WorldWideScience

Sample records for active cftr-regulated anion

  1. Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR Activity.

    Directory of Open Access Journals (Sweden)

    Firhan A Malik

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR attenuates sphingosine-1-phosphate (S1P signaling in resistance arteries and has emerged as a prominent regulator of myogenic vasoconstriction. This investigation demonstrates that S1P inhibits CFTR activity via adenosine monophosphate-activated kinase (AMPK, establishing a potential feedback link. In Baby Hamster Kidney (BHK cells expressing wild-type human CFTR, S1P (1μmol/L attenuates forskolin-stimulated, CFTR-dependent iodide efflux. S1P's inhibitory effect is rapid (within 30 seconds, transient and correlates with CFTR serine residue 737 (S737 phosphorylation. Both S1P receptor antagonism (4μmol/L VPC 23019 and AMPK inhibition (80μmol/L Compound C or AMPK siRNA attenuate S1P-stimluated (i AMPK phosphorylation, (ii CFTR S737 phosphorylation and (iii CFTR activity inhibition. In BHK cells expressing the ΔF508 CFTR mutant (CFTRΔF508, the most common mutation causing cystic fibrosis, both S1P receptor antagonism and AMPK inhibition enhance CFTR activity, without instigating discernable correction. In summary, we demonstrate that S1P/AMPK signaling transiently attenuates CFTR activity. Since our previous work positions CFTR as a negative S1P signaling regulator, this signaling link may positively reinforce S1P signals. This discovery has clinical ramifications for the treatment of disease states associated with enhanced S1P signaling and/or deficient CFTR activity (e.g. cystic fibrosis, heart failure. S1P receptor/AMPK inhibition could synergistically enhance the efficacy of therapeutic strategies aiming to correct aberrant CFTR trafficking.

  2. Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis

    OpenAIRE

    LaRusch, Jessica; Jung, Jinsei; General, Ignacio J.; Lewis, Michele D.; Park, Hyun Woo; Brand, Randall E.; Gelrud, Andres; Anderson, Michelle A.; Banks, Peter A.; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory

    2014-01-01

    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev ) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize tha...

  3. Antibodies to the CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels.

    Science.gov (United States)

    Leonhardt, N; Bazin, I; Richaud, P; Marin, E; Vavasseur, A; Forestier, C

    2001-04-06

    The plasma membrane guard cell slow anion channel is a key element at the basis of water loss control in plants allowing prolonged osmolite efflux necessary for stomatal closure. This channel has been extensively studied by electrophysiological approaches but its molecular identification is still lacking. Recently, we described that this channel was sharing some similarities with the mammalian ATP-binding cassette protein, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [Leonhardt, N. et al. (1999) Plant Cell 11, 1141-1151]. Here, using the patch-clamp technique and a bioassay, consisting in the observation of the change in guard cell protoplasts volume, we demonstrated that a functional antibody raised against the mammalian CFTR prevented ABA-induced guard cell protoplasts shrinking and partially inhibited the slow anion current. Moreover, this antibody immunoprecipitated a polypeptide from guard cell protein extracts and immunolabeled stomata in Vicia faba leaf sections. These results indicate that the guard cell slow anion channel is, or is closely controlled by a polypeptide, exhibiting one epitope shared with the mammalian CFTR.

  4. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  5. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  6. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  7. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels.

    Science.gov (United States)

    Lassance-Soares, Roberta M; Cheng, Jie; Krasnov, Kristina; Cebotaru, Liudmila; Cutting, Garry R; Souza-Menezes, Jackson; Morales, Marcelo M; Guggino, William B

    2010-01-01

    This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or CFTR were used. The cells were treated with hypertonic medium made with either NaCl or urea or sucrose (480 mOsm/kg or 560 mOsm/kg) to mimic the tonicity of the renal medulla environment. Western blot data showed that CFTR and TNR-CFTR total cell protein is increased by hypertonic medium, but using the surface biotinylation technique, only CFTR was found to be increased in cell plasma membrane. Confocal microscopy showed TNR-CFTR localization primarily at the endoplasmic reticulum and plasma membrane. In conclusion, CFTR and TNR-CFTR have different patterns of distribution in MDCK cells and they are modulated by a hypertonic environment, suggesting their physiological importance in renal medulla. Copyright © 2010 S. Karger AG, Basel.

  8. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jessica LaRusch

    2014-07-01

    Full Text Available CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev cause complete loss of CFTR function and result in cystic fibrosis (CF, a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002. Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005 and male infertility (OR 395, p<<0.0001. WNK1-SPAK pathway-activated increases in

  9. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.

    Science.gov (United States)

    LaRusch, Jessica; Jung, Jinsei; General, Ignacio J; Lewis, Michele D; Park, Hyun Woo; Brand, Randall E; Gelrud, Andres; Anderson, Michelle A; Banks, Peter A; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory; Gardner, Timothy B; Amann, Stephen T; Slivka, Adam; Sandhu, Bimaljit; Aloe, Amy; Kienholz, Michelle L; Yadav, Dhiraj; Barmada, M Michael; Bahar, Ivet; Lee, Min Goo; Whitcomb, David C

    2014-07-01

    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<0.0001). WNK1-SPAK pathway-activated increases in CFTR

  10. A survey of detergents for the purification of stable, active human cystic fibrosis transmembrane conductance regulator (CFTR).

    Science.gov (United States)

    Hildebrandt, Ellen; Zhang, Qinghai; Cant, Natasha; Ding, Haitao; Dai, Qun; Peng, Lingling; Fu, Yu; DeLucas, Lawrence J; Ford, Robert; Kappes, John C; Urbatsch, Ina L

    2014-11-01

    Structural knowledge of the cystic fibrosis transmembrane conductance regulator (CFTR) requires developing methods to purify and stabilize this aggregation-prone membrane protein above 1mg/ml. Starting with green fluorescent protein- and epitope-tagged human CFTR produced in mammalian cells known to properly fold and process CFTR, we devised a rapid tandem affinity purification scheme to minimize CFTR exposure to detergent in order to preserve its ATPase function. We compared a panel of detergents, including widely used detergents (maltosides, neopentyl glycols (MNG), C12E8, lysolipids, Chaps) and innovative detergents (branched alkylmaltosides, facial amphiphiles) for CFTR purification, function, monodispersity and stability. ATPase activity after reconstitution into proteoliposomes was 2-3 times higher when CFTR was purified using facial amphiphiles. ATPase activity was also demonstrated in purified CFTR samples without detergent removal using a novel lipid supplementation assay. By electron microscopy, negatively stained CFTR samples were monodisperse at low concentration, and size exclusion chromatography showed a predominance of monomer even after CFTR concentration above 1mg/ml. Rates of CFTR aggregation quantified in an electrophoretic mobility shift assay showed that detergents which best preserved reconstituted ATPase activity also supported the greatest stability, with CFTR monomer half-lives of 6-9days in MNG or Chaps, and 12-17days in facial amphiphile. Cryoelectron microscopy of concentrated CFTR in MNG or facial amphiphile confirmed mostly monomeric protein, producing low resolution reconstructions in conformity with similar proteins. These protocols can be used to generate samples of pure, functional, stable CFTR at concentrations amenable to biophysical characterization. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. CFTR is a tumor suppressor gene in murine and human intestinal cancer

    NARCIS (Netherlands)

    Than, B. L. N.; Linnekamp, J. F.; Starr, T. K.; Largaespada, D. A.; Rod, A.; Zhang, Y.; Bruner, V.; Abrahante, J.; Schumann, A.; Luczak, T.; Niemczyk, A.; O'Sullivan, M. G.; Medema, J. P.; Fijneman, R. J. A.; Meijer, G. A.; van den Broek, E.; Hodges, C. A.; Scott, P. M.; Vermeulen, L.; Cormier, R. T.

    2016-01-01

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base

  12. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  13. NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    Science.gov (United States)

    Muimo, Richmond; Alothaid, Hani Mm; Mehta, Anil

    2018-03-01

    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies.

  14. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  15. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR).

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Aleksandrov, Luba A; Ford, Robert C; Riordan, John R

    2004-09-10

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein that is mutated in patients suffering from cystic fibrosis. Here we report the purification and first crystallization of wild-type human CFTR. Functional characterization of the material showed it to be highly active. Electron crystallography of negatively stained two-dimensional crystals of CFTR has revealed the overall architecture of this channel for two different conformational states. These show a strong structural homology to two conformational states of another eukaryotic ATP-binding cassette transporter, P-glycoprotein. In contrast to P-glycoprotein, however, both conformational states can be observed in the presence of a nucleotide, which may be related to the role of CFTR as an ion channel rather than a transporter. The hypothesis that the two conformations could represent the "open" and "closed" states of the channel is considered.

  16. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  17. Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity.

    Directory of Open Access Journals (Sweden)

    Kyle E Roberts

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR is an epithelial chloride channel mutated in patients with cystic fibrosis (CF. The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors", but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL, which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers" that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01 binds six-fold more tightly than the previous best hexamer (iCAL35, and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.

  18. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device... Guidance Document: CFTR Gene Mutation Detection System.” See § 866.1(e) for the availability of this...

  19. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    Science.gov (United States)

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. CFTR-dependent defect in alternatively-activated macrophages in cystic fibrosis.

    Science.gov (United States)

    Tarique, Abdullah A; Sly, Peter D; Holt, Patrick G; Bosco, Anthony; Ware, Robert S; Logan, Jayden; Bell, Scott C; Wainwright, Claire E; Fantino, Emmanuelle

    2017-07-01

    The role of the macrophages in cystic fibrosis (CF) lung disease has been poorly studied. We hypothesized that alternatively activated M2 macrophages are abnormal in CF lung disease. Blood samples were collected from adults (n=13) children (n=27) with CF on admission for acute pulmonary exacerbation and when clinically stable. Monocytes were differentiated into macrophages and polarized into classical (M1) and alternatively-activated (M2) phenotypes, function determined ex-vivo and compared with healthy controls. In the absence of functional cystic fibrosis trans-membrane conductance regulator (CFTR), either naturally in patients with CF or induced with CFTR inhibitors, monocyte-derived macrophages do not respond to IL-13/IL-4, fail to polarize into M2s associated with a post-transcriptional failure to produce and express IL-13Rα1 on the macrophage surface Polarization to the M1 phenotype was unaffected. CFTR-dependent imbalance of macrophage phenotypes and functions could contribute to the exaggerated inflammatory response seen in CF lung disease. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. Characterization of nasal potential difference in cftr knockout and F508del-CFTR mice.

    Directory of Open Access Journals (Sweden)

    Emilie Lyne Saussereau

    Full Text Available BACKGROUND: Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF. Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (V(TE to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal V(TE in CF mice must be well characterized for correct interpretation. METHODS: We performed V(TE measurements in large-scale studies of two mouse models of CF--B6;129 cftr knockout and FVB F508del-CFTR--and their respective wild-type (WT littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice. RESULTS: We determined the typical V(TE values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl(- solution was considered to indicate a normal response. CONCLUSIONS: These data will make it possible to interpret changes in nasal V(TE in mouse models of CF, in future preclinical studies.

  2. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.

    Science.gov (United States)

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H

    2012-07-15

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.

  3. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants.

    Science.gov (United States)

    Chin, Stephanie; Hung, Maurita; Bear, Christine E

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.

  4. Investigating CFTR and KCa3.1 Protein/Protein Interactions.

    Directory of Open Access Journals (Sweden)

    Hélène Klein

    Full Text Available In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400 interact with the NBD2 segment (G1237-Y1420 and C- region of CFTR (residues T1387-L1480, respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1 that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2 that KCa3.1 and CFTR form a dynamic complex, the formation of which

  5. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy

    KAUST Repository

    Jourdain, P.

    2013-12-11

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  6. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emily Bergbower

    2018-01-01

    Full Text Available Background/Aims: The CFTR-Associated Ligand (CAL, a PDZ domain containing protein with two coiled-coil domains, reduces cell surface WT CFTR through degradation in the lysosome by a well-characterized mechanism. However, CAL’s regulatory effect on ΔF508 CFTR has remained almost entirely uninvestigated. Methods: In this study, we describe a previously unknown pathway for CAL by which it regulates the membrane expression of ΔF508 CFTR through arrest of ΔF508 CFTR trafficking in the endoplasmic reticulum (ER using a combination of cell biology, biochemistry and electrophysiology. Results: We demonstrate that CAL is an ER localized protein that binds to ΔF508 CFTR and is degraded in the 26S proteasome. When CAL is inhibited, ΔF508 CFTR retention in the ER decreases and cell surface expression of mature functional ΔF508 CFTR is observed alongside of enhanced expression of plasma membrane scaffolding protein NHERF1. Chaperone proteins regulate this novel process, and ΔF508 CFTR binding to HSP40, HSP90, HSP70, VCP, and Aha1 changes to improve ΔF508 CFTR cell surface trafficking. Conclusion: Our results reveal a pathway in which CAL regulates the cell surface availability and intracellular retention of ΔF508 CFTR.

  7. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Kaur, Simarna; George, Constantine

    2006-01-01

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function

  8. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    Science.gov (United States)

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  9. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    Directory of Open Access Journals (Sweden)

    Steven M Rowe

    Full Text Available Nasal potential difference (NPD is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR and epithelial sodium channel (ENaC activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770 in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1 the average of both nostrils; (2 the most-polarized nostril at each visit; and (3 the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity, the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity, and the delta NPD (measuring CFTR and ENaC activity. The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV. Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  10. Insulin-like growth factor 1 (IGF-1 enhances the protein expression of CFTR.

    Directory of Open Access Journals (Sweden)

    Ha Won Lee

    Full Text Available Low levels of insulin-like growth factor 1 (IGF-1 have been observed in the serum of cystic fibrosis (CF patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR, whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.

  11. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  13. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data.

    Science.gov (United States)

    Accurso, Frank J; Van Goor, Fredrick; Zha, Jiuhong; Stone, Anne J; Dong, Qunming; Ordonez, Claudia L; Rowe, Steven M; Clancy, John Paul; Konstan, Michael W; Hoch, Heather E; Heltshe, Sonya L; Ramsey, Bonnie W; Campbell, Preston W; Ashlock, Melissa A

    2014-03-01

    We examined data from a Phase 2 trial {NCT00457821} of ivacaftor, a CFTR potentiator, in cystic fibrosis (CF) patients with aG551D mutation to evaluate standardized approaches to sweat chloride measurement and to explore the use of sweat chloride and nasal potential difference (NPD) to estimate CFTR activity. Sweat chloride and NPD were secondary endpoints in this placebo-controlled, multicenter trial. Standardization of sweat collection, processing,and analysis was employed for the first time. Sweat chloride and chloride ion transport (NPD) were integrated into a model of CFTR activity. Within-patient sweat chloride determinations showed sufficient precision to detect differences between dose-groups and assess ivacaftor treatment effects. Analysis of changes in sweat chloride and NPD demonstrated that patients treated with ivacaftor achieved CFTR activity equivalent to approximately 35%–40% of normal. Sweat chloride is useful in multicenter trials as a biomarker of CFTR activity and to test the effect of CFTR potentiators.

  14. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  15. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis.

    Science.gov (United States)

    Esposito, Speranza; Tosco, Antonella; Villella, Valeria R; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2016-12-01

    Cystic fibrosis (CF) is a lethal monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that entails the (diagnostic) increase in sweat electrolyte concentrations, progressive lung disease with chronic inflammation and recurrent bacterial infections, pancreatic insufficiency, and male infertility. Therapies aimed at restoring the CFTR defect have emerged. Thus, a small molecule which facilitates chloride channel opening, the potentiator Ivacaftor, has been approved for the treatment of CF patients bearing a particular class of rare CFTR mutations. However, small molecules that directly target the most common misfolded CFTR mutant, F508del, and improve its intracellular trafficking in vitro, have been less effective than expected when tested in CF patients, even in combination with Ivacaftor. Thus, new strategies are required to circumvent the F508del-CFTR defect. Airway and intestinal epithelial cells from CF patients bearing the F508del-CFTR mutation exhibit an impressive derangement of cellular proteostasis, with oxidative stress, overactivation of the tissue transglutaminase (TG2), and disabled autophagy. Proteostasis regulators such as cysteamine can rescue and stabilize a functional F508del-CFTR protein through suppressing TG2 activation and restoring autophagy in vivo in F508del-CFTR homozygous mice, in vitro in CF patient-derived cell lines, ex vivo in freshly collected primary patient's nasal cells, as well as in a pilot clinical trial involving homozygous F508del-CFTR patients. Here, we discuss how the therapeutic normalization of defective proteostasis can be harnessed for the treatment of CF patients with the F508del-CFTR mutation.

  16. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants.

    Science.gov (United States)

    Claustres, Mireille; Thèze, Corinne; des Georges, Marie; Baux, David; Girodon, Emmanuelle; Bienvenu, Thierry; Audrezet, Marie-Pierre; Dugueperoux, Ingrid; Férec, Claude; Lalau, Guy; Pagin, Adrien; Kitzis, Alain; Thoreau, Vincent; Gaston, Véronique; Bieth, Eric; Malinge, Marie-Claire; Reboul, Marie-Pierre; Fergelot, Patricia; Lemonnier, Lydie; Mekki, Chadia; Fanen, Pascale; Bergougnoux, Anne; Sasorith, Souphatta; Raynal, Caroline; Bareil, Corinne

    2017-10-01

    Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles. © 2017 Wiley Periodicals, Inc.

  17. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    International Nuclear Information System (INIS)

    Ebner, Andreas; Hinterdorfer, Peter; Nikova, Dessy; Lange, Tobias; Bruns, Reimer; Oberleithner, Hans; Schillers, Hermann; Haeberle, Johannes; Falk, Sabine; Duebbers, Angelika

    2008-01-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl - ) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients

  18. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, Andreas; Hinterdorfer, Peter [Institute for Biophysics, University of Linz, A-4040 Linz (Austria); Nikova, Dessy; Lange, Tobias; Bruns, Reimer; Oberleithner, Hans; Schillers, Hermann [Institute of Physiology II, University of Muenster, D-48149 Muenster (Germany); Haeberle, Johannes; Falk, Sabine; Duebbers, Angelika [Department of Pediatrics, University Hospitals of Muenster, D-48149 Muenster (Germany)], E-mail: schille@uni-muenster.de

    2008-09-24

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl{sup -}) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  19. Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.

    Science.gov (United States)

    Awayn, N H; Rosenberg, M F; Kamis, A B; Aleksandrov, L A; Riordan, J R; Ford, R C

    2005-11-01

    Cystic fibrosis, one of the major human inherited diseases, is caused by defects in the CFTR (cystic fibrosis transmembrane conductance regulator), a cell-membrane protein. CFTR acts as a chloride channel which can be opened by ATP. Low-resolution structural studies of purified recombinant human CFTR are described in the present paper. Localization of the C-terminal decahistidine tag in CFTR was achieved by Ni2+-nitriloacetate nanogold labelling, followed by electron microscopy and single-particle analysis. The presence of the gold label appears to improve the single-particle-alignment procedure. Projection structures of CFTR from two-dimensional crystals analysed by electron crystallography displayed two alternative conformational states in the presence of nucleotide and nanogold, but only one form of the protein was observed in the quiescent (nucleotide-free) state.

  20. Targeting the intracellular environment in cystic fibrosis: restoring autophagy as a novel strategy to circumvent the CFTR defect

    Directory of Open Access Journals (Sweden)

    Valeria Rachela Villella

    2013-01-01

    Full Text Available Cystic fibrosis (CF patients harboring the most common deletion mutation of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the plasma membrane even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1, a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the plasma membrane. We focus on the relationship between the improvement of peripheral proteostasis and CFTR plasma membrane stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent preclinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.

  1. Targeting the Intracellular Environment in Cystic Fibrosis: Restoring Autophagy as a Novel Strategy to Circumvent the CFTR Defect

    Science.gov (United States)

    Villella, Valeria Rachela; Esposito, Speranza; Bruscia, Emanuela M.; Maiuri, Maria Chiara; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2013-01-01

    Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation. PMID:23346057

  2. An immortal cell line to study the role of endogenous CFTR in electrolyte absorption.

    Science.gov (United States)

    Bell, C L; Quinton, P M

    1995-01-01

    The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of "endogenous" CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl- conductance (GCl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10(-5) M) significantly increased the Cl- diffusion potential (Vt) generated by a luminally directed Cl- gradient from -15.3 +/- 0.7 mV to -23.9 +/- 1.1 mV, n = 39; and decreased the transepithelial resistance (Rt) from 814.8 +/- 56.3 omega.cm2 to 750.5 +/- 47.5 omega.cm2, n = 39, (n = number of cultures). cAMP activation, anion selectivity (Cl- > I- > gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10(-5) M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 +/- 3.1% and 77.9 +/- 2.6%, respectively, and an increase in Rt by 7.2 +/- 0.8%, n = 36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Taulan, M.; Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-01-01

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  4. Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Naziha Bakouh

    Full Text Available A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR. CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.

  5. CFTR, Mucins, and Mucus Obstruction in Cystic Fibrosis

    Science.gov (United States)

    Kreda, Silvia M.; Davis, C. William; Rose, Mary Callaghan

    2012-01-01

    Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl− channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na+ channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO3 − deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology. PMID:22951447

  6. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    Science.gov (United States)

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  7. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  8. Advancing clinical development pathways for new CFTR modulators in cystic fibrosis.

    Science.gov (United States)

    Mayer-Hamblett, Nicole; Boyle, Michael; VanDevanter, Donald

    2016-05-01

    Cystic fibrosis (CF) is a life-shortening genetic disease affecting approximately 70,000 individuals worldwide. Until recently, drug development efforts have emphasised therapies treating downstream signs and symptoms resulting from the underlying CF biological defect: reduced function of the CF transmembrane conductance regulator (CFTR) protein. The current CF drug development landscape has expanded to include therapies that enhance CFTR function by either restoring wild-type CFTR protein expression or increasing (modulating) the function of mutant CFTR proteins in cells. To date, two systemic small-molecule CFTR modulators have been evaluated in pivotal clinical trials in individuals with CF and specific mutant CFTR genotypes that have led to regulatory review and/or approval. Advances in the discovery of CFTR modulators as a promising new class of therapies have been impressive, yet work remains to develop highly effective, disease-modifying modulators for individuals of all CF genotypes. The objectives of this review are to outline the challenges and opportunities in drug development created by systemic genotype-specific CFTR modulators, highlight the advantages of sweat chloride as an established biomarker of CFTR activity to streamline early-phase development and summarise options for later phase clinical trial designs that respond to the adoption of approved genotype-specific modulators into standard of care. An optimal development framework will be needed to move the most promising therapies efficiently through the drug development pipeline and ultimately deliver efficacious and safe therapies to all individuals with CF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    Directory of Open Access Journals (Sweden)

    Michael S Stalvey

    Full Text Available Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF. CF-related bone disease (CFBD is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR, the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/- mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+ littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl mRNA was detected, significantly less osteoprotegerin (Opg was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt

  10. Distribution of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR Mutations in a Cohort of Patients Residing in Palestine.

    Directory of Open Access Journals (Sweden)

    Issa Siryani

    Full Text Available Cystic fibrosis (CF is an autosomal recessive inherited life-threatening disorder that causes severe damage to the lungs and the digestive system. In Palestine, mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR that contributes to the clinical presentation of CF are ill defined. A cohort of thirty three clinically diagnosed CF patients from twenty one different Palestinian families residing in the central and southern part of Palestine were incorporated in this study. Sweat chloride testing was performed using the Sweat Chek Conductivity Analyzer (ELITECH Group, France to confirm the clinical diagnosis of CF. In addition, nucleic acid from the patients' blood samples was extracted and the CFTR mutation profiles were assessed by direct sequencing of the CFTR 27 exons and the intron-exon boundaries. For patient's DNA samples where no homozygous or two heterozygous CFTR mutations were identified by exon sequencing, DNA samples were tested for deletions or duplications using SALSA MLPA probemix P091-D1 CFTR assay. Sweat chloride testing confirmed the clinical diagnosis of CF in those patients. All patients had NaCl conductivity >60 mmol/l. In addition, nine different CFTR mutations were identified in all 21 different families evaluated. These mutations were c.1393-1G>A, F508del, W1282X, G85E, c.313delA, N1303K, deletion exons 17a-17b-18, deletion exons 17a-17b and Q1100P. c.1393-1G>A was shown to be the most frequent occurring mutation among tested families. We have profiled the underling mutations in the CFTR gene of a cohort of 21 different families affected by CF. Unlike other studies from the Arab countries where F508del was reported to be the most common mutation, in southern/central Palestine, the c.1393-1G>A appeared to be the most common. Further studies are needed per sample size and geographic distribution to account for other possible CFTR genetic alterations and their frequencies. Genotype

  11. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation.

    Science.gov (United States)

    De Stefano, Daniela; Villella, Valeria R; Esposito, Speranza; Tosco, Antonella; Sepe, Angela; De Gregorio, Fabiola; Salvadori, Laura; Grassia, Rosa; Leone, Carlo A; De Rosa, Giuseppe; Maiuri, Maria C; Pettoello-Mantovani, Massimo; Guido, Stefano; Bossi, Anna; Zolin, Anna; Venerando, Andrea; Pinna, Lorenzo A; Mehta, Anil; Bona, Gianni; Kroemer, Guido; Maiuri, Luigi; Raia, Valeria

    2014-01-01

    Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in Cftr(F508del) homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.

  12. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  13. F508del-CFTR rescue: a matter of cell stress response.

    Science.gov (United States)

    Nieddu, Erika; Pollarolo, Benedetta; Merello, Luisa; Schenone, Silvia; Mazzei, Mauro

    2013-01-01

    Cystic fibrosis (CF) is a common inherited fatal disease affecting 70,000 people worldwide, with a median predicted age of survival of approximately 38 years. The deletion of Phenylalanine in position 508 of the Cystic Fibrosis Transmembrane conductance Regulator (F508del-CFTR) is the most common mutation in CF patients: the deleted protein, not properly folded, is degraded. To date no commercial drugs are available. Low temperature, some osmolytes and conditions able to induce heat shock protein 70 (Hsp70) expression and heat shock cognate 70 (Hsc70) inhibition result in F508del-CFTR rescue, hence restoring its physiological function: this review sheds light on the correlation between these several evidences. Interestingly, all these approaches have a role in the cell stress response (CSR), a set of cell reactions to stress. In addition, unpredictably, F508del-CFTR rescue has to be considered in the frame of CSR: entities that induce - or are induced during - the CSR are, in general, also able to correct trafficking defect of CFTR. Specifically, the low temperature induces, by definition, a CSR; osmolytes, such as glycerol and trimethylamine N-oxide (TMAO), are products of the CSR; pharmacological correctors, such as Matrine and 4-phenylbutirric acid (4PBA), down-regulate the constitutive Hsc70 in favor of an up-regulation of the inducible chaperone Hsp70, another component of the CSR. The identification of a common mechanism of action for different types of correctors could drive the discovery of new active molecules in CF, overcoming methods clinically inapplicable, such as the low temperature.

  14. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  16. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Romain Ferru-Clément

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR is a chloride channel that is expressed on the apical plasma membrane (PM of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o- expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.

  17. Stimulation of wild-type, F508del- and G551D-CFTR chloride channels by non toxic modified pyrrolo[2,3-b]pyrazine derivatives

    Directory of Open Access Journals (Sweden)

    Luc eDannhoffer

    2011-08-01

    Full Text Available Cystic Fibrosis is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of Cystic Fibrosis Transmembrane conductance Regulator (CFTR protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further evaluated the effect of the chemical modifications of the RP107-OH radical on CFTR activation. The replacement of the OH radical by a fluorine atom at position 2 (RP193 or 4 (RP185 significantly decreased the toxicity of the compounds without altering the ability to activate CFTR, especially for RP193. The non-toxic compound RP193 has no effect on cAMP production but stimulates the channel activity of wild-type CFTR in stably transfected CHO cells, in human bronchial epithelial NuLi-1 cells and in primary culture of human bronchial epithelial cells. Whole cell and single patch clamp recordings showed that RP193 induced a linear, time and voltage-independent current, which was fully inhibited by two different and selective CFTR inhibitors (CFTRinh-172 and GPinh-5a. Moreover, RP193 stimulates CFTR in temperature-rescued CuFi-1 (F508del/F508del human bronchial epithelial cells and in CHO cells stably expressing G551D-CFTR. This study shows that it is feasible to reduce cytotoxicity of chemical compounds without affecting their potency to activate CFTR and to rescue the class 2 F508del-CFTR and class 3 G551D-CFTR CF mutant activities.

  18. Cystic fibrosis transmembrane conductance regulator (CFTR allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Serena Schippa

    Full Text Available INTRODUCTION: In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF. CFTR mutations (F508del is the most common lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. METHODS: Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. RESULTS: Patients were classified by two different criteria: 1 presence/absence of F508del mutation; 2 disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum were reduced. CONCLUSIONS: This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.

  19. Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.

    Science.gov (United States)

    Schippa, Serena; Iebba, Valerio; Santangelo, Floriana; Gagliardi, Antonella; De Biase, Riccardo Valerio; Stamato, Antonella; Bertasi, Serenella; Lucarelli, Marco; Conte, Maria Pia; Quattrucci, Serena

    2013-01-01

    In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced. This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.

  20. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice.

    Science.gov (United States)

    Zeng, Mei; Szymczak, Mitchell; Ahuja, Malini; Zheng, Changyu; Yin, Hongen; Swaim, William; Chiorini, John A; Bridges, Robert J; Muallem, Shmuel

    2017-10-01

    Sjögren's syndrome and autoimmune pancreatitis are disorders with decreased function of salivary, lacrimal glands, and the exocrine pancreas. Nonobese diabetic/ShiLTJ mice and mice transduced with the cytokine BMP6 develop Sjögren's syndrome and chronic pancreatitis and MRL/Mp mice are models of autoimmune pancreatitis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a ductal Cl -  channel essential for ductal fluid and HCO 3 - secretion. We used these models to ask the following questions: is CFTR expression altered in these diseases, does correction of CFTR correct gland function, and most notably, does correcting ductal function correct acinar function? We treated the mice models with the CFTR corrector C18 and the potentiator VX770. Glandular, ductal, and acinar cells damage, infiltration, immune cells and function were measured in vivo and in isolated duct/acini. In the disease models, CFTR expression is markedly reduced. The salivary glands and pancreas are inflamed with increased fibrosis and tissue damage. Treatment with VX770 and, in particular, C18 restored salivation, rescued CFTR expression and localization, and nearly eliminated the inflammation and tissue damage. Transgenic overexpression of CFTR exclusively in the duct had similar effects. Most notably, the markedly reduced acinar cell Ca 2+ signaling, Orai1, inositol triphosphate receptors, Aquaporin 5 expression, and fluid secretion were restored by rescuing ductal CFTR. Our findings reveal that correcting ductal function is sufficient to rescue acinar cell function and suggests that CFTR correctors are strong candidates for the treatment of Sjögren's syndrome and pancreatitis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. Biophysical characterisation of calumenin as a charged F508del-CFTR folding modulator.

    Directory of Open Access Journals (Sweden)

    Rashmi Tripathi

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs. We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with

  2. Genotype-phenotype correlation and functional studies in patients with cystic fibrosis bearing CFTR complex alleles.

    Science.gov (United States)

    Terlizzi, Vito; Castaldo, Giuseppe; Salvatore, Donatello; Lucarelli, Marco; Raia, Valeria; Angioni, Adriano; Carnovale, Vincenzo; Cirilli, Natalia; Casciaro, Rosaria; Colombo, Carla; Di Lullo, Antonella Miriam; Elce, Ausilia; Iacotucci, Paola; Comegna, Marika; Scorza, Manuela; Lucidi, Vincenzina; Perfetti, Anna; Cimino, Roberta; Quattrucci, Serena; Seia, Manuela; Sofia, Valentina Maria; Zarrilli, Federica; Amato, Felice

    2017-04-01

    The effect of complex alleles in cystic fibrosis (CF) is poorly defined for the lack of functional studies. To describe the genotype-phenotype correlation and the results of either in vitro and ex vivo studies performed on nasal epithelial cells (NEC) in a cohort of patients with CF carrying cystic fibrosis transmembrane conductance regulator ( CFTR ) complex alleles. We studied 70 homozygous, compound heterozygous or heterozygous for CFTR mutations: p.[Arg74Trp;Val201Met;Asp1270Asn], n=8; p.[Ile148Thr;Ile1023_Val1024del], n=5; p.[Arg117Leu;Leu997Phe], n=6; c.[1210-34TG[12];1210-12T[5];2930C>T], n=3; p.[Arg74Trp;Asp1270Asn], n=4; p.Asp1270Asn, n=2; p.Ile148Thr, n=6; p.Leu997Phe, n=36. In 39 patients, we analysed the CFTR gating activity on NEC in comparison with patients with CF (n=8) and carriers (n=4). Finally, we analysed in vitro the p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. The p.[Ile148Thr;Ile1023_Val1024del] caused severe CF in five compound heterozygous with a class I-II mutation. Their CFTR activity on NEC was comparable with patients with two class I-II mutations (mean 7.3% vs 6.9%). The p.[Arg74Trp;Asp1270Asn] and the p.Asp1270Asn have scarce functional effects, while p.[Arg74Trp;Val201Met;Asp1270Asn] caused mild CF in four of five subjects carrying a class I-II mutation in trans , or CFTR-related disorders (CFTR-RD) in three having in trans a class IV-V mutation. The p.[Arg74Trp;Val201Met;Asp1270Asn] causes significantly (pT] and a class I-II mutation had mild CF or CFTR-RD (gating activity: 18.5-19.0%). The effect of complex alleles partially depends on the mutation in trans . Although larger studies are necessary, the CFTR activity on NEC is a rapid contributory tool to classify patients with CFTR dysfunction. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Science.gov (United States)

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  4. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Resveratrol increases F508del-CFTR dependent salivary secretion in cystic fibrosis mice

    Directory of Open Access Journals (Sweden)

    Barbara Dhooghe

    2015-07-01

    Full Text Available Cystic fibrosis (CF is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR protein function. We assayed, in F508del-CFTR homozygous (CF and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal β-adrenergic-dependent component and to stimulation by isoprenaline (CFTR-dependent component. Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of β-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases β-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.

  6. Regulation of organic anion transport in the liver

    NARCIS (Netherlands)

    Roelofsen, H; Jansen, PLM

    1997-01-01

    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter

  7. Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility

    Science.gov (United States)

    Lin, Hui; Li, Rui-Rui; Liang, Zong-Lai; Gao, Yuan; Yang, Zhao; He, Dong-Fang; Lin, Amy; Mo, Hui; Lu, Yu-Jing; Li, Meng-Jing; Kong, Wei; Chung, Ka Young; Yi, Fan; Li, Jian-Yuan; Qin, Ying-Ying; Li, Jingxin; Thomsen, Alex R B; Kahsai, Alem W; Chen, Zi-Jiang; Xu, Zhi-Gang; Liu, Mingyao

    2018-01-01

    Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and β-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or β-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that β-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/β-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility. PMID:29393851

  8. Side chain and backbone contributions of Phe508 to CFTR folding

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J. (U. of Texas-SMED)

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  9. Transmembrane helical interactions in the CFTR channel pore.

    Directory of Open Access Journals (Sweden)

    Jhuma Das

    2017-06-01

    Full Text Available Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF. Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF and develop an inward (IWF facing model employing an integrated experimental-molecular dynamics simulation (200 ns approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.

  10. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Taras Gout

    2012-01-01

    Full Text Available The CFTR gene is unique within the ATP-binding cassette (ABC protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.

  11. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  12. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells.

    Directory of Open Access Journals (Sweden)

    Geneviève Mailhot

    2010-05-01

    Full Text Available Abnormal fatty acid composition (FA in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR mutations. The mechanism(s underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role.The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL, isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARalpha, LXRalpha, LXRbeta and RXRalpha

  13. Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

    DEFF Research Database (Denmark)

    Phylactides, M.; Rowntree, R.; Nuthall, H.

    2002-01-01

    hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2,3,10,16,17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhancer/reporter...

  14. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  15. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis

    Science.gov (United States)

    Lopes-Pacheco, Miquéias

    2016-01-01

    Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients’ debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients. PMID:27656143

  16. The HDAC inhibitor SAHA does not rescue CFTR membrane expression in Cystic Fibrosis.

    Science.gov (United States)

    Bergougnoux, Anne; Petit, Aurélie; Knabe, Lucie; Bribes, Estelle; Chiron, Raphaël; De Sario, Albertina; Claustres, Mireille; Molinari, Nicolas; Vachier, Isabelle; Taulan-Cadars, Magali; Bourdin, Arnaud

    2017-07-01

    The development of suitable Cystic Fibrosis (CF) models for preclinical bench tests of therapeutic candidates is challenging. Indeed, the validation of molecules to rescue the p.Phe508del-CFTR channel (encoded by the Cystic Fibrosis Transmembrane conductance Regulator gene carrying the p.Phe508del mutation) requires taking into account their overall effects on the epithelium. Suberoylanilide Hydroxamic Acid (SAHA), a histone deacetylase inhibitor (HDACi), was previously shown to be a CFTR corrector via proteostasis modulation in CFTR-deficient immortalized cells. Here, we tested SAHA effects on goblet cell metaplasia using an ex vivo model based on the air-liquid interface (ALI) culture of differentiated airway epithelial cells obtained by nasal scraping from CF patients and healthy controls. Ex vivo epithelium grew successfully in ALI cultures with significant rise in the expression of CFTR and of markers of airway epithelial differentiation compared to monolayer cell culture. SAHA decreased CFTR transcript and protein levels in CF and non-CF epithelia. Whereas SAHA induced lysine hyperacetylation, it did not change histone modifications at the CFTR promoter. SAHA reduced MUC5AC and MUC5B expression and inhibited goblet epithelial cell differentiation. Similar effects were obtained in CF and non-CF epithelia. All the effects were fully reversible within five days from SAHA withdrawal. We conclude that, ex vivo, SAHA modulate the structure of airway epithelia without specific effect on CFTR gene and protein suggesting that HDACi cannot be useful for CF treatment. Copyright © 2017. Published by Elsevier Ltd.

  17. Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE41o- Cells

    Directory of Open Access Journals (Sweden)

    Annalucia Carbone

    2018-01-01

    Full Text Available We previously found that human amniotic mesenchymal stem cells (hAMSCs in coculture with CF immortalised airway epithelial cells (CFBE41o- line, CFBE on Transwell® filters acquired an epithelial phenotype and led to the expression of a mature and functional CFTR protein. In order to explore the role of gap junction- (GJ- mediated intercellular communication (GJIC in this rescue, cocultures (hAMSC : CFBE, 1 : 5 ratio were studied for the formation of GJIC, before and after silencing connexin 43 (Cx43, a major component of GJs. Functional GJs in cocultures were inhibited when the expression of the Cx43 protein was downregulated. Transfection of cocultures with siRNA against Cx43 resulted in the absence of specific CFTR signal on the apical membrane and reduction in the mature form of CFTR (band C, and in parallel, the CFTR-dependent chloride channel activity was significantly decreased. Cx43 downregulation determined also a decrease in transepithelial resistance and an increase in paracellular permeability as compared with control cocultures, implying that GJIC may regulate CFTR expression and function that in turn modulate airway epithelium tightness. These results indicate that GJIC is involved in the correction of CFTR chloride channel activity upon the acquisition of an epithelial phenotype by hAMSCs in coculture with CF cells.

  18. Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE41o- Cells.

    Science.gov (United States)

    Carbone, Annalucia; Zefferino, Roberto; Beccia, Elisa; Casavola, Valeria; Castellani, Stefano; Di Gioia, Sante; Giannone, Valentina; Seia, Manuela; Angiolillo, Antonella; Colombo, Carla; Favia, Maria; Conese, Massimo

    2018-01-01

    We previously found that human amniotic mesenchymal stem cells (hAMSCs) in coculture with CF immortalised airway epithelial cells (CFBE41o- line, CFBE) on Transwell® filters acquired an epithelial phenotype and led to the expression of a mature and functional CFTR protein. In order to explore the role of gap junction- (GJ-) mediated intercellular communication (GJIC) in this rescue, cocultures (hAMSC : CFBE, 1 : 5 ratio) were studied for the formation of GJIC, before and after silencing connexin 43 (Cx43), a major component of GJs. Functional GJs in cocultures were inhibited when the expression of the Cx43 protein was downregulated. Transfection of cocultures with siRNA against Cx43 resulted in the absence of specific CFTR signal on the apical membrane and reduction in the mature form of CFTR (band C), and in parallel, the CFTR-dependent chloride channel activity was significantly decreased. Cx43 downregulation determined also a decrease in transepithelial resistance and an increase in paracellular permeability as compared with control cocultures, implying that GJIC may regulate CFTR expression and function that in turn modulate airway epithelium tightness. These results indicate that GJIC is involved in the correction of CFTR chloride channel activity upon the acquisition of an epithelial phenotype by hAMSCs in coculture with CF cells.

  19. CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study.

    Science.gov (United States)

    Radtke, Thomas; Hebestreit, Helge; Gallati, Sabina; Schneiderman, Jane E; Braun, Julia; Stevens, Daniel; Hulzebos, Erik Hj; Takken, Tim; Boas, Steven R; Urquhart, Don S; Lands, Larry C; Tejero, Sergio; Sovtic, Aleksandar; Dwyer, Tiffany; Petrovic, Milos; Harris, Ryan A; Karila, Chantal; Savi, Daniela; Usemann, Jakob; Mei-Zahav, Meir; Hatziagorou, Elpis; Ratjen, Felix; Kriemler, Susi

    2018-02-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human skeletal muscle cells. Variations of CFTR dysfunction among patients with cystic fibrosis may be an important determinant of maximal exercise capacity in cystic fibrosis. Previous studies on the relationship between CFTR genotype and maximal exercise capacity are scarce and contradictory. This study was designed to explore factors influencing maximal exercise capacity, expressed as peak oxygen uptake (V.O2peak), with a specific focus on CFTR genotype in children and adults with cystic fibrosis. In an international, multicenter, cross-sectional study, we collected data on CFTR genotype and cardiopulmonary exercise tests in patients with cystic fibrosis who were ages 8 years and older. CFTR mutations were classified into functional classes I–V. The final analysis included 726 patients (45% females; age range, 8–61 yr; forced expiratory volume in 1 s, 16 to 123% predicted) from 17 cystic fibrosis centers in North America, Europe, Australia, and Asia, all of whom had both valid maximal cardiopulmonary exercise tests and complete CFTR genotype data. Overall, patients exhibited exercise intolerance (V.O2peak, 77.3 ± 19.1% predicted), but values were comparable among different CFTR classes. We did not detect an association between CFTR genotype functional classes I–III and either V.O2peak (percent predicted) (adjusted β = −0.95; 95% CI, −4.18 to 2.29; P = 0.57) or maximum work rate (Wattmax) (adjusted β = −1.38; 95% CI, −5.04 to 2.27; P = 0.46) compared with classes IV–V. Those with at least one copy of a F508del-CFTR mutation and one copy of a class V mutation had a significantly lower V.O2peak (β = −8.24%; 95% CI, −14.53 to −2.99; P = 0.003) and lower Wattmax (adjusted β = −7.59%; 95% CI, −14.21 to −0.95; P = 0.025) than those with two copies of a class II mutation. On the basis of linear regression analysis adjusted for

  20. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Science.gov (United States)

    Yang, Hong; Xu, Li-na; He, Cheng-yan; Liu, Xin; Fang, Rou-yu; Ma, Tong-hui

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants. Methods: A cell-based fluorescent assay to measure I− influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl− current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo. Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated I− influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay, the three compound enhanced Cl− currents in epithelia formed by CFTR-expressing FRT cells with EC50 values of 73±1.4, 56±1.7, and 50±0.5μmol/L, respectively, and Rhein also enhanced Cl− current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimulated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity. Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potentiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs. PMID:21602836

  1. S737F is a new CFTR mutation typical of patients originally from the Tuscany region in Italy.

    Science.gov (United States)

    Terlizzi, Vito; Di Lullo, Antonella Miriam; Comegna, Marika; Centrone, Claudia; Pelo, Elisabetta; Castaldo, Giuseppe; Raia, Valeria; Braggion, Cesare

    2018-01-03

    An increasing number of patients have been described as having a number of Cystic Fibrosis Transmembrane conductance Regulator (CFTR) variants for which it lacks a clear genotype-phenotype correlation. We assesses the clinical features of patients bearing the S737F (p.Ser737Phe) CFTR missense variant and evaluated the residual function of CFTR protein on nasal epithelial cells (NEC). A retrospective database was performed from individuals homozygous or compound heterozygous for the S737F variant followed in the Cystic Fibrosis (CF) Centre of Florence. We performed a nasal brushing in cooperating patients and compared the results with those of patients followed in the pediatric CF Centre of Naples. 9/295 (3%) subjects carrying at least S737F CFTR variant on one allele were identified. Patients were diagnosed in 7/9 cases by newborn screening and in two cases for dehydration with hypochloremic metabolic alkalosis; at diagnosis sweat chloride levels (SCL) were in the pathological range in only one case. After a mean follow up of 8,6 years (range 0,5-15,8), SCL were in the pathological range in 8/9 cases (mean age at CF diagnosis: 1,5 years), all patients were pancreatic sufficiency and respiratory function was normal. The gating activity on NEC was 15.6% and 12.7% in two patients compound heterozygous for W1282X and DelE22_24, while it was ranged between 6,2% and 9,8% in CF patients. S737F is a CFTR mutation associated to hypochloremic alkalosis in childhood, mild CF phenotype in teenage years and a residual function of CFTR protein.

  2. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508).

    Science.gov (United States)

    Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed

    2015-08-01

    Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.

  3. Structure and function of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    M.M. Morales

    1999-08-01

    Full Text Available Cystic fibrosis (CF is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR. Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs, and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs.

  4. Volume-regulated anion channel--a frenemy within the brain.

    Science.gov (United States)

    Mongin, Alexander A

    2016-03-01

    The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.

  5. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels

    OpenAIRE

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl− channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl− channel activity of wild-type CFTR and delF508-CFTR mutant.The effects of n-alkanols like octanol on CFTR activity were measured by iodide (125I) efflux and patch-clamp techniques o...

  6. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.

    Science.gov (United States)

    Guerra, Lorenzo; D'Oria, Susanna; Favia, Maria; Castellani, Stefano; Santostasi, Teresa; Polizzi, Angela M; Mariggiò, Maria A; Gallo, Crescenzio; Casavola, Valeria; Montemurro, Pasqualina; Leonetti, Giuseppina; Manca, Antonio; Conese, Massimo

    2017-07-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV 1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV 1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV 1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR. © 2017 Wiley Periodicals, Inc.

  7. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  8. The ichthyotoxic alga Chattonella marina induces Na+, K+-ATPase, and CFTR proteins expression in fish gill chloride cells in vivo

    International Nuclear Information System (INIS)

    Tang, Janet Y.M.; Wong, Chris K.C.; Au, Doris W.T.

    2007-01-01

    Our previous studies demonstrated that the ichthyotoxic Chattonella marina stimulated proliferation of branchial chloride cell (CC) and induced osmotic distress akin to hyperactive elimination of ions in fish (Rhabdosargus sarba). To ascertain the in vivo effects of C. marina on key CC ion transporters, the localization and expression of Na + , K + -ATPase (NKA) and cystic fibrosis transmembrane conductance regulator (CFTR) proteins in response to C. marina exposure were investigated, using a quantitative immunocytochemical approach. The polarized distributions of NKA (α subunit) and CFTR proteins in branchial CCs of R. sarba remained unchanged under C. marina exposure. However, significant inductions of these two ion-transporters were detected in CCs of fish after 6 h exposure. By real-time PCR, no significant changes in gill NKA and CFTR mRNA expressions were detected, suggesting a post-transcriptional pathway is likely involved in regulating the ion transporters abundance. This study is the first to demonstrate the in vivo effects of harmful algal toxin on NKA and CFTR protein expressions in gill transepithelial cells. Taken together, an augmentation of branchial CCs together with hyper-stimulation of NKA and CFTR in CCs attribute to the rapid development of osmotic distress in C. marina susceptible fish

  9. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored...... during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle...

  10. A New Targeted CFTR Mutation Panel Based on Next-Generation Sequencing Technology.

    Science.gov (United States)

    Lucarelli, Marco; Porcaro, Luigi; Biffignandi, Alice; Costantino, Lucy; Giannone, Valentina; Alberti, Luisella; Bruno, Sabina Maria; Corbetta, Carlo; Torresani, Erminio; Colombo, Carla; Seia, Manuela

    2017-09-01

    Searching for mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) is a key step in the diagnosis of and neonatal and carrier screening for cystic fibrosis (CF), and it has implications for prognosis and personalized therapy. The large number of mutations and genetic and phenotypic variability make this search a complex task. Herein, we developed, validated, and tested a laboratory assay for an extended search for mutations in CFTR using a next-generation sequencing-based method, with a panel of 188 CFTR mutations customized for the Italian population. Overall, 1426 dried blood spots from neonatal screening, 402 genomic DNA samples from various origins, and 1138 genomic DNA samples from patients with CF were analyzed. The assay showed excellent analytical and diagnostic operative characteristics. We identified and experimentally validated 159 (of 188) CFTR mutations. The assay achieved detection rates of 95.0% and 95.6% in two large-scale case series of CF patients from central and northern Italy, respectively. These detection rates are among the highest reported so far with a genetic test for CF based on a mutation panel. This assay appears to be well suited for diagnostics, neonatal and carrier screening, and assisted reproduction, and it represents a considerable advantage in CF genetic counseling. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Directory of Open Access Journals (Sweden)

    Guido Veit

    2016-05-01

    Full Text Available The most common cystic fibrosis (CF causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del, results in functional expression defect of the CF transmembrane conductance regulator (CFTR at the apical plasma membrane (PM of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER. Deletion of phenylalanine 670 (ΔF670 in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

  12. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  13. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    International Nuclear Information System (INIS)

    Marasini, Carlotta; Galeno, Lauretta; Moran, Oscar

    2012-01-01

    Highlights: ► CFTR mutations produce cystic fibrosis. ► Chloride transport depends on the regulatory domain phosphorylation. ► Regulatory domain is intrinsically disordered. ► Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and β-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of α-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two conditions, monitoring the changes of the mean residue ellipticity measured at 222 nm as a function of temperature

  14. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Directory of Open Access Journals (Sweden)

    Dinić Jelena

    2007-01-01

    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  15. Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant

    Energy Technology Data Exchange (ETDEWEB)

    Atwell, Shane; Brouillette, Christie G.; Conners, Kris; Emtage, Spencer; Gheyi, Tarun; Guggino, William B.; Hendle, Jorg; Hunt, John F.; Lewis, Hal A.; Lu, Frances; Protasevich, Irina I.; Rodgers, Logan A.; Romero, Rich; Wasserman, Stephen R.; Weber, Patricia C.; Wetmore, Diana; Zhang, Feiyu F.; Zhao, Xun (Cystic); (UAB); (JHU); (Columbia); (Lilly)

    2010-04-26

    Upon removal of the regulatory insert (RI), the first nucleotide binding domain (NBD1) of human cystic fibrosis transmembrane conductance regulator (CFTR) can be heterologously expressed and purified in a form that remains stable without solubilizing mutations, stabilizing agents or the regulatory extension (RE). This protein, NBD1 387-646({Delta}405-436), crystallizes as a homodimer with a head-to-tail association equivalent to the active conformation observed for NBDs from symmetric ATP transporters. The 1.7-{angstrom} resolution X-ray structure shows how ATP occupies the signature LSGGQ half-site in CFTR NBD1. The {Delta}F508 version of this protein also crystallizes as a homodimer and differs from the wild-type structure only in the vicinity of the disease-causing F508 deletion. A slightly longer construct crystallizes as a monomer. Comparisons of the homodimer structure with this and previously published monomeric structures show that the main effect of ATP binding at the signature site is to order the residues immediately preceding the signature sequence, residues 542-547, in a conformation compatible with nucleotide binding. These residues likely interact with a transmembrane domain intracellular loop in the full-length CFTR channel. The experiments described here show that removing the RI from NBD1 converts it into a well-behaved protein amenable to biophysical studies yielding deeper insights into CFTR function.

  16. CFTR mutation analysis and haplotype associations in CF patients☆

    OpenAIRE

    Cordovado, S.K.; Hendrix, M.; Greene, C.N.; Mochal, S.; Earley, M.C.; Farrell, P.M.; Kharrazi, M.; Hannon, W.H.; Mueller, P.W.

    2011-01-01

    Most newborn screening (NBS) laboratories use second-tier molecular tests for cystic fibrosis (CF) using dried blood spots (DBS). The Centers for Disease Control and Prevention’s NBS Quality Assurance Program offers proficiency testing (PT) in DBS for CF transmembrane conductance regulator (CFTR) gene mutation detection. Extensive molecular characterization on 76 CF patients, family members or screen positive newborns was performed for quality assurance. The coding, regulatory regions and por...

  17. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, B.; Verlingue, C.; Audrezet, M.P.; Ferec, C. [Centre de Biogenetique C.D.T.S., Brest (France); Lissens, W.; Bonduelle, M. [University Hospital VUB, Brussels (United Kingdom); Silber, S.J. [St. Luke`s Hospital, St. Louis, MO (United States); Novelli, G. [Catholic Univ. of Rome (Italy)

    1995-01-01

    Congenital bilateral absence of the vas deferens (CBAVD) is an important cause of sterility in men. Although the genetic basis of this condition is still unclear, it has been shown recently that some of these patients carry mutations in their cystic fibrosis transmembrane conductance regulator (CFTR) genes. To extend this observation, we have analyzed the entire coding sequence of the CFTR gene in a cohort of 67 men with CBAVD, who are otherwise healthy. We have identified four novel missense mutations (A800G, G149R, R258G, and E193K). We have shown that 42% of subjects were carriers of one CFTR allele and that 24% are compound heterozygous for CFTR alleles. Thus, we have been unable to identify 76% of these patients as carrying two CFTR mutations. Furthermore, we have described the segregation of CFTR haplotypes in the family of one CBAVD male; in this family are two male siblings, with identical CFTR loci but displaying different phenotypes, one of them being fertile and the other sterile. The data presented in this family, indicating a discordance between the CBAVD phenotype and a marked carrier ({delta}F508) chromosome, support the involvement of another gene(s), in the etiology of CBAVD. 35 refs., 2 figs., 1 tab.

  18. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  19. Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    DEFF Research Database (Denmark)

    Nilsen, Tom O.; Ebbesson, Lars O. E.; Madsen, Steffen S.

    2007-01-01

    This study examines changes in gill Na(+),K(+)-ATPase (NKA) alpha- and beta-subunit isoforms, Na(+),K(+),2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, an...

  20. CFTR mutations spectrum and the efficiency of molecular diagnostics in Polish cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Ewa Ziętkiewicz

    Full Text Available Cystic fibrosis (CF is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR. In light of the strong allelic heterogeneity and regional specificity of the mutation spectrum, the strategy of molecular diagnostics and counseling in CF requires genetic tests to reflect the frequency profile characteristic for a given population. The goal of the study was to provide an updated comprehensive estimation of the distribution of CFTR mutations in Polish CF patients and to assess the effectiveness of INNOLiPA_CFTR tests in Polish population. The analyzed cohort consisted of 738 patients with the clinically confirmed CF diagnosis, prescreened for molecular defects using INNOLiPA_CFTR panels from Innogenetics. A combined efficiency of INNOLiPA CFTR_19 and CFTR_17_TnUpdate tests was 75.5%; both mutations were detected in 68.2%, and one mutation in 14.8% of the affected individuals. The group composed of all the patients with only one or with no mutation detected (109 and 126 individuals, respectively was analyzed further using a mutation screening approach, i.e. SSCP/HD (single strand conformational polymorphism/heteroduplex analysis of PCR products followed by sequencing of the coding sequence. As a result, 53 more mutations were found in 97 patients. The overall efficiency of the CF allele detection was 82.5% (7.0% increase compared to INNOLiPA tests alone. The distribution of the most frequent mutations in Poland was assessed. Most of the mutations repetitively found in Polish patients had been previously described in other European populations. The most frequent mutated allele, F508del, represented 54.5% of Polish CF chromosomes. Another eight mutations had frequencies over 1%, 24 had frequencies between 1 and 0.1%; c.2052-2053insA and c.3468+2_3468+3insT were the most frequent non-INNOLiPA mutations. Mutation distribution described herein is also relevant to the Polish diaspora. Our study also demonstrates that the reported

  1. A new compound heterozygous CFTR mutation in a Chinese family with cystic fibrosis.

    Science.gov (United States)

    Xie, Yingjun; Huang, Xueqiong; Liang, Yujian; Xu, Lingling; Pei, Yuxin; Cheng, Yucai; Zhang, Lidan; Tang, Wen

    2017-11-01

    Cystic fibrosis (CF) is the most common autosomal recessive disease among Caucasians but is rarer in the Chinese population, because mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To elucidate the causative role of a novel compound heterozygous mutation of CF. In this study, clinical samples were obtained from two siblings with recurrent airway infections, clubbed fingers, salt-sweat and failure to gain weight in a non-consanguineous Chinese family. Next-generation sequencing was performed on the 27 coding exons of CFTR in both children, with confirmation by Sanger sequencing. Next-generation sequencing showed the same compound heterozygous CFTR mutation (c.865A>T p.Arg289X and c.3651_3652insAAAT p.Tyr1219X) in both children. As this mutation is consistent with the clinical manifestations of CF and no other mutations were detected after scanning the gene sequence, we suggest that the CF phenotype is caused by compound heterozygosity for c.865A>T and c.3651_3652insAAAT. As c865A>T is not currently listed in the "Cystic Fibrosis Mutation Database", this information about CF in a Chinese population is of interest. © 2015 John Wiley & Sons Ltd.

  2. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.

    Science.gov (United States)

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-03-01

    1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanoloctanoloctanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.

  3. Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on ΔF508 cystic fibrosis transmembrane conductance regulator

    NARCIS (Netherlands)

    A. Luciani (Alessandro); V.R. Villella (Valeria Rachela); S. Esposito (Susanna); M. Gavina (Manuela); I. Russo (Ilaria); M. Silano (Marco); S. Guido (Stefano); M. Pettoello-Mantovani (Massimo); R. Carnuccio (Rosa); B.J. Scholte (Bob); A. de Matteis (Antonella); M.C. Maiuri (Maria Chiara); V. Raia (Valeria); A. Luini (Alberto); H.K. Kroemer (Heyo); L. Maiuri (Luigi)

    2012-01-01

    textabstractChannel activators (potentiators) of cystic fibrosis (CF) transmembrane conductance regulator (CFTR), can be used for the treatment of the small subset of CF patients that carry plasma membrane-resident CFTR mutants. However, approximately 90% of CF patients carry the misfolded

  4. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation.

    Science.gov (United States)

    Ferrari, Eleonora; Monzani, Romina; Villella, Valeria R; Esposito, Speranza; Saluzzo, Francesca; Rossin, Federica; D'Eletto, Manuela; Tosco, Antonella; De Gregorio, Fabiola; Izzo, Valentina; Maiuri, Maria C; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi

    2017-01-12

    Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelial cells, macrophages, and other cell types. Impaired bacterial handling by macrophages is a feature of CF airways, although it is still debated how defective CFTR impairs bacterial killing. Recent evidence indicates that a defective autophagy in CF macrophages leads to alterations of bacterial clearance upon infection. Here we use bone marrow-derived macrophages from transgenic mice to provide the genetic proof that defective CFTR compromises both uptake and clearance of internalized Pseudomonas aeruginosa. We demonstrate that the proteostasis regulator cysteamine, which rescues the function of the most common F508del-CFTR mutant and hence reduces lung inflammation in CF patients, can also repair the defects of CF macrophages, thus restoring both bacterial internalization and clearance through a process that involves upregulation of the pro-autophagic protein Beclin 1 and re-establishment of the autophagic pathway. Altogether these results indicate that cysteamine restores the function of several distinct cell types, including that of macrophages, which might contribute to its beneficial effects on CF.

  5. Function and expression of cystic fibrosis transmembrane conductance regulator after small intestinal transplantation in mice.

    Directory of Open Access Journals (Sweden)

    Penghong Song

    Full Text Available The secretion function of intestinal graft is one of the most important factors for successful intestinal transplantation. Cystic fibrosis transmembrane conductance regulator (CFTR mediates HCO3(- and Cl(- secretions in intestinal epithelial cells. In this study, we made investigation on the expression and function of CFTR in an experimental model of murine small intestinal transplantation. Heterotopic intestinal transplantations were performed in syngeneic mice. The mRNA and protein expressions of CFTR were analyzed by real time PCR and western blot. Murine intestinal mucosal HCO3(- and Cl(- secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (I(sc techniques. The results showed that forskolin, an activator of CFTR, stimulated jejunal mucosal epithelial HCO3(- and Cl(- secretions in mice, but forskolin-stimulated HCO3(- and Cl(- secretions in donor and recipient jejunal mucosae of mice after heterotopic jejunal transplantation were markedly decreased, compared with controls (P<0.001. The mRNA and protein expression levels of CFTR in donor and recipient jejunal mucosae of mice were also markedly lower than those in controls (P<0.001, and the mRNA and protein expression levels of tumor necrosis factor α (TNFα were markedly increased in donor jejunal mucosae of mice (P<0.001, compared with controls. Further experiments showed that TNFα down-regulated the expression of CFTR mRNA in murine jejunal mucosa. In conclusion, after intestinal transplantation, the function of CFTR was impaired, and its mRNA and protein expressions were down-regulated, which may be induced by TNFα.

  6. Development of allele-specific multiplex PCR to determine the length of poly-T in intron 8 of CFTR

    Directory of Open Access Journals (Sweden)

    Neng Chen

    2014-07-01

    Full Text Available Cystic fibrosis transmembrane conductance regulator (CFTR gene mutation analysis has been implemented for Cystic Fibrosis (CF carrier screening, and molecular diagnosis of CF and congenital bilateral absence of the vas deferens (CBAVD. Although poly-T allele analysis in intron 8 of CFTR is required when a patient is positive for R117H, it is not recommended for routine carrier screening. Therefore, commercial kits for CFTR mutation analysis were designed either to mask the poly-T allele results, unless a patient is R117H positive, or to have the poly-T analysis as a standalone reflex test using the same commercial platform. There are other standalone assays developed to detect poly-T alleles, such as heteroduplex analysis, High Resolution Melting (HRM curve analysis, allele-specific PCR (AS-PCR and Sanger sequencing. In this report, we developed a simple and easy-to-implement multiplex AS-PCR assay using unlabeled standard length primers, which can be used as a reflex or standalone test for CFTR poly-T track analysis. Out of 115 human gDNA samples tested, results from our new AS-PCR matched to the previous known poly-T results or results from Sanger sequencing.

  7. Association between F508 deletion in CFTR and chronic pancreatitis risk.

    Science.gov (United States)

    Zhao, Dong; Xu, Yanzhen; Li, Jiatong; Fu, Shien; Xiao, Feifan; Song, Xiaowei; Xie, Zhibin; Jiang, Min; He, Yan; Liu, Chengwu; Wen, Qiongxian; Yang, Xiaoli

    2017-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) has been reported to influence individual susceptibility to chronic pancreatitis (CP), but the results of previous studies are controversial. We performed a study to demonstrate the relationship between CFTR and CP. We searched PubMed, Scopus, and Embase for studies of patients with CP. Seven studies from 1995 to 2016 were identified, and included 64,832 patients. Pooled prevalence and 95% confidence intervals (CIs) were calculated. F508 deletion in CFTR was significantly positively associated with CP risk in the overall analysis (odds ratio [OR]=3.20, 95% CI: 2.30-4.44, I 2 =31.7%). In subgroup analysis stratified by ethnicity, F508 deletion was significantly associated with CP risk in Indian populations, using a fixed effects model (ORs=5.45, 95% CI: 2.52-11.79, I 2 =0.0%), and in non-Indian populations, using a random effects model (ORs=3.59, 95% CI: 1.73-7.48, I 2 =60.9%). At the same time, we found that Indians with F508 deletion had much higher CP prevalence than non-Indians. Interestingly, F508 deletion was also associated with CP and idiopathic CP risk in subgroup analysis stratified by aeitiology, using the fixed effects model. Based on current evidence, F508 deletion is a risk factor for CP, and Indians with F508 deletion have much higher CP morbidity. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    Science.gov (United States)

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid

  9. Les vésicules extracellulaires comme vecteurs de macromolécules bioactives : modèle du transporteur ABCC7 (CFTR) et application à la biothérapie de la mucoviscidose

    OpenAIRE

    Vituret , Cyrielle

    2015-01-01

    Cystic fibrosis is a genetic disease in which its prognosis depends on the lung damage. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR), resulting in a dysfunctional CFTR protein normally located at the plasma membrane of epithelial cells. This thesis is a study of a novel therapeutic approach to use extracellular vesicles (EVs), microvesicles and exosomes, as transfer vectors for CFTR mRNA and protein to target cells. The proof of concept for ...

  10. Co-ordinate regulation of the cystic fibrosis and multidrug resistance genes in cystic fibrosis knockout mice.

    Science.gov (United States)

    Trezise, A E; Ratcliff, R; Hawkins, T E; Evans, M J; Freeman, T C; Romano, P R; Higgins, C F; Colledge, W H

    1997-04-01

    The cystic fibrosis (Cftr and multidrug resistance (Mdr1) genes encode structurally similar proteins which are members of the ABC transporter superfamily. These genes exhibit complementary patterns of expression in vivo, suggesting that the regulation of their expression may be co-ordinated. We have tested this hypothesis in vivo by examining Cftr and Mdr1 expression in cystic fibrosis knockout transgenic mice (Cftr(tm1CAM)). Cftr mRNA expression in Cftr(tm1CAM)/Cftr(tm1CAM) mice was 4-fold reduced in the intestine, as compared with littermate wild-type mice. All other Cftr(tm1CAM)/Cftr(tm1CAM) mouse tissues examined showed similar reductions in Cftr expression. In contrast, we observed a 4-fold increase in Mdr1 mRNA expression in the intestines of neonatal and 3- to 4-week-old Cftr(tm1CAM)/Cftr(tm1CAM) mice, as compared with age-matched +/+ mice, and an intermediate level of Mdr1 mRNA in heterozygous Cftr(tm1CAM) mice. In 10-week-old, Cftr(tm1CAM)/Cftr(tm1CAM) mice and in contrast to the younger mice, Mdr1 mRNA expression was reduced, by 3-fold. The expression of two control genes, Pgk-1 and Mdr2, was similar in all genotypes, suggesting that the changes in Mdr1 mRNA levels observed in the Cftr(tm1CAM)/Cftr(tm1CAM) mice are specific to the loss of Cftr expression and/or function. These data provide further evidence supporting the hypothesis that the regulation Cftr and Mdr1 expression is co-ordinated in vivo, and that this co-ordinate regulation is influenced by temporal factors.

  11. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Scott Mackenzie Brockman

    Full Text Available Cystic Fibrosis (CF is a genetic disorder caused by mutation(s in the CF-transmembrane conductance regulator (Cftr gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa, a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN-based cysteamine analogue.We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties.We demonstrate here the efficacy of dendrimer-based autophagy

  12. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor.

    Directory of Open Access Journals (Sweden)

    Jessica E Char

    Full Text Available To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (- ivacaftor, 3 only (+ ivacaftor and 3 (+/- ivacaftor (1-5 tests per condition. The total number of gland measurements was 852 (- ivacaftor and 906 (+ ivacaftor. A healthy control was tested 4 times (51 glands. For each gland we measured both CFTR-independent (M-sweat and CFTR-dependent (C-sweat; C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects. By contrast, 6/6 subjects (113/342 glands produced C-sweat in the (+ ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+ ivacaftor  = 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.

  13. Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    2018-03-01

    Full Text Available Background/Aims: High salt consumption is a major risk factor for hypertension, and sodium homeostasis is regulated by both intestinal sodium absorption and urinary sodium excretion. Chronic caffeine intake has been reported to attenuate salt-sensitive hypertension by promoting urinary sodium excretion; however, its exact role in intestinal sodium absorption remains unknown. Here, we investigated whether and how chronic caffeine consumption antagonizes salt-sensitive hypertension by inhibiting intestinal sodium absorption. Methods: Dahl salt-sensitive rats were fed 8% NaCl chow and 0.1% caffeine in their drinking water for 15 days. The blood pressure and fecal sodium content were measured. The effect of caffeine on the movement of Cl- in enterocyte cells was determined with the Ussing chamber assay. Results: Rats that were treated with caffeine displayed significantly lower mean blood pressure and higher fecal sodium content than the controls. Consistent with these findings, caffeine intake decreased fluid absorption by the intestine in the fluid perfusion experiment. Further, the results from the Ussing chamber assay indicated that caffeine promoted Cl- secretion through enterocyte apical cystic fibrosis transmembrane conductance regulator (CFTR, and thus inhibited sodium absorption. Moreover, depletion of cAMP or inhibition of CFTR completely abolished the effect of caffeine on Cl- secretion. Conclusion: The results indicate that chronic caffeine consumption reduces sodium absorption by promoting CFTR-mediated Cl- secretion in the intestine, which contributes to the anti-hypertensive effect of caffeine in salt-sensitive rats.

  14. Purinergic regulation of CFTR and Ca2+ -activated Cl- channels and K+ channels in human pancreatic duct epithelium

    DEFF Research Database (Denmark)

    Wang, Jing; Haanes, Kristian A; Novak, Ivana

    2013-01-01

    mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3...

  15. Longevity and plasticity of CFTR provide an argument for noncanonical SNP organization in hominid DNA.

    Directory of Open Access Journals (Sweden)

    Aubrey E Hill

    Full Text Available Like many other ancient genes, the cystic fibrosis transmembrane conductance regulator (CFTR has survived for hundreds of millions of years. In this report, we consider whether such prodigious longevity of an individual gene--as opposed to an entire genome or species--should be considered surprising in the face of eons of relentless DNA replication errors, mutagenesis, and other causes of sequence polymorphism. The conventions that modern human SNP patterns result either from purifying selection or random (neutral drift were not well supported, since extant models account rather poorly for the known plasticity and function (or the established SNP distributions found in a multitude of genes such as CFTR. Instead, our analysis can be taken as a polemic indicating that SNPs in CFTR and many other mammalian genes may have been generated--and continue to accrue--in a fundamentally more organized manner than would otherwise have been expected. The resulting viewpoint contradicts earlier claims of 'directional' or 'intelligent design-type' SNP formation, and has important implications regarding the pace of DNA adaptation, the genesis of conserved non-coding DNA, and the extent to which eukaryotic SNP formation should be viewed as adaptive.

  16. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr-/-) mouse model with hepato-biliary pathology.

    Science.gov (United States)

    Bodewes, Frank A J A; van der Wulp, Mariëtte Y M; Beharry, Satti; Doktorova, Marcela; Havinga, Rick; Boverhof, Renze; James Phillips, M; Durie, Peter R; Verkade, Henkjan J

    2015-07-01

    Cftr(-/-tm1Unc) mice develop progressive hepato-biliary pathology. We hypothesize that this liver pathology is related to alterations in biliary bile hydrophobicity and bile salt metabolism in Cftr(-/-tm1Unc) mice. We determined bile production, biliary and fecal bile salt- and lipid compositions and fecal bacterial composition of C57BL/6J Cftr(-/-tm1Unc) and control mice. We found no differences between the total biliary bile salt or lipid concentrations of Cftr(-/-) and controls. Compared to controls, Cftr(-/-) mice had a ~30% higher bile production and a low bile hydrophobicity, related to a ~7 fold higher concentration of the choleretic and hydrophilic bile salt ursocholate. These findings coexisted with a significantly smaller quantity of fecal Bacteroides bacteria. Liver pathology in Cftr(-/-tm1Unc) is not related to increased bile hydrophobicity. Cftr(-/-) mice do however display a biliary phenotype characterized by increased bile production and decreased biliary hydrophobicity. Our findings suggest Cftr dependent, alterations in intestinal bacterial biotransformation of bile salts. Copyright © 2014. Published by Elsevier B.V.

  17. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Chen, Lei; Yu, Bo; Zhang, Yaofang; Gao, Xin; Zhu, Liang; Ma, Tonghui; Yang, Hong

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is the principal apical route for transepithelial fluid transport induced by enterotoxin. Inhibition of CFTR has been confirmed as a pharmaceutical approach for the treatment of secretory diarrhea. Many traditional Chinese herbal medicines, like Rhodiola kirilowii (Regel) Maxim, have long been used for the treatment of secretory diarrhea. However, the active ingredients responsible for their therapeutic effectiveness remain unknown. The purpose of this study is to identify CFTR inhibitors from Rhodiola kirilowii (Regel) Maxim via bioactivity-directed isolation strategy. We first identified fractions of Rhodiola kirilowii (Regel) Maxim that inhibited CFTR Cl- channel activity. Further bioactivity-directed fractionation led to the identification of (-)-epigallocatechin-3-gallate (EGCG) as CFTR Cl- channel inhibitor. Analysis of 5 commercially available EGCG analogs including (+)-catechins (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG) and EGCG revealed that ECG also had CFTR inhibitory activity. EGCG dose-dependently and reversibly inhibited CFTR Cl- channel activity in transfected FRT cells with an IC50 value around 100 μM. In ex vivo studies, EGCG and ECG inhibited CFTR-mediated short-circuit currents in isolated rat colonic mucosa in a dose-dependent manner. In an intestinal closed-loop model in mice, intraluminal application of EGCG (10 μg) and ECG (10 μg) significantly reduced cholera toxin-induced intestinal fluid secretion. CFTR Cl- channel is a molecular target of natural compounds EGCG and ECG. CFTR inhibition may account, at least in part, for the antidiarrheal activity of Rhodiola kirilowii (Regel) Maxim. EGCG and ECG could be new lead compounds for development of CFTR-related diseases such as secretory diarrhea.

  18. Frequency of common CFTR gene mutations in Venezuelan patients with cystic fibrosis

    OpenAIRE

    Sánchez, Karen; Arcia, Orlando; Matute, Xiorama; Mindiola, Luz; Chaustre, Ismenia; Takiff, Howard

    2014-01-01

    Mutations in the CFTR gene in Cystic Fibrosis (CF) patients have geographic differences and there is scant data on their prevalence in Venezuelan patients. This study determined the frequency of common CFTR gene mutations in these patients. We amplified and sequenced exons 7, 10, 11, 19, 20 and 21, which contain the most common CFTR mutations, from 105 Venezuelan patients in the National CF Program. Eleven different mutations were identified, four with frequencies greater than 1%: p.Phe508del...

  19. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  20. Combined Bicarbonate Conductance-Impairing Variants in CFTR and SPINK1 Are Associated with Chronic Pancreatitis in Patients without Cystic Fibrosis

    Science.gov (United States)

    Schneider, Alexander; LaRusch, Jessica; Sun, Xiumei; Aloe, Amy; Lamb, Janette; Hawes, Robert; Cotton, Peter; Brand, Randall E.; Anderson, Michelle A.; Money, Mary E.; Banks, Peter A.; Lewis, Michele D.; Baillie, John; Sherman, Stuart; DiSario, James; Burton, Frank R.; Gardner, Timothy B.; Amann, Stephen T.; Gelrud, Andres; George, Ryan; Kassabian, Sirvart; Martinson, Jeremy; Slivka, Adam; Yadav, Dhiraj; Oruc, Nevin; Barmada, M. Michael; Frizzell, Raymond; Whitcomb, David C.

    2010-01-01

    Background & Aims Idiopathic chronic pancreatitis (ICP) is a complex inflammatory disorder associated with multiple genetic and environmental factors. In individuals without cystic fibrosis (CF), variants of CFTR that inhibit bicarbonate conductance but maintain chloride conductance might selectively impair secretion of pancreatic juice, leading to trypsin activation and pancreatitis. We investigated whether sequence variants in the gene encoding the pancreatic secretory trypsin inhibitor, SPINK1, further increase the risk of pancreatitis in these patients. Methods We screened patients with ICP (sporadic or familial) and controls for variants in SPINK1 associated with chronic pancreatitis (CP) risk (in exon 3) and in all 27 exons of CFTR. The final study group included 53 patients with sporadic ICP, 27 probands with familial ICP, and 150 unrelated controls, plus 503 controls for limited genotyping. CFTR wild-type (wt) and p.R75Q were cloned and expressed in HEK293 cells and relative conductances of HCO3− and Cl− were measured. Results SPINK1 variants were identified in 36% of subjects and 3% controls (odds ratio [OR]=16.5). One variant of CFTR that has not been associated with CF, p.R75Q, was found in 16% of subjects and 5.4% controls (OR=3.4). Co-inheritance of CFTR p.R75Q and SPINK1 variants occurred in 8.75% of patients and 0.15% controls (OR=62.5). Patch-clamp recordings of cells that expressed CFTR p.R75Q demonstrated normal chloride currents but significantly reduced bicarbonate currents (P=0.0001). Conclusions The CFTR variant p.R75Q causes a selective defect in bicarbonate conductance and increases risk for pancreatitis. Co-inheritance of CF-associated, and some not associated, CFTR variants with SPINK1 variants significantly increase risk of ICP. PMID:20977904

  1. Sweat chloride and immunoreactive trypsinogen in infants carrying two CFTR mutations and not affected by cystic fibrosis.

    Science.gov (United States)

    Castellani, Carlo; Tridello, Gloria; Tamanini, Anna; Assael, Baroukh M

    2017-07-01

    Newborns with raised immunotrypsinogen levels who have non-pathological sweat chloride values and carry two cystic fibrosis transmembrane regulator ( CFTR ) mutations of which at least one is not acknowledged to be cystic fibrosis (CF)-causing are at risk of developing clinical manifestations consistent with CFTR-related disorders or even CF. It is not known whether newborns with similar genotypes and normal immunoreactive trypsinogen (IRT) may share the same risk. This study found that newborns with these characteristics and normal IRT have lower sweat chloride values than those with raised IRT (p=0.007). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Rescuing mutant CFTR: a multi-task approach to a better outcome in treating cystic fibrosis.

    Science.gov (United States)

    Amaral, Margarida D; Farinha, Carlos M

    2013-01-01

    Correcting multiple defects of mutant CFTR with small molecule compounds has been the goal of an increasing number of recent Cystic Fibrosis (CF) drug discovery programmes. However, the mechanism of action (MoA) by which these molecules restore mutant CFTR is still poorly understood, in particular of CFTR correctors, i.e., compounds rescuing to the cells surface the most prevalent mutant in CF patients--F508del-CFTR. However, there is increasing evidence that to fully restore the multiple defects associated with F508del-CFTR, different small molecules with distinct corrective properties may be required. Towards this goal, a better insight into MoA of correctors is needed and several constraints should be addressed. The methodological approaches to achieve this include: 1) testing the combined effect of compounds with that of other (non-pharmacological) rescuing strategies (e.g., revertants or low temperature); 2) assessing effects in multiple cellular models (non-epithelial vs epithelial, non-human vs human, immortalized vs primary cultures, polarized vs non polarized, cells vs tissues); 3) assessing compound effects on isolated CFTR domains (e.g., compound binding by surface plasmon resonance, assessing effects on domain folding and aggregation); and finally 4) assessing compounds specificity in rescuing different CFTR mutants and other mutant proteins. These topics are reviewed and discussed here so as to provide a state-of-the art review on how to combine multiple ways of rescuing mutant CFTR to the ultimate benefit of CF patients.

  3. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.

    Science.gov (United States)

    Roque, Telma; Boncoeur, Emilie; Saint-Criq, Vinciane; Bonvin, Elise; Clement, Annick; Tabary, Olivier; Jacquot, Jacky

    2008-09-01

    Sodium 4-phenylbutyrate (4-PBA) has attracted a great deal of attention in cystic fibrosis (CF) pathology due to its capacity to traffic DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) to the cell membrane and restore CFTR chloride function at the plasma membrane of CF lung cells in vitro and in vivo. Using two different DeltaF508-CFTR lung epithelial cell lines (CFBE41o- and IB3-1 cells, characterized with DeltaF508-homozygous and heterozygous genotype, respectively) in vitro, 4-PBA induced an increase of proinflammatory cytokine interleukin (IL)-8 production in a concentration-dependent manner. This 4-PBA-induced IL-8 production was associated with a strong reduction of proteasome and nuclear factor-kappaB transcriptional activities in the two DeltaF508-CFTR lung cells either in a resting state or after tumor necrosis factor-alpha stimulation. In contrast, a strong increase of activator protein-1 transcriptional activity was observed. The inhibition of extracellular signal-regulated protein kinase 1/2 (ERK1/2) by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) and c-Jun-NH(2)-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) by anthra[1,9-cd] pyrazol-6 (2H)-one (SP600125), respectively, was associated with a reduction (2-3.5-fold) of IL-8 production in both DeltaF508-CFTR lung cell lines treated with 4-PBA. No significant change of IL-8 production was observed after an inhibition of p38 MAPK with 4-[4-(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190). Therefore, we suggest that inhibition of both ERK1/2 and JNK signaling may be a means to strongly reduce 4-PBA-induced IL-8 production in combination with 4-PBA treatment to restore CFTR Cl(-) channel function in lung epithelial cells of patients with CF.

  4. Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability.

    Directory of Open Access Journals (Sweden)

    Shaoyan Zhang

    Full Text Available Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR. The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease.Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR, and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction.Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05. There was no increase CFTR mRNA.Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR channel open probability. The foundation for a

  5. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland

    Science.gov (United States)

    De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.

    2013-01-01

    The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420

  6. Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity.

    Science.gov (United States)

    Riquelme, Sebastián A; Hopkins, Benjamin D; Wolfe, Andrew L; DiMango, Emily; Kitur, Kipyegon; Parsons, Ramon; Prince, Alice

    2017-12-19

    The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl -/- mice, which lack the NH 2 -amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. Published by Elsevier Inc.

  7. Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats.

    Science.gov (United States)

    Salleh, Naguib; Ismail, Nurain; Muniandy, Sekaran; Korla, Praveen Kumar; Giribabu, Nelli

    2015-12-01

    The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (pcervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Lee A Borthwick

    Full Text Available Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-dependent protein kinase A (PKA and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2 forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A. Overlay (Far-Western and Surface Plasmon Resonance (SPR analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727. Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.

  9. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu; Hu, Honghong; Ries, Amber; Merilo, Ebe; Kollist, Hannes; Schroeder, Julian I

    2011-01-01

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  10. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  11. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins

    International Nuclear Information System (INIS)

    Ballatori, Nazzareno; Hammond, Christine L.; Cunningham, Jennifer B.; Krance, Suzanne M.; Marchan, Rosemarie

    2005-01-01

    The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions

  12. Lumacaftor/ivacaftor, a novel agent for the treatment of cystic fibrosis patients who are homozygous for the F580del CFTR mutation.

    Science.gov (United States)

    Bulloch, Marilyn N; Hanna, Cameron; Giovane, Richard

    2017-10-01

    Cystic Fibrosis (CF) is an autosomal recessive disease affecting up to 90,000 people worldwide. Approximately 73% of patients are homozygous for the F508del cystic fibrosis transmembrane conductance regulator [CFTR] mutation. Traditionally treatment has only included supportive care. Therefore, there is a need for safe and effective novel therapies targeting the underlying molecular defects seen with CF. Areas covered: In 2016, the Food and Drug Administration and the European Commission approved LUM/IVA (Orkambi), a CFTR modulator that includes both a CFTR corrector and potentiator, for CF patients homozygous for the F508del CFTR mutation. This article reviews the pharmacologic features, clinical efficacy, and safety of LUM/IVA and summarize the available pre-clinical and clinical data of LUM/IVA use. Expert commentary: LUM/IVA showed modest, but significant improvements from baseline in percent predicted FEV 1 (ppFEV 1 ) as well as a reduction in pulmonary exacerbations by 35% It was shown to be safe for short- and long-term use. Currently, LUM/IVA is the only oral agent in its class available and represents a milestone the development of therapies for the management of CF. Nonetheless, pharmacoeconomic data are necessary to justify its high cost before is use becomes standard of care.

  13. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  14. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  15. Regulation of Expression of Renal Organic Anion Transporters OAT1 and OAT3 in a Model of Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Christina Preising

    2015-08-01

    Full Text Available Background: Recently, we gained evidence that impairment of rOat1 and rOat3 expression induced by ischemic acute kidney injury (AKI is mediated by COX metabolites and this suppression might be critically involved in renal damage. Methods: (i Basolateral organic anion uptake into proximal tubular cells after model ischemia and reperfusion (I/R was investigated by fluorescein uptake. The putative promoter sequences from hOAT1 (SLC22A6 and hOAT3 (SCL22A8 were cloned into a reporter plasmid, transfected into HEK cells and (ii transcriptional activity was determined after model ischemia and reperfusion as a SEAP reporter gen assay. Inhibitors or antagonists were applied with the beginning of reperfusion. Results: By using inhibitors of PKA (H89 and PLC (U73122, antagonists of E prostanoid receptor type 2 (AH6809 and type 4 (L161,982, we gained evidence that I/R induced down regulation of organic anion transport is mediated by COX1 metabolites via E prostanoid receptor type 4. The latter signaling was confirmed by application of butaprost (EP2 agonist or TCS2510 (EP4 agonist to control cells. In brief, the latter signaling was verified for the transcriptional activity in the reporter gen assay established. Therein, selective inhibitors for COX1 (SC58125 and COX2 (SC560 were also applied. Conclusion: Our data show (a that COX1 metabolites are involved in the regulation of renal organic anion transport(ers after I/R via the EP4 receptor and (b that this is due to transcriptional regulation of the respective transporters. As the promoter sequences cloned were of human origin and expressed in a human renal epithelial cell line we (c hypothesize that the regulatory mechanisms described after I/R is meaningful for humans as well.

  16. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    Science.gov (United States)

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  17. Two Salt Bridges Differentially Contribute to the Maintenance of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Function*

    Science.gov (United States)

    Cui, Guiying; Freeman, Cody S.; Knotts, Taylor; Prince, Chengyu Z.; Kuang, Christopher; McCarty, Nael A.

    2013-01-01

    Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg352-Asp993 and Arg347-Asp924, that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg347 not only interacts with Asp924 but also interacts with Asp993. The tripartite interaction Arg347-Asp924-Asp993 mainly contributes to maintaining a stable s2 open subconductance state. The Arg352-Asp993 salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg352 and Asp993, channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle. PMID:23709221

  18. Genomic sequencing in cystic fibrosis newborn screening: what works best, two-tier predefined CFTR mutation panels or second-tier CFTR panel followed by third-tier sequencing?

    Science.gov (United States)

    Currier, Robert J; Sciortino, Stan; Liu, Ruiling; Bishop, Tracey; Alikhani Koupaei, Rasoul; Feuchtbaum, Lisa

    2017-10-01

    PurposeThe purpose of this study was to model the performance of several known two-tier, predefined mutation panels and three-tier algorithms for cystic fibrosis (CF) screening utilizing the ethnically diverse California population.MethodsThe cystic fibrosis transmembrane conductance regulator (CFTR) mutations identified among the 317 CF cases in California screened between 12 August 2008 and 18 December 2012 were used to compare the expected CF detection rates for several two- and three-tier screening approaches, including the current California approach, which consists of a population-specific 40-mutation panel followed by third-tier sequencing when indicated.ResultsThe data show that the strategy of using third-tier sequencing improves CF detection following an initial elevated immunoreactive trypsinogen and detection of only one mutation on a second-tier panel.ConclusionIn a diverse population, the use of a second-tier panel followed by third-tier CFTR gene sequencing provides a better detection rate for CF, compared with the use of a second-tier approach alone, and is an effective way to minimize the referrals of CF carriers for sweat testing. Restricting screening to a second-tier testing to predefined mutation panels, even broad ones, results in some missed CF cases and demonstrates the limited utility of this approach in states that have diverse multiethnic populations.

  19. Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy

    Directory of Open Access Journals (Sweden)

    Ateeq Al-Zahrani

    2015-05-01

    Full Text Available The most common inherited disease in European populations is cystic fibrosis. Mutations in the gene lead to loss of function of the cystic fibrosis transmembrane conductance regulator protein (CFTR. CFTR is a member of the ATP-binding cassette family of membrane proteins that mostly act as active transporters using ATP to move substances across membranes. These proteins undergo large conformational changes during the transport cycle, consistent with an inward-facing to outward-facing translocation mechanism that was originally proposed by Jardetzky. CFTR is the only member of this family of proteins that functions as an ion channel, and in this case ATP and phosphorylation of a regulatory domain controls the opening of the channel. In this article we describe the inward-facing conformation of the protein and show it can be modulated by the presence of a purified recombinant NHERF1-PDZ1 domain that binds with high affinity to the CFTR C-terminal PDZ motif (-QDTRL. ATP hydrolysis activity of CFTR can also be modulated by glutathione, which we postulate may bind to the inward-facing conformation of the protein. A homology model for CFTR, based on a mitochondrial ABC transporter of glutathione in the inward-facing configuration has been generated. The map and the model are discussed with respect to the biology of the channel and the specific relationship between glutathione levels in the cell and CFTR. Finally, disease-causing mutations are mapped within the model and discussed in terms of their likely physiological effects.

  20. Cftr Modulates Wnt/β-Catenin Signaling and Stem Cell Proliferation in Murine Intestine

    Directory of Open Access Journals (Sweden)

    Ashlee M. Strubberg

    2018-01-01

    Conclusions: CF intestine shows increased ISC proliferation and Wnt/β-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/β-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.

  1. Sphingosine-1-Phosphate Signaling Regulates Myogenic Responsiveness in Human Resistance Arteries.

    Directory of Open Access Journals (Sweden)

    Sonya Hui

    Full Text Available We recently identified sphingosine-1-phosphate (S1P signaling and the cystic fibrosis transmembrane conductance regulator (CFTR as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i express critical S1P signaling elements, (ii constrict in response to S1P and (iii lose myogenic responsiveness following S1P receptor antagonism (JTE013. However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.

  2. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Nico Derichs

    2013-03-01

    Full Text Available Cystic fibrosis (CF is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  3. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    Science.gov (United States)

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines

    Directory of Open Access Journals (Sweden)

    Sampson Heidi M

    2013-01-01

    Full Text Available Abstract Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER, and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R, the human ether-a-go-go-related gene (KCNH2, also known as hERG, and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1. We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p  Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases.

  5. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    Science.gov (United States)

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-07

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  7. Emerging role of cystic fibrosis transmembrane conductance regulator- an epithelial chloride channel in gastrointestinal cancers

    Institute of Scientific and Technical Information of China (English)

    Yuning Hou; Xiaoqing Guan; Zhe Yang; Chunying Li

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator(CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially in gastroenterological cancers, such as pancreatic cancer and colon cancer. In this review, we summarize the emerging findings that link CFTR with various cancers, with focus on the association between CFTR defects and gastrointestinal cancers as well as the underlying mechanisms. Further study of CFTR in cancer biology may help pave a new way for the diagnosis and treatment of gastrointestinal cancers.

  8. Opening up of plasmalemma type-1 VDAC to form apoptotic "find me signal" pathways is essential in early apoptosis - evidence from the pathogenesis of cystic fibrosis resulting from failure of apoptotic cell clearance followed by sterile inflammation.

    Science.gov (United States)

    Thinnes, Friedrich P

    2014-04-01

    Cell membrane-standing type-1 VDAC is involved in cell volume regulation and thus apoptosis. The channel has been shown to figure as a pathway for osmolytes of varying classes, ATP included. An early event in apoptotic cell death is the release of "find me signals" by cells that enter the apoptotic process. ATP is one of those signals. Apoptotic cells this way attract phagocytes for an immunologically silent cell clearance. Thus, whenever apoptosis fails by a blockade of plasmalemma type-1 VDAC processes of sterile inflammation must be assumed for cell elimination. This is evident from a close look on the pathogenetic process of cystic fibrosis (CF). However, in normal airway epithelia two different anion channels cooperate to guarantee an appropriate volume of airway surface liquid (ASL) necessary for surface clearing: the cystic fibrosis conductance regulator (CFTR) and the outwardly rectifying chloride channel (ORCC) complex also called "alternate chloride channel" and under the control of the CFTR. There are arguments, that type-1 VDAC forms the channel part of the ORCC complex, and it has been shown that CFTR and type-1 VDAC co-localize in the apical membranes of human surface respiratory epithelium. In cystic fibrosis, the central cAMP-dependent regulation of ion and water transport via functional CFTR is lost. Here, CFTR molecules do not reach the apical membranes of airway epithelia anymore or work in an insufficient way, respectively. In addition, type-1 VDAC is no longer available to work as a "find me signal" pathway. In consequence, clearing away of apoptotic cells is blocked. There are experimental data on the channel characteristics of type-1 VDAC under the anion channel blocker DIDS (4,4-diisothiocyanato-stilbenedisulphonic acid) that argue in favor of this hypothesis. Together, type-1 VDAC should be kept as a "find me signal" pathway, which may give way to several classes of such signals. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  10. Analysis of cystic fibrosis gener product (CFTR) function in patients with pancreas divisum and recurrent acute pancreatitis.

    Science.gov (United States)

    Gelrud, Andres; Sheth, Sunil; Banerjee, Subhas; Weed, Deborah; Shea, Julie; Chuttani, Ram; Howell, Douglas A; Telford, Jennifer J; Carr-Locke, David L; Regan, Meredith M; Ellis, Lynda; Durie, Peter R; Freedman, Steven D

    2004-08-01

    The mechanism by which pancreas divisum may lead to recurrent episodes of acute pancreatitis in a subset of individuals is unknown. Abnormalities of the cystic fibrosis gene product (CFTR) have been implicated in the genesis of idiopathic chronic pancreatitis. The aim of this study was to determine if CFTR function is abnormal in patients with pancreas divisum and recurrent acute pancreatitis (PD/RAP). A total of 69 healthy control subjects, 12 patients with PD/RAP, 16 obligate heterozygotes with a single CFTR mutation, and 95 patients with cystic fibrosis were enrolled. CFTR function was analyzed by nasal transepithelial potential difference testing in vivo. The outcomes of the PD/RAP patients following endoscopic and surgical treatments were concomitantly analyzed. Direct measurement of CFTR function in nasal epithelium in response to isoproterenol demonstrated that the values for PD/RAP were intermediate between those observed for healthy controls and cystic fibrosis patients. The median value was 13 mV for PD/RAP subjects, which was statistically different from healthy controls (22 mV, p= 0.001) and cystic fibrosis pancreatic sufficient (-1 mV, p < 0.0001) and pancreatic insufficient (-3 mV, p < 0.0001) patients. These results suggest a link between CFTR dysfunction and recurrent acute pancreatitis in patients with pancreas divisum and may explain why a subset of patients with pancreas divisum develops recurrent acute pancreatitis. Copyright 2004 American College of Gastroenterology

  11. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications

    Science.gov (United States)

    McClure, Michelle L.; Barnes, Stephen; Brodsky, Jeffrey L.

    2016-01-01

    Posttranslational modifications add diversity to protein function. Throughout its life cycle, the cystic fibrosis transmembrane conductance regulator (CFTR) undergoes numerous covalent posttranslational modifications (PTMs), including glycosylation, ubiquitination, sumoylation, phosphorylation, and palmitoylation. These modifications regulate key steps during protein biogenesis, such as protein folding, trafficking, stability, function, and association with protein partners and therefore may serve as targets for therapeutic manipulation. More generally, an improved understanding of molecular mechanisms that underlie CFTR PTMs may suggest novel treatment strategies for CF and perhaps other protein conformational diseases. This review provides a comprehensive summary of co- and posttranslational CFTR modifications and their significance with regard to protein biogenesis. PMID:27474090

  12. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na +/K+/2Cl- cotransporter and CFTR anion channel

    Science.gov (United States)

    Hiroi, J.; McCormick, S.D.; Ohtani-Kaneko, R.; Kaneko, T.

    2005-01-01

    Mozambique tilapia Oreochromis mossambicus embryos were transferred from freshwater to seawater and vice versa, and short-term changes in the localization of three major ion transport proteins, Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) were examined within mitochondrion-rich cells (MRCs) in the embryonic yolk-sac membrane. Triple-color immunofluorescence staining allowed us to classify MRCs into four types: type I, showing only basolateral Na+/K +-ATPase staining; type II, basolateral Na+/K +-ATPase and apical NKCC; type III, basolateral Na+/K +-ATPase and basolateral NKCC; type IV, basolateral Na +/K+-ATPase, basolateral NKCC and apical CFTR. In freshwater, type-I, type-II and type-III cells were observed. Following transfer from freshwater to seawater, type-IV cells appeared at 12 h and showed a remarkable increase in number between 24 h and 48 h, whereas type-III cells disappeared. When transferred from seawater back to freshwater, type-IV cells decreased and disappeared at 48 h, type-III cells increased, and type-II cells, which were not found in seawater, appeared at 12 h and increased in number thereafter. Type-I cells existed consistently irrespective of salinity changes. These results suggest that type I is an immature MRC, type II is a freshwater-type ion absorptive cell, type III is a dormant type-IV cell and/or an ion absorptive cell (with a different mechanism from type II), and type IV is a seawater-type ion secretory cell. The intracellular localization of the three ion transport proteins in type-IV cells is completely consistent with a widely accepted model for ion secretion by MRCs. A new model for ion absorption is proposed based on type-II cells possessing apical NKCC.

  13. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    Science.gov (United States)

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  14. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment.

    LENUS (Irish Health Repository)

    Rogan, Mark P

    2012-02-01

    Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?

  15. Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells

    Directory of Open Access Journals (Sweden)

    Quadri Luis EN

    2009-04-01

    Full Text Available Abstract Background Cystic fibrosis (CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. Infections of the respiratory tract are a hallmark in CF. The host immune responses in CF are not adequate to eradicate pathogens, such as P. aeruginosa. Dendritic cells (DC are crucial in initiation and regulation of immune responses. Changes in DC function could contribute to abnormal immune responses on multiple levels. The role of DC in CF lung disease remains unknown. Methods This study investigated the expression of CFTR gene in bone marrow-derived DC. We compared the differentiation and maturation profile of DC from CF and wild type (WT mice. We analyzed the gene expression levels in DC from naive CF and WT mice or following P. aeruginosa infection. Results CFTR is expressed in DC with lower level compared to lung tissue. DC from CF mice showed a delayed in the early phase of differentiation. Gene expression analysis in DC generated from naive CF and WT mice revealed decreased expression of Caveolin-1 (Cav1, a membrane lipid raft protein, in the CF DC compared to WT DC. Consistently, protein and activity levels of the sterol regulatory element binding protein (SREBP, a negative regulator of Cav1 expression, were increased in CF DC. Following exposure to P. aeruginosa, expression of 3β-hydroxysterol-Δ7 reductase (Dhcr7 and stearoyl-CoA desaturase 2 (Scd2, two enzymes involved in the lipid metabolism that are also regulated by SREBP, was less decreased in the CF DC compared to WT DC. Conclusion These results suggest that CFTR dysfunction in DC affects factors involved in membrane structure and lipid-metabolism, which may contribute to the abnormal inflammatory and immune response characteristic of CF.

  16. The cystic fibrosis of exocrine pancreas

    DEFF Research Database (Denmark)

    Wilschanski, Michael; Novak, Ivana

    2013-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is highly expressed in the pancreatic duct epithelia and permits anions and water to enter the ductal lumen. This results in an increased volume of alkaline fluid allowing the highly concentrated proteins secreted by the acina...... (CF) and pancreatitis, and outline present and potential therapeutic approaches in CF treatment relevant to the pancreas....

  17. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  18. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations.

    Science.gov (United States)

    Pompei, Fiorenza; Ciminelli, Bianca Maria; Bombieri, Cristina; Ciccacci, Cinzia; Koudova, Monika; Giorgi, Silvia; Belpinati, Francesca; Begnini, Angela; Cerny, Milos; Des Georges, Marie; Claustres, Mireille; Ferec, Claude; Macek, Milan; Modiano, Guido; Pignatti, Pier Franco

    2006-01-01

    An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.

  19. Cystic fibrosis transmembrane regulator haplotypes in households of patients with cystic fibrosis.

    Science.gov (United States)

    Furgeri, Daniela Tenório; Marson, Fernando Augusto Lima; Correia, Cyntia Arivabeni Araújo; Ribeiro, José Dirceu; Bertuzzo, Carmen Sílvia

    2018-01-30

    Nearly 2000 mutations in the cystic fibrosis transmembrane regulator (CFTR) gene have been reported. The F508del mutation occurs in approximately 50-65% of patients with cystic fibrosis (CF). However, molecular diagnosis is not always possible. Therefore, silent polymorphisms can be used to label the mutant allele in households of patients with CF. To verify the haplotypes of four polymorphisms at the CFTR locus in households of patients with CF for pre-fertilization, pre-implantation, and prenatal indirect mutation diagnosis to provide better genetic counseling for families and patients with CF and to associate the genotypes/haplotypes with the F508del mutation screening. GATT polymorphism analysis was performed using direct polymerase chain reaction amplification, and the MP6-D9, TUB09 and TUB18 polymorphism analyses were performed using restriction fragment length polymorphism. Nine haplotypes were found in 37 CFTR alleles, and of those, 24 were linked with the F508del mutation and 13 with other CFTR mutations. The 6 (GATT), C (MP6-D9), G (TUB09), and C (TUB18) haplotypes showed the highest prevalence (48%) of the mutant CFTR allele and were linked to the F508del mutation (64%). In 43% of households analyzed, at least one informative polymorphism can be used for the indirect diagnostic test. CFTR polymorphisms are genetic markers that are useful for identifying the mutant CFTR alleles in households of patients with CF when it is not possible to establish the complete CFTR genotype. Moreover, the polymorphisms can be used for indirect CFTR mutation identification in cases of pre-fertilization, pre-implantation and prenatal analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine.

    Science.gov (United States)

    Sherwood, Cara L; Boitano, Scott

    2016-05-17

    that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.

  1. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  2. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Hougaard, Charlotte; Hoffmann, Else K

    2006-01-01

    swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P(2......) analogue or a PtdIns(4,5)P(2)-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P(2). It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part......The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P(2...

  3. Requirements for Ion and Solute Transport, and pH Regulation During Enamel Maturation

    Science.gov (United States)

    LACRUZ, RODRIGO S.; SMITH, CHARLES E.; MOFFATT, PIERRE; CHANG, EUGENE H.; BROMAGE, TIMOTHY G.; BRINGAS, PABLO; NANCI, ANTONIO; BANIWAL, SANJEEV K.; ZABNER, JOSEPH; WELSH, MICHAEL J.; KURTZ, IRA; PAINE, MICHAEL L.

    2012-01-01

    Transcellular bicarbonate transport is suspected to be an important pathway used by ameloblasts to regulate extracellular pH and support crystal growth during enamel maturation. Proteins that play a role in amelogenesis include members of the ABC transporters (SLC gene family and CFTR). A number of carbonic anhydrases (CAs) have also been identified. The defined functions of these genes are likely interlinked during enamel mineralization. The purpose of this study is to quantify relative mRNA levels of individual SLC, Cftr, and CAs in enamel cells obtained from secretory and maturation stages on rat incisors. We also present novel data on the enamel phenotypes for two animal models, amutant porcine(CFTR-ΔF508) and the NBCe1-null mouse.Our data show that two SLCs(AE2 and NBCe1),Cftr,and Car2, Car3,Car6,and Car12 are all significantly up-regulated at the onset of the maturation stage of amelogenesis when compared to the secretory stage. The remaining SLCs and CA gene transcripts showed negligible expression or no significant change in expression from secretory to maturation stages. The enamel of Cftr-ΔF508 adult pigs was hypomineralized and showed abnormal crystal growth. NBCe1-null mice enamel was structurally defective and had a marked decrease in mineral content relative to wild-type. These data demonstrate the importance of many non-matrix proteins to amelogenesis and that the expression levels of multiple genes regulating extracellular pH are modulated during enamel maturation in response to an increased need for pH buffering during hydroxyapatite crystal growth. PMID:21732355

  4. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  5. Funciones de los canales iónicos CFTR y ENAC en la fibrosis quística

    Directory of Open Access Journals (Sweden)

    Alejandra G. Palma

    2014-04-01

    Full Text Available La fibrosis quística se debe a la ausencia o defecto del canal transmembrana regulador de la fibrosis quística (CFTR, un canal de cloruro codificado en el gen cftr que juega un papel clave en la homeostasis del agua e iones. El CFTR es activado por el AMPc y se localiza en las membranas apicales y basolaterales de las vías aéreas, intestino y glándulas exocrinas. Una de sus funciones primarias en los pulmones es mantener la capa de líquido superficial a través de su función de canal y regular el canal epitelial de sodio sensible al amiloride (ENaC. Se han identificado más de 1900 mutaciones en el gen cftr. La enfermedad se caracteriza por secreciones viscosas en las glándulas exocrinas y por niveles elevados de cloruro de sodio en el sudor. En la fibrosis quística el CFTR no funciona y el ENaC está desregulado; el resultado es un aumento en la reabsorción de sodio y agua con la formación de un líquido viscoso. En las glándulas sudoríparas tanto el Na+ como el Cl- se retienen en el lumen causando una pérdida de electrolitos durante la sudoración y el NaCl se elimina al sudor. Así, los niveles elevados de NaCl son la base del test del sudor inducido por pilocarpina, un método de diagnóstico para la enfermedad. En esta revisión se discuten los movimientos de Cl- y Na+ en las glándulas sudoríparas y pulmón así como el papel del ENaC en la patogénesis de la enfermedad.

  6. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  8. Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance

    Directory of Open Access Journals (Sweden)

    Christopher B. Divito

    2017-05-01

    Full Text Available Excitatory amino acid transporters (EAATs are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3 and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or “leak” channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.

  9. Novel CFTR missense mutations in Brazilian patients with congenital absence of vas deferens: counseling issues Mutações novas no gene CFTR de pacientes brasileiros portadores de agenesia dos vasos deferentes: dificuldades no aconselhamento

    Directory of Open Access Journals (Sweden)

    Patricia de Campos Pieri

    2007-01-01

    Full Text Available PURPOSE: Screening for mutations in the entire Cystic Fibrosis gene (CFTR of Brazilian infertile men with congenital absence of vas deferens, in order to prevent transmission of CFTR mutations to offspring with the use of assisted reproductive technologies. METHOD: Specific polymerase chain reaction (PCR primers were designed to each of the 27 exons and splicing sites of interest followed by single strand conformational polymorphism and Heteroduplex Analysis (SSCP-HA in precast 12.5% polyacrylamide gels at 7ºC and 20ºC. Fragments with abnormal SSCP migration pattern were sequenced. RESULTS: Two novel missense mutations (S753R and G149W were found in three patients (two brothers together with the IVS8-5T allele in hetrozygosis. CONCLUSION: The available screenings for CF mutations do not include the atypical mutations associated to absence of vas deferens and thus, when these tests fail to find mutations, there is still a genetic risk of affected children with the help of assisted reproduction. We recommend the screening of the whole CFTR gene for these infertile couples, as part of the work-up before assisted reproduction.OBJETIVO: Pesquisar mutações em toda a extensão do gene que causa a Fibrose Cística (CFTR de homens brasileiros inférteis por agenesia congênita dos vasos deferentes, com a finalidade de prevenir a transmissão de mutações em CFTR à prole com o uso das tecnologias de reprodução assistida. MÉTODOS: Foram desenhados oligonucleotídeos específicos para realização de reação de polimerização em cadeia (PCR para cada um dos 27 exons e sítios de processamento de interesse no gene CFTR. O PCR foi seguido pela técnica de SSCP-HA (polimorfismos de conformação no DNA de fita simples e na formação de heteroduplexes em géis pré-fabricados de poliacrilamida a 12,5% em duas temperaturas, 7ºC e 20ºC. Os fragmentos com padrão alterado na migração do SSCP foram submetidos a seqüenciamento automatizado

  10. The molecular analysis of mutations in exons 4, 11 and 21 of the cystic fibrosis transmembrane conductance regulator (CFTR gene in cystic fibrosis patients in Kermanshah, Iran

    Directory of Open Access Journals (Sweden)

    Nasibe Karimi

    2017-03-01

    Full Text Available Introduction: Cystic fibrosis (CF is a common genetic disorder in white populations with an autosomal recessive pattern, caused by mutations in the CFTR gene. The frequency of more than 1950 various mutations reported in the CFTR gene significantly varies in different populations. ∆F508 is a common mutation in exon 10, which is first addressed in the molecular analysis of the disease. Other exons are required to be investigated owing to failing to identify mutations in the patients. The present study was conducted to investigate mutations in exons 4, 11 and 21 of the CFTR gene using the sequencing method in CF patients in Kermanshah province, Iran. Methods: The present descriptive study was conducted on all patients with CF presenting to the medical genetics center in Kermanshah in 2010-2011. After taking blood samples and extracting DNA using saturated NaCl solution, sequences of exons were amplified using PCR and sequenced for identifying mutations. Results: The frequency of mutations was found to be respectively 0, 0 and 5.5% in exon 11, 21 and 4. The D110H mutation was found to be homozygous in one subject and heterozygous in another. Moreover, the 4029A>G polymorphism (12.9% was found to be homozygous in two subjects and heterozygous in three others. Conclusion: The D110H mutation is recommended to be included in the screening programs of the study population. The results obtained support the effects of ethnic and geographical factors on the distribution of CF mutations.

  11. Phospholipase A2 activity-dependent and -independent fusogenic activity of Naja nigricollis CMS-9 on zwitterionic and anionic phospholipid vesicles.

    Science.gov (United States)

    Chiou, Yi-Ling; Chen, Ying-Jung; Lin, Shinne-Ren; Chang, Long-Sen

    2011-11-01

    CMS-9, a phospholipase A(2) (PLA(2)) from Naja nigricollis venom, induced the death of human breast cancer MCF-7 cells accompanied with the formation of cell clumps without clear boundaries between cells. Annexin V-FITC staining indicated that abundant phosphatidylserine appeared on the outer membrane of MCF-7 cell clumps, implying the possibility that CMS-9 may promote membrane fusion via anionic phospholipids. To validate this proposition, fusogenic activity of CMS-9 on vesicles composed of zwitterionic phospholipid alone or a combination of zwitterionic and anionic phospholipids was examined. Although CMS-9-induced fusion of zwitterionic phospholipid vesicles depended on PLA(2) activity, CMS-9-induced fusion of vesicles containing anionic phospholipids could occur without the involvement of PLA(2) activity. Membrane-damaging activity of CMS-9 was associated with its fusogenicity. Moreover, CMS-9 induced differently membrane leakage and membrane fusion of vesicles with different compositions. Membrane fluidity and binding capability with phospholipid vesicles were not related to the fusogenicity of CMS-9. However, membrane-bound conformation and mode of CMS-9 depended on phospholipid compositions. Collectively, our data suggest that PLA(2) activity-dependent and -independent fusogenicity of CMS-9 are closely related to its membrane-bound modes and targeted membrane compositions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Phosphoenolpyruvate carboxylase from C4 leaves is selectively targeted for inhibition by anionic phospholipids

    NARCIS (Netherlands)

    Monreal, J.A.; McLoughlin, F.; Echevarría, C.; García-Mauriño, S.; Testerink, C.

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme playing a crucial role in photosynthesis of C4 plants. Here, we identify anionic phospholipids as novel regulators that inhibit C4 PEPC activity and provide evidence that the enzyme partially localizes to membranes.

  13. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    Science.gov (United States)

    Assat, Gaurav; Tarascon, Jean-Marie

    2018-05-01

    Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

  14. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  15. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  16. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  17. Increased cystic fibrosis transmembrane conductance regulators expression and decreased epithelial sodium channel alpha subunits expression in early abortion: findings from a mouse model and clinical cases of abortion.

    Directory of Open Access Journals (Sweden)

    Min Zhou

    Full Text Available The status of the maternal endometrium is vital in regulating humoral homeostasis and for ensuring embryo implantation. Cystic fibrosis transmembrane conductance regulators (CFTR and epithelial sodium channel alpha subunits (ENaC-α play an important role in female reproduction by maintaining humoral and cell homeostasis. However, it is not clear whether the expression levels of CFTR and ENaC-α in the decidual component during early pregnancy are related with early miscarriage. CBA×DBA/2 mouse mating has been widely accepted as a classical model of early miscarriage. The abortion rate associated with this mating was 33.33% in our study. The decidua of abortion-prone CBA female mice (DBA/2 mated had higher CFTR mRNA and protein expression and lower ENaC-α mRNA and protein expression, compared to normal pregnant CBA mice (BLAB/C mated. Furthermore, increased CFTR expression and decreased ENaC-α expression were observed in the uterine tissue from women with early miscarriage, as compared to those with successful pregnancy. In conclusion, increased CFTR expression and decreased ENaC-α expression in the decidua of early abortion may relate with failure of early pregnancy.

  18. Curcumin/poly(2-methyl-2-oxazoline-b-tetrahydrofuran-b-2-methyl-2-oxazoline) formulation: An improved penetration and biological effect of curcumin in F508del-CFTR cell lines.

    Science.gov (United States)

    Gonçalves, Cristine; Gomez, Jean-Pierre; Même, William; Rasolonjatovo, Bazoly; Gosset, David; Nedellec, Steven; Hulin, Philippe; Huin, Cécile; Le Gall, Tony; Montier, Tristan; Lehn, Pierre; Pichon, Chantal; Guégan, Philippe; Cheradame, Hervé; Midoux, Patrick

    2017-08-01

    Neutral amphiphilic triblock ABA copolymers are of great interest to solubilize hydrophobic drugs. We reported that a triblock ABA copolymer consisting of methyl-2-oxazoline (MeOx) and tetrahydrofuran (THF) (MeOx 6 -THF 19 -MeOx 6 ) (TBCP2) can solubilize curcumin (Cur) a very hydrophobic molecule exhibiting multiple therapeutic effects but whose insolubility and low stability in water is a major drawback for clinical applications. Here, we provide evidences by flow cytometry and confocal microscopy that Cur penetration in normal and ΔF508-CFTR human airway epithelial cell lines is facilitated by TBCP2. When used on ΔF508-CFTR cell lines, the Cur/TBCP2 formulation promotes the restoration of the expression of the CFTR protein in the plasma membrane. Furthermore, patch-clamp and MQAE fluorescence experiments show that this effect is associated with a correction of a Cl - selective current at the membrane surface of F508del-CFTR cells. The results show the great potential of the neutral amphiphilic triblock copolymer MeOx 6 -THF 19 -MeOx 6 as carrier for curcumin in a Cystic Fibrosis context. We anticipate that other MeOx n -THF m -MeOx n copolymers could have similar behaviours for other highly insoluble therapeutic drugs or cosmetic active ingredients. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Intra-individual biological variation in sweat chloride concentrations in CF, CFTR dysfunction, and healthy pediatric subjects.

    Science.gov (United States)

    Cirilli, Natalia; Raia, Valeria; Rocco, Ilaria; De Gregorio, Fabiola; Tosco, Antonella; Salvadori, Laura; Sepe, Angela Ornella; Buzzetti, Roberto; Minicuci, Nadia; Castaldo, Giuseppe

    2018-04-02

    The sweat test is one of the main diagnostic tools used in newborn screening programs and as a confirmatory test, in case of suspect of Cystic Fibrosis (CF). Since sweat chloride (Cl) concentration is also considered an appropriate parameter to explore the efficacy of CFTR modulators in clinical trials, it is crucial to evaluate the biological variability of this test in healthy and pathological conditions. The aim of this pilot study was to determine the intra-individual biological variability of sweat Cl, both in healthy individuals and CF patients and to assess its correlation with diet, season, and menstrual cycle. Thirty-five out of 36 selected subjects (6-18 years) were enrolled by 2 CF care centers and assigned to 3 cohorts: CF, CFTR-related disorder (CFTR-RD) and healthy volunteers. Each participant was subjected to eight sweat tests in different conditions and time of the year. Data were analyzed using linear mixed effects models for repeated measures, taking also into account intra-individual correlations. We observed a high intra-individual variability of sweat Cl, with the lowest mean CV% values among CF patients (20.21 in CF, 29.74 in CFTR-RD, and 31.15 in healthy subjects). Gender and diet had no influence on sweat Cl variability, nor had pubertal age and menstrual phase. Results of this pilot study confirmed that sweat Cl variability is high in CF patients, although non-CF individuals displayed even higher mean CV% values. Season significantly influenced sweat test values only in CF patients, likely due to changes in their hydration status. © 2018 Wiley Periodicals, Inc.

  20. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M

    2013-06-01

    the effect of GSNO on Cl(-) efflux is, at least in part, due to its properties as an NO-donor, and the effect is likely to be mediated by CFTR, not by Ca(2+)-activated Cl(-) channels. Copyright © 2013. Published by Elsevier Inc.

  1. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+ -ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones

    DEFF Research Database (Denmark)

    Madsen, Steffen; Jensen, Lars Nørholm; Tipsmark, Christian Kølbaek

    2007-01-01

    -regulated kinase (ERK) 1/2 was stimulated by EGF but not affected by IGF-I. This study is the first to report a branchial EGF response and to demonstrate a functional ERK 1/2 pathway in the teleost gill. In conclusion, CFTR and Na(+),K(+) -ATPase are differentially regulated by salinity and hormones in gills...

  2. Specific anion effects on copper surface through electrochemical treatment: Enhanced photoelectrochemical CO2 reduction activity of derived nanostructures induced by chaotropic anions

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah

    2018-05-01

    Copper derivatives are the most prominent CO2 reduction electrocatalyst. Herein, the metallic copper has been electrochemically treated with some of common ionic salts such as N3bar, HPO2bar, S2bar, Fbar, Clbar, Brbar and Ibar based on the dissolution of a metallic working electrode in an aqueous solution to derive the surface roughness incorporated with nanostructures. Diverse surface morphology can be obtained when the ionic radii of anions are changed. Surface study reveals various roughness shapes based on the size and polarity of the anions, where the ions with higher ionic radii have higher impact on the Cu surface. In comparison, polyatomic oxyanion such as HPO2bar even with large ionic radii do not have enough strength to create the surface roughness than that of oxygen-free anions with large ionic radii. The photoelectrochemical behavior of the modified surfaces toward CO2 reduction is studied at a wide potential window in bicarbonate aqueous solution. Based on our investigations, treated surfaces by Ibar, Clbar and S2bargive a more surface roughness, while Ibar and N3bar offer higher catalytic activity toward CO2 reduction due to possible complexing ability of these anions with Cu cations, followed by formation of the co-catalyst semiconductor and facilitate electron transfer. This methodology can be applied to investigate the effect of ions on transition metals along with obtaining different surface morphologies tailored to different applications.

  3. Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: A speciation-based approach

    International Nuclear Information System (INIS)

    Su Tingzhi; Guan Xiaohong; Tang Yulin; Gu Guowei; Wang Jianmin

    2010-01-01

    Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.

  4. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  5. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  6. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii.

    OpenAIRE

    Akporiaye, E T; Baca, O G

    1983-01-01

    Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.

  7. Ameloblast Modulation and Transport of Cl⁻, Na⁺, and K⁺ during Amelogenesis.

    Science.gov (United States)

    Bronckers, A L J J; Lyaruu, D; Jalali, R; Medina, J F; Zandieh-Doulabi, B; DenBesten, P K

    2015-12-01

    Ameloblasts express transmembrane proteins for transport of mineral ions and regulation of pH in the enamel space. Two major transporters recently identified in ameloblasts are the Na(+)K(+)-dependent calcium transporter NCKX4 and the Na(+)-dependent HPO4 (2-) (Pi) cotransporter NaPi-2b. To regulate pH, ameloblasts express anion exchanger 2 (Ae2a,b), chloride channel Cftr, and amelogenins that can bind protons. Exposure to fluoride or null mutation of Cftr, Ae2a,b, or Amelx each results in formation of hypomineralized enamel. We hypothesized that enamel hypomineralization associated with disturbed pH regulation results from reduced ion transport by NCKX4 and NaPi-2b. This was tested by correlation analyses among the levels of Ca, Pi, Cl, Na, and K in forming enamel of mice with null mutation of Cftr, Ae2a,b, and Amelx, according to quantitative x-ray electron probe microanalysis. Immunohistochemistry, polymerase chain reaction analysis, and Western blotting confirmed the presence of apical NaPi-2b and Nckx4 in maturation-stage ameloblasts. In wild-type mice, K levels in enamel were negatively correlated with Ca and Cl but less negatively or even positively in fluorotic enamel. Na did not correlate with P or Ca in enamel of wild-type mice but showed strong positive correlation in fluorotic and nonfluorotic Ae2a,b- and Cftr-null enamel. In hypomineralizing enamel of all models tested, 1) Cl(-) was strongly reduced; 2) K(+) and Na(+) accumulated (Na(+) not in Amelx-null enamel); and 3) modulation was delayed or blocked. These results suggest that a Na(+)K(+)-dependent calcium transporter (likely NCKX4) and a Na(+)-dependent Pi transporter (potentially NaPi-2b) located in ruffle-ended ameloblasts operate in a coordinated way with the pH-regulating machinery to transport Ca(2+), Pi, and bicarbonate into maturation-stage enamel. Acidification and/or associated physicochemical/electrochemical changes in ion levels in enamel fluid near the apical ameloblast membrane may

  8. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer (SG); (Columbia); (JHU)

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  9. Structure and Dynamics of NBD1 from CFTR Characterized Using Crystallography and Hydrogen/Deuterium Exchange Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, H.A.; Wang, C.; Zhao, X.; Hamuro, Y.; Conners, K.; Kearins, M.C.; Lu, F.; Sauder, J.M.; Molnar, K.S.; Coales, S.J.; Maloney, P.C.; Guggino, W.B.; Wetmore, D.R.; Weber, P.C.; Hunt, J.F. (SGX); (ExSAR); (Cystic); (JHU-MED); (Columbia)

    2012-04-30

    The {Delta}F508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and {Delta}F508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because {Delta}F508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and {Delta}F508 constructs, and the {Delta}F508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide {sup 1}H/{sup 2}H exchange rates in matched F508 and {Delta}F508 constructs reveal that {Delta}F508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the {Delta}F508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-{Delta}F508 structures but completely solvent exposed in all {Delta}F508 structures. These results reinforce the importance of the perturbation {Delta}F508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased

  10. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.

    Science.gov (United States)

    Rosser, Meredith F N; Grove, Diane E; Chen, Liling; Cyr, Douglas M

    2008-11-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRDeltaF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.

  11. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis.

    Science.gov (United States)

    Xu, X-X; Zhang, Y-Q; Freed, S; Yu, J; Gao, Y-F; Wang, S; Ouyang, L-N; Ju, W-Y; Jin, F-L

    2016-12-01

    Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.

  12. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  13. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. N1303K (c.3909C>G) Mutation and Splicing: Implication of Its c.[744-33GATT(6); 869+11C>T] Complex Allele in CFTR Exon 7 Aberrant Splicing

    Science.gov (United States)

    Farhat, Raëd; Puissesseau, Géraldine; El-Seedy, Ayman; Pasquet, Marie-Claude; Adolphe, Catherine; Corbani, Sandra; Megarbané, André; Kitzis, Alain; Ladeveze, Véronique

    2015-01-01

    Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasians. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys, old nomenclature: N1303K) is one of the most common worldwide mutations. This mutation has been found at high frequencies in the Mediterranean countries with the highest frequency in the Lebanese population. Therefore, on the genetic level, we conducted a complete CFTR gene screening on c.3909C>G Lebanese patients. The complex allele c.[744-33GATT(6); 869+11C>T] was always associated with the c.3909C>G mutation in cis in the Lebanese population. In cellulo splicing studies, realized by hybrid minigene constructs, revealed no impact of the c.3909C>G mutation on the splicing process, whereas the associated complex allele induces minor exon skipping. PMID:26075213

  15. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine.

    Directory of Open Access Journals (Sweden)

    Ailín C Rogers

    Full Text Available Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR, is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK, can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK. In order to substantiate our findings on the whole tissue level, short-circuit current (SCC was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.

  16. Interaction between a novel TGFB1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis.

    Science.gov (United States)

    Bremer, Lindsay A; Blackman, Scott M; Vanscoy, Lori L; McDougal, Kathryn E; Bowers, Amanda; Naughton, Kathleen M; Cutler, David J; Cutting, Garry R

    2008-07-15

    Cystic fibrosis (CF), the most common lethal single gene disorder in Caucasians, is due to mutations in the CFTR gene. Twin and sibling analysis indicates that modifier genes, rather than allelic variation in CFTR, are responsible for most of the variability in severity of lung disease, the major cause of mortality in CF patients. We used a family-based approach to test for association between lung function and two functional SNPs (rs1800469, '-509' and rs1982073, 'codon 10') in the 5' region of transforming growth factor-beta1 (TGFB1), a putative CF modifier gene. Quantitative transmission disequilibrium testing of 472 CF patient-parent-parent trios revealed that both TGFB1 SNPs showed significant transmission distortion when patients were stratified by CFTR genotype. Although lung function and nutritional status are correlated in CF patients, there was no evidence of association between the TGFB1 SNPs and variation in nutritional status. Additional tagging SNPs (rs8179181, rs2278422, rs8110090, rs4803455 and rs1982072) that capture most of the diversity in TGFB1 were also typed but none showed association with variation in lung function. However, a haplotype composed of the -509 C and codon 10 T alleles along with the C allele of the 3' SNP rs8179181 was highly associated with increased lung function in patients grouped by CFTR genotype. These results demonstrate that TGFB1 is a modifier of CF lung disease and reveal a previously unrecognized beneficial effect of TGFB1 variants upon the pulmonary phenotype.

  17. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations.

    Science.gov (United States)

    McLatchie, L M; Young, J S; Fry, C H

    2014-07-01

    The aim of this study was to quantify and characterize the mechanism of non-neuronal ACh release from bladder urothelial cells and to determine if urothelial cells could be a site of action of anti-muscarinic drugs. A novel technique was developed whereby ACh could be measured from freshly isolated guinea pig urothelial cells in suspension following mechanical stimulation. Various agents were used to manipulate possible ACh release pathways in turn and to study the effects of muscarinic receptor activation and inhibition on urothelial ATP release. Minimal mechanical stimulus achieved full ACh release, indicating a small dynamic range and possible all-or-none signal. ACh release involved a mechanism dependent on the anion channel CFTR and intracellular calcium concentration, but was independent of extracellular calcium, vesicular trafficking, connexins or pannexins, organic cation transporters and was not affected by botulinum-A toxin. Stimulating ACh receptors increased ATP production and antagonizing them reduced ATP release, suggesting a link between ACh and ATP release. These results suggest that release of non-neuronal ACh from the urothelium is large enough and well located to act as a modulator of ATP release. It is hypothesized that this pathway may contribute to the actions of anti-muscarinic drugs in reducing the symptoms of lower urinary tract syndromes. Additionally the involvement of CFTR in ACh release suggests an exciting new direction for the treatment of these conditions. © 2014 The British Pharmacological Society.

  18. Cystic Fibrosis Transmembrane Regulator Modulators: Implications for the Management of Depression and Anxiety in Cystic Fibrosis.

    Science.gov (United States)

    Talwalkar, Jaideep S; Koff, Jonathan L; Lee, Hochang B; Britto, Clemente J; Mulenos, Arielle M; Georgiopoulos, Anna M

    Individuals with cystic fibrosis (CF) are at high risk for depression and anxiety, which are associated with worse medical outcomes. Novel therapies for CF hold great promise for improving physical health, but the effects of these therapies on mental health remain poorly understood. This review aims to familiarize psychiatrists with the potential effect of novel CF therapies on depression and anxiety. We discuss novel therapies that directly target the mutant CF protein, the CF transmembrane regulator (CFTR), which are called CFTR modulators. We summarize depression and anxiety screening and treatment guidelines under implementation in accredited CF centers. Case vignettes highlight the complexities of caring for individuals with CF with comorbid depression and anxiety, including patients experiencing worsening depression and anxiety proximate to initiation of CFTR modulator therapy, and management of drug-drug interactions. Although CFTR modulator therapies provide hope for improving clinical outcomes, worsening depression and anxiety occurs in some patients when starting these novel agents. This phenomenon may be multifactorial, with hypothesized contributions from CFTR modulator-psychotropic medication interactions, direct effects of CFTR modulators on central nervous system function, the psychologic effect of starting a potentially life-altering drug, and typical triggers of depression and anxiety such as stress, pain, and inflammation. The medical and psychiatric complexity of many individuals with CF warrants more direct involvement of mental health specialists on the multidisciplinary CF team. Inclusion of mental health variables in patients with CF registries will facilitate further examination at an epidemiologic level. Copyright © 2017 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  19. Incidence and Carrier Frequency of CFTR Gene Mutations in Pregnancies With Echogenic Bowel in Nova Scotia and Prince Edward Island.

    Science.gov (United States)

    Miller, Michelle E; Allen, Victoria M; Brock, Jo-Ann K

    2018-03-01

    Fetal echogenic bowel (echogenic bowel) is associated with cystic fibrosis (CF), with a reported incidence ranging from 1% to 13%. Prenatal testing for CF in the setting of echogenic bowel can be done by screening parental or fetal samples for pathogenic CFTR variants. If only one pathogenic variant is identified, sequencing of the CFTR gene can be undertaken, to identify a second pathogenic variant not covered in the standard screening panel. Full gene sequencing, however, also introduces the potential to identify variants of uncertain significance (VUSs) that can create counselling challenges and cause parental anxiety. To provide accurate counselling for families in the study population, the incidence of CF associated with echogenic bowel and the carrier frequency of CFTR variants were investigated. All pregnancies for which CF testing was undertaken for the indication of echogenic bowel (from Nova Scotia and Prince Edward Island) were identified (January 2007-July 2017). The CFTR screening and sequencing results were reviewed, and fetal outcomes related to CF were assessed. A total of 463 pregnancies with echogenic bowel were tested. Four were confirmed to be affected with CF, giving an incidence of 0.9% in this cohort. The carrier frequency of CF among all parents in the cohort was 5.0% (1 in 20); however, when excluding parents of affected fetuses, the carrier frequency for the population was estimated at 4.1% (1 in 25). CFTR gene sequencing identified an additional VUS in two samples. The incidence of CF in pregnancies with echogenic bowel in Nova Scotia and Prince Edward Island is 0.9%, with an estimated population carrier frequency of 4.1%. These results provide the basis for improved counselling to assess the risk of CF in the pregnancy, after parental carrier screening, using Bayesian probability. Counselling regarding VUSs should be undertaken before gene sequencing. Copyright © 2017 Society of Obstetricians and Gynaecologists of Canada. Published by

  20. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    Science.gov (United States)

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  1. Anion effect on the retention of recoil atom of coordination crystalline compounds

    International Nuclear Information System (INIS)

    Dimotakis, P.N.; Papadopoulos, B.P.

    1980-01-01

    The anion effect of various cobaltic crystalline compounds - having the same cation and differing in anion -on the retention of neutron activated central cobalt atom has been studied. The cation was trans-dichloro(bis)ethylenediamine cobalt(III) and the anions were simple spherical anions (Cl - , Br - , I - ), planar anions (NO 3 - ), trigonal pyramidal anions (ClO 3 - , BrO 3 - ), tetrahedral anions (SO 4 2- , CrO 4 2- , MnO 4 - ) and linear anions (SCN - ). The cobalt-60 activity after reactor irradiation either in simple Co 2+ cation or in cobaltic complex cation determined the retention values. In all irradiations at ordinary temperature and at liquid nitrogen temperature the results showed an effect of the different anions, depending on the geometry, volume and charge, on the recombination of the recoil cobalt with the ligands in the coordination sphere. (author)

  2. Analysis of the CFTR gene in Venezuelan cystic fibrosis patients, identification of six novel cystic fibrosis-causing genetic variants.

    Science.gov (United States)

    Sánchez, Karen; de Mendonca, Elizabeth; Matute, Xiorama; Chaustre, Ismenia; Villalón, Marlene; Takiff, Howard

    2016-01-01

    The mutations in the CFTR gene found in patients with cystic fibrosis (CF) have geographic differences, but there are scant data on their prevalence in Venezuelan patients. This study determined the frequency of common CFTR gene mutations in a group of Venezuelan patients with CF. The 27 exons of the CFTR gene from 110 Venezuelan patients in the National CF Program were amplified and sequenced. A total of 36 different mutations were identified, seven with frequencies greater than 1%: p.Phe508del (27.27%), p.Gly542* (3.18%), c.2988+1G>A (3.18%), p.Arg334Trp (1.36%), p.Arg1162* (1.36%), c.1-8G>C (1.36%), and p.[Gly628Arg;Ser1235Arg](1.36). In 40% of patients, all with a clinical diagnosis of CF, no mutations were found. This report represents the largest cohort of Venezuelan patients with CF ever examined, and includes a wider mutation panel than has been previously studied in this population. Mutations common in Southern European populations predominate, and several new mutations were discovered, but no mutations were found in 40% of the cohort.

  3. Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts

    International Nuclear Information System (INIS)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-01-01

    Highlights: • Heterostructured Bi 2 O 2 CO 3 /BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi 2 O 2 CO 3 /BiOI composites show high visible light photocatalytic activity. - Abstract: Bi 2 O 2 CO 3 /BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi 2 O 2 CO 3 in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO 3 2− in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi 2 O 2 CO 3 /BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi 2 O 2 CO 3 towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi 2 O 2 CO 3 , which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA

  4. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    2011-02-01

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  6. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    Science.gov (United States)

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-07

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  7. Regulators of Slc4 bicarbonate transporter activity

    Directory of Open Access Journals (Sweden)

    Ian M. Thornell

    2015-06-01

    Full Text Available The Slc4 family of transporters is comprised of anion exchangers (AE1-4, Na-coupled bicarbonate transporters (NCBTs including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2, electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2, and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE, as well as a borate transporter (BTR1. These transporters regulate intracellular pH (pHi and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO3– either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO3– transporter contributes to a cell’s ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s (e.g., Na+ or Cl–. In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both classical and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.

  8. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    Science.gov (United States)

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  9. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  10. Identification of eight novel mutations in a collaborative analysis of a part of the second transmembrane domain of the CFTR gene

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, B.; Audrezet, M.P.; Guillermit, H.; Quere, I.; Verlingue, C.; Ferec, C. (CDTS, Brest (France)); Lissens, W.; Bonduelle, M.; Liebaers, I. (University Hospital VUB, Brussels (Belgium)); Novelli, G.; Sangiuolo, F.; Dallapiccola, B. (IRCCS, Rotondo (Italy)); Kalaydjieva, L. (Inst. of Obstetrics, Sofia (Bulgaria)); Arce, M. De; Cashman, S. (Trinity College, Dublin (Ireland)); Kapranov, N. (NRC of medical Genetics, Moscow (Russian Federation)); Canki Klain, N. (Tozd Univerzitetna Ginekoloska Klinika, Ljubljana (Yugoslavia)); Lenoir, G. (Hopital des Enfants Malades Necker, Paris (France)); Chauveau, P. (Centre Hospitalier General, Le Havre (France)); Lanaerts, C. (Centre Hospitalier Regional et Universitaire, Amiens (France)); Rault, G. (Centre Helio-Marin, Roscoff (France))

    1993-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible, when mutated, for cystic fibrosis (CF), spans over 230 kb on the long arm of chromosome 7 and is composed of 27 exons. The most common mutation responsible for CF worldwide is the deletion of a phenylalanine amino acid at codon 508 in the first nucleotide-binding fold and accounts for approximately 70% of CF chromosomes studied. More than 250 other mutations have been reported through the CF Genetic Analysis Consortium. The majority of the mutations previously described lie in the two nucleotide-binding folds. To explore exhaustively other regions of the gene, particularly exons coding for transmembrane domains, the authors have initiated a collaborative study between different laboratories to screen 369 non-[Delta]F508 CF chromosomes of seven ethnic European populations (Belgian, French, Breton, Irish, Italian, Yugoslavian, Russian). Among these chromosomes carrying an unidentified mutation, 63 were from Brittany, 50 of various French origin, 45 of Irish origin, 56 of Italian origin, 41 of Belgian origin, 2 of Turkish origin, 38 of Yugoslavian origin, 22 of Russian origin, and 52 of Bulgarian origin. Diagnostic criteria for CF included at least one positive sweat test and pulmonary disease with or without pancreatic disease. Using a denaturing gradient gel electrophoresis (DGGE) assay, they have identified eight novel mutations in exon 17b coding for part of the second transmembrane domain of the CFTR and they describe them in this report. 8 refs., 1 fig., 1 tab.

  11. The CFTR Met 470 allele is associated with lower birth rates in fertile men from a population isolate.

    Directory of Open Access Journals (Sweden)

    Gülüm Kosova

    2010-06-01

    Full Text Available Although little is known about the role of the cystic fibrosis transmembrane regulator (CFTR gene in reproductive physiology, numerous variants in this gene have been implicated in etiology of male infertility due to congenital bilateral absence of the vas deferens (CBAVD. Here, we studied the fertility effects of three CBAVD-associated CFTR polymorphisms, the (TGm and polyT repeat polymorphisms in intron 8 and Met470Val in exon 10, in healthy men of European descent. Homozygosity for the Met470 allele was associated with lower birth rates, defined as the number of births per year of marriage (P = 0.0029. The Met470Val locus explained 4.36% of the phenotypic variance in birth rate, and men homozygous for the Met470 allele had 0.56 fewer children on average compared to Val470 carrier men. The derived Val470 allele occurs at high frequencies in non-African populations (allele frequency = 0.51 in HapMap CEU, whereas it is very rare in African population (Fst = 0.43 between HapMap CEU and YRI. In addition, haplotypes bearing Val470 show a lack of genetic diversity and are thus longer than haplotypes bearing Met470 (measured by an integrated haplotype score [iHS] of -1.93 in HapMap CEU. The fraction of SNPs in the HapMap Phase2 data set with more extreme Fst and iHS measures is 0.003, consistent with a selective sweep outside of Africa. The fertility advantage conferred by Val470 relative to Met470 may provide a selective mechanism for these population genetic observations.

  12. Double Properties of Novel Acylhydrazone Nanomaterials Based on a Conjugated System: Anion Binding Ability and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Xuefang Shang

    2015-10-01

    Full Text Available A series of new compounds (1–12 containing 1,5-diaza-fluorenone, 1,10-phenanthroline-5,6-dione, ferrocene-1,1ʹ-dione, anthracene-9-carbaldehyde have been synthesized and optimized. The nanomaterials were also developed successfully. The binding properties were evaluated for biologically important anions (F−, Cl−, Br−, I−, AcO−, and H2PO4− by theoretical investigation, UV-vis, and fluorescence experiments, and compound 6 displayed the strongest binding ability for AcO− ion among the synthesized compounds. Theoretical investigation analysis revealed that the intramolecular hydrogen bond existed in the structure of compound 6 and the roles of molecular frontier orbitals in molecular interplay. In addition, compound 6 showed wide antibacterial activity for colon bacillus, typhoid bacillus, and Pseudomonas aeruginosa, and inferior activity for hay bacillus and Staphylococcus aureus. This series of acylhydrazone nanomaterials showed double properties, anion binding ability, and antibacterial activity.

  13. A large-scale study of the random variability of a coding sequence: a study on the CFTR gene.

    Science.gov (United States)

    Modiano, Guido; Bombieri, Cristina; Ciminelli, Bianca Maria; Belpinati, Francesca; Giorgi, Silvia; Georges, Marie des; Scotet, Virginie; Pompei, Fiorenza; Ciccacci, Cinzia; Guittard, Caroline; Audrézet, Marie Pierre; Begnini, Angela; Toepfer, Michael; Macek, Milan; Ferec, Claude; Claustres, Mireille; Pignatti, Pier Franco

    2005-02-01

    Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (n(g) approximately 100-150 genes). In the present investigation, a large random European population sample (average n(g) approximately 1500) was studied for a single gene, the CFTR (Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q > 0.005), much lower than that of the synonymous (S) substitutions, but they showed a similar rate of subpolymorphic (q < 0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic.

  14. Putting the pieces together: a crystal clear window into CLC anion channel regulation.

    Science.gov (United States)

    Strange, Kevin

    2011-01-01

    CLC anion transport proteins function as Cl (-) channels and Cl (-) /H (+) exchangers and are found in all major groups of life including archaebacteria. Early electrophysiological studies suggested that CLC anion channels have two pores that are opened and closed independently by a "fast" gating process operating on a millisecond timescale, and a "common" or "slow" gate that opens and closes both pores simultaneously with a timescale of seconds (Figure 1A). Subsequent biochemical and molecular experiments suggested that CLC channels/transporters are homodomeric proteins ( 1-3) .

  15. Cystic fibrosis transmembrane conductance regulator is correlated closely with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters.

    Science.gov (United States)

    Jiang, L-Y; Shan, J-J; Tong, X-M; Zhu, H-Y; Yang, L-Y; Zheng, Q; Luo, Y; Shi, Q-X; Zhang, S-Y

    2014-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated to be expressed in mature spermatozoa and correlated with sperm quality. Sperm CFTR expression in fertile men is higher than that in infertile men suffering from teratospermia, asthenoteratospermia, asthenospermia and oligospermia, but it is unknown whether CFTR is correlated with sperm parameters when sperm parameters are normal. In this study, 282 healthy and fertile men with normal semen parameters were classified into three age groups, group (I): age group of 20-29 years (98 cases, 27.1 ± 6.2), group (II): age group of 30-39 years (142 cases, 33.7 ± 2.6) and group (III): age group of more than or equal to 40 years (42 cases, 44.1 ± 4.6). Sperm concentration, total count and progressive motility were analysed by computer-assisted sperm analysis. Sperm morphology was analysed by modified Papanicolaou staining. Sperm CFTR expression was conducted by indirect immunofluorescence staining. There was a significant positive correlation (P sperm progressive motility (r = 0.221) and normal morphology (r = 0.202), but there were no correlations between sperm CFTR expression and semen volume, sperm concentration, sperm total count as well as male age (P > 0.05). Our findings show that CFTR expression is associated with sperm progressive motility and normal morphology in healthy and fertile men with normal sperm parameters, but not associated with the number of spermatozoa and male age. © 2013 Blackwell Verlag GmbH.

  16. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    Science.gov (United States)

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  17. Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation.

    Directory of Open Access Journals (Sweden)

    Cédric Bernarde

    Full Text Available Airway microbiota composition has been clearly correlated with many pulmonary diseases, and notably with cystic fibrosis (CF, an autosomal genetic disorder caused by mutation in the CF transmembrane conductance regulator (CFTR. Recently, a new molecule, ivacaftor, has been shown to re-establish the functionality of the G551D-mutated CFTR, allowing significant improvement in lung function.The purpose of this study was to follow the evolution of the airway microbiota in CF patients treated with ivacaftor, using quantitative PCR and pyrosequencing of 16S rRNA amplicons, in order to identify quantitative and qualitative changes in bacterial communities. Three G551D children were followed up longitudinally over a mean period of more than one year covering several months before and after initiation of ivacaftor treatment.129 operational taxonomy units (OTUs, representing 64 genera, were identified. There was no significant difference in total bacterial load before and after treatment. Comparison of global community composition found no significant changes in microbiota. Two OTUs, however, showed contrasting dynamics: after initiation of ivacaftor, the relative abundance of the anaerobe Porphyromonas 1 increased (p<0.01 and that of Streptococcus 1 (S. mitis group decreased (p<0.05, possibly in relation to the anti-Gram-positive properties of ivacaftor. The anaerobe Prevotella 2 correlated positively with the pulmonary function test FEV-1 (r=0.73, p<0.05. The study confirmed the presumed positive role of anaerobes in lung function.Several airway microbiota components, notably anaerobes (obligate or facultative anaerobes, could be valuable biomarkers of lung function improvement under ivacaftor, and could shed light on the pathophysiology of lung disease in CF patients.

  18. Structural basis of typhod: Salmonella typhi type IVb pilin (PilS) and cystic fibrosis transmembrane conductance regulator interaction

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, A.; Saxena, A; Mok, H; Swaminathan, K

    2009-01-01

    The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.

  19. Structural basis of typhoid: Salmonella typhi type IVb pilin (PiLS) and cystic fibrosis transmembrane conductance regulator interaction

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, A.M.; Saxena, A.; Mok, H. Y.-K.; Swaminathan, K.

    2009-11-01

    The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein ({Delta}PilS), which makes the pilus, was determined at 1.9 {angstrom} resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of {Delta}PilS and a target CFTR peptide, determined at 1.8 {angstrom}, confirms that residues 113-117 (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.

  20. AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland ( Squalus acanthias).

    Science.gov (United States)

    Neuman, Rugina I; van Kalmthout, Juliette A M; Pfau, Daniel J; Menendez, Dhariyat M; Young, Lawrence H; Forrest, John N

    2018-04-01

    The production of endogenous adenosine during secretagogue stimulation of CFTR leads to feedback inhibition limiting further chloride secretion in the rectal gland of the dogfish shark (Squalus acanthias). In the present study, we examined the role of AMP-kinase (AMPK) as an energy sensor also modulating chloride secretion through CFTR. We found that glands perfused with forskolin and isobutylmethylxanthine (F + I), potent stimulators of chloride secretion in this ancient model, caused significant phosphorylation of the catalytic subunit Thr 172 of AMPK. These findings indicate that AMPK is activated during energy-requiring stimulated chloride secretion. In molecular studies, we confirmed that the activating Thr 172 site is indeed present in the α-catalytic subunit of AMPK in this ancient gland, which reveals striking homology to AMPKα subunits sequenced in other vertebrates. When perfused rectal glands stimulated with F + I were subjected to severe hypoxic stress or perfused with pharmacologic inhibitors of metabolism (FCCP or oligomycin), phosphorylation of AMPK Thr 172 was further increased and chloride secretion was dramatically diminished. The pharmacologic activation of AMPK with AICAR-inhibited chloride secretion, as measured by short-circuit current, when applied to the apical side of shark rectal gland monolayers in primary culture. These results indicate that that activated AMPK, similar to adenosine, transmits an inhibitory signal from metabolism, that limits chloride secretion in the shark rectal gland.

  1. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    Science.gov (United States)

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  2. Experimental evidence for interactions between anions and electron-deficient aromatic rings.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Darren W

    2009-06-14

    This feature article summarizes our research aimed at using electron-deficient aromatic rings to bind anions in the context of complementary research in this active field. Particular attention is paid to the different types of interactions exhibited between anions and electron-deficient arenes in solution. The 120+ references cited in this article underscore the flurry of recent activity by numerous researchers in this field, which was relatively nascent when our efforts began in 2005. While the interaction of anions with electron-deficient aromatic rings has recently garnered much attention by supramolecular chemists, the observation of these interactions is not a recent discovery. Therefore, we begin with a historical perspective on early examples of anions interacting with electron-deficient arenes. An introduction to recent (and not so recent) computational investigations concerning anions and electron-deficient aromatic rings as well as a brief structural survey of crystalline examples of this interaction are provided. Finally, the limited solution-based observations of anions interacting with electron-deficient aromatic rings are summarized to introduce our current investigations in this area. We highlight three different systems from our lab where anion-arene interactions have been investigated. First, we show that tandem hydrogen bonds and anion-arene interactions augment halide binding in solution. Second, a crystallographic and computational study highlights the multiple types of interactions possible between anions and electron-deficient arenes. Third, we summarize the first example of a class of designed receptors that emphasize the different types of anion-arene interactions possible in solution.

  3. Crystallization and Preliminary Diffraction Analysis of the CAL PDZ Domain in Complex with a Selective Peptide Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    J Amacher; P Cushing; J Weiner; D Madden

    2011-12-31

    Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel activity. Among these, the CFTR-associated ligand (CAL) has a negative effect on apical-membrane expression levels of the most common disease-associated mutant {Delta}F508-CFTR, making CAL a candidate target for the treatment of CF. A selective peptide inhibitor of the CAL PDZ domain (iCAL36) has recently been developed and shown to stabilize apical expression of {Delta}F508-CFTR, enhancing net chloride-channel activity, both alone and in combination with the folding corrector corr-4a. As a basis for structural studies of the CAL-iCAL36 interaction, a purification protocol has been developed that increases the oligomeric homogeneity of the protein. Here, the cocrystallization of the complex in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 35.9, b = 47.7, c = 97.3 {angstrom}, is reported. The crystals diffracted to 1.4 {angstrom} resolution. Based on the calculated Matthews coefficient (1.96 {angstrom}{sup 3} Da{sup -1}), it appears that the asymmetric unit contains two complexes.

  4. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations.

    Science.gov (United States)

    Vernon, Robert M; Chong, P Andrew; Lin, Hong; Yang, Zhengrong; Zhou, Qingxian; Aleksandrov, Andrei A; Dawson, Jennifer E; Riordan, John R; Brouillette, Christie G; Thibodeau, Patrick H; Forman-Kay, Julie D

    2017-08-25

    Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  6. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  7. Spectrum of CFTR gene mutations in Ecuadorian cystic fibrosis patients: the second report of the p.H609R mutation.

    Science.gov (United States)

    Ortiz, Sofía C; Aguirre, Santiago J; Flores, Sofía; Maldonado, Claudio; Mejía, Juan; Salinas, Lilian

    2017-11-01

    High heterogeneity in the CFTR gene mutations disturbs the molecular diagnosis of cystic fibrosis (CF). In order to improve the diagnosis of CF in our country, the present study aims to define a panel of common CFTR gene mutations by sequencing 27 exons of the gene in Ecuadorian Cystic Fibrosis patients. Forty-eight Ecuadorian individuals with suspected/confirmed CF diagnosis were included. Twenty-seven exons of CFTR gene were sequenced to find sequence variations. Prevalence of pathogenic variations were determined and compared with other countries' data. We found 70 sequence variations. Eight of these are CF-causing mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. Also this study is the second report of p.H609R in Ecuadorian population. Mutation prevalence differences between Ecuadorian population and other Latin America countries were found. The panel of mutations suggested as an initial screening for the Ecuadorian population with cystic fibrosis should contain the mutations: p.F508del, p.G85E, p.G330E, p.A455E, p.G970S, W1098X, R1162X, and N1303K. © 2017 NETLAB Laboratorios Especializados. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  8. Determination of iridium in the Bering Sea and Arctic Ocean seawaters by anion exchange preconcentration-neutron activation analysis

    International Nuclear Information System (INIS)

    Li Shihong; Mao Xueying; Chai Zhifang

    2004-01-01

    Anion exchange method is investigated to separate and enrich iridium in seawater by radiotracer 192 Ir. The adsorption of Ir in the resin increases with the decreasing acidity in the 0.05-1.2 mol/L HCl media, The recovery of iridium in pH=1.5 seawater reaches 89% by a single anion-exchange column. The polyethylene container of acidity of pH=1.5 are suitable for storing trace Ir in seawater. An anion exchange preconcentration-neutron activation analysis procedure is developed to determine iridium in seawaters sampled from the Bering Sea and Arctic Ocean at different depth. The reagent blank value of the whole procedures is (0.18-0.20) x 10 -12 g Ir. The iridium concentrations in the Bering Sea and Arctic Ocean seawater samples are (0.85-3.58) x 10 -12 g/L (0-3504 m) and (1.26-1.97) x 10 -12 g/L (25-1900 m), respectively

  9. Clusters of Cl- channels in CFTR-expressing em>Sf>9 cells switch spontaneously between slow and fast gating modes

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Price, E. M.; Gabriel, S. E.

    1996-01-01

    channel. Excised outside-out patches of CFTR-infected and forskolin-stimulated cells exhibited wave-like gating kinetics of well-resolved current transitions. All-point Gaussian distributions revealed contributions from several (five to nine) identical channels. Such channels, in excised outside...

  10. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  11. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  12. [Frequency of the most common mutations of the CFTR gene in peruvian patients with cystic fibrosis using the ARMS-PCR technique].

    Science.gov (United States)

    Aquino, Ruth; Protzel, Ana; Rivera, Juan; Abarca, Hugo; Dueñas, Milagros; Nestarez, Cecilia; Purizaga, Nestor; Diringer, Benoit

    2017-01-01

    To determine the frequency of the ten most common mutations of the CFTR gene reported in Latin Americausing amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR) in patients with cystic fibrosis (CF) in two referral hospitals in Peru during the year 2014. The frequency of the ten most common mutations of the CFTR gene was assessed in patients of the Hospital Nacional Edgardo Rebagliati Martins and the Instituto Nacional de Salud del Niño, both located in Lima, Peru. Blood samples were collected from 36 patients with CF, and the ARMS-PCR technique was used to determine the presence of these mutations. The study group included 73.5% of patients with a known diagnosis of CF in the country when the study was carried out. ARMS-PCR allowed three of the mutations to be identified in a combined 30.6% of the alleles from patients with CF, and 64.9% of the mutated alleles were not identified. The mutations found were p.Phe508del (22,2%), p.Gly542* (6,9%), and p.Arg1162* (1,4%). There is significant variability in both the frequency and type of mutations present in our study population and in what has been reported in other Latin American countries. It is necessary to perform studies that use complete sequencing technology for the CFTR gene to identify other mutations present in our population.

  13. The anion exchanger Ae2 is required for enamel maturation in mouse teeth

    NARCIS (Netherlands)

    Lyaruu, D.M.; Bronckers, A.L.J.J.; Mulder, L.; Mardones, P.; Medina, J.F.; Kellokumpu, S.; Oude Elferink, R.P.J.; Everts, V.

    2008-01-01

    One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl-. We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content

  14. The anion exchanger Ae2 is required for enamel maturation in mouse teeth

    NARCIS (Netherlands)

    Lyaruu, D. M.; Bronckers, A. L. J. J.; Mulder, L.; Mardones, P.; Medina, J. F.; Kellokumpu, S.; Oude Elferink, R. P. J.; Everts, V.

    2008-01-01

    One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl(-). We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content

  15. The importance of functional tests to assess the effect of a new CFTR variant when genotype-phenotype correlation is not possible.

    Science.gov (United States)

    Hinzpeter, Alexandre; Reboul, Marie-Pierre; Callebaut, Isabelle; Zordan, Cécile; Costes, Bruno; Guichoux, Julie; Iron, Albert; Lacombe, Didier; Martin, Natacha; Arveiler, Benoit; Fanen, Pascale; Fergelot, Patricia; Girodon, Emmanuelle

    2017-05-01

    In vitro functional tests aimed to investigate CFTR dysfunction appear critical to help elucidate the functional impact of new variants of uncertain clinical significance and solve inconclusive cases, especially in early deceased newborns.

  16. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  17. [Disorders of the acid-base balance and the anion gap].

    Science.gov (United States)

    Kimmel, Martin; Alscher, Mark Dominik

    2016-10-01

    The regulation of the acid-base balance and pH is critical for the organism. The most important buffer system is CO 2 / HCO 3 - . The kidney controls systemic bicarbonate and therefore the metabolic regulation and the lung is relevant for respiratory regulation by an effective CO 2 elimination. There are four acid-base disorders with two metabolic and two respiratory disorders (acidosis and alkalosis). The anion gap enables a further workup of metabolic acidosis. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  19. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    Science.gov (United States)

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  20. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  1. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    Science.gov (United States)

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  2. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  3. Frecuencia de las mutaciones más comunes del gen CFTR en pacientes peruanos con fibrosis quística mediante la técnica ARMS-PCR

    OpenAIRE

    Aquino, Ruth; Protzel, Ana; Rivera, Juan; Abarca, Hugo; Dueñas, Milagros; Nestarez, Cecilia; Purizaga, Nestor; Diringer, Benoit

    2017-01-01

    Objetivos. Determinar la frecuencia de las diez mutaciones más comúnmente reportadas en América Latina del gen CFTR mediante Sistema de Mutación Refractario a la amplificación por PCR (ARMS-PCR) en los pacientes con fibrosis quística (FQ) de dos instituciones hospitalarias de referencia en el Perú durante el año 2014. Materiales y métodos. Se evaluó la frecuencia de las diez comúnmente reportadas más comúnmente reportadas del gen CFTR en los pacientes del Hospital Nacional Edgardo Rebagliati ...

  4. Determination of Anionic Detergent Concentration of Karasu Stream in Sinop (Turkey

    Directory of Open Access Journals (Sweden)

    Ayşe Gündoğdu

    2018-02-01

    Full Text Available The study was achieved between May 2014 and April 2015 at the Karasu Creek located in the province of Sinop. It was conducted to determine anionic detergent pollution and some physicochemical properties (pH, temperature, conductivity, salinity, dissolved oxygen, total hardness, chemical oxygen demand, phosphate PO4-3, total nitrogen. The anionic detergent concentration of the stations was determined on a monthly basis. Seasonally averaged values of the anionic detergent was measured as the highest value in the autumn season. The lowest values of anionic detergent were found in stations in winter and spring. The increase in the concentration of anionic detergent is caused by population growth in residential areas, increased agricultural activities and rains, and that chemicals move to riverbed from terrestrial areas with rain water.

  5. Cystic fibrosis: a mucosal immunodeficiency syndrome

    Science.gov (United States)

    Cohen, Taylor Sitarik; Prince, Alice

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a channel that regulates the transport of ions and the movement of water across the epithelial barrier. Mutations in CFTR, which form the basis for the clinical manifestations of cystic fibrosis, affect the epithelial innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation that fails to eradicate pulmonary pathogens. Compounding the effects of excessive neutrophil recruitment, the mutant CFTR channel does not transport antioxidants to counteract neutrophil-associated oxidative stress. Whereas mutant CFTR expression in leukocytes outside of the lung does not markedly impair their function, the expected regulation of inflammation in the airways is clearly deficient in cystic fibrosis. The resulting bacterial infections, which are caused by organisms that have substantial genetic and metabolic flexibility, can resist multiple classes of antibiotics and evade phagocytic clearance. The development of animal models that approximate the human pulmonary phenotypes—airway inflammation and spontaneous infection—may provide the much-needed tools to establish how CFTR regulates mucosal immunity and to test directly the effect of pharmacologic potentiation and correction of mutant CFTR function on bacterial clearance. PMID:22481418

  6. ABH antigens as recognition sites for the activation of red blood cell anion exchange by the lectin ulex europaeus agglutinin I.

    Science.gov (United States)

    Engelmann, B

    1993-11-01

    The blood group antigen H (blood group O) and fucose-specific lectin Ulex europaeus agglutinin I (UEA1) (10 micrograms/ml) was found to increase the rate constant of Cl- efflux into 100 mM Na+ oxalate media by about 40% in erythrocytes taken from antigen H donors. In 100 mM K+ oxalate, 150 mM Na+ pyruvate and in 150 mM Na+ acetate media the lectin elevated the rate constant of Cl- efflux by 20-50%. The acceleration of Cl- efflux by UEA1 was completely blocked by 10 microM 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) indicating that the effect of the lectin is mediated by the anion exchanger of human erythrocytes (band 3 protein). In antigen A1 erythrocytes no significant stimulation of anion exchange by UEA1 was seen. The activation of Cl- efflux was completely prevented by addition of 1 mM fucose to the medium. These results suggest that the effect of UEA1 is mediated through interaction with the fucose residues of H antigens. Increasing extracellular Ca++ from 0.5 to 5 mM in Na+ pyruvate or Na+ acetate media slightly reduced the acceleration of anion exchange by the lectin. On the other hand, replacing part of extracellular chloride by bicarbonate did not considerably alter the (previously reported) stimulatory effect of UEA1 on red blood cell Ca++ uptake. This suggests that the acceleration of anion exchange and of Ca++ uptake by UEA1, respectively, are mediated by different mechanisms. It is concluded that UEA1 activates anion exchange of human erythrocytes most probably by a direct interaction with H antigens present on extracellular domains of the band 3 protein.

  7. Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

    Directory of Open Access Journals (Sweden)

    Olkowska Ewa

    2017-03-01

    Full Text Available Surface active agents (surfactants are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13 and cationic (alkylbenzyldimethylammonium (BDMA-C12-16, alkyl trimethyl ammonium (DTMA, hexadecyl piridinium chloride (HP chlorides surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs and conductivity (cationic SAAs detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

  8. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  9. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  10. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    Science.gov (United States)

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  11. A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2011-03-01

    Full Text Available Pseudomonas aeruginosa (P. aeruginosa is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD, pneumonia, cystic fibrosis (CF, and bronchiectasis. Cif (PA2934, a bacterial toxin secreted in outer membrane vesicles (OMV by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB, USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.

  12. Ivacaftor: A Novel Gene-Based Therapeutic Approach for Cystic Fibrosis

    OpenAIRE

    Condren, Michelle E.; Bradshaw, Marquita D.

    2013-01-01

    Ivacaftor is a new therapeutic agent that acts at the cystic fibrosis transmembrane conductance regulator (CFTR) channel to alter activity. It is approved for use in patients 6 years and older with cystic fibrosis who have at least 1 G551D mutation in the CFTR gene. It is unlike any other current pharmacologic agent for cystic fibrosis in that it specifically targets the gene defect associated with cystic fibrosis as opposed to treating resulting symptomology. Mucoactive agents, antibiotics, ...

  13. Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction.

    Science.gov (United States)

    Song, Shiming; Zhang, Cuifang; Chen, Zhaojie; He, Fengmei; Wei, Jie; Tan, Huihua; Li, Xuesheng

    2018-07-06

    In this study, we developed an anion exchanger-disposable pipette extraction (DPX) method to detect the residual concentrations of eight neonicotinoid insecticides (dinotefuran, acetamiprid, clothianidin, thiacloprid, imidachloprid, imidaclothiz, nitenpyram, and thiamethoxam) and eight insect growth regulators (IGRs; triflumuron, cyromazine, buprofezin, methoxyfenozide, tebufenozide, chromafenozide, fenoxycarb, and RH 5849) in Chinese honey samples collected from different floral sources and different geographical regions using liquid chromatography tandem mass spectrometry (LC-MS/MS). QAE Sephadex A-25 was used as the anion exchanger in the DPX column for the purification and cleanup of honey samples. Analytes were eluted with a mixture of acetonitrile and 0.1 M HCl, and the elution was subjected to LC analysis. This method was thoroughly validated for its reproducibility, linearity, trueness, and recovery. Satisfactory recovery of pesticides was obtained ranging from 72% to 111% with intraday RSDs (n = 5) of 1%-10%. High linearity (R 2  ≥ 0.9987) was observed for all 16 pesticides. Limits of detection and quantification for all 16 compounds ranged from 0.3 to 3 μg/kg and from 1 to 10 μg/kg, respectively. Pesticide residues (9-113 μg/kg) were found in Chinese honey samples. The anion exchanger-DPX method was effective for removing sugars and retaining target analytes. Moreover, this method was highly reliable and sensitive for detecting neonicotinoids and IGRs in different floral sources of honey and will be applicable to matrixes with high sugar content. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway

    DEFF Research Database (Denmark)

    Kiilerich, Pia; Kristiansen, Karsten; Madsen, Steffen S

    2007-01-01

    Based on real-time RT-PCR, analysis of transcripts of selected ion-regulatory proteins (Na(+), K(+)-ATPase alpha1a and alpha1b subunit, Na(+), K(+), 2Cl(-) cotransporter, cystic fibrosis transmembrane conductance regulator (CFTR), and H(+)-ATPase B-subunit), the regulatory role of cortisol and th...

  15. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  16. Estudo de mutações do gene CFTR e da concentração sérica da lectina ligante de manose (MBL) em crianças com fibrose cística identificadas pela triagem neonatal

    OpenAIRE

    Ribas, Danieli Isabel Romanovitch

    2014-01-01

    Orientador: Prof. Dr. Nelson Augusto Rosário Filho Co-orientadora: Profª. Drª. Lilian Pereira Ferrari Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências da Saúde, Programa de Pós-Graduação em Medicina Interna. Defesa : Curitiba, 19/12/2014 Inclui referências Resumo: A fibrose cística é uma doença hereditária autossômica recessiva, causada por mutações no gene CFTR (Cystic Fibrosis Transmembrane Conductance Regulator). Apresenta grande variação clínica, mesm...

  17. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    Directory of Open Access Journals (Sweden)

    Jung-Chin eChang

    2014-02-01

    Full Text Available The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10 was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA, sAC constitutes an HCO3-/CO¬2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment.

  18. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  19. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    International Nuclear Information System (INIS)

    Nishina, Atsuyoshi; Kimura, Hirokazu; Kozawa, Kunihisa; Sommen, Geoffroy; Nakamura, Takao; Heimgartner, Heinz; Koketsu, Mamoru; Furukawa, Shoei

    2011-01-01

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 μM, the O 2 − scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC 50 ) at 92.4 μM and acted as an effective and potentially useful O 2 − scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 μM or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 μM. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 μM induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: ► We newly synthesized 1,3-selenazolidin-4-ones to study their possible applications. ► Among new

  20. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  1. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  2. Applicability and Efficiency of NGS in Routine Diagnosis: In-Depth Performance Analysis of a Complete Workflow for CFTR Mutation Analysis.

    Directory of Open Access Journals (Sweden)

    Adrien Pagin

    Full Text Available Actually, about 2000 sequence variations have been documented in the CFTR gene requiring extensive and multi-step genetic testing in the diagnosis of cystic fibrosis and CFTR-related disorders. We present a two phases study, with validation and performance monitoring, of a single experiment methodology based on multiplex PCR and high throughput sequencing that allows detection of all variants, including large rearrangements, affecting the coding regions plus three deep intronic loci.A total of 340 samples, including 257 patients and 83 previously characterized control samples, were sequenced in 17 MiSeq runs and analyzed with two bioinformatic pipelines in routine diagnostic conditions. We obtained 100% coverage for all the target regions in every tested sample.We correctly identified all the 87 known variants in the control samples and successfully confirmed the 62 variants identified among the patients without observing false positive results. Large rearrangements were identified in 18/18 control samples. Only 17 patient samples showed false positive signals (6.6%, 12 of which showed a borderline result for a single amplicon. We also demonstrated the ability of the assay to detect allele specific dropout of amplicons when a sequence variation occurs at a primer binding site thus limiting the risk for false negative results.We described here the first NGS workflow for CFTR routine analysis that demonstrated equivalent diagnostic performances compared to Sanger sequencing and multiplex ligation-dependent probe amplification. This study illustrates the advantages of NGS in term of scalability, workload reduction and cost-effectiveness in combination with an improvement of the overall data quality due to the simultaneous detection of SNVs and large rearrangements.

  3. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  4. Evaluation of the presence of major anionic surfactants in marine sediments.

    Science.gov (United States)

    Cantarero, S; Camino-Sánchez, F J; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Vílchez, J L; Verge, C; Reis, M S; Saraiva, P M

    2012-03-01

    The contamination of aquatic environments has become the focus of increasing regulation and public concern due to their potential and unknown negative effects on the ecosystems. The present work develops a monitoring and statistical study, based on the analysis of variance test (ANOVA) and the multivariable analysis, both for insoluble soap and LAS in order to compare the behavior of different anionic surfactants in this environmental compartment. First, a novel and successfully validated methodology to analyze insoluble soap in these samples is developed. The matrix effect and the comparison of different extraction techniques were also performed. The optimized analytical methodologies were applied to 48 representative samples collected from the Almeria Coast (Spain) and then a statistical analysis to correlate anionic surfactant concentration and several variables associated with marine sediment samples was also developed. The results obtained showed relevant conclusions related to the environmental behavior of anionic surfactants in marine sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  6. Benign and Deleterious Cystic Fibrosis Transmembrane Conductance Regulator Mutations Identified by Sequencing in Positive Cystic Fibrosis Newborn Screen Children from California.

    Science.gov (United States)

    Salinas, Danieli B; Sosnay, Patrick R; Azen, Colleen; Young, Suzanne; Raraigh, Karen S; Keens, Thomas G; Kharrazi, Martin

    2016-01-01

    Of the 2007 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutations, 202 have been assigned disease liability. California's racially diverse population, along with CFTR sequencing as part of newborn screening model, provides the opportunity to examine the phenotypes of children with uncategorized mutations to help inform disease liability and penetrance. We conducted a retrospective cohort study based on children screened from 2007 to 2011 and followed for two to six years. Newborns that screened positive were divided into three genotype groups: those with two CF-causing mutations (CF-C); those with one mutation of varying clinic consequence (VCC); and those with one mutation of unknown disease liability (Unknown). Sweat chloride tests, pancreatic sufficiency status, and Pseudomonas aeruginosa colonization were compared. Children with two CF-causing mutations had a classical CF phenotype, while 5% of VCC (4/78) and 11% of Unknown (27/244) met diagnostic criteria of CF. Children carrying Unknown mutations 2215insG with D836Y, and T1036N had early and classical CF phenotype, while others carrying 1525-42G>A, L320V, L967S, R170H, and 296+28A>G had a benign clinical presentation, suggesting that these are non-CF causing. While most infants with VCC and Unknown CFTR mutations do not meet diagnostic criteria for CF, a small proportion do. These findings highlight the range of genotypes and phenotypes in the first few years of life following CF newborn screening when CFTR sequencing is performed.

  7. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3.

    Science.gov (United States)

    Pearce, Paul E; Perez, Arnaud J; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M; Van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g -1 . In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li 2 IrO 3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e - per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (M n+ ) and anionic (O 2 ) n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li 2 IrO 3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir 4+ at potentials as low as 3.4 V versus Li + /Li 0 , as equivalently observed in the layered α-Li 2 IrO 3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  8. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  9. Contribution of attendant anions on cadmium toxicity to soil enzymes.

    Science.gov (United States)

    Tian, Haixia; Kong, Long; Megharaj, Mallavarapu; He, Wenxiang

    2017-11-01

    Sorption and desorption are critical processes to control the mobility and biotoxicity of cadmium (Cd) in soils. It is known that attendant anion species of heavy metals could affect metal adsorption on soils and might further alter their biotoxicity. However, for Cd, the influence of attendant anions on its sorption in soils and subsequent toxicity on soil enzymes are still unknown. In this work, four Cd compounds with different salt anions (SO 4 2- , NO 3 - , Cl - , and Ac - ) were selected to investigate their impact of on the sorption, soil dehydrogenase activity (DHA) and alkaline phosphatase activity (ALP). Thus, a series of simulated Cd pollution batch experiments including measuring adsorption-desorption behavior of Cd on soils and soil enzyme activities were carried out. Results showed that CdSO 4 exhibited highest sorption capacity among the tested soils except in Hunan soil. The Cd sorption with NO 3 - displayed a similar behavior with Cl - on all tested soils. Compared with soil properties, all four kinds of anions on Cd sorption played a more significant role affecting Cd ecological toxicity to soil DHA and ALP. Cd in acetate or nitrate form appears more sensitive towards DHA than sulphate and chloride, while the later pair is more toxic towards ALP than the former. These results have important implications for evaluation of Cd contamination using soil enzyme as bioindicator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  11. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  12. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  13. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  14. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  15. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Directory of Open Access Journals (Sweden)

    Jens Kvist Madsen

    2015-04-01

    Full Text Available Biosurfactants (BS are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ, the phospholipase Lecitase Ultra® (LT and the α-amylase Stainzyme® (SZ. Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  16. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  17. Benign and Deleterious Cystic Fibrosis Transmembrane Conductance Regulator Mutations Identified by Sequencing in Positive Cystic Fibrosis Newborn Screen Children from California.

    Directory of Open Access Journals (Sweden)

    Danieli B Salinas

    Full Text Available Of the 2007 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR mutations, 202 have been assigned disease liability. California's racially diverse population, along with CFTR sequencing as part of newborn screening model, provides the opportunity to examine the phenotypes of children with uncategorized mutations to help inform disease liability and penetrance.We conducted a retrospective cohort study based on children screened from 2007 to 2011 and followed for two to six years. Newborns that screened positive were divided into three genotype groups: those with two CF-causing mutations (CF-C; those with one mutation of varying clinic consequence (VCC; and those with one mutation of unknown disease liability (Unknown. Sweat chloride tests, pancreatic sufficiency status, and Pseudomonas aeruginosa colonization were compared.Children with two CF-causing mutations had a classical CF phenotype, while 5% of VCC (4/78 and 11% of Unknown (27/244 met diagnostic criteria of CF. Children carrying Unknown mutations 2215insG with D836Y, and T1036N had early and classical CF phenotype, while others carrying 1525-42G>A, L320V, L967S, R170H, and 296+28A>G had a benign clinical presentation, suggesting that these are non-CF causing.While most infants with VCC and Unknown CFTR mutations do not meet diagnostic criteria for CF, a small proportion do. These findings highlight the range of genotypes and phenotypes in the first few years of life following CF newborn screening when CFTR sequencing is performed.

  18. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Science.gov (United States)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  19. l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor.

    Science.gov (United States)

    Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin; Weeks, Christopher G; Peña Garcia, Jaime A; Skinner, Daniel; Grayson, Jessica W; Hill, Harrison S; Alexander, David K; Zhang, Shaoyan; Woodworth, Bradford A

    2018-05-01

    Biofilms may contribute to refractory chronic rhinosinusitis (CRS), as they lead to antibiotic resistance and failure of effective clinical treatment. l-Methionine is an amino acid with reported biofilm-inhibiting properties. Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator with mild antimicrobial activity via inhibition of bacterial DNA gyrase and topoisomerase IV. The objective of this study was to evaluate whether co-treatment with ivacaftor and l-methionine can reduce the formation of Pseudomonas aeruginosa biofilms. P aeruginosa (PAO-1 strain) biofilms were studied in the presence of l-methionine and/or ivacaftor. For static biofilm assays, PAO-1 was cultured in a 48-well plate for 72 hours with stepwise combinations of these agents. Relative biofilm inhibitions were measured according to optical density of crystal violet stain at 590 nm. Live/dead assays (BacTiter-Glo™ assay, Promega) were imaged with laser scanning confocal microscopy. An agar diffusion test was used to confirm antibacterial effects of the drugs. l-Methionine (0.5 μM) significantly reduced PAO-1 biofilm mass (32.4 ± 18.0%; n = 4; p l-methionine (two-way analysis of variane, p = 0.0415) compared with corresponding concentrations of l-methionine alone. Ivacaftor enhanced the anti-biofilm activity of l-methionine against the PAO-1 strain of P aeruginosa. Further studies evaluating the efficacy of ivacaftor/l-methionine combinations for P aeruginosa sinusitis are planned. © 2018 ARS-AAOA, LLC.

  20. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....

  1. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  2. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, N.; van der Ham, Aloysius G.J.; Euverink, G.J.W.; de Haan, A.B.

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  3. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  4. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  5. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    Science.gov (United States)

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  6. Sleep Phase Delay in Cystic Fibrosis: A Potential New Manifestation of Cystic Fibrosis Transmembrane Regulator Dysfunction.

    Science.gov (United States)

    Jensen, Judy L; Jones, Christopher R; Kartsonaki, Christiana; Packer, Kristyn A; Adler, Frederick R; Liou, Theodore G

    2017-08-01

    Cystic fibrosis (CF) transmembrane regulator (CFTR) protein dysfunction causes CF. Improving survival allows detection of increasingly subtle disease manifestations. CFTR dysfunction in the central nervous system (CNS) may disturb circadian rhythm and thus sleep phase. We studied sleep in adults to better understand potential CNS CFTR dysfunction. We recruited participants from April 2012 through April 2015 and administered the Munich Chronotype Questionnaire (MCTQ). We compared free-day sleep measurements between CF and non-CF participants and investigated associations with CF survival predictors. We recruited 23 female and 22 male adults with CF aged 18 to 46 years and 26 female and 22 male volunteers aged 18 to 45 years. Compared with volunteers without CF, patients with CF had delayed sleep onset (0.612 h; P = .015), midsleep (1.11 h; P < .001), and wake (1.15 h; P < .001) times and prolonged sleep latency (7.21 min; P = .05) and duration (0.489 h; P = .05). Every hour delay in sleep onset was associated with shorter sleep duration by 0.29 h in patients with CF and 0.75 h in subjects without CF (P = .007) and longer sleep latency by 7.51 min in patients with CF and 1.6 min in volunteers without CF (P = .035). Among patients with CF, FEV 1 % predicted, prior acute pulmonary exacerbations, and weight were independent of all free-day sleep measurements. CF in adults is associated with marked delays in sleep phase consistent with circadian rhythm phase delays. Independence from disease characteristics predictive of survival suggests that sleep phase delay is a primary manifestation of CFTR dysfunction in the CNS. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  7. Mutations in CFTR gene and clinical correlation in Argentine patients with congenital bilateral absence of the vas deferens Correlación de las características clínicas con mutaciones del gen CFTR en pacientes argentinos con ausencia bilateral congénita de vasos deferentes

    Directory of Open Access Journals (Sweden)

    Estrella M Levy

    2004-06-01

    Full Text Available Congenital bilateral absence of the vas deferens (CBAVD is a form of male infertility in which mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene have been identified. Here we identify different mutations of CFTR and the poly-T variant of intron 8 (IVS8 in Argentine patients and analyze sweat test values and clinical characteristic related to Cystic Fibrosis (CF. For counseling purposes the two most frequent mutations in Argentine CF population: DF508 and G542X were screened in wives. In all cases, it was possible to reduce the risk of CF/CBAVD descendants in these couples because none of the mutation were found in the 36 samples. Eight patients (23% showed abnormal chloride values (> 60 mmol/l. A second group of 6 patients (18% had borderline values of sweat chloride (40-59 mmol/l. We defined another group with 6 patients (18%, with normal sweat chloride levels (30-39 mmo/l and a fourth group of 14 (41% patients with sweat chloride below 30 mmol/l. DF508, the most frequent CF mutation in the Argentine population, was found on 15 of the 72 chromosomes (21%, R117H mutation was detected on 2 of 62 chromosomes (3%. Only one R347P allele was found on 28 chromosomes analyzed (2%. On a sample of 27 patients, IVS8 analysis showed a frequency of 6/56 chromosomes (11% of 5T allele. Even though these findings present an improvement in the detection of mutations related to clinical correlations in Argentine CBAVD population, the search for other common and uncommon mutations should be continued.La ausencia bilateral congénita de vasos deferentes (CBAVD es una forma de infertilidad masculina en la que se han identificado mutaciones en el gen de la conductancia transmembrana de la fibrosis quística (CFTR. Hemos estudiado en pacientes argentinos diferentes mutaciones en el CFTR y la variante poli T del intron 8 (IVS8 y analizado los valores de test del sudor y las características clínicas relacionadas a la Fibrosis Qu

  8. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  9. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  10. Breakthrough Therapies: Cystic Fibrosis (CF) Potentiators and Correctors

    Science.gov (United States)

    Solomon, George M.; Marshall, Susan G.; Ramsey, Bonnie W.; Rowe, Steven M.

    2015-01-01

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators is also emphasized. PMID:26097168

  11. A European regulatory perspective on cystic fibrosis: current treatments, trends in drug development and translational challenges for CFTR modulators.

    Science.gov (United States)

    Ponzano, Stefano; Nigrelli, Giulia; Fregonese, Laura; Eichler, Irmgard; Bertozzi, Fabio; Bandiera, Tiziano; Galietta, Luis J V; Papaluca, Marisa

    2018-06-30

    In this article we analyse the current authorised treatments and trends in early drug development for cystic fibrosis (CF) in the European Union for the time period 2000-2016. The analysis indicates a significant improvement in the innovation and development of new potential medicines for CF, shifting from products that act on the symptoms of the disease towards new therapies targeting the cause of CF. However, within these new innovative medicines, results for CF transmembrane conductance regulator (CFTR) modulators indicate that one major challenge for turning a CF concept product into an actual medicine for the benefit of patients resides in the fact that, although pre-clinical models have shown good predictability for certain mutations, a good correlation to clinical end-points or biomarkers ( e.g. forced expiratory volume in 1 s and sweat chloride) for all mutations has not yet been achieved. In this respect, the use of alternative end-points and innovative nonclinical models could be helpful for the understanding of those translational discrepancies. Collaborative endeavours to promote further research and development in these areas as well as early dialogue with the regulatory bodies available at the European competent authorities are recommended. Copyright ©ERS 2018.

  12. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  13. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    Science.gov (United States)

    Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  14. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  15. Analysis of the CFTR gene in Venezuelan cystic fibrosis patients, identification of six novel cystic fibrosis-causing genetic variants

    OpenAIRE

    Sánchez, Karen; De Mendonca,Elizabeth; Matute,Xiorama; Chaustre,Ismenia; Villalon,Marlene; Takiff,Howard

    2016-01-01

    Karen Sánchez,1 Elizabeth de Mendonca,1 Xiorama Matute,2 Ismenia Chaustre,2 Marlene Villalón,3 Howard Takiff4 1Unit of Genetic and Forensic Studies, Venezuelan Institute for Scientific Research (IVIC), 2Hospital JM de los Ríos, 3Hospital José Ignacio Baldo, Algodonal, National Reference Unit, 4Laboratory of Molecular Genetics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela. Abstract: The mutations in the CFTR gene found in ...

  16. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  17. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  18. Sensitization of microorganisms and enzymes by radiation-induced selective inorganic radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.

    1981-01-01

    Bacterial survival and enzymatic inactivation were examined following exposure to radiolytically-generated radical anions, X - 2 , where X=Cl, Br, I or CNS - . Depending on pH, radical anions react selectively or specifically with cysteine, tryptophan, tyrosine and histidine. Consequently, when one or more of these amino acids is crucial for enzymatic activity or bacterial survival and is attacked by a radical anion, a high degree or radiosensitization may be realized. Halide radical anions can form free chlorine, bromine or iodine. However, these bactericidal halogens are destroyed by reaction with the hydrated electron, e - sub(aq), or at pHs>9, as occurs, for example, when a medium saturated with nitrous oxide, N 2 O, and e - sub(aq) scavenger, is replaced by nitrogen or oxygen. Increasing concentration of other e - sub(aq) scavengers, such as phosphate buffer, promotes formation of halogen from halides. The conditions producing formation and elimination of halogens in irradiated media must be appreciated to avoid confusing radiosensitization by X 2 to X - 2 . Radiosensitization by radical anions of several microorganisms: S. faecalis, S. typhimurium, E. coli, and M. radiodurens is described. A crucial amino acid for survival of S. faecalis appears to be tyrosine, while both tyrosine and tryptophan seem essential for recovery of S. typhimurium from effects of ionizing radiation. It is postulated that the radiosensitizing action of radical anions involves inhibition of DNA repair of strand-breaks by depriving the cells of energy. In view of the high OH scavenging power of foods, it is concluded that the radiosensitization of bacteria and enzymes in foods by radical anions, except for special cases, is not practical. Rather, radical anions serve to identify crucial amino acids to radiosensitization mechanisms in model systems, and possibly in radiotherapy. (author)

  19. Acute and chronic influence of temperature on red blood cell anion exchange.

    Science.gov (United States)

    Jensen, F B; Wang, T; Brahm, J

    2001-01-01

    Unidirectional (36)Cl(-) efflux via the red blood cell anion exchanger was measured under Cl(-) self-exchange conditions (i.e. no net flow of anions) in rainbow trout Oncorhynchus mykiss and red-eared freshwater turtle Trachemys scripta to examine the effects of acute temperature changes and acclimation temperature on this process. We also evaluated the possible adaptation of anion exchange to different temperature regimes by including our previously published data on other animals. An acute temperature increase caused a significant increase in the rate constant (k) for unidirectional Cl(-) efflux in rainbow trout and freshwater turtle. After 3 weeks of temperature acclimation, 5 degrees C-acclimated rainbow trout showed only marginally higher Cl(-) transport rates than 15 degrees C-acclimated trout when compared at the same temperature. Apparent activation energies for red blood cell Cl(-) exchange in trout and turtle were lower than values reported in endothermic animals. The Q(10) for red blood cell anion exchange was 2.0 in trout and 2.3 in turtle, values close to those for CO(2) excretion, suggesting that, in ectothermic animals, the temperature sensitivity of band-3-mediated anion exchange matches the temperature sensitivity of CO(2) transport (where red blood cell Cl(-)/HCO(3)(-) exchange is a rate-limiting step). In endotherms, such as man and chicken, Q(10) values for red blood cell anion exchange are considerably higher but are no obstacle to CO(2) transport, because body temperature is normally kept constant at values at which anion exchange rates are high. When compared at constant temperature, red blood cell Cl(-) permeability shows large differences among species (trout, carp, eel, cod, turtle, alligator, chicken and man). Cl(-) permeabilities are, however, remarkable similar when compared at preferred body temperatures, suggesting an appropriate evolutionary adaptation of red blood cell anion exchange function to the different thermal niches occupied

  20. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    Science.gov (United States)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  1. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-01-01

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange

  2. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  3. Novel short chain fatty acids restore chloride secretion in cystic fibrosis

    International Nuclear Information System (INIS)

    Nguyen, Toan D.; Kim, Ug-Sung; Perrine, Susan P.

    2006-01-01

    Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective ΔF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and α-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the ΔF508-CFTR defect. Pre-incubation (≥6 h) of CF IB3-1 airway cells with ≥1 mM ST7 or ST20 restored the ability of 100 μM forskolin to stimulate an 125 I - efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl - channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the ΔF508 mutation

  4. Organic anion transporter (Slc22a) family members as mediators of toxicity

    International Nuclear Information System (INIS)

    Sweet, Douglas H.

    2005-01-01

    Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents

  5. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  6. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    Science.gov (United States)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  7. Extracellular determinants of anion discrimination of the Cl-/H+ antiporter protein CLC-5.

    Science.gov (United States)

    De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni

    2011-12-23

    Mammalian CLC proteins comprise both Cl- channels and Cl-/H+ antiporters that carry out fundamental physiological tasks by transporting Cl- across plasma membrane and intracellular compartments. The NO3- over Cl- preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl-/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3- over Cl- preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl-. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext.

  8. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  9. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  10. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  11. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  12. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  13. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  14. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  15. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  16. Impaired activity of bile bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat

    NARCIS (Netherlands)

    Koopen, NR; Wolters, H; Havinga, R; Vonk, RJ; Jansen, PLM; Muller, M; Kuipers, F

    To test the hypothesis that impaired activity of the bile canalicular organic anion transporting system mrp2 (cmoat) is a key event in the etiology of 17 alpha-ethinylestradiol (EE)-induced intrahepatic cholestasis in rats, EE (5 mg/kg subcutaneously daily) was administered to male normal Wistar

  17. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  18. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  19. Nutritional Status Improved in Cystic Fibrosis Patients with the G551D Mutation After Treatment with Ivacaftor

    NARCIS (Netherlands)

    Borowitz, Drucy; Lubarsky, Barry; Wilschanski, Michael; Munck, Anne; Gelfond, Daniel; Bodewes, Frank; Schwarzenberg, Sarah Jane

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gating mutation G551D prevents sufficient ion transport due to reduced channel-open probability. Ivacaftor, an oral CFTR potentiator, increases the channel-open probability. To further analyze improvements in weight and body mass

  20. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  1. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  2. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  3. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  4. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  5. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  6. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  7. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  8. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1963-01-15

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.

  9. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  10. Regulation of p21ras activity

    DEFF Research Database (Denmark)

    Lowy, D R; Zhang, K; DeClue, J E

    1992-01-01

    The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control...... mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange....

  11. Regulation of ROCK Activity in Cancer

    Science.gov (United States)

    Morgan-Fisher, Marie; Wewer, Ulla M.

    2013-01-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  12. The role of the UPS in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Cyr Douglas M

    2007-11-01

    Full Text Available Abstract CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl- ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic reticulum (ER. More than 70% of patients harbor the ΔF508 CFTR mutation that causes misfolding of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS. Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the 26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the application of ‘corrector’ drugs that aid CFTR folding, shielding it from the UPS machinery. Corrector molecules elevate cellular CFTR protein levels by protecting the protein from degradation and aiding folding, promoting its maturation and localization to the apical plasma membrane. Combinatory application of corrector drugs with activator molecules that enhance CFTR Cl- ion channel activity offers significant potential for treatment of CF patients. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  13. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  14. Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Chen, Junzheng; Cao, Ruiguo; Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shi, Lili; Pan, Huilin; Zhang, Jiguang; Liu, Jun; Persson, Kristin A.; Mueller, Karl T.

    2017-10-27

    The electrolyte is a crucial component of lithium-sulfur (Li-S) batteries, as it controls polysulfide dissolution, charge shuttling processes, and solid-electrolyte interphase (SEI) layer formation. Experimentally, the overall performance of Li-S batteries varies with choice of solvent system and Li-salt used in the electrolyte, and a lack of predictive understanding about the effects of individual electrolyte components inhibits the rational design of electrolytes for Li-S batteries. Here we analyze the role of the counter anions of common Li salts (such as TfO-, FSI-, TFSI-, and TDI-) when dissolved in DOL/DME (1:1 vol.) for use in Li-S batteries. The evolution of ion-ion and ion-solvent interactions due to vari-ous anions was analyzed using 17O NMR and pulsed-field gradient (PFG) NMR and then correlated with electrochemi-cal performance in Li-S cells. These data reveal that the for-mation of the passivation layer on the anode and the loss of active materials from the cathode (evidenced by polysulfide dissolution) are related to anion mobility and affinity with lithium polysulfide, respectively. For future electrolyte de-sign, anions with lower mobility and weaker interactions with lithium polysulfides may be superior candidates for increasing the long-term stability of Li-S batteries.

  15. Extracellular Determinants of Anion Discrimination of the Cl−/H+ Antiporter Protein CLC-5*

    Science.gov (United States)

    De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni

    2011-01-01

    Mammalian CLC proteins comprise both Cl− channels and Cl−/H+ antiporters that carry out fundamental physiological tasks by transporting Cl− across plasma membrane and intracellular compartments. The NO3− over Cl− preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl−/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3− over Cl− preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl−. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext. PMID:21921031

  16. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  17. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  18. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-07-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  19. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    International Nuclear Information System (INIS)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-01-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  20. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  1. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  2. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  3. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  4. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  5. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  6. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  7. Whole body analysis of the knockout gene mouse model for cystic fibrosis using thermal and fast neutron activation analysis

    International Nuclear Information System (INIS)

    Mason, M.M.; Morris, J.S.; Derenzy, B.A.; Spate, V.L.; Horsman, T.L.; Baskett, C.K.; Nichols, T.A.; Colbert, J.W.; Clarke, L.L.; Gawenis, L.R.; Hillman, L.S.

    1998-01-01

    A genetically engineered 'knockout gene' mouse model for human cystic fibrosis (CF) has been utilized to study bone mineralization. In CF, the so-called cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride ion channel, is either absent or defective. To produce the animal model the murine CFTR gene has been inactivated producing CF symptoms in the homozygotic progeny. CF results in abnormal intestinal absorption of minerals and nutrients which presumably results in substandard bone mineralization. The objective of this study was to determine the feasibility of using whole-body thermal and fast neutron activation analysis to determine mineral and trace-element differences between homozygote controls (+/+) and CF (-/-), murine siblings. Gender-matched juvenile +/+ and -/- litter mates were lyophilized and placed in a BN capsule to reduce thermal-neutron activation and irradiated for 10 seconds at φ fast ∼ 1 x 10 13 n x cm -2 x s -1 using the MURR pneumatic-tube facility. Phosphorus was measured via the 31 P 15 (n,α) 28 Al 13 reaction. After several days decay, the whole-body specimens were re-irradiated in the same facility, but without thermal-neutron shielding, for 5 seconds and the gamma-ray spectrum was recorded at two different decay periods allowing measurement of 77m Se, 24 Na, 27m g, 38 Cl, 42k , 49 Ca, 56 Mn, 66 Cu and 80 Br from the corresponding radiative-capture reactions. (author)

  8. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  9. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  10. An electro-active paper actuator made with cellulose–polypyrrole–ionic liquid nanocomposite: influence of ionic liquid concentration, type of anion and humidity

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2010-01-01

    This paper reports a cellulose–polypyrrole–ionic liquid (CPIL) nanocomposite that can produce large actuating displacement in a low humidity environment. The fabrication process and actuator performance of the CPIL nanocomposite actuator are illustrated. Experimental results revealed that the size of anion, concentration of ionic liquid and ambient humidity level have a significant influence on the actuator performance of the CPIL nanocomposite. The bending displacement of the CPIL nanocomposite actuator was enhanced with increasing anion size, ionic liquid concentration and humidity level. CPIL nanocomposite made with 4% BMIBF 4 ionic liquid exhibited a very large bending displacement with excellent durability under ambient conditions (30% relative humidity and 25 °C). This is probably the first report that cellulose based electro-active paper actuator can exhibit such a large bending displacement under ambient conditions. Experimental results revealed that the proposed CPIL nanocomposite actuator under study can be operated up to 70% humidity level

  11. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  12. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    Science.gov (United States)

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria.

    Science.gov (United States)

    Lehninger, A L

    1974-04-01

    Measurements of extra oxygen consumption, (45)Ca(2+) uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca(2+) from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, beta-hydroxybutyrate, lactate, and bicarbonate + CO(2) supported Ca(2+) uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate "pulling" force for the influx of Ca(2+) on the electrogenic Ca(2+) carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO(2) system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca(2+) and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP(3-) for internal ATP(4-) during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca(2+), K(+), and other cations.

  14. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines

    OpenAIRE

    Sampson Heidi M; Lam Hung; Chen Pei-Chun; Zhang Donglei; Mottillo Cristina; Mirza Myriam; Qasim Karim; Shrier Alvin; Shyng Show-Ling; Hanrahan John W; Thomas David Y

    2013-01-01

    Abstract Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR...

  15. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  16. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    Science.gov (United States)

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  17. Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing

    KAUST Repository

    Masih, Dilshad

    2018-03-26

    The selectivity and sensitivity of sensors are of great interest to the materials chemistry community, and a lot of effort is now devoted to improving these characteristics. More specifically, the selective sensing of anions is one of the largest challenges impeding the sensing-research area due to their similar physical and chemical behaviors. In this work, platinum–metalated porphyrin (Pt(II)TMPyP) was successfully encapsulated in a rho-type zeolite-like metal–organic framework (rho-ZMOF) and applied for anion-selective sensing. The sensing activity and selectivity of the MOF-encaged Pt(II)TMPyP for various anions in aqueous and methanolic media were compared to that of the free (nonencapsulated) Pt(II)TMPyP. While the photoinduced triplet-state electron transfer of Pt(II)TMPyP showed a very low detection limit for anions with no selectivity, the Pt(II)TMPyP encapsulated in the rho-ZMOF framework possessed a unique chemical structure to overcome such limitations. This new approach has the potential for use in other complex sensing applications, including biosensors, which require ion selectivity.

  18. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Bartsch, Richard A.; Barr, Mary E.

    2001-01-01

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  19. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Li-Wei [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Luo, Tzuoo-Tsair [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Wang, Chih-Min [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lee, Gene-Hsiang; Peng, Shie-Ming [Department of Chemistry, National Taiwan University, Taipei 107, Taiwan (China); Liu, Yen-Hsiang [Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan (China); Lee, Sheng-Long [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Lu, Kuang-Lieh [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  20. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  1. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  2. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  3. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...... exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells....

  4. The roles of organic anion permeases in aluminium resistance and mineral nutrition.

    Science.gov (United States)

    Delhaize, Emmanuel; Gruber, Benjamin D; Ryan, Peter R

    2007-05-25

    Soluble aluminium (Al(3+)) is the major constraint to plant growth on acid soils. Plants have evolved mechanisms to tolerate Al(3+) and one type of mechanism relies on the efflux of organic anions that protect roots by chelating the Al(3+). Al(3+) resistance genes of several species have now been isolated and found to encode membrane proteins that facilitate organic anion efflux from roots. These proteins belong to the Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE) families. We review the roles of these proteins in Al(3+) resistance as well as their roles in other aspects of mineral nutrition.

  5. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling

    Directory of Open Access Journals (Sweden)

    László Jicsinszky

    2017-03-01

    Full Text Available A number of influencing factors mean that the random substitution of cyclodextrins (CD in solution is difficult to reproduce. Reaction assembly in mechanochemistry reduces the number of these factors. However, lack of water can improve the reaction outcomes by minimizing the reagent’s hydrolysis. High-energy ball milling is an efficient, green and simple method for one-step reactions and usually reduces degradation and byproduct formation. Anionic CD derivatives have successfully been synthesized in the solid state, using a planetary ball mill. Comparison with solution reactions, the solvent-free conditions strongly reduced the reagent hydrolysis and resulted in products of higher degree of substitution (DS with more homogeneous DS distribution. The synthesis of anionic CD derivatives can be effectively performed under mechanochemical activation without significant changes to the substitution pattern but the DS distributions were considerably different from the products of solution syntheses.

  6. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.

    Science.gov (United States)

    Bastonero, Sonia; Gargouri, Myriem; Ortiou, Sandrine; Guéant, Jean-Louis; Merten, Marc D

    2005-11-01

    In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action. Copyright (c) 2005 John Wiley & Sons, Ltd.

  7. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  8. Active Hydrophilic Components of the Medicinal Herb Salvia miltiorrhiza (Danshen Potently Inhibit Organic Anion Transporters 1 (Slc22a6 and 3 (Slc22a8

    Directory of Open Access Journals (Sweden)

    Li Wang

    2012-01-01

    Full Text Available Many active components of herbal products are small organic anions, and organic anion transporters were previously demonstrated to be a potential site of drug-drug interactions. In this study, we assessed the inhibitory effects of six hydrophilic components of the herbal medicine Danshen, lithospermic acid, protocatechuic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, and tanshinol, on the function of the murine organic anion transporters, mOat1 and mOat3. All of Danshen components significantly inhibited mOat1- and mOat3-mediated substrate uptake (<0.001 with lithospermic acid (LSA, protocatechuic acid, rosmarinic acid (RMA, and salvianolic acid A (SAA producing virtually complete inhibition under test conditions. Kinetic analysis demonstrated that LSA, RMA, and SAA were competitive inhibitors. As such, values were estimated as 14.9±4.9 μM for LSA, 5.5±2.2 μM for RMA, and 4.9±2.2 μM for SAA on mOat1-mediated transport, and as 31.1±7.0 μM for LSA, 4.3±0.2 μM for RMA, and 21.3±7.7 μM for SAA on mOat3-mediated transport. These data suggest that herb-drug interactions may occur in vivo on the human orthologs of these transporters in situations of polypharmacy involving Danshen and clinical therapeutics known to be organic anion transporter substrates.

  9. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  10. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  11. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  12. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  13. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  14. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  15. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  16. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-06-15

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent.

  17. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-06-01

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent

  18. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  19. Strategies for the etiological therapy of cystic fibrosis.

    Science.gov (United States)

    Maiuri, Luigi; Raia, Valeria; Kroemer, Guido

    2017-11-01

    Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies.

  20. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10 refs., 5 figs., 2 tabs

  1. Vertical detachment energies of anionic thymidine: Microhydration effects.

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F

    2010-10-14

    Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].

  2. Copper(I) coordination compounds with closododecaborate anion

    International Nuclear Information System (INIS)

    Malinina, E.A.; Drozdova, V.V.; Mustyatsa, V.N.; Goeva, L.V.; Polyakova, I.N.; Votinova, N.A.; Zhizhin, K.Yu.; Kuznetsov, N.T.

    2006-01-01

    Cu(I) Complexes with closo-dodecaborate anion Cat[CuB 12 H 12 ], where Cat= Cs + , Ph 4 P + , Ph 4 As + , R x NH 4-x + (R=Me, Et, Pr, Bu, X=3-4) are synthesized. Synthesis of complexes was conducted in the copper(II) salt-salt of dodecaborate anion-sulfur dioxide (sodium sulfite) system. Structure of the complex [Cu 2 (NCCH 3 ) 4 B 12 H 12 ] assigned by X-ray structural analysis discloses that B 12 H 12 2- anion enters into the inner sphere of metal-complexing agent, and connection of closo-borate ligand with the metal is caused by the formation of three-centric metal-hydrogen-boron bonds [ru

  3. Unusual structures of MgF5- superhalogen anion

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  4. Synergism in regulation of nuclear and radiological activities

    International Nuclear Information System (INIS)

    Buzdugan, A.

    2009-01-01

    In 2006 the reform of nuclear activity regulation in Moldova was initiated. On May 11, 2006, the Parliament of the Republic of Moldova passed the law Nr 111-XVI 'About Safe Accomplishment of Nuclear and Radiological Activity'. On the 23rd of March, 2007 the National Agency for Regulation of Nuclear and Radiological Activities (NARNRA) was founded due to the decree of the Government under the Ministry of Ecology and Natural Resources. Its first objective was elaboration of necessary regulation documents in this field

  5. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  6. Metal and anion composition of two biopolymeric chemical stabilizers and toxicity risk implication for the environment.

    Science.gov (United States)

    Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I

    2010-01-01

    The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.

  7. Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin

    International Nuclear Information System (INIS)

    Paul, Blain; Martens, Wayde N.; Frost, Ray L.

    2011-01-01

    Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N 2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.

  8. Tunable cytotoxicity of rhodamine 6G via anion variations.

    Science.gov (United States)

    Magut, Paul K S; Das, Susmita; Fernand, Vivian E; Losso, Jack; McDonough, Karen; Naylor, Brittni M; Aggarwal, Sita; Warner, Isiah M

    2013-10-23

    Chemotherapeutic agents with low toxicity to normal tissues are a major goal in cancer research. In this regard, the therapeutic activities of cationic dyes, such as rhodamine 6G, toward cancer cells have been studied for decades with observed toxicities toward normal and cancer cells. Herein, we report rhodamine 6G-based organic salts with varying counteranions that are stable under physiological conditions, display excellent fluorescence photostability, and more importantly have tunable chemotherapeutic properties. Our in vitro studies indicate that the hydrophobic compounds of this series allow production of nanoparticles which are nontoxic to normal cells and toxic to cancer cells. Furthermore, the anions, in combination with cations such as sodium, were observed to be nontoxic to both normal and cancer cells. To the best of our knowledge, this is the first demonstration that both the cation and anion play an extremely important and cooperative role in the antitumor properties of these compounds.

  9. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    Science.gov (United States)

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  10. Preparation of Cationic MOFs with Mobile Anions by Anion Stripping to Remove 2,4-D from Water

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-07-01

    Full Text Available A cationic porous framework with mobile anions (MIL-101(Cr-Cl was easily and successfully synthesized by utilizing the stronger affinity of F− to Al3+ than Cr3+ in the charge-balanced framework of MIL-101(Cr. The structure, morphology and porosity of MIL-101(Cr-Cl were characterized. The obtained new materials retain the high surface area, good thermostability, and structure topology of MIL-101(Cr. With the mobile Cl− anion, MIL-101(Cr-Cl can be used as an ion-exchange material for anionic organic pollutions. In this work, 2,4-dichlorophenoxyacetic acid (2,4-D was used as a model to test the absorption performance of this new material. This new material exhibited improved adsorbability compared to that of the original metal-organic frameworks (MOFs. At the same time, this material also shows high anti-interference performance with changing solution pH.

  11. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Science.gov (United States)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  12. Enhancement of 6-pentyl-α-pyrone fermentation activity in an extractive liquid-surface immobilization (Ext-LSI) system by mixing anion-exchange resin microparticles.

    Science.gov (United States)

    Oda, Shinobu; Michihata, Sayumi; Sakamoto, Naoki; Horibe, Hideo; Kono, Akihiko; Ohashi, Shinichi

    2012-12-01

    The addition of anion-exchange resin microparticles into a polyacrylonitrile (PAN) ballooned microsphere layer drastically enhanced the fermentative activity of Trichoderma atroviride AG2755-5NM398 in an extractive liquid-surface immobilization (Ext-LSI) system. The production of 6-pentyl-α-pyrone (6PP), a fungicidal secondary metabolite, was 1.92-fold higher than the control (PAN alone). Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Volume regulation in epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Hoffmann, Else Kay

    2016-01-01

    to amphibian skin and mammalian cortical collecting tubule of low and intermediate osmotic permeability. Crosstalk between entrance and exit mechanisms interferes with volume regulation both at aniso-osmotic and iso-osmotic volume perturbations. It has been proposed that cell volume regulation is an intrinsic...... regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell...... volume regulation. In the same cell, these functions may be maintained by different ion pathways that are separately regulated. RVD is often preceded by increase in cytosolic free Ca2+, probably via influx through TRP channels, but Ca2+ release from intracellular stores has also been observed. Cell...

  15. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  16. Clinical expression of patients with the D1152H CFTR mutation.

    Science.gov (United States)

    Terlizzi, Vito; Carnovale, Vincenzo; Castaldo, Giuseppe; Castellani, Carlo; Cirilli, Natalia; Colombo, Carla; Corti, Fabiola; Cresta, Federico; D'Adda, Alice; Lucarelli, Marco; Lucidi, Vincenzina; Macchiaroli, Annamaria; Madarena, Elisa; Padoan, Rita; Quattrucci, Serena; Salvatore, Donatello; Zarrilli, Federica; Raia, Valeria

    2015-07-01

    Discordant results were reported on the clinical expression of subjects bearing the D1152H CFTR mutation, and also for the small number of cases reported so far. A retrospective review of clinical, genetic and biochemical data was performed from individuals homozygous or compound heterozygous for the D1152H mutation followed in 12 Italian cystic fibrosis (CF) centers. 89 subjects carrying at least D1152H on one allele were identified. 7 homozygous patients had very mild clinical expression. Over half of the 74 subjects compound heterozygous for D1152H and a I-II-III class mutation had borderline or pathological sweat test and respiratory or gastrointestinal symptoms; one third had pulmonary bacteria colonization and 10/74 cases had complications (i.e. diabetes, allergic bronchopulmonary aspergillosis, and hemoptysis). However, their clinical expression was less severe as compared to a group of CF patients homozygous for the F508del mutation. Finally, 8 subjects compound heterozygous for D1152H and a IV-V class mutation showed very mild disease. The natural history of subjects bearing the D1152H mutation is widely heterogeneous and is influenced by the mutation in trans. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The a...

  18. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  19. Role of Anions Associated with the Formation and Properties of Silver Clusters.

    Science.gov (United States)

    Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan

    2015-06-16

    Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties

  20. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    Science.gov (United States)

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  2. Separation of transfer ribonucleic acids on polystyrene anion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R.P.; Griffin, G.D.; Novelli, G.D.

    1976-11-16

    The transfer RNA separation by chromatography on strong-base-polystyrene exchange materials is examined and compared with the widely used reversed-phase chromatography. Results indicate important differences in some transfer RNA (tRNA) elution patterns by the anion-exchange chromatography, as compared with the reversed-phase chromatography. Transfer RNAs containing hydrophobic groups are adsorbed more strongly. The anion exchanger has twice the number of theoretical plates. Single peaks of tRNA/sub 2//sup Glu/ and tRNA/sub 1//sup Phe/ obtained from the reversed-phase column give multiple peaks on polystyrene anion-exchange chromatography. All six leucine tRNAs (Escherichia coli) and differences in tRNA populations synthesized during early and late stages of the dividing lymphocytes from normal human blood can be characterized by the anion-exchange chromatography. Different separation profiles are obtained by two separation systems for tyrosine tRNAs from mouse liver and mouse-plasma-cell tumor. The results indicate that, in contrast to the reversed-phase chromatography, strong-base-polystyrene anion-exchange chromatography is capable of separating tRNAs with minor structural differences.

  3. Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity

    International Nuclear Information System (INIS)

    Yi, TacGhee; Kim, Hye-Jin; Cho, Je-Yoel; Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik; Baek, Jeong-Hwa

    2006-01-01

    Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation. CD9 was expressed in osteoclast lineage cells and its expression level increased during the progression of RANKL-induced osteoclastogenesis. KMC8, a neutralizing antibody specific to CD9, significantly suppressed RANKL-induced multinucleated osteoclast formation and the mRNA expression of osteoclast differentiation marker genes. To define CD9-regulated osteoclastogenic signaling pathway, MAPK pathways were examined. KMC8 induced long-term phosphorylation of p44/42 MAPK, but not of p38 MAPK. Constitutive activation of p44/42 MAPK by overexpressing constitutive-active mutant of MEK1 almost completely blocked osteoclast differentiation. Taken together, these results suggest that CD9 expressed on osteoclast lineage cells might positively regulate osteoclastogenesis via the regulation of p44/42 MAPK activity

  4. Effect of the electrolyte cations and anions on the photocurrent of dodecylsulphate doped polypyrrole films

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Milena; De Paoli, Marco-A. [Laboratorio de Poliimeros Condutores, Instituto de Quimica-UNICAMP, Universidade de Campinas, Cx Postal 6154, 13081-970 , SP Campinas (Brazil)

    2002-07-01

    Photoelectrochemical and UV-Vis spectroelectrochemical measurements were performed in a three-electrode cell containing dodecylsulphate-doped polypyrrole films as active layers in contact with different aqueous electrolytes. The effect of both cations and anions of the electrolyte on the photocurrent generation and on the absorption spectra of the system was studied. Dynamic photocurrent and absorption spectra measurements performed during the redox cycles of the films show that both cation and anion insertion and deinsertion occurs during the cycles. These results are in agreement with the previously reported redox mechanism proposed for amphiphilic anion doped polypyrrole. Reduced films show cathodic photocurrent at -0.4>E>-0.8V vs. Ag|AgCl. Photocurrent voltammograms are reproducible after the conditioning of the films and the higher cathodic currents were observed in films with thickness of =0.05-0.5{mu}m.

  5. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  6. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    Science.gov (United States)

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  7. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump.

    Science.gov (United States)

    Moriyama, Y; Nelson, N

    1987-07-05

    The proton-ATPase of chromaffin granules was purified so as to maintain its proton-pumping activity when reconstituted into phospholipid vesicles. The purification procedure involved solubilization with polyoxyethylene 9 lauryl ether, hydroxylapatite column, precipitation by ammonium sulfate, and glycerol gradient centrifugation. The protease inhibitor mixture used in previous studies inhibited the proton-pumping activity of the enzyme; therefore, the protein was stabilized by pepstatin A and leupeptin. The enzyme was purified at least 50-fold with respect to both ATPase and proton-pumping activity. The ATP-dependent proton uptake activity of the reconstituted enzyme was absolutely dependent on the presence of Cl- or Br- outside the vesicles, whereas sulfate, acetate, formate, nitrate, and thiocyanate were inhibitory. Sulfate inhibition seems to be due to competition with Cl- on the anion-binding site outside the vesicles, whereas nitrate and thiocyanate inhibited only from the internal side. As with the inhibition by N-ethylmaleimide, the proton-pumping activity was much more sensitive to nitrate than the ATPase activity. About 20 mM nitrate were sufficient for 90% inhibition of the proton-pumping activity while 100 mM inhibited only 50% of the ATPase activity both in situ and in the reconstituted enzyme. The possible regulatory effect of anions on the ATP-dependent proton uptake in secretory granules is discussed.

  8. The triel bond: a potential force for tuning anion-π interactions

    Science.gov (United States)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2018-02-01

    Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.

  9. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  10. Self-regulation as a type of managerial activity.

    Directory of Open Access Journals (Sweden)

    Anna Algazina

    2017-01-01

    Full Text Available УДК 342.9The subject. In the context of the ongoing administrative reform in the Russian Federation the issue of self-regulation is becoming increasingly important.Introduction of Institute of self-regulation is intended to reduce the degree of state intervention in private spheres of professional activity, to eliminate excessive administrative barriers, reduce government expenditures on regulation and control in their respective areas of operation, which is especially important in the current economic conditions.However, in Russian legal science is no recognized definition of "self-regulation", but a unity of views on the question of the relationship between self-regulation and state regulation of business relations.In this regard, the author attempts to examine the concept of "self-regulation" through the prism of knowledge about public administration.The purpose of the article is to identify the essential features and to articulate the concept of self-regulation by comparing it with other varieties of regulation.Methodology. The methodological basis for the study: general scientific methods (analysis, synthesis, comparison, description; private and academic (interpretation, formal-legal.Results, scope. Based on the analysis allocated in the science of administrative law approaches to the system of public administration justifies the conclusion that the notion "regulation" is specific in relation to the generic concept of "management" and is a kind of management, consisting in the drafting of rules of conduct and sanctions for non-compliance or inadequate performance.In addition, the article highlights the problem of the genesis of self-regulation, building a system of principles of self-regulation, comparison of varieties of self-regulatory organizations among themselves.Conclusions. The comparison of self-regulation other types of regulation (such as state regulation and co-regulation highlighted the essential features of this phenomenon

  11. Patchy proteins, anions and the Hofmeister series

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Mikael; Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Center for Complex Molecular Systems and Biomolecules, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic)], E-mail: mikael.lund@uochb.cas.cz

    2008-12-10

    We investigate specific anion binding to a range of patchy protein models and use our results to probe protein-protein interactions for aqueous lysozyme solutions. Our molecular simulation studies show that the ion-protein interaction mechanism and strength largely depend on the nature of the interfacial amino acid residues. Via direct ion pairing, small anions interact with charged side-chains while larger anions are attracted to non-polar residues due to several solvent assisted mechanisms. Incorporating ion and surface specificity into a mesoscopic model for protein-protein interactions we calculate the free energy of interaction between lysozyme molecules in aqueous solutions of sodium chloride and sodium iodide. In agreement with experiment, our finding is that 'salting out' follows the reverse Hofmeister series for pH below the iso-electric point and the direct series for pH above pI.

  12. New borohydride anion B6H7-

    International Nuclear Information System (INIS)

    Kuznetsov, I.Yu.; Vinitskij, D.M.; Solntsev, K.A.

    1985-01-01

    The [Ni(Bipy) 3 ] (B 6 H 7 ) 2 , (Ph 4 P)B 6 H 7 , [Ni(Phen) 3 ](B 6 H 7 ) 2 crystals (where Bipy = bipyridine, Phen = phenathroline, Ph = phenyl) are obtained via the exchange reaction with a subsequent recrystallization from aqua-acetonic and acetonic solutions. The structure is studied of a new borohydride anion B 6 H 7 - possessing a four-valence bond unique for polyhedral borohydride anions. A triangular face of boride skeleton coordinating a hydrogen atom is considerably larger than other faces, and the electron density on this hydrogen atom is evidently much higher than at the end hydride hydrogen atoms. The trend of B 6 H 7 - anion to form statistically disordered structurs testifies to a rather slight effect of the seventh hydrogen atom position on the structure pattern of the ionic crystal lattice

  13. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.; Geise, Geoffrey M.; Hatzell, Marta C.; Hickner, Michael A.; Logan, Bruce E.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  14. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  15. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  16. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  17. New anion-exchange resins for improved separations of nuclear materials

    International Nuclear Information System (INIS)

    Barr, M.E.; Bartsch, R.A.

    1998-01-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  18. c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Diana M. Dunn

    2015-08-01

    Full Text Available The ability of Heat Shock Protein 90 (Hsp90 to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific “client” proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1, promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.

  19. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  20. Effect of chemical retention on anionic species diffusion in compacted clays

    International Nuclear Information System (INIS)

    Bazer-Bachi, Frederic

    2005-01-01

    Anionic radioisotopes are of particular importance within the framework of the calculated health risk associated with high-level and long-lived intermediate-level underground radioactive waste disposal. Therefore, the objective of this work is the construction of a transport model coupled with chemistry in order to quantify the behaviour of anionic solutes in the Callovo-Oxfordian (CO_x) argillite, the argillaceous host rock of the ANDRA Meuse/Haute-Marne underground laboratory. An experimental methodology was defined to characterize this migration, several experimental methods being implemented: batch experiments, laboratory columns and through-diffusion cells. The study of the diffusion of the non-sorbing anionic tracer "3"6Cl"- highlighted the fact that, due to anionic exclusion, anions only had access to a part of the porosity. The retention of "3"5SO_4"2"- and "1"2"5I- on CO_x argillite was then characterized, quantified by batch experiments and confirmed by other experimental methods. Nevertheless, their migration was less retarded than expected by a model based on batch experiments and on "3"6Cl"- diffusive data. This difference was explained by anion exclusion which reduced sorption site accessibility. Thus, the intensity of this phenomenon has to be considered to model anion migration in compacted clays. (author) [fr

  1. Derivatives of Dodecahalo-Closo-Dodecaborate Di-Anion

    OpenAIRE

    Avelar, Amy Cindy

    2009-01-01

    ABSTRACT OF THE DISSERTATIONDerivatives of the Dodecahalo-Closo-Dodecaborate Di-AnionbyAmy AvelarDoctor of Philosophy, Graduate Program in ChemistryUniversity of California, Riverside, December 2009Dr. Christopher A. Reed, ChairpersonThe di-anion, dodecahalo-closo-dodecaborate, B12X122-, where the X = Cl or Br, has been determined to be a useful weakly coordinating anion, WCA. Despite the di- negative charge, several elusive and reactive cationic species were stabilized with B12X122- as the c...

  2. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  3. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    International Nuclear Information System (INIS)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju

    2016-01-01

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN"- selective, colorimetric sensor either without or with UV irradiation

  4. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    Science.gov (United States)

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  5. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  6. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  7. Bang-bang Model for Regulation of Local Blood Flow

    Science.gov (United States)

    Golub, Aleksander S.; Pittman, Roland N.

    2013-01-01

    The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2−) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the “bang-bang” or “on/off” regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2− into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen. PMID:23441827

  8. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  9. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.

    Science.gov (United States)

    Gasanov, Sardar E; Kim, Aleksandr A; Yaguzhinsky, Lev S; Dagda, Ruben K

    2018-02-01

    Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1 H NMR and 31 P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F 0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F 0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F 0 sector, and thereby increase ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Different activities of Schinus areira L.: anti-inflammatory or pro-inflammatory effect.

    Science.gov (United States)

    Davicino, R; Mattar, A; Casali, Y; Anesini, C; Micalizzi, B

    2010-12-01

    The anti-inflammatory drugs possess many serious side effects at doses commonly prescribed. It is really important to discover novel regulators of inflammation from natural sources with minimal adverse effects. Schinus areira L. is a plant native from South America and is used in folk medicine as an anti-inflammatory herb. For this study, the activity of aqueous extracts on inflammation and the effect on superoxide anion production in mice macrophages were assayed. Aqueous extracts were prepared by soaking herbs in cold water (cold extract), boiling water (infusion), and simmering water (decoction). Cold extract possess an anti-inflammatory activity. Decoction and infusion showed pro-inflammatory activity. Cold extract increased the production of superoxide anion. It has been proposed to use diverse methods to obtain extracts of S. areira L. with different effects. Cold extract, decoction, and infusion could be utilized as extracts or as pharmacological preparations for topical application.

  12. Closing plant stomata requires a homolog of an aluminum-activated malate transporter.

    Science.gov (United States)

    Sasaki, Takayuki; Mori, Izumi C; Furuichi, Takuya; Munemasa, Shintaro; Toyooka, Kiminori; Matsuoka, Ken; Murata, Yoshiyuki; Yamamoto, Yoko

    2010-03-01

    Plant stomata limit both carbon dioxide uptake and water loss; hence, stomatal aperture is carefully set as the environment fluctuates. Aperture area is known to be regulated in part by ion transport, but few of the transporters have been characterized. Here we report that AtALMT12 (At4g17970), a homolog of the aluminum-activated malate transporter (ALMT) of wheat, is expressed in guard cells of Arabidopsis thaliana. Loss-of-function mutations in AtALMT12 impair stomatal closure induced by ABA, calcium and darkness, but do not abolish either the rapidly activated or the slowly activated anion currents previously identified as being important for stomatal closure. Expressed in Xenopus oocytes, AtALMT12 facilitates chloride and nitrate currents, but not those of organic solutes. Therefore, we conclude that AtALMT12 is a novel class of anion transporter involved in stomatal closure.

  13. Changes in plasma osmolality and anion gap: potential predictors of ...

    African Journals Online (AJOL)

    Changes in plasma osmolality and anion gap: potential predictors of ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Objective: To determine the relationship of mortality to plasma osmolality and anion gap inpatients on haemodialysis.

  14. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    Science.gov (United States)

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  15. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  16. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  17. Monocytes from cystic fibrosis patients are locked in an LPS tolerance state: down-regulation of TREM-1 as putative underlying mechanism.

    Directory of Open Access Journals (Sweden)

    Carlos del Fresno

    Full Text Available Cystic Fibrosis (CF is an inherited pleiotropic disease that results from abnormalities in the gene that codes for the chloride channel, Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. CF patients are frequently colonized by several pathogens, but the mechanisms that allow colonization in spite of apparently functional immune systems are incompletely understood. In this paper we show that blood peripheral monocytes isolated from CF patients are found in an endotoxin tolerance state, yet this is not due to a deficient TLR activation. On the other hand, levels of the amplifier of inflammatory responses, TREM-1 (Triggering Receptor Expressed on Myeloid cells, are notably down-regulated in monocytes from patients, in comparison to those extracted from healthy volunteers. Furthermore, the soluble form of TREM-1 (sTREM-1 was not detected in the sera of patients. Additionally, and in strict contrast to patients who suffer from Chronic Obstructive Pulmonary Disease (COPD, CF monocytes challenged ex vivo with LPS neither up-regulated membrane-anchored TREM-1 nor sTREM-1. Finally, similar levels of PGE(2 expression and p65 translocation into the nucleus were found in both patients and healthy volunteers, thus suggesting that TREM-1 regulation is neither controlled by PGE(2 levels nor by p65 activation in this case. However, PU.1 translocation into the nucleus was significantly higher in CF monocytes than in controls, suggesting a role for this transcription factor in the control of TREM-1 expression. We conclude that down-regulation of TREM-1 expression in cystic fibrosis patients is at least partly responsible for the endotoxin tolerance state in which their monocytes are locked.

  18. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  19. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  20. 2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.

    Science.gov (United States)

    Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).

  1. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    2010-11-01

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  2. Radiometric determination of anionic surfactants by two-phase titration method with the use of sup(131)I-Rose Bengal as indicator

    International Nuclear Information System (INIS)

    Lengyel, J.; Krtil, J.

    1986-01-01

    A radiometric variant of the two-phase titration method for the determination of anionic surfactants of nonsoapy type is described. The method is based on the titration of an anionic surfactant with Septonex in alkaline medium in the presence of sup(131)I-Rose Bengal (sup(131)I-RB). The ion associates are extracted into chloroform. The equivalence point is determined graphically from the activity of sup(131)I-RB-Septonex associate, which is formed after the consumption of the anionic surfactant and passes into the organic phase. The influence of sup(131)I-RB amount, pH of the titrated medium and of soap on the precision of anionic surfactant determination was studied. The detection limit is 2.88 μg sodium n-dodecylsulfate in 10 ml of sample. (author)

  3. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  4. Human telomerase activity regulation

    OpenAIRE

    Wojtyla, Aneta; Gladych, Marta; Rubis, Blazej

    2010-01-01

    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control b...

  5. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    Directory of Open Access Journals (Sweden)

    Jeong HU

    2015-01-01

    Full Text Available Hyeon-Uk Jeong,1 Mihwa Kwon,2 Yongnam Lee,3 Ji Seok Yoo,3 Dae Hee Shin,3 Im-Sook Song,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea; 3Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea Abstract: We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1, OAT3, organic anion transporting polypeptide 1B1 (OATP1B1, OATP1B3, organic cation transporter 1 (OCT1, OCT2, P-glycoprotein (P-gp, and breast cancer resistance protein (BCRP. The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3 and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3. The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km =41.5 µM, maximum uptake rate (Vmax =46.2 pmol/minute, and intrinsic clearance (CLint =1.11 µL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 µL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 µ

  6. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    International Nuclear Information System (INIS)

    Wang Yuchi; Mao Hua; Wong, Lid B

    2010-01-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl - ] i ) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl - ] i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl - ] i . Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl - ] i . These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  7. Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P. [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)], E-mail: tpvalsala@yahoo.co.in; Joseph, Annie [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-02-15

    Transition metal ferrocyanides have important applications in the selective removal of radioactive caesium from low level and intermediate level radioactive liquid waste streams. The microcrystalline nature of these materials renders them useless for application in column mode operations. Special preparation procedures have been developed to prepare granular solids by in situ precipitation of metal ferrocyanides on organic anion exchangers, which is suitable for column mode operations. The elemental compositions of the metal ferrocyanides precipitated inside the pores of anion exchanger were determined by analysing the dissolved samples using ICP-AES system and flame photometer. From the XRD and EDX analyses and the elemental composition of the synthesized materials, the nature of the compound formed inside the anion exchanger was found to be cobalt ferrocyanide. From SEM analysis of the samples, the particle size of the cobalt ferrocyanide precipitated inside the anion exchanger was found to be much less than that of cobalt ferrocyanide precipitated outside. The efficiency of these materials for removal of Cs was evaluated by measuring the distribution coefficient (Kd), ion exchange capacity and kinetics of Cs uptake. The Kd of the materials loaded on anion exchanger was found to be of the order of 10{sup 5} ml/g. The Cs uptake kinetics of the materials loaded on anion exchanger was slower than that of precipitated materials. The ion exchange capacity of the cobalt ferrocyanide loaded on anion exchanger was found to be much higher than that of the precipitated cobalt ferrocyanide.

  8. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  9. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    Science.gov (United States)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  10. Cement matrix for immobilisation of spent anionic resins in borate form arising from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-11-01

    In water cooled reactors boron is added as boric acid to control nuclear reactor power levels. The boric acid concentration in coolant/moderator water, is controlled by using strongly basic anionic resins in borate (H 2 BO 3 - ) form. The spent anionic resins in borate form contain 131 Iodine, 99 Technitium and 137 Cesium activities. Direct immobilisation of anionic resins in borate form in Ordinary Portland Cement (OPC) and Slag Cement was investigated using vermiculite, bentonite, calcium oxide and silica as admixtures. The cumulative fraction of 137 Cesium leached and 137 Cesium leach rate for slag cement matrix were 0.029 and 0.00064 g.cm 2 .d -1 respectively for 95 days of leaching. The volume reduction factor achieved by direct immobilisation of anionic resins in borate form was 0.48. Immobilisation of pyrolysis residues from these resins in OPC matrix was also studied. Leaching of matrix blocks was carried out for 180 days in DM water to optimise the matrix formulation. The cumulative fraction of 137 Cesium leached and 137 Cesium leach rate were 0.076 and 0.00054 respectively for 180 days leaching. The volume reduction factor achieved by immobilisation of pyrolysis residues was 2.4. OPC is non compatible to cationic resins loaded with alkali in absence of specific admixtures. Hence cationic resins loaded with alkali and anionic resins in borate form can not be immobilised together. (author)

  11. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    International Nuclear Information System (INIS)

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238 Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from 238 Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain 238 Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed

  12. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the foll......Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  13. 30 CFR 285.1000 - What activities does this subpart regulate?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What activities does this subpart regulate? 285.1000 Section 285.1000 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... Activities § 285.1000 What activities does this subpart regulate? (a) This subpart provides the general...

  14. Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways.

    LENUS (Irish Health Repository)

    Vega-Carrascal, Isabel

    2012-02-01

    The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.

  15. Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways.

    LENUS (Irish Health Repository)

    Vega-Carrascal, Isabel

    2011-03-01

    The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.

  16. Migratory Insertion of Hydrogen Isocyanide in the Pentacyano(methyl)cobaltate(III) Anion

    DEFF Research Database (Denmark)

    Kofod, Pauli; Harris, Pernille Hanne; Larsen, Sine

    2003-01-01

    The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been spectrosco......The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been...

  17. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    International Nuclear Information System (INIS)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na; Wang Aihua

    2008-01-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo

  18. Dynamics of anion exchange of lanthanides in aqueous-organic complexing media

    International Nuclear Information System (INIS)

    Sheveleva, I.V.; Bogatyrev, I.O.

    1987-01-01

    Effect of organic solvents (ethanol, acetone, acetonitrile) on change in kinetic parameters of the anion exchange process (anion-exchange column chromatography) of r.e.e. (europium and gadolinium) in complexing nitric acid media has been studied. It is established that complex LnA 4 anion is the only sorbing form of europium and gadolinium on anionite. When the organic component content of the solution being the same, the dynamic parameters of lanthanide exchange have higher values in aqueous-acetonitrile and aqueous-acetone media in comparison with aqueous-enthanol solutions of nitric acid. Lesser mobility of complex lanthanide anions in aqueous-alcoholic solutions can be explained by stronger solvation in the presence of solvents with higher acceptor properties

  19. Institutional preconditions of socio-ecological-economic regulation of environmental management activities

    Directory of Open Access Journals (Sweden)

    T. A. Plaksunova

    2017-01-01

    Full Text Available The need to regulate environmental management activities of institutional entities arises when it affects the interests of third-party entities or threatened by the ongoing entity manufacturing practices its own resilience, to achieve the main goal. The complexity and diversity of the forms of socio-ecological and ecological-economic issues at different levels of the economic system leads to the development of many directions and views on the expansion of the management process of these levels (global, national, regional, local and techniques from rigid-deklorative state before combination with the market. In this respect, the neoclassical economic theory actively generated new analytical ideas and concept that enables to respond adequately to emerging economic realities. So we can distinguish the following approaches to regulate environmental management