sensorially using scale and ranking test. All creamy yogurt varieties were evaluated as significantly (P < 0.05 more tasty than low-fat ones. Similarly in case of white yogurts creamy yogurts were evaluated as the most tasty and low-fat ones as the worst. Bio yogurts were evaluated equally tasty as classic yogurts with the same fat content.

  10. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    Science.gov (United States)

    2012-01-01

    Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm. PMID:22540963

  11. Phenolic compounds of the Australian native herb Prostanthera rotundifolia and their biological activities.

    Science.gov (United States)

    Tang, Kitty S C; Konczak, Izabela; Zhao, Jian

    2017-10-15

    The chemical identity and bioactivities of phenolic components of the Australian native herb Prostanthera rotundifolia were studied. Phenolic compounds were extracted with 80% (v/v) aqueous methanol and purified by liquid chromatography. The antioxidant capacity of the extract and its inhibiting activity against α-glucosidase, pancreatic lipase and hyaluronidase were determined. Phenolic compounds were identified by a combination of HPLC-PDA, LC-high resolution MS (LC-HRMS), LC-tandem MS (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. Compared to spearmint, mint bush showed comparable antioxidant capacity, stronger inhibitory activity on pancreatic lipase and comparable and lower activity on α-glucosidase and hyaluronidase, respectively. Major compounds identified were verbascoside (48.8%), 4-methoxycinnamic acid (36.4%), p-coumaric acid glucose ester (9.2%) and 1-O-β-d-glucopyranosyl sinapate (5.6%), while caffeic acid, p-coumaric acid, hesperidin and naringenin were present in trace quantities. 4-Methoxycinnamic acid, p-coumaric acid glucose ester and 1-O-β-d-glucopyranosyl sinapate were identified for the first time in the genus of Prostanthera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes

    Science.gov (United States)

    Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.

  13. Frontal immunoaffinity chromatography with mass spectrometric detection: a method for finding active compounds from traditional Chinese herbs.

    Science.gov (United States)

    Luo, Hongpeng; Chen, Lirong; Li, Zhengquan; Ding, Zhensheng; Xu, Xiaojie

    2003-08-15

    Frontal affinity chromatography (FAC) using immobilized polyclone antibodies of compound A coupled with mass spectrometry was used for the screening of affinity compounds from an extract of Phyllanthus urinaria L. Mass spectrometry was used as an analyzer of FAC. It can analyze the frontal affinity chromatogram of each compound of the extract in one program. The extract was dissolved in 2 mM NH4OAc at a concentration of 10 microg/ mL, then loaded on the immobilized antibody column, and data were collected from mass spectrometry to get a frontal affinity chromatogram. The screening of extract resulted in brevifolin, brevifolin carboxylic acid, corilagin, ellagic acid, and phyllanthusiin U. Activity analyses give high inhibitory activities to these compounds. This research work afforded us a new approach to find new leading compounds from nature or a man-made combinatorial library that have different structure styles or to find substitutes for the synthetic active compound that has high toxicity.

  14. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity.

    Science.gov (United States)

    Britta, Elizandra Aparecida; da Silva, Cleuza Conceição; Rubira, Adley Forti; Nakamura, Celso Vataru; Borsali, Redouane

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis, Cytotoxic and Antimalarial Activities of Benzoyl Thiosemicarbazone Analogs of Isoquinoline and Related Compounds

    Directory of Open Access Journals (Sweden)

    Somsak Ruchirawat

    2010-02-01

    Full Text Available Thiosemicarbazone analogs of papaveraldine and related compounds 1–6 were synthesized and evaluated for cytotoxic and antimalarial activities. The cytotoxic activity was tested against HuCCA-1, HepG2, A549 and MOLT-3 human cancer cell lines. Thiosemicarbazones 1–5 displayed cytotoxicity toward all the tested cell lines, while compounds 2–5 selectively showed potent activity against the MOLT-3 cell lines. Significantly, N(4-phenyl-2-benzoylpyridine thiosemicarbazone 4 exhibited the most potent activity against HuCCA-1, HepG2, A549 and MOLT-3 cell lines with IC50 values of 0.03, 4.75, 0.04 and 0.004 µg/mL, respectively. In addition, 2-benzoylpyridine thio-semicarbazones 3 and 4 showed antimalarial activity against Plasmodium falciparum with IC50 of 10-7 to < 10-6 M. The study demonstrates the quite promising activity of analog 4 as a lead molecule for further development.

  16. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke

    Science.gov (United States)

    Gao, Xiaoming; Dai, Yuan; Zhang, Yu; Fu, Feng

    2017-03-01

    Activated Semi coke was prepared by KOH activation and employed as adsorbent to study adsorption function of phenolic compound from aqueous solutions. The adsorption result showed that the adsorption capacity of the activated semi coke for phenolic compound increased with contact time and adsorbent dosage, and slightly affected by temperature. The surface structure property of the activated semi coke was characterized by N2 adsorption, indicating that the activated semi coke was essentially macroporous, and the BET surface area was 347.39 m2 g-1. Scanning electron microscopy indicated that the surface of the activated semi coke had a high developed pore. The adsorption kinetics were investigated according to pseudofirst order, pseudosecond order and intraparticle diffusion, and the kinetics data were fitted by pseudosecond order model, and intraparticle diffusion was not the only rate-controlling step. Adsorption isotherm was studied by Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips and Toth models. The result indicated that adsorption isotherm data could fit well with Langmuir, Redlich-Peterson, Sips and Toth models.

  17. A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Cleydson Breno R. Santos

    2013-12-01

    Full Text Available The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs and molecular docking were used to investigate the interaction between ligands and the receptor (heme. Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE, the charge on the O11 oxygen atom (QO11, the torsion angle O1-O2-Fe-N2 (D2 and the maximum rate of R/Sanderson Electronegativity (RTe+. These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  18. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  19. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico.

    Science.gov (United States)

    Moo-Huchin, Víctor M; Moo-Huchin, Mariela I; Estrada-León, Raciel J; Cuevas-Glory, Luis; Estrada-Mota, Iván A; Ortiz-Vázquez, Elizabeth; Betancur-Ancona, David; Sauri-Duch, Enrique

    2015-01-01

    The aim of this study was to determine the antioxidant compounds, antioxidant activity and content of individual phenolic compounds of freeze-dried peel from three tropical fruits grown in Yucatan, México: purple star apple (Chrysophyllum cainito L.), yellow cashew and red cashew (Anacardium occidentale). The freeze-dried peels were good source of antioxidant compounds. ABTS and DPPH values in the peel from each fruit were 3050.95-3322.31 μM Trolox/100g dry weight (DW) or 890.19-970.01 mg of vitamin C/100 g DW, and 1579.04-1680.90 μM Trolox/100 g DW or 340.18-362.18 mg of vitamin C/100 g DW, respectively. Six phenolic compounds were identified in the peel from the tropical fruits studied: ferulic, caffeic, sinapic, gallic, ellagic and myricetin. This study demonstrated that freeze-dried peels from purple star apple, yellow cashew and red cashew, could serve as potential sources of antioxidants for use in food and pharmaceutical industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. UTILIZATION OF ACTIVATED ZEOLITE AS MOLECULAR SIEVE IN CHROMATOGRAPHIC COLUMN FOR SEPARATION OF COAL TAR COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Dwi Retno Nurotul Wahidiyah

    2010-06-01

    Full Text Available Application of activated zeolite (ZAA as molecular sieve to separate compounds of coal tar from vaccum fractional distillation, have been done. The size of zeolite was 10-20 mesh and used as solid phase in column chromatography with length of 30 cm. The first step of the research was coal pyrolisis and the product (tar was distillated by fractional column and vaccum system at reduced pressure 44 cmHg and maximum temperature at 200 oC. The distillate from this procedure was flowed to the column chromatography of zeolite (ZAA. The compound absorbed by zeolite was eluted with varying solvents, i.e: CCl4, acetone and ethanol. Each fraction was then analyzed by gas chromatography. The results showed, zeolite have a capability to separate the compounds of tar and it tends to absorb medium hydrocarbon. The nonpolar eluent [CCl4] gives the better result in eluting tar compound than polar (ethanol or medium polar eluents (acetone.   Keywords: zeolite, coal tar, column chromatography

  1. Identification and in vitro antioxidant activities of phenolic compounds isolated from Cynoglossum cheirifolium L.

    Science.gov (United States)

    Ilhem, Bensaid; Fawzia, Atik Bekkara; Imad Abdelhamid, El Haci; Karima, Belarbi; Fawzia, Beddou; Chahrazed, Bekhechi

    2018-02-01

    In an extensive search for bioactive compounds from plant sources, the quantitative and qualitative characterisation of the compounds present in Cynoglossum cheirifolium extracts was studied. Total phenolic and flavonoid contents were determined by spectrophotometric techniques. In vitro antioxidant and radical scavenging profiling was determined through DPPH• scavenging activity and Ferric reducing antioxidant power (FRAP). Our study showed that leaves produce more phenolic compounds, followed by flowering aerial part. The butanolic fraction obtained from leaves extract exhibited the highest total phenolics (78.65 ± 3.58 mg GAE/g DW) and flavonoids (22.15 ± 4.66 mg CE/g DW). In contrast, this fraction displayed the highest DPPH• scavenging ability with IC50 values of 0.06 ± 0.003 mg/mL. The RP-HPLC-PDA analysis of phenolic compounds from leaves of C. cheirifolium lets to identify: rosmarinic acid, ferulic acid, caffeic acid, p-coumaric acid, syringic acid, sinapic acid and rutin. The obtained results indicate that this plant represent a valuable source of natural antioxidants.

  2. Antioxidant and Antiacetylcholinesterase Activities of Some Commercial Essential Oils and Their Major Compounds

    Directory of Open Access Journals (Sweden)

    Smail Aazza

    2011-09-01

    Full Text Available The commercial essential oils of Citrus aurantium L., Cupressus sempervirens L., Eucalyptus globulus Labill., Foeniculum vulgare Mill. and Thymus vulgaris L., isolated by steam distillation by a company of Morocco were evaluated in terms of in vitro antioxidant activity through several methods. In vitro acetylcholinesterase inhibitory activity was also determined. Citrus limon (L. Burm. f. oil was also studied, but it was obtained by peel expression. The best antioxidant was T. vulgaris oil, independent of the method used, mainly due to the presence of the phenolic monoterpenes thymol and carvacrol, which when studied as single compounds also presented the best activities. Concerning the acetylcholinesterase inhibition activity, E. globulus was the most effective. Nevertheless its main components 1,8-cineole and limonene were not the most active, a feature that corresponded to d-3-carene.

  3. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds.

    Science.gov (United States)

    Aazza, Smail; Lyoussi, Badiâ; Miguel, Maria G

    2011-09-07

    The commercial essential oils of Citrus aurantium L., Cupressus sempervirens L., Eucalyptus globulus Labill., Foeniculum vulgare Mill. and Thymus vulgaris L., isolated by steam distillation by a company of Morocco were evaluated in terms of in vitro antioxidant activity through several methods. In vitro acetylcholinesterase inhibitory activity was also determined. Citrus limon (L.) Burm. f. oil was also studied, but it was obtained by peel expression. The best antioxidant was T. vulgaris oil, independent of the method used, mainly due to the presence of the phenolic monoterpenes thymol and carvacrol, which when studied as single compounds also presented the best activities. Concerning the acetylcholinesterase inhibition activity, E. globulus was the most effective. Nevertheless its main components 1,8-cineole and limonene were not the most active, a feature that corresponded to d-3-carene.

  4. To trace the active compound in mengkudu (morinda citrifolia with anthelmintic acvtivity against Haemonchus contortus

    Directory of Open Access Journals (Sweden)

    T.B Murdiati

    2000-12-01

    Full Text Available Intestinal parasites such Haemonchus contortus is usually controlled by management improvement and regular administration of anthelmintic. However, there is an indication of H. contortus resistance to several anthelmintic available in the market, which makes medicinal plants as an alternative anthelmintic and mengkudu or noni fruit (Morinda citrifolia have been reported as an effective anthelmintic. To trace the active compounds responsible for anthelmintic activity against H. contortus, the mengkudu fruit was continuosly extracted into hexane, chloroform, metanol and water, followed by in-vitro study on the anthelmintic activity. The in-vitro anthelmintic activity was base on the ability of the extracts to kill the worm and the ability of the extracts to prevent egg development. The study suggested that chloroform fraction which contains alkaloid and anthraquinon have the highest anthelmintic activity and showed significant different compared to control (P≤ 0.05.

  5. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    Science.gov (United States)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  6. Antitumor activity of extract and isolated compounds from Drechslera rostrata and Eurotium tonophilum

    Directory of Open Access Journals (Sweden)

    Fatmah A.S. Alasmary

    2018-02-01

    Full Text Available Total extracts of Drechslera rostrata and Eurotium tonophilum in addition of two isolated compounds from their cultures [di-2-ethylhexyl phthalate (H1 and 1,8-Dihydroxy-3-methoxy-6-methyl-anthraquinone (H2] were tested for their antitumor activity using four human carcinoma cell lines. Antitumor activity was assessed by performing MTT assay to check the % cell viability. The % viability of HCT-116 (colon carcinoma, HeLa (cervical carcinoma, HEp-2 (larynx carcinoma and HepG-2 (hepatocellular carcinoma cells decreased after treatment with Drechslera rostrata and Eurotium tonophilum extracts, these effects were ranged from 059.0 ±  0.1 to 217.0  ±  0.3 µg/ml on all types of cancer cells. The best activity was recorded for Eurotium tonpholium extract (054.5 ± 0.3, 059.0 ± 0.5 and 059.0 ± 0.1 for HEp-2, Hela, and HepG-2 respectively. The isolated compounds (H1&H2 were found to be responsible about the activities because they recorded the lowest IC50 on tested cell lines with range of 9.5–20.3 μg/ml. Vinblastine sulphate was used as a reference standard and showed in vitro anticancer activity. This study demonstrated that all extracts and isolated compounds have antitumor activity against HCT-116, HeLa, HEp-2 and HepG-2 cells.

  7. Light Emitting Diode (LED)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique called photodynamic therapy, requires the surgeon to use tiny pinhead-size Light Emitting Diodes (LEDs) (a source releasing long wavelengths of light) to activate light-sensitive, tumor-treating drugs. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can also be used for hours at a time while still remaining cool to the touch. The LED probe consists of 144 tiny pinhead-size diodes, is 9-inches long, and about one-half-inch in diameter. The small balloon aids in even distribution of the light source. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The probe was developed for photodynamic cancer therapy by the Marshall Space Flight Center under a NASA Small Business Innovative Research program grant.

  8. Light Emitting Diodes (LEDs)

    Science.gov (United States)

    1997-01-01

    A special lighting technology was developed for space-based commercial plant growth research on NASA's Space Shuttle. Surgeons have used this technology to treat brain cancer on Earth, in two successful operations. The treatment technique, called Photodynamic Therapy, requires the surgeon to use tiny, pinhead-size Light Emitting Diodes (LEDs) (a source that releases long wavelengths of light ) to activate light-sensitive, tumor-treating drugs. 'A young woman operated on in May 1999 has fully recovered with no complications and no evidence of the tumor coming back,' said Dr. Harry Whelan, a pediatric neurologist at the Medical Hospital of Wisconsin in Milwaukee. Laser light has been used for this type of surgery in the past, but the LED light illuminates through all nearby tissues, reaching parts of a tumor that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. It can be used for hours at a time while still remaining cool to the touch. The LED light source is compact, about the size of a briefcase, and can be purchased for a fraction of the cost of a laser. The LEDs, developed and managed by NASA's Marshall Space Flight Center, have been used on seven Space Shuttle flights inside the Microgravity Astroculture Facility. This technology has also been successfully used to further commercial research in crop growth.

  9. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Jan Talbot; Kailash Mishra

    2007-12-31

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples

  10. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    Science.gov (United States)

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  11. Computational Studies of CO2 Activation via Photochemical Reactions with Reduced Sulfur Compounds

    OpenAIRE

    Baltrusaitis, Jonas; Patterson, Eric; Hatch, Courtney

    2012-01-01

    Reactions between CO2 and reduced sulfur compounds (RSC) - H2S and CH3SH - were investigated using ground and excited state density functional theory (DFT) and coupled cluster (CC) methods to explore possible RSC oxidation mechanisms and CO2 activation mechanisms in the atmospheric environment. Ground electronic state calculations at the CR-CC(2,3)/6-311+G(2df,2p)//CAM-B3LYP/6-311+G(2df,2p) level show proton transfer as a limiting step in the reduction of CO2 with activation energies of 49.64...

  12. Structure-activity relationship for quaternary ammonium compounds hybridized with poly(methyl methacrylate).

    Science.gov (United States)

    Melo, Leticia D; Palombo, Renata R; Petri, Denise F S; Bruns, Michael; Pereira, Edla M A; Carmona-Ribeiro, Ana M

    2011-06-01

    Hybrid films from poly (methylmethacrylate) (PMMA) and dioctadecyldimethylammonium bromide (DODAB), cetyltrimethylammonium bromide (CTAB), or tetrapropylammonium bromide (TPAB) were characterized by determination of wettability, ellipsometry, atomic force microscopy, active compounds diffusion to water, X-ray photoelectron spectroscopy (XPS) with determination of atomic composition on the films surface, and biocidal activity against Pseudomonas aeruginosa or Staphylococcus aureus. QAC mobility in the films increased from DODAB to CTAB to TPAB. Diffusion and optimal hydrophobic-hydrophilic balance imparted the highest bioactivity to CTAB. DODAB sustained immobilization at the film surface killed bacteria upon contact. TPAB ability to diffuse was useless because of its unfavorable hydrophobic-hydrophilic balance for bioactivity. © 2011 American Chemical Society

  13. Synthesis and Antifungal Activity of Novel Triazole Compounds Containing Piperazine Moiety

    Directory of Open Access Journals (Sweden)

    Yanwei Wang

    2014-07-01

    Full Text Available Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51. Their structures were characterized by 1H-NMR, 13C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi.

  14. Phenolic Compounds from Halimodendron halodendron (Pall. Voss and Their Antimicrobial and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Jihua Wang

    2012-09-01

    Full Text Available Halimodendron halodendron has been used as forage in northwestern China for a long time. Its young leaves and flowers are edible and favored by indigenous people. In this study, eleven phenolic compounds were bioassay-guided and isolated from the aerial parts of H. halodendron for the first time. They were identified by means of physicochemical and spectrometric analysis as quercetin (1, 3,5,7,8,4'-pentahydroxy-3'-methoxy flavone (2, 3-O-methylquercetin (3, 3,3'-di-O-methylquercetin (4, 3,3'-di-O-methylquercetin-7-O-β-D-glucopyranoside (5, isorhamentin-3-O-β-D-rutinoside (6, 8-O-methylretusin (7, 8-O-methylretusin-7-O-β-D-glucopyranoside (8, salicylic acid (9, p-hydroxybenzoic acid (ferulic acid (10, and 4-hydroxy-3-methoxy cinnamic acid (11. They were sorted as flavonols (1–6, soflavones (7 and 8, and phenolic acids (9–11. Among the compounds, flanools 1–4 revealed a strong antibacterial activity with minimum inhibitory concentration (MIC values of 50–150 μg/mL, and median inhibitory concentration (IC50 values of 26.8–125.1 μg/mL. The two isoflavones (7 and 8 showed moderate inhibitory activity on the test bacteria. Three phenolic acids (9, 10 and 11 showed strong antibacterial activity with IC50 values of 28.1–149.7 μg/mL. Antifungal activities of the compounds were similar to their antibacterial activities. All these phenolic compounds showed significant antimicrobial activity with a broad spectrum as well as antioxidant activity based on 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and β-carotene-linoleic acid bleaching assays. In general, the flavonol aglycones with relatively low polarity exhibited stronger activities than the glycosides. The results suggest the potential of this plant as a source of functional food ingredients and provide support data for its utilization as forage as well.

  15. SPE-HPLC purification of endocrine disrupting compounds from human serum for assessment of xenoestrogenic activity

    DEFF Research Database (Denmark)

    Hjelmborg, P.S.; Ghisari, Mandana; Bonefeld-Jørgensen, Eva

    2006-01-01

    Assessment of xenoestrogenic activity in human serum samples requires the removal of endogenous sex hormones to assure that the activity measured originates from xenobiotic compounds only. Serum samples representing high, medium and lower accumulation of persistent organic pollutants (POPs) were...... response curve. 17β-Estradiol titrations showed that the xenoestrogenic effects were mediated via ER. Moreover, our SPE-HPLC-ERE-CALUX assay was demonstrated to elicit high interlaboratory correlation. In the present study the combination of SPE-HPLC purification and the ex vivo estrogenic responses...

  16. Structure elucidation and biological activity of antibacterial compound from Micromonospora auratinigra, a soil Actinomycetes.

    Science.gov (United States)

    Talukdar, M; Bordoloi, M; Dutta, P P; Saikia, S; Kolita, B; Talukdar, S; Nath, S; Yadav, A; Saikia, R; Jha, D K; Bora, T C

    2016-10-01

    The aim of this study was to isolate and characterize the bioactive compound of Micromonospora auratinigra, HK-10 and its antibacterial inhibitory mechanism. An oily bioactive compound was extracted from HK-10 (GenBank accession no. JN381554) and found to have promising antibacterial activity. The compound was characterized as 2-methylheptylisonicotinate (1) by (1) H, (13) C NMR and mass spectroscopy. Minimum inhibitory concentration (MIC) of this molecule was tested by micro broth dilution method and was found to be 70, 40, 80, 60, 60 and 50 μg for Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Echerichia coli, Pseudomonas aeruginosa and Mycobacterium abscessus respectively. The effects of compound 1 were studied on bacterial membrane structure using scanning electron microscopy. The results indicated a membrane-disrupting mechanism, resulting in the dysfunction of the cytoplasmic membrane structure and cell death of the pathogenic bacterial strains. Kinetics of growth of the test organisms was also analysed and indicated 2-methylheptylisonicotinate 1 as a bactericidal agent. Furthermore, we have studied the binding affinity of 1 towards different membrane proteins of pathogenic bacteria by in silico analysis. 2-methylheptylisonicotinate was isolated from M. auratinigra, a rare actinobacterial strain possessing antibacterial activity through a membrane-disrupting mechanism, and has MICs similar to standard antibiotic neomycin sulphate. It is the first report about a strain of M. auratinigra, isolated from Indo-Burma biodiversity hotspot of North-east India with new antimicrobial activities. In silico studies have also supported these results performed on various membrane targets of pathogenic bacteria. The antibacterial potential of M. auratinigra is reported for the first time. The results indicate the possible use of 2-methylheptylisonicotinate as a source of antibacterial agent against dreaded human pathogens. © 2016 The Society for Applied

  17. Light-emitting Diodes

    Science.gov (United States)

    Opel, Daniel R.; Hagstrom, Erika; Pace, Aaron K.; Sisto, Krisanne; Hirano-Ali, Stefanie A.; Desai, Shraddha

    2015-01-01

    Background: In the early 1990s, the biological significance of light-emitting diodes was realized. Since this discovery, various light sources have been investigated for their cutaneous effects. Study design: A Medline search was performed on light-emitting diode lights and their therapeutic effects between 1996 and 2010. Additionally, an open-label, investigator-blinded study was performed using a yellow light-emitting diode device to treat acne, rosacea, photoaging, alopecia areata, and androgenetic alopecia. Results: The authors identified several case-based reports, small case series, and a few randomized controlled trials evaluating the use of four different wavelengths of light-emitting diodes. These devices were classified as red, blue, yellow, or infrared, and covered a wide range of clinical applications. The 21 patients the authors treated had mixed results regarding patient satisfaction and pre- and post-treatment evaluation of improvement in clinical appearance. Conclusion: Review of the literature revealed that differing wavelengths of light-emitting diode devices have many beneficial effects, including wound healing, acne treatment, sunburn prevention, phototherapy for facial rhytides, and skin rejuvenation. The authors’ clinical experience with a specific yellow light-emitting diode device was mixed, depending on the condition being treated, and was likely influenced by the device parameters. PMID:26155326

  18. Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Mehmet Kaya

    2014-01-01

    Full Text Available The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W. The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC, and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs.

  19. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans.

    Science.gov (United States)

    Teodoro, Guilherme R; Brighenti, Fernanda L; Delbem, Alberto C Botazzo; Delbem, Ádina Cléia B; Khouri, Sonia; Gontijo, Aline Vidal L; Pascoal, Aislan Crf; Salvador, Marcos J; Koga-Ito, Cristiane Y

    2015-01-01

    This study aimed to evaluate the antifungal activity of Buchenavia tomentosa extract and bioactive compounds on six Candida species. The antimicrobial activity of extract was evaluated using standard strains and clinical isolates. Cytotoxicity was tested in order to evaluate cell damage caused by the extract. Extract was chemically characterized and the antifungal activity of its compounds was evaluated. Extract showed antifungal activity on Candida species. Candida non-albicans were more susceptible than Candida albicans. Low cytotoxicity for extract was observed. The isolated compounds presented antifungal activity at least against one Candida spp. and all compounds presented antifungal effect on Candida glabrata. Extracts from Buchenavia tomentosa showed promising antifungal activity on Candida species with low cytotoxicity. Gallic acid, corilagin and ellagic acid showed promising inhibitory activity on Candida glabrata.

  20. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants.

    Science.gov (United States)

    Mustafa, R A; Abdul Hamid, A; Mohamed, S; Bakar, F Abu

    2010-01-01

    Free radical scavenging activity of 21 tropical plant extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl assay (DPPH). Total phenolic compounds and flavonoids were determined using Folin-Ciocalteu and HPLC, respectively. Results of the study revealed that all the plants tested exhibited excellent antioxidant activity with IC(50) in the range of 21.3 to 89.6 microg/mL. The most potent activity was demonstrated by Cosmos caudatus (21.3 microg/mL) and Piper betle (23.0 microg/mL) that are not significantly different than that of -tocopherol or BHA. L. inermis extract was found to consist of the highest concentration of phenolics, catechin, epicatechin, and naringenin. High content of quercetin, myricetin, and kaempferol were identified in Vitex negundo, Centella asiatica, and Sesbania grandiflora extracts, respectively. Luteolin and apigenin, on the other hand, were found in Premna cordifolia and Kaempferia galanga extracts. Strong correlation (R = 0.8613) between total phenolic compounds and total flavonoids (R = 0.8430) and that of antioxidant activity of the extracts were observed. The study revealed that phenolic, in particular flavonoids, may be the main contributors to the antioxidant activity exhibited by the plants. Potent antioxidant from natural sources is of great interest to replace the use of synthetic antioxidants. In addition, some of the plants have great potential to be used in the development of functional ingredients/foods that are currently in demand for the health benefits associated with their use.

  1. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico.

    Science.gov (United States)

    Moo-Huchin, Víctor M; Estrada-Mota, Iván; Estrada-León, Raciel; Cuevas-Glory, Luis; Ortiz-Vázquez, Elizabeth; Vargas y Vargas, María de Lourdes; Betancur-Ancona, David; Sauri-Duch, Enrique

    2014-01-01

    The aim to the study was to determine the physicochemical composition, bioactive compounds and antioxidant activity of fruits from Yucatan, Mexico such as star apple, cashew, mombin, mamey sapote, white sapote, sugar apple, sapodilla, dragon fruit, nance, ilama, custard apple, mamoncillo and black sapote. The physicochemical characteristics were different between fruits and were good sources of bioactive compounds. The edible part with the highest values of antioxidant activity were mamoncillo, star apple, mombin, cashew, white sapote, ilama, custard apple, sugar apple, and nance. Total soluble phenols content showed a correlation with antioxidant activity by ABTS (R=0.52, P⩽0.05) and DPPH (R=0.43, P⩽0.05). A high correlation was obtained between the two assays (ABTS and DPPH) used to measure antioxidant activity in the tropical fruit species under study (R=0.82, P⩽0.05). The results show promising perspectives for the exploitation and use of tropical fruits studied with significant levels of nutrients and antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Isolation and identification of a humanTRPV1 activating compound from soy sauce.

    Science.gov (United States)

    Oshida, Mayu; Matsuura, Yasunori; Hotta, Shinnosuke; Watanabe, Jun; Mogi, Yoshinobu; Watanabe, Tatsuo

    2017-05-01

    Transient receptor potential vanilloid 1 (TRPV1) was identified as a receptor of capsaicin, which is a pungent ingredient in hot red peppers. Due to its relevance for nociception, a physiological and pharmacological study of TRPV1 has also been developed. Therefore, it is important to enrich scientific knowledge regarding the TRPV1 activating or inhibiting compounds. In this study, we fractionated soy sauce based on the human TRPV1 (hTRPV1) activity using column chromatography and purified 5-(9H-pyrido[3,4-b]indol-1-yl)-2-furanmethanol (perlolyrine) as an hTRPV1-activating compound. Additionally, perlolyrine activates the human transient receptor potential ankyrin 1 (hTRPA1). The EC50 of hTRPV1 and hTRPA1 were 2.87 and 1.67 μmol L(-1), respectively. HPLC quantification of soy sauces showed that they contain 2.22-12.13 μmol L(-1) of perlolyrine. The sensory evaluation revealed that perlolyrine has taste modification effect. The results of this study, for the first time, suggest that perlolyrine induces the activation of hTRPV1 and hTRPA1.

  3. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds.

    Science.gov (United States)

    Muganga, Raymond; Angenot, Luc; Tits, Monique; Frédérich, Michel

    2014-04-01

    In our previous study, we reported the interesting in vitro antiplasmodial activity of some Rwandan plant extracts. This gave rise to the need for these extracts to also be evaluated in vivo and to identify the compounds responsible for their antiplasmodial activity. The aim of our study was, on the one hand, to evaluate the antiplasmodial activity in vivo and the safety of the selected Rwandan medicinal plants used in the treatment of malaria, with the objective of promoting the development of improved traditional medicines and, on the other hand, to identify the active ingredients in the plants. Plant extracts were selected according to their selectivity index. The in vivo antiplasmodial activity of aqueous, methanolic, and dichloromethane extracts was then evaluated using the classical 4-day suppressive test on Plasmodium berghei infected mice. The activity of the plant extracts was estimated by measuring the percentage of parasitemia reduction, and the survival of the experimental animals was recorded. A bioguided fractionation was performed for the most promising plants, in terms of antiplasmodial activity, in order to isolate active compounds identified by means of spectroscopic and spectrometric methods. The highest level of antiplasmodial activity was observed with the methanolic extract of Fuerstia africana (> 70 %) on days 4 and 7 post-treatment after intraperitoneal injection and on day 7 using oral administration. After oral administration, the level of parasitemia reduction observed on day 4 post-infection was 44 % and 37 % with the aqueous extract of Terminalia mollis and Zanthoxylum chalybeum, respectively. However, the Z. chalybeum extract presented a high level of toxicity after intraperitoneal injection, with no animals surviving on day 1 post-treatment. F. africana, on the other hand, was safer with 40 % mouse survival on day 20 post-treatment. Ferruginol is already known as the active ingredient in F. Africana, and ellagic acid (IC50

  4. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells.

    Science.gov (United States)

    Catchpole, Owen; Mitchell, Kevin; Bloor, Stephen; Davis, Paul; Suddes, Amanda

    2015-10-01

    New Zealand propolis is a "European" type propolis obtained by honey bees mainly from exudates of poplar. European type propolis is known to have anti-inflammatory and anti-cancer properties and this activity has been attributed to some of the main constituents such as chrysin and CAPE (caffeic acid phenethyl ester). As part of our studies on how New Zealand propolis might benefit gastro-intestinal health, we carried out in vitro bioactivity-guided fractionation of "Bio30™" propolis using both anti-inflammatory (TNF-α, COX-1, COX-2) and anti-colon cancer (DLD-1 colon cancer cell viability) assays; and determined the phenolic compounds responsible for the activity. The New Zealand wax-free Bio30™ propolis tincture solids had very high levels of the dihydroflavonoids pinocembrin and pinobanksin-3-O-acetate, and high levels of the dimethylallyl, benzyl and 3-methyl-3-butenyl caffeates relative to CAPE. The DLD-1 assays identified strong anti-proliferative activity associated with these components as well as chrysin, galangin and CAPE and a number of lesser known or lower concentration compounds including benzyl ferulate, benzyl isoferulate, pinostrobin, 5-phenylpenta-2,4-dienoic acid and tectochrysin. The phenolic compounds pinocembrin, pinobanksin-3-O-acetate, tectochrysin, dimethylallyl caffeate, 3-methyl-3-butenyl caffeate, benzyl ferulate and benzyl isoferulate also showed good broad spectrum activity in anti-proliferative assays against three other gastro-intestinal cancer cell lines; HCT-116 colon carcinoma, KYSE-30 oesophageal squamous cancer, and NCI-N87 gastric carcinoma. Activity is also observed in anti-inflammatory assays although it appears to be limited to one of the first cytokines in the inflammatory cascade, TNF-α. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Copaifera langsdorffii oleoresin and its isolated compounds: antibacterial effect and antiproliferative activity in cancer cell lines.

    Science.gov (United States)

    Abrão, Fariza; de Araújo Costa, Luciana Delfino; Alves, Jacqueline Morais; Senedese, Juliana Marques; de Castro, Pâmela Tinti; Ambrósio, Sérgio Ricardo; Veneziani, Rodrigo Cássio Sola; Bastos, Jairo Kenupp; Tavares, Denise Crispim; Martins, Carlos Henrique G

    2015-12-21

    Natural products display numerous therapeutic properties (e.g., antibacterial activity), providing the population with countless benefits. Therefore, the search for novel biologically active, naturally occurring compounds is extremely important. The present paper describes the antibacterial action of the Copaifera langsdorffii oleoresin and ten compounds isolated from this oleoresin against multiresistant bacteria; it also reports the antiproliferative activity of the Copaifera langsdorffii oleoresin and (-)-copalic acid. MICs and MBCs were used to determine the antibacterial activity. Time-kill curve assays provided the time that was necessary for the bacteria to die. The Minimum Inhbitory Concentration of Biofilm (CIMB50) of the compounds that displayed the best results was calculated. Cytotoxicity was measured by using the XTT assay. The diterpene (-)-copalic acid was the most active antibacterial and afforded promising Minimum Inhibitory Concentration (MIC) values for most of the tested strains. Determination of the bactericidal kinetics against some bacteria revealed that the bactericidal effect emerged within six hours of incubation for Streptococcus pneumoniae. Concerning the antibiofilm action of this diterpene, its MICB50 was twofold larger than its CBM against S. capitis and S. pneumoniae. The XTT assay helped to evaluate the cytotoxic effect; results are expressed as IC50. The most pronounced antiproliferative effect arose in tumor cell lines treated with (-)-copalic acid; the lowest IC50 value was found for the human glioblastoma cell line. The diterpene (-)-copalic acid is a potential lead for the development of new selective antimicrobial agents to treat infections caused by Gram-positive multiresistant microorganisms, in both the sessile and planktonic mode. This diterpene is also a good candidate to develop anticancer drugs.

  6. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars.

    Science.gov (United States)

    Kou, Xiaohong; Chen, Qiong; Li, Xianhua; Li, Mianfang; Kan, Cong; Chen, Boru; Zhang, Ying; Xue, Zhaohui

    2015-04-15

    Fifteen jujube cultivars late in their maturation were analysed in the red stage for bioactive compounds; including total phenolics (bound/free), total flavonoids, total polysaccharides, ascorbic acid, total triterpenes, proanthocyanidins and cyclic adenosine monophosphate (cAMP). The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydracyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS(+)) scavenging methods and the ferric reducing antioxidant power (FRAP) assay. The Order Performance by Similarity to Ideal Solution method (TOPSIS) was employed to evaluate the nutrition of different jujube cultivars based on their bioactive compounds. The results indicated that the contents of bioactive compounds and antioxidant capacities vary between different jujube cultivars. Correlation analysis revealed that ascorbic acid, polyphenols and proanthocyanidins were the 3 main components responsible for the antioxidant activity of jujubes. TOPSIS analysis indicated that Zyzyphus jujube cv. Nanjingyazao ranks the highest of the 15 jujube fruits with regards to nutritional value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Anti-biofilm properties of bioactive glasses embedding organic active compounds.

    Science.gov (United States)

    Galarraga-Vinueza, M E; Mesquita-Guimarães, J; Magini, R S; Souza, J C M; Fredel, M C; Boccaccini, A R

    2017-02-01

    Bioactive glasses (BGs) are promising materials for bone repair due to their desirable properties such as osteoconductivity, biodegradability, angiogenic potential, and antibacterial activity. Ionic dissolution products from bioactive glasses increase the medium pH inhibiting surrounding bacteria proliferation. The activity of BGs against biofilm formation has been enhanced by incorporating organic antibacterial compounds. The aim of this review was to summarize evidence in literature which assesses the efficacy of antibacterial and anti-biofilm compounds embedded in bioactive glasses to prevent peri-implant infection during bone healing. A PubMed bibliographical research was carried out including articles published in the last 20 years. Most previous studies evaluated antibacterial efficiency in planktonic cultures but did not investigate biofilm inhibition, underestimating biofilm clinical relevance. Multifactorial features such as biocompatibility of embedded compounds, receptor site characteristics, and drug delivery efficiency have been found to influence the bioactive glass capability of acting both as an anti-biofilm agent and as a bone repairing biomaterial. Accordingly, further in vitro and in vivo studies are required to select the most promising anti-biofilm agents which should be incorporated into bioactive glasses to counteract biofilm proliferation, without inducing toxic effects on human cells, and with the added functionality of promoting bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 672-679, 2017. © 2016 Wiley Periodicals, Inc.

  8. Facile Synthesis and Antimicrobial Evaluation of Some New Heterocyclic Compounds Incorporating a Biologically Active Sulfamoyl Moiety

    Science.gov (United States)

    Darwish, Elham S.

    2014-01-01

    A facile and convenient synthesis of new heterocyclic compounds containing a sulfamoyl moiety suitable for use as antimicrobial agents was reported. The precursor 3-oxo-3-phenyl-N-(4-sulfamoylphenyl)propionamide was coupled smoothly with arenediazonium salt producing hydrazones which reacted with malononitrile or triethylorthoformate affording pyridazine and triazine derivatives, respectively. Also, the reactivity of the same precursor with DMF-DMA was followed by aminotriazole; aromatic aldehydes was followed by hydrazine hydrate, triethylorthoformate, or thiourea affording triazolo[1,5-a]pyrimidine, pyrazole, acrylamide, and dihydropyrimidine derivatives, respectively. On the other hand, treatment of the precursor propionamide with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt which was treated with dilute HCl followed by 2-bromo-1-phenylethanone affording carboxamide derivative. While the same intermediate salt reacted in situ with chloroacetone, ethyl 2-chloroacetate, 3-(2-bromoacetyl)-2H-chromen-2-one, methyl iodide, or 2-oxo-N-phenylpropane hydrazonoyl chloride afforded the thiophene, ketene N,S-acetal, and thiadiazole derivatives, respectively. The structure of the new products was established based on elemental and spectral analysis. Antimicrobial evaluation of some selected examples from the synthesized products was carried out whereby four compounds were found to have moderate activities and one compound showed the highest activity. PMID:25215312

  9. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses.

    Science.gov (United States)

    Silva-BeltrÁn, Norma Patricia; Chaidez-Quiroz, Cristóbal; López-Cuevas, Osvaldo; Ruiz-Cruz, Saul; López-Mata, Marco A; Del-Toro-SÁnchez, Carmen Lizette; Marquez-Rios, Enrique; Ornelas-Paz, José de Jesús

    2017-02-28

    Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log₁₀, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.

  10. The Antiangiogenic Compound Aeroplysinin-1 Induces Apoptosis in Endothelial Cells by Activating the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Beatriz Martínez-Poveda

    2012-09-01

    Full Text Available Aeroplysinin-1 is a brominated metabolite extracted from the marine sponge Aplysina aerophoba that has been previously characterized by our group as a potent antiangiogenic compound in vitro and in vivo. In this work, we provide evidence of a selective induction of apoptosis by aeroplysinin-1 in endothelial cells. Studies on the nuclear morphology of treated cells revealed that aeroplysinin-1 induces chromatin condensation and nuclear fragmentation, and it increases the percentage of cells with sub-diploid DNA content in endothelial, but not in HCT-116, human colon carcinoma and HT-1080 human fibrosarcoma cells. Treatment of endothelial cells with aeroplysinin-1 induces activation of caspases-2, -3, -8 and -9, as well as the cleavage of apoptotic substrates, such as poly (ADP-ribose polymerase and lamin-A in a caspase-dependent mechanism. Our data indicate a relevant role of the mitochondria in the apoptogenic activity of this compound. The observation that aeroplysinin-1 prevents the phosphorylation of Bad relates to the mitochondria-mediated induction of apoptosis by this compound.

  11. Qualitative comparison of active compounds between red and green Mariposa Christia Vespertillonis leaves extracts

    Science.gov (United States)

    Osman, M. S.; Ghani, Z. A.; Ismail, N. F.; Razak, N. A. A.; Jaapar, J.; Ariff, M. A. M.

    2017-09-01

    At present time, Mariposa Christia Vespertillonis (MCV) leave has become popular for its anti-cancer and thus is used widely among the traditional medicine in Malaysia. There are several types of MCV plants and the one that is currently well-known for traditional medicine in Malaysia is the green MCV (GMCV). Red MCV (RMCV) is another type of MCV plant which can also be found easily in Malaysia. In this study, the active compounds for GMCV and RMCV will be compared and analyzed by using Liquid Chromatography - Mass Spectrometry (LC-MS). The active compounds will be extracted from the MCV leaves by using Supercritical Fluid Extraction (SFE). The findings of this study indicates the global yield of the MCV oils is 31 mg/g while the compound identification indicates the presence of anti-cancer, anti-inflammatory and beneficial phytochemicals. This work is an explorative study to reveal the potential of MCV to be extracted using SFE method as potential therapeutic plants for the traditional medicine in Malaysia.

  12. Alarm Odor Compounds of the Brown Marmorated Stink Bug Exhibit Antibacterial Activity.

    Science.gov (United States)

    Sagun, Steven; Collins, Elliot; Martin, Caleb; Nolan, E Joseph; Horzempa, Joseph

    2016-08-01

    Some insects release scented compounds as a defense against predators that also exhibit antimicrobial activity. Trans-2-octenal and trans-2-decenal are the major alarm aldehydes responsible for the scent of Halyomorpha halys, the brown marmorated stink bug. Previous research has shown these aldehydes are antifungal and produce an antipredatory effect, but have never been tested for antibacterial activity. We hypothesized that these compounds functioned similarly to the analogous multifunctional action of earwig compounds, so we tested whether these aldehydes could inhibit the growth of bacteria. Disk diffusion assays indicated that these aldehydes significantly inhibited the growth of Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, in vitro. Moreover, mealworm beetles (Tenebrio molitor) coated in stink bug aldehydes showed a substantial reduction in bacterial colonization compared to vehicle-treated insects. These results suggest that brown marmorated stinkbug aldehydes are indeed antibacterial agents and serve a multifunctional role for this insect. Therefore, stinkbug aldehydes may have potential for use as chemical antimicrobials.

  13. Degradation of mixture of phenolic compounds by activated sludge processes using mixed consortia

    Energy Technology Data Exchange (ETDEWEB)

    Rani, M. Rajani; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad 500 085 (India)

    2011-07-01

    This study describes the feasibility of aerobic treatment of wastewater having mixed Phenolic compounds (phenol, 2-4dinitrophenol, 2-4dichlorophenol, 4-chlorophenol, 4-nitrophenol) by using 9L lab scale Activated Sludge Process (ASP) at HRTs (Hydraulic Retention Time) varying between 3.0 ,2.5, 2.0, 1.5 and 1 day. Continuous monitoring of parameters like pH, Oxidation Reduction Potential (ORP), Chemical Oxidation Demand (COD) , compound reduction is used to asses the treatment efficiency of ASP. The highest percentage COD removal and percentage compound reduction of 98% and 99.3% of phenol was observed at 3.0 d HRT respectively. After treatment pollutants are removed in the order of phenol > 4chlorophenol (4CP) > 4nitrophenol (4NP) > 2-4dichlorophenol (2-4DCP) > 2-4 dinitrophenol (2,4DNP). The dissolved oxygen concentration and pH in the activated sludge reactor was found to be 1-3 mg/L and 7-8 respectively. The optimum biomass concentration was 2500-3000 mg/L, whereas the corresponding SVI was found to be around 70mL/g. The morphological characterization of aerobic granules was carried out by using SEM. Thus the results obtained indicate that ASP could be used efficiently for the treatment of wastewater containing mixed phenols.

  14. Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K.J.; Kim, S.G.; Kim, S.H. [Kyungnam University, Masan (Republic of Korea). Dept. of Civil Engineering

    2008-03-15

    Removal of sulfonamide (SAs) and tetracycline (TAs) classes of antibiotic compound from deionized water and DOC water by powdered activated carbon (PAC) adsorption was evaluated in this study. According to the study results, TAs were more easily adsorbed than SAs although TAs were more hydrophilic than SAs. The phenolic compounds in TAs might be responsible for their high adsorption. Complex formation of TAs with metal and metal oxide on the surface of activated carbon might also contribute to higher adsorption. The hydrophobic effect was important for removal of SAs. More hydrophobic SAs were removed more easily. The carbon type was not important for adsorption of SAs and TAs. Coal based carbon and coconut based carbon showed similar removal efficiencies for these antibiotics. Dissolved organic materials interfered with adsorption of SAs and TAs. Organic interference was more significant for the antibiotic compound, which was more subject to the PAC adsorption. Self-decomposition of SAs and TAs occurred even after 1 day. TAs were more subject to self-decomposition than SAs. Depending on the antibiotic type, more than 60% of TA was removed through selfdecomposition.

  15. Adsorption of Thiophenic Compounds from Model Diesel Fuel Using Copper and Nickel Impregnated Activated Carbons

    Directory of Open Access Journals (Sweden)

    Ramin Karimzadeh

    2012-10-01

    Full Text Available Adsorption of sulfur compoundsby porous materials is an effective way to produce cleaner diesel fuel.In this study, adsorption of refractory thiophenic sulfur compounds, i.e., benzothiophene (BT, dibenzothiophene (DBT, and 4,6-dimethyldibenzothiophene (4,6-DMDBT in single-solute systems from n-hexane solutions onto metal-impregnated activated carbons was investigated. A hydrogen-treated activated carbon fiber was selectively loaded with Ni, NiO, Cu, Cu2O, and CuO species to systematically assess the impact of each metal species on the adsorption of thiophenic compounds (TC. Metal-loaded adsorbents had the same total metal contents and similar microporosities, but contained different types of copper or nickel species. All metal-loaded adsorbents showed enhanced adsorption of tested TC. Cu2O- or NiO-loaded adsorbents exhibited the highest uptakes, due to more specific interactions between Cu+ or Ni2+ species and TC molecules. The theoretical monolyer coverage of TC on the exposed Cu+ sites was estimated and compared with that calculated from the experimental data. Results suggested catalytic conversion of TC molecules to other compounds on the Cu+ sites, followed by adsorption of reaction products onto the carbon surface or multilayer accumulation of TC molecules on the Cu+sites. TC adsorption uptake of the majority of adsorbents followed the order of: 4,6-DMDBT > DBT > BT due to higher intensity of specific and non-specific interactions of larger TC molecules with adsorbents.

  16. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); College of Environmental Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou 225127 (China); Lv, Lu, E-mail: esellu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Lan, Pei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); College of Environmental Science and Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou 225127 (China); Zhang, Shujuan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Pan, Bingcai, E-mail: bcpan@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Zhang, Weiming [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer The presence of EfOM significantly reduced the adsorption capacities and rates of PFCs. Black-Right-Pointing-Pointer Low-molecular-weight EfOM compounds (<1 kDa) compete for adsorption sites of PFSs directly. Black-Right-Pointing-Pointer Large-molecular-weight EfOM compounds (>30 kDa) affect the adsorption through pore blockage or restriction effect. Black-Right-Pointing-Pointer Changes in surface properties of PAC caused by preloaded EfOM could affect PFCs adsorption. - Abstract: Effect of effluent organic matter (EfOM) on the adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) onto powdered activated carbon (PAC) was quantitatively investigated at environmentally relevant concentration levels. The adsorption of both perfluorinated compounds (PFCs) onto PAC followed pseudo-second order kinetics and fitted the Freundlich model well under the given conditions. Intraparticle diffusion was found to be the rate-controlling step in the PFC adsorption process onto PAC in the absence and presence of EfOM. The presence of EfOM, either in PFC-EfOM simultaneous adsorption onto fresh PAC or in PFC adsorption onto EfOM-preloaded PAC, significantly reduced the adsorption capacities and sorption rates of PFCs. The pH of zero point of charge was found to be 7.5 for fresh PAC and 4.2 for EfOM-preloaded PAC, suggesting that the adsorbed EfOM imparted a negative charge on PAC surface. The effect of molecular weight distribution of EfOM on the adsorption of PFCs was investigated with two EfOM fractions obtained by ultrafiltration. The low-molecular-weight compounds (<1 kDa) were found to be the major contributors to the significant reduction in PFC adsorption capacity, while large-molecular-weight compounds (>30 kDa) had much less effect on PFC adsorption capacity.

  17. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  18. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  19. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Fani S

    2015-11-01

    Full Text Available Somayeh Fani,1 Behnam Kamalidehghan,1 Kong Mun Lo,2 Najihah Mohd Hashim,1 Kit May Chow,2 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, 2Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia Abstract: A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene-4-chlorobenzyhydrazidato](o-methylbenzylaquatin(IV chloride, (compound C1, was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50 value of 2.5±0.50 µg/mL after 48 hours treatment. The IC50 value was >30 µg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the

  20. Effect of Pharmaceutically Active Compound Nitroxoline on the Corrosion of Mild Steel in an Acidic Environment

    Directory of Open Access Journals (Sweden)

    R. Ganapathi Sundaram

    2016-01-01

    Full Text Available The effect of Nitroxoline, antibiotic drug, was tested as a corrosion inhibitor for mild steel (MS in an acidic environment by chemical method (mass loss measurement and electrochemical methods such as electrochemical impedance spectroscopy and potentiodynamic polarization. The surface morphology of mild steel was investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, and atomic force microscopy techniques. From the chemical and electrochemical methods, the resistance of corrosion was increased with the addition of Nitroxoline concentration. Tafel curves indicate that the pharmaceutically active compound is a cathodic type inhibitor. An adsorption of Nitroxoline on the surface of mild steel was obeyed by Langmuir isotherm. SEM, EDX, and AFM techniques prove the adsorption process. All the obtained results confirmed that the investigated compound Nitroxoline acts as a good inhibitor for the corrosion of mild steel in an acidic environment.