WorldWideScience

Sample records for active chemical remediation

  1. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    McPherson, G.; Pintauro, P.; O'Connor, S.; Zhang, J.; Gonzales, R.; Flowers, G.

    1993-01-01

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  2. Guidelines for active spreading during in situ chemical oxidation to remediate contaminated groundwater

    Science.gov (United States)

    The effectiveness of in situ chemical oxidation to remediate contaminated aquifers depends on the extent and duration of contact between the injected treatment chemical and the groundwater contaminant (the reactants). Techniques that inject and extract in the aquifer to ‘ac...

  3. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  4. Bryophytes - an emerging source for herbal remedies and chemical production

    DEFF Research Database (Denmark)

    Sabovljevic, Marko S.; Sabovljević, Aneta D.; Ikram, Nur Kusaira K.

    2016-01-01

    biomass in various ecosystems, bryophytes are a seldom part of ethnomedicine and rarely subject to medicinal and chemical analyses. Still, hundreds of novel natural products have been isolated from bryophytes. Bryophytes have been shown to contain numerous potentially useful natural products, including...... loss, plant growth regulators and allelopathic activities. Bryophytes also cause allergies and contact dermatitis. All these effects highlight bryophytes as potential source for herbal remedies and production of chemicals to be used in various products....

  5. Uniroyal Chemical`s remediation project meets or exceeds expectations

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1997-11-01

    Recent remedial actions taken by Uniroyal Chemical Ltd at their Elmira, Ontario, plant have been considered. The company has been manufacturing a wide range of organic chemicals at this plant for use in agriculture and in the plastics and rubber industries since 1942. Historically, wastes were disposed of on-site, which while common practice at the time, caused soil and water contamination by N-nitrosodimethylamine (NDMA), volatile organic compounds such as benzene, toluene, and chlorobenzene, aniline, mercaptobenzothiazole and basic compounds such as ammonia. The local hydrogeology is fairly complex and consists of several aquifers and aquitards of which the Upper Aquifer (UA) and the Municipal Aquifer (MA) have been the primary concern. They have supplied all or part of the drinking water for the Kitchener-Waterloo area and the town of Elmira. After an extensive feasibility study, the decision was made to install shallow extension wells, and a system to treat the groundwater to acceptable criteria to discharge the treated water to the river system. Development of the system, which besides ten extraction wells includes a tertiary treatment process for UV oxidation, was described. The system has been in operation since January 1997. It affords 95 to 98 per cent of containment efficiency, 99 per cent ammonia removal, and 99.97 per cent of NDMA removal. Effluent requirements have been consistently met for all 18 primary contaminants, and no groundwater is being discharged into the river system.

  6. REAL TIME DATA FOR REMEDIATION ACTIVITIES (11505)

    International Nuclear Information System (INIS)

    Brock, C.T.

    2011-01-01

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  7. Chemical and bioanalytical characterisation of PAHs in risk assessment of remediated PAH-contaminated soils.

    Science.gov (United States)

    Larsson, Maria; Hagberg, Jessika; Rotander, Anna; van Bavel, Bert; Engwall, Magnus

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in soil at former industrial areas; and in Sweden, some of the most contaminated sites are being remediated. Generic guideline values for soil use after so-called successful remediation actions of PAH-contaminated soil are based on the 16 EPA priority pollutants, which only constitute a small part of the complex cocktail of toxicants in many contaminated soils. The aim of the study was to elucidate if the actual toxicological risks of soil samples from successful remediation projects could be reflected by chemical determination of these PAHs. We compared chemical analysis (GC-MS) and bioassay analysis (H4IIE-luc) of a number of remediated PAH-contaminated soils. The H4IIE-luc bioassay is an aryl hydrocarbon (Ah) receptor-based assay that detects compounds that activate the Ah receptor, one important mechanism for PAH toxicity. Comparison of the results showed that the bioassay-determined toxicity in the remediated soil samples could only be explained to a minor extent by the concentrations of the 16 priority PAHs. The current risk assessment method for PAH-contaminated soil in use in Sweden along with other countries, based on chemical analysis of selected PAHs, is missing toxicologically relevant PAHs and other similar substances. It is therefore reasonable to include bioassays in risk assessment and in the classification of remediated PAH-contaminated soils. This could minimise environmental and human health risks and enable greater safety in subsequent reuse of remediated soils.

  8. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  9. Proposed plan for remedial action at the chemical plant area of the Weldon Spring site

    International Nuclear Information System (INIS)

    1992-11-01

    This proposed plan addresses the management of contaminated material at the chemical plant area of the Weldon Spring site and nearby properties in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry, both of which are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced at the chemical plant in the 1940s, and uranium and thorium materials were processed in the 1950s and 1960s. Various liquid, sludge, and solid wastes were disposed of at the Chemical plant area and in the quarry during that time. The Weldon Spring site is listed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The proposed plan is organized as follows: Chapter 2 presents the history and setting of the Weldon Spring site and briefly describes the contaminated material at the chemical plant area. Chapter 3 defines the scope of the remedial action and its role in the Weldon Spring Site Remedial Action Project. Chapter 4 summarizes the risks associated with possible exposures to site contaminants in the absence of remedial action and identifies proposed cleanup levels for soil. Chapter 5 briefly describes the final alternatives considered for the remedial action. Chapter 6 summarizes the evaluation of final alternatives for managing the contaminated material, identifies the currently preferred alternative, and discusses a possible contingency remedy to provide treatment flexibility. Chapter 7 presents the community's role in this action. Chapter 8 is a list of the references cited in this proposed plan

  10. Communication activities during remediation project of Zavratec

    International Nuclear Information System (INIS)

    Kukovica, T.; Mele, I.

    1996-01-01

    The remediation project of temporary storage of radioactive waste near village Zavratec is under way. The Agency for Radwaste Management was assigned to perform this project by the Slovenian government. Radioactive waste was stored on site of Zavratec in 1961. That year an accident has occurred at Oncological institute in Ljubljana in which several rooms and some equipment have been contaminated by the content of radium applicator. Radioactive waste from decontamination was transported and stored in an old Italian military barrack near village Zavratec. The storage became known to public in eighties by the TV report. Since that time it is frequently the subject of public polemics and discussions. This year the first part of remediation project, i.e. the activity measurements and sorting of radioactive waste is taking place. It is planned to conclude the project next year. For successful realization of the project the PR activities, specially the communication with the local community, are of great importance. Special plan of these activities has been prepared by the Agency for Radwaste Management in early stage of the project. Initial activities have already been successfully realized. In this paper the communication plan is presented and most important elements of this plan are briefly described. (author)

  11. Chemical tailoring of steam to remediate underground mixed waste contaminents

    Science.gov (United States)

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  12. Toxic industrial deposit remediation by ant activity

    Science.gov (United States)

    Jilkova, Veronika; Frouz, Jan

    2016-04-01

    Toxic industrial deposits are often contaminated by heavy metals and the substrates have low pH values. In such systems, soil development is thus slowed down by high toxicity and acidic conditions which are unfavourable to soil fauna. Ants (Hymenoptera, Formicidae) are considered tolerant to heavy metal pollution and are known to increase organic matter content and microbial activity in their nests. Here, we focused on soil remediation caused by three ant species (Formica sanguinea, Lasius niger, and Tetramorium sp.) in an ore-washery sedimentation basin near Chvaletice (Czech Republic). Soil samples were taken from the centre of ant nests and from the nest surroundings (>3 m from nests). Samples were then analyzed for microbial activity and biomass and contents of organic matter and nutrients. As a result, ant species that most influenced soil properties was F. sanguinea as there were higher microbial activity and total nitrogen and ammonia contents in ant nests than in the surrounding soil. We expected such a result because F. sanguinea builds conspicuous large nests and is a carnivorous species that brings substantial amounts of nitrogen in insect prey to their nests. Effects of the other two ant species might be lower because of smaller nests and different feeding habits as they rely mainly on honeydew from aphids or on plant seeds that do not contain much nutrients.

  13. Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing.

    Science.gov (United States)

    Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing

    2017-12-15

    Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Integration of biotechnology in remediation and pollution prevention activities

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1996-01-01

    The North American Free Trade Agreement/North American Agreement on Environmental Cooperation provides a mechanism for an international collaboration between the US, Canada, and Mexico to jointly develop, modify, or refine technologies that remediate or protect the environment. These countries have a vested interest in this type of collaboration because contaminants do not respect the boundaries of a manufacturing site, region, city, state, or country. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) consists of a diverse group of individuals who address a variety of environmental issues. ESD is involved in basic and applied research on the fate, transport, and remediation of contaminants; environmental assessment; environmental engineering; and demonstrations of advanced remediation technologies. The remediation and protection of the environment includes water, air, and soils for organic, inorganic, and radioactive contaminants. In addition to remediating contaminated sites, research also focuses on life-cycle analyses of industrial processes and the production of green technologies. The author focuses this discussion on subsurface remediation and pollution prevention; however, the research activities encompass water, soil and air and many of the technologies are applicable to all environments. The discussion focuses on the integration of biotechnology with remediation activities and subsequently linking these biological processes to other remediation technologies

  15. Remediation activities at the Fernald Environmental Management Project (FEMP)

    International Nuclear Information System (INIS)

    Walsh, T.J.; Danner, R.

    1996-01-01

    The Fernald Environmental Management Project (FEMP) is a United States Department of Energy (DOE) facility located in southwestern Ohio. The facility began manufacturing uranium products in the early 1950's and continued processing uranium ore concentrates until 1989. The facility used a variety of chemical and metallurgical processes to produce uranium metals for use at other DOE sites across the country. Since the facility manufactured uranium metals for over thirty years, various amounts of radiological contamination exists at the site. Because of the chemical and metallurgical processes employed at the site, some hazardous wastes as defined by the Resource Conservation and Recovery Act (RCRA) were also generated at the site. In 1989. the FEMP was placed on the National Priorities List (NPL) requiring cleanup of the facility's radioactive and chemical contamination under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This paper discusses the proposed remediation activities at the five Operable Units (OUs) designated at the FEMP. In addition, the paper also examines the ongoing CERCLA response actions and RCRA closure activities at the facility

  16. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  17. Monitoring a chemical plume remediation via the radio imaging method

    International Nuclear Information System (INIS)

    McCorkle, R.W.; Spence, T.; Linder, K.E.; Betsill, J.D.

    1996-01-01

    In this paper, the authors present the results of a site characterization, monitoring, and remediation effort at Sandia National Laboratories (SNL). The primary objective of the study is to determine the feasibility of using the Radio Imaging Method (RIM) to solve a near-surface waste site characterization problem. The goals are to demonstrate the method during the site characterization phase, then continue with an in-situ monitoring and analysis of the remediation process

  18. Remedial activities effectiveness verification in tailing areas.

    Science.gov (United States)

    Kluson, J; Thinova, L; Neznal, M; Svoboda, T

    2015-06-01

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Remedial activities effectiveness verification in tailing areas

    International Nuclear Information System (INIS)

    Kluson, J.; Thinova, L.; Svoboda, T.; Neznal, M.

    2015-01-01

    The complex radiological study of the basin of sludge from the uranium ore mining and preprocessing was done. Air kerma rates (including its spectral analysis) at the reference height of 1 m above ground over the whole area were measured and radiation fields mapped during two measuring campaigns (years 2009 and 2014). K, U and Th concentrations in sludge and concentrations in depth profiles (including radon concentration and radon exhalation rates) in selected points were determined using gamma spectrometry for in situ as well as laboratory samples measurement. Results were used for the analysis, design evaluation and verification of the efficiency of the remediation measures. Efficiency of the sludge basin covering by the inert material was modelled using MicroShield code. (authors)

  20. Environmental remediation activities at WISMUT GmbH, Germany

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Takahashi, Kuniaki; Miyasaka, Yasuhiko; Yamana, Hajimu

    2007-01-01

    The WISMUT GmbH has carried out environmental remediation activities since 1991 in former GDR (German Democratic Republic) to rehabilitate the environment and landscape which have been adversely affected by decades of unrestrained mining and processing of uranium ores. It is worthy of being mentioned especially that WISMUT GmbH's sites including waste rock dump, mill tailings pond, open pit mine and water treatment facilities with an area of 3,700ha have been rehabilitated practically and extensively, and these activities are planned to terminate in 2015 except for the water treatment. For safety assessment after remediation, the value of 1mSv/y (in excess of the background level) is applied to as an individual effective dose, from the recommendation of ICRP (International Commission on Radiological Protection). This report shows a summary of environmental remediation activities carried out by the WISMUT GmbH and related regulatory laws. (author)

  1. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    International Nuclear Information System (INIS)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-01-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  2. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    Energy Technology Data Exchange (ETDEWEB)

    Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  3. Hydrocarbon impacts and remedial action at an active service station

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S.A. [Keystone Environmental, Burnaby, BC (Canada); Linke, J. [Chevron Canada Ltd., Vancouver, BC (Canada)

    2006-07-01

    This presentation discussed a project that examined the hydrocarbon impacts and remedial action at an active service station. The presentation identified the project partners, discussed the background on the project and project goals. Chevron Canada was the site involved in the study and Keystone Environmental was responsible for testing soil samples, developing the detailed conceptual site model, and for conducting indoor air quality monitoring. The presentation also provided illustrations of the site layout, investigated areas, and soil and groundwater plume. The evaluation and selection of remedial options were also discussed as well as other project planning activities such as assembling the project team, obtaining agreement with stakeholders, and coordinating with the municipality, utility companies, residents, and neighbours. Remediation efforts that were described and illustrated in the presentation included: underpinning and shoring; excavation; and, barrier wall installation. Last, post remediation activities were identified including the installation of post remediation confirmatory wells; reinstating structures; reinstating rear yards, fences, and garages; reconnecting utilities; performance monitoring of barrier wall; and, preparing closure reports for certificates of compliance on off-site properties. 6 figs.

  4. Case study of an approved corrective action integrating active remediation with intrinsic remediation

    International Nuclear Information System (INIS)

    Teets, D.B.; Guest, P.R.; Blicker, B.R.

    1996-01-01

    Parsons Engineering Science, Inc., performed UST removals and/or site assessments at UST system locations at a former US Air Force Base (AFB) in Denver, Colorado. Four UST systems, incorporating 17 USTs, were located within the petroleum, oils, and lubricants bulk storage yard (POL Yard) of the former AFB. During the tank removals and subsequent site investigations, petroleum hydrocarbon contamination was found in soils at each site. Significant releases from two of the UST systems resulted in a dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) plume in the groundwater, and smear-zone contamination of soils beneath the majority of the POL Yard. Because of the close proximity of the UST systems, and the presence of the groundwater plume beneath the POL Yard, a corrective action plan (CAP) was prepared that encompassed all four UST systems. An innovative, risk-based CAP integrated active remediation of petroleum-contaminated soils with intrinsic remediation of groundwater. A natural attenuation evaluation for the dissolved BTEX was performed to demonstrate that natural attenuation processes are providing adequate remediation of groundwater and to predict the fate of the groundwater plume. BTEX concentrations versus distance were regressed to obtain attenuation rates, which were then used to calculate BTEX degradation rates using a one-dimensional, steady-state analytical solution. Additionally, electron acceptor concentrations in groundwater were compared to BTEX concentrations to provide evidence that natural attenuation of BTEX compounds was occurring. The natural attenuation evaluation was used in the CAP to support the intrinsic remediation with long-term monitoring alternative for groundwater, thereby avoiding the installation of an expensive groundwater remediation system

  5. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  6. Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments.

    Science.gov (United States)

    Fan, Guangping; Wang, Yu; Fang, Guodong; Zhu, Xiangdong; Zhou, Dongmei

    2016-09-14

    Polychlorinated biphenyls (PCBs) are manmade organic compounds, and pollution due to PCBs has been a global environmental problem because of their persistence, long-range atmospheric transport and bioaccumulation. Many physical, chemical and biological technologies have been utilized to remediate PCBs contaminated soils and sediments, and there are some emerging new technologies and combined methods that may provide cost-effective alternatives to the existing remediation practice. This review provides a general overview on the recent developments in chemical treatment and electrokinetic remediation (EK) technologies related to PCBs remediation. In particular, four technologies including photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dechlorination, advanced oxidation process, and EK/integrated EK technology (e.g., EK coupled with chemical oxidation, nanotechnology and bioremediation) are reviewed in detail. We focus on the fundamental principles and governing factors of chemical technologies, and EK/integrated EK technologies. Comparative analysis of these technologies including their major advantages and disadvantages is summarized. The existing problems and future prospects of these technologies regarding PCBs remediation are further highlighted.

  7. Monitoring remediation of trichloroethylene using a chemical fiber optic sensor: Field studies

    International Nuclear Information System (INIS)

    Colston, B.W.; Brown, S.B.; Langry, K.; Daley, P.; Milanovich, F.P.

    1994-06-01

    Current US Department of Energy (DOE) policy requires characterization and subsequent remediation of areas where trichloroethylene (TCE) has been discharged into the soil and groundwater. Technology that allows trace quantities of this contaminant to be measured in situ on a continuous basis is needed. Fiber optic chemical sensors offer a promising low cost solution. Field tests of such a fiber optic chemical sensor for TCE have recently been completed. Sensors have been used to measure TCE contamination at Savannah River Site (SRS) and Lawrence Livermore National Laboratory Site 300 (S300) in the groundwater and vadose zones. Both sites are currently undergoing remediation processes

  8. Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation

    International Nuclear Information System (INIS)

    Calace, N.; Campisi, T.; Iacondini, A.; Leoni, M.; Petronio, B.M.; Pietroletti, M.

    2005-01-01

    Metal pollution of soils is a great environmental problem. The major risks due to metal pollution of soil consist of leaching to groundwater and potential toxicity to plants and/or animals. The objective of this study is to evaluate by means of chemical and ecotoxicological approach the effects of paper mill sludge addition on the mobile metal fraction of polluted metal soils. The study was carried out on acidic soil derived from mining activities and thus polluted with heavy metals, and on two paper mill sludges having different chemical features. The results obtained by leaching experiments showed that the addition of a paper mill sludge, consisting mainly of carbonates, silicates and organic matter, to a heavy-metal polluted soil produces a decrease of available metal forms. The carbonate content seems to play a key role in the chemical stabilisation of metals and consequently in a decrease of toxicity of soil. The leached solutions have a non-toxic effect. The mild remediation by addition of sludge has moreover a lasting effect. - Paper mill sludge decreased available metals

  9. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation

  10. Remedial investigation for the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1992-11-01

    The US Department of Energy (DOE) is responsible for management of the Weldon Spring Site Remedial Action Project (WSSRAP) under its Environmental Restoration and Waste Management Program. Major goals include eliminating potential public and environmental hazards due to site contamination and releasing the property for alternate uses to the maximum extent practicable. The purpose of the remedial investigation described in this report was to determine the extent of contamination associated with the portion of the Weldon Spring site known as the chemical plant and raffinate pit area. The DOE has assumed responsibility for investigating and remediating all on-site soil contamination and off-site soil which is radiologically contaminated as a result of uranium and thorium processing operations. The DOE has also assumed the responsibility for radiologically contaminated groundwater on and off site. The Weldon Spring site remedial investigation also involved the evaluation of the sources, nature and extent, and environmental fate and transport of contaminants to provide a basis for defining the risks that the contaminants may pose to human health and the environment. Data are included in this report to support the screening of remedial technologies and to permit the development and detailed analysis of alternatives for remedial action at the site during the feasibility study process

  11. Chemical remediation of wood treated with micronised, nano or soluble copper preservatives

    Science.gov (United States)

    Saip Nami Kartal; Evren Terzi; Bessie Woodward; Carol A. Clausen; Stan T. Lebow

    2013-01-01

    The potential for extraction of copper from wood treated with micronised, nano or soluble forms of copper has been evaluated in view of chemical remediation. In focus were EDTA, oxalic acid, bioxalate, and D-gluconic acid for extraction of Cu from treated wood. Bioxalate extractions for 24 h resulted in Cu removal over 95% for all tested...

  12. The Effectiveness of Conceptual Change Texts in Remediating High School Students' Alternative Conceptions Concerning Chemical Equilibrium

    Science.gov (United States)

    Ozmen, Haluk

    2007-01-01

    This study investigated the effectiveness of conceptual change texts in remediating high school students' alternative conceptions concerning chemical equilibrium. A quasi-experimental design was used in this study. The subjects for this study consisted of a total 78 tenth-grade students, 38 of them in the experimental group and 40 of them in the…

  13. Site characterization techniques used in environmental remediation activities

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    2000-01-01

    As a result of decades of nuclear energy research, weapons production, as well as ongoing operations, a significant amount of radioactive contamination has occurred throughout the United States Department of Energy (DOE) complex. DOE facility are in the process of assessing and potentially remediating various sites according to the regulations imposed by a Federal Facility Agreement and Consent order (FFA/CO) between DOE, the state in which the facility is located, and the U.S. Environmental Protection Agency (EPA). In support of these active site remediation efforts, the DOE has devoted considerable resources towards the development of innovative site characterization techniques that support environmental restoration activities. These resources and efforts have focused on various aspects of this complex problem. Research and technology development conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the ability and state-of-the-art equipment required to obtain real-time, densely spaced, in situ characterization data (i.e. detection, speciation, and location) of various radionuclides and contaminants. The Remedial Action Monitoring System (RAMS), developed by the INEEL, consists of enhanced sensor technology, measurement modeling and interpretation techniques, and a suite of deployment platforms which can be interchanged to directly support remedial cleanup and site verification operations. In situ characterization techniques have advanced to the point where they are being actively deployed in support of remedial operations. The INEEL has deployed its system at various DOE and international sites. The deployment of in situ characterization systems during environmental restoration operations has shown that this approach results in several significant benefits versus conventional sampling techniques. A flexible characterization system permits rapid modification to satisfy physical site conditions, available site resources

  14. Current activities handbook: formerly utilized sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-27

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified.

  15. Current activities handbook: formerly utilized sites remedial action program

    International Nuclear Information System (INIS)

    1981-01-01

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the activities each of the thirteen state legislatures potentially affected by the Formerly Utilized Sites Remedial Action Program. It contains a description of the state legislative procedural rules and a schedule of each legislative session; a summary of pending relevant legislation; the name and telephone number of legislative and state agency contacts; and the full text of all bills identified

  16. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  17. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  18. Online data sources for regulation and remediation of chemical production, distribution, use and disposal

    International Nuclear Information System (INIS)

    Snow, B.; Arnold, S.

    1995-01-01

    Environmental awareness is essential for todays corporation. Corporations have been held liable for the short-term and long-term effects of such chemicals as pharmaceuticals, agrochemicals and petrochemicals to name a few. Furthermore, corporations have been held accountable for disposal of wastes or by-products of chemical production. Responsibility for the environment either mandated by government agencies or done voluntarily is an economic factor for business operations. Remediation of environmental hazards on a voluntary basis has often created goodwill and a payoff for being socially responsible. Remediation also can result in new business opportunities or savings in production costs. To be environmentally aware and socially responsible, the chemist should know where to find regulatory information for countries worldwide. Using online data sources is an efficient method of seeking this information

  19. Increased activation in Broca's area after cognitive remediation in schizophrenia.

    Science.gov (United States)

    Vianin, Pascal; Urben, Sébastien; Magistretti, Pierre; Marquet, Pierre; Fornari, Eleonora; Jaugey, Laure

    2014-03-30

    Functional magnetic resonance imaging (fMRI) was used to measure changes in cerebral activity in patients with schizophrenia after participation in the Cognitive Remediation Program for Schizophrenia and other related disorders (RECOS). As RECOS therapists make use of problem-solving and verbal mediation techniques, known to be beneficial in the rehabilitation of dysexecutive syndromes, we expected an increased activation of frontal areas after remediation. Executive functioning and cerebral activation during a covert verbal fluency task were measured in eight patients with schizophrenia before (T1) and after (T2) 14 weeks of RECOS therapy. The same measures were recorded in eight patients with schizophrenia who did not participate in RECOS at the same intervals of time (TAU group). Increased activation in Broca's area, as well as improvements in performance of executive/frontal tasks, was observed after cognitive training. Metacognitive techniques of verbalization are hypothesized to be the main factor underlying the brain changes observed in the present study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Activities of HPS standards committee in environmental remediation

    International Nuclear Information System (INIS)

    Stencel, J.R.

    1994-01-01

    The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process

  1. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations

    OpenAIRE

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Dolislager, Fredrick; Love, Adam H.; Hanna, M. Leslie

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critica...

  2. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following a Chemical Terrorist Attack: Decision Criteria for Multipathway Exposure Routes

    OpenAIRE

    Watson, Annetta; Dolislager, Fredrick; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Love, Adam H.

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical release. What follows is the second of a two-part analysis identifying key considerations, critical information and de...

  3. SAFETY ANALYSIS APPROACH TO TANK 241-SY-101 REMEDIATION ACTIVITIES

    International Nuclear Information System (INIS)

    RYAN, G.W.

    2000-01-01

    , supplemental controls to ensure safety during remediation operations and activities were developed and approved at the Contractor level with DOE cognizance through their participation as an integral part of the Project Team. This approach was selected as the most expedient to meet the aggressive project schedule and changing tank conditions. This project has been successful in meeting established goals because of the effectiveness of an integrated project team that included Nuclear Safety and Licensing at the start, the integral involvement of DOE during each phase of the project, and the ability of the Contractor to develop, approve, and implement the supplemental controls necessary to safely perform operations and activities

  4. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    Science.gov (United States)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  5. BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT

    Science.gov (United States)

    2017-07-07

    TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT by Tobyn A. Branck Courtney M. Cowell Jennifer M. Rego and...October 2011 – September 2015 4. TITLE AND SUBTITLE BACTERICIDAL COATINGS ON TEXTILES FOR REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT... REMEDIATION OF INTERMICROBE ACTIVITY (BaCTeRIA) SUMMARY REPORT Introduction The Biological Sciences and Technology Team (BSTT), Warfighter

  6. Using proven, cost-effective chemical stabilization to remediate radioactive and heavy metal contaminated sites

    International Nuclear Information System (INIS)

    Jensen, R.; Sogue, A.

    1999-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS) has deployed a cost-effective metals stabilization method which can be used to reduce the cost of remediation projects where radioactivity and heavy metals are the contaminants of concern. The Envirobond TM process employs the use of a proprietary chemical process to stabilize metals in many waste forms, and provides an excellent binding system that can easily be compacted to reduce the waste into a shippable brick called Envirobric TM . The advantages of using chemical stabilization are: (1) Low cost, due to the simplicity of the process design and inexpensive reagents. (2) Chemical stabilization is easily deployed in field applications, which limit the amount of shielding and other protective measures. (3) The process does not add volume and bulk to the treated waste; after treatment the materials may be able to remain on-site, or if transportation and disposal is required the cost will be reduced due to lower volumes. (4) No secondary waste. The simplicity of this process creates a safe environment while treating the residues, and the long-term effectiveness of this type of chemical stabilization lowers the risk of future release of hazardous elements associated with the residues. (author)

  7. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  8. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    International Nuclear Information System (INIS)

    Kronvall, C.M.

    2011-01-01

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D and D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  9. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors.

    Science.gov (United States)

    Ibanez, Jorge G; Rincón, Marina E; Gutierrez-Granados, Silvia; Chahma, M'hamed; Jaramillo-Quintero, Oscar A; Frontana-Uribe, Bernardo A

    2018-05-09

    Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.

  10. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    Science.gov (United States)

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Microbial decomposition and bio-remediation of chemical substances. Kagaku busshitsu no biseibutsu bunkai to bio remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M [Osaka University, Osaka (Japan). Faculty of Engineering

    1993-08-01

    This paper summarizes studies on evaluation of breeding and bio-degradability of decomposition bacteria in bio-remediation, and births and deaths of microorganisms. Structural genes in a phenol decomposition path were separated by means of shotgun cloning. The phe B genes having been taken out were inserted into parent stocks to produce combined stocks for use in phenol decomposition. With 100 mg/l of phenol, the combined stocks showed better performance in both decomposition and multiplication than the parent stocks. When the phenol concentration increases, the rate controlling process changes and loses its effect. Decomposition of trichloroethylene progressed quickly with combined stocks derived from phe A, a phenol decomposed gene. Separated polyvinyl alcohol (PVA) decomposing bacteria were used for PVA decomposition. As a result, it was found that microorganisms are required that utilize intermediately produced low-molecular compounds for multiplication. Combined stocks with E. coli C600 stocks inserted with phe B were prepared to discuss births and deaths of microorganisms in activated sludge. A number of findings was obtained. 6 refs., 10 figs.

  12. Sandia's activities in uranium mill tailings remedial action

    International Nuclear Information System (INIS)

    Neuhauser, S.

    1980-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978 requires that remedial action be taken at over 20 inactive uranium mill tailings sites in the United States. Standards promulgated by the EPA under this act are to be the operative standards for this activity. Proposed standards must still undergo internal review, public comment, and receive Nuclear Regulatory Commission concurrence before being finalized. Briefly reviewed, the standards deal separately with new disposal sites (Part A) and cleanup of soil and contaminated structures at existing locations (Part B). In several cases, the present sites are felt to be too close to human habitations or to be otherwise unacceptably located. These tailings will probably be relocated. New disposal sites for relocated tailings must satisfy certain standards. The salient features of these standards are summarized

  13. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  14. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-12-01

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs

  15. Bio-chemical remediation of under-ground water contaminated by uranium in-situ leaching

    International Nuclear Information System (INIS)

    Wang Qingliang; Li Qian; Zhang Hongcan; Hu Eming; Chen Yongbo

    2014-01-01

    In the process of uranium in-situ leaching, it was serious that strong acid, uranium and heavy metals, and SO_4"2"-, NO_3"- could contaminate underground water. To remedy these pollutants, conventional methods are high-cost and low-efficient, so a bio-chemical remediation method was proposed to cope with the under-ground water pollution in this study. The results showed, in the chemical treatment with Ca(OH)_2 neutralization, pH went up from 2.0 to 7.0, the removal rates of U, Mn"2"+, Zn"2"+, Pb"2"+, SO_4"2"-, NO_3"- were 91.5%, 78.3%, 85.1%, 100%, 71.4% and 2.6% respectively, SO_4"2"- and NO_3"- need to be treated again by bio-method. In the biological process, the Hydraulic Retention Time (HRT) of bioreactor was controlled at 42 h, and 100% NO_3"- and 70% SO_4"2"- in the contaminated water were removed; Acidithiobacillus ferrooxidans (A. f) liquid to H_2S showed better absorption effect, can fully meet the process requirements of H_2S removal. (authors)

  16. Problems of developing remedial strategy for the uranium ore processing legacy site Pridneprovsky Chemical Plant site (Dneprodzerginsk, Ukraine)

    International Nuclear Information System (INIS)

    Riazantsev, V.; Bugai, D.; Skalskyy, A.; Tkachenko, E.

    2014-01-01

    In this paper we present results of works and studies carried out in the frame of ongoing national and international projects aimed at developing the remedial strategy for the Soviet era legacy uranium production site Pridneprovsky Chemical Plant, Dneprodzerginsk, Ukraine. The site includes several uranium mill tailings, contaminated buildings, ore storage grounds and other contaminated facilities. Taking into account the necessity to implement provisions of the new IAEA standards (Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, No. GSR Part 3 (Interim) and others) as well as the provisions of the ICRP 103 publication, the State Nuclear Regulatory Inspectorate Ukraine developed the draft of the new licensing requirements for activities of uranium ores processing.

  17. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  18. Tailings From Mining Activities, Impact on Groundwater, and Remediation

    Directory of Open Access Journals (Sweden)

    Khalid Al-Rawahy

    2001-12-01

    Full Text Available Effluent wastes from mining operations and beneficiation processes are comprized mostly of the following pollutants: total suspended solids (TTS, alkalinity or acidity (pH, settleable solids, iron in ferrous mining, and dissolved metals in nonferrous mining. Suspended solids consist of small particles of solid pollutants that resist separation by conventional means. A number of dissolved metals are considered toxic pollutants. The major metal pollutants present in ore mining and beneficiation waste waters include arsenic, cadmium, copper, lead, mercury, nickel, and zinc. Tailings ponds are used for both the disposal of solid waste and the treatment of waste-water streams. The supernatant decanted from these ponds contains suspended solids and, at times, process reagents introduced to the water during ore beneficiation. Leakage of material from tailings pond into groundwater is one possible source of water pollution in the mining industry. Percolation of waste-water from impoundment may occur if tailings ponds are not properly designed. This paper addresses potential groundwater pollution due to effluent from mining activities, and the possible remediation options.

  19. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  20. In Situ Remediation Of Contaminated Sediments - Active Capping Technology

    International Nuclear Information System (INIS)

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-01-01

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  1. Studies on the remediation of environment contaminated with radioactive pollutants using the chemical separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurotaki, Katsumi; Yonehara, Hidenori; Sahoo, S.K. [National Inst. of Radiological Sciences, Chiba (Japan); Ishii, Toshiaki [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    Remediation of soil and drinking water contaminated with radioactive nuclides is important for the mitigation of radiation exposure. Then we attempted to construct the remediation system including the dose estimation system using the chemical separation technique to remove pollutants from the environment. The information on air dose rate is important for assessment of risk from the radiation exposure. Then we measured the air dose rate and analysed the relationship between air dose rate and the contamination of soil at the area in Russia (Bryansk district) contaminated by Chernobyl Nuclear Power Plant accident. Moreover, we analysed the soil of Bryansk district on the concentration of rare earth elements, thorium and uranium and on the isotope ratio of strontium. On the other hand, we tried to develop the rapid measurement method of radioactivity of Sr-90 which is one of the dangerous radionuclides, because the method of radioactivity measurement in the literature is too time-consuming. It was reported recently that the molecules containing SH group form the covalent bond with gold atoms at the surface of gold plate and that crown ether compounds have strong affinity to strontium. Then we attempted to synthesize the crown ether containing SH group. In addition, we search the inorganic elements accumulated to special organisms of fishes and other animals in sea in order to find out new reagent for trace elements. Transition metal such as Co, Fe, Ni, Ti, V and Zn were detected from the intracellular granules in the bronchial heart of octopus. (author)

  2. Sandia National Laboratories Chemical Waste Landfill: Innovative strategies towards characterization and remediation

    International Nuclear Information System (INIS)

    Ardito, Cynthia P.; Parsons, Alva M.; Lindgren, Eric R.; Phelan, James M.; Mattson, Earl D.

    1992-01-01

    The Chemical Waste Landfill (CWL) was used by Sandia National Laboratories (SNL), Albuquerque for disposal of hazardous chemicals from the years 1962 to 1985. During routine sampling in the spring of 1990, low levels of trichloroethylene (TCE) were detected in groundwater samples from a water table aquifer approximately 146 meters below ground surface. Therefore, a RCRA Site Investigation (RSI) has been initiated and remediation of organic contaminants will be performed at the CWL prior to closure of this landfill. The RSI is focused on optimal characterization of the volatile organic contamination (VOC) and dense non-aqueous phase liquid (DNAPL) contamination at this site. This will be possible through application of innovative strategies for characterization and promising new technologies which are discussed in this paper. The first part of this paper provides a discussion of conceptual models of VOC and DNAPL transport at the CWL and an overview of our investigative strategy. Each stage of the RSI has been developed to gather information which will reduce the uncertainty in the design of each subsequent phase of the investigation. Three stages are described; a source characterization stage, unsaturated zone characterization stage, and a saturated zone characterization stage. An important focus of the unsaturated zone characterization phase is to provide all data necessary to make decisions concerning the necessity of additional saturated zone characterization. The second part of this paper presents a brief discussion of some innovative approaches to characterization and remediation that are being applied at the CWL. Through the. SNL Environmental Restoration Program's desire to find new and improved methods for site characterization and remediation, several innovative technologies have been identified. These technologies include: the surface towed arrays developed by the Naval Research Laboratory for use in locating buried ordinance, core drilling using sonic

  3. Activated carbon amendment for in-situ remediation

    Science.gov (United States)

    Elmquist, M.; Brändli, R.; Henriksen, T.; Hartnik, T.; Cornelissen, G.

    2009-04-01

    For the first time in Europe, a novel and innovative remediation technique is used in a field pilot study. This technique is amendment of the soil with two types of activated carbon (AC). Here, one pulverized AC (PAC, 50% 150 µm) and one granular AC (GAC, 1.7-0.43 mm) is tested. The idea of this technique is that the added AC binds organic contaminants so strongly that they cannot be taken up in living organisms or transported to other environmental compartments. Laboratory studies with 2% (wt %) AC amendment to an urban soil reduced the freely dissolved pore water concentrations of PAH by 17% to 99% (Brändli et al. 2008). Several parameters such as dissolved organic carbon (DOC), K, NO2, NO3, NH4, PO4 and PAH, are being measured in this field study. Plant growth and earthworm bioaccumulation tests were also carried out during the summer months. DOC showed a 70% reduction between untreated soil and soil with PAC about one year after the amendment. In the soil mixed with GAC, a 55% reduction could be measured. For K, a 40% lowering value was observed for the soil with GAC compared to no affect for the soil with PAC. NH4 was reduced by 50% for both GAC and PAC amended soils compared to the untreated soil, whereas NO2 and NO3 increased with 2-4 times for the soil with GAC and no effect were seen for the soil with PAC. The freely dissolved PAH concentrations were reduced by 49-78% for the soil with GAC and 82-96% for the soil with PAC. The plant experiment showed best growth rate in the soil with GAC, followed by the untreated soil and least growth was measured on the PAC treated soil. The low growth rate seen in the soil with PAC may come from the fact that DOC and some other nutrients are also being sorbed to the PAC surface together with the organic pollutants and are thereby taken away from the biological cycle. Amendment of soil with AC remediates the soil from organic contaminants when these pollutants are sorbed to the AC surface. This is an easy technique

  4. Arsenic in the groundwater: Occurrence, toxicological activities, and remedies.

    Science.gov (United States)

    Jha, S K; Mishra, V K; Damodaran, T; Sharma, D K; Kumar, Parveen

    2017-04-03

    Arsenic (As) contamination in groundwater has become a geo-environmental as well as a toxicological problem across the globe affecting more than 100-million people in nearly 21 countries with its associated disease "arsenicosis." Arsenic poisoning may lead to fatal skin and internal cancers. In present review, an attempt has been made to generate awareness among the readers about various sources of occurrence of arsenic, its geochemistry and speciation, mobilization, metabolism, genotoxicity, and toxicological exposure on humans. The article also emphasizes the possible remedies for combating the problem. The knowledge of these facts may help to work on some workable remedial measure.

  5. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals

    International Nuclear Information System (INIS)

    Makino, Tomoyuki; Sugahara, Kazuo; Sakurai, Yasuhiro; Takano, Hiroyuki; Kamiya, Takashi; Sasaki, Kouta; Itou, Tadashi; Sekiya, Naoki

    2006-01-01

    The efficiencies of neutral salts, strong acids, and chelates were tested for extracting cadmium (Cd) from three paddy soils. The higher the selectivity of the cations of the added neutral salts toward soil adsorption sites, the lower the pH in the extracts and the more soil Cd could be extracted. In addition, soil carbon and nitrogen contents and mineral composition were closely associated with the amount of Cd extracted. Calcium chloride and iron(III) chloride were selected as wash chemicals to restore Cd-contaminated paddy soils in situ. Washing with calcium chloride led to the formation of Cd chloride complexes, enhancing Cd extraction from the soils. The washing also substantially decreased soil levels of exchangeable and acid-soluble Cd, which are the major forms of bioavailable Cd for rice (Oryza sativa L.). The optimum conditions for in situ soil washing were also determined for calcium chloride. - Calcium chloride and iron(III) chloride were useful for the in situ washing of Cd-contaminated paddy soils

  6. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE's preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area

  7. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  8. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  9. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  10. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  11. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented

  12. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  13. Formerly utilized MED/AEC sites remedial action program post-remedial-action radiological survey of Kent Chemical Laboratory, the University of Chicago, Chicago, IL

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-05-01

    A comprehensive radiological assessment of Kent Laboratory was conducted during September 1977, by the ANL Radiological Survey Group to determine if any radioactive contamination remained. The results of the assessment indicated the need for remedial action. Since 1977, the University has decontaminated this laboratory building, and in May 1983, the Department of Energy requested the ANL Radiological Survey Group to conduct a post-remedial-action survey. All the contaminated areas identified during the 1977 assessment were rechecked. Contamination remained in six of the rooms. Further decontamination of these areas was conducted by university personnel, and as a result, these areas are now free of contamination. However, a contaminated clay pipe in the attic remained. The clay pipe has since been removed and disposed of as solid radioactive waste. During the post-remedial-action survey, six soil samples were collected from excavation trenches dug in Rooms 1 and 2 as part of the University's remedial action efforts. Also, four sludge samples were taken from below the manhole covers in the basement of Kent Chemical Laboratory to assess the radiological condition of the sewer system. A radiological assessment of the sewer system had not been accomplished during the 1977 survey as per program direction. Radiochemical (fluorometric) and gamma-spectral analyses indicated that eight out of ten soil and sludge samples contained levels of radioactivity above expected background concentrations. The soil has since been further excavated. The building is now free of radioactive contamination in excess of background levels; however, the sewers do contain radioactive materials above background levels since contamination was found at appropriate access points. 6 references, 16 figures, 7 tables

  14. Nuclear activated cw chemical laser

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1982-01-01

    A cw chemical laser which uses processed radioactive waste to produce active atoms from a chemically inactive gas before being mixed with another molecule such as hydrogen or deuterium is disclosed. This laser uses no toxic or corrosive fuels and does not require any electrical or other type of auxiliary power supply. The energy released by the radioactive material is used to produce the active atoms such as fluorine. This is accomplished by using the radiation products from processed radioactive waste to dissociate the inert gas in the plenum of the laser. The radioactive material is held in the passageway walls of a device similar to a heat exchanger. The exchanger device may be located in the gas generator section of a chemical laser. The inactive gas is passed through the exchanger device and while passing through it the radiation from the radioactive material dissociates the gas, producing a concentration of free active atoms. This active atom generator then feeds the nozzle bank or mixing section of a laser to produce a lasing action

  15. Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation.

    Science.gov (United States)

    Sharma, Arush; Sharma, Gaurav; Naushad, Mu; Ghfar, Ayman A; Pathania, Deepak

    2018-04-01

    The present study was attempted to ascertain the possible application of activated carbon as a cost-effective and eco-friendly adsorbent prepared via microwave-assisted chemical activation. The activated carbon was characterized using different techniques. The various adsorption parameters have been optimized to examine the viability of activated carbon as a plausible sorbent for the remediation of Congo red (CR) dye from the aquatic system. The equilibrium data adequately fitted to the Langmuir isotherm with better R 2 (0.994). The maximum adsorption capacity (q m ) of activated carbon was recorded to be 68.96 mg/g. Additionally, sorptional kinetic data were examined by reaction-based and diffusion-based models such as pseudo-first-order and pseudo-second-order equations, and Elovich, intra-particle diffusion, and Dumwald-Wagner models, respectively. The computed values of thermodynamic parameters such as free energy change (ΔG 0 ), enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were recorded as -3.63, 42.47 and 152.07 J/mol K, respectively, at 30°C, which accounted for a favorable, spontaneous and endothermic process. The regeneration study emphasized that the percentage uptake declined from 90.35% to 83.45% after six cycles of testing. So, our findings implied that activated carbon produced from biomass must be cost-effectively used as an adsorbent for detoxifying the CR dye from industrial effluents.

  16. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations.

    Science.gov (United States)

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D; Dolislager, Fredrick; Love, Adam H; Hanna, M Leslie

    2011-02-13

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination.

  17. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following Chemical Terrorist Attack: Introduction and Key Assessment Considerations

    Science.gov (United States)

    Watson, Annetta; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Dolislager, Fredrick; Love, Adam H.; Hanna, M. Leslie

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility reuse and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination. PMID:21390292

  18. Developing Health-Based Pre-Planning Clearance Goals for Airport Remediation Following a Chemical Terrorist Attack: Decision Criteria for Multipathway Exposure Routes

    Science.gov (United States)

    Watson, Annetta; Dolislager, Fredrick; Hall, Linda; Raber, Ellen; Hauschild, Veronique D.; Love, Adam H.

    2011-01-01

    In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical release. What follows is the second of a two-part analysis identifying key considerations, critical information and decision criteria to facilitate post-attack and post-decontamination consequence management activities. Decision criteria analysis presented here provides first-time, open-literature documentation of multi-pathway, health-based remediation exposure guidelines for selected toxic industrial compounds, chemical warfare agents, and agent degradation products for pre-planning application in anticipation of a chemical terrorist attack. Guideline values are provided for inhalation and direct ocular vapor exposure routes as well as percutaneous vapor, surface contact, and ingestion. Target populations include various employees as well as transit passengers. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination. PMID:21399674

  19. Research in Support of Remediation Activities at the Savannah River Site

    International Nuclear Information System (INIS)

    Seaman, J.C.; B.B. Looney and M.K. Harris

    2007-01-01

    The USDOE Savannah River Site (SRS), an 803-km 2 (310-mile 2 ) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated five nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostratigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e.g., TCE, 137 Cs, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities

  20. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A conceptual chemical solidification/stabilization system to remediate radioactive raffinate sludge

    International Nuclear Information System (INIS)

    Carpenter, D.J.; Ansted, J.P.; Foldyna, J.T.

    1994-01-01

    Past operations at the U.S. Department of Energy's (DOE) Weldon Spring, Missouri, Superfund Site included the manufacture of nitroaromatic-based munitions and the production of uranium and thorium metal from ore concentrates. These operations generated a large quantity of diverse contaminated waste media including raffinate sludge, soil, sediment, and building debris. These various waste media are contaminated with varying amounts of radionuclides nitroaromatics, metals, metalloids, non-metals, polychlorinated biphenyls (PCBs) and asbestos. The volumes and diversity of contaminants and waste media pose significant challenges in identifying applicable remedial technologies, particularly for the excavation and treatment of the water-rich raffinate sludge. This paper presents the results of comprehensive efforts to develop a conceptual chemical solidification/stabilization (CSS) system to treat a variety of waste media. The emphasis of this paper is the treatment of a water-rich refractory raffinate sludge and site contaminated soils both radioactive and nonradioactive. The conceptual system design includes raffinate sludge excavation, dewatering, and CSS processing (reagent selection and formulation, reagent and waste storage and metering, and product mixing). Many innovations were incorporated into the design, producing a system that can process the various waste types. Additionally, the radioactive and hazardous constituents are sufficiently immobilized to allow the secured disposal in a waste cell of the treated product. The conceptual CSS system can also produce a variety of treated product types, ranging from a monolithic form to a compactible soil-like medium. The advantages of this system flexibility are also presented

  2. Feasibility study for remedial action at the chemical plant area of the Weldon Spring Site

    International Nuclear Information System (INIS)

    1992-11-01

    The Weldon Spring site is radioactively and chemically contaminated at levels that exceed certain standards and guidelines for protecting human health and the environment. The ongoing site characterization and environmental monitoring programs provide information on the nature and extent of contamination, including information for off-site areas to which contaminants have migrated or could migrate in the future. Although humans and biota are not adversely impacted by site contaminants at this time, the purpose of DOE's remedial action program is to preclude the potential for such impacts in the future by implementing long-term environmental restoration and waste management decisions. The DOE is addressing long-term management of the Weldon Spring site through an integrated environmental decision-making process. Supporting information for the feasibility study is provided in Appendixes A through J. This information addresses scoping (Appendix A), engineering technologies (Appendix B), potential health and environmental impacts (Appendixes C, D, E, F, H and I), regulatory requirements (Appendix G), and letters of consultation received from the various agencies contacted (Appendix J). Additional engineering information is presented in supporting technical reports

  3. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  4. Responses to comments on the Remedial Investigation/Feasibility Study-Environmental Impact Statement for Remedial Action at the chemical plant area of the Weldon Spring Site, November 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The Weldon Spring site is on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA). The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The RI/FS-EIS for remedial action at the chemical plant area of the Weldon Spring site was issued to the public on November 20, 1992. This public comment response document presents a summary of the major issues identified in both oral and written comments on the RI/FS-EIS and DOE's responses to those issues. This document also provides individual responses to the written comments

  5. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure

  6. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  7. The impact of cognitive remediation on cerebral activity in schizophrenia: Systematic review of the literature.

    Science.gov (United States)

    Bon, Laura; Franck, Nicolas

    2018-03-01

    cognitive remediation involves either intensive training of impaired functions or implementing strategies to compensate for these impairments. In cases of schizophrenia, both methods have demonstrated benefits in terms of behavior and cerebral activity. However, despite the major differences between these two approaches, their impact has not yet been compared. We searched the PsychInfo, Pubmed, and ScienceDirect databases using the key words "cognitive remediation," "schizophrenia," "cerebral activity," and "magnetic resonance imaging," in order to select studies investigating the effects of cognitive remediation on patients with schizophrenia. The studies selected had to present their approach in detail and measure its impact in terms of both cerebral activity and cognitive function, both before and after therapy. We divided the studies into two groups, those using the strategy method and those using the training method. Eight studies were included in the review, four for the strategy method (88 patients, 44 of whom underwent remediation) and 4 for the training method (87 patients, 43 of whom underwent remediation). The analysis of the results of this study indicates that the training method is capable of activating more the targeted brain areas than the strategy method. However, the latter appears to encourage more extensive activation of the cerebral networks. The studies used for this review vary widely in terms of the imaging methods and protocol. However, differences were found between the two methods and lead us to suggest that further studies, with proper bias control, should be conducted to systematically compare the two approaches.

  8. Current Chemical Risk Management Activities

    Science.gov (United States)

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  9. Chemical preventive remedies for steam generators fouling and tube support plate blockages

    International Nuclear Information System (INIS)

    Alves Vieira, M.; Mayos, M.; Coquio, N.; Fourcroy, H.; Battesti, P.

    2010-01-01

    In 2006, EDF identified on several PWR units broached hole blockage on the upper Steam Generator (SG) Tube Support Plates (TSP). TSP blockage often occurs in association with secondary fouling. The units with copper alloys materials are more affected due the applied low pH 25 o C (9.20) all volatile treatment (AVT). Carbon steels materials are less protected against flow accelerated corrosion (FAC) and therefore more corrosion products enter the SGs through the final feed water (FFW). In parallel of chemical cleanings to remove oxides deposits in SGs, EDF has defined a strategy to improve operating conditions. It mainly relies on the removal of copper alloys materials to implement a high pH AVT (9.60) as a preventive remedy. However for some plants, copper alloys removal is not straightforward due to environmental constraints. EDF must indeed manage the implementation of a biocide treatment needed in closed loop cooling systems (as copper has a bacteriostatic effect on micro-organisms) and more generally must comply with discharge authorisations for chemical conditioning reagents or biocide reagent. An alternative conditioning was tested on the Dampierre 4 unit in 2007/2008 during 6 months to assess if operating at 9.40 was acceptable regarding the impacts on copper alloys materials. The perspective would be to implement it in the units where no biocide treatment can be applied on a short term. In parallel, other chemical conditionings or additives will be implemented or tested. First of all, EDF will carry out a trial test with APA in order to assess its efficiency on the removal of oxides deposits through SG blowdown. On the other hand, AVT with high pH ethanolamine (ETA) will be implemented as an alternative of ammonia and morpholine conditioning on some chosen plants. Ethanolamine is selected as a way to mitigate FAC kinetics in two-phase flow areas (reheaters or moisture heater separator) or to limit liquid releases. This paper provides the lessons of the

  10. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  11. What's an ARAR?exclamation point: Regulatory requirements for CERCLA remedial activities at D ampersand D sites on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Houlberg, L.M.; Etnier, E.L.

    1994-01-01

    Many government-owned facilities that supported early nuclear energy research and defense programs have no current use and have been retired. Some of these facilities have residual radioactive or chemical contamination that require remediation. The Department of Energy (DOE) Decontamination and Decommissioning (D ampersand D) Program is responsible for managing these surplus facilities. Remedial activities for contaminated environs and inactive land-based units (e.g., landfills, surface impoundments) at the Oak Ridge Reservation (ORR) are conducted under the direction of the Environmental Restoration (ER) Program

  12. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    Science.gov (United States)

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  13. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2010-11-24

    ... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium... in FY 2011 from eligible active uranium and thorium processing site licensees for reimbursement under... approximately $24.3 million of Recovery Act funds available for reimbursement in FY 2011, as well as the $10...

  14. Summary report of Hanford Site well remediation and decommissioning activities for fiscal year 1994

    International Nuclear Information System (INIS)

    Reynolds, K.D.

    1994-01-01

    Remediation and decommissioning of Hanford Site wells has become an integral part of Hanford Site Environmental Restoration (ER) and Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring programs. A well remediation and decommissioning program was funded and implemented in fiscal year (FY) 1993 under the RCRA and Operational Monitoring (ROM) Program. Funding for this work increased in FY 1994. In FY 1994 well decommissioning activities conducted for the ROM program were centered around the 200 West Area; activities for the ER program were centered in the Fitzner/Eberhart Arid Land Ecology (ALE) (Reserve) unit and the Wahluke Slope (North Slope) area. A total of 116 wells and test borings were decommissioned between the two programs during FY 1994. Additionally, five wells were identified as in need of remediation and were successfully brought into compliance with regulatory requirements. As Hanford Site restoration and remediation efforts increase in scope, the well decommissioning program will remain dynamic. The program will aggressively seek to fulfill the needs of the various environmental cleanup and groundwater/vadose monitoring programs. Wells that do not meet regulatory requirements for preservation will continually be identified and remediated or decommissioned accordingly

  15. The role of historical operations information for supporting remedial investigation work at the former Harshaw Chemical Site

    International Nuclear Information System (INIS)

    Johnson, R.; Peterson, J.; Picel, K.; Kolhoff, A.; Devaughn, J.

    2008-01-01

    In the early stages of hazardous, toxic, and radioactive waste (HTRW) site investigations, basic record searches are performed to help direct the agencies investigating contaminated sites to areas of concern and to identify contaminants of interest (COI). Plans developed on the basis of this preliminary research alone are often incomplete and result in unexpected discoveries either while in the field investigating the site or after the reports have been written. Many of the sites investigated under the Formerly Utilized Sites Remedial Action program (FUSRAP) have complex histories that are slowly uncovered over the life of the project. Because of programmatic constraints, nuances of these sites are often discovered late in their programs and result in increased expenditures in order to fully characterize the site, perform a robust feasibility study, and recommend appropriate alternatives for remediation. By identifying resources for public records, classified records, historic aerial photographs, and other sources of site-specific historical information, a process can be established to optimize the collection of information and to develop efficient and complete project plans. In many cases, interviews with past site employees are very useful tools. In combining what is found in the records, observed on historic aerial photographs, and heard from former employees and family members, teams investigating these sites can begin to compile sound and more complete conceptual site models (CSMs). The former Harshaw Chemical Site (HCS) illustrates this discovery process. HCS is part of FUSRAP. Preliminary investigations by the US Department of Energy (DOE) in the 1970s provided an initial CSM of activities that had taken place that may have resulted in contamination. The remedial investigation (RI) conducted by the US Army Corps of Engineers (USACE) was designed around this CSM. The RI work, however, identified a number of site conditions that were unexpected, including new

  16. IPEC Gels for Remediating Soils Contaminated as Result of Nuclear and Industrial Activities

    International Nuclear Information System (INIS)

    Mikheykin, S.V.; Anciferova, E.Yu.; Simonov, V.P.; Zezin, A.B.; Rogacheva, V.B.; Bolusheva, T.N.

    2006-01-01

    Under International Scientific and Technological Center (ISTC, Moscow) Project no. 1567 the Moscow research team in collaboration with Los Alamos National Laboratory developed and tested new kind of inter-polyelectrolyte complexes with micro-gel (IPECs) for soil surface stabilization, prevention of radioactive contamination distribution with wind and water streams and for site remediation using mixtures of new water-soluble polymers with seeding grasses. Evidently, the most important factor responsible for the effectiveness of a polymeric aggregator is the ratio of the size of poly-complex particles to that of dispersion particles being aggregated. The particle size of IPEC produced of a pair of linear oppositely charged poly-electrolytes is usually fractions of a micron. Such a particle can fix only small aggregates (∼10 μm and less). One of the ways of improving poly-complex aggregators is to use loose cross-linked poly-electrolytic gels as an IPEC component. When generating/dispersing these poly-electrolytic gels, particles of specified sizes can be produced. These poly-electrolytic micro-gels introduced into soil save moisture, what is important for arid sites. Wind erosion was studied as a function of soil physical-chemical properties and the air stream velocity. A laboratory wind tunnel instrumented to follow the process on a real-time basis was used for our study. Polymer-treated samples show a high wind erosion resistance in the wind velocity range up to 40 m/s. The micro-gel dispersion MGD-2 was injected in combination with MLA-1 in the experiments with water flow - water erosion resistance. With an increase in the water-polymer solution application rate from 2.0 to 4.0 l/m 2 the soil resistance to eroding water streams with velocity of 55 cm/s (2.0 l/m 2 ) and at 70.0 cm/s with 4.0 l/m 2 . Based on the classification of soils by erosion resistance, soils eroded with a water stream 1 cm high at a velocity of 50 cm/s are considered to be highly erosion

  17. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  18. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  19. A retrospective study of the chemical analysis cost for the remediation of Lower East Fork Poplar Creek, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Klatt, L.N.

    1998-06-01

    A retrospective study of the remediation of Lower East Fork Poplar Creek (LEFPC) in Oak Ridge, Tennessee was completed. The study was conducted by reviewing the public Comprehensive Environmental Response, Compensation, and Liability Act record documents associated with the remediation of LEFPC and through discussions with the project staff involved or familiar with the project. The remediation took place in two phases. The first phase involved the excavation of about 5,560 yd 3 of soil at the National Oceanic and Atmospheric Administration (NOAA) locations in 1996. The second phase involved the excavation of 39,200 yd 3 at another NOAA location and at the Bruner location in 1997. For the entire project (remedial investigation through cleanup), a total of 7,708 samples (1 sample for each 5.8 yd 3 of soil remediated) were analyzed for mercury. The project obtained special regulatory approval to use two methods for the determination of mercury in soils that are not part of the Resource Conservation and Recovery Act SW-846 methods manual. The mercury analysis cost was $678,000, which represents 9.6% of the cleanup cost. During the cleanup phase of the project, an on-site laboratory was used. The estimated cost savings that the on-site laboratory provided fall into two categories: direct reduction of costs associated with chemical analysis and sample shipment totaling approximately $38,000, which represents a 5.3% savings relative to the estimated cost of using an off-site laboratory, and savings in the amount of $890,000 (12.5% of the $7.1 M cleanup cost), associated with expediting execution of the cleanup work by providing rapid (< 3 hours) sample result turnaround time. The manner in which the analytical services were procured for the LEFPC project suggest that the development of new chemical analysis technology must address deployment, performance, regulatory, robustness, reliability, and business appropriateness factors if the technology is to be used in

  20. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  1. 77 FR 3460 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2012-01-24

    ... available funding, the approved claim amounts will be reimbursed on a prorated basis. All reimbursements are...., statutory increases in the reimbursement ceilings). Title X requires DOE to reimburse eligible uranium and... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium...

  2. 76 FR 30696 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2011-05-26

    ... in the reimbursement ceilings). Title X requires DOE to reimburse eligible uranium and thorium... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium... reimbursement under Title X of the Energy Policy Act of 1992. In our Federal Register Notice of November 24...

  3. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2011-05-03

    ... in the reimbursement ceilings). Title X requires DOE to reimburse eligible uranium and thorium... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium... reimbursement under Title X of the Energy Policy Act of 1992. DATES: In our Federal Register Notice of November...

  4. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.

    Science.gov (United States)

    Kim, Seong-Hye; Han, Hyo-Yeol; Lee, You-Jin; Kim, Chul Woong; Yang, Ji-Won

    2010-07-15

    Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Upscaling Self-Sustaining Treatment for Active Remediation (STAR): Experimental Study of Scaling Relationships for Smouldering Combustion to Remediate Soil

    Science.gov (United States)

    Kinsman, L.; Gerhard, J.; Torero, J.; Scholes, G.; Murray, C.

    2013-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is a relatively new remediation approach for soil contaminated with organic industrial liquids. This technology uses smouldering combustion, a controlled, self-sustaining burning reaction, to destroy nonaqueous phase liquids (NAPLs) and thereby render soil clean. While STAR has been proven at the bench scale, success at industrial scales requires the process to be scaled-up significantly. The objective of this study was to conduct an experimental investigation into how liquid smouldering combustion phenomena scale. A suite of detailed forward smouldering experiments were conducted in short (16 cm dia. x 22 cm high), intermediate (16 cm dia. x 127 cm high), and large (97 cm dia. x 300 cm high; a prototype ex-situ reactor) columns; this represents scaling of up to 530 times based on the volume treated. A range of fuels were investigated, with the majority of experiments conducted using crude oil sludge as well as canola oil as a non-toxic surrogate for hazardous contaminants. To provide directly comparable data sets and to isolate changes in the smouldering reaction which occurred solely due to scaling effects, sand grain size, contaminant type, contaminant concentration and air injection rates were controlled between the experimental scales. Several processes could not be controlled and were identified to be susceptible to changes in scale, including: mobility of the contaminant, heat losses, and buoyant flow effects. For each experiment, the propagation of the smouldering front was recorded using thermocouples and analyzed by way of temperature-time and temperature-distance plots. In combination with the measurement of continuous mass loss and gaseous emissions, these results were used to evaluate the fundamental differences in the way the reaction front propagates through the mixture of sand and fuel across the various scales. Key governing parameters were compared between the small, intermediate, and large

  6. Data base management activities for the Remedial Action Program at ORNL, calendar year 1987

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Hook, L.A.; Gentry, M.J.; McCord, R.A.; Faulkner, M.A.; Newman, K.A.; Owen, P.T.

    1988-05-01

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in FY 1985 to apply corrective measures at areas contaminated with radioactive and/or hazardous chemical wastes. To achieve this goal, numerous and varied studies are being conducted to characterize the waste disposal sites. Environmental data collected in support of other programs at ORNL are also of use to RAP. These studies are generating a voluminous amount of data on a scale unprecedented for ORNL. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. 10 refs., 25 figs., 16 tabs

  7. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    International Nuclear Information System (INIS)

    KWIECINSKI, DANIEL ALBERT; METHVIN, RHONDA KAY; SCHOFIELD, DONALD P.; YOUNG, SHARISSA G.

    1999-01-01

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  8. Antimicrobial activities of medicinal plants used in folklore remedies ...

    African Journals Online (AJOL)

    In south-western part of Nigeria Psidium guajava and Mangifera indica are commonly used for herbal preparations in the treatment of toothache, gastrointestinal disorders, dynsentery, diarrhoea, sore gums and sore throats. This has, therefore, led to the investigation of the antimicrobial activities of methanolic extracts of P.

  9. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    2015-01-01

    for baseline toxicity. First, the reported effective concentrations (EC50) were divided by the respective water solubilities (Swater), since the obtained EC50/Swater ratio essentially equals the effective chemical activity (Ea50). The majority of EC50/Swater ratios were within the expected chemical activity...

  10. A critical evaluation of magnetic activated carbon's potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Han, Zhantao; Sani, Badruddeen; Akkanen, Jarkko; Abel, Sebastian; Nybom, Inna; Karapanagioti, Hrissi K; Werner, David

    2015-04-09

    Addition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents. A coal-based magnetic activated carbon (MAC) was identified as the strongest of four AC and BC derived magnetic sorbents for polycyclic aromatic hydrocarbons (PAHs) remediation. An 8.1% MAC amendment (w/w, equal to 5% AC content) was found to be as effective as 5% (w/w) pristine AC in reducing aqueous PAHs within three months by 98%. MAC recovery from sediment after three months was 77%, and incomplete MAC recovery had both, positive and negative effects. A slight rebound of aqueous PAH concentrations was observed following the MAC recovery, but aqueous PAH concentrations then dropped again after six months, likely due to the presence of the 23% unrecovered MAC. On the other hand, the 77% recovery of the 8.1% MAC dose was insufficient to reduce ecotoxic effects of fine grained AC or MAC amendment on the egestion rate, growth and reproduction of the AC sensitive species Lumbriculus variegatus. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Experience with remediating radiostrontium-contaminated ground water and surface water with versions of AECL's CHEMIC process

    International Nuclear Information System (INIS)

    Vijayan, S.

    2006-01-01

    Numerous approaches have been developed for the remediation of radiostrontium ( 90 Sr) contaminated ground water and surface water. Several strontium-removal technologies have been assessed and applied at AECL's (Atomic Energy of Canada Limited) Chalk River Laboratories. These include simple ion exchange (based on non-selective natural zeolites or selective synthetic inorganic media), and precipitation and filtration with or without ion exchange as a final polishing step. AECL's CHEMIC process is based on precipitation-microfiltration and ion-exchange steps. This paper presents data related to radiostrontium removal performance and other operational experiences including troubleshooting with two round-the-clock, pilot-scale water remediation plants based on AECL's CHEMIC process at the Chalk River Laboratories site. These plants began operation in the early 1990s. Through optimization of process chemistry and operation, high values for system capability and system availability factors, and low concentrations of 90 Sr in the discharge water approaching drinking water standard can be achieved. (author)

  12. Environmental remediation activities at the Ningyo-toge Uranium Mine, Japan

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Taki, Tomohiro

    2011-01-01

    Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river, and therefore, for the environmental remediation, the highest priority has been put to it among many facilities in the Mine. So far, basic concept has been examined and planning has been carried out for the remediation. Also, a great number of data has been acquired, and using the data, some remediation activities have already begun, including designing for the upstream part of the Mill Tailings Pond. According to the current plan, the Mill Tailings Pond will be covered by capping following dewatering and compressing of mill tailings. The capping is composed of 'radon barrier' for lowering radon-gas dissipation and dose rate, and its protection layer. Natural materials are planned to be used for the capping to alleviate the future maintenance. After capping, data will be accumulated to verify the effectiveness of the capping, and if proved effective, it will be utilized for the capping of the downstream part. (author)

  13. Active Debris Removal and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  14. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  15. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity......-polar liquids were applied to challenge the chemical activity range for baseline toxicity. For each compound, the effective activity (Ea50) was estimated as the ratio of the effective concentration (EC50) and water solubility. Of these ratios, 90% were within the expected chemical activity range of 0.01 to 0...

  16. Development of the chemical stabilization and solidification process for the treatment of radioactive raffinate sludges at the DOE Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    Cole, P.M.; Kakaria, V.; Enger, J.

    1996-01-01

    Chemical Solidification and Stabilization (CSS) is the mixing of chemical reagents with waste to solidify and chemically stabilize the contaminated material. The resulting product is resistant to leaching of certain contaminants. CSS treatment using Class C fly ash and Portland cement was chosen as the most feasible method for treatment of the chemically and radioactively contaminated sludge (raffinate) contained in raffinate pits on the Weldon Spring Site Remedial Action Project (WSSRAP) located outside of St. Louis, Missouri. Due to the uniqueness of the material, substantial bench-scale testing was performed on the raffinate to better understand its properties. Similarly, due to mixed results in the application of CSS treatment to radioactive materials, a pilot-scale testing facility was built to verify bench testing results and to establish and quantify design parameters for the full-scale CSS production facility. This paper discusses the development of the pilot-scale testing facility, the testing plan, and the results of the testing activities. Particular attention has been given to the applicability of the CSS treatment method and to the value of pilot-scale testing

  17. Remediation of uranium contaminated sites: clean-up activities in Serbia

    International Nuclear Information System (INIS)

    Raicevic, S.; Raicevic, J. . E-mail address of corresponding author: raich@beotel.yu; Raicevic, S.)

    2005-01-01

    One of the serious environmental problems in Serbia represent sites contaminated with depleted uranium (DU) during past war activities. According to UNEP reports and our findings there are two types of contamination: (i) localized points of high, concentrated contamination where DU penetrators enter the soil, and (ii) low level of widespread DU contamination, which indicates that during the conflict DU dust was dispersed into the environment. Remediation of these sites is an urgent need because they represent a permanent threat to the population living in this area. Here we give a brief description of approaches commonly used in remediation of DU contaminated sites, and an overview of current clean-up activities performed in Serbia. (author)

  18. Molecular activation analysis for chemical speciation studies

    International Nuclear Information System (INIS)

    Chai-Chifang

    1998-01-01

    The term of Molecular Activation Analysis (MAA) refers to an activation analysis method that is able to provide information about the chemical species of elements in system of interests, though its definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the total concentrations are often without any meaning when assessing health or environmental risks of trace elements.In practice, the MAA is a combination of conventional instrumental or radiochemical activation analysis and physical, chemical or biochemical separation techniques. The MAA is able to play a particular role in speciation studies. However, the critical point in the MAA is that it is not permitted to change the primitive chemical species of elements in systems, or the change has to be under control; in the meantime it is not allowed to form the 'new artifact' originally not present in systems. Some practical examples of MAA for chemical species research performed recently in our laboratory will be presented as follows: Chemical species of platinum group elements in sediment; Chemical species of iodine in marine algae; Chemical species of mercury in human tissues; Chemical species of selenium in corn; Chemical species of rare earth elements in natural plant, etc. The merits and limitations of MAA will be described as well. (author)

  19. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO).

    Science.gov (United States)

    Kumpiene, Jurate; Bert, Valérie; Dimitriou, Ioannis; Eriksson, Jan; Friesl-Hanl, Wolfgang; Galazka, Rafal; Herzig, Rolf; Janssen, Jolien; Kidd, Petra; Mench, Michel; Müller, Ingo; Neu, Silke; Oustriere, Nadège; Puschenreiter, Markus; Renella, Giancarlo; Roumier, Pierre-Hervé; Siebielec, Grzegorz; Vangronsveld, Jaco; Manier, Nicolas

    2014-10-15

    During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Pilot Field Test of Electrokinetically-Delivered and Thermally Activated Persulfate (EKTAP) for Remediation of Chlorinated Solvents in Clay

    Science.gov (United States)

    O'Carrol, D. M.; Head, N.; Chowdhury, A. I.; Inglis, A.; Garcia, A. N.; Reynolds, D. A.; Hayman, J.; Hogberg, D.; Austrins, L. M.; Sidebottom, A.; Auger, M.; Eimers, J.; Gerhard, J.

    2017-12-01

    Remediation of low-permeability soils that are contaminated with chlorinated solvents is challenging. In-situ chemical oxidation (ISCO) with persulfate is promising, however, the delivery of the oxidant by hydraulic gradient is limited in low-permeability soils. Electrokinetic (EK) enhanced transport of amendments has shown the potential to overcome these limitations. In particular, the combined technology of EK-delivered and thermally activated persulfate (EKTAP) has been recently demonstrated in the laboratory as promising in these challenging environments (Chowdhury A. I. (2016) Hydraulic and Electrokinetic Delivery of Remediants for In-situ Remediation. Electronic Thesis and Dissertation Repository, Paper 4135). This study presents the first pilot field test to evaluate EKTAP to enhance the distribution and effectiveness of persulfate in clayey soil. The pilot field test was conducted at a contaminated site formerly occupied by a chlorinated solvent production facility. In the EK transport phase, 925 L of 40 g/L persulfate was injected over 57 days, during which 9A of direct current (DC) was applied between two electrodes spaced 3 m apart. In the subsequent heating phase, 10A of alternate current (AC) was applied across the same electrodes for an additional 70 days. Extensive sampling of soil and groundwater in this EKTAP cell were compared to those from two parallel control cells, one with EK only and one with no electrodes. Results indicated that EK can significantly increase transport rates of persulfate in clayey soil. Persulfate activation primarily occurred in the period of DC application, indicating that the natural reduction capacity of the clay soil had a significant impact on persulfate decomposition. Temperature mapping indicated that AC current was able to increase soil temperatures, validating the EKTAP concept. Degradation of chlorinated compounds, in particular, 1-2, dichloroethane (1,2- DCA), was observed to be substantial in areas of persulfate

  1. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. An overview of remedial action technical information support activities funded by the US Department of Energy's Office of Environmental Restoration

    International Nuclear Information System (INIS)

    Owen, P.T.

    1990-01-01

    In 1979 the US Department of Energy (DOE) established the Remedial Action Program Information Center (RAPIC) at the Oak Ridge National Laboratory (ORNL) to provide technical information support to the DOE's Remedial Action Programs, which comprise: Formerly Utilized Sites Remedial Action Program (FUSRAP), Surplus Facilities Management Program (SFMP), and Uranium Mill Tailings Remedial Action Program (UMTRAP). Specific information activities that RAPIC performs to support the DOE's programs include: maintaining a computerized bibliographic database containing approximately 7000 annotated references relevant to remediation work at radioactively contaminated sites; publishing an annual bibliography, Nuclear Facility Decommissioning and Site Remedial Actions, A Selected Bibliography, ORNL/EIS-154; maintaining a document repository and providing copies of requested publications; and performing manual and computerized searches of the technical literature. The most important RAPIC function is serving as a focal point for remedial action information. With these extensive resources at its command, RAPIC is in a unique position to provide a comprehensive information base to the remedial action and environmental restoration community

  3. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    Science.gov (United States)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  4. Utilization of chemical derivatives in activation analysis

    International Nuclear Information System (INIS)

    Ehmann, W.D.

    1990-01-01

    Derivative activation analysis (DAA) is a method to enhance the sensitivity of nuclear activation analysis for the more elusive elements. It may also allow a degree of chemical speciation for the element of interest. DAA uses a preirradiation chemical reaction on the sample to initiate the formation of, or an exchange with, a chemical complex which contains a surrogate element, M. As a result, the amount of the element or the chemical species to be determined, X, is now represented by measurement of the amount of the surrogate element, M, that is made part of, or released by the complex species. The surrogate element is selected for its superior properties for nuclear activation analysis and the absence of interference reaction in its final determination by instrumental neutron activation analysis (INAA) after some preconcentration or separation chemistry. Published DAA studies have been limited to neutron activation analysis. DAA can offer the analyst some important advantages. It can determine elements, functional groups, or chemical species which cannot be determined directly by INAA, fast neutron activation analysis (FNAA), prompt gamma neutron activation analysis (PGNAA), or charged particle activation analysis (CPAA) procedures. When compared with conventional RNAA, there are fewer precautions with respect to handling of intensely radioactive samples, since the chemistry is done before the irradiation. The preirradiation chemistry may also eliminate many interferences that might occur in INAA and, through use of an appropriate surrogate element, can place the analytical gamma-ray line in an interference-free region of the gamma-ray spectrum

  5. Status of international environmental remediation activities: A report from the Prague conference

    International Nuclear Information System (INIS)

    Slate, S.C.; Thornhill, C.K.; Allen, R.E.

    1993-10-01

    The Prague Conference on nuclear waste management and environmental remediation provided extensive interchange of ideas and insight into new technologies and management approaches throughout the world. A variety of environmental remediation technologies have potential application to Department of Energy facilities; others illustrate pitfalls to be avoided. This paper presents the highlights from the first environmental remediation (ER) technical program in the American Society of Mechanical Engineers' series of international nuclear waste management conferences. This program covers ER technologies, decontamination and decommissioning (D ampersand D) technologies and experience, ER site characterization and modeling, management of and results from actual clean up actions, and data on several major international environmental problems. Focusing on direct benefits to the Department of Energy's (DOE) ER Program, this paper summarizes pertinent technical information, identifies useful technical papers, lists key technical contacts, and identifies specific actions to obtain additional information. US attendance at meetings like this is normally quite limited compared to attendance at North American meetings. The purpose of this paper then is to increase general awareness of this meeting in US technical circles and to broadly disseminate key information to US ER programs and contractors. To do this, the paper is organized to present background information on the conference itself, document the beneficial technical information, and outline ongoing information exchange activities

  6. Measurement systems in the area of land remediation and soil segregation activities

    International Nuclear Information System (INIS)

    Simon, Gerold G.; Sokcic-Kostic, Marina; Auler, Ingolf; Eickelpasch, Ludger; Betts, Jonathan

    2007-01-01

    Available in abstract form only. Full text of publication follows: The remediation of radioactively contaminated land is a small but growing sector in the area of decommissioning of nuclear facilities. This also includes the material from buildings after demolition. Contamination comprises in general alpha and beta activities and emission of alpha, beta and gamma radiation. The measurement is in practice restricted to the measurement of gamma emission, because of the high penetration of material by gamma rays. All isotopes, which do not emit gammas are estimated on the basis of given relation between alpha and beta emitters without gamma radiation and emitters with gamma radiation. This method is called 'key nuclide method'. Whilst many studies have been completed, others still continue in the processing of large volumes of concrete, steel and soil. An important conclusion from these and similar research programs is that a significant proportion of the waste contains only low concentrations of radioactive nuclides. Therefore, much of the material from the remediation can be considered for 'free release'. It was often not possible to attain adequate specific information on these materials, so a measurement system is needed for their classification and characterization. NUKEM Technologies has practical experience in characterising and remediating of nuclear sites. Recently, it has pioneered the use of innovative in-situ and ex-situ characterisation and waste segregation technologies, which enhance the efficiency of remedial actions and provide assurance to customers, regulators and the public that all significant contamination has been removed and sites can be used for new purposes. (authors)

  7. 2006, REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    Science.gov (United States)

    This presentation will document the use of historical imagery, GIS, photogrammetry and hyperspectral remote sensing in locating and removing chemical weapons such as Mustard Gas, Phosgene, Ricin, and Lewisite from the environment and establishing a risk assessment methodology for...

  8. Applying Activity Based Costing (ABC) Method to Calculate Cost Price in Hospital and Remedy Services.

    Science.gov (United States)

    Rajabi, A; Dabiri, A

    2012-01-01

    Activity Based Costing (ABC) is one of the new methods began appearing as a costing methodology in the 1990's. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals. To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated. The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly. Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services.

  9. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  10. REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    Science.gov (United States)

    During World War I, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite. After the end of t...

  11. Effect of Chemical Remediation of Crude-Oil-Polluted Agricultural Land on Soil Properties and Crop Performance

    Directory of Open Access Journals (Sweden)

    O. E. Essien

    2010-06-01

    Full Text Available Chemical degreaser with detergent was used to wash crude-oil-polluted agricultural soil and restore it to 83% -93% of the unpolluted soil's status for sustainable productivity. Comparison of reclaimed soil's properties with unpolluted soil sample of the significant differences (p=0.05 between their values for soil moisture content, soil pH, evapotranspiration, root elongation and soil fertility. Root elongation at 1.1 cm/day in the reclaimed soil compared with 1.29 cm/day in unpolluted soil indicated 83% recovery. Saturated hydraulic conductivity also had 83% recovery. However, infiltration rate showed a low recovery of 30%, perhaps, due to the wetness of the reclaimed soil's surface prior to the reclamation process. The soil macro/microspores were unblocked by the degreaser enabling the root pores to overcome the osmotic problem caused by oil-molecules' blockade and conduct moisture through to the phloem and leaves to sustain evapotranspiration, leaves turgidity chemical reclamation by degreaser with detergent is highly recommended for short-duration in-situ remediation of crude-oil-polluted agricultural land.

  12. ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Roberts, J.

    2012-02-13

    This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

  13. Radiological survey activities: uranium mill tailings remedial action project procedures manual

    International Nuclear Information System (INIS)

    Little, C.A.; Berven, B.A.; Carter, T.E.

    1986-07-01

    The US Department of Energy (DOE) was assigned the responsibility for conducting remedial action at 24 sites, which are located in one eastern and nine western states. The DOE's responsibilities are being met through its Uranium Mill Tailings Remedial Action Project Office (UMTRA-PO) in Albuquerque, New Mexico. The purpose of this Procedures Manual is to provide a standardized set of procedures that document in an auditable manner the activities performed by the Radiological Survey Activities (RASA) group in the Dosimetry and Biophysical Transport Section (DABTS) of the Health and Safety Research Division (HASRD) at the Oak Ridge National Laboratory (ORNL), in its role as the Inclusion Survey Contractor (ISC). Members of the RASA group assigned to the UMTRA Project are headquartered in the ORNL/RASA office in Grand Junction, Colorado, and report to the ORNL/RASA Project Manager. The Procedures Manual ensures that the organizational, administrative, and technical activities of the RASA/UMTRA group conform properly to those of the ISC as described in the Vicinity Properties Management and Implementation Manual and the Summary Protocol. This manual also ensures that the techniques and procedures used by the RASA/UMTRA group and contractor personnel meet the requirements of applicable governmental, scientific, and industrial standards

  14. Molecular activation analysis for chemical species studies

    International Nuclear Information System (INIS)

    Chai Zhifang; Mao Xueying; Wang Yuqi; Sun Jingxin; Qian Qingfang; Hou Xiaolin; Zhang Peiqun; Chen Chunying; Feng Weiyu; Ding Wenjun; Li Xiaolin; Li Chunsheng; Dai Xiongxin

    2001-01-01

    The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able to provide information about the chemical species of elements in systems of interest, though its exact definition has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical species of elements, because the bulk contents or concentrations are often insignificant for judging biological, environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. (author)

  15. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    Science.gov (United States)

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  16. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes.

    Science.gov (United States)

    Hua, Shan; Gong, Ji-Lai; Zeng, Guang-Ming; Yao, Fu-Bing; Guo, Min; Ou, Xiao-Ming

    2017-06-01

    Organochlorine pesticides (OCPs) in sediment were a potential damage for humans and ecosystems. The aim of this work was to determine the effectiveness of carbon materials remedy hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethanes (DDTs) in sediment. Two different carbon materials including activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs) were used in the present research. Sediment treated with 2 wt% AC and MWCNTs after 150 d contact showed 97%, and 75% reduction for HCH, and 93% and 59% decrease for DDTs in aqueous equilibrium concentration, respectively. Similarly, the reduction efficiencies of DDT and HCH uptake by semipermeable membrane devices (SPMDs) treated with AC (MWCNTs) were 97% (75%) and 92% (63%), respectively under the identical conditions. Furthermore, for 2 wt% AC (MWCNTs) system, a reduction of XAD beads uptake up to 87% (52%) and 73% (67%) was obtained in HCH and DDT flux to overlying water in quiescent system. Adding MWCNTs to contaminated sediment did not significantly decrease aqueous equilibrium concentration and DDTs and HCH availability in SPMDs compared to AC treatment. A series of results indicated that AC had significantly higher remediation efficiency towards HCH and DDTs in sediment than MWCNTs. Additionally, the removal efficiencies of two organic pollutants improved with increasing material doses and contact times. The greater effectiveness of AC was attributed to its greater specific surface area, which was favorable for binding contaminants. These results highlighted the potential for using AC as in-situ sorbent amendments for sediment remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF APIS ...

    African Journals Online (AJOL)

    CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF APIS. MELLIFERA BEE POLLEN FROM NORTHWEST ALGERIA. A. Rebiai* and T.Lanez. University of El Oued, VTRS Laboratory, P.O. Box 789, 39000, El Oued, Algeria. Received: 08 November 2012 / Accepted: 23 December 2012 / Published online: 31 ...

  18. On chemical activity of heavy metal oxides

    International Nuclear Information System (INIS)

    Mechev, V.V.

    1994-01-01

    Interaction of solid oxides of heavy nonferrous metals with sulfur and carbon is investigated. The results are discussed. Direct dependence of chemical activity of oxides on disordering of their crystal lattice at heating is established. Beginning of interaction in the systems studied is accompanied by change of oxide conductivity type

  19. Computational enzymology for degradation of chemical warfare agents: promising technologies for remediation processes

    Directory of Open Access Journals (Sweden)

    2017-03-01

    Full Text Available Chemical weapons are a major worldwide problem, since they are inexpensive, easy to produce on a large scale and difficult to detect and control. Among the chemical warfare agents, we can highlight the organophosphorus compounds (OP, which contain the phosphorus element and that have a large number of applications. They affect the central nervous system and can lead to death, so there are a lot of works in order to design new effective antidotes for the intoxication caused by them. The standard treatment includes the use of an anticholinergic combined to a central nervous system depressor and an oxime. Oximes are compounds that reactivate Acetylcholinesterase (AChE, a regulatory enzyme responsible for the transmission of nerve impulses, which is one of the molecular targets most vulnerable to neurotoxic agents. Increasingly, enzymatic treatment becomes a promising alternative; therefore, other enzymes have been studied for the OP degradation function, such as phosphotriesterase (PTE from bacteria, human serum paraoxonase 1 (HssPON1 and diisopropyl fluorophosphatase (DFPase that showed significant performances in OP detoxification. The understanding of mechanisms by which enzymes act is of extreme importance for the projection of antidotes for warfare agents, and computational chemistry comes to aid and reduce the time and costs of the process. Molecular Docking, Molecular Dynamics and QM/MM (quantum-mechanics/molecular-mechanics are techniques used to investigate the molecular interactions between ligands and proteins.

  20. Foundational aspects of the concept of chemical activity

    DEFF Research Database (Denmark)

    Mayer, Philipp

    2015-01-01

    The chemical activity of an organic chemical quantifies its potential for spontaneous physicochemical processes, such as diffusion, sorption, and partitioning. For instance, the chemical activity of a sediment contaminant determines its equilibrium partitioning concentration in sediment-dwelling ...

  1. Service activities of chemical analysis division

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Suh, Moo Yul; Park, Kyoung Kyun; Jung, Ki Suk; Joe, Kih Soo; Jee, Kwang Yong; Jung, Woo Sik; Sohn, Se Chul; Yeo, In Heong; Han, Sun Ho

    1988-12-01

    Progress of the Division during the year of 1988 was described on the service activities for various R and D projects carrying out in the Institute, for the fuel fabrication and conversion plant, and for the post-irradiation examination facility. Relevant analytical methodologies developed for the chemical analysis of an irradiated fuel, safeguards chemical analysis, and pool water monitoring were included such as chromatographic separation of lanthanides, polarographic determination of dissolved oxygen in water, and automation on potentiometric titration of uranium. Some of the laboratory manuals revised were also included in this progress report. (Author)

  2. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  3. Antimicrobial activity of chemically modified dextran derivatives.

    Science.gov (United States)

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation.

    Science.gov (United States)

    Jabeen, Gugan; Farooq, Robina

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.

  5. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    Chemical Composition, antioxidant activity, functional properties and inhibitory action of unripe plantain ( M. Paradisiacae ) flour. ... of dry matter (48.00 ± 3.96%) and starch (31.10 ± 0.44%) but was low in phenol (1.42 ± 0.03%), protein (3.15 ± 0.042%), ash (5.50 ± 0.42%) and total soluble sugar (0.64 ± 0.001%) (p < 0.05).

  6. Remediation of total petroleum hydrocarbons using combined in-vessel composting ‎and oxidation by activated persulfate

    Directory of Open Access Journals (Sweden)

    A.R. Asgari

    2017-12-01

    Full Text Available This study was investigated the efficiency of activated persulfate and ‎in-vessel composting for removal of total petroleum hydrocarbons. ‎Remediation by activated persulfate with ferrous sulfate as pre-treatment was done at batch system. In the chemical oxidation, various variables including persulfate concentrations (10-3000 mg/g as waste, pH (3-7, ferrous sulfate (0.5-4 mg/g as wasteand temperature (20-60°C were studied. In the biological system, premature compost was added as an amendment. The filter cake to compost ratio were 1:0 (as control and 1:5 to 15 (as dry basis. C: N: P ratio and moisture content were 100:5:1 and 45-60%, respectively. The results showed that acidic pH (pH=3 had high efficiency for the removal of total petroleum hydrocarbons by activated persulfate. Temperature had the significant effect during the persulfate oxidation. When ferrous sulfate was used as an activator for degradation at acidic condition and 60°C, removal efficiency increased to 47.32%. The results of biological process showed that the minimum total petroleum hydrocarbons removal in all reactors was 62 percent. The maximum and minimum removal efficiency was obtained at 1:5 (69.46% and 1:10 (62.42% mixing ratios, respectively. Kinetic study showed that second order kinetic model (R2>0.81 shows the best agreement with the experimental data and the rate of TPH degradation at low mixing ratio (1:3 was faster than high mixing ratio (1:15. Therefore, according to the results, in-vessel composting after pre-treatment by activated persulfate is suggested as an efficient process for degradation of total petroleum hydrocarbons.

  7. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.

    Science.gov (United States)

    Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G

    2015-06-01

    This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS. Copyright © 2015. Published by Elsevier Ltd.

  8. Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO).

    Science.gov (United States)

    Touceda-González, M; Prieto-Fernández, Á; Renella, G; Giagnoni, L; Sessitsch, A; Brader, G; Kumpiene, J; Dimitriou, I; Eriksson, J; Friesl-Hanl, W; Galazka, R; Janssen, J; Mench, M; Müller, I; Neu, S; Puschenreiter, M; Siebielec, G; Vangronsveld, J; Kidd, P S

    2017-12-01

    Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR. Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg -1 soil, respiration increased from 7.4 to 40.1 mg C-CO 2 kg -1 soil d -1 , and enzyme activities were 2-11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Key programmatic steps and activities for implementing the Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    1985-07-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) was enacted based upon findings by Congress ''that uranium mill tailings located at active and inactive hazard to the public, and that protection of the public health, safety and welfare, and the regulations of interstate commerce, require that every reasonable effort be made to provide for the stabilization, disposal, and control in a safe and environmentally sound manner of such tailings in order to prevent or minimize radon diffusion into the environment and to prevent or minimize other environmental hazards from such tailings.'' A general understanding of the steps leading to elimination of the hazards associated with designated uranium mill tailings sites, and the parties involved in that effort, are presented in this document. A representative schedule is also presented in this document to show both program sequence and activity interdependence. Those activities that have the most potential to influence program duration, because of the significant amount of additional time that may be required, include identification and selection of a suitable site, field data collection delays due to weather, actual acquisition of the designated or alternate disposal site, construction delays due to weather, and site licensing. This document provides an understanding of the steps, the sequence, the parties involved, and a representative duration of activities leading to remedial action and cleanup at the designated inactive uranium mill tailings sites. 10 refs., 5 figs., 1 tab

  10. Chemical Composition and Antimicrobial Activities of Iranian Propolis

    Science.gov (United States)

    Afrouzan, Houshang; Tahghighi, Azar; Zakeri, Sedigheh; Es-haghi, Ali

    2018-01-01

    Background: With considering the importance of natural products for their remedial and therapeutic value, this research was aimed to analyze the chemical compositions and antimicrobial activity of four propolis samples from different areas of Iran (Chenaran, Taleghan, Morad Beyg, and Kalaleh) with various climates and flora. Methods: Ethanolic (70% EtOH) and dichlromethane (DCM) extracts of Iranian propolis were analyzed by gas chromatography-mass spectrometry (GC-MS) methods, and antimicrobial activity was evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus using disk diffusion antimicrobial method. Results: The results of GC-MS analysis showed the presence of fatty acids, flavonoids, terpenes, aromatic-aliphatic acids, and their related esters. The total flavonoids in DCM extract of Chenaran, Taleghan, Morad Beyg, and Kalaleh propolis were pinocembrin and pinostrobin chalcone. The common phenolic and terpene compounds detected in all four tested EtOH extracts were P-cumaric acid and dimethyl -1,3,5,6-tetramethyl-[1,3-(13C2)] bicycloce [5.5.0] dodeca-1,3,5,6,8,10-hexaene-9,10-dicarboxylate, respectively. The highest inhibitory diameter zone of the Iranian propolis against C. albicans, E. coli, and S. aureus was for DCM extract of Kalaleh propolis (13.33 mm), Morad Beyg propolis (12 mm), and Kalaleh (11.67 mm), respectively. Conclusion: Iranian propolis showed antimicrobial activities against C. albicans, E. coli, and S. aurous, perhaps due to the presence of flavonoids, phenolic acids, and terpenes as active components that can be used alone or in combination with the selected antibiotics to synergize antibiotic effect, as well as to prevent microbial resistance to available antimicrobial drugs. PMID:28558440

  11. March 2016 Memo: Planning for Removal and Remedial Activities at Hardrock Mining and Mineral Processing Sites with Fluid Hazards

    Science.gov (United States)

    Memo from EPA Assistant Administrator Mathy Stanislaus, regarding planning for removal and remedial activities at hardrock mining and mineral processing sites with fluid hazards, and to share the Agency’s expectations for the work that is done at these sit

  12. 78 FR 21352 - Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2013-04-10

    ... reimbursement ceilings). Title X requires DOE to reimburse eligible uranium and thorium licensees for certain... DEPARTMENT OF ENERGY Update on Reimbursement for Costs of Remedial Action at Active Uranium and... not currently available for reimbursement for cleanup work performed by licensees at eligible uranium...

  13. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil.

    Science.gov (United States)

    Liu, Xitao; Yu, Gang

    2006-04-01

    The application of microwave and activated carbon for the treatment of polychlorinated biphenyl (PCB) contaminated soil was explored in this study with a model compound of 2,4,5-trichlorobiphenyl (PCB29). PCB-contaminated soil was treated in a quartz reactor by microwave irradiation at 2450MHz with the addition of granular activated carbon (GAC). In this procedure, GAC acted as microwave absorbent for reaching high temperature and reductant for dechlorination. A sheltered type-K thermocouple was applied to record the temperature rising courses. It was shown that the addition of GAC could effectively promote the temperature rising courses. The determination of PCB residues in soil by gas chromatography (GC) revealed that rates of PCB removal were highly dependent on microwave power, soil moisture content, and the amount of GAC added. GC with mass spectrum (MS) detector and ion chromatography were employed for the analysis of degradation intermediates and chlorine ions, respectively. It was suggested that microwave irradiation with the assistance of activated carbon might be a potential technology for the remediation of PCB-contaminated soil.

  14. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    Science.gov (United States)

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  15. Activation and chemical analysis of drinking waters

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Ground water samples from Patiala city have been analysed for 22 trace elements using neutron activation analysis and for seven chemical parameters using standard techniques. It was found that alkali and alkaline earth metals have high concentrations in all samples whereas the concentrations of toxic metals are low in the majority of samples. However, chromium and cadmium concentrations are higher in ground water taken from the industrial belt of the city. This indicates that the overall level of pollution is low, but that some measures are still needed to inhibit various industries from polluting the ground water. (author)

  16. Preliminary Investigations Of Effectiveness Of Herbal Remedies ...

    African Journals Online (AJOL)

    This study analysed some of the widely publicised herbal remedies in use for HIV infection in Nigeria, and investigated their efficacy scientifically. Those found to be efficacious will be subjected to further analysis to identify their active chemical components. The research deals directly with patients living with HIV/AIDS that ...

  17. Quality assurance program plan for the Radiological Survey Activities Program - Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-01-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  18. Quality assurance program plan for the radiological survey activities program: Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Ramos, S.J.; Berven, B.A.; Little, C.A.

    1986-08-01

    The Radiological Survey Activities (RASA) program at Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude the site from UMTRAP based on whether the onsite residual radioactive material (if any) originated from the former mill sites, and radiation levels onsite are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the quality assurance program plan for the RASA program in conducting all activities related to the UMTRA project. All quality assurance provisions given by the DOE, DOE/UMTRA, and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the RASA/UMTRAP QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups

  19. Plants and chemical constituents with giardicidal activity

    Directory of Open Access Journals (Sweden)

    Flavia M.M. Amaral

    Full Text Available Intestinal infection caused by Giardia lamblia represents a serious public health problem, with increased rates of prevalence in numerous countries. Increased resistance of the parasite and the side-effects of the reference drugs employed in the treatment of giardiasis make necessary to seek new therapeutic agents. Natural products, especially of plant origin, represent excellent starting point for research. The objective of this study is to review the literature on plant extracts, fractions and chemical constituents whose giardicidal activity has been investigated in vitro. The review describes 153 (one hundred and fifty-three plant species from 69 (sixty-nine families that were evaluated for their giardicidal activity. The geographical distribution of the plant species, the part used, preparation, strain of Giardia lamblia tested and the results obtained by the authors are also given. One hundred and one compounds isolated from plant species, classified by chemical class, are presented. Recent aspects of research on natural products of plant origin employed in the treatment of giardiasis are also discussed.

  20. A Chemical Activity Approach to Exposure and Risk Assessment of Chemicals

    DEFF Research Database (Denmark)

    Gobas, Frank A. P. C.; Mayer, Philipp; Parkerton, Thomas F.

    2018-01-01

    activity approach, its strengths and limitations, and provides examples of how this concept may be applied to the management of single chemicals and chemical mixtures. The examples demonstrate that the chemical activity approach provides a useful framework for 1) compiling and evaluating exposure......To support the goals articulated in the vision for exposure and risk assessment in the twenty-first century, we highlight the application of a thermodynamic chemical activity approach for the exposure and risk assessment of chemicals in the environment. The present article describes the chemical...... assessment. The article further illustrates that the chemical activity approach can support an adaptive management strategy for environmental stewardship of chemicals where “safe” chemical activities are established based on toxicological studies and presented as guidelines for environmental quality...

  1. Stability of a chemically active floating disk

    Science.gov (United States)

    Vandadi, Vahid; Jafari Kang, Saeed; Rothstein, Jonathan; Masoud, Hassan

    2017-11-01

    We theoretically study the translational stability of a chemically active disk located at a flat liquid-gas interface. The initially immobile circular disk uniformly releases an interface-active agent that locally changes the surface tension and is insoluble in the bulk. If left unperturbed, the stationary disk remains motionless as the agent is discharged. Neglecting the inertial effects, we numerically test whether a perturbation in the translational velocity of the disk can lead to its spontaneous and self-sustained motion. Such a perturbation gives rise to an asymmetric distribution of the released factor that could trigger and sustain the Marangoni propulsion of the disk. An implicit Fourier-Chebyshev spectral method is employed to solve the advection-diffusion equation for the concentration of the active agent. The solution, given a linear equation of state for the surface tension, provides the shear stress distribution at the interface. This and the no-slip condition on the wetted surface of the disk are then used at each time step to semi-analytically determine the Stokes flow in the semi-infinite liquid layer. Overall, the findings of our investigation pave the way for pinpointing the conditions under which interface-bound active particles become dynamically unstable.

  2. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities

    International Nuclear Information System (INIS)

    Wang Quanying; Zhou Dongmei; Cang Long; Li Lianzhen; Wang Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu 2+ ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in solid phase could play important roles in the changes of the soil microbial and enzyme activities. Our findings suggest that the bioavailability of soil heavy metals and their ecotoxicological effects on the soil biota before and after electroremediation can be better understood in terms of their chemical speciation and fractionations. - The assessment of the roles of soil solution speciation and solid-phase fractionations in metal bioavailability after electrokinetic remediation deserves close attention.

  3. Innovative technology summary report: System for Tracking Remediation, Exposure, Activities and Materials

    International Nuclear Information System (INIS)

    1998-09-01

    The System for Tracking Remediation, Exposure, Activities, and Materials (STREAM) technology is a multi-media database that consolidates project information into a single, easily-accessible place for day-to-day work performance and management tracking. Information inputs can range from procedures, reports, and references to waste generation logs and manifests to photographs and contaminant survey maps. Key features of the system are quick and easy information organization and retrieval, versatile information display options, and a variety of visual imaging methods. These elements enhance productivity and compliance and facilitate communications with project staff, clients, and regulators. Use of STREAM also gives visual access to contaminated areas, reducing the number of physical entries and promoting safety and as low as reasonably achievable (ALARA) principles. The STREAM system can be customized to focus on the information needs of a specific project, and provides a capability and work process improvement well beyond the usual collection of paperwork and independent databases. Especially when incorporated early in project planning and implemented to the fullest extent, it is a systematic and cost-effective tool for controlling and using project information. The STREAM system can support up to 50 different work stations. This report covers the period February through October 1997, when the STREAM software program, owned by Delphinus Engineering, was demonstrated at the Hanford Site's Reactor Interim Safe Storage (ISS) Project

  4. A Parametric Study on Using Active Debris Removal for LEO Environment Remediation

    Science.gov (United States)

    2010-01-01

    Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to guide its implementation to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the currently existing satellites and the benefits of collision avoidance maneuvers are also included.

  5. Quality Assurance Program Plan for the radiological survey activities program --- Uranium Mill Tailings Remedial Action Project

    International Nuclear Information System (INIS)

    Knott, R.R.; Little, C.A.

    1991-08-01

    The Pollutant Assessments Group (PAG) at the Grand Junction Office (GJO), Colorado, of Oak Ridge National Laboratory (ORNL) is responsible for surveying designated sites in the vicinity of 24 inactive mill sites involved in the Department of Energy's (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP). The purpose of these surveys is to provide a recommendation to DOE whether to include or exclude these sites from UMTRAP based on whether the on-site residual radioactive material (if any) originated from the former mill sites, and radiation levels on-site are in excess of appropriate Environmental Protection Agency (EPA) criteria. This report describes the Quality Assurance Plan (QAP) for the PAG in conducting all activities related to UMTRAP. All quality assurance provisions given by the DOE, DOE/UMTRA and ORNL organizations are integrated into this plan. Specifically, this report identifies the policies and procedures followed in accomplishing the PAG/UMTRA QA program, identifies those organizational units involved in the implementation of these procedures, and outlines the respective responsibilities of those groups. 11 refs., 6 figs., 3 tabs

  6. Overview of decommissioning and decontamination technical information support activities funded by the US Department of Energy's remedial action programs

    International Nuclear Information System (INIS)

    Owen, P.T.

    1986-01-01

    In 1979 the US Department of Energy (DOE) established the Remedial Action Program Information Center (RAPIC) at the Oak Ridge National Laboratory to provide technical information support to the Surplus Facilities Management Program, DOE's national decommissioning and decontamination (D and D) program which is managed by DOE's Richland Operations Office and UNC Nuclear Industries, Inc., and to the other DOE remedial action programs. Specific information activities that RAPIC performs to support the DOE's programs and the D and D community include: maintaining a computerized bibliographic database containing about 4500 annotated citations (about 2000 on D and D) and a database of 1800 contacts involved with remedial action work at radioactively contaminated sites; publishing an annual bibliography, ''Nuclear Facility Decommissioning and Site Remedial Actions, A Selected Bibliography,'' ORNL/EIS-154 (six volumes published); maintaining a document repository and providing copies of requested publications; and performing manual and computerized searches of the technical literature. The most significant RAPIC function is serving as a focal point for D and D information. With the extensive resources at its command, RAPIC is in a unique position to provide a comprehensive information base to the D and D community. DOE makes these services available to foster good public relations and promote cooperation and information exchange

  7. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    International Nuclear Information System (INIS)

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future

  8. Status of activities on the inactive uranium mill tailings sites remedial action program. Office of the Assistant Secretary for Environment

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    This report on the status of the Office of Environment's program for inactive uranium mill tailings sites is an analysis of the current status and a forecast of future activities of the Office of Environment. The termination date for receipt of information was September 30, 1980. Aerial radiological surveys and detailed ground radiological assessments of properties within the communities in the vicinity of the designated processing sites in Canonsburg, Pennsylvania, Salt Lake City, Utah, and Boise, Idaho led to the designation of an initial group of vicinity properties for remedial action. The potential health effects of the residual radioactive materials on or near these properties were estimated, and the Assistant Secretary for Environment recommended priorities for performing remedial action to the Department's Assistant Secretary for Nuclear Energy. In designating these properties and establishing recommended priorities for performing remedial action, the Office of Environment consulted with the Environmental Protection Agency, the Nuclear Regulatory Commission, representatives from the affected State and local governments, and individual property owners. After notifying the Governors of each of the affected States and the Navajo Nation of the Secretary of Energy's designation of processing sites within their areas of jurisdiction and establishment of remedial action priorities, a Sample Cooperative Agreement was developed by the Department in consultation with the Nuclear Regulatory Commission and provided to the affected States and the Navajo Nation for comments. During September 1980, a Cooperative Agreement with the Commonwealth of Pennsylvania for the designated Canonsburg processing site was executed by the Department. It is anticipated that a Cooperative Agreement between the State of Utah and the Department to perform remedial actions at the designated Salt Lake City site will be executed in the near future.

  9. Formerly utilized MED/AEC sites Remedial Action Program. Report of the decontamination of Jones Chemical Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    International Nuclear Information System (INIS)

    Wynuveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1984-08-01

    The US Department of Energy (DOE) has implemented a program to decontaminate radioactively contaminated sites that were formerly utilized by the Manhattan Engineer District (MED) and/or the Atomic Energy Commission (AEC) for activities that included handling of radioactive material. This program is referred to as the ''Formerly Utilized Sites Remedial Action Program'' (FUSRAP). Among these sites are Jones Chemical Laboratory, Ryerson Physical Laboratory, Kent Chemical Laboratory, and Eckhart Hall of The University of Chicago, Chicago, Illinois. Since 1977, the University of Chicago decontaminated Kent Chemical Laboratory as part of a facilities renovation program. All areas of Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory that had been identified as contaminated in excess of current guidelines in the 1976-1977 surveys were decontaminated to levels where no contamination could be detected relative to natural backgrounds. All areas that required defacing to achieve this goal were restored to their original condition. The radiological evaluation of the sewer system, based primarily on the radiochemical analyses of sludge and water samples, indicated that the entire sewer system is potentially contaminated. While this evaluation was defined as part of this project, the decontamination of the sewer system was not included in the purview of this effort. The documentation included in this report substantiates the judgment that all contaminated areas identified in the earlier reports in the three structures included in the decontamination effort (Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory) were cleaned to levels commensurate with release for unrestricted use

  10. Integrated remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Dykes, R.S.; Howles, A.C.

    1992-01-01

    Remediation of sites contaminated with petroleum hydrocarbons and other organic chemicals frequently focuses on a single phase of the chemical in question. This paper describes an integrated approach to remediation involving selection of complimentary technologies designed to create a remedial system which achieves cleanup goals in affected media in the shortest possible time consistent with overall environmental protection

  11. Radiological surveillance of Remedial Action activities at the processing site, Falls City, Texas. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Falls City, Texas. This surveillance was conducted March 22--26, 1993. No findings were identified during the surveillance. Three site-specific observations and three programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Falls City, Texas, remedial action program are performed adequately. However, some of the observations identify that there is potential for improving certain aspects of the occupational radiological air sampling, ensuring analytical data quality, and in communicating with the DOE and TAC on the ore sampling methods. The TAC has also received and is currently reviewing the RAC's responses regarding the observations identified during the radiological surveillance performed October 29--30, 1992

  12. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: Part 6: Modelling of simultaneous chemical-biological P removal - review of existing models.

  13. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  14. Remediation of the site of a former active handling building at UKAEA- Winfrith

    International Nuclear Information System (INIS)

    Armitage, Jack; Brown, Nick; Cornell, Rowland; Jessop, Gareth

    2007-01-01

    Available in abstract form only. Full text of publication follows: Since July 2000, NUKEM Limited has been carrying out the decommissioning of the former Active Handling Building, A59 at Winfrith, Dorset, United Kingdom (UK) under contract from the nuclear site licence holder, United Kingdom Atomic Energy Authority, (UKAEA). The building contained two heavily shielded suites of caves originally used to carry out remote examination of irradiated nuclear fuel elements and other supporting facilities which have all been decontaminated ready to permit building demolition. The demolition of the building structure and the removal of one cave line was completed during 2006 and the second cave line was demolished by March 2007. The remaining operations to be completed concern removal of the building slab and remediation of underlying soils to the final end point, free for unrestricted use without planning or nuclear regulatory control. Within the building base slab there are a range of contaminated items including secondary drain pipes, filter pits, storage hole liners and ventilation ducts which all have to be recovered for disposal along with around 4,000 m 3 of surrounding concrete. In order to characterise the slab before its removal, supporting information has been obtained from site investigation work including a collimated low resolution, high sensitivity gamma survey using the GroundhogTM system of the foundation slab and the recovery and analysis of 27 cores obtained by drilling through the slab into the underlying soil. During removal of the slab it will be necessary to employ a variety of monitoring techniques to locate and remove the contaminated sections and then expose and monitor the underlying soil for evidence of any residual radioactivity. (authors)

  15. Radon remediation of a two-storey UK dwelling by active sub-slab depressurization: observations on hourly Radon concentration variations

    International Nuclear Information System (INIS)

    Denman, A.R.

    2008-01-01

    Radon concentration levels in a two-storey detached single-family dwelling in Northamptonshire, UK, were monitored at hourly intervals throughout a 5-week period during which sub-slab depressurization remediation measures, including an active sump system, were installed. Remediation of the property was accomplished successfully, with the mean radon levels upstairs and downstairs greatly reduced and the prominent diurnal variability in radon levels present prior to remediation almost completely removed. Following remediation, upstairs and downstairs radon concentrations were 32% and 16% of their pre-remediation values respectively. The mean downstairs radon concentration was lower than that upstairs, with pre-and post-remediation values of the upstairs/downstairs concentration ratio, R U/D , of 0.93 and 1.76 respectively. Cross-correlation between upstairs and downstairs radon concentration time-series indicates a time-lag of the order of 1 hour or less, suggesting that diffusion of soil-derived radon from downstairs to upstairs either occurs within that time frame or forms a relatively insignificant contribution to the upstairs radon level. Cross-correlation between radon concentration time-series and the corresponding time-series for local atmospheric parameters demonstrated correlation between radon concentrations and internal/external pressure-difference prior to remediation. This correlation disappears following remediation, confirming the effectiveness of the remediation procedure in mitigating radon ingress from the ground via the stack-effect. Overall, these observations provide further evidence that radon emanation from building materials makes a not insignificant contribution to radon concentration levels within the building. Furthermore, since this component remains essentially unaffected by sub-slab depressurization, its proportional contribution to the total radon levels in the home increases following remediation, leading to the conclusion that where

  16. Preliminary Hazard Classification for the 116-N-3 Crib and Trench Remediation Activities

    International Nuclear Information System (INIS)

    Adam, W. J.

    1999-01-01

    The purpose of this document is to provide a preliminary hazard classification (PHC) for the remediation of the 116-N-3 crib and trench, also known as the 1325-N crib and trench, which are located within the 100-NR-1 Operable Unit of the Hanford Site's 100-N Area. In addition to the work scope described below, current planning also includes removal of some of the pipelines located downstream from the 13 15-N valve box and sampling of other pipelines to determine if remedial actions goals have been met and the pipelines can be left in place

  17. Microbial dechlorination activity during and after chemical oxidant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Doğan-Subaşı, Eylem [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Bastiaens, Leen, E-mail: leen.bastiaens@vito.be [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent (Belgium); Dejonghe, Winnie [Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol (Belgium)

    2013-11-15

    Highlights: • Combined treatment was possible below 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8}. • By-products SO{sub 4}{sup 2−} and MnO{sub 2(s)} had inhibitory effects on dehalogenating bacteria. • Oxidation reduction potential (ORP) was identified as a crucial parameter for recovery of oxidant exposed cells. • Bioaugmentation is a necessity at 0.5 g/L of KMnO{sub 4} and 1 g/L of Na{sub 2}S{sub 2}O{sub 8} and above. -- Abstract: Potassium permanganate (PM) and sodium persulfate (PS) are used in soil remediation, however, their compatibility with a coinciding or subsequent biotreatment is poorly understood. In this study, different concentrations of PM (0.005–2 g/L) and PS (0.01–4.52 g/L) were applied and their effects on the abundance, activity, and reactivation potential of a dechlorinating enrichment culture were investigated. Expression of the tceA, vcrA and 16S rRNA genes of Dehalococcoides spp. were detected at 0.005–0.01 g/L PM and 0.01–0.02 g/L PS. However, with 0.5–2 g/L PM and 1.13–4.52 g/L PS no gene expression was recorded, neither were indicator molecules for total cell activity (Adenosine triphosphate, ATP) detected. Dilution did not promote the reactivation of the microbial cells when the redox potential was above −100 mV. Similarly, inoculated cells did not dechlorinate trichloroethene (TCE) above −100 mV. When the redox potential was decreased to −300 mV and the reactors were bioaugmented for a second time, dechlorination activity recovered, but only in the reactors with 1.13 and 2.26 g/L PS. In conclusion, our results show that chemical oxidants can be combined with a biotreatment at concentrations below 0.5 g/L PM and 1 g/L PS.

  18. To fail is human: remediating remediation in medical education.

    Science.gov (United States)

    Kalet, Adina; Chou, Calvin L; Ellaway, Rachel H

    2017-12-01

    Remediating failing medical learners has traditionally been a craft activity responding to individual learner and remediator circumstances. Although there have been moves towards more systematic approaches to remediation (at least at the institutional level), these changes have tended to focus on due process and defensibility rather than on educational principles. As remediation practice evolves, there is a growing need for common theoretical and systems-based perspectives to guide this work. This paper steps back from the practicalities of remediation practice to take a critical systems perspective on remediation in contemporary medical education. In doing so, the authors acknowledge the complex interactions between institutional, professional, and societal forces that are both facilitators of and barriers to effective remediation practices. The authors propose a model that situates remediation within the contexts of society as a whole, the medical profession, and medical education institutions. They also outline a number of recommendations to constructively align remediation principles and practices, support a continuum of remediation practices, destigmatize remediation, and develop institutional communities of practice in remediation. Medical educators must embrace a responsible and accountable systems-level approach to remediation if they are to meet their obligations to provide a safe and effective physician workforce.

  19. Remediation of former uranium mining and milling activities in Central Asia

    International Nuclear Information System (INIS)

    Waggitt, Peter

    2007-01-01

    Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

  20. Direct measurement and characterization of active photosynthesis zones inside biofuel producing and wastewater remediating microalgal biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Kesaano, Maureen; Moll, Karen; Smith, Terence; Gerlach, Robin; Carlson, Ross; Miller, Charles D.; Peyton, Brent; Cooksey, Keith; Gardner, Robert D.; Sims, Ronald C.

    2014-03-01

    Abstract: Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize renewable resources, such as light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation applications, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for physiological analyses are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and biofuel precursor molecule production using a novel rotating algal biofilm reactor (RABR) operated at field- and laboratory-scales for wastewater remediation and biofuel production, respectively. Clear differences in oxygenic-photosynthesis, respiration and biofuel-precursor capacities were observed between the two systems and different conditions based on light and nitrogen availability. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to prior planktonic studies. Physiological characterizations of these microalgal biofilms identify potential areas for future process optimization.

  1. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H 2 O 2 ) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H 2 O 2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chemical constituents and antimicrobial activity of Goniothalamus ...

    African Journals Online (AJOL)

    The essential oils from the twig and root of Goniothalamus macrophyllus were obtained by hydrodistillation and subjected to Gas Chromatography (GC-FID) and Gas Chromatography/Mass Spectrometry (GC-MS) using CBP-5 capillary column in order to determine their chemical composition. Both twig and root oils and four ...

  3. Development of a novel multi-functional active membrane capping barrier for the remediation of nitrobenzene-contaminated sediment.

    Science.gov (United States)

    Wang, Qing; Li, Yi; Wang, Chao; Wu, Yue; Wang, Peifang

    2014-07-15

    A novel bio-reactive capping barrier composed of polysulfone/granular activated carbon (PS/GAC) hybrid membranes immobilized with microorganism was developed for the remediation of nitrobenzene in sediments. The SEM observation demonstrated that all the membranes had a dense top layer and a porous sublayer, this structure can block the transfer of nitrobenzene from sediment to the water and enhance nitrobenzene degradation. Adsorption behaviors of nitrobenzene on membranes showed that the membrane impregnated with GAC had better performance than the pure PS membrane. The values of Kads increased from 4.64 (without GAC) to 6.19 (1:2 GAC). 20mg/L nitrobenzene can be completely degraded by Pseudomonas putida immobilized on membranes. The biodegradation rate of activated carbon-filled membrane system was little higher than that of pure PS membrane system. For remediation experiments, only about 21.7, 28.3 and 43.9% of nitrobenzene in the sediment was removed by the end of the experiments for PS/GAC membrane, sand-alone and sand amended with activated carbon capping systems, respectively. While for PS/GAC+microorganisms capping system, more than 70% of nitrobenzene loss was observed. This demonstrated that nitrobenzene can be effectively removed from contaminated sediments by microbial degradation in the bio-reactive capping system. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Environmental Remediation Activities in Japan Following the Fukushima Dai-ichi Reactor Incident - 12603

    Energy Technology Data Exchange (ETDEWEB)

    Lively, J.W.; Kelley, J.L.; Marcial, M.R. [AMEC Environment and Infrastructure (United States); Yashio, Shoko; Kuriu, Nobou; Kamijo, Hiroaki; Jotatsu, Kato [Obayashi Corporation (Japan)

    2012-07-01

    In March 2011, the Fukushima Dai-ichi reactor power plant was crippled by the Great Pacific earthquake and subsequent tsunami. Much of the focus in the news was on the reactor site itself as the utility company (TEPCO), the Japanese government, and experts from around the world worked to bring the damaged plants into a safe shutdown condition and stem the release of radioactivity to the environment. Most of the radioactivity released was carried out to sea with the prevailing winds. Still, as weather patterns changed and winds shifted, a significant plume of radioactive materials released from the plant deposited in the environment surrounding the plant, contaminating large land areas of the Fukushima Prefecture. The magnitude of the radiological impact to the surrounding environmental is so large that the Japanese government has had to reevaluate the meaning of 'acceptably clean'. In many respects, 'acceptably clean' cannot be a one-size-fits-all standard. The economics costs of such an approach would make impossible what is already an enormous and costly environmental response and remediation task. Thus, the Japanese government has embarked upon an approach that is both situation-specific and reasonably achievable. For example, the determination of acceptably clean for a nursery school or kindergarten play yard may be different from that for a parking lot. The acceptably clean level of residual radioactivity in the surface soil of a rice paddy is different from that in a forested area. The recognized exposure situation (scenario) thus plays a large role in the decision process. While sometimes complicated to grasp or implement, such an approach does prioritize national resources to address environment remediation based upon immediate and significant risks. In addition, the Japanese government is testing means and methods, including advanced or promising technologies, that could be proven to be effective in reducing the amount of radioactivity

  5. Status of remedial investigation activities in the Hanford Site 300 Area groundwater operable unit

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Innis, B.E.; Frank, M.A.

    1993-09-01

    The Phase 1 remedial investigation (RI) and Phase 1 and 2 feasibility studies (FS) for the 300-FF-5 groundwater operable unit underlying the 300 Area on the Hanford Site have been completed. Analysis and evaluation of soil, sediment, and surface water, and biotic sampling data, groundwater chemistry, and radiological data gathered over the past 3 years has been completed. Risk assessment calculations have been performed. Use of the data gathered, coupled with information from an automated water level data collection system, has enabled engineers to track three plumes that represent the most significant contamination of the groundwater

  6. GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss.

    Science.gov (United States)

    Sarikurkcu, Cengiz; Sabih Ozer, M.; Cakir, Ahmet; Eskici, Mustafa; Mete, Ebru

    2013-01-01

    This study was outlined to examine the chemical composition of hydrodistilled essential oil and in vitro antioxidant potentials of the essential oil and different solvent extracts of endemic Phlomis bourgaei Boiss. used as folk remedy in Turkey. The chemical composition of the oil was analyzed by GC and GC-MS, and the predominant components in the oil were found to be β-caryophyllene (37.37%), (Z)-β-farnesene (15.88%), and germacrene D (10.97%). Antioxidant potentials of the solvent extracts and the oil were determined by four testing systems including β-carotene/linoleic acid, DPPH, reducing power, and chelating effect. In β-carotene/linoleic acid assay, all extracts showed the inhibition of more than 50% at all concentrations. In DPPH, chelating effect, and reducing power test systems, the water extract with 88.68%, 77.45%, and 1.857 (absorbance at 700 nm), respectively, exhibited more excellent activity potential than other extracts (hexane, ethyl acetate and methanol) and the essential oil at 1.0 mg/mL concentration. The amount of the total phenolics and flavonoids was the highest in this extract (139.50 ± 3.98 μg gallic acid equivalents (GAEs)/mg extract and 22.71 ± 0.05 μg quercetin equivalents (QEs)/mg extract). PMID:23762120

  7. GC/MS Evaluation and In Vitro Antioxidant Activity of Essential Oil and Solvent Extracts of an Endemic Plant Used as Folk Remedy in Turkey: Phlomis bourgaei Boiss.

    Directory of Open Access Journals (Sweden)

    Cengiz Sarikurkcu

    2013-01-01

    Full Text Available This study was outlined to examine the chemical composition of hydrodistilled essential oil and in vitro antioxidant potentials of the essential oil and different solvent extracts of endemic Phlomis bourgaei Boiss. used as folk remedy in Turkey. The chemical composition of the oil was analyzed by GC and GC-MS, and the predominant components in the oil were found to be β-caryophyllene (37.37%, (Z-β-farnesene (15.88%, and germacrene D (10.97%. Antioxidant potentials of the solvent extracts and the oil were determined by four testing systems including β-carotene/linoleic acid, DPPH, reducing power, and chelating effect. In β-carotene/linoleic acid assay, all extracts showed the inhibition of more than 50% at all concentrations. In DPPH, chelating effect, and reducing power test systems, the water extract with 88.68%, 77.45%, and 1.857 (absorbance at 700 nm, respectively, exhibited more excellent activity potential than other extracts (hexane, ethyl acetate and methanol and the essential oil at 1.0 mg/mL concentration. The amount of the total phenolics and flavonoids was the highest in this extract (139.50 ± 3.98 μg gallic acid equivalents (GAEs/mg extract and 22.71 ± 0.05 μg quercetin equivalents (QEs/mg extract.

  8. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond

    NARCIS (Netherlands)

    Bajracharya, S.; Sharma, M.; Mohanakrishna, Gunda; Benneton, Xochitl Dominguez; Strik, D.P.B.T.B.; Sarma, Priyangshu M.; Pant, Deepak

    2016-01-01

    Bioelectrochemical systems (BESs) are unique systems capable of converting chemical energy into electrical energy (and vice-versa) while employing microbes as catalysts. Such organic wastes including low-strength wastewaters and lignocellulosic biomass were converted into electricity with microbial

  9. In Situ Treatment Train for Remediation of Perfluoroalkyl Contaminated Groundwater: In Situ Chemical Oxidation of Sorbed Contaminants (ISCO SC)

    Science.gov (United States)

    2017-07-18

    viable. Enzymes are employed in natural and engineered systems to overcome reaction energy barriers and thus may be a promising solution. For... Chemical and Engineering Data, 52(4), 1165–1170. http://doi.org/10.1021/je060285g Johnson, R. L., Tratnyek, P. G., & Johnson, R. O. B. (2008...persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chemical Engineering Journal, 266, 28–33. http://doi.org/10.1016

  10. Formerly utilized MED/AEC sites Remedial Action Program. Report of the decontamination of Jones Chemical Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wynuveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

    1984-08-01

    The US Department of Energy (DOE) has implemented a program to decontaminate radioactively contaminated sites that were formerly utilized by the Manhattan Engineer District (MED) and/or the Atomic Energy Commission (AEC) for activities that included handling of radioactive material. This program is referred to as the ''Formerly Utilized Sites Remedial Action Program'' (FUSRAP). Among these sites are Jones Chemical Laboratory, Ryerson Physical Laboratory, Kent Chemical Laboratory, and Eckhart Hall of The University of Chicago, Chicago, Illinois. Since 1977, the University of Chicago decontaminated Kent Chemical Laboratory as part of a facilities renovation program. All areas of Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory that had been identified as contaminated in excess of current guidelines in the 1976-1977 surveys were decontaminated to levels where no contamination could be detected relative to natural backgrounds. All areas that required defacing to achieve this goal were restored to their original condition. The radiological evaluation of the sewer system, based primarily on the radiochemical analyses of sludge and water samples, indicated that the entire sewer system is potentially contaminated. While this evaluation was defined as part of this project, the decontamination of the sewer system was not included in the purview of this effort. The documentation included in this report substantiates the judgment that all contaminated areas identified in the earlier reports in the three structures included in the decontamination effort (Eckhart Hall, Ryerson Physical Laboratory, and Jones Chemical Laboratory) were cleaned to levels commensurate with release for unrestricted use.

  11. Data base management activities for the Remedial Action Program at ORNL: Calendar year 1988

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Hook, L.A.; Gentry, M.J.; McCord, R.A.; Faulkner, M.A.; Bledsoe, J.L.; Newman, K.A.; Owen, P.T.; Rosen, A.E.

    1989-04-01

    The ORNL Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations mandating corrective actions at contaminated sites. To achieve this goal, numerous and varied studies are being conducted to characterize the type and extent of contamination. Environmental data collected in support of other programs at ORNL are also of use to RAP. Collectively, these studies are generating a voluminous amount of data. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current DIMS and its role in supporting RAP during 1988 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on a description of the contents of the Numeric Data Base. The types of numeric data currently available are summarized in the tables and figures. More detailed information on the contents of the RAP Numeric Data Base has been assembled in a menu-driven format on IBM PC diskettes, which are available upon request. 6 refs

  12. Data base management activities for the Remedial Action Program at Oak Ridge National Laboratories (ORNL)

    Energy Technology Data Exchange (ETDEWEB)

    Hook, L.A.; Voorhees, L.D.; Gentry, M.J.; Faulkner, M.A.; Shaakir-Ali, J.A.; Newman, K.A.; McCord, R.A.; Goins, L.F.; Owen, P.T.

    1990-07-01

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP) was established in 1985 in response to state and federal regulations requiring comprehensive control over facility discharges and cleanup of contaminated sites. A computerized Data and Information Management System (DIMS) was developed for RAP to (1) provide a centralized repository for data pertinent to RAP and (2) provide support for the investigations and assessments leading to the long-term remediation of contaminated facilities and sites. The current status of DIMS and its role in supporting RAP during 1989 are described. The DIMS consists of three components: (1) the Numeric Data Base, (2) the Bibliographic Data Base, and (3) the Records Control Data Base. This report addresses all three data bases, but focuses on the contents of the Numeric Data Base. Significant progress was made last year with the geographic information system (GIS) and ARC/INFO, which can be interfaced with SAS/GRAPH to provide combined mapping and statistical graphic products. Several thematic layers of GIS data for the Oak Ridge Reservation are now available. 18 refs., 8 figs., 19 tabs.

  13. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  14. TSCA Chemical Data Reporting Fact Sheet: Reporting Manufactured Chemical Substances from Metal Mining and Related Activities

    Science.gov (United States)

    This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.

  15. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  16. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    International Nuclear Information System (INIS)

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-01-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection

  17. Chemical and Sensory Evaluation of Silicone and Polylactic Acid-Based Remedial Treatments for Elevated Methoxypyrazine Levels in Wine

    Directory of Open Access Journals (Sweden)

    Andreea Botezatu

    2016-09-01

    Full Text Available Alkylmethoxypyrazines (MPs are a class of compounds that can elicit undesirable aroma and flavor characteristics in wine, and resist remediation using traditional wine making approaches. MPs are grape-derived constituents as well as contaminants from Coccinellidae beetles present during wine processing; the latter eliciting an off-flavor referred to as ‘ladybug taint’. In this study we investigated the capacity of two plastic polymers—one silicone-based, the other polylactic acid-based—applied with varying surface areas to reduce concentrations of isopropylmethoxypyrazine (IPMP, sec-butylmethoxypyrazine (SBMP and isobutylmethoxypyrazine (IBMP in a Merlot wine using multi-dimensional gas chromatography coupled with mass spectrometry and headspace solid phase microextraction (SPME-MDGCMS. The impact of treatments on the sensory characteristics of the wine (descriptive analysis and volatile aroma compounds (VOCs (SPME-MDGCMS was also investigated. Results showed substantial reductions for all of the target odorants: up to 38%, 44% and 39% for IPMP, SBMP and IBMP, respectively, for the silicone polymer, and up to 75%, 78% and 77% for IPMP, SBMP and IBMP, respectively, for the polylactic acid polymer. These polymers had no or minimal effect on VOCs at applications of 200 cm2/L for silicone or for all polylactic acid treatments. Sensory impacts were less clear, but generally showed minimal effect from the treatments. Taken overall, the data confirm the utility of both polylactic acid and silicone polymers in reducing elevated levels of grape-derived MPs, as well as potentially improving wine contaminated by ladybug taint.

  18. anti-inflammatory and analgesic activities: chemical constituents of ...

    African Journals Online (AJOL)

    a

    *Corresponding author. E-mail: bedisag@yahoo.fr. ANTI-INFLAMMATORY AND ANALGESIC ACTIVITIES: CHEMICAL CONSTITUENTS OF ESSENTIAL OILS OF OCIMUM GRATISSIMUM,. EUCALYPTUS CITRIODORA AND CYMBOPOGON GIGANTEUS INHIBITED. LIPOXYGENASE L-1 AND CYCLOOXYGENASE OF ...

  19. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the United States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts

  20. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  1. Development of Low-Cost DDGS-Based Activated Carbons and Their Applications in Environmental Remediation and High-Performance Electrodes for Supercapacitors

    KAUST Repository

    Wang, Yong

    2015-08-28

    Abstract: A one-step, facile method to produce 3-dimensional porous activated carbons (ACs) from corn residual dried distillers grains with solubles (DDGS) by microwave-assisted chemical activation was developed. The ACs’ application potentials in dye removal and supercapacitor electrodes were also demonstrated. The porous structure and surface properties of the ACs were characterized by N2 adsorption/desorption isotherms and scanning electron microscopy. The results showed that the surface area of the as-prepared ACs was up to 1000 m2/g. In the dye removal tests, these DDGS-based ACs exhibited a maximum adsorption ratio of 477 mg/g on methylene blue. In electric double layer capacitors, electrochemical tests indicated that the ACs had ideal capacitive and reversible behaviors and exhibited excellent electrochemical performance. The specific capacitance varied between 120 and 210 F/g under different scan rates and current densities. In addition, the capacitors showed excellent stability even after one thousand charge–discharge cycles. The specific capacitance was further increased up to 300 F/g by in situ synthesis of MnO2 particles in the ACs to induce pseudo-capacitance. This research showed that the DDGS-based ACs had great potentials in environmental remediation and energy storage applications. Graphical Abstract: [Figure not available: see fulltext.] © 2015 Springer Science+Business Media New York

  2. Alternative Remedies

    Science.gov (United States)

    ... Home › Aging & Health A to Z › Alternative Remedies Font ... medical treatment prescribed by their healthcare provider. Using this type of alternative therapy along with traditional treatments is ...

  3. evaluation of different remediation methods of polluted soils using nuclear technique

    International Nuclear Information System (INIS)

    Moussa, I.E.A.

    2012-01-01

    Remediation of heavy metal contaminated has become a considerable task to introduce such marginal or waste lands into productive systems. Various techniques, i.e. chemical and organic agents, bio- and Phyto remediation including microorganisms and/or phyto plants are used to remediate such contaminated soils. The contamination of the soil with metals has become a widespread environmental problem in many industrialized countries. The fact that the Earth's surface is becoming increasingly polluted by human activities challenges society to develop strategies for sustainability that conserve nonrenewable natural resources such as soil. The aim of the present study is to investigate the effectiveness of (I) some chemical and organic amendments in remediation of heavy metals contaminated soil. At the same time, a follow up the effects of interaction between amendment concentration and incubation time intervals on bioavailability of tested heavy metals was taken into consideration. (II) Fungi inoculation in remediation of heavy metals contaminated soils. (III) Calcium carbonate on the potentiality of panikum and sudan grass (as hyper accumulators) in remediation of heavy metals contaminated soil. To fulfill this task, it was suggested to conduct three experiments, namely; (1) Chemical remediation of Contaminated Soils experiment (2) Bioremediation experiment (3) Phyto remediation Experiment

  4. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...... possibilities. Genealogists use their private websites to negotiate family identity and hereby create a sense of belonging in an increasingly complex society. Digital technologies enhance the possibilities of coorporation between genealogists. Therefore, the websites are also used to present archival...

  5. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  6. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  7. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks.

    Science.gov (United States)

    Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza

    2017-07-31

    In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.

  8. DOE'S remedial action assurance program

    International Nuclear Information System (INIS)

    Welty, C.G. Jr.; Needels, T.S.; Denham, D.H.

    1984-10-01

    The formulation and initial implementation of DOE's Assurance Program for Remedial Action are described. It was initiated in FY 84 and is expected to be further implemented in FY 85 as the activities of DOE's Remedial Action programs continue to expand. Further APRA implementation will include additional document reviews, site inspections, and program office appraisals with emphasis on Uranium Mill Tailings Remedial Action Program and Surplus Facilities Management Program

  9. Effective Remediation of Lead Ions from Aqueous Solution by Chemically Carbonized Rubber Wood Sawdust: Equilibrium, Kinetics, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Swarup Biswas

    2015-01-01

    Full Text Available Rubber wood sawdust was carbonized into charcoal by chemical treatment which was used for removal of lead ion from aqueous solution. The work involves batch experiments to investigate the pH effect, initial concentration of adsorbate, contact time, and adsorbent dose. Experimental data confirmed that the adsorption capacities increased with increasing inlet concentration and bed height and decreased with increasing flow rate. Adsorption results showed a maximum adsorption capacity of 37 mg/g at 308 K. Langmuir, Freundlich, and Temkin model adsorption isotherm models were applied to analyze the process where Temkin was found as a best fitted model for present study. Simultaneously kinetics of adsorption like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were investigated. Thermodynamic parameters were used to analyze the adsorption experiment. Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy confirmed the batch adsorption of lead ion onto chemically carbonized rubber wood sawdust.

  10. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    Science.gov (United States)

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  11. Chemical activation of gasification carbon residue for phosphate removal

    Science.gov (United States)

    Kilpimaa, Sari; Runtti, Hanna; Lassi, Ulla; Kuokkanen, Toivo

    2012-05-01

    Recycling of waste materials provides an economical and environmentally significant method to reduce the amount of waste. Bioash formed in the gasification process possesses a notable amount of unburned carbon and therefore it can be called a carbon residue. After chemical activation carbon residue could be use to replace activated carbon for example in wastewater purification processes. The effect of chemical activation process variables such as chemical agents and contact time in the chemical activation process were investigated. This study also explored the effectiveness of the chemically activated carbon residue for the removal of phosphate from an aqueous solution. The experimental adsorption study was performed in a batch reactor and the influence of adsorption time, initial phosphate concentration and pH was studied. Due to the carbon residue's low cost and high adsorption capacity, this type of waste has the potential to be utilised for the cost-effective removal of phosphate from wastewaters. Potential adsorbents could be prepared from these carbonaceous by-products and used as an adsorbent for phosphate removal.

  12. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity.

    Science.gov (United States)

    Novak, Jeffrey M; Ippolito, James A; Ducey, Thomas F; Watts, Donald W; Spokas, Kurt A; Trippe, Kristin M; Sigua, Gilbert C; Johnson, Mark G

    2018-08-01

    Biochar may be a tool for mine spoil remediation; however, its mechanisms for achieving this goal remain unclear. In this study, Miscanthus (Miscanthus giganteus) biochar was evaluated for its ability to reclaim acidic mine spoils (pH lime/no lime and fertilizer additions. Blue Wildrye (Elymus glaucus cv. 'Elkton') was planted and later the shoots and roots were collected and metal concentrations determined. Afterwards, each pot was leached with deionized water, and the leachate analyzed for pH, electrical conductivity (EC), dissolved organic carbon (DOC) and soluble metal concentrations. After drying, the spoil was extracted with 0.01 M CaCl 2 and Mehlich 3 (M3) to determine extractable Al, Cu, and Zn concentrations. Additionally, microbial activity was measured using a fluorescent β-glucosidase and N-acetyl-β-d-glucosaminidase assay. Spoil treated with lime and biochar had significantly greater pH and EC values. Significantly greater β-glucosidase activity occurred only in the 5% biochar plus lime treatment, while N-acetyl-β-d-glucosaminidase activities were not altered. Metal concentrations in rye shoot and roots were mixed. Lime additions significantly reduced extractable metal concentrations. Increasing biochar rates alone significantly reduced leachate DOC concentrations, and subsequently reduced leachable metal concentrations. Surprisingly, miscanthus biochar, by itself, was limited at mitigation, but when combined with lime, the combination was capable of further reducing extractable metal concentrations and improving β-glucosidase enzyme activity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Designing the Army’s Future Active Duty Weapons of Mass Destruction Response: Is the Defense Chemical, Biological, Radiological, Nuclear and High-Yield Explosives Response Force (DCRF) the Right Force at the Right Time?

    Science.gov (United States)

    2013-06-14

    the 20th Support Command (CBRNE) (Mauroni 2006, 230). The newly formed Chemical Analysis and Remediation Activity ( CARA ) and the WMD-Coordination...calculated without regard to incipient secondary effects like fires or collapse 7. Electricity and communications are heavily disrupted across much of

  14. Chemical soil data report to support interim response actions, construction staging area, and Administration Building: Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri: Revision 0

    International Nuclear Information System (INIS)

    1989-02-01

    Five activities are planned to improve environmental conditions or to improve facilities at the Weldon Spring Site. Each activity must be evaluated for potential environmental impacts. Chemical soil contamination was potentially present in each affected area. A sampling program was designed and implemented to evaluate chemical soil conditions. Samples were analyzed for nitroaromatic compounds, metals, inorganic anions, semi-volatile and volatile organic compounds, pesticides, and PCBs. This investigation documented low concentrations of semi-volatile organic compounds, pesticides, PCBs and nitroaromatics. Higher concentrations of nitrate, sulfate and some metals were also detected. The contaminants detected are consistent with past operations at the WSS. The concentrations of contaminants do not significantly impact the proposed activities. Data from this investigation has been incorporated into the planning and documentation activities for each activity

  15. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the Harshaw Chemical Company, Cleveland, Ohio

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-04-01

    During the MED/AEC era, the Harshaw Chemical Company processed large quantities of normal uranium to produce both oxide and fluoride compounds. This work was done under contract to MED and its successor, AEC. Records indicated that at the time the AEC contract was terminated, the facility was decontaminated by Harshaw and released from AEC control in 1960. However, a search of AEC records indicated that documentation was insufficient to determine whether the decontamination work was adequate by current guidelines. Hence, a radiological assessment of the site ws initiated in 1976. The entire grounds and all buildings were surveyed using surface survey instruments to detect surface contamination and radiation detectors to determine general radiation levels. Extensive surface contamination was found throughout the site. While the major contamination was found in Plant C, significant levels of contamination also were found in 16 other buildings and at 32 exterior locations. The contaminating material seemed to be normal uranium exclusively. Air samples were taken at numerous indoor locations throughout the site, but no elevated levels of radon were detected. This was as expected since normal uranium has been separated from radium and hence radon levels are very low. Several soil samples were taken from around the site. Analyses of these samples indicated extensive soil contamination, as well as suspected contamination of the river bed in the vicinity of the plant outfall. Scheduled subsurface investigation of the site, as well as of the river bed and sewer system, have not been conducted. Levels of contamination at this site are significantly above guidelines for release of the site for unrestricted use. 57 figures, 7 tables

  16. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  17. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste

    International Nuclear Information System (INIS)

    Williams, Paul T.; Reed, Anton R.

    2006-01-01

    Biomass waste in the form of biomass flax fibre, produced as a by-product of the textile industry was processed via both physical and chemical activation to produce activated carbons. The surface area of the physically activated carbons were up to 840 m 2 g -1 and the carbons were of mesoporous structure. Chemical activation using zinc chloride produced high surface area activated carbons up to 2400 m 2 g -1 and the pore size distribution was mainly microporous. However, the process conditions of temperature and zinc chloride concentration could be used to manipulate the surface area and porosity of the carbons to produce microporous, mesoporous and mixed microporous/mesoporous activated carbons. The physically activated carbons were found to be a mixture of Type I and Type IV carbons and the chemically activated carbons were found to be mainly Type I carbons. The development of surface morphology of physically and chemically activated carbons observed via scanning electron microscopy showed that physical activation produced activated carbons with a nodular and pitted surface morphology whereas activated carbons produced through chemical activation had a smooth surface morphology. Transmission electron microscopy analysis could identify mesopore structures in the physically activated carbon and microporous structures in the chemically activated carbons

  18. In situ biomonitoring of juvenile Chinook salmon (Onchorhynchus tshawytscha) using biomarkers of chemical exposures and effects in a partially remediated urbanized waterway of the Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Eva [Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast, Suite 100, Seattle, WA 98105-6099 (United States); Kelley, Matthew; Zhou, Guo-Dong; He, Ling Yu; McDonald, Thomas; Wang, Shirley [Department of Environmental and Occupational Health, Texas A and M Health Science Center, College Station, TX 77843-1266 (United States); Duncan, Bruce [US Environmental Protection Agency, Region 10, 1200 Sixth Avenue, Seattle, WA 98101 (United States); Meador, James [Ecotoxicology Division, National Marine Fisheries Service, Seattle, WA 98105 (United States); Donnelly, Kirby [Department of Environmental and Occupational Health, Texas A and M Health Science Center, College Station, TX 77843-1266 (United States); Gallagher, Evan, E-mail: evang3@u.washington.edu [Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way Northeast, Suite 100, Seattle, WA 98105-6099 (United States)

    2010-10-15

    In situ biomonitoring has been used to assess the effects of pollution on aquatic species in heavily polluted waterways. In the current study, we used in situ biomonitoring in conjunction with molecular biomarker analysis to determine the effects of pollutant exposure in salmon caged in the Duwamish waterway, a Pacific Northwest Superfund site that has been subject to remediation. The Duwamish waterway is an important migratory route for Pacific salmon and has received historic inputs of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Juvenile pre-smolt Chinook salmon (Oncorhynchus tshawytscha) caged for 8 days in the three contaminated sites in close proximity within the Duwamish were analyzed for steady state hepatic mRNA expression of 7 exposure biomarker genes encompassing several gene families and known to be responsive to pollutants, including cytochrome P4501A (CYP1A) and CYP2K1, glutathione S-transferase {pi} class (GST-{pi}), microsomal GST (mGST), glutamylcysteine ligase catalytic subunit (GCLC), UDP-glucuronyltransferase family 1 (UDPGT), and type 2 deiodinase (type 2 DI, or D2). Quantitation of gene expression was accomplished by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in assays developed specifically for Chinook salmon genes. Gill PAH-DNA adducts were assessed as a chemical effects biomarker using {sup 32}P-postlabeling. The biomarkers in the field-caged fish were analyzed with respect to caged animals maintained at the hatchery receiving flow-through water. Chemical analysis of sediment samples from three field sampling sites revealed relatively high concentrations of total PAHs in one site (site B2, 6711 ng/g dry weight) and somewhat lower concentrations of PAHs in two adjacent sites (sites B3 and B4, 1482 and 1987 ng/g, respectively). In contrast, waterborne PAHs at all of the sampling sites were relatively low (<1 ng/L). Sediment PCBs at the sites ranged from a low of 421 ng/g at site B3

  19. Chloride Ingress in Chemically Activated Calcined Clay-Based Cement

    Directory of Open Access Journals (Sweden)

    Joseph Mwiti Marangu

    2018-01-01

    Full Text Available Chloride-laden environments pose serious durability concerns in cement based materials. This paper presents the findings of chloride ingress in chemically activated calcined Clay-Ordinary Portland Cement blended mortars. Results are also presented for compressive strength development and porosity tests. Sampled clays were incinerated at a temperature of 800°C for 4 hours. The resultant calcined clay was blended with Ordinary Portland Cement (OPC at replacement level of 35% by mass of OPC to make test cement labeled PCC35. Mortar prisms measuring 40 mm × 40 mm × 160 mm were cast using PCC35 with 0.5 M Na2SO4 solution as a chemical activator instead of water. Compressive strength was determined at 28th day of curing. As a control, OPC, Portland Pozzolana Cement (PPC, and PCC35 were similarly investigated without use of activator. After the 28th day of curing, mortar specimens were subjected to accelerated chloride ingress, porosity, compressive strength tests, and chloride profiling. Subsequently, apparent diffusion coefficients (Dapp were estimated from solutions to Fick’s second law of diffusion. Compressive strength increased after exposure to the chloride rich media in all cement categories. Chemically activated PCC35 exhibited higher compressive strength compared to nonactivated PCC35. However, chemically activated PCC35 had the least gain in compressive strength, lower porosity, and lower chloride ingress in terms of Dapp, compared to OPC, PPC, and nonactivated PCC35.

  20. Chemical profiling and antioxidant activity of Bolivian propolis.

    Science.gov (United States)

    Nina, Nélida; Quispe, Cristina; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Giménez, Alberto; Schmeda-Hirschmann, Guillermo

    2016-04-01

    Propolis is a relevant research subject worldwide. However, there is no information so far on Bolivian propolis. Ten propolis samples were collected from regions with high biodiversity in the main honey production places in Bolivia and were analyzed for their total phenolics (TP), flavonoids (TF) and antioxidant activity. The chemical profiles of the samples were assessed by TLC, HPLC-DAD, HPLC-DAD-MS/MS(n) and NMR analysis. TP, TF, TLC and NMR analysis showed significant chemical differences between the samples. Isolation of the main constituents by chromatography and identification by HPLC-DAD-MS/MS(n) achieved more than 35 constituents. According to their profiles, the Bolivian propolis can be classified into phenolic-rich and triterpene-rich samples. Propolis from the valleys (Cochabamba, Chuquisaca and Tarija) contained mainly prenylated phenylpropanoids, while samples from La Paz and Santa Cruz contained cycloartane and pentacyclic triterpenes. Phenolic-rich samples presented moderate to strong antioxidant activity while the triterpene-rich propolis were weakly active. High chemical diversity and differential antioxidant effects were found in Bolivian propolis. Our results provide additional evidence on the chemical composition and bioactivity of South American propolis. © 2015 Society of Chemical Industry.

  1. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Mou; Mathews, N. R. [Universidad Nacional Autónoma de México, Instituto de Energías Renovables (Mexico); Sanchez-Mora, E.; Pal, U. [Instituto de Física, BUAP (Mexico); Paraguay-Delgado, F. [Centro de Investigación en Materiales Avanzados (CIMAV), Departamento de Materiales Nanoestructurados (Mexico); Mathew, X., E-mail: xm@ier.unam.mx [Universidad Nacional Autónoma de México, Instituto de Energías Renovables (Mexico)

    2015-07-15

    CuS nanoparticles (NPs) of few nanometers in size were prepared by a wet chemical method. The structural, compositional, and optical properties of the NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, micro Raman and Fourier transform infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, and UV–Vis diffuse reflectance spectroscopy. The XRD pattern proved the presence of hexagonal phase of CuS particles which was further supported by Raman spectrum. The estimated band gap energy of 2.05 eV for the slightly sulfur-rich CuS NPs is relatively larger than that of bulk CuS (1.85 eV), indicating the small size effect. As-prepared NPs showed excellent photocatalytic activity for the degradation of methylene blue (MB) under visible light. The surface-bound OH{sup −} ions at the CuS nanostructures help adsorb MB molecules facilitating their degradation process under visible light illumination. The studies presented in this paper suggest that the synthesized CuS NPs are promising, efficient, stable, and visible-light-sensitive photocatalyst for the remediation of wastewater polluted by chemically stable azo dyes such as MB.

  2. Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    2018-01-01

    Full Text Available Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially orders of magnitude greater surface activity compared to similar single unit molecules. A cationic Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB and a conventional cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB were used to pre-treat and generate activated carbon. The removal efficiency of the surfactant-modified activated carbon through adsorption of chromium(VI was investigated under controlled laboratory conditions. Fourier-transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM were used to investigate the surface changes of surfactant-modified activated carbon. The effect of important parameters such as adsorbent dosage, pH, ionic strength and contact time were also investigated. The chromium(VI was adsorbed more significantly on the Gemini surfactant-modified activated carbon than on the conventional surfactant-modified activated carbon. The correlation coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption of chromium(VI onto Gemini surfactant-modified activated carbon. From this assessment, the surfactant-modified (especially Gemini surfactant-modified activated carbon in this study showed promise for practical applications to treat water pollution.

  3. Remediation Performance and Mechanism of Heavy Metals by a Bottom Up Activation and Extraction System Using Multiple Biochemical Materials.

    Science.gov (United States)

    Xiao, Kemeng; Li, Yunzhen; Sun, Yang; Liu, Ruyue; Li, Junjie; Zhao, Yun; Xu, Heng

    2017-09-13

    Soil contamination with heavy metals has caused serious environmental problems and increased the risks to humans and biota. Herein, we developed an effective bottom up metals removal system based on the synergy between the activation of immobilization metal-resistant bacteria and the extraction of bioaccumulator material (Stropharia rugosoannulata). In this system, the advantages of biochar produced at 400 °C and sodium alginate were integrated to immobilize bacteria. Optimized by response surface methodology, the biochar and bacterial suspension were mixed at a ratio of 1:20 (w:v) for 12 h when 2.5% sodium alginate was added to the mixture. Results demonstrated that the system significantly increased the proportion of acid soluble Cd and Cu and improved the soil microecology (microbial counts, soil respiration, and enzyme activities). The maximum extractions of Cd and Cu were 8.79 and 77.92 mg kg -1 , respectively. Moreover, details of the possible mechanistic insight into the metal removal are discussed, which indicate positive correlation with the acetic acid extractable metals and soil microecology. Meanwhile, the "dilution effect" in S. rugosoannulata probably plays an important role in the metal removal process. Furthermore, the metal-resistant bacteria in this system were successfully colonized, and the soil bacteria community were evaluated to understand the microbial diversity in metal-contaminated soil after remediation.

  4. Chemical composition and larvicidal activity of Zanthoxylum gilletii ...

    African Journals Online (AJOL)

    The essential oil was extracted by hydro-distillation, and its chemical compositions determined by gas chromatography mass spectrometry. The oil was dominated by sesquiterpenes and monoterpenes which accounted for 38.30 and 34.00%, respectively. The oil showed good activity against A. gambiae and recorded LC50 ...

  5. Short Communication: Studies of antimicrobial activity and chemical ...

    African Journals Online (AJOL)

    Chemical constituents of the extract were also determined. The extract of was active against the test organisms including Escherischia coli, Pseudomonas aeruginosa and Candida albicans. Tannins, flavonoids, alkaloids, saponins, anthrax-quinones, starch, general glycosides and bitter principles were found to be present ...

  6. Chemical Composition and Insecticidal Activity of the Essential Oil of ...

    African Journals Online (AJOL)

    Purpose: To investigate the chemical composition and insecticidal activity of the essential oil of the aerial parts of Ostericum grosseserratum against the maize weevil, Sitophilus zeamaisD. Methods: Steam distillation of the aerial parts of O. grosseserratum during the flowering stage was carried out using a Clavenger ...

  7. The use of simultaneous chemical precipitation in modified activated ...

    African Journals Online (AJOL)

    The IAWQ Activated Sludge Model (ASM) No. 2 is a kinetic-based model and incorporates two simple processes for chemical precipitation and redissolution that are readily integrated with biological processes for carbon, nitrogen and phosphorus removal. This model was applied to experimental data collected as part of this ...

  8. Physio-chemical evaluation and biological activity of Ajuga ...

    African Journals Online (AJOL)

    Physio-chemical evaluation and biological activity of Ajuga bracteosa wall and Viola odoroto Linn. Anwar Ali Shad, M. Zeeshan, Hina Fazal, Hamid Ullah Shah, Shabir Ahmed, Hasem Abeer, E. F. Abd_Allah, Riaz Ullah, Hamid Afridi, Akash tariq, Muhammad Adnan Asma ...

  9. Chemical Components and Cardiovascular Activities of Valeriana spp.

    Directory of Open Access Journals (Sweden)

    Heng-Wen Chen

    2015-01-01

    Full Text Available Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp.

  10. Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: "chemical and ecotoxicological studies".

    Science.gov (United States)

    Deydier, E; Guilet, R; Cren, S; Pereas, V; Mouchet, F; Gauthier, L

    2007-07-19

    As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer.

  11. Structure activity relationships to assess new chemicals under TSCA

    Energy Technology Data Exchange (ETDEWEB)

    Auletta, A.E. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  12. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review.

    Science.gov (United States)

    Hosseini, Azar; Hosseinzadeh, Hossein

    2018-03-01

    Curcuma longa is a rhizomatous perennial herb that belongs to the family Zingiberaceae, native to South Asia and is commonly known as turmeric. It is used as herbal remedy due to the prevalent belief that the plant has medical properties. C. longa possesses different effects such as antioxidant, anti-tumor, antimicrobial, anti-inflammatory, wound healing, and gastroprotective activities. The recent studies have shown that C. longa and curcumin, its important active ingredient, have protective effects against toxic agents. In this review article, we collected in vitro and animal studies which are related to protective effects of turmeric and its active ingredient against natural and chemical toxic agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Physical activity as a remedy for "cheerful" aging which prevents from chronic diseases

    Directory of Open Access Journals (Sweden)

    Alicja Rzepka

    2016-12-01

    Full Text Available Purpose. According to GUS, only 3.6% of the elderly declare active leisure activities. The objective of this study was to evaluate the effect of motor function improvement program implemented in sanatorium on functional condition and functional status of patients suffered from spinal degenerative diseases. Methods. The studies were carried out once in a group of 46 patients aged above 60 in Solanki Inowrocław health resort. The assessment was made based on a questionnaire. Moreover, assessment of pain in the lumbar spine according to thee VAS was made along with evaluation of lumbar spine mobility using Zebris MLS. Results. Evaluation of patients in terms of free time spending have showed that more than half of patients spent their free time actively (57%. The intensity of pain according to the VAS, during flexion, extension, rotation in both direction and lateral flexion of the spine, was decreased at the end of therapy. Flexion, extension and rotation in the right sight increase when Zebris MLS was used before and after therapy. Rotation to the left and lateral flexion to the left were not change. Conclusion. Rehabilitation in sanatorium mobilizes physical activity of patients. It improves the physical activity by significant increase in the motion range of the spine. It exerts a significant analgesic effect.

  14. Activation and chemical analysis of drinking water from shallow aquifers

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1991-01-01

    In most of the Indian cities drinking water is drawn from shallow aqiufers with the help of hand pumps. These shallow aquifers get easilyl polluted. In the present work we have measured 20 trace elements using Neutron Activation Analysis (NAA) and 8 chemical parameters using standard chemical methods of drinking water drawn from Rajpura city. It was found that almost all water samples are highly polluted. We attribute this to unplaned disposal of industrial and domestic waste over a period of many decades. (author) 11 refs.; 1 fig.; 1 tab

  15. Activation analysis. A basis for chemical similarity and classification

    Energy Technology Data Exchange (ETDEWEB)

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  16. RESULTS OF IMPLEMENTATION OF TARGET PROGRAMS ON RADIATION ACCIDENT REMEDIATION FOR THE PERIOD TO 2010 AND PROSPECTS OF FURTHER ACTIVITIES

    Directory of Open Access Journals (Sweden)

    T. A. Marchenko

    2008-01-01

    Full Text Available The report contains information about measures undertaken by the Ministry of Civil Defense and Emergencies of the Russian Federation in the framework of implementation of the state policy in the field of radiation accidents remediation. Results of works realized in the framework of target programs on remediation of radiation accidents at Chernobyl NPP and Production Association MAYAK, and on problems caused by nuclear weapon tests at Seminalatinsk test site are presented.

  17. Learning as the Construction and Re-Mediation of Activity Systems: Environmental Management in Biogas Production

    Science.gov (United States)

    Pereira Querol, Marco A.; Suutari, Timo; Seppanen, Laura

    2010-01-01

    The purpose of this paper is to present theoretical tools for understanding the dynamics of change and learning during the emergence and development of environmental management activities. The methodology consists of a historical analysis of a case of biogas production that took place in the Southwest region of Finland. The theoretical tools used…

  18. [Chemical Constituents in hypoglycemic active fraction of Celastrus orbiculatus leaf].

    Science.gov (United States)

    Yu, Xiao-xia; Zhang, Ting-ting; Wang, Ding-yong

    2014-06-01

    To study the chemical constituents in the hypoglycemic active fraction of Celastrus orbiculatus leaf. The constituents were separated and purified by column chromatography and thin layer chromatography, and their structures were elucidated by IR, MS and NMR. Seven compounds were isolated from the active fraction of Celastnrus orbiculatus, which identified as kaempferol( 1) ,quercetin(2), kaempferol-7-0-α-L-rhamnoside (3), kaempferol-3,7-di-O-α-L-rhamnoside (4) , quercetin-3-0-β-D-glucoside(5), myricetrin(6) and kaempferol-3-0-rutinoside(7). Chemical constituents in the hypoglycemic active fraction of Celastrus orbiculatus leaf are reported for the first time,and compounds 5,6 and 7 are firstly obtained from this plant.

  19. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  20. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  1. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  2. Optimization of chemical regeneration procedures of spent activated carbon

    Directory of Open Access Journals (Sweden)

    Naser Ghasemzadeh

    2017-01-01

    Full Text Available The chemical regeneration of granular activated carbon exhausted in a petrochemical wastewater unit was investigated. Gas chromatography and energy-dispersive X-ray spectroscopy demonstrated that spent activated carbon carries large types of organic and inorganic materials. Diverse chemical solvents were adopted in comparison with traditional chemical solvents and regeneration efficiency was investigated for each approach. The optimum procedure and optimum condition including temperature, concentration of solvent, and time were determined. The regenerated activated carbon was used in the adsorption of methylene blue (MB in order to find its regeneration efficiency. The regeneration efficiency can be identified by comparing of amount of MB absorbed by the fresh and regenerated activated carbon. The best acidic regenerator was hydrofluoric acid. The higher the temperature causes the faster desorption rate and consequently, the higher regeneration efficiency. The regeneration efficiency increased by means of an increase in the time of regeneration and solvent concentration, but there was an optimum time and solvent concentration for regeneration. The optimum temperature, solvent concentration and regeneration time obtained was 80 ⁰C, 3 molar and 3 hours, respectively.

  3. PERSULFATE ACTIVATION BY A NATURAL IRON OXIDE FOR THE REMEDIATION OF DYE CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Sihem BELAIDI

    2017-12-01

    Full Text Available The objective of this work was to evaluate the removal of crystal violet (CV, a cationic dye, using sodium persulfate (PS as an oxidant in the presence of a natural iron oxide (NIO. Experimental results indicate that approximately 89 % and 98% of CV removal was achieved by PS alone and by (PS/NIO system respectively after 1 hour of reaction. Persulfate oxidation activated with soluble Fe (II enhanced the kinetic oxidation of CV. The increase in the removal extent is due to the adsorption of CV onto NIO surface and to the increased formation of either SO4•- or •OH radicals. The effect of pH on the degradation of CV by PS/NIO was studied. Persulfate degradation increases with a reduction in pH causing increased rate of degradation of organic contaminants. An additional factor in the NIO/PS/UV process is the photolysis of PS which produce two sulfate radicals (SO4•-. Results of this study suggest that NIO can be used as iron source to activate persulfate oxidation.

  4. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    International Nuclear Information System (INIS)

    Clemente, Rafael; Almela, Concepcion; Bernal, M. Pilar

    2006-01-01

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha -1 ) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg -1 TOC and 123, 170 and 275 μg g -1 biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil

  5. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)]. E-mail: rclemente@cebas.csic.es; Almela, Concepcion [Instituto de Agroquimica y Tecnologia de Alimentos, CSIC, Apartado 73, 46100 Burjassot, Valencia (Spain); Bernal, M. Pilar [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)

    2006-10-15

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha{sup -1}) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg{sup -1} TOC and 123, 170 and 275 {mu}g g{sup -1} biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil.

  6. Improved chemical radioprotection following activation with dextran sulfate

    International Nuclear Information System (INIS)

    Bartonickova, A.; Vacek, A.; Rotkovska, D.

    1982-01-01

    The radioresistance was observed of mice after sublethal and lethal gamma irradiation following a combined application of dextran sulphate and the chemical radioprotectors cystamine and mexamine. The mechanism of the radioprotection by mexamine and cystamine is connected with their effect on the oxygen tension in tissues. With the application of dextran sulphate an increase was observed in metabolic activity of tissues and a reduced oxygen tension in the medium will result in a deeper cell hypoxia in the tissue. (M.D.)

  7. Wound healing activity and chemical standardization of Eugenia pruniformis Cambess

    OpenAIRE

    Ricardo Diego Duarte Galhardo de Albuquerque; Jamila Alessandra Perini; Daniel Escorsim Machado; Thaís Angeli-Gamba; Ricardo dos Santos Esteves; Marcelo Guerra Santos; Adriana Passos Oliveira; Leandro Rocha

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups o...

  8. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    Science.gov (United States)

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modeling active capping efficacy. 1. Metal and organometal contaminated sediment remediation.

    Science.gov (United States)

    Viana, Priscilla Z; Yin, Ke; Rockne, Karl J

    2008-12-01

    Cd, Cr, Pb, Ag, As, Ba, Hg, CH3Hg, and CN transport through sand, granular activated carbon (GAC), organoclay, shredded tires, and apatite caps was modeled by deterministic and Monte Carlo methods. Time to 10% breakthrough, 30 and 100 yr cumulative release were metrics of effectiveness. Effective caps prevented above-cap concentrations from exceeding USEPA acute criteria at 100 yr assuming below-cap concentrations at solubility. Sand caps performed best under diffusion due to the greater diffusive path length. Apatite had the best advective performance for Cd, Cr, and Pb. Organoclay performed best for Ag, As, Ba, CH3Hg, and CN. Organoclay and apatite were equally effective for Hg. Monte Carlo analysis was used to determine output sensitivity. Sand was effective under diffusion for Cr within the 50% confidence interval (CI), for Cd and Pb (75% CI), and for As, Hg, and CH3Hg (95% CI). Under diffusion and advection, apatite was effective for Cd, Pb, and Hg (75% CI) and organoclay was effective for Hg and CH3Hg (50% CI). GAC and shredded tires performed relatively poorly. Although no single cap is a panacea, apatite and organoclay have the broadest range of effectiveness. Cap performance is most sensitive to the partitioning coefficient and hydraulic conductivity, indicating the importance of accurate site-specific measurement for these parameters.

  10. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    Science.gov (United States)

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  11. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    Science.gov (United States)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  12. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  13. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman; Ba Alawi, Wail; Afeef, Moataz A.; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  14. Chemical Composition and Antimicrobial Activity of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Lavinia Ioana Bărnuţiu

    2011-10-01

    Full Text Available The present paper presents the literature data regarding the chemical composition and antimicrobial activity of RoyalJelly. Royal Jelly is a secretion from the hypofaringeal glands of worker bees which serves as a food for queen beeand to the growing up larvae. Having biological properties already proven, Royal Jelly has considerable commercialappeal and is today used in many sectors (pharmaceutical, food industries and cosmetic products. Thephysicochemical composition of pure royal jelly are analyzed by determining moisture, ash, lipids, proteins,vitamins,aminoacids, carbohydrates, 10-HDA; RJ is the key substance in the antimicrobial function of the system Apismellifera. The intact Royal Jelly exhibited the highest antibacterial activity.

  15. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: angelamcarriaga@yahoo.com.br; Santiago, Gilvandete M.P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Farmacia; Nascimento, Ronaldo F. do [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas

    2009-07-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC{sub 50} 64.6 {+-} 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC{sub 50} 3.6 {+-} 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC{sub 50} 104.7 {+-} 0.2 and 34.7 {+-} 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  16. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae)

    International Nuclear Information System (INIS)

    Feitosa, Edinilza M.A.; Arriaga, Angela M.C.; Lemos, Telma L.G.; Oliveira, M. Conceicao F. de; Vasnconcelos, Jackson Nunes e; Lima, Jefferson Q.; Malcher, Grazielle T.; Santiago, Gilvandete M.P.; Nascimento, Ronaldo F. do; Braz-Filho, Raimundo

    2009-01-01

    The aim of present study was to describe the chemical composition of the essential oils from the leaf and stem of Rollinia leptopetala R. E. Fries (Annonaceae) and to evaluate the larvicidal activities of these essential oils, of the methanol extract from roots of this plant and of the oxoaporphine alkaloid, liriodenine (1) against the third-instar of Aedes aegypti larvae. The methanol extract from the roots showed larvicidal activity with LC 50 64.6 ± 1.5 ppm. Higher activity was observed for the isolated alkaloid liriodenine (1), LC 50 3.6 ± 0.4 ppm. The essential oils from the leaves and stems, also exhibited larvicidal activity with LC 50 104.7 ± 0.2 and 34.7 ± 0.3 ppm, respectively. These results suggest R. leptopetala as a source of natural larvicidal compounds. This is the first report about the chemical composition and larvicidal activity of the leaf and stem essential oils of R. leptopetala. (author)

  17. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  18. Pair Interaction of Catalytical Sphere Dimers in Chemically Active Media

    Directory of Open Access Journals (Sweden)

    Jing-Min Shi

    2018-01-01

    Full Text Available We study the pair dynamics of two self-propelled sphere dimers in the chemically active medium in which a cubic autocatalytic chemical reaction takes place. Concentration gradient around the dimer, created by reactions occurring on the catalytic sphere surface and responsible for the self-propulsion, is greatly influenced by the chemical activities of the environment. Consequently, the pair dynamics of two dimers mediated by the concentration field are affected. In the particle-based mesoscopic simulation, we combine molecular dynamics (MD for potential interactions and reactive multiparticle collision dynamics (RMPC for solvent flow and bulk reactions. Our results indicate three different configurations between a pair of dimers after the collision, i.e., two possible scenarios of bound dimer pairs and one unbound dimer pair. A phase diagram is sketched as a function of the rate coefficients of the environment reactions. Since the pair interactions are the basic elements of larger scale systems, we believe the results may shed light on the understanding of the collective dynamics.

  19. Nonlinear processes in laser heating of chemically active media

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F V; Kirichenko, N A; Luk' yanchuk, B S

    1984-08-01

    After it had been discovered and in due measure physically comprehended that numerous nontrivial phenomena observed during laser heating of chemically active media are caused primarily by self-stress of laser radiation due to the chemical intertial nonlinearity of the medium, an approach was found for solving problems of laser thermochemistry that is most adequate from the mathematical (and physical) standpoint: the approach of the theory of nonlinear oscillations in point systems and distributed systems. This approach has provided a uniform viewpoint for examination of a variety of phenomena of spatiotemporal self-organization of chemically active media under the effect of laser radiation, qualitative, and in some cases quantitative description of such phenomena as the onset of thermochemical instability, self-oscillations, various spatial structures and the like. Evidently it can be rightly considered that at this juncture a definite stage has been completed in the development of laser thermochemistry marked by the creation of an ideology, method and overall approach to interpretation of the most diverse phenomena under conditions of actual physical experiments. References to the numerous studies that make up the content of this stage of development of laser thermochemistry are to be found in survey papers. 48 references, 10 figures.

  20. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    Science.gov (United States)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  1. Active multispectral reflection fingerprinting of persistent chemical agents

    Science.gov (United States)

    Tholl, H. D.; Münzhuber, F.; Kunz, J.; Raab, M.; Rattunde, M.; Hugger, S.; Gutty, F.; Grisard, A.; Larat, C.; Papillon, D.; Schwarz, M.; Lallier, E.; Kastek, M.; Piatkowski, T.; Brygo, F.; Awanzino, C.; Wilsenack, F.; Lorenzen, A.

    2017-10-01

    Remote detection of toxic chemicals of very low vapour pressure deposited on surfaces in form of liquid films, droplets or powder is a capability that is needed to protect operators and equipment in chemical warfare scenarios and in industrial environments. Infrared spectroscopy is a suitable means to support this requirement. Available instruments based on passive emission spectroscopy have difficulties in discriminating the infrared emission spectrum of the surface background from that of the contamination. Separation of background and contamination is eased by illuminating the surface with a spectrally tune-able light source and by analyzing the reflectivity spectrum. The project AMURFOCAL (Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents) has the research topic of stand-off detection and identification of chemical warfare agents (CWAs) with amplified quantum cascade laser technology in the long-wave infrared spectral range. The project was conducted under the Joint Investment Programme (JIP) on CBRN protection funded through the European Defence Agency (EDA). The AMURFOCAL instrument comprises a spectrally narrow tune-able light source with a broadband infrared detector and chemometric data analysis software. The light source combines an external cavity quantum cascade laser (EC-QCL) with an optical parametric amplifier (OPA) to boost the peak output power of a short laser pulse tune-able over the infrared fingerprint region. The laser beam is focused onto a target at a distance between 10 and 20 m. A 3D data cube is registered by tuning the wavelength of the laser emission while recording the received signal scattered off the target using a multi-element infrared detector. A particular chemical is identified through the extraction of its characteristic spectral fingerprint out of the measured data. The paper describes the AMURFOCAL instrument, its functional units, and its principles of operation.

  2. Simaroubaceae family: botany, chemical composition and biological activities

    Directory of Open Access Journals (Sweden)

    Iasmine A.B.S. Alves

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  3. Formerly utilized MED/AEC sites remedial action program. Radiological survey of The George Herbert Jones Chemical Laboratory, The University of Chicago, Chicago, Illinois, June 13-17, 1977

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Smith, W.H.; Mayes, C.B.; Justus, A.L.

    1982-05-01

    A comprehensive radiological survey was conducted at George Herbert Jones Chemical Laboratory at the University of Chicago, Chicago, Illinois. Radiochemistry for the MED/AEC project was performed in this building in the 1940s. The building is now used as laboratories, offices, and classrooms. The survey was undertaken to determine the location and quantities of any radioactive materials remaining from the MED/AEC operations. Forty-three spots of contamination possibly resulting from MED/AEC occupancy in 17 rooms exceeded the allowable limits as given in the ANSI Standard N13.12. Under current use conditions, the potential for radiation exposure to occupants of this building from these sources of contamination is remote. Concentrations of radon daughters in the air of the building, as measured with grab-sampling techniques, were below the limit of 0.01 WL above background as given in the Surgeon General's Guidelines. No long-lived radionuclides were detected in any air sample. Concentrations of radionuclides in soil samples from near the laboratory generally indicated background levels. In order to reduce the potential for radiation exposure, remedial measures such as stabilization of the contamination in place would be applicable as a short-term measure. In order to reduce the risk in the event that building modifications take place in the future, health physics procedures and coverage are recommended. The long-term solution would involve decontamination by removal of the radioactive residues from the 17 rooms or areas where contamination possibly resulting from MED/AEC activities was detected

  4. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    Science.gov (United States)

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  5. Antibacterial activity of chemical constituents isolated from Asparagus racemosus

    Directory of Open Access Journals (Sweden)

    Muhammad Abdullah Shah

    2014-03-01

    Full Text Available Asparagus racemosus is a medical extensively used in traditional medicine for various disorders including its use in infectious. So far work has been done to identify its active constituents responsible for antiseptic folk use of this plant. In the current investigation, we have made an effort to identify its chemical constituents that might be partly responsible for antimicrobial properties. Extraction and isolation of plant extract lead to isolation of two nor-lignans and two steroidal triterpenes (compound 1 to 4. All compound showed considerable antibacterial activities against E. coli and S. aureus while no significant activity was observed against S. typhi. This study highlighted the potential of A. racemosus to be further explored as a source of bioactive natural products.

  6. Pereskia aculeata Muller (Cactaceae Leaves: Chemical Composition and Biological Activities

    Directory of Open Access Journals (Sweden)

    Lucèia Fàtima Souza

    2016-09-01

    Full Text Available The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE/g. The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  7. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    Science.gov (United States)

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  8. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth and soil enzymatic activity

    Science.gov (United States)

    Biochar is proposed as an amendment for mine spoil remediation; however, its effectiveness at achieving this goal remains unclear. Miscanthus (Miscanthus giganteus) biochar was tested for potentially improving acidic mine spoil (pH < 3; Formosa mine near Riddle, Oregon) health conditions by sequeste...

  9. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  10. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    Science.gov (United States)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  11. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  12. Optimization of remediation strategies using vadose zone monitoring systems

    Science.gov (United States)

    Dahan, Ofer

    2016-04-01

    In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in

  13. Automated sample analysis and remediation

    International Nuclear Information System (INIS)

    Hollen, R.; Settle, F.

    1995-01-01

    The Contaminant Analysis Automation Project is developing an automated chemical analysis system to address the current needs of the US Department of Energy (DOE). These needs focus on the remediation of large amounts of radioactive and chemically hazardous wastes stored, buried and still being processed at numerous DOE sites. This paper outlines the advantages of the system under development, and details the hardware and software design. A prototype system for characterizing polychlorinated biphenyls in soils is also described

  14. Groundwater remediation in the Straz leaching operation

    International Nuclear Information System (INIS)

    Novak, J.

    2001-01-01

    The locality affected by consequences of the chemical mining of the uranium during underground leaching 'in situ' is found in the area of the Czech Republic in the northeastern part of the Ceska Lipa district. In the contribution the complex groundwater remediation project is discussed. First, the risks of the current state are expressed. Then the alternatives of remediation of the both Cenomanian and Turonian aquifers are presented. Evaluation of the remediation alternatives with the view to the time-consumption, economy, ecology and the elimination of unacceptable risks for the population and environment is done. Finally, the present progress of remediation and the conception of remediation of chemical mining on deposit of Straz pod Ralskem are presented. (orig.)

  15. Chemically activated nanodiamonds for aluminum alloy corrosion protection and monitoring

    Science.gov (United States)

    Hannstein, Inga; Adler, Anne-Katrin; Lapina, Victoria; Osipov, Vladimir; Opitz, Jörg; Schreiber, Jürgen; Meyendorf, Norbert

    2009-03-01

    In the present study, a smart coating for light metal alloys was developed and investigated. Chemically activated nanodiamonds (CANDiT) were electrophoretically deposited onto anodized aluminum alloy AA2024 substrates in order to increase corrosion resistance, enhance bonding properties and establish a means of corrosion monitoring based on the fluorescence behavior of the particles. In order to create stable aqueous CANDiT dispersions suitable for electrophoretic deposition, mechanical milling had to be implemented under specific chemical conditions. The influence of the CANDiT volume fraction and pH of the dispersion on the electrochemical properties of the coated samples was investigated. Linear voltammetry measurements reveal that the chemical characteristics of the CANDiT dispersion have a distinct influence on the quality of the coating. The fluorescence spectra as well as fluorescence excitation spectra of the samples show that corrosion can be easily detected by optical means. Furthermore, an optimization on the basis of "smart" - algorithms for the data processing of a surface analysis by the laser-speckle-method is presented.

  16. Transport and Application of Heat-Activated Persulfate for In-situ Chemical Oxidation of Residual Trichloroethylene

    Science.gov (United States)

    Quig, L.; Johnson, G. R.

    2015-12-01

    Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By

  17. Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-12-17

    DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only

  18. Chemical constituents and biological activities of Dianthus elegans var. elegans.

    Science.gov (United States)

    Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla

    2018-06-01

    Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.

  19. Chemical composition and antioxidant activity of two strawberry cultivars

    Directory of Open Access Journals (Sweden)

    Đilas Sonja M.

    2011-01-01

    Full Text Available The macro- and micro-chemical composition, as well as antioxidant activity of two strawberry cultivars, Marmolada and Clery, were studied. Results showed a noticeable difference in the sugar, protein and pectin contents. Clery had 6.92% and Marmolada 4.93% of total sugar. Also, protein and pectin contents were higher in the Clery cultivar. No significant difference was observed in acidity, as well as in ash and cellulose content. Marmolada had a higher content of total phenolics and flavonoids (228.04 mg GAE /100 g FW and 136.01 mg RE/100 g FW, respectively . The anthocyanins content in Marmolada (32.0 mg CGE/100 g FW was slightly lower than in Clery (36.0 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl- 1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as EC50 value, of Marmolada (0.77 mg/ml was higher than of Clery (0.83 mg/ml. There was a significant positive correlation (R2>0.90 between the concentration of phenolics/flavonoids/anthocyanins and DPPH radical scavenging activity of both strawberry cultivars. These results also showed that the antioxidant value of 100 g FW Marmolada and Clery is equivalent to 237.91 mg and 219.01 mg of vitamin C, respectively.

  20. ICDF Complex Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  1. Remedial treatment of lodgepole pine infested with mountain pine beetle: efficacy of three insecticides

    Science.gov (United States)

    Paul E. Tilden

    1985-01-01

    Lindane is registered for remedial control of bark beetles; however, forestry uses are controversial and alternative chemicals are needed. Chlorpyrifos (Dursban 4E), carbaryl (Sevimol 4), and fenitrothion (Sumithion 8E) at 1, 2, and 4 pct active ingredient, and lindane at the registered dosage of 0.6 pct were sprayed on lodgepole pine (Pinus contorta...

  2. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    International Nuclear Information System (INIS)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-01-01

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field

  3. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  4. Antimicrobial, antioxidant activities and chemical composition of selected Thai spices

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2010-12-01

    Full Text Available Nine volatile oils and six methanol extracts from Ocimum americanum, O. basilicum, O. sanctum, Citrus hystrix,Alpinia galanga, Curcuma zedoaria, Kaempferia parviflora and Zingiber cassumunar were assessed for antimicrobial andantioxidant activities. The volatile oils and extracts were investigated against eight bacteria and three fungi. The resultsillustrated that O. americanum volatile oil exhibited broad spectrum activity against tested bacteria with the MICs ranging1.4-3.6 mg/ml and Candida spp. with the MICs ranging from 0.5-0.6 mg/ml. The O. sanctum volatile oil showed a considerableactivity against only Candida spp. with the MICs ranging from 0.8-1.4 mg/ml. Interestingly, growth of Mycobacteriumphlei was inhibited by the volatiles of O. americanum, C. hystrix peel, and C. zedoaria with MIC of 1.7, 3.5 and 1.2 mg/ml,respectively. For antioxidant activity evaluation, the methanol extracts of C. hystrix (leaf and peel and K. parviflora hadpotent antioxidant activity by the radical-scavenging DPPH method with IC50 of 24.6, 66.3 and 61.5 mg/ml, respectively.GC-MS analysis revealed the typical chemical profiles of the volatile oils. The major component showed the characteristicsof the volatile oils and was probably responsible for the antimicrobial effect.

  5. Chemical compositions and antioxidant activity of Heracleum persicum essential oil

    Directory of Open Access Journals (Sweden)

    Maryam Gharachorloo

    2018-02-01

    Full Text Available ABSTRACT In this study essential oil of the aerial parts of Heracleum persicum a spice widely used in Iran was isolated by conventional hydrodistillation (HD and microwave-assisted hydrodistillation (MAHD techniques. The extraction yield was determined and the chemical compositions of essential oils were identified by the application of gas chromatography/mass spectrometry (GC/MS. The antioxidant activity was determined by two different methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging and oven test methods. Although the main compounds of essential oils by the both extraction methods were similar, the essential oil extracted by HD with lower extraction efficiency showed more diverse compounds. The evaluation of antioxidant activity of the essential oil measured by delay in sunflower oil oxidation indicated that the antioxidant activity was dependent on the concentration which increased when higher concentrations of the essential oils were applied. The results of DPPH radical assay also indicated that the percentage of inhibition increased with increasing of essential oil concentration and IC50 value for essential oil extracted by MAHD method was obtained 1.25 mg/mL. Therefore the Heracleum persicum essential oil might be recommended for use as a flavoring agent and a source of natural antioxidants in functional foods, formulation of the supplements and in medicinal due to numerous pharmacological activities.

  6. Wound Healing Activity and Chemical Standardization of Eugenia pruniformis Cambess

    Science.gov (United States)

    de Albuquerque, Ricardo Diego Duarte Galhardo; Perini, Jamila Alessandra; Machado, Daniel Escorsim; Angeli-Gamba, Thaís; Esteves, Ricardo dos Santos; Santos, Marcelo Guerra; Oliveira, Adriana Passos; Rocha, Leandro

    2016-01-01

    Background: Eugenia pruniformis is an endemic species from Brazil. Eugenia genus has flavonoids as one of the remarkable chemical classes which are related to the improvement of the healing process. Aims: To evaluate of wound healing activity of E. pruniformis leaves and to identify and quantify its main flavonoids compounds. Materials And Methods: Wound excision model in rats was used to verify the hydroethanolic and ethyl acetate extracts potential. The animals were divided in four groups of six and the samples were evaluated until the 15° day of treatment. Hydroxyproline dosage and histological staining with hematoxilin-eosin and Sirius Red were used to observe the tissue organization and quantify the collagen deposition, respectively. Chemical compounds of the ethyl acetate extract were identified by chromatographic techniques and mass spectrometry analysis and total flavonoids content was determined by spectrophotometric method. The antioxidant activity was determined by oxygen radical absorbing capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazylhydrate radical photometric (DPPH) assays. Results: The treated group with the ethyl acetate extract showed collagen deposition increase, higher levels of hidroxyproline, better tissue reorganization and complete remodeling of epidermis. Quercetin, kaempferol and hyperoside were identified as main compounds and flavonoids content value was 43% (w/w). The ORAC value of the ethyl acetate extract was 0.81± 0.05 mmol TE/g whereas the concentration to produce 50% reduction of the DPPH was 7.05± 0.09 μg/mL. Conclusion: The data indicate a wound healing and antioxidant activities of E. pruniformis. This study is the first report of flavonoids and wound healing activity of E. pruniformis. KEY MESSAGES Eugenia pruniformis extract accelerates wound healing in skin rat model, probably due to its involvement with the collagen deposition increase, higher levels of hidroxyproline, dermal remodelling and potent antioxidant activity

  7. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal, E-mail: ana_allves2008@hotmail.co [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10{sup 11}ncm{sup -2}s{sup -1}. The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000mug.g{sup -1}. Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  8. Cosmetics chemical composition characterization by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Alves, Ana Paula; Pereira, Gustavo Jose; Amaral, Angela Maria; Ferreira, Andrea Vidal

    2009-01-01

    Brazil is in the third position in the world's cosmetics market. It is an expanding and growing market where new products and manufacturing processes are in a constant and steady expansion. Therefore, it is mandatory that the composition of the products is well known in order to guarantee safety and quality of daily used cosmetics. The Brazilian National Health Surveillance Agency (ANVISA) has issued a resolution, RDC No. 48, March 16, 2006, which defines a 'List of Substances which can not be used in personal hygiene products, cosmetics and perfumes'. In this work, samples of locally manufactured and imported cosmetics (lipsticks, eye shadows, etc.) were analyzed using the Instrumental Neutron Activation Analysis technique. The samples were irradiated in the TRIGA IPR-R1 reactor of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN), on a 100kW thermal power, with a thermal neutron fluence rate about 8x10 11 ncm -2 s -1 . The analysis has detected the chemical elements Br, Ba, Ga, Na, K, Sc, Fe, Cr, Zn, Sm, W, La, Rb, Cs, Ta, Ge, Co, U, Ti, V, Cl, Al, Mn and Cu. The concentrations of these elements are on a range from 5 to 3000μg.g -1 . Some chemical elements observed in samples (Cl, Br, Cr, U) are included at ANVISA prohibitive list. (author)

  9. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    dimensions including radiological, economic, social and environmental aspects. The system of criteria used for evaluating management options, including effectiveness and technical feasibility economic cost, waste generation, social and ethical issues, side effects and factors constraining application are discussed. Rather than a comprehensive analysis of remedial options, the new document gives selected information, describe key issues that are relevant to their implementation based on practical experience, and provide some guidance of their usefulness as part of a remediation strategy. Basic mechanisms behind the effectiveness of most of management options are also described. The document provides recommendations on remediation planning, optimising remediation strategies and available tools for decision making on remediation of different environments. The document specifically collates, and summarises, recent activities relevant to remediation conducted under the auspices of the IAEA, but also refers to relevant studies conducted elsewhere. The text thus capitalises on the knowledge and expertise gained by the many experts involved. In common with previous IAEA documents on remediation, much of the document is relevant for many other situations which may need to be remediated. (authors)

  10. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae).

    Science.gov (United States)

    Cheriet, Thamere; Mancini, Ines; Seghiri, Ramdane; Benayache, Fadila; Benayache, Samir

    2015-01-01

    This is a review on 95 references dealing with the genus Linaria (Scrophularioideae-Antirrhineae tribe), a known genus of the Scrophulariaceae family, which comprises about 200 species mainly distributed in Europe, Asia and North Africa. The use of some Linaria species in folk medicine has attracted the attention for chemical and biological studies. This report is aimed to be a comprehensive overview on the isolated or identified known and often new metabolites from the 41 Linaria species so far cited. It is organised presenting first the phytochemical classes of alkaloids, polyphenols including flavonoids, the latter being quite diffused and mostly present as flavones, flavonols and their glycosides, and terpenoids including iridoids and steroids. Second, the results from biological investigation on plant extracts, pure natural products isolated from Linaria species and some synthetic derivatives are reported, with antitumour, anti-acetylcholinesterase, anti-inflammatory and analgesic, antioxidant and antibacterial activities.

  11. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments

  12. Flaxseed hull: Chemical composition and antioxidant activity during development.

    Science.gov (United States)

    Herchi, Wahid; Al Hujaili, Abdullah D; Sakouhi, Faouzi; Sebei, Khaled; Trabelsi, Hajer; Kallel, Habib; Boukhchina, Sadok

    2014-01-01

    Changes in the chemical composition and antioxidant activity of flaxseed hull during maturation were investigated. P129 hull variety was studied at four maturation stages (St1, St2, St3, and St4). Significant variation in proximate composition and flaxseed hull oil characteristics were observed. A significant increase in the carbohydrates content of the hull was observed during development. The main methyl esters were linolenic acid (48.95 - 51.52 %), oleic acid (20.27-23.41%) and linoleic acid (15.62-17.70%). The highest polyunsaturated fatty acids (PUFA) were found to be 67.14 % at the first stage of maturity (St1). Flaxseed hull oil was of good quality, containing an abundance of omega-3 essential fatty acids. The iodine value increased, while the saponification value of oil decreased during seed development. The decrease in ascorbic acid content was steady. The maximum level of total phenolic acid content (128.3 mg/100 g oil) was reached at 7 DAF. The antioxidant activity of oilseed was assessed by means of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay. Radical scavenging activity for green hull was 52.74% and mature hull was 69.32%.

  13. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    Science.gov (United States)

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  14. Active sampling technique to enhance chemical signature of buried explosives

    Science.gov (United States)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  15. Chemical composition and antioxidant activity of berry fruits

    Directory of Open Access Journals (Sweden)

    Stajčić Slađana M.

    2012-01-01

    Full Text Available The main chemical composition, contents of total phenolic (TPh, total flavonoid (TF, and total monomeric anthocyianin (TMA, as well as the antioxidant activity of two raspberry cultivars (Meeker and Willamette, two blackberry cultivars (Čačanska bestrna and Thornfree and wild bilberry were studied. The raspberry cultivars had the highest total solids among fruits investigated. Bilberry fruits had the highest sugar-to-acid ratio. Blackberry fruits were richer in crude fibers (cellulose in comparison to raspberry and bilberry fruits. The content of pectic substances was highest in the bilberry. Also, bilberry had a highest content of TPh (808.12 mg GAE/100 g FW, TF (716.31 mg RE/100 g FW and TMA (447.83 mg CGE/100 g FW. The antioxidant activity was evaluated spectrophotometrically, using 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity assay. The DPPH free radical scavenging activity, expressed as the EC50 value (in mg of fresh weight of berry fruit per ml of the reaction mixture, of bilberry (0.3157 ± 0.0145 mg/ml was the highest. These results also showed that the antioxidant value of 100 g FW bilberry, raspberry - Willamette, raspberry - Meeker, blackberry - Čačanska bestrna and blackberry - Thornfree is equivalent to 576.50 mg, 282.74 mg, 191.58 mg, 222.28 mg and 272.01 mg of vitamin C, respectively. There was a significant positive correlation between the antioxidant activities and content of total phenolics (RTPh 2=0.9627, flavonoids (RTF 2=0.9598 and anthocyanins (RTMA 2=0.9496 in berry fruits. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  16. Radon remediation in irish schools

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: Commencing in 1998, the Radiological Protection Institute of Ireland carried out radon measurements in 3826 schools in the Republic of I reland on behalf of the Irish Department of Education and Science (D.E.S.). This represents approximately 97% of all schools in the country. Approximately 25% (984) schools had radon concentrations above the Irish national schools Reference Level for radon of 200 Bq/m 3 and required remedial work. The number of individual rooms with radon concentrations above 200 Bq/m 3 was 3020. Remedial work in schools commenced in early 2000. In general schools with maximum radon concentrations in the range 200 -400 Bq/m 3 in one or more rooms were remediated through the installation of passive systems such as an increase in permanent background ventilation mainly wall vents and trickle vents in windows. Schools with maximum radon concentrations greater than 400 Bq/m 3 were usually remediated through the provision of active systems mainly fan assisted sub -slab de pressurization or where this was not possible fan assisted under floor ventilation. The cost of the remedial programme was funded by central Government. Active systems were installed by specialized remedial contractors working to the specifications of a radon remedial expert appointed by the D.E.S. to design remedial systems for affected schools. Schools requiring increased ventilation were granted aided 190 pounds per affected room and had to organize the work themselves. In most schools radon remediation was successful in reducing existing radon concentrations to below the Reference Level. Average radon concentration reduction factors for sub-slab de pressurization systems and fan assisted fan assisted under floor ventilation ranged from 5 to 40 with greater reduction rates found at higher original radon concentrations. Increasing ventilation in locations with moderately elevated radon concentrations (200 - 400 Bq/m 3 ) while not as effective as active systems produced on

  17. A successful environmental remediation program closure and post-closure activities (CAPCA) Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bowers, M.H.

    1991-01-01

    The Resource Conservation and Recovery Act (RCRA) closure of eleven waste management units at the Department of Energy's (DOE's) Oak Ridge Y-12 Plant is nearing completion. The Oak Ridge Y-12 Plant is managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy under Contract DE-AC05-84OR21400. The Closure and Post Closure Program (CAPCA) has been accomplished on an accelerated schedule through the efforts of a dedicated team from several organizations. This paper relates experience gained from the program that can be of benefit on other DOE environmental remediation projects. Technical design and construction aspects, as well as project management considerations, are discussed

  18. Remedial action technology - arid

    International Nuclear Information System (INIS)

    Hakonson, T.E.; DePoorter, G.L.; Nyhan, J.W.; Perkins, B.A.; Lane, L.J.

    1982-01-01

    A summary is presented of the low-level waste remedial action program at Los Alamos. The experimental design and progress is described for the experiments on second generation intrusion barriers, subsidence effects on SLB components, moisture cycling effects on chemical transport, and erosion control methodologies. The soil moisture data from the bio-intrusion and moisture cycling experiments both demonstrate the overwhelming importance of vegetation in minimizing infiltration of water through trench covers and backfill. Evaporation, as a water loss component in trench covers, is only effective in reducing soil moisture within 40 cm of the trench cover surface. Moisture infiltrating past the zone of evaporation in unvegetated or poorly vegetated trench covers is in storage and accumulates until drainage out of the soil profile occurs. Judicious selection of vegetation species for revegetating a low-level waste site may prevent infiltration of moisture into the trench and, when coupled with other design features (i.e. trench cover slope, tilling and seeding practice), may greatly reduce problems with erosion. Standard US Department of Agriculture erosion plots, when coupled with a state-of-the-art water balance and erosion model (CREAMS) promises to be highly useful in screening proposed remedial action cover designs for low-level waste sites. The erosion plot configuration allows for complete accounting of the water balance in a soil profile. This feature enables the user to optimize cover designs to minimize erosion and infiltration of water into the trench

  19. Site remediation techniques in India: a review

    International Nuclear Information System (INIS)

    Anomitra Banerjee; Miller Jothi

    2013-01-01

    India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelands arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)

  20. Proceedings of the remediation technologies symposium 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference provided an opportunity for industry, practitioners, researchers and regulators to discuss technical issues in environmental remediation research and the latest innovations in soil and groundwater remediation. Cost effective in-situ and ex-situ soil reclamation strategies were presented along with groundwater and surface water remediation strategies in 13 sessions entitled: hydrocarbon contamination; salt management; liability management; chemical oxidation; light non-aqueous phase liquids (LNAPL); Montreal Center of Excellence in Brownfields Rehabilitation; Alberta government updates; phytoremediation; natural attenuation; Lake Wabamun; ex-situ remediation; in-situ remediation; and, miscellaneous issues. Technological solutions for erosion control and water clarification were highlighted. The conference featured 52 presentations, of which 17 have been catalogued separately for inclusion in this database. tabs., figs.

  1. Chemically induced and light-independent cryptochrome photoreceptor activation.

    Science.gov (United States)

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  2. Removal of toxic chemicals from water with activated carbon

    Science.gov (United States)

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  3. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  4. Salacia crassifolia (Celastraceae: CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Vanessa G. Rodrigues

    2015-02-01

    Full Text Available The phytochemical study of hexane extract from leaves of Salacia crassifolia resulted in the isolation of 3β-palmitoxy-urs-12-ene, 3-oxofriedelane, 3β-hydroxyfriedelane, 3-oxo-28-hydroxyfriedelane, 3-oxo-29-hydroxyfriedelane, 28,29-dihydroxyfriedelan-3-one, 3,4-seco-friedelan-3-oic acid, 3β-hydroxy-olean-9(11:12-diene and the mixture of α-amirin and β-amirin. β-sitosterol, the polymer gutta-percha, squalene and eicosanoic acid were also isolated. The chemical structures of these constituents were established by IR, 1H and 13C NMR spectral data. Crude extracts and the triterpenes were tested against Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis and no activity was observed under the in vitro assay conditions. The hexane, chloroform, ethyl acetate and ethanol crude extracts, and the constituent 3,4-seco-friedelan-3-oic acid and 28,29-dihydroxyfriedelan-3-one showed in vitro antimicrobial activity against Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Streptococcus sanguinis and Candida albicans.

  5. Remediation General Permit (RGP) for Massachusetts & New Hampshire

    Science.gov (United States)

    Documents, links & contacts for the Notice of Availability of the National Pollutant Discharge Elimination System (NPDES) General Permit for Remediation Activity Discharges – the Remediation General Permit in MA (MAG910000) and NH (NHG910000).

  6. Do Training Programs Work? An Assessment of Pharmacists Activities in the Field of Chemical Dependency.

    Science.gov (United States)

    Brooks, Valerie G.; Brock, Tina Penick; Ahn, Jungeun

    2001-01-01

    Seeks to determine if pharmacists who attended a chemical dependency training program were performing more chemical dependency related activities. Results reveal that participants were more likely to perform the following activities: lecture to community groups about chemical dependency; participate in a pharmacists' recovery program; provide…

  7. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  8. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  9. 300-FF-1 remedial design report/remedial action work plan

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, F.W.

    1997-02-01

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes.

  10. Preparation of activated Carbons from extracted waste biomass by chemical activation

    International Nuclear Information System (INIS)

    Toteva, V.; Nickolov, R.

    2013-01-01

    Full text: Novel biomass precursors for the production of activated carbons (ACs) were studied. ACs were prepared from extracted coffee husks and extracted spent ground coffee - separately or as mixtures with 10, 20 and 30 mass % Bulgarian lignite coal. Activation by potassium hydroxide was employed for all samples. The results obtained show that the surface and porous parameters of the ACs depend on the nature of the initial materials used. The specific surface areas (BET) and the microporosities of ACs obtained from extracted spent ground coffee mixed with 20 mass % Bulgarian lignite coals, are greater than those of the ACs from extracted coffee husks. It is likely that the reason for this result is the chemical composition of the precursors. The coffee husks have less lignin and more holocellulose. The latter undergoes more significant destructive changes in the process of chemical activation. On the contrary, waste ground coffee precursors contain more lignin and less holocellulose. As a result, after the chemical activation, the carbons prepared from extracted spent ground coffee exhibit better porous parameters and higher specific surface areas. key words: activated carbons, extraction, waste biomass

  11. Site remediation guided by risk assessment

    International Nuclear Information System (INIS)

    McBean, E.A.; Gowing, A.; Pieczonka, G.

    2002-01-01

    'Full text:' Risk assessment (RA) provides an effective tool for identifying hazards with respect to human health and ecological receptors, hazards that arise from contaminants in the environment. Risk assessment relies upon: hazard identification/problem formulation; toxicity assessment; exposure assessment; and risk characterization. Hence, risk assessment provides an effective guide for site remediation through the identification of the associated risks arising from pre- and potential post-remediation activities. As a demonstration of this decision-making process, a site-specific risk assessment (SSRA) was performed on a chemical producing facility. Historical waste practices during the production of DDT compounds resulted in impacted site soils and sediment and soils of the creek passing through the facility. The purpose of the SSRA was to derive site-specific cleanup values for the impacted on-site soils, creek sediments, and embankment soils, incorporating human and ecological receptors associated with the environmental media. The human exposure pathways considered were dermal contact, incidental ingestion, and inhalation of the various soils. The potential human receptors were industrial workers, construction workers, trespassers, and off-site residents. Ingestion of fish from the creek by residents was also evaluated in the human health risk assessment (HHRA). Food web analyses were used to evaluate the impact of exposure to chemical compounds in aquatic sediments and related soils by ecological receptors such as the great blue heron, raccoon, and mink. The SSRA involved modelling the daily chemical intake by receptors and the transfer of chemicals to identified secondary media (e.g., ambient air or animal tissues) that are also potential exposure media. These models, while using the site-specific chemical data in the source media, possess uncertainties associated with default parameters that are only approximations and not site-specific (e.g., soil

  12. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC-MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products.

  13. Less is more: Sampling chemical space with active learning

    Science.gov (United States)

    Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas; Isayev, Olexandr; Roitberg, Adrian E.

    2018-06-01

    The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach, we develop the COmprehensive Machine-learning Potential (COMP6) benchmark (publicly available on GitHub) which contains a diverse set of organic molecules. Active learning-based ANI potentials outperform the original random sampled ANI-1 potential with only 10% of the data, while the final active learning-based model vastly outperforms ANI-1 on the COMP6 benchmark after training to only 25% of the data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecules or materials, while remaining applicable to the general class of organic molecules composed of the elements CHNO.

  14. Bioelectrical Perchlorate Remediation

    Science.gov (United States)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated

  15. Mercury contaminated sediment sites—An evaluation of remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

    2013-08-15

    Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ► Managing mercury-contaminated sediment sites are challenging to remediate. ► Remediation technologies are making a difference in managing these sites. ► Partitioning plays a dominant role in the distribution of mercury species. ► Mathematical

  16. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    . In this respect there is a European and International mechanism of handling safety- and risk-related matters. So, the Organisation for Economic Co-operation and Development's (OECD) core objective on risk management is to support Member countries' efforts to develop national policies and actions, and, where appropriate, to develop and implement international risk management measures. In support of this objective, the OECD Risk Management Programme focuses on two areas: (1) developing methods and technical tools that can be used by OECD and Member countries to enhance their current risk management programmes; and (2) identifying specific chemical exposures of concern in Member countries and evaluating possible risk management opportunities. The current paper highlights the EU legislation on major accident hazards related to the chemical industry, differences in the national approaches to risk analyses in the process industry and European-scale activity in improving the understanding of the sources of uncertainty in risk assessments.

  17. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    Science.gov (United States)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant

  18. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  19. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    functional groups in this compound was adjusted to reproduce the observed growth curves. However, further information on surface tension and the ratio of the molecular mass and density of the solute is needed to predict activation behavior from hygroscopic growth measurements. A dependence of {kappa} on the ratio of primarily produced OH to initial VOC level was observed. The higher {kappa} values for low precursor concentrations could be attributed to a higher OH/VOC level. The detailed chemical composition of the gas-phase precursors had only little effect on {kappa}. In long term experiments there was no significant effect of the observed chemical aging of the particles on {kappa}. The observed low variability of {kappa} for biogenic SOA particles simplifies their treatment in global models as an average value of {kappa} = 0.1 can be used. (orig.)

  20. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemical and thermal modulation of molecular motor activities

    Science.gov (United States)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  2. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  3. Environmental remediation and waste management in the United States

    International Nuclear Information System (INIS)

    Muntzing, L.M.; Person, J.C.

    1994-01-01

    Environmental remediation of radioactively and chemically contaminated sites represents one of the most complex challenges of our age. It is currently a problem at nuclear weapons sites in the Unites States, but as the civilian nuclear industry everywhere deals with decommissioning and decontamination, the lessons learned from these early activities will be influential. The task is challenging for several reasons. First, standards governing remedial action are complex and constantly evolving. Second, unless contaminated material is to be stabilized in place, it must be removed and sent to another facility for storage and ultimate disposal. Third, the task is technically demanding. Those who undertake the challenge must be technically sophisticated, creative, and innovative. Fourth, the challenge is a risky one. Those who seek to remediate past contamination may find themselves exposed to expanding and unfair allegations of liability for that very contamination. Finally, there is often a basic crisis of public confidence regarding remediation efforts. This paper briefly outlines some of the liabilities surrounding environmental contracting and ways to minimize risks

  4. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Michael [SUNY Polytechnic Inst., Albany, NY (United States); Oh, Sang-Hyun [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  5. Chemical surface tuning electrocatalysis of redox-active nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Ulstrup, Jens; Chi, Qijin

    This work focuses on electron transfer (ET) and electrocatalysis of inorganic hybrid Prussian blue nanoparticles (PBNPs, 6 nm) immobilized on different chemical surfaces. Through surface self-assembly chemistry, we have enabled to tune chemical properties of the electrode surface. Stable immobili...

  6. Chemical composition and antioxidant activity of essential oil ...

    African Journals Online (AJOL)

    In the present work, we studied the chemical composition of the essential oil of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. The essential oils were obtained by hydrodistillation and their chemical composition was analysed using gas chromatography- mass spectrometry (GC–MS). Camphene, borneol ...

  7. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    The aim of this study was to determine the chemical composition of the essential oils of Algerian citrus. They were extracted by hydrodistillation from the leaves of citrus species (orange, Bigaradier, mandarin and lemon), using gas chromatography/mass spectrometry (GC/MS). Their chemical composition and antifungal ...

  8. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Falck, W.E.

    2002-01-01

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  9. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    OpenAIRE

    Vargas Diana P.; Giraldo Liliana; Moreno-Piraján Juan Carlos

    2017-01-01

    The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribu...

  10. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  11. Calculation of neutron activation discriminating the chemical weapons underground using Monte Carlo methods

    International Nuclear Information System (INIS)

    Shen Chunxia; Qian Jianfu; Zhang Wenzhong

    2003-01-01

    This paper mainly calculate neutron activation discriminating the chemical weapons underground, and analyses the factors that soil influence discrimination, finally we conclude soil can not influence discrimination. (authors)

  12. Development of Bicarbonate-Activated Peroxide as a Chemical and Biological Warfare Agent Decontaminant

    National Research Council Canada - National Science Library

    Richardson, David E

    2006-01-01

    ...) and other chemistry for the decontamination of chemical and biological warfare agents. The mechanism of formation of the active oxidant, peroxymonocarbonate, has been investigated in detail. New surfoxidants...

  13. Chemical constituents and antihistamine activity of Bixa orellana leaf extract

    Directory of Open Access Journals (Sweden)

    Yong Yoke Keong

    2013-02-01

    Full Text Available Abstract Background Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats. Methods Acute inflammation was produced by subplantar injection of 0.1 mL of 0.1% histamine into the right hind paw of each rat in the control and treatment groups. The degree of edema was measured before injection and at the time points of 30, 60, 120, 180, 240 and 300 min after injection. Changes of peritoneal vascular permeability were studied using Evans blue dye as a detector. Vascular permeability was evaluated by the amount of dye leakage into the peritoneal cavity in rats. To evaluate the inhibitory effect of AEBO on biochemical mediators of vascular permeability, the levels of nitric oxide (NO and vascular endothelial growth factor (VEGF were determined in histamine-treated paw tissues. The major constituents of AEBO were determined by gas chromatography–mass spectrometry (GC-MS analysis. Results AEBO produced a significant inhibition of histamine-induced paw edema starting at 60 min time point, with maximal percentage of inhibition (60.25% achieved with a dose of 150 mg/kg of AEBO at 60 min time point. Up to 99% of increased peritoneal vascular permeability produced by histamine was successfully suppressed by AEBO. The expression of biochemical mediators of vascular permeability, NO and VEGF, was also found to be downregulated in the AEBO treated group. Gas chromatography–mass spectrometry (GC-MS analysis revealed that the major constituent in AEBO was acetic acid. Conclusions The experimental findings demonstrated that the anti-inflammatory activity of AEBO was

  14. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... agencies, and others to promote reductions in toxic chemical releases. Industrial facilities use the TRI... Activities; Proposed Collections; Toxic Chemical Release Reporting; Request for Comments on Proposed Renewal... the individual listed in the preceding FOR FURTHER INFORMATION CONTACT section. Title: Toxic Chemical...

  15. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  16. Antimicrobial activity and chemical compositions of Turkish propolis ...

    African Journals Online (AJOL)

    negative bacteria and its chemical composition were evaluated by the method of agar-well diffusion and GC-MS, respectively. Some typical compounds samples were identified in the propolis samples. Principal component analysis revealed that the ...

  17. Chemical compositions and antimicrobial activity of twig essential ...

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... The chemical composition of twig essential oils of Xylopia malayana, Xylopia elliptica and Xylopia fusca were analyzed ... brown or dark green in colors and fragrant. .... extraction used and geographic origin of plant studied.

  18. Remediation Technologies Eliminate Contaminants

    Science.gov (United States)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  19. Remediation activities wrestling with environmental pollution and radwaste generated by the Fukushima Daiichi NPP accident due to the Tohoku district-off the pacific ocean

    International Nuclear Information System (INIS)

    Kawanishi, Motoi; Fujitsuka, Tetsuro; Yoshihara, Koichi; Katsumi, Takeshi; Tochiyama, Osamu

    2013-01-01

    Based on the lectures and panel discussions 'Radioactive waste countermeasures and the role of civil engineering technology' on the occasion of 3rd year of the Great East Japan Earthquake, March 11, 2011, hosted by the Japan Society of Civil Engineers, the paper summarizes remediation activities reported during the seminar. Radioactive materials contaminated area due to the Fukushima Daiichi Nuclear Power Plant accident from the Department of Environment, endeavors for setting-up of temporary storage facilities for the decontaminated soils and solid wastes, present status of roadmap toward the decommissioning of the Fukushima Daiichi Plants from the Japanese Government and Tokyo Electric Power Co. were presented followed by expectations of civil engineers cooperation. (S. Ohno)

  20. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  1. Environmental impact of ongoing sources of metal contamination on remediated sediments

    International Nuclear Information System (INIS)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-01-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  2. Characterization and remediation of highly radioactive contaminated soil at Hanford

    International Nuclear Information System (INIS)

    Buckmaster, M.A.; Erickson, J.K.

    1993-09-01

    The Hanford Site, Richland, Washington, contains over 1,500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy (DOE) has initiated a remedial investigation/feasibility study (RI/FS) at the 200-BP-1 operable unit. The 200-BP-1 RI/FS is the first Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) investigation on the Hanford Site that involves highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste sites within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling, chemical and physical analysis of samples, and development of a conceptual vadose zone model. These data were then used. to develop remedial alternatives during the FS evaluation. The preferred alternative resulting from the RI/FS process for the 200-BP-1 operable unit is to construct a surface isolation barrier. The multi-layered earthen barrier will be designed to prevent migration of contaminants resulting from water infiltration, biointrusion, and wind and water erosion

  3. Optimal selection of biochars for remediating metals ...

    Science.gov (United States)

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce the bioavailability of the metals at mine sites. Biochar with its potential to complex and immobilize heavy metals, is an emerging alternative for reducing bioavailability. Furthermore, biochar has been reported to improve soil conditions for plant growth and can be used for promoting the establishment of a soil-stabilizing native plant community to reduce offsite movement of metal-laden waste materials. Because biochar properties depend upon feedstock selection, pyrolysis production conditions, and activation procedures used, they can be designed to meet specific remediation needs. As a result biochar with specific properties can be produced to correspond to specific soil remediation situations. However, techniques are needed to optimally match biochar characteristics with metals contaminated soils to effectively reduce metal bioavailability. Here we present experimental results used to develop a generalized method for evaluating the ability of biochar to reduce metals in mine spoil soil from an abandoned Cu and Zn mine. Thirty-eight biochars were produced from approximately 20 different feedstocks and produced via slow pyrolysis or gasification, and were allowed to react with a f

  4. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid

    Directory of Open Access Journals (Sweden)

    Gamal O. El-Sayed

    2014-09-01

    Full Text Available Corncob, which is the main waste from corn agricultures in Egypt, has been used as a raw material for the preparation of different activated carbons. Activated carbons (ACs were prepared by chemical activation with concentrated H3PO4 acid; followed by pyrolysis at 400, 500 and 600 °C. Different ACs have been used for the removal of methylene blue (MB dye from aqueous solutions. Batch adsorption experiments were performed as a function of initial dye concentration, contact time, adsorbent dose and pH. Adsorption data were modeled using the Langmuir and Freundlich adsorption isotherms. Adsorption of MB on AC1 (R2=0.9868 and AC2 (R2=0.9810 followed Langmuir model with maximum monolayer sorption capacity of 28.65 and 17.57 mg/g, respectively. Adsorption onto AC3 was better fitted to Freundlich isotherm model (R2=0.9823.

  5. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  6. Environmental Restoration Remedial Actions Program Field Office Work Plan

    International Nuclear Information System (INIS)

    1989-02-01

    The Environmental Restoration Remedial Actions (ERRA) Program was established by DP to comply with regulations for characterization and cleanup of inactive waste sites. The program specifically includes inactive site identification and characterization, technology development and demonstration, remedial design and cleanup action, and postclosure activities of inactive radioactive, chemically hazardous, and mixed waste sites. It does not include facility decontamination and decommissioning activities; these are included in a parallel program, Environmental Restoration Decontamination and Decommissioning (ERD and D), also managed by DP. The ERRA program was formally established in fiscal year (FY) 1988 at the Hanford Site to characterize and remediate inactive waste sites at Hanford. The objectives, planned implementation activities, and management planning for the ERRA Program are contained in several planning documents. These documents include planning for the national program and for the Hanford Program. This summary describes the major documents and the role and purpose of this Field Office Work Plan (FOWP) within the overall hierarchy of planning documents. 4 refs., 7 figs., 8 tabs

  7. PRESENTED 03/01/2006: 2006 REMOTE SENSING AND GIS IN THE REMEDIATION OF CHEMICAL WEAPONS CONTAMINATION IN AN URBAN LANDSCAPE

    Science.gov (United States)

    During World War 1, The American University in Washington, DC was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite

  8. THE ROLE OF HISTORICAL AERIAL PHOTOGRAPHS IN THE REMEDIATION OF WWI CHEMICAL CONTAMINATION IN THE SPRING VALLEY SUPERFUND SITE, WASHINGTON, DC

    Science.gov (United States)

    During World War 1, The American University in Washington D.C. was used by the U.S. Army as an experiment station for the development and testing of a variety of battlefield munitions including chemical weapons such as Mustard Gas, Phosgene, Ricin and Lewisite, among others. Afte...

  9. Remediation of spent block in Uvanas deposit

    International Nuclear Information System (INIS)

    Nurgaziev, M.A.; Iskakov, M.M.

    2012-01-01

    In 2007 by 'Kazatomprom' and 'Mining company' board decision, the branch of 'Mining company', 'Steppe ore management body' is reorganized in structure subdivision, the basic activity of which is organization and carrying out remediation works on spent blocks of PSV uranium deposit. In 2002 works are completed on OVOS for operating deposits Uvanas, Kanjugan, Northern Karamurun and Eastern Minkuduk. The results of present work were reported in IAEA conference. The working project 'Remediation of spent blocks of PSV uranium deposit PV-17 polygon of Steppe ore management body' approved in 2005 was developed for carrying out the remediation works. Works funding were carried out from liquidation fund of the current deposit established in accordance with the Republic of Kazakhstan law 'About interior and interior use'. Deposits remediation is the part of deposit operation life cycle which obliges to operate deposits with minimum expenditures for remediation.

  10. Present status of the Zavratec remediation project

    International Nuclear Information System (INIS)

    Zeleznik, N.; Stepisnik, M.; Mele, I.

    1997-01-01

    In 1992 the responsibility for the remediation of the temporary storage of radioactive waste near Zavratec was assigned to the Agency for Radwaste Management. The project was divided into two phases. First, in a study, different options for remediation were considered. In the second phase, performed in 1996, the measurements, inventorying and repacking of radioactive waste were carried out. Simultaneously with these activities a programme for covering public relations was prepared. One of the results of the public relation campaign is also a 15-minute video film, which was prepared from documentary material recorded during remedial activities, and will be presented here. (author)

  11. Chemical behavior of tungsten trifluorophosphines following neutron activation

    International Nuclear Information System (INIS)

    Bottomley, L.D.; Clark, R.J.

    1988-01-01

    The chemical reactions that follow neutron capture have been studied for a series of tungsten trifluorophosphine carbonyls. The molecular distribution of 187 W was determined by gas chromatographic separation using scintillation detection. The chemical behavior of these compounds was examined in the condensed phase and the gas phase, both with and without excess PF 3 or CO. The retention of the parent species was measured as well as the formation of any scrambled species W(PF 3 ) x (CO) 6-x in all experiments. The results of irradiations done in condensed phase with no excess ligands were modeled by a Simplex iterative routine to calculate the distribution of recoil fragments. (orig.)

  12. 75 FR 69630 - Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving...

    Science.gov (United States)

    2010-11-15

    ... Biotechnology,'' calls for the President to certify to Congress on an annual basis that ``the legitimate commercial activities and interests of chemical, biotechnology, and pharmaceutical firms in the United States... commercial activities and interests of chemical, biotechnology, and pharmaceutical firms in the United States...

  13. Green Remediation Best Management Practices: Mining Sites

    Science.gov (United States)

    This fact sheet describes best management practices (BMPs) that can be used to reduce the environmental footprint of cleanup activities associated with common project components, cleanup phases, and implementation of remediation technologies.

  14. Functional remediation components: A conceptual method of evaluating the effects of remediation on risks to ecological receptors.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Bunn, Amoret; Downs, Janelle; Jeitner, Christian; Pittfield, Taryn; Salisbury, Jennifer

    2016-01-01

    Governmental agencies, regulators, health professionals, tribal leaders, and the public are faced with understanding and evaluating the effects of cleanup activities on species, populations, and ecosystems. While engineers and managers understand the processes involved in different remediation types such as capping, pump and treat, and natural attenuation, there is often a disconnect between (1) how ecologists view the influence of different types of remediation, (2) how the public perceives them, and (3) how engineers understand them. The overall goal of the present investigation was to define the components of remediation types (= functional remediation). Objectives were to (1) define and describe functional components of remediation, regardless of the remediation type, (2) provide examples of each functional remediation component, and (3) explore potential effects of functional remediation components in the post-cleanup phase that may involve continued monitoring and assessment. Functional remediation components include types, numbers, and intensity of people, trucks, heavy equipment, pipes, and drill holes, among others. Several components may be involved in each remediation type, and each results in ecological effects, ranging from trampling of plants, to spreading invasive species, to disturbing rare species, and to creating fragmented habitats. In some cases remediation may exert a greater effect on ecological receptors than leaving the limited contamination in place. A goal of this conceptualization is to break down functional components of remediation such that managers, regulators, and the public might assess the effects of timing, extent, and duration of different remediation options on ecological systems.

  15. Activity guided isolation of chemical constituents from the ...

    African Journals Online (AJOL)

    In this study we investigated the chemical constituents of bioactive methanol extract of Euphorbia schimperi C. Presl. For this the methanol extract was fractionated into 20, 40, 60, 80% MeOH in CHCl3, and 100% MeOH fractions respectively by vacuum liquid chromatography. Excision wound surface of the animals were ...

  16. Biodegradation of Organophosphate Chemical Warfare Agents by Activated Sludge

    Science.gov (United States)

    2012-03-01

    bronchoconstriction Bladder (M) Urinary frequency, incontinence Cardiovascular system (M) Bradycardia, hypotension Cardiovascular system (N...conventional weapons: their cost and stability, simplicity of production, pound for pound potency and fear factor (Hill et al., 2008a). Compared to...Chemical agents, especially nerve agents, have a dramatic fear factor due to the symptoms they cause. Witnessing civilians violently convulsing

  17. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    patrick

    2015-03-25

    Mar 25, 2015 ... A. sp and F. sp were screwed using food poisoning technique. (Grover and ... of the fungi colonies of the sets of treatment and diameter of positive ..... Chemical variability of peel and leaf essential oils of sour orange. Flav.

  18. activity guided isolation of chemical constituents from the ...

    African Journals Online (AJOL)

    MeOH fraction was subjected to various chromatographic techniques led to the isolation of miquelianin (1), kaempferol 3-O-glucuronide (2) and quercitrin (3). Compounds (1-3) were isolated from this plant for the first time. KEY WORDS: Euphorpia schimperi C. Presl, Wound healing, Chromatographic techniques, Chemical.

  19. Chemical compositions and antimicrobial activity of twig essential ...

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... The chemical composition of twig essential oils of Xylopia malayana, Xylopia elliptica and Xylopia fusca ... Volatile constituents and bioactivity studies are available in the literature on Xylopia aethiopica (Issakou et al., 2014;. Sylvain et al, 2014; Vyry et al, 2014), Xylopia longifolia. (Fourier et al, 1993), ...

  20. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    Science.gov (United States)

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  1. Criteria and approaches for the remediation of sites contaminated with natural radionuclides in Germany

    International Nuclear Information System (INIS)

    Goldammer, W.

    1999-01-01

    In some parts of Germany substantial areas have been contaminated with naturally occurring radioactive material (NORM) from past activities. Particularly important are residues from past uranium mining operations (WISMUT), being subject to a massive 13 billion DM cleanup program, as well as other mining activities dealing with elevated levels of NORM. Decisions concerning the necessity and the required extent of remediation measures are based on a combination of criteria addressing limitations of maximum individual doses for critical groups as well as the optimization of the net benefit from the remediation. From these basic requirements secondary criteria have been derived, defining, for example, soil contamination levels below which a remediation is not required. The optimization analyses, carried-out to identify optimal remediation options, address radiological risks as well as short and long term costs within a cost-benefit analysis framework. Other relevant factors of influence, e.g. chemical risks or ecological damage, are incorporated as well. Comprehensive methodologies utilizing probabilistic methods have been developed to assess site conditions and possible remediation options on this basis. (author)

  2. Aspidosperma (Apocynaceae plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth used as a remedy to treat fever and malaria in the Amazon

    Directory of Open Access Journals (Sweden)

    Julia Penna Coutinho

    2013-12-01

    Full Text Available Infusions of Aspidosperma nitidum (Apocynaceae wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  3. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  4. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review.

    Science.gov (United States)

    Wu, Haipeng; Lai, Cui; Zeng, Guangming; Liang, Jie; Chen, Jin; Xu, Jijun; Dai, Juan; Li, Xiaodong; Liu, Junfeng; Chen, Ming; Lu, Lunhui; Hu, Liang; Wan, Jia

    2017-09-01

    Compost and biochar, used for the remediation of soil, are seen as attractive waste management options for the increasing volume of organic wastes being produced. This paper reviews the interaction of biochar and composting and its implication for soil amendment and pollution remediation. The interaction of biochar and composting affect each other's properties. Biochar could change the physico-chemical properties, microorganisms, degradation, humification and gas emission of composting, such as the increase of nutrients, cation exchange capacity (CEC), organic matter and microbial activities. The composting could also change the physico-chemical properties and facial functional groups of biochar, such as the improvement of nutrients, CEC, functional groups and organic matter. These changes would potentially improve the efficiency of the biochar and composting for soil amendment and pollution remediation. Based on the above review, this paper also discusses the future research required in this field.

  5. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...

  6. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1985-01-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses program to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  7. DOE's Assurance Program for Remedial Action (APRA)

    International Nuclear Information System (INIS)

    Denham, D.H.; Stenner, R.D.; Welty, C.G. Jr.; Needels, T.S.

    1984-10-01

    The US Department of Energy's (DOE) Office of Operational Safety (OOS) is presently developing and implementing the Assurance Program for Remedial Action (APRA) to overview DOE's Remedial Action programs. APRA's objective is to ensure the adequacy of environmental, safety and health (ES and H) protection practices within the four DOE Remedial Action programs: Grand Junction Remedial Action Program (GJRAP), Uranium Mill Tailings Remedial Action Program (UMTRAP), Formerly Utilized Sites Remedial Action Program (FUSRAP), and Surplus Facilities Management Program (SFMP). APRA encompasses all ES and H practices of DOE and its contractors/subcontractors within the four Remedial Action programs. Specific activities of APRA include document reviews, selected site visits, and program office appraisals. Technical support and assistance to OOS is being provided by APRA contractors in the evaluation of radiological standards and criteria, quality assurance measures, radiation measurements, and risk assessment practices. This paper provides an overview of these activities and discusses progress to date, including the roles of OOS and the respective contractors. The contractors involved in providing technical support and assistance to OOS are Aerospace Corporation, Oak Ridge Associated Universities, and Pacific Northwest Laboratory

  8. Annual report of decommissioning and remedial action S and M activities for the Environmental Management Program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    The Oak Ridge National Laboratory (ORNL) Surveillance and Maintenance (S ampersand M) Program performs a variety of activities to ensure that sites and facilities within its responsibility remain in a safe condition and in compliance with applicable regulations. All S ampersand M Program activities during fiscal year (FY) 1997 were accomplished safely, with no health and safety incidents, no lost work days, and no environmental noncompliances. In addition, all activities were performed within schedule thresholds and under budget. Many remedial action (RA) sites and decontamination and decommissioning (D ampersand D) facilities are inspected and maintained by the S ampersand M Program. RA sites encompass approximately 650 acres and 33 D ampersand D facilities, including 4 inactive reactors. During FY 1997, routine, preventative, and emergency maintenance activities were performed as needed at these sites and facilities. Stabilization activities were also performed to reduce risks and reduce future S ampersand M costs. Major activities at the RA sites during FY 1997 included maintaining proper liquid levels in surface impoundments and inactive -liquid low-level waste storage tanks as well as installing a new cover at the tumulus pads in Waste Area Grouping (WAG) 6, planting trees in the First Creek Riparian Corridor, and performing over 900 well inspections. Postremediation monitoring was conducted at the 3001 Canal, Core Hole 8, the WAG 6 Resource Conservation and Recovery caps, and WAG 5 Seeps C and D; groundwater monitoring was performed in WAGs 4, 5, and 6 and at the 3001 Canal Well. At ORNL D ampersand D facilities, significant accomplishments included contaminated lead brick removal, asbestos abatement, contaminated equipment and debris removal, and radiologically contaminated area painting

  9. Bio-remediation in actual use and environmental impairment liability insurance. Bio remediation no jissai to kankyo hoken

    Energy Technology Data Exchange (ETDEWEB)

    Ooka, K [AIU Insurance Company, Tokyo (Japan)

    1993-08-01

    This paper introduces the American International Group (AIG) which makes conceptions and risks of bio-remediation its business, as to how the Group is really working on the business. Features of the continuing remediation involving corporations managed by AIG include the following: It has economical superiority; in-situ purification of contaminated soils is possible; and it can solve contamination issues in a short time, and makes reuse of lands possible. The remediation uses a principle of promoting the contamination purifying actions of the natural world. It activates microorganisms by supplying oxygen, water, and nutrients in suitable amounts for microbial activities to decompose chemical wastes and converts them into harmless substances such as CO2. Objects of purification include petroleum-based substances, herbicides, insecticides, and solvents. Establishing optimal parameters before purification (mediator variables and population parameters) and protocols is important. The system goes through the following steps: Hydraulic and geological experts identify patterns and levels of contamination; microorganism experts find optimal parameters in laboratories; engineers design treatment systems; and site technicians operate the system. 6 refs., 3 figs.

  10. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    International Nuclear Information System (INIS)

    1990-06-01

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs

  11. Economics of biofiltration for remediation projects

    International Nuclear Information System (INIS)

    Yudelson, J.M.; Tinari, P.D.

    1995-01-01

    Biofilters with granular activated carbon (GAC) filter backup units offer substantial savings compared to conventional GAC filters and catalytic/thermal oxidation (Catox) units in controlling emissions of volatile organic compounds (VOCs) from petroleum remediation projects. Provided that the biofilter supplier is willing to satisfy the client's and consultant's risk-management concerns, biofilters offer anew method for reducing the cost of remediation projects, with savings of up to $10,000 (24%) per facility in 24-month projects and up to $16,000 (32%) per facility in 36-month projects for simple gas station remediation projects. Savings will be greater for longer projects and projects with higher average contaminant loadings

  12. An overview of the hazardous waste remedial actions program: hazardous and mixed waste activities for the U.S. Departments of energy and defense

    International Nuclear Information System (INIS)

    Craig, Robert B.; Rothermich, Nancy E.

    1991-01-01

    In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations

  13. Surveillance and maintenance report on decontamination and decommissioning and remedial action activities at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Fiscal year 1996

    International Nuclear Information System (INIS)

    King, H.L.; Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.; Wayland, G.S.

    1996-12-01

    The Oak Ridge Y-12 Plant Decontamination and Decommissioning (D ampersand D) and Remedial Action (RA) programs are part of the Environmental Restoration (ER) Division and are funded by the Office of Environmental Management (EM-40). Building 9201-4 (known as Alpha-4), three sites located within Building 9201-3 (the Oil Storage Tank, the Molten Salt Reactor Experiment Fuel Handling Facility, and the Coolant Salt Technology Facility), and Building 9419-1 (the Decontamination Facility) are currently the facilities at the Y-12 Plant included in the D ampersand D program. The RA program provides surveillance and maintenance (S ampersand M) and program management of ER sites at the Y-12 Plant, including selected sites listed in Appendix C of the Federal Facilities Agreement (FFA), sites listed in the Hazardous and Solid Waste Amendment (HSWA) permit Solid Waste Management Unit (SWM-U) list, and sites currently closed or undergoing post-closure activities under the Resource Conservation and Recovery Act of 1976 (RCRA) or the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report communicates the status of the program plans and specific S ampersand M activities for the D ampersand D and RA programs

  14. Formerly utilized MED/AEC sites, Remedial Action Program: radiological survey of the Hooker Chemical Company, Niagara Falls, New York. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    Results of a radiological survey of a portion of the Hooker Chemical Company, Niagara Falls, New York, are presented. The survey was conducted over 5.5-acres in which uranium-bearing materials were handled in the early 1940's. The survey included direct measurements of alpha, beta-gamma, and external gamma radiation throughout the site, measurement of transferable alpha and beta contamination levels in the buildings, determination of uranium and radium concentrations in the soild on the site, measurement of radon and radon daughter concentrations in the buildings, and determination of radionuclide concentrations in surface water samples. The results of the survey indicate that radiation levels throughout the site are within pertinent guidelines for unrestricted release of the property

  15. Data on chemical activation of Wnt/β-catenin during axolotl limb regeneration

    Directory of Open Access Journals (Sweden)

    Sabina Wischin

    2017-04-01

    Full Text Available Limb amputation in axolotls was performed to obtain data demonstrating that a chemical agonist of Wnt (int-related protein/β-catenin signalling can have a role in axolotl limb regeneration (Wischin et al., 2017 [1]. The data revealed that active β-catenin protein was present during limb regeneration in some Leydig cells in the epithelium; after the chemical treatment, it was observed in more Leydig cells. In addition, the chemical agonist of Wnt generated distinct limb malformation.

  16. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  17. Chemical signal activation of an organocatalyst enables control over soft material formation.

    Science.gov (United States)

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  18. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    Science.gov (United States)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  19. Remediation of Contaminated Soils by Solvent Flushing

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the

  20. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

    OpenAIRE

    Mishra, Jitendra; Singh, Rachna; Arora, Naveen K.

    2017-01-01

    Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be ex...

  1. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  2. Neutron activation analysis for chemical characterization of Brazilian oxo-biodegradable plastics

    International Nuclear Information System (INIS)

    Mateus Eugenio Boscaro; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Luis Gustavo Cofani dos Santos; Cofani dos Santos, S.N.S.; Sandra Mara Martins-Franchetti

    2015-01-01

    The chemical characterization of oxo-biodegradable plastic bags was performed by neutron activation analysis. The presence of several chemical elements (As, Br, Ca, Co, Cr, Fe, Hf, K, La, Na, Sb, Sc, Ta and Zn) with large variability of mass fractions amongst samples indicates that these plastics receive additives and may have been contaminated during manufacturing process thereby becoming potential environmental pollutants. (author)

  3. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    Science.gov (United States)

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  4. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies...... of Chemical Engineers....

  5. 77 FR 75145 - Impact of the Implementation of the Chemical Weapons Convention (CWC) on Commercial Activities...

    Science.gov (United States)

    2012-12-19

    ... interests of chemical, biotechnology, and pharmaceutical firms in the United States are not being... commercial activities and interests of chemical, biotechnology, and pharmaceutical firms in the United States... conditions to its ratification. Condition 9, titled ``Protection of Advanced Biotechnology,'' calls for the...

  6. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    2015-01-01

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  7. Chemical composition and antimicrobial activity of the essential oil ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Chavan SR, Nikam ST (1982). Mosquito larvicidal activity ... Iwalokun BA, Gbenle GO, Adewole TA, Smith SI, Akinsinde KA,. Omonigbehin EA (2003). ... Brazilian Amazon. Ziet. Naturtorsch., 45c, 1073-1076;CA, 113: 229893.

  8. Role of human neurobehavioural tests in regulatory activity on chemicals

    Science.gov (United States)

    Stephens, R.; Barker, P.

    1998-01-01

    Psychological performance tests have been used since the mid-1960s in occupational and environmental health toxicology. The interpretation of significantly different test scores in neurobehavioural studies is not straightforward in the regulation of chemicals. This paper sets out some issues which emerged from discussions at an international workshop, organised by the United Kingdom Health and Safety Executive (HSE), to discuss differences in interpretation of human neurobehavioural test data in regulatory risk assessments. The difficulties encountered by regulators confronted with neurobehavioural studies seem to be twofold; some studies lack scientific rigor; other studies, although scientifically sound, are problematic because it is not clear what interpretation to place on the results. Issues relating to each of these points are discussed. Next, scenarios within which to consider the outcomes of neurobehavioural studies are presented. Finally, conclusions and recommendations for further work are put forward.   PMID:9624273

  9. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  10. activity guided isolation of chemical constituents from the ...

    African Journals Online (AJOL)

    Acer truncatum Bunge by high-speed counter-current chromatography. J. Chromatogr. A. 2005, 1070, 211–214. 11. Morton, J.J.; Malone, M.H. Evaluation of vulneray activity by an open wound procedure in rats. Arch.Int. Pharmacodyn. Ther. 1972, 196, 117–126. 12. Dash, G.K.; Murthy, P.N. Studies on wound healing activity ...

  11. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  12. Hydrogeology, chemical and microbial activity measurement through deep permafrost.

    Science.gov (United States)

    Stotler, Randy L; Frape, Shaun K; Freifeld, Barry M; Holden, Brian; Onstott, Tullis C; Ruskeeniemi, Timo; Chan, Eric

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ(18) O values ∼5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH(4) was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH(4) is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  13. Environmental impact of differently remediated hard coal overburden and tailings dumps a few decades after remediation

    International Nuclear Information System (INIS)

    Willscher, S.; Felix, M.; Sohr, A.

    2010-01-01

    Coal mining in the Saxony region of Germany has caused heavy metal and arsenic pollution in adjacent groundwater and surface waters. Coal waste dumping sites are leaching heavy metals and metalloids in the form of fine precipitates into local rivers. This paper studied the different remediation strategies used at 3 different dump sites in the area. The aim of the study was to determine the environmental impact of the dumps and evaluate the long-term effects of remediation measures. The dumps consisted of coarse to fine-grained materials from former processing activities, and contained pyrite in varying concentrations. Samples from different depth as well as groundwater samples were taken from the sites and investigated for their mechanical, geological, geochemical, biogeochemical, and physico-chemical characteristics. Seepage formation rates and contaminant loads at the dump sites were compared. The study showed that the revegetation of dump surfaces can help to prevent against erosion, but cannot prevent acid mine drainage (AMD) generation. The additional seals and covers placed at 2 of the dumps resulted in a high reduction of seepage waters, and almost no acidification of dump materials. 5 refs., 1 fig.

  14. Investigating biochar as a tool for environmental remediation

    Science.gov (United States)

    Biochar is being proposed as a cost-effective, carbon negative soil amendment for environmental remediation. Research has demonstrated the efficacy of biochar to sorb heavy metals and agricultural chemicals from contaminated soils, thus effectively reducing the potential for met...

  15. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    Science.gov (United States)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  16. Remedial actions at the former Vitro Chemical Company site, South Salt Lake, Salt Lake County, Utah. Volume I. Text. Final Environmental Impact Statement

    International Nuclear Information System (INIS)

    1984-07-01

    This statement evaluates the environmental impacts associated with the cleanup of those residues remaining at the abandoned uranium-mill-tailings site located in South Salt Lake, Utah, and hereinafter called the Vitro site. The site is a 128-acre property owned by the Central Valley Water Reclamation Facility (CVWRP) Board which also operates a sewage treatment plant adjacent to the northern boundaries of the Vitro site. The site contains approximately 2.5 million cubic yards of contaminated residues and soil; the residues were produced by the Vitro Chemical Company of America which processed uranium ore for sale to the US Atomic Energy Commission on the site from 1951 to 1964. This statement evaluates three alternatives for minimizing the public health hazards associated with the Vitro site contaminated materials: (1) no action; (2) stabilization of the contaminated material on the Vitro site; and (3) decontamination of the Vitro site and disposal of the contaminated material at a site located about one mile south of Clive, Utah. Alternative 3 is DOE's preferred alternative. An assessment of the impacts of these three alternatives was made in terms of effects on radiation levels, air quality, soils and mineral resources, surface- and ground-water resources, ecosystems, land use, sound levels, historical and cultural resources, populations and employment, economic structures, and transportation networks

  17. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivity values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs

  18. Radiological audit of remedial action activities at the processing sites Mexican Hat, Utah and Monument Valley, Arizona. Audit date: May 3--7, 1993, Final report

    International Nuclear Information System (INIS)

    1993-05-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing sites in Mexican Hat, Utah, and Monument Valley, Arizona. This audit was conducted May 3--7, 1993, by Bill James and Gerry Simiele of the TAC. Three site-specific findings and four observations were identified during the audit and are presented in this report. The overall conclusion from the audit is that the majority of the radiological aspects of the Mexican Hat, Utah, and Monument Valley, Arizona, remedial action programs are performed adequately. However, the findings identify that there is some inconsistency in following procedures and meeting requirements for contamination control, and a lack of communication between the RAC and the DOE on variances from the published remedial action plan (RAP)

  19. Overview of the recovery and processing of 233U from the Oak Ridge molten salt reactor experiment (MSRE) remediation activities

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.; Trowbridge, L.D.; Williams, D.F.; Toth, L.M.; Dai, S.

    2001-01-01

    The Molten Salt Reactor Experiment (MSRE) was operated at Oak Ridge National Laboratory (ORNL) from 1965 to 1969 to test the concept of a high-temperature, homogeneous, fluid-fueled reactor. The discovery that UF 6 and F 2 migrated from the storage tanks into distant pipes and a charcoal bed resulted in significant activities to remove and recover the 233 U and to decommission the reactor. The recovered fissile uranium will be converted into uranium oxide (U 3 O 8 ), which is a suitable form for long-term storage. This publication reports the research and several new developments that were needed to carry out these unique activities. (author)

  20. Groundwater remediation from the past to the future: A bibliometric analysis.

    Science.gov (United States)

    Zhang, Shu; Mao, Guozhu; Crittenden, John; Liu, Xi; Du, Huibin

    2017-08-01

    Groundwater is an important component of terrestrial ecosystems and plays a role in geochemical cycling. Groundwater is also used for agricultural irrigation and for the domestic supply of drinking water in most nations. However, groundwater contamination has led to many research efforts on groundwater remediation technologies and strategies. This study evaluated a total of 5486 groundwater remediation-related publications from 1995 to 2015 using bibliometric technology and social network analysis, to provide a quantitative analysis and a global view on the current research trend and future research directions. Our results underline a strong research interest and an urgent need to remediate groundwater pollution due to the increasing number of both groundwater contamination and remediation publications. In the past two decades, the United States (U.S.) published 41.1% of the papers and it was the core country of the international collaboration network, cooperating with the other 19 most productive countries. Besides the active international collaboration, the funding agencies also played positive roles to foster the science and technology publications. With respect to the analysis of the distribution of funding agencies, the National Science Foundation of China sponsored most of the groundwater remediation research. We also identified the most productive journals, Environmental Science and Technology and Journal of Contaminant Hydrology, which published 334 and 259 scientific articles (including research articles and reviews) over the past 20 years, respectively. In addition to journal publications, a patent analysis was performed to show the impact of intellectual property protection on journal publications. Three major remediation technologies, including chemical oxidation, biodegradation and adsorption, have received increasing interest in both journal publication and patent development. Our results provide a valuable reference and global overview to identify

  1. Risk assessment guidance document for the UMTRA project groundwater remediation phase

    International Nuclear Information System (INIS)

    1992-05-01

    The purpose of the groundwater remedial activities at the Uranium Mill Tailings Remedial Action (UMTRA) sites is to reduce, control, or eliminate risks to human health and the environment. This is in accordance with Subpart B of 40 CFR 192. According to this regulation, the need for groundwater restoration is based upon US Environmental Protection Agency (EPA)-defined groundwater cleanup standards and must be consistent with the National Environmental Policy Act (NEPA) process. Risk assessments will be used in the UMTRA Groundwater Program to aid in the evaluation of sites. Risk assessments are conducted for four purposes: (1) Preliminary risk assessments are used to aid in prioritizing sites, scope data collection, end determine if a site presents immediate health risks. (2) Baseline risk assessments provide a comprehensive integration and interpretation of demographic, geographic, physical, chemical, and biological factors at a site to determine the extent of actual or potential harm. This information Is used to determine the need for remedial action. (3) Risk evaluation of remedial alternatives is performed to evaluate risks to humans or the environment associated with the various remedial strategies. (4) After remediation, an evaluation of residual risks is conducted. The information gathered for each of these risk evaluations is used to determine the need for subsequent evaluation. Several sites may be eliminated after a preliminary risk assessment if there is no current or future threat to humans or the environment. Likewise, much of the data from a baseline risk assessment can be used to support alternate concentration limits or supplemental standards demonstrations, or identify sensitive habitats or receptors that may be of concern in selecting a remedy

  2. ORNL Remedial Action Program strategy (FY 1987-FY 1992)

    International Nuclear Information System (INIS)

    Trabalka, J.R.; Myrick, T.E.

    1987-12-01

    Over 40 years of Oak Ridge National Laboratory (ORNL) operations have produced a diverse legacy of contaminated inactive facilities, research areas, and waste disposal areas that are potential candidates for remedial action. The ORNL Remedial Action Program (RAP) represents a comprehensive effort to meet new regulatory requirements and ensure adequate protection of on-site workers, the public, and the environment by providing appropriate corrective measures at over 130 sites contaminated historically with radioactive, hazardous chemical, or mixed wastes. A structured path of program planning, site characterization, alternatives assessment, technology development, engineering design, continued site maintenance and surveillance, interim corrective action, and eventual site closure or decommissioning is required to meet these objectives. This report documents the development of the Remedial Action Program, through its preliminary characterization, regulatory interface, and strategy development activities. It provides recommendations for a comprehensive, long-term strategy consistent with existing technical, institutional, and regulatory information, along with a six-year plan for achieving its initial objectives. 53 refs., 8 figs., 12 tabs

  3. Chemically modified carboxypeptidase Y with increased amidase activity

    International Nuclear Information System (INIS)

    Breddam, K.

    1984-01-01

    Treatment of carboxypeptidase Y with 14 C-iodoacetamide caused a drastic reduction in the peptidase activity towards FA-Phe-Leu-OH while the esterase activity towards FA-Phe-OMe, the amidase activity towards FA-Phe-NH 2 and the peptidyl amino acid amide hydrolase activity towards FA-Phe-Gly-NH 2 were much less affected. The loss of peptidase activity could be correlated with the incorporation of a single equivalent of reagent and it was demonstrated that the site of reaction was a methionyl residue, thus forming a sulfonium derivative. Analogous methionyl modifications were performed: carboxypeptidase Y modified with phenacylbromide hydrolysed substrates with bulky leaving groups in the P position, i.e. -OEt, -OBzl, -Gly-NH 2 ,-Gly-OH, and -Leu-OH, at reduced rates while substrates with small groups in that position, i.e. -OMe and -NH 2 , were hydrolysed with increased rates. These results indicate that the methionyl residue modified by phenacylbromide is located in the S binding site of the enzyme. Similar results were obtained with carboxypeptidase Y modified with m-nitrophen- acylbromide and p-nitrophenacylbromide. The increase in amidase activity and decrease in peptidyl amino acid amide hydrolase activity of carboxypeptidase Y following modification with phenacylbromide, m-nitrophenacylbromide, and p-nitrophenacylbromide was exploited in deamidation of peptide amides. These modified enzymes deamidated peptide amides with the exception of those containing a C-terminal glycyl or seryl residue in yields of 80-100% which is significantly higher than with unmodified carboxypeptidase Y. (author)

  4. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  5. Monitoring water quality in Sydney Harbour using blue mussels during remediation of the Sydney Tar Ponds, Nova Scotia, Canada.

    Science.gov (United States)

    Walker, Tony R; MacAskill, Devin

    2014-03-01

    Using mussels as monitoring tools we measured water quality in Sydney Harbour during a large scale, multi-year remediation project of the Sydney Tar Ponds (STPs); one of Canada's most contaminated sites. Chemical contaminants were measured in blue mussels (Mytilus edulis) in Sydney Harbour, which were used as monitoring tools to assess the spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyls (PCBs); metals (As, Cd, Cu, Hg, Pb, Zn) and lipid content during baseline and 3 years of remediation. The overall spatio-temporal distribution of chemicals in mussels was also compared to contaminants in other marine indicators (e.g., sediment, water and crab tissue). Measured metal concentrations in mussels showed some minor temporal variability (4 years), but these did not appear to be directly related to remediation activities, with the highest concentrations of As, Hg and Zn measured at reference stations. Most measured contaminants showed stable or potentially decreasing concentrations during the study, except Pb and Zn. Individual PAH compounds were mostly undetected during baseline and remediation, except for fluoranthene and pyrene. Concentrations of fluoranthene in mussels and deep water samples were moderately related. Generally, PCBs were undetected (remediation at some near-field stations. Contaminants measured during this study were at much lower concentrations than previously reported in other studies of mussels in Sydney Harbour and eastern Canada. This is likely due to the ongoing natural recovery of Sydney Harbour and to a lesser extent because of the environmental mitigation protection measures implemented during remediation activities at the STPs. The lack of detection of most individual PAHs and PCBs, plus relatively low bio-accumulation of metals observed during baseline and remediation attest to the effectiveness of using mussels as monitoring tools for environmental quality.

  6. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    Science.gov (United States)

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  7. Chemical composition and antibacterial activity of essential oils against human pathogenic bacteria

    NARCIS (Netherlands)

    Sokovic, M.; Marin, P.D.; Brkic, D.; Griensven, van L.J.L.D.

    2008-01-01

    The chemical composition and antibacterial activity of essential oils from 10 aromatic plants Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angustifolia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium have been determined.

  8. 75 FR 68370 - Agency Information Collection Activities: Office of Infrastructure Protection; Chemical Security...

    Science.gov (United States)

    2010-11-05

    ... DEPARTMENT OF HOMELAND SECURITY National Protection and Programs Directorate [Docket No. DHS-2010-0071] Agency Information Collection Activities: Office of Infrastructure Protection; Chemical Security...: The Department of Homeland Security (DHS), National Protection and Programs Directorate (NPPD), Office...

  9. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  10. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  11. Byrsonima crassa Niedenzu (IK: antimicrobial activity and chemical study

    Directory of Open Access Journals (Sweden)

    W. Vilegas

    2009-01-01

    Full Text Available

    The methanolic extract of leaves from Byrsonima crassa, a Brazilian medicinal plant, was analyzed by CC and HPLC. Four constituents were isolated and identified as quercetin, methyl gallate, (--epigallocatechin gallate and quercetin-3-O-(2”-galloyl-a-L-arabinopyranoside. The methanolic and hydromethanolic extract, as well as fractions, were evaluated regarding their possible antimicrobial activity using in vitro methods. Results showed that both extracts and fractions exhibited significant antimicrobial activity against all tested strains. Keywords: Byrsonima crassa, antimicrobial activity, Malpighiaceae.

  12. Chemical bond activation observed with an x-ray laser

    International Nuclear Information System (INIS)

    Beye, Martin; Öberg, Henrik; Xin, Hongliang

    2016-01-01

    The concept of bonding and anti-bonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Lastly, we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding–anti-bonding splitting following bond-activation using an ultra short optical laser pulse.

  13. Remediation of sites with dispersed radioactive contamination

    International Nuclear Information System (INIS)

    2004-01-01

    To respond to the needs of Member States, the IAEA launched an environmental remediation project to deal with the problems of radioactive contamination worldwide. The IAEA environmental remediation project includes an IAEA Coordinated Research Project, as well as the participation of IAEA experts in concrete remediation projects when requested by individual Member States. The IAEA has prepared several documents dedicated to particular technical or conceptual areas, including documents on the characterization of contaminated sites, technical and non-technical factors relevant to the selection of a preferred remediation strategy and technique, overview of applicable techniques for environmental remediation,, options for the cleanup of contaminated groundwater and planning and management issues. In addition, a number of other IAEA publications dealing with related aspects have been compiled under different IAEA projects; these include TECDOCs on the remediation of uranium mill tailings, the decontamination of buildings and roads and the characterization of decommissioned sites. Detailed procedures for the planning and implementation of remedial measures have been developed over the past decade or so. A critical element is the characterization of the contamination and of the various environmental compartments in which it is found, in order to be able to evaluate the applicability of remediation techniques. The chemical or mineralogical form of the contaminant will critically influence the efficiency of the remediation technique chosen. Careful delineation of the contamination will ensure that only those areas or volumes of material that are actually contaminated are treated. This, in turn, reduces the amount of any secondary waste generated. The application of a remediation technique requires holistic studies examining the technical feasibility of the proposed measures, including analyses of their impact. Consequently, input from various scientific and engineering

  14. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  15. Anti-inflammation activity and chemical composition of flower ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... inflammatory activity in vivo (carrageenan-induced hind paw edema in rats). The oil (100 ... pharmacological properties of H. coronarium flowers essential .... reaction with K3[Fe(CN)6], under formation of the colored complex ...

  16. A quantum chemical explanation of the antioxidant activity af flavonoids.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.J.L.; Donné-Op den Kelder, G.M.; van der Vijgh, W.J.F.; Bast, A.

    1996-01-01

    Flavonoids are a group of naturally occurring antioxidants, which over the past years have gained tremendous interest because of their possible therapeutic applicability. The mechanism of their antioxidant activity has been extensively studied over several decades. However, there is still much

  17. Incorporating Nondrug Social & Recreational Activities in Outpatient Chemical Dependency Treatment

    Science.gov (United States)

    Siporin, Sheldon; Baron, Lisa

    2012-01-01

    "Contingency Management programs (CMP) and non-drug social and recreational activities (NDSRA) are interventions premised on behavior theory that rely on external sources of reinforcement alternative to drug-based forms to decrease drug use. CMP usually employs vouchers as reinforcement for negative toxicologies. Despite research support, CMP…

  18. A Review on Chemical Constituents and Biological Activities of the ...

    African Journals Online (AJOL)

    The current review is aimed to deliver some updates on the ethnobotany, phytochemistry and biological activities of Beilschmiedia species in order to throw more light on their therapeutic potentials and future research priorities. Phytochemical studies on Beilschmiedia genus yielded essential oils, endiandric acid ...

  19. chemical composition and antimicrobial activity of the essential oil

    African Journals Online (AJOL)

    Hydro-distilled essential oil from Satureja biflora (Lamiaceae) growing in Kenya was analysed by gas chromatography mass spectrometry (GC-MS) and also evaluated for antimicrobial activity. Twenty two compounds which constitute 99.29 % of the total oil were identified. The oil was dominated by monoterpenes, which ...

  20. Chemical composition and toxic activity of essential oil of ...

    African Journals Online (AJOL)

    During our screening program for new agrochemicals from Chinese medicinal herbs, essential oil of Caryopteris incana aerial parts was found to possess strong insecticidal activities against the maize weevil, Sitophilus zeamais. A total of 37 components of the essential oil were identified by GC and GC/MS. Estragole ...

  1. chemical constituents and biological activity of three tanzanian wild

    African Journals Online (AJOL)

    Mgina

    antimicrobial activities infer that the three mushroom species are potential functional food substrates. INTRODUCTION. Termitomyces is a tropical edible ... extract (32 g) on cooling in the fridge at -. 4°C formed white crystals of mannitol and ... against the bacteria Vibrio cholerae and. Escherichia coli, and the fungus Candida.

  2. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    Science.gov (United States)

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  3. Optimization of lead (ii) ions adsorption on to chemically activated ...

    African Journals Online (AJOL)

    The derivative thermal analysis (DTA) and thermogravimetric analysis (TGA) profile of the activated carbon were employed in the proximate analysis. The BET surface area shows a high microporous surface area and micropore volume of 840.38 m2/g and 0.30 cc/g respectively which aids sorption efficiency. The adsorption ...

  4. Chemical constituents of Cordia latifolia and their nematicidal activity.

    Science.gov (United States)

    Begum, Sabira; Perwaiz, Sobiya; Siddiqui, Bina S; Khan, Shazia; Fayyaz, Shahina; Ramzan, Musarrat

    2011-05-01

    Following nematicidal activity-guided isolation studies on the fruits, bark, and leaves of Cordia latifolia, two new constituents, cordinoic acid (=11-oxours-12-ene-23,28-dioic acid; 1) and cordicilin (=2-{[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3-[4-hydroxy-3-(stearoyloxy)phenyl]propanoic acid; 2) were isolated from the stem and leaves, respectively, together with nine known compounds, namely cordioic and cordifolic acid from the stem bark, latifolicin A-D and rosmarinic acid from the fruits, and cordinol and cordicinol from the leaves. Their structures were determined by means of spectroscopic analyses including 1D- and 2D-NMR techniques. The nematicidal activities of these constituents were determined against the root-knot nematode Meloidogyne incognita. Hundred percent mortality was caused by all of these after 72 h at a 0.125% concentration. Compound 1 and cordioic acid were most active and caused 100% mortality after 24 h at a 0.50% concentration. Furthermore, compound 2, the ester of rosemarinic acid, was found to be more active than the free acid. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Chemical composition and in vitro antioxidant activities of ...

    African Journals Online (AJOL)

    ... and the results were compared to the reference BHT (butyl hydroxy toluene). In the three earlier mentioned assays, the essential oil demonstrated a potential antioxidant which may be considered as potent agent in food preservation and drug discovery. Key words: Thymelaea hirsuta, essential oil, antioxidant activities.

  6. Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin.

    Science.gov (United States)

    Rossi, Fanny; Jullian, Valérie; Pawlowiez, Ralph; Kumar-Roiné, Shilpa; Haddad, Mohamed; Darius, H Taiana; Gaertner-Mazouni, Nabila; Chinain, Mireille; Laurent, Dominique

    2012-08-30

    Senescent leaves of Heliotropium foertherianum Diane & Hilger (Boraginaceae) are traditionally used in the Pacific region to treat Ciguatera Fish Poisoning. This plant contains rosmarinic acid that is known for its multiple biological activities. In the present study, H. foertherianum aqueous extract, rosmarinic acid and its derivatives were evaluated for their capacity to reduce the effect of ciguatoxins. Aqueous extract of H. foertherianum leaves was prepared and studied for its effects against a Pacific ciguatoxin (P-CTX-1B) in the neuroblastoma cell assay and the receptor binding assay. Rosmarinic acid and six derivatives were also evaluated by means of these bioassays. For this purpose, we have developed an improved synthetic route for caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE). Both the aqueous extract of H. foertherianum leaves and rosmarinic acid showed inhibitory activities against a Pacific ciguatoxin in the above bioassays. Among all the molecules that were evaluated, rosmarinic acid was the most active compound. These results confirm further the potential of H. foertherianum in the treatment of Ciguatera Fish Poisoning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.

    Science.gov (United States)

    Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R

    2015-12-01

    Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Textural and chemical characterization of activated carbon prepared from shell of african palm (Elaeis guineensis by chemical activation with CaCl2 and MgCl2

    Directory of Open Access Journals (Sweden)

    Sergio Acevedo

    2015-09-01

    Full Text Available Activated carbons through chemical activation of African palm shells (Elaeis guineensis with magnesium chloride and calcium chloride solutions at different concentrations were obtained. The prepared materials were characterized textural and chemically. The results show that activated carbons with higher values of surface area and pore volume are obtained when solutions with lower concentrations of the activating agent are used. The obtained activated carbons have surface areas and pore volumes with values between 10 and 501 m2 /g and 0.01 and 0.29 cm3 /g respectively. Immersion enthalpies values of solids in water were between -14.3 and -32.8 J/g and benzene between -13.9 and -38.6 J/g. Total acidity and basicity of the activated carbons had values between 23 and 262 μmol/g 123 and 1724 μmol/g respectively. pH at the point of zero charge was also determined with values between 4.08 and 9.92 for set of activated carbons . The results show that activation with CaCl2 and MgCl2 salts produce activated carbons with pores in the range of mesopores for facilitate entry of the adsorbate into the materials.

  9. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    Science.gov (United States)

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  11. Supplemental feasibility study for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1999-01-01

    Site data evaluated indicate that after source removal, dilution and dispersion appear to be the primary processes that would further attenuate groundwater contaminant concentrations. On the basis of these attenuation processes, the calculations presented in Chapter 2 indicate that it would take several years to decades (approximately 60 to 150 and 14 years, respectively, for Zones 1 and 2) for TCE concentrations in Zones 1 and 2 to attenuate to the MCL (or ARAR) of 5 pg/L. The estimates for Zones 1 through 3, where the higher nitrate concentrations are clustered, indicate that it would likely take at least 80 years for nitrate concentrations to attenuate to the MCL (or ARAR) of 10 mg/L. Costs for implementing NINA for groundwater at the chemical plant area are primarily associated with those incurred for monitoring contaminant concentrations and the replacement costs for monitoring wells. Cost estimates are relatively high because a rather lengthy period of monitoring would be involved. Calculations performed to evaluate the feasibility of groundwater removal and subsequent treatment of the extracted water included determinations for the number of extraction wells needed, required number of pore volumes, and the number of years of implementation required to attain bench marks. The calculations were performed per zone of contamination, as discussed in Chapter 1. Several observations can be made about the results presented in Chapter 3 regarding Alternative 4. The first is that by looking at the results for Zones 1 and 2 evaluated under Alternative 4, one can also assess the feasibility of Alternative 7, because Alternative 7 addresses this particular subset of Alternative 4 (i.e., Zones 1 and 2). TCE contamination has been observed in Zones 1 and 2, but has not been reported in any of the remaining five zones. Nitrate, nitroaromatic compounds, and uranium have also been reported in Zones 1 and 2. The present-worth costs for implementing the pump and treat

  12. Hangman Catalysis for Photo- and Photoelectro- Chemical Activation of Water

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel

    2014-04-15

    The focus of this DOE program is solar fuels – specifically the chemistry for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from water and the oxygen reduction reaction (ORR) to water These three reactions are at the heart of renewable energy conversion. The bond-making and bond-breaking chemistry that underpins these transformations is not well understood. We are developing insight into such chemistry by creating a series of ligand constructs that poise an acid-base functionality over a redox active metal platform. These “hangman” ligands utilize the acid-base functionality to form a secondary coordination sphere that can assist proton movement and facilitate substrate assembly and activation within the molecular cleft. The grant period funding cycle focused on synthesis and reactivity of hangman porphyrins and corroles for HER, OER and ORR.

  13. Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass

    Directory of Open Access Journals (Sweden)

    Konstantin I. Galkin

    2017-12-01

    Full Text Available Reductive amination of 2,5-diformylfuran (DFF was used to implement the transition from bio-derived 5-hydroxymethylfurfural (HMF to pharmaceuticals. The synthesized bis(aminomethylfurans were utilized as building blocks for the construction of new derivatives with structural cores of naturally occurring biologically active compounds. Using the one-pot procedure, which included the Diels–Alder reaction followed by hydrogenation of the double bond, bio-derived analogues of the anticancer drug norcantharidin were obtained. The cyclization process was diastereoselective, and resulted in the formation of tricyclic products with the endo configuration. Analysis of cytotoxycity for the resulting tricyclic amine-containing compounds showed an increase of anticancer activity as compared with the unsubstituted norcantharimide.

  14. Chemical study and antifouling activity of Caribbean octocoral Eunicea laciniata

    International Nuclear Information System (INIS)

    Cuadrado Silva, Carmen Tatiana; Castellanos Hernandez, Leonardo; Osorno Reyes, Oscar Eduardo; Ramos Rodriguez, Freddy Alejandro; Duque Beltran, Carmenza

    2010-01-01

    The bioassay guided purification of the octocoral Eunicea laciniata organic extract, collected at Santa Marta bay, Colombia, allowed the isolation of the new compound (-)-3β-pregna-5,20-dienyl-β-D-arabinopyranoside (1), along with the known compounds 1(S * ),11(R * )-dolabell-3(E),7(E),12(18)-triene (2), 13-keto-1(S),11(R)-dolabell-3(E),7(E),12(18)-triene (3), cholest- 5,22-dien-3β-ol (4), cholesterol (5), y brassicasterol (6). The structure and absolute configuration of 1 was determined on based spectroscopic analyses (NMR and CD). The extract showed antifouling activity against five strains of marine bacteria associated to heavy fouled surfaces. Also showed activity against the cypris of the cosmopolitan barnacle Balanus amphitrite, and low toxicity in Artemia salina test. (author)

  15. The use of alkali-activated fly ash grouts for the remediation of AMD from underground mines

    International Nuclear Information System (INIS)

    Eaker, C.A.; Longley, R.D.; Michaud, L.H.; Silsbee, M.R.

    1996-01-01

    In preparation for a field demonstration, laboratory studies were conducted using several fly ash grout formulations to determine the optimum grout for an underground mine environment. This paper discusses the portion of the overall project designed to examine grout-acid mine drainage (AMD) interactions including neutralization, leaching and armoring of the grouts. Leaching tests were performed to study the effects of fly ash grout on AMD, including the effects of armoring. The goal of this project is to study the feasibility of in-situ acid mine drainage treatment by injecting alkali-activated fly ash grout into an underground mine

  16. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Science.gov (United States)

    2013-04-11

    Hedychiums have been reported to possess antibacterial, antifungal, and insecticidal activities [4,5]. Strawberry anthracnose, caused by the plant...pathogens Colletotrichum species is one of the most important diseases affecting strawberries worldwide [6]. Colletotrichum fragariae Brooks is most...often associated with anthracnose crown rot of strawberries grown in hot, humid areas such as the southeastern United States [7]. The azalea lace bug

  17. Antidiabetic Activity and Chemical Composition of Sanbai Melon Seed Oil

    Science.gov (United States)

    Li, Haili; Zhao, Hang; Zhang, Ya; Qiu, Pengcheng; Li, Jie

    2018-01-01

    Objectives Many fruits and herbs had been used in Traditional Chinese Medicines for treating diabetes mellitus (DM); however, scientific and accurate evidences regarding their efficacy and possible mechanisms were largely unknown. Sanbai melon seed oil (SMSO) was used in folk medicine in treating DM, but there is no literature about these effects. The present study was aimed at confirming the treatment effects of SMSO in type 1 DM. Methods Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ) at a dose of 65 mg/kg body weight. After diabetes induction, mice were treated with SMSO at dose of 1 g/kg, 2 g/kg, and 4 g/kg. Drugs were given by gavage administration once a day continuously for 28 days. At the end of treatment, several biochemical parameters and molecular mechanisms were determined by biochemical assays, ELISA, and Western blotting. The chemical compositions of SMSO were also tested. Results SMSO treatment significantly improved the symptoms of weight loss, polydipsia, reduced FBG level, increased plasma insulin levels, reduced plasma lipids levels, and protected islet injury. The results also showed that SMSO mitigated oxidative stress and alleviated the liver and renal injury in diabetes mice. SMSO also protected islet cells from apoptotic damage by suppressing ER mediated and mitochondrial dependent apoptotic pathways. Further constituent analysis results showed that SMSO had rich natural resources which had beneficial effects on DM. Conclusions This study showed that SMSO had excellent antidiabetes effect and provided scientific basis for the use of SMSO as the functional ingredients production and dietary supplements production in the food and pharmaceutical industries. PMID:29853958

  18. Antiproliferative Activity and Chemical Constituents of Hypericum dyeri. Rehder

    International Nuclear Information System (INIS)

    Ali, M.; Arfan, M.; Zaman, K.

    2013-01-01

    The antiproliferative activity of hexane (F1), ethyl acetate (F2), butanol (F3) and water (F4) extracts of Hypericum dyeri were tested in vitro for their anti- proliferative (anticancer) activity on the cell lines: HT-29 human colon adenocarcinoma, NCI-H460 human non-small cell lung carcinoma, MCF-7 human breast cancer, OVCAR-3 human ovarian adenocarcinoma and RXF-393 human renal cell carcinoma with etoposide as positive control. Among the various extracts the F1 showed relatively potent anti-proliferative activity (IC50, 17.20 +- 4.80 micro g/mL) on NCI-H460 human non-small cell lung carcinoma cell growth. Six compounds were also isolated for the first time from this source. These phytochemicals were identified as 1-Octatriacontanol (1), Hexacosyl tetracosanoate (2), Geddic acid (3), Octacosanoic acid (4), Ceric acid (5) and Sitosterol (6) on the basis of spectroscopic studies such as 1H NMR ,13C NMR, 2D NMR and Mass spectroscopy as well as established with help of reported literature. (author)

  19. Evaluation of Biological Activities of Chemically Synthesized Silver Nanoparticles

    International Nuclear Information System (INIS)

    Mostafa, A. A.; Solkamy, E.N.; Sayed, Sh. R. M.; Khan, M.; Shaik, M.R.; Al-Warthan, A.; Adil, S.F.

    2015-01-01

    Silver nanoparticles were synthesized by the earlier reported methods. The synthesized nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV/Vis), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray powder diffraction (XRD). The synthesized materials were also evaluated for their antibacterial activity against Gram positive and Gram negative bacterial strains. TEM micrograph showed the spherical morphology of AgNPs with size range of 40-60 nm. The synthesized nanoparticles showed a strong antimicrobial activity and their effect depends upon bacterial strain as AgNPs exhibited greater inhibition zone for Pseudomonas aeruginosa (19.1 mm) followed by Staphylococcus aureus (14.8?mm) and S. pyogenes (13.6 mm) while the least activity was observed for Salmonella typhi (12.5 mm) at concentration of 5 μg/disc. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 2.5 μg/disc and less than 2.5 μg/disc for P. aeruginosa. These results suggested that AgNPs can be used as an effective antiseptic agent for infectious control in medical field.

  20. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...

  1. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  2. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  3. Lessons Learned from Environmental Remediation Programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-03-15

    by raising key points such as the requirement to develop a national or even regional prioritization of remediation measures in order to spend limited resources with the highest effect. It is noted that remediation objectives will ideally be defined a priori, i.e. before the design of any technical solution, and it is crucial to recognize that remediation activities are not just determined by radiological or health risks. In many cases, other factors will prevail in the definition of the adopted strategy, and public perception will always be a key driver. (author)

  4. Lessons Learned from Environmental Remediation Programmes

    International Nuclear Information System (INIS)

    2014-01-01

    by raising key points such as the requirement to develop a national or even regional prioritization of remediation measures in order to spend limited resources with the highest effect. It is noted that remediation objectives will ideally be defined a priori, i.e. before the design of any technical solution, and it is crucial to recognize that remediation activities are not just determined by radiological or health risks. In many cases, other factors will prevail in the definition of the adopted strategy, and public perception will always be a key driver. (author)

  5. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    Science.gov (United States)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  6. Neutron activation analysis of high-purity iron in comparison with chemical analysis

    International Nuclear Information System (INIS)

    Kinomura, Atsushi; Horino, Yuji; Takaki, Seiichi; Abiko, Kenji

    2000-01-01

    Neutron activation analysis of iron samples of three different purity levels has been performed and compared with chemical analysis for 30 metallic and metalloid impurity elements. The concentration of As, Cl, Cu, Sb and V detected by neutron activation analysis was mostly in agreement with that obtained by chemical analysis. The sensitivity limits of neutron activation analysis of three kinds of iron samples were calculated and found to be reasonable compared with measured values or detection limits of chemical analysis; however, most of them were above the detection limits of chemical analysis. Graphite-shielded irradiation to suppress fast neutron reactions was effective for Mn analysis without decreasing sensitivity to the other impurity elements. (author)

  7. Pronuclear formation by ICSI using chemically activated ovine oocytes and zona pellucida bound sperm

    Directory of Open Access Journals (Sweden)

    J. E. Hernández-Pichardo

    2016-11-01

    Full Text Available Abstract Background In order to improve ICSI, appropiate sperm selection and oocyte activation is necessary. The objective of the present study was to determine the efficiency of fertilization using ICSI with chemically activated ovine oocytes and sperm selected by swim up (SU or swim up + zona pellucida (SU + ZP binding. Results Experiment 1, 4–20 replicates with total 821 in vitro matured oocytes were chemically activated with ethanol, calcium ionophore or ionomycin, to determine oocyte activation (precense of one PN. Treatments showed similar results (54, 47, 42 %, respectively but statistically differents (P  0.05. Conclusions Chemical activation induces higher ovine oocyte activation than mechanical activation. Ethanol slightly displays higher oocyte activation than calcium ionophore and ionomicine. Sperm selection with SU + ZP increased AR/A and AR/D rates in comparison with SU in fresh and frozen-thawed sperm. According to this, in terms of fertilization rates, chemical activation after ICSI increased oocyte PN formation compared to mechanical activation. Also, fresh sperm treated with SU and SU + ZP were significantly different than frozen-thawed sperm, but between sperm treatments no significant differences were obtained.

  8. Antioxidant Activity of Chemical Constituents Isolated from Pithecellobium clypearia

    Directory of Open Access Journals (Sweden)

    Lingzhi Li

    2015-04-01

    Full Text Available Phytochemical investigation of the aqueous extract of Pithecellobium clypearia afforded one n ovel compound, clypearoside A(1, and one new stereoisomer , (--(2S,3S-epigallocatechin-7-gallate(2 and four known ones (3-6. Their structures were elucidated on the basis of spectroscopic data, especially 2D NMR, HRESIMS and ECD spectra. Compounds 2-4 showed strong activity against DPPH (diphenylpicrylhydrazyl and ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonate with an IC 50 value of 11.9-13.2 μg/mL (DPPH and 4.5-6.4 μg/mL (ABTS.

  9. Phyto chemical and bio activities research on Tinospora crispa (Patawali)

    International Nuclear Information System (INIS)

    Shakirah Abdul Shukor

    2010-01-01

    The usage of traditional therapeutic medicine is gaining attention as consumption to modern therapeutic medicine can affect health and also causing death. Because of this resurgence of interest, the research on medicinal plant is growing phenomenally in Malaysia as Tinospora crispa is one of the potential candidates and this plant is been use since long time ago as medicine. Solvent extraction method run on Tinospora crispa's stem had resulted 5 extracts which were hexane, chloroform, butanol, aqueous and methanol. Phyto chemical screening of hexane extract showed existence of alkaloid, flavonon, polyphenol substances and steroid type saponins. Chloroform extract consists alkaloid and triterpenoid type saponins while alkaloid, flavon and polyphenol substances found in butanol extract. Aqueous extract consist free acid and steroid type saponins whereas alkaloid, tannin and triterpenoid type saponins were found in methanol extract. Hexane, chloroform, and butanol extracts shows inhibition zone for bacteria gram-positive, Staphylococcus aureus where each extracts give inhibitory zone diameter of 1.5 cm, 1.3 cm, and 1.2 cm. There is no inhibitory zone for methanol and aqueous extract. As observation for bacteria gram-negative, Escherichia coli shows negative result for inhibitory zone. The LC50 acute for hexane, chloroform, butanol, aqueous and methanol extracts are 3162.28 ppm, 7813.71 ppm, 380.72 ppm, 662.87 ppm, dan 1847.85 ppm respectively. LC50 chronic for hexane, chloroform, butanol, aqueous and methanol extracts are 273.84 ppm, 259.29 ppm, 17.78 ppm, 12.02 ppm, dan 15.44 ppm respectively. Butanol, aqueous and methanol extracts gives higher relative toxicity compared to potassium dichromate. Overall, Tinospora crispas extracts are toxic compared with relative toxicity of potassium dichromate. The solvent system of toulene, acetone and chloroform with the proportion of 8: 2: 5 for hexane extract indicated 9 substances where chloroform extract yielded 6 substance

  10. Remediation of a contaminated soil by Ni+2 after application of biochar prepared from de-inking paper sludge: Influence on enzyme activities

    Science.gov (United States)

    Gascó, G.; Paz-Ferreiro, J.; Araujo, F.; Guerrero, F.; Méndez, A.

    2012-04-01

    In recent years, an increasing proportion of recycled fibres are used in paper industries due to their important environmental and economical benefits. A ton of pulp produced from recycled paper requires 60% less energy to manufacture than a ton of bleached virgin kraft pulp [1]. However, removing the ink, clay, coatings and contaminants from waste paper in order to produce recycled paper creates large amounts of de-inking paper sludge (DPS). Nowadays, more than 200000 t of DPS were produced in Spain. DPS can be used as amendment due to their high organic matter [2] but the high C/N ratio and the heavy metal content can limit its use. For this reason, the preparation of biochar obtained from pyrolysis process for water remediation [3] and soil contaminated by heavy metal can be an valorisation alternative. The main objective of this work is to study the influence of the biochar application prepared from de-inking sewage sludge in the soil enzyme activities of a contaminated soil by Ni+2 at two different concentrations. For this reason, an incubation experiment was performed and several enzymatic activities (dehydrogenase, b-glucosidase, phosphomoesterase and arylsulphatase) were monitored. The study was completed studying the influence of the biochar application in plant-available metals from soil. [1] Thompson C.G. 1992. Recycled Papers. The Essential Guide, MIT Press, Cambridge. [2] Barriga S., Méndez A., Cámara J., Guerrero F., Gascó G. 2010. Agricultural valorisation of de-inking paper sludge as organic amendment in different soils: Thermal study. Journal of Thermal Analysis and Calorimetry 99: 981-986 [3] Méndez A., Barriga S., Fidalgo J.M., Gascó G. 2009. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water. Journal of Hazardous Materials 165: 736-743.

  11. Risk-based remediation of polluted sites: A critical perspective.

    Science.gov (United States)

    Kuppusamy, Saranya; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu; Mayilswami, Srinithi; Lee, Yong Bok

    2017-11-01

    Sites contaminated with chemical pollutants represent a growing challenge, and remediation of such lands is of international concern. Risk-based land management (RBLM) is an emerging approach that integrates risk assessment practices with more traditional site-specific investigations and remediation activities. Developing countries are yet to adopt RBLM strategies for remediation. RBLM is considered to be practical, scientifically defensible and cost-efficient. However, it is inherently limited by: firstly, the accuracy of risk assessment models used; secondly, ramifications of the fact that they are more likely to leave contamination in place; and thirdly, uncertainties involved and having to consider the total concentrations of all contaminants in soils that overestimate the potential risks from exposure to the contaminants. Consideration of contaminant bioavailability as the underlying basis for risk assessment and setting remediation goals of those contaminated lands that pose a risk to environmental and human health may lead to the development of a more sophisticated risk-based approach. However, employing the bioavailability concept in RBLM has not been extensively studied and/or legalized. This review highlights the extent of global land contamination, and the concept of risk-based assessment and management of contaminated sites including its advantages and disadvantages. Furthermore, the concept of bioavailability-based RBLM strategy has been proposed, and the challenges of RBLM and the priority areas for future research are summarized. Thus, the present review may help achieve a better understanding and successful implementation of a sustainable bioavailability-based RBLM strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Temporary septic holding tank at the 100-D remedial action support facility -- Engineering report. Revision 2

    International Nuclear Information System (INIS)

    Kelty, G.G.

    1996-10-01

    The primary mission of the Hanford Site from 1943 to 1990 was to produce nuclear materials for the national defense. Waste disposal activities associated with this mission resulted in the creation of more than 1,000 waste sites contaminated with radioactive and chemical constituents. Investigation and remediation of the wastes sites is governed by the Tri-Party Agreement. This agreement grouped the waste sites into 78 operable units, each of which was to be investigated and remediated separately. Once actual remediation activities begin at the waste sites, a central support facility will be required at each of the reactor areas (100-B/C, 100-D, and 100-H). These facilities will provide office and work space for the supervisors, engineers, and technicians engaged in the field work. The central facilities will be temporary, modular buildings sized to accommodate the anticipated staff, which in turn is determined by the scope of the planned remediation activities. The paper describes the project location, geology and flooding potential, design criteria, operation, and maintenance

  13. [Chemical constituents of Jasminum giraldii and their antioxidant activity].

    Science.gov (United States)

    Zhang, Xiu-Peng; Qin, Hui; Yang, Fang; Chai, Jiang; Wang, Xin; Song, Xiao-Mei; Mei, Qi-Bing; Feng, Feng; Yue, Zheng-Gang

    2014-06-01

    Ten compounds were isolated from the barks of Jasminum giraldii by means of various of chromatographic techniques such as silica gel, Sephadex LH-20 and Rp-HPLC. Their structures were identified by spectroscopic data analysis as (+)-medioresinol (1), (+) -syringaresinol (2), syringaresinol-4'-O-beta-D-glucopyranoside (3), oleanic acid (4), 3-methoxy-4-hydroxy-trans-cinnamaldehyde (5), trans-sinapaldehyde (6), syringaldehyde (7), 1-(4-methoxy -phenyl) -ethanol (8), trans-cinnamic acid (9), and 4-(1-methoxyethyl) -phenol (10). Among them, compounds 1-3, 5-8 and 10 were isolated from the J. genus for the first time and compounds 4 and 9 were obtained from J. giraldii for the first time. In the DPPH free radical scavenging assay, compound 1 exhibited significant activity (IC50 55.1 micromol x L(-1)), compared with vitamin C(IC50 59.9 micromol x L(-1)); and compound 2 showed moderate activity (IC50 79.0 micromol x L(-1)), compared with 2, 6-di-tert-butyl4-methylphenol (IC50 236 micromol x L(-1)).

  14. Superfund Green Remediation

    Science.gov (United States)

    Green remediation is the practice of considering all environmental effects of site cleanup and incorporating options – like the use of renewable energy resources – to maximize the environmental benefits of cleanups.

  15. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC

    Directory of Open Access Journals (Sweden)

    Maryem Ben Salem

    2017-01-01

    Full Text Available Objective. Artichoke (Cynara scolymus L. was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%, ABTS (538.75 mmol, FRAP assay (542.62 umol, and β-carotene bleaching (70.74% compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo. Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties.

  16. Nitrate remediation in a novel upflow bio-electrochemical reactor (UBER) using palm shell activated carbon as cathode material

    International Nuclear Information System (INIS)

    Ghafari, Shahin; Hasan, Masitah; Aroua, Mohamed Kheireddine

    2009-01-01

    This study investigated the biological denitrification method which is a treatment method able to reduce inorganic nitrate compounds to harmless nitrogen gas. Autohydrogenotrophic denitrifying bacteria were used in this study to prevent any problematic outcomes associated with heterotrophic microorganisms. An upflow bio-electrochemical reactor (UBER) was used to accommodate hydrogenotrophic denitrifying bacteria employing palm shell granular activated carbon (GAC) as the biocarrier and cathode material. Bicarbonate as the external inorganic carbon source was fed to the reactor and hydrogen as the electron donor was generated in situ through electrolysis of water. Central composite design (CCD) and response surface methodology (RSM) were applied to investigate the effects of two operating parameters, namely electric current (I) and hydraulic retention time (HRT), on performance of the UBER. Electric current range of 0-20 mA and HRT range of 6-36 h were examined and results showed that nitrate can be entirely reduced within application of a wide operational range of electric current (10-16 mA) as well as HRT (13.5-30 h). However, increase of pH at cathode zone up to 10.5 inhibited nitrite reduction, and it was not reduced to the satisfactory level.

  17. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  18. Chemical constituents and antioxidant activity of Byrsonima gardneriana (Malpighiaceae)

    International Nuclear Information System (INIS)

    Rolim, Thaisa Leite; Wanderley, Flavia Talita de Sousa; Cunha, Emidio Vasconcelos Leitao da; Tavares, Josean Fechine; Oliveira, Adriana Maria Fernandes de; Assis, Temilce Simoes

    2013-01-01

    The phytochemical investigation of Byrsonima gardneriana led to the isolation of five triterpenes and one flavonoid: D:B-Friedoolean-5-en-3-one (1), friedoolean-14-en-3-one (2), friedelan-3-one (3), lup-20(29)-en-3-ol (4), 3β-hydroxiolean-12-ene (5) and 3,3',4',5,7-pentahydroxyflavan (6). Their structures were assigned based on spectroscopic analyses, including two-dimensional NMR techniques and comparison with published spectral data. Antioxidant activities of ethanol extract and phases were measured using the 1,2-diphenyl- 2-picryl-hydrazyl (DPPH) free radical scavenging assay, evaluation of total phenolic content and trolox equivalent antioxidant capacity (TEAC). (author)

  19. Chemical Constituents and Antifungal Activity of Ficus hirta Vahl. Fruits

    Directory of Open Access Journals (Sweden)

    Chunpeng Wan

    2017-09-01

    Full Text Available Phytochemical investigation of Ficus hirta Vahl. (Moraceae fruits led to isolate two carboline alkaloids (1 and 2, five sesquiterpenoids/norsesquiterpenoids (3–7, three flavonoids (8–10, and one phenylpropane-1,2-diol (11. Their structures were elucidated by the analysis of their 1D and 2D NMR, and HR-ESI-MS data. All of the isolates were isolated from this species for the first time, while compounds 2, 4–6, and 8–11 were firstly reported from the genus Ficus. Antifungal assay revealed that compound 8 (namely pinocembrin-7-O-β-d-glucoside, a major flavonoid compound present in the ethanol extract of F. hirta fruits, showed good antifungal activity against Penicillium italicum, the phytopathogen of citrus blue mold caused the majority rotten of citrus fruits.

  20. Antihepatotoxic activity and chemical constituents of Buddleja asiatica Lour.

    Science.gov (United States)

    El-Domiaty, Maher M; Wink, Michael; Abdel Aal, Mahmoud M; Abou-Hashem, Maged M; Abd-Alla, Rehab H

    2009-01-01

    A new natural compound, named 6-O-(3",4"-dimethoxycinnamoyl) catalpol, was isolated from the defatted alcoholic extract of the flowering parts of Buddleja asiatica Lour. (family Scrophulariaceae). Other separated known compounds included steroids (beta-sitosterol, stigmasterol, stigmasterol-O-glucoside, beta-sitosterol-O-glucoside), iridoid glucosides (methyl catalpol, catalpol, aucubin), phenylpropanoids (isoacteoside and acteoside), a triterpene saponin (mimengoside A), flavonoids (diosmin and linarin) in addition to the free sugars mannitol and sucrose. The structures of the isolated compounds were established by 1H and 13C NMR and mass spectrometry. Furthermore, the polar fraction of the flowering parts and the roots showed substantial antihepatotoxic activity comparable to that of the lignan silymarin.

  1. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  2. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  3. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R.; Martinez, R.; Oromendia, R.

    2005-01-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  4. MGP site remediation: Working toward presumptive remedies

    International Nuclear Information System (INIS)

    Larsen, B.R.

    1996-01-01

    Manufactured Gas Plants (MGPs) were prevalent in the United States during the 19th and first half of the 20th centuries. MGPs produced large quantities of waste by-products, which varied depending on the process used to manufacture the gas, but most commonly were tars and polynuclear aromatic hydrocarbons. There are an estimated 3,000 to 5,000 abandoned MGP sites across the United States. Because these sites are not concentrated in one geographic location and at least three different manufacturing processes were used, the waste characteristics are very heterogeneous. The question of site remediation becomes how to implement a cost-effective remediation with the variety of cleanup technologies available for these sites. Because of the significant expenditure required for characterization and cleanup of MGP sites, owners and regulatory agencies are beginning to look at standardizing cleanup technologies for these sites. This paper discusses applicable cleanup technologies and the attitude of state regulatory agencies towards the use of presumptive remedies, which can reduce the amount of characterization and detailed analysis necessary for any particular site. Additionally, this paper outlines the process of screening and evaluating candidate technologies, and the progress being made to match the technology to the site

  5. Chaos and remedial investigations

    International Nuclear Information System (INIS)

    Galbraith, R.M.

    1991-01-01

    Current research into the nature of chaos indicates that even for systems that are well known and easily modeled, slight changes in the scale used to measure the input have unpredictable results in the model output. The conduct of a remedial investigation (RI) is dictated by well-established rules of investigation and management, yet small changes in project orientation, regulatory environment, or site conditions have unpredictable consequences to the project. The consequences can lead to either brilliant success or utter failure. The chaotic effect of a change in scale is most often illustrated by an exercise in measuring the length of the coast of Great Britain. If a straight ruler 10-kilometers long is used, the sum of the 10-kilometer increments gives the length of the coast. If the ruler is changed to five kilometers long and the exercise is repeated, the sum of the five-kilometer increments will not be the same as the sum of the 10-kilometer increments. Nor is there a way to predict what the length of the coast will be using any other scale. Several examples from the Fernald Project RI are used to illustrate open-quotes changes in scaleclose quotes in both technical and management situations. Given that there is no way to predict the outcome of scale changes in a RI, technical and project management must be alert to the fact that a scale has changed and the investigation is no longer on the path it was thought to be on. The key to success, therefore, is to develop specific units of measure for a number of activities, in addition to cost and schedule, and track them regularly. An example for tracking a portion of the field investigation is presented. The determination of effective units of measure is perhaps the most difficult aspect of any project. Changes in scale sometimes go unnoticed until suddenly the budget is expended and only a portion of the work is completed. Remedial investigations on large facilities provide new and complex challenges

  6. Nanotechnology in environmental remediation: degradation of volatile organic compounds (VOCs) over visible-light-active nanostructured materials.

    Science.gov (United States)

    Selvaraj, Rengaraj; Al-Kindy, Salma M Z; Silanpaa, Mika; Kim, Younghun

    2014-01-01

    Volatile organic compounds (VOCs) are major pollutants and are considered to be one of the most important contaminants generated by human beings living in urban and industrial areas. Methyl tert-butyl ether (MTBE) is a VOC that has been widely used as a gasoline additive to reduce VOC emissions from motor vehicles. However, new gasoline additives like MTBE are having negative environmental impacts. Recent survey reports clearly show that groundwater is often polluted owing to leakage of petroleum products from underground storage tanks. MTBE is highly soluble in water (e.g., 0.35-0.71 M) and has been detected at high concentrations in groundwater. The presence of MTBE in groundwater poses a potential health problem. The documented effects of MTBE exposure are headaches, vomiting, diarrhea, fever, cough, muscle aches, sleepiness, disorientation, dizziness, and skin and eye irritation. To address these problems, photocatalytic treatment is the preferred treatment for polluted water. In the present work, a simple and template-free solution phase synthesis method has been developed for the preparation of novel cadmium sulfide (CdS) hollow microspheres using cadmium nitrate and thioacetamide precursors. The synthesized products have been characterized by a variety of methods, including X-ray powder diffraction, high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy, and UV-visible diffused reflectance spectroscopy. The HR-SEM measurements revealed the spherical morphology of the CdS microspheres, which evolved by the oriented aggregation of the primary CdS nanocrystals. Furthermore, studies of photocatalytic activity revealed that the synthesized CdS hollow microspheres exhibit an excellent photocatalytic performance in rapidly degrading MTBE in aqueous solution under visible light illumination. These results suggest that CdS microspheres will be an interesting candidate for photocatalytic detoxification studies under visible light

  7. A responsible remediation strategy

    International Nuclear Information System (INIS)

    Knowles, C.R.

    1992-01-01

    This paper deals with an approach to cleaning up the residue of 150 years of intense urban and industrial development in the United States. The discussion focuses on several choices and strategies that business can adopt given the existing environmental laws and the socio-economic trends of the 1990's. The thesis of this paper is that the best business strategy for dealing with environmental liabilities is to act affirmatively and aggressively. An aggressive, pro-active approach to environmental remediation liabilities makes good business sense. It allows a company to learn the true size of the problem early. Early assessment and prioritization allows one to control the course and conduct of the cleanup. Early voluntary action is always viewed favorably by agencies. It gives one control over spending patterns which has value in and of itself. Voluntary cleanups are certainly faster and invariably more efficient. And they attain clearly acceptable standards. The volunteering company that takes the lead in a multi-party site finds that the courts are supportive in helping the volunteer collect from recalcitrant polluters. All of these pluses have a direct and positive impact on the bottom line and that means that the aggressive approach is the right thing to do for both stockholders and the communities where a business exists

  8. On site remediation of a fuel spill and soil reuse in Antarctica.

    Science.gov (United States)

    McWatters, R S; Wilkins, D; Spedding, T; Hince, G; Raymond, B; Lagerewskij, G; Terry, D; Wise, L; Snape, I

    2016-11-15

    The first large-scale remediation of fuel contamination in Antarctica treated 10000L of diesel dispersed in 1700t of soil, and demonstrated the efficacy of on-site bioremediation. The project progressed through initial site assessment and natural attenuation, passive groundwater management, then active remediation and the managed reuse of soil. Monitoring natural attenuation for the first 12years showed contaminant levels in surface soil remained elevated, averaging 5000mg/kg. By contrast, in five years of active remediation (excavation and biopile treatment) contaminant levels decreased by a factor of four. Chemical indicators showed hydrocarbon loss was apportioned to both biodegradation and evaporative processes. Hydrocarbon degradation rates were assessed against biopile soil temperatures, showing a phase of rapid degradation (first 100days above soil temperature threshold of 0°C) followed by slower degradation (beyond 100days above threshold). The biopiles operated successfully within constraints typical of harsh climates and remote sites, including limitations on resources, no external energy inputs and short field seasons. Non-native microorganisms (e.g. inoculations) and other organic materials (e.g. bulking agents) are prohibited in Antarctica making this cold region more challenging for remediation than the Arctic. Biopile operations included an initial fertiliser application, biannual mechanical turning of the soil and minimal leachate recirculation. The biopiles are a practical approach to remediate large quantities of contaminated soil in the Antarctic and already 370t have been reused in a building foundation. The findings presented demonstrate that bioremediation is a viable strategy for Antarctica and other cold regions. Operators can potentially use the modelled relationship between days above 0°C (threshold temperature) and the change in degradation rates to estimate how long it would take to remediate other sites using the biopile technology

  9. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  10. The use of historical imagery in the remediation of an urban hazardous waste site

    Science.gov (United States)

    Slonecker, E.T.

    2011-01-01

    The information derived from the interpretation of historical aerial photographs is perhaps the most basic multitemporal application of remote-sensing data. Aerial photographs dating back to the early 20th century can be extremely valuable sources of historical landscape activity. In this application, imagery from 1918 to 1927 provided a wealth of information about chemical weapons testing, storage, handling, and disposal of these hazardous materials. When analyzed by a trained photo-analyst, the 1918 aerial photographs resulted in 42 features of potential interest. When compared with current remedial activities and known areas of contamination, 33 of 42 or 78.5% of the features were spatially correlated with areas of known contamination or other remedial hazardous waste cleanup activity.

  11. Technologies for remediating radioactively contaminated land

    International Nuclear Information System (INIS)

    Pearl, M.

    2000-01-01

    This paper gives an overview of technologies that can be used for the remediation of radioactively contaminated ground. There are a wide variety of techniques available -most have established track records for contaminated ground, though in general many are only just being adapted to use for radioactively contaminated ground. 1) Remediation techniques for radioactively contaminated ground involve either removal of the contamination and transfer to a controlled/contained facility such as the national LLW repository at Drigg, or 2) immobilization, solidification and stabilization of the contamination where the physical nature of the soil is changed, or an 'agent' is added to the soil, to reduce the migration of the contaminants, or 3) isolation and containment of the contaminated ground to reduce contaminant migration and control potential detrimental effects to human health. Where contamination has to be removed, ex situ and in situ techniques are available which minimize the waste requiring disposal to an LLW repository. These techniques include: 1) detector-based segregation 2) soil washing by particle separations 3) oil washing with chemical leaching agents 4) electro remediation 5) phyto remediation. Although many technologies are potentially applicable, their application to the remediation of a specific contaminated site is dependent on a number of factors and related to detailed site characterization studies, results from development trials and BPEO (best practicable environmental option) studies. Those factors considered of particular importance are: 1) the clean-up target 2) technical feasibility relative to the particular site, soil and contaminant characteristics, and time frame 3) site infrastructure arrangements and needs, the working life of the site and the duration of institutional care 4) long-term monitoring arrangements for slow remedial techniques or for immobilization and containment techniques 5) validation of the remediation 6) health and

  12. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  13. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  14. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  15. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    Science.gov (United States)

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Influence of chemical sprinkle on the processes in activated tank of wastewater treatment

    Directory of Open Access Journals (Sweden)

    Milan Búgel

    2012-12-01

    Full Text Available The research deals with processes occurring in the activation tank during the snow-melt inflow of chemical component of roadsalt. Chemical composition of the suspension in the activation tank is changing following the metabolism of organisms and chemicalcomposition of the influent wastewater. Sludge and wastewater in nitrification tail of the activation tank has higher conductivity, highercontents of chloride, higher sludge index and other characteristics are changing during snow – melt. The amount of the inflow road saltis a determining factor of lyses of microorganism cells.

  17. Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Vargas Diana P.

    2017-12-01

    Full Text Available The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

  18. Instrumental neutron activation analysis, a valuable link in chemical metrology

    International Nuclear Information System (INIS)

    Zeisler, R.; Lindstrom, R.M.; Greenberg, R.R.

    2002-01-01

    Instrumental neutron activation analysis (INAA) is sufficiently versatile to establish a direct link to the amount of substance determined. The inherent quality parameters of INAA, such as being virtually free of blank, having fully accountable effects of matrix and physical form, and operating over a huge range of amounts, allows the comparison of a mole (or its fraction) of a pure element with the amount of substance in the sample analyzed with the same direct relationship as a beam balance provides. Indeed, varieties of this approach are in common use in INAA in the comparator methods of quantitation. To eliminate possible perturbations of the traceability chain as they may occur in common INAA practice, experimental measurements have been set up that only involve the fraction of a mole of the element(s) of interest in form of the pure element, compound or certified standard and the unknown sample. This principle has been used in INAA measurements for certification value assignment of high temperature alloy SRMs. To further demonstrate the performance parameters of INAA, we selected the determination of chromium in SRM 1152a Stainless Steel by direct non-destructive comparison with the pure metal in form of crystalline chromium. The measurements were validated with weighed aliquots of SRM 3112a dried on filter paper pellets. The experimental results do not show deviations beyond the uncertainties of the SRMs (≤ 0.2 % relative), and the assessment of the uncertainty budget indicates that expanded uncertainties of ≤ 0.3 % are achievable. The measurements demonstrate that INAA can meet the CCQM definition of a primary ratio method of analysis

  19. Orientation of sustainable management of chemical company with international activity

    Directory of Open Access Journals (Sweden)

    Valéria da Veiga Dias

    2013-04-01

    Full Text Available The search for new business possibilities, either through international activities and capture niche markets appear as a distinct trend among organizations that target growth. For this growing number of organizations intent on investing in new issues related to values such as citizenship, ethics and environmental concerns. There is the adoption of a more responsive to the community or even the acceptance of responsibility for the impacts of their production processes, inserting themselves in what was initially called the Social Responsibility within the business context and developed the concept of Elkington (1998 generated a discussion about a new movement that was called a sustainable paradigm. It was observed generally that sustainable management is still very close to supporting tools and not as part of the construction of corporate strategy although it is possible to realize that they seek a greater involvement in this direction when they start to review their strategies. This question can be perceived at different levels between the companies, but which shows the issue is the lack of direct indicators for investment and sustainable return. Sustainable management proved to be a source of opportunity for overseas business for the companies studied, as preparation for work with environmental legislation, global requirements, raw materials and environmentally friendly processes organizations prepared to market in the global sphere, and Brazil note that the innovative products for their production process and / or alternative raw material still do not get the spotlight. Acting in a sustainable manner enables the development of strategies agreed with conscious posture and changes in cultural terms in general, which can create new opportunities for those who can keep up with the global business scenario.

  20. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

    2012-07-01

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable

  1. Strategy paper. Remedial design/remedial action 100 Area. Revision 2

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1995-10-01

    This strategy paper identifies and defines the approach for remedial design and remedial action (RD/RA) for source waste sites in the 100 Area of the Hanford Site, located in southeastern Washington State. This paper provides the basis for the US Department of Energy (DOE) to assess and approve the Environmental Restoration Contractor's (ERC) approach to RD/RA. Additionally, DOE is requesting review/agreement from the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) on the strategy presented in this document in order to expedite remedial activities

  2. Chemical composition and antioxidant activity of certain Morus species

    Science.gov (United States)

    Imran, Mohammad; Khan, Hamayun; Shah, Mohibullah; Khan, Rasool; Khan, Faridullah

    2010-01-01

    In the present work, the fruits of four Morus species, namely Morus alba (white mulberry), Morus nigra (black mulberry), Morus laevigata (large white fruit), and Morus laevigata (large black fruit), were analyzed for proximate composition, essential minerals, and antioxidant potentials. For this purpose, the ripe fruits were collected from the northern regions of Pakistan. The major nutritional components (moisture, ash, lipids, proteins, fibres, carbohydrates, and total sugar) were found to be in the suitable range along with good computed energy. Total dry weight, pH, and titratable acidity (percent citric acid) were (17.60±1.94)–(21.97±2.34) mg/100 g, (3.20±0.07)–(4.78±0.15), and (0.84±0.40)%–(2.00±0.08)%, respectively. Low riboflavin (vitamin B2) and niacin (vitamin B3) contents were recorded in all the fruits, while ascorbic acid (vitamin C) was in the range from (15.20±1.25) to (17.03±1.71) mg/100 g fresh weight (FW). The mulberry fruits were rich with regard to the total phenol and alkaloid contents, having values of (880±7.20)–(1650±12.25) mg/100 g FW and (390±.22)–(660±5.25) mg/100 g FW, respectively. Sufficient quantities of essential macro-(K, Ca, Mg, and Na) and micro-(Fe, Zn, and Ni) elements were found in all the fruits. K was the predominant element with concentration ranging from (1270±9.36) to (1731±11.50) mg/100 g, while Ca, Na, and Mg contents were (440±3.21)–(576±7.37), (260±3.86)–(280±3.50), and (24±3.51)–(360±4.20) mg/100 g, respectivly. The decreasing order of micro-minerals was Fe>Zn>Ni. The radical scavenging activity of methanolic extract of fruits was concentration-dependent and showed a correlation with total phenolic constituents of the respective fruits. Based on the results obtained, mulberry fruits were found to serve as a potential source of food diet and natural antioxidants. PMID:21121077

  3. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  4. Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993

    International Nuclear Information System (INIS)

    1993-08-01

    The Uranium Mill Tailing Remedial Action (UMTRA) Project's Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations

  5. Chemical diversity and antileishmanial activity of crude extracts of Laurencia complex (Ceramiales, Rhodophyta from Brazil

    Directory of Open Access Journals (Sweden)

    Fernanda L. da S. Machado

    Full Text Available Chemical profiles of extracts of four species from Laurencia complex (Ceramiales, Rhodophyta from different populations collected along Southeast Brazilian coast were assessed by High Performance Liquid Chromatography coupled with a Diode Array Detector in order to observe geographic chemical variability. Aiming to evaluate the impact of chemical diversity on potential pharmaceutical uses, the extracts were tested against the promastigote form of Leishmania amazonensis. The most active extracts were submitted to anti-amastigote and cytotoxicity assays. Principal Component Analysis of the chromatograms resulted in four major groups of chemical profiles according to the presence of leishmanicidal chamigranes (--elatol and obtusol. The existence of chemotypes, displaying variable pharmacological action, is proposed for the differences observed in L. dendroidea samples. Although all extracts were found active against promastigote form of L. amazonensis, their efficacy was remarkably different and not related to the variation of (--elatol and obtusol, which indicates the presence of additional compounds with antileishmanial activity. Moreover, the active extracts also displayed anti-amastigote activity and none of them were considered cytotoxic. The results highlight that the knowledge of chemical geographic variability can be valuable in the search of new antileishmanial compounds from marine sources.

  6. Efficacy and safety of superficial chemical peeling in treatment of active acne vulgaris.

    Science.gov (United States)

    Al-Talib, Hassanain; Al-Khateeb, Alyaa; Hameed, Ayad; Murugaiah, Chandrika

    2017-01-01

    Acne vulgaris is an extremely common condition affecting the pilosebaceous unit of the skin and characterized by presence of comedones, papules, pustules, nodules, cysts, which might result in permanent scars. Acne vulgaris commonly involve adolescents and young age groups. Active acne vulgaris is usually associated with several complications like hyper or hypopigmentation, scar formation and skin disfigurement. Previous studies have targeted the efficiency and safety of local and systemic agents in the treatment of active acne vulgaris. Superficial chemical peeling is a skin-wounding procedure which might cause some potentially undesirable adverse events. This study was conducted to review the efficacy and safety of superficial chemical peeling in the treatment of active acne vulgaris. It is a structured review of an earlier seven articles meeting the inclusion and exclusion criteria. The clinical assessments were based on pretreatment and post-treatment comparisons and the role of superficial chemical peeling in reduction of papules, pustules and comedones in active acne vulgaris. This study showed that almost all patients tolerated well the chemical peeling procedures despite a mild discomfort, burning, irritation and erythema have been reported; also the incidence of major adverse events was very low and easily manageable. In conclusion, chemical peeling with glycolic acid is a well-tolerated and safe treatment modality in active acne vulgaris while salicylic acid peels is a more convenient for treatment of darker skin patients and it showed significant and earlier improvement than glycolic acid.

  7. Activity profiles of 309 ToxCastTM chemicals evaluated across 292 biochemical targets

    International Nuclear Information System (INIS)

    Knudsen, Thomas B.; Houck, Keith A.; Sipes, Nisha S.; Singh, Amar V.; Judson, Richard S.; Martin, Matthew T.; Weissman, Arthur; Kleinstreuer, Nicole C.; Mortensen, Holly M.; Reif, David M.; Rabinowitz, James R.; Setzer, R. Woodrow; Richard, Ann M.; Dix, David J.; Kavlock, Robert J.

    2011-01-01

    Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environmental chemicals in EPA's ToxCast TM project (Phase I). The chemicals (309 unique, 11 replicates) were mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors, ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration 25 μM concentration (or 10 μM for CYP assays), and a secondary screen re-tested 9132 chemical-assay pairs in 8-point concentration series from 0.023 to 50 μM (or 0.009-20 μM for CYPs). Mapping relationships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data and details on quality control checks are available for download at (http://www.epa.gov/ncct/toxcast/).

  8. Chemical composition and antimicrobial activity of the essential oils of Pinus pinaster

    OpenAIRE

    Nouara Ait Mimoune; Djouher Ait Mimoune; Aziza Yataghene

    2013-01-01

    Objective: To investigate the antimicrobial activity and chemical composition of essential oils of Pinus pinaster. Methods: Essential oils were extracted from the needles by hydrodistillation. The chemical composition of the obtained essential oils was analyzed using GC-MS technique. The antimicrobial potential has been tested against six microorganisms performing the disc diffusion assay. Results: Twenty-three components have been identified. β-caryophyllene (30.9%) and β-seli...

  9. Salmon Site Remedial Investigation Report

    International Nuclear Information System (INIS)

    1999-01-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  10. Remediation in Practicing Physicians: Current and Alternative Conceptualizations.

    Science.gov (United States)

    Bourgeois-Law, Gisèle; Teunissen, Pim W; Regehr, Glenn

    2018-04-24

    Suboptimal performance in practicing physicians is a decades-old problem. The lack of a universally accepted definition of remediation, the paucity of research on best remediation practices, and the ongoing controversy regarding the institutional responsibility for enacting and overseeing this activity suggests that the remediation of physicians is not merely a difficult problem to solve, but a problem that the community does not grapple with meaningfully. Undoubtedly, logistical and political considerations contribute to this state of affairs; however, other underlying conceptual issues may also play a role in the medical profession's difficulties in engaging with the challenges around remediation.Through a review of the medical education and other literatures, the authors examined current conceptualizations of both remediation itself and the individual being remediated, as well as how the culture of medicine influences these conceptions. The authors explored how conceptualizations of remediation and the surrounding culture might affect not only the medical community's ability to support, but also its willingness to engage with physicians in need of remediation.Viewing remediation as a means of supporting practice change-rather than as a means of redressing gaps in knowledge and skill-might be a useful alternative conceptualization, providing a good place to start exploring new avenues of research. However, moving forward will require more than simply a reconceptualizion of remediation; it will also necessitate a change in how the community views its struggling members and a change in the medical culture that currently positions professional autonomy as the foundational premise for individual practice improvement.

  11. CHEMICAL REACTION: DIAGNOSIS AND TOWARDS REMEDY OF ...

    African Journals Online (AJOL)

    Preferred Customer

    balancing an equation, because changing subscript changes the identity of the ... involves the mastery of two independent components: content knowledge and science ... modifying their existing conceptions through the process of conceptual change (10). This ... Central to Vygotsky's theory is his belief that biological and.

  12. Evaluation of technical, economic and financial feasibility for recycling and reprocessing of radioactive waste from a remediation work of low and medium activity for the extraction of heavy minerals - 59231

    International Nuclear Information System (INIS)

    Raposo de Almeida, Rodrigo; Mortagua, Valter J.G.

    2012-01-01

    Document available in abstract form only. Full text of publication follows: This paper aims to present the methodology and criteria used for the destination, discard and reuse of waste from the remediation activities of soil contaminated by radioactive waste of low activity in the USIN Plant. The site is located in Sao Paulo city, the city with the largest population of Brazil, with approximately 11 million inhabitants. As the environmental agency in Sao Paulo state, in this neighborhood there are several cases of severe contamination of soil and groundwater. The situation of contamination is so severe that it is forbidden the use of groundwater in the region for an indefinite period. Site of the plant running in a monazite processing plant for extraction of rare earths, have been filed across the land several fractions of soil containing monazite sand. In order to guide the remediation of the area for unrestricted use, was a plan for remediation of radioactive waste characterization based on geological, hydrogeological and environmental extensive in the area. From the calculation of the dose was established that the fractions of soil with concentrations of 226 Ra and 228 Ra below 0.5 Bq/g result in additional effective dose less than 1.0 mSv/yr and therefore can be kept on the ground

  13. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network.

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-10-13

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  14. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Science.gov (United States)

    Jiang, Peng; Hu, Zhixin; Liu, Jun; Yu, Shanen; Wu, Feng

    2016-01-01

    Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN) with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE) and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB) and a Lowest False Positive criterion (LFP), for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods. PMID:27754386

  15. Fault Diagnosis Based on Chemical Sensor Data with an Active Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-10-01

    Full Text Available Big sensor data provide significant potential for chemical fault diagnosis, which involves the baseline values of security, stability and reliability in chemical processes. A deep neural network (DNN with novel active learning for inducing chemical fault diagnosis is presented in this study. It is a method using large amount of chemical sensor data, which is a combination of deep learning and active learning criterion to target the difficulty of consecutive fault diagnosis. DNN with deep architectures, instead of shallow ones, could be developed through deep learning to learn a suitable feature representation from raw sensor data in an unsupervised manner using stacked denoising auto-encoder (SDAE and work through a layer-by-layer successive learning process. The features are added to the top Softmax regression layer to construct the discriminative fault characteristics for diagnosis in a supervised manner. Considering the expensive and time consuming labeling of sensor data in chemical applications, in contrast to the available methods, we employ a novel active learning criterion for the particularity of chemical processes, which is a combination of Best vs. Second Best criterion (BvSB and a Lowest False Positive criterion (LFP, for further fine-tuning of diagnosis model in an active manner rather than passive manner. That is, we allow models to rank the most informative sensor data to be labeled for updating the DNN parameters during the interaction phase. The effectiveness of the proposed method is validated in two well-known industrial datasets. Results indicate that the proposed method can obtain superior diagnosis accuracy and provide significant performance improvement in accuracy and false positive rate with less labeled chemical sensor data by further active learning compared with existing methods.

  16. Decision process for Hanford sitewide groundwater remediation

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-06-01

    This document describes a decision process for planning future investigations and remediating contaminated groundwater at the Hanford Site in Richland, Washington. This decision process details the following: identifies key decisions and activities; defines the criteria used in making each decision; and defines the logic that links the decisions and the activities in a stepwise manner

  17. Processes of elimination of activated corrosion products. Chemical decontamination - fuel cleaning

    International Nuclear Information System (INIS)

    Viala, C.; Brun, C.; Neuhaus, R.; Richier, S.; Bachet, M.

    2007-01-01

    The abatement of the individual and collective dose of a PWR imposes to control the source term through different processes implemented during the plant exploitation. When the limits of these different optimization processes are reached, the abatement of dose rates requires the implementation of curative processes. The objective is thus to eliminate the contaminated oxides and deposits present on surfaces free of radiation flux, and eventually on surfaces under radiation flux and on the fuel itself. The chemical decontamination of equipments and systems is the main and universal remedy implemented at different levels. On the other hand, the ultrasonic cleaning of fuel assemblies is a promising process. This paper aims at illustrating these different techniques using concrete examples of application in France and abroad (decontamination during steam generator replacement, decontamination of primary pump scroll in hot workshop, decontamination of loop sections, ultrasonic cleaning of fuel). The description of these different operations stresses on their efficiency in terms of dosimetric gain, duration of implementation, generation of wastes, and recontamination following their implementation. (J.S.)

  18. Site remediation and risk assessment in Canada: current CPPI activities and a vision for the 21. century - a perspective from the Canadian Petroleum Products Industry

    International Nuclear Information System (INIS)

    Calder, L.M.

    1997-01-01

    The scope of site remediation in the Canadian petroleum products industry was discussed. It was estimated that the cost to clean up the nearly 100,000 contaminated sites in Canada would be in the order of $20 billion. One alternative to the high cost of clean up is the use of risk assessment for the development of soil remediation criteria that would be appropriate to the real impact of a given contaminated site, instead of the use of arbitrary criteria that are intended to protect all sites. In this way, most dollars would be spent at cleaning up the highest risk sites. Recommendations were made as to how the science and the administration of risk assessments could be improved. It was suggested that a more holistic approach to site remediation must be taken. The issues of risk, risk trade-offs, cost-benefit, cost-effectiveness and prioritization within the site remediation context was also discussed. A comparative study of two risk assessment models, the ASTM-RBCA model used in Atlantic Canada, and the B.C. Vapour Intrusion Model Validation study was described. 23 refs., 3 tabs

  19. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    Sherif, N.H.M.I

    2008-01-01

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  20. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    Energy Technology Data Exchange (ETDEWEB)

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.