WorldWideScience

Sample records for active cftr-regulated anion

  1. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome.

    Science.gov (United States)

    Chen, Hui; Guo, Jing Hui; Zhang, Xiao Hu; Chan, Hsiao Chang

    2015-05-01

    Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.

  2. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  3. Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif.

    Science.gov (United States)

    Estell, Kim; Braunstein, Gavin; Tucker, Torry; Varga, Karoly; Collawn, James F; Schwiebert, Lisa M

    2003-01-01

    Despite the identification of 1,000 mutations in the cystic fibrosis gene product CFTR, there remains discordance between CFTR genotype and lung disease phenotype. The study of CFTR, therefore, has expanded beyond its chloride channel activity into other possible functions, such as its role as a regulator of gene expression. Findings indicate that CFTR plays a role in the expression of RANTES in airway epithelia. RANTES is a chemokine that has been implicated in the regulation of mucosal immunity and the pathogenesis of airway inflammatory diseases. Results demonstrate that CFTR triggers RANTES expression via a mechanism that is independent of CFTR's chloride channel activity. Neither pharmacological inhibition of CFTR nor activation of alternative chloride channels, including hClC-2, modulated RANTES expression. Through the use of CFTR disease-associated and truncation mutants, experiments suggest that CFTR-mediated transcription factor activation and RANTES expression require (i) insertion of CFTR into the plasma membrane and (ii) an intact CFTR C-terminal PDZ-interacting domain. Expression of constructs encoding wild-type or dominant-negative forms of the PDZ-binding protein EBP50 suggests that EBP50 may be involved in CFTR-dependent RANTES expression. Together, these data suggest that CFTR modulates gene expression in airway epithelial cells while located in a macromolecular signaling complex at the plasma membrane. PMID:12509457

  4. Calcium ion activity in physiological salt solutions: influence of anions substituted for chloride

    DEFF Research Database (Denmark)

    Christoffersen, Gert Rene Juul; Skibsted, Leif H

    1975-01-01

    1. Substitution by different anions for chloride in physiological salt solutions leads to binding between Ca2+ and the anion. Experiments designed to test effects of Cl- therefore often show mixed effects of changes in Cl- and Ca2+ activity.   2. This mixed effect is demonstrated in neurons...... of the snail, Helix pomatia: current-voltage characteristics and membrane potential are described during reduction of extracellular Cl- using different anions as substitutes. Methylsulphate is concluded to be the best substitute in this preparation. 3. The association constants for the binding of Ca2...

  5. Swelling-Activated Anion Channels Are Essential for Volume Regulation of Mouse Thymocytes

    Directory of Open Access Journals (Sweden)

    Ravshan Z. Sabirov

    2011-12-01

    Full Text Available Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd3+ ions but not by phloretin. Surprisingly, [(dihydroindenyloxy] alkanoic acid (DIOA, a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD phase of cellular response to hypotonicity was mildly suppressed by Gd3+ ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl− channels.

  6. Impact of powdered activated carbon and anion exchange resin on photocatalytic treatment of textile wastewater

    OpenAIRE

    Dhas, Preethi Grace Theva Neethi; Gulyas, Holger; Otterpohl, Ralf

    2015-01-01

    In order to clarify the impact of activated carbon and anion exchange resin on photocatalytic oxidation (PCO) of textile industry wastewater, TiO2-based PCO was investigated with aqueous solutions containing the reactive dye Reactive Blue 4 (RB4) and with a textile dye house effluent in the absence and in the presence of powdered activated carbon (PAC) and the anion exchange resin Lewatit MP 500. Addition of Lewatit improved RB4 removal to a larger extent than PAC addition. Contrasting to chl...

  7. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  8. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase.

    Science.gov (United States)

    Francis, Kevin; Gadda, Giovanni

    2009-10-01

    A series of monovalent, inorganic anions and aliphatic aldehydes were tested as inhibitors for Hansenula mrakii and Neurospora crassa nitronate monooxygenase, formerly known as 2-nitropropane dioxygenase, to investigate the structural features that contribute to the binding of the anionic nitronate substrates to the enzymes. A linear correlation between the volumes of the inorganic anions and their effectiveness as competitive inhibitors of the enzymes was observed in a plot of pK(is)versus the ionic volume of the anion with slopes of 0.041+/-0.001 mM/A(3) and 0.027+/-0.001 mM/A(3) for the H. mrakii and N. crassa enzymes, respectively. Aliphatic aldehydes were weak competitive inhibitors of the enzymes, with inhibition constants that are independent of their alkyl chain lengths. The reductive half reactions of H. mrakii nitronate monooxygenase with primary nitronates containing two to four carbon atoms all showed apparent K(d) values of approximately 5 mM. These results are consistent with the presence of an anion binding pocket in the active site of nitronate monooxygenase that interacts with the nitro group of the substrate, and suggest a minimal contribution of the hydrocarbon chain of the nitronates to the binding of the ligands to the enzyme. PMID:19683782

  9. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle;

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle......-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude....

  10. Halogen bonding-enhanced electrochemical halide anion sensing by redox-active ferrocene receptors.

    Science.gov (United States)

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2015-10-01

    The first examples of halogen bonding redox-active ferrocene receptors and their anion electrochemical sensing properties are reported. Halogen bonding was found to significantly amplify the magnitude of the receptor's metallocene redox-couple's voltammetric responses for halide sensing compared to their hydrogen bonding analogues in both acetonitrile and aqueous-acetonitrile solvent media. PMID:26289779

  11. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  12. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    Science.gov (United States)

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice. PMID:24433073

  13. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds

    OpenAIRE

    Lisk, Godfrey; Pain, Margaret; Sellers, Morgan; Gurnev, Philip A.; Pillai, Ajay D.; Bezrukov, Sergey M.; Desai, Sanjay A.

    2010-01-01

    Erythrocytes infected with malaria parasites have increased permeability to various solutes. These changes may be mediated by an unusual small conductance ion channel known as the plasmodial surface anion channel (PSAC). While channel activity benefits the parasite by permitting nutrient acquisition, it can also be detrimental because water-soluble antimalarials may more readily access their parasite targets via this channel. Recently, two such toxins, blasticidin S and leupeptin, were used t...

  14. Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity.

    Science.gov (United States)

    Ardestani, Mehdi Shafiee; Fordoei, Alireza Salehi; Abdoli, Asghar; Ahangari Cohan, Reza; Bahramali, Golnaz; Sadat, Seyed Mehdi; Siadat, Seyed Davar; Moloudian, Hamid; Nassiri Koopaei, Nasser; Bolhasani, Azam; Rahimi, Pooneh; Hekmat, Soheila; Davari, Mehdi; Aghasadeghi, Mohammad Reza

    2015-05-01

    HIV is commonly caused to a very complicated disease which has not any recognized vaccine, so designing and development of novel antiretroviral agents with specific application of nanomedicine is a globally interested research subject worldwide. In the current study, a novel structure of silver complexes with anionic linear globular dendrimer was synthesized, characterized and then assessed against HIV replication pathway in vitro as well. The results showed a very good yield of synthesis (up to 70%) for the nano-complex as well as a very potent significant (P < 0.05) antiretroviral activity with non-severe toxic effects in comparison with the Nevirapine as standard drug in positive control group. According to the present data, silver anionic linear globular dendrimers complex may have a promising future to inhibit replication of HIV viruse in clinical practice.

  15. Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity.

    Science.gov (United States)

    Gopiraman, Mayakrishnan; Jatoi, Abdul Wahab; Hiromichi, Seki; Yamaguchi, Kyohei; Jeon, Han-Yong; Chung, Ill-Min; Ick Soo, Kim

    2016-09-20

    Herein, we report a comparative study of silver coated anionic cellulose nanocomposite before (CMC-Ag) and after (AgNPs/CMC) chemical reduction for antibacterial activity. Cellulose nanofibers were prepared by deacetylation of electrospun cellulose acetate nanofibers, which were then treated with sodium chloroacetate to prepare anionic cellulose nanofibers (CMC). Aqueous AgNO3 solution with different concentrations was employed to produce nanofiber composites. To obtain AgNPs/CMC, the resultant Ag/CMC nanofibers were chemically reduced with NaBH4. The nanocomposites were characterized by FE-SEM, FTIR, XPS and SEM-EDS. Antimicrobiality tests were conducted using S. aureus and Escherichia coli bacteria following standard test method JIS L1902, 2008. The EDS results confirmed higher silver content in CMC-Ag nanofibers than AgNPs/CMC nanofibers. The antimicrobial test and EDS results demonstrated higher silver release (larger halo width) by the former in comparison to later which confers better antimicrobiality by CMC-Ag nanofibers. PMID:27261729

  16. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.

    Science.gov (United States)

    Linder, B; Raschke, K

    1992-11-16

    Slowly activating anion channel currents were discovered at micromolar 'cytoplasmic' Ca2+ during patch-clamp measurements on guard-cell protoplasts of Vicia faba and Xanthium strumarium. They activated at potentials as low as -200 mV, with time constants between 5 and 60 s, and no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was in the order of seconds, and the unitary conductance was 33 ps, similar to that of the already described 'quick' anion channel of guard cells. Because of its activity at low potentials, the slow anion channel may be essential for the depolarization of the plasmalemma that is required for salt efflux during stomatal closing. PMID:1385219

  17. THE STUDY OF THE BIOLOGICAL ACTIVITY OF SOME COBALT(III DIOXIMATES WITH FLUORINE CONTAINING ANIONS

    Directory of Open Access Journals (Sweden)

    Eduard Coropceanu

    2008-12-01

    Full Text Available It was elaborated the methodology of synthesizing a series of new dioximates of Co(III with the general formula [Co(DioxH2(L2]X⋅nH2O, where DioxH – the dioxime anione: dimethylglyoxime (DH2, 1,2-cyclohexanedionedioxime (NioxH2; L - thiocarbamide (Thio, pyridine (Py, aniline (An, sulphanilamide (Sam;X - [BF4]-, [ZrF6]2-, [TiF6]2-, whose structures have been studied with the help of contemporary physical methods: spectroscopy IR, UV-Vis, RMN 1H, 19F, X-ray analysis. There were elaborated optimal conditions of using cobalt dioximates with fluorine in order to intensify the biosynthesis of amylases and lipases by Aspergillus and Rhizopus strains, respectively. The tested compounds increase the lipolytic activity of Rhizopus arrhisus micromycetes.

  18. Predicting competitive adsorption behavior of major toxic anionic elements onto activated alumina: a speciation-based approach.

    Science.gov (United States)

    Su, Tingzhi; Guan, Xiaohong; Tang, Yulin; Gu, Guowei; Wang, Jianmin

    2010-04-15

    Toxic anionic elements such as arsenic, selenium, and vanadium often co-exist in groundwater. These elements may impact each other when adsorption methods are used to remove them. In this study, we investigated the competitive adsorption behavior of As(V), Se(IV), and V(V) onto activated alumina under different pH and surface loading conditions. Results indicated that these anionic elements interfered with each other during adsorption. A speciation-based model was developed to quantify the competitive adsorption behavior of these elements. This model could predict the adsorption data well over the pH range of 1.5-12 for various surface loading conditions, using the same set of adsorption constants obtained from single-sorbate systems. This model has great implications in accurately predicting the field capacity of activated alumina under various local water quality conditions when multiple competitive anionic elements are present.

  19. Removal of cationic and anionic dyes by immobilised titanium dioxide loaded activated carbon

    International Nuclear Information System (INIS)

    Combination of adsorption and photodegradation processes induces strong beneficial effects in dye removals. Adding high adsorption capacity activated carbon to photoactive titanium dioxide is an attractive solution due to their potential in removing dyes of diverse chemical characteristics. Recently, immobilisation has been an acceptable approach to overcome the drawbacks encountered with powder suspensions. The present study involves the removals of Victoria Blue R (VBR), a cationic dye and Indigo Carmine (IC), an anionic using approximately one gram of immobilised titanium dioxide (TiO2), activated carbon (AC) and mixture titanium dioxide/ activated carbon (TiO2/ AC) from 200 mL solution at the concentration of 20 ppm under UV illumination for 4 hours. Comparisons were made in terms of their removal efficiency by applying first-order kinetics model. Immobilised TiO2 showed total removal of IC in 40 minutes whereas only 44 % of VBR was removed in 2 hours. On the other hand, in the case of immobilised AC, about 87 % of VBR and 6 % of IC were removed in 2 hours. The results obtained using immobilised TiO2/ AC proved the prominence of this immobilised sample in dealing with VBR and IC by achieving 95 % and 62 % removal respectively in 2 hours. (author)

  20. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L. bark

    Directory of Open Access Journals (Sweden)

    Janet Calero Sánchez

    2010-01-01

    Full Text Available Background: Rhizophora mangle (L. produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Methods: Rhizophora mangle (L. bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH and superoxide anion radicals scavenging. Results: IC 50 for DPPH radical-scavenging activity was 6.7 μg tannins/mL for extract and 7.6 μg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P < 0.05 in the DPPH radicals reducing power. Polyphenolic fraction exhibited better superoxide anion scavenging ability (IC 50 = 21.6 μg tannins/mL than the extract (IC 50 = 31.9 μg tannins/mL. Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P < 0.05 between extract and its polyphenolic fraction in both assays, indicating that extract was more effective in DPPH radical scavenging than its fraction at tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. Conclusions: R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds.

  1. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  2. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter;

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H......We have previously shown that peptide amide hydrogens undergo extensive intramolecular migration (i.e., complete hydrogen scrambling) upon collisional activation of protonated peptides (Jørgensen et al. J. Am. Chem. Soc. 2005, 127, 2785-2793). The occurrence of hydrogen scrambling enforces severe....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....

  3. Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia

    OpenAIRE

    Dietrich-Muszalska A; Kwiatkowska A.

    2014-01-01

    Anna Dietrich-Muszalska, Anna KwiatkowskaDepartment of Biological Psychiatry of the Chair of Experimental and Clinical Physiology, Medical University of Lodz, Lodz, PolandAbstract: Blood platelets are considered to be a peripheral marker in schizophrenia and other psychiatric disorders. Oxidative stress in schizophrenia may be responsible for changes in platelet metabolism and function; therefore, the aim of this study was to examine and compare the generation of superoxide anions and activit...

  4. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    Science.gov (United States)

    Oikonomakos, N G; Zographos, S E; Tsitsanou, K E; Johnson, L N; Acharya, K R

    1996-12-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of native phosphorylase b, but an inactive dimeric species of the enzyme can be stabilized by activator phosphite in combination with the T-state inhibitor glucose. Co-crystals of pyridoxal phosphorylase b complexed with either phosphite, phosphate, or fluorophosphate, the inhibitor glucose, and the weak activator IMP were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the structures of the complexes have been refined to give crystallographic R factors of 18.5-19.2%, for data between 8 and 2.4 A resolution. The anions bind tightly at the catalytic site in a similar but not identical position to that occupied by the cofactor 5'-phosphate group in the native enzyme (phosphorus to phosphorus atoms distance = 1.2 A). The structural results show that the structures of the pyridoxal phosphorylase b-anion-glucose-IMP complexes are overall similar to the glucose complex of native T-state phosphorylase b. Structural comparisons suggest that the bound anions, in the position observed in the crystal, might have a structural role for effective catalysis. PMID:8976550

  5. Determination of thorium and uranium in activated concrete by inductively coupled plasma mass spectrometry after anion-exchange separation

    International Nuclear Information System (INIS)

    A sensitive analytical method was established for the determination of Th and U in activated concrete samples. The method combines an anion-exchange separation step with an ICP-MS determination technique. In the ICP-MS measurement, a few μg mL-1 of Al and Ca, a few ng mL-1 of Mn, La, Ce, Nd and Pb and pg mL-1amounts of Li, Zr, Nb and Ba coexisting in the anion-exchange fraction of Th and U did not interfere. No adverse interference effects were observed in real sample analyses. The obtained detection limits (3 σ, n = 10) of Th and U were 2.3 and 1.8 pg mL -1, respectively. The analytical precisions for ca. 5 μg g -1 Th and ca. 1 μg g -1 U in real activated concrete samples were equally less than 7% RSD. The accuracies obtained by the analysis of GSJ rock standard samples were -18.1 to 0.4% for the Th determination and -14.0 to -5.7% for the U determination. The method uses the conventional absolute calibration curve. The internal standard calibration is unnecessary. (orig.)

  6. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel-Crafts type benzylation reactions

    Indian Academy of Sciences (India)

    Vasant R Choudhary; Rani Jha; Pankaj A Choudhari

    2005-11-01

    Fe-Mg-hydrotalcite (Mg/Fe = 3) anionic clay with or without calcination (at 200-800°C) has been used for the benzylation of toluene and other aromatic compounds by benzyl chloride. Hydrotalcite before and after its calcination was characterized for surface area, crystalline phases and basicity. Both the hydrotalcite, particularly after its use in the benzylation reaction, and the catalyst derived from it by its calcination at 200-800°C show high catalytic activity for the benzylation of toluene and other aromatic compounds. The catalytically active species present in the catalyst in its most active form are the chlorides and oxides of iron on the catalyst surface.

  7. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  8. Active Demulsification of Photoresponsive Emulsions Using Cationic-Anionic Surfactant Mixtures.

    Science.gov (United States)

    Takahashi, Yutaka; Koizumi, Nanami; Kondo, Yukishige

    2016-01-26

    The influence of ultraviolet (UV) light irradiation on the emulsification properties of mixtures of an anionic surfactant, sodium dodecyl sulfate (SDS), and a photoresponsive cationic surfactant, 2-(4-(4-butylphenyl)diazenylphenoxy)ethyltrimethylammonium bromide (C4AzoTAB), containing an azobenzene group has been investigated. When mixtures of n-octane and aqueous SDS/trans-C4AzoTAB solution are homogenized, stable emulsions are obtained in regions of specific surfactant concentrations and molar ratios of the mixed surfactants. The stable emulsions are stable for over a week and found to be of the oil-in-water (O/W) type. UV light irradiation of the stable O/W emulsions leads to the coalescence of smaller oil droplets into larger ones in the emulsions, i.e., demulsification. As a result, the oil and aqueous surfactant solution phases are fully separated by UV light irradiation for 90 min, even shorter than our previous result (6 h; Langmuir 2014 , 30 , 41 - 47 ). The use of a microreactor shortens the time required for the photoinduced demulsification into 3.5 min. When mixtures of octane and aqueous SDS/cis-C4AzoTAB solution are homogenized, no emulsions are obtained. The interfacial tension (IFT) between octane and aqueous SDS/cis-C4AzoTAB solution is higher than that between octane and aqueous SDS/trans-C4AzoTAB solution, indicating that the IFT of SDS/trans-C4AzoTAB mixtures increases with the cis photoisomerization of the trans isomer. These results suggest that cis isomerization of the SDS/trans-C4AzoTAB mixtures due to UV light irradiation causes Ostwald ripening of the octane droplets in the emulsions, thereby reducing the interfacial area between the octane and water phases as the IFT between octane and the aqueous surfactant solution increases. Subsequently, the octane and aqueous solution phases separate. PMID:26731043

  9. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  10. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  11. Biomarkers for the activation of calcium metabolism in dairy cows: elevation of tartrate-resistant acid phosphatase activity by lowering dietary cation-anion difference is associated with the prevention of milk fever.

    Science.gov (United States)

    Kurosaki, Naotoshi; Yamato, Osamu; Sato, Jun; Naito, Yoshihisa; Mori, Fuminobu; Imoto, Seiichi; Maede, Yoshimitsu

    2007-03-01

    In our previous study, it was demonstrated that the administration of anion salts, which slightly lower the dietary cation-anion difference (DCAD), in the prepartum period is safe and effective for preventing milk fever in multiparous cows. In the present study, several biomarkers, which might show activation of Ca metabolism, were analyzed using stored samples in the previous study to investigate the mechanism of the preventive effect on milk fever by lowering DCAD. Changes in bone-specific alkaline phosphatase activity, osteocalcin and insulin-like growth factor I concentrations in serum were almost the same among the three groups of multiparous cows with or without the oral administration of anion salts, while the levels of these serum biomarkers in the group of primiparous cows (heifer group) were much higher compared with those in the three multiparous groups throughout the experimental period. Urinary deoxypyridinoline excretion was not a useful biomarker for dairy cows because it hardly changed during the peripartum period in all groups. However, serum tartrate-resistant acid phosphatase (TRAP) activity, which is known as a biomarker of osteoclast activity, was well associated with the administration of anion salts lowering DCAD because among the three multiparous groups, only the group of multiparous cows fed the anion salts (anion group) showed an increased level, which rose to the level in the heifer group, and was markedly higher than those in the other control groups of multiparous cows. The increased activity of serum TRAP in the anion group suggested that Ca in the plasma pool was mobilized smoothly from bone-bound Ca via mature osteoclasts at parturition, which might be due to prior activation under mild acidosis induced by slightly lowering DCAD. Therefore, TRAP was the best biomarker to monitor the activation of Ca metabolism in dairy cows fed anion salts.

  12. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  13. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Science.gov (United States)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  14. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology. PMID:23922762

  15. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ming-Luan Chen

    Full Text Available Bioactive gibberellins (GAs play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20. An anion exchange/hydrophobic poly([2-(methacryloyloxyethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate(META-co-DVB-co-EDMA monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3 of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m of recombinant GA3-oxidase in Escherichia coli (E. coli cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  16. Compensatory role of inducible annexin A2 for impaired biliary epithelial anion-exchange activity of inflammatory cholangiopathy.

    Science.gov (United States)

    Kido, Osamu; Fukushima, Koji; Ueno, Yoshiyuki; Inoue, Jun; Jefferson, Douglas M; Shimosegawa, Tooru

    2009-12-01

    The peribiliary inflammation of cholangiopathy affects the physiological properties of biliary epithelial cells (cholangiocyte), including bicarbonate-rich ductular secretion. We revealed the upregulation of annexin A2 (ANXA2) in cholangiocytes in primary biliary cirrhosis (PBC) by a proteomics approach and evaluated its physiological significance. Global protein expression profiles of a normal human cholangiocyte line (H69) in response to interferon-gamma (IFNgamma) were obtained by two-dimensional electrophoresis followed by MALDI-TOF-MS. Histological expression patterns of the identified molecules in PBC liver were confirmed by immunostaining. H69 cells stably transfected with doxycyclin-inducible ANXA2 were subjected to physiological evaluation. Recovery of the intracellular pH after acute alkalinization was measured consecutively by a pH indicator with a specific inhibitor of anion exchanger (AE), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Protein kinase-C (PKC) activation was measured by PepTag Assay and immunoblotting. Twenty spots that included ANXA2 were identified as IFNgamma-responsive molecules. Cholangiocytes of PBC liver were decorated by the unique membranous overexpression of ANXA2. Apical ANXA2 of small ducts of PBC was directly correlated with the clinical cholestatic markers and transaminases. Controlled induction of ANXA2 resulted in significant increase of the DIDS-inhibitory fraction of AE activity of H69, which was accompanied by modulation of PKC activity. We, therefore, identified ANXA2 as an IFNgamma-inducible gene in cholangiocytes that could serve as a potential histological marker of inflammatory cholangiopathy, including PBC. We conclude that inducible ANXA2 expression in cholangiocytes may play a compensatory role for the impaired AE activity of cholangiocytes in PBC in terms of bicarbonate-rich ductular secretion and bile formation through modulation of the PKC activity. PMID:19823170

  17. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F;

    2005-01-01

    , the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium......Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore...

  18. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding

    Science.gov (United States)

    Lee, Jin Hee; Park, Jin Won; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han

    2016-01-01

    To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK). Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG) uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC)1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH. PMID:27479079

  19. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Dyrda

    Full Text Available BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. METHODOLOGY/PRINCIPAL FINDINGS: The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+ and Cl(- currents were strictly dependent on the presence of Ca(2+. The Ca(2+-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+ permeability (PCa. These results indicate that local membrane deformations can transiently activate a Ca(2+ permeability pathway leading to increased [Ca(2+](i, secondary activation of Ca(2+-sensitive K(+ channels (Gardos channel, IK1, KCa3.1, and hyperpolarization-induced anion currents. CONCLUSIONS/SIGNIFICANCE: The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+-mediated effects observed during the normal aging process of red blood cells, and

  20. Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Chen, Junzheng; Han, Kee Sung; Xu, Wu; Mei, Donghai; Bhattacharya, Priyanka; Engelhard, Mark H.; Mueller, Karl T.; Liu, Jun; Zhang, Jiguang

    2016-03-29

    With the significant progress made in the development of cathodes in lithium-sulfur (Li-S) batteries, the stability of Li metal anodes becomes a more urgent challenge in these batteries. Here we report the systematic investigation of the stability of the anode/electrolyte interface in Li-S batteries with concentrated electrolytes containing various lithium salts. It is found that Li-S batteries using LiTFSI-based electrolytes are more stable than those using LiFSI-based electrolytes. The decreased stability is because the N-S bond in the FSI- anion is fairly weak and the scission of this bond leads to the formation of lithium sulfate (LiSOx) in the presence of polysulfide species. In contrast, even the weakest bond (C-S) in the TFSI- anion is stronger than the N-S bond in the FSI- anion. In the LiTFSI-based electrolyte, the lithium metal anode tends to react with polysulfide to form lithium sulfide (LiSx) which is more reversible than LiSOx formed in the LiTFSI-based electrolyte. This fundamental difference in the bond strength of the salt anions in the presence of polysulfide species leads to a large difference in the stability of the anode-electrolyte interface and performance of the Li-S batteries with electrolytes composed of these salts. Therefore, anion selection is one of the key parameters in the search for new electrolytes for stable operation of Li-S batteries.

  1. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  2. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    OpenAIRE

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate (LAS), which is the main contaminant in rinsing water. The main research question is to identify adsorption kinetics of LAS onto GAC-1240 and LDH. The influence of pre-treatment of the adsorbent, ...

  3. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter;

    2015-01-01

    Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to ...

  4. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study

    NARCIS (Netherlands)

    Demel, Rudolf A.; Peelen, Tamara; Siezen, Roland J.; Kruijff, Ben de; Kuipers, Oscar P.

    1996-01-01

    Monomolecular layers of lipids at the air/water interface have been used as a model membrane to study membrane interactions of the lantibiotic nisin. The natural lantibiotics nisin A and nisin Z proved to have a high affinity for the anionic lipids phosphatidylglycerol and bis(phosphatidyl)glycerol

  5. Silver-free activation of ligated gold(I) chlorides: the use of [Me3NB12Cl11]- as a weakly coordinating anion in homogeneous gold catalysis.

    Science.gov (United States)

    Wegener, Michael; Huber, Florian; Bolli, Christoph; Jenne, Carsten; Kirsch, Stefan F

    2015-01-12

    Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated.

  6. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    Science.gov (United States)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  7. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    International Nuclear Information System (INIS)

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent

  8. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell.

    Science.gov (United States)

    Li, Siming; Hao, Linlin; Bao, Wanguo; Zhang, Ping; Su, Dan; Cheng, Yunyun; Nie, Linyan; Wang, Gang; Hou, Feng; Yang, Yang

    2016-07-01

    A vastarray of bioactive peptides from amphibian skin secretions is attracting increasing attention due to the growing problem of bacteria resistant to conventional antibiotics. In this report, a small molecular antibacterial peptide, named Xenopus laevis antibacterial peptide-P1 (XLAsp-P1), was isolated from the skin of Xenopus laevis using reversed-phase high-performance liquid chromatography. The primary structure of XLAsp-P1, which has been proved to be a novel peptide by BLAST search in AMP database, was DEDDD with a molecular weight of 607.7 Da analysed by Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). The highlight of XLAsp-P1 is the strong in vitro potency against a variety of Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) starting at 10 μg/mL and potent inhibitory activity against breast cancer cell at tested concentrations from 5 to 50 μg/mL. In addition, only 6.2 % of red blood cells was haemolytic when incubated with 64 μg/mL (higher than MICs of all bacterial strain) of XLAsp-P1. The antimicrobial mechanism for this novel peptide was the destruction of the cell membrane investigated by transmission electron microscopy. All these showed that XLAsp-P1 is a novel short anionic antibacterial peptide with broad antibacterial activity and inhibitory activity against breast cancer cell. PMID:26952034

  9. Effect of etizolam (Depas) on production of superoxide anion by platelet-activating factor and N-formyl-methionyl-leucyl-phenylalanine-stimulated guinea pig polymorphonuclear leukocytes.

    Science.gov (United States)

    Aratani, H; Nishida, Y; Terasawa, M; Maruyama, Y

    1988-06-01

    Effect of etizolam on platelet activating factor (PAF) and N-formyl-methionyl-leucyl-phenylalanine (FMLP)-induced superoxide anion (O2-) production in guinea pig polymorphonuclear leukocytes (PMNL) was investigated. Etizolam showed the inhibitory effect on PAF-induced O2- production concentration dependently, with an IC50 value of 4.7 microM, but it had no inhibitory effect on FMLP-induced O2- production at 100 microM. These results suggest that etizolam has a selectively strong inhibitory effect on PAF-induced O2- production in guinea pig PMNL. PMID:2848961

  10. (-)-Xanthienopyran, a new inhibitor of superoxide anion generation by activated neutrophils, and further constituents of the seeds of Xanthium strumarium.

    Science.gov (United States)

    Lee, Chia-Lin; Huang, Po-Ching; Hsieh, Pei-Wen; Hwang, Tsong-Long; Hou, Yu-Yi; Chang, Fang-Rong; Wu, Yang-Chang

    2008-08-01

    The dried seeds of XANTHIUM STRUMARIUM (Asteraceae) are used after thorough stir-frying as an ingredient in traditional Chinese medicines for relieving allergy. Two new compounds, xanthialdehyde ( 2) and (-)-xanthienopyran ( 7), as well as 26 known compounds were isolated in the present study. The structures of the isolates were elucidated by spectroscopic methods. Among them, compound 7 exhibited significant selective inhibition of superoxide anion generation by human neutrophils induced by formyl- L-methionyl- L-leucyl- L-phenylalanine, with an IC50 value of 1.72 microg/mL. PMID:18622908

  11. Role of the superoxide anion in the oxidative activation of the new antitumor drug BD40: a radiolysis study

    International Nuclear Information System (INIS)

    BD40, a new antitumor drug derived from 9-azaellipticine, is thought to have an oxygen-dependent metabolism in vivo. The one-electron oxidation of this drug was effected by γ radiolysis using OH radical free radicals as oxidants and the reaction of O2anionradical with the BD40 oxidized transient(s). The absorption spectrum of the one-electron oxidized free radical was determined by pulse radiolysis using OH radical or N3radical as reactant. In the absence of O2 and O2anionradical, the initial yield of disappearance of the drug is equal to 2.5 x 10-7 molJ-1 independently of the initial concentration of the drug and of the dose rate. When BD40 is oxidized by OH anion radicals in the presence of O2 and O2anionradical, the yield is the same. This yield is halved if superoxide dismutase is present during irradiation. Superoxide anions do not react directly with the drug. Thus it is suggested that these radicals oxidize the BD40 free radical produced by oxidation with OH radical. Biological implications are discussed. (author)

  12. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  13. Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources -- consequences for biodegradation testing and wastewater treatment plant operation.

    Science.gov (United States)

    Markiewicz, Marta; Piszora, Magdalena; Caicedo, Nelson; Jungnickel, Christian; Stolte, Stefan

    2013-06-01

    Ionic liquids (ILs) have attracted great interest in academia and industry during the last decade. So far, several ILs have been used in technological processes, from small scale to industrial applications, which makes it more and more likely that they will be released into the environment. Researchers have been actively studying the environmental and toxicological behaviour of ILs, but their influence on the activated sludge communities of wastewater treatment plants have yet to be investigated. This study aims to fill this knowledge gap by systematically investigating the influence of ILs on activated sewage sludge communities. We tested the inhibition of activated sludge respiration (according to OECD guideline 209) by a selection of 19 different compounds covering the chemical space of ILs as comprehensively as possible. To elicit the differences in sensitivities/tolerances towards ILs we investigated activated sludge from different domestic and industrial sources. Generally speaking, the structure activity relationships of IL toxicity towards activated sludge are in good agreement with those found for other organisms and test systems. The inhibitory potential of tested ILs substituted with short alkyl chains (≤ 4) and polar anions was low. On the other hand, the toxic effects of highly hydrophobic ionic cations and anions were greater - IC50 values were low, some < 50 μM (<10 mg L(-1)). We were able to demonstrate that the EC50 values from Vibrio fischeri can be used for a reliable assessment of the sludge inhibition potential of tested ILs. All the results are discussed in the context of their consequences for biodegradation processes and the performance of wastewater treatment plants. PMID:23561501

  14. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  15. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon.

    Science.gov (United States)

    Namasivayam, C; Sangeetha, D

    2006-07-31

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl(2) activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl(2) activated coir pith carbon is effective for the removal of toxic pollutants from water.

  16. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  17. The activity of 3- and 7-hydroxyflavones as scavengers of superoxide radical anion generated from photo-excited riboflavin

    International Nuclear Information System (INIS)

    The visible-light irradiation of the system Riboflavin plus 3-hydroxyflavone or plus 7-hydroxyflavone, under aerobic conditions, produces a series of competitive processes that depend on the relative concentrations of the pigment and the flavones. The picture comprises photochemical mechanisms that potentially operate in nature. They mainly include the quenching of Rf singlet (1Rf*) and triplet (3Rf*) excited states (with bimolecular rate constants in the order of 109 M-1 s-1) and superoxide radical anion-mediated reactions. The participation of the oxidative species singlet molecular oxygen was not detected. The overall result shows chemical transformations in both Rf and 3-hydroxyflavone. No experimental evidence was found indicating any chemical reaction involving 7-hydroxyflavone. The fate of the pigment also depends on the amount of the dissolved flavonoid. At 50 mM concentrations of these compounds or higher, practically no photochemistry occurs, owing to the extensive quenching of (1Rf*) When the concentration of the flavones is in the mM range or lower, (3Rf*) is photogenerated. Then, the excited triplet species can be quenched mainly by the flavones through an electron-transfer process, yielding the semireduced pigment. The latter interacts with dissolved oxygen producing O2.-, which reacts with both the pigment and 3-hydroxyflavone. In summary, 3-hydroxyflavone and 7-hydroxyflavone participate in the generation of superoxide ion in an Rf-sensitized process, and simultaneously 3-hydroxyflavone constitutes a degradable quencher of the oxidative species. (author)

  18. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  19. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  20. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    International Nuclear Information System (INIS)

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT1 receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT1-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT1 receptor activation. ► Translocation of p47

  1. Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes.

    Science.gov (United States)

    Sakai, N; Gerard, D; Matile, S

    2001-03-21

    Design, synthesis, and structural and functional studies of rigid-rod ionophores of different axial electrostatic asymmetry are reported. The employed design strategy emphasized presence of (a) a rigid scaffold to minimize the conformational complexity, (b) a unimolecular ion-conducting pathway to minimize the suprastructural complexity and monitor the function, (c) an extended fluorophore to monitor structure, (d) variable axial rod dipole, and (e) variable terminal charges to create axial asymmetry. Studies in isoelectric, anionic, and polarized bilayer membranes confirmed a general increase in activity of uncharged rigid push-pull rods in polarized bilayers. The similarly increased activity of cationic rigid push-pull rods with an electrostatic asymmetry comparable to that of alpha-helical bee toxin melittin (positive charge near negative axial dipole terminus) is shown by fluorescence-depth quenching experiments to originate from the stabilization of transmembrane rod orientation by the membrane potential. The reduced activity of rigid push-pull rods having an electrostatic asymmetry comparable to that in alpha-helical natural antibiotics (a positive charge near the positive axial dipole terminus) is shown by structural studies to originate from rod "ejection" by membrane potentials comparable to that found in mammalian plasma membranes. This structural evidence for cell membrane recognition by asymmetric rods is unprecedented and of possible practical importance with regard to antibiotic resistance.

  2. Activator anion binding site in pyridoxal phosphorylase b: the binding of phosphite, phosphate, and fluorophosphate in the crystal.

    OpenAIRE

    Oikonomakos, Nikos G.; Zographos, Spyros E.; Tsitsanou, K. E.; Johnson, L N; Acharya, K. R.

    1996-01-01

    It has been established that phosphate analogues can activate glycogen phosphorylase reconstituted with pyridoxal in place of the natural cofactor pyridoxal 5'-phosphate (Change YC. McCalmont T, Graves DJ. 1983. Biochemistry 22:4987-4993). Pyridoxal phosphorylase b has been studied by kinetic, ultracentrifugation, and X-ray crystallographic experiments. In solution, the catalytically active species of pyridoxal phosphorylase b adopts a conformation that is more R-state-like than that of nativ...

  3. Assessing Gibberellins Oxidase Activity by Anion Exchange/Hydrophobic Polymer Monolithic Capillary Liquid Chromatography-Mass Spectrometry

    OpenAIRE

    Ming-Luan Chen; Xin Su; Wei Xiong; Jiu-Feng Liu; Yan Wu; Yu-Qi Feng; Bi-Feng Yuan

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) m...

  4. Intrinsic anion oxidation potentials.

    Science.gov (United States)

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  5. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions.

    Science.gov (United States)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from -3.4±0.3 to -4.3±0.3‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from -7.0±0.4 to -13.6±1.2‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO4(-)). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). PMID:26784392

  6. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna;

    2010-01-01

    by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents......-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia....

  7. Molecular physiology of EAAT anion channels.

    Science.gov (United States)

    Fahlke, Christoph; Kortzak, Daniel; Machtens, Jan-Philipp

    2016-03-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. PMID:26687113

  8. Phlomis mauritanica extracts reduce the xanthine oxidase activity, scavenge the superoxide anions, and inhibit the aflatoxin B1-, sodium azide-, and 4-nitrophenyldiamine-induced mutagenicity in bacteria.

    Science.gov (United States)

    Limem, Ilef; Bouhlel, Ines; Bouchemi, Meriem; Kilani, Soumaya; Boubaker, Jihed; Ben-Sghaier, Mohamed; Skandrani, Ines; Behouri, Wissem; Neffati, Aicha; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-06-01

    Four extracts were prepared from the leaves of Phlomis mauritanica: lyophilized infusion, total oligomer flavonoids, methanol, and ethyl acetate extracts. The antimutagenic properties of these extracts were investigated by assessing the inhibition of the mutagenic effects of direct-acting mutagens such as sodium azide and 4-nitrophenylenediamine and indirect-acting mutagens like aflatoxin B1 (AFB1) using the Ames assay. The four extracts prepared from P. mauritanica strongly inhibit the mutagenicity induced by AFB1 in both Salmonella typhimurium TA 100 and TA 98 assay systems. Lyophilized infusion and methanol extracts at the dose of 250 microg per plate reduced AFB1 mutagenicity by 93% and 91%, respectively, in S. typhymurium strain TA 100. We examined also the antioxidant effect of these extracts by the enzymatic xanthine/xanthine oxidase assay. Result indicated that total oligomer flavonoids and ethyl acetate and methanol extracts were potent inhibitors of xanthine oxidase activity. In contrast, lyophilized infusion, total oligomer flavonoids, and methanol extracts exhibited a high degree of superoxide anion scavenging. Our findings emphasize the potential of P. mauritanica extracts to prevent mutations and oxidant effects. Furthermore, the results presented here could be an additional argument to support the use of this species as a medicinal and dietary plant. PMID:20406134

  9. A simple and rapid method for measuring α-D-phosphohexomutases activity by using anion-exchange chromatography coupled with an electrochemical detector.

    Science.gov (United States)

    Jia, Xiaochen; Kang, Jian; Yin, Heng

    2016-01-01

    The interconversion of hexose-6-phosphate and hexose-1-phosphate can be directly analyzed by high-performance anion-exchange chromatography coupled with an electrochemical detector (HPAEC-PAD). Thus, this method can be used to measure the activities of N-acetylglucosamine-phosphate mutase (AGM), glucosamine-phosphate mutase (GlmM) and phosphoglucomutase (PGM), which are the members of α-D-phosphohexomutases superfamily. The detection limits were extremely low as 2.747 pmol, 1.365 pmol, 0.512 pmol, 0.415 pmol, 1.486 pmol and 0.868 pmol for N-acetylglucosamine-1-phosphate (GlcNAc-1-P), N-acetylglucosamine-6-phosphate (GlcNAc-6-P), glucosamine-1-phosphate (GlcN-1-P), glucosamine-6-phosphate (GlcN-6-P), glucose-1-phosphate (Glc-1-P) and glucose-6-phosphate (Glc-6-P), respectively. By employing HPAEC-PAD, activities of AtAGM (AGM from Arabidopsis thaliana) on these six phosphohexoses can be detected. The Km of AtAGM on Glc-1-P determined by HPAEC-PAD was 679.18 ± 156.40 µM, which is comparable with the Km of 707.09 ± 170.36 µM detected by traditional coupled assay. Moreover, the activity of MtGlmM (GlmM from Mycobacterium tuberculosis) on GlcN-6-P tested by HPAEC-PAD was 7493.40 ± 309.12 nmol∕min ⋅ mg, which is much higher than 288.97 ± 35.28 nmol∕min ⋅ mg obtained by the traditional coupled assay. Accordingly, HPAEC-PAD is a more rapid and simple method than the traditional coupled assays given its high specificity and sensitivity, and will certainly bring convenience to further research of α-D-phosphohexomutases. PMID:26788420

  10. Vanadogermanate cluster anions.

    Science.gov (United States)

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  11. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  12. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    Science.gov (United States)

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  13. Potentiometric anion selective sensors

    NARCIS (Netherlands)

    Antonisse, Martijn M.G.; Reinhoudt, David N.

    1999-01-01

    In comparison with selective receptors (and sensors) for cationic species, work on the selective complexation and detection of anions is of more recent date. There are three important components for a sensor, a transducer element, a membrane material that separates the transducer element and the aqu

  14. Reactions of [Cu(X)(BPEP-Ph)] (X = PF6, SbF6) with silyl compounds. Cooperative bond activation involving non-coordinating anions.

    Science.gov (United States)

    Nakajima, Yumiko; Tsuchimoto, Takahiro; Chang, Yung-Hung; Takeuchi, Katsuhiko; Ozawa, Fumiyuki

    2016-02-01

    Bond activation of silyl compounds, assisted by the cooperative action of non-coordinating anions, is achieved using Cu(I) complexes coordinated with a PNP-pincer type phosphaalkene ligand, [Cu(X)(BPEP-Ph)] (X = PF6 (1a), SbF6 (1b); BPEP-Ph = 2,6-bis[1-phenyl-2-(2,4,6-tri-tert-butylphenyl)-2-phosphaethenyl]pyridine). Complexes 1a and 1b react with Me3SiCN to form Me3SiF and Cu(i) cyanide complexes of the formula [Cu(CN-EF5)(BPEP-Ph)] (E = P (2a), Sb (2b)), in which the CN ligand is associated with the EF5 group arising from EF6(-). Formation of the intermediary isonitrile complex [Cu(CNSiMe3)(BPEP-Ph)](+)SbF6(-) (3b) is confirmed by its isolation. Thus, a two-step reaction process involving coordination of Me3SiCN, followed by nucleophilic attack of SbF6(-) on the silicon atom of 3b is established for the conversion of 1b to 2b. Complex 1b cleaves the H-Si bond of PhMe2SiH as well. The isolation and structural identification of [Cu(BPEP-Ph)](+)BAr(F)4(-) (1c) (BAr(F)4 = B{3,5-(CF3)2C6H3}4) as a rare example of a T-shaped, three-coordinated Cu(i) complex is reported. PMID:26455594

  15. Synthesis, superoxide dismutase, nuclease, and anticancer activities of copper(II) complexes incorporating bis(2-picolyl)amine with different counter anions

    Science.gov (United States)

    Ibrahim, Mohamed M.; Ramadan, Abdel-Motaleb M.; Mersal, Gaber A. M.; El-Shazly, Samir A.

    2011-07-01

    Interaction of the tridentate ligand bis(2-picolyl)amine L with copper(II) salts gave a series of copper(II) complexes with the formula types: [ LCu(X) 2] (X = Cl -1, = Br -2), [( LCu (H 2O)(μ-SO 4)( LCu(H 2O)]SO 43, [ LCu(OAc)](OAc )H 2O 4, [ LCu(H 2O) 2](Y) 2 (Y = NO3-5, = ClO4-6). Their structures and properties were characterized by elemental analysis, thermal analysis (TGA), IR, UV-vis and ESR spectroscopy, electrochemical measurements including cyclic voltammetry and electrical molar conductivity, and magnetic moment measurements. A square pyramidal geometry is proposed for the halogeno complexes 1 and 2 in monomeric structures. For sulfate complex, the sulfate group bridged two copper(II) ions of the two [N 3O] donor units to give the dimeric complex molecule 3 in square pyramidal environment around the copper(II) ions. In the case of complexes 4- 6, square planar stereochemistries in monomeric structures are suggested. The SOD biomimetic catalytic activity of the obtained complexes was assessed for their ability to inhibit the reduction of nitroblue tetrazolium (NBT). The catalytic efficiency of O2- scavenging by complexes depends on the nature of the particular acidic anion radical incorporated in the complex molecule and follows the order: NO3- > ClO4- > Br - ⩾ Cl - > SO4- > AcO -. A probable mechanistic implications for the catalytic dismutation of O2- by copper(II) complexes are proposed. Furthermore, complex 1 exhibits significant hydrolytic cleavage of the genomic DNA in the absence of any external additives. In addition, the in vitro study of cytotoxicity of complex 1 on colon cancer cell line (Caco-2) indicates that the complex has the potential to act as an effective anticancer drug with IC 50 value of 156 ± 0.35 μM.

  16. Anion Ordering in Bichalcogenides

    Directory of Open Access Journals (Sweden)

    Martin Valldor

    2016-07-01

    Full Text Available This review contains recent developments and new insights in the research on inorganic, crystalline compounds with two different chalcogenide ions (bichalcogenides. Anion ordering is used as a parameter to form structural dimensionalities as well as local- and global-electric polarities. The reason for the electric polarity is that, in the heterogeneous bichalcogenide lattice, the individual bond-lengths between cations and anions are different from those in a homogeneous anion lattice. It is also shown that heteroleptic tetrahedral and octahedral coordinations offer a multitude of new crystal fields and coordinations for involved cations. This coordination diversity in bichalcogenides seems to be one way to surpass electro-chemical redox potentials: three oxidation states of a single transition metal can be stabilized, e.g., Ba15V12S34O3. A new type of disproportionation, related to coordination, is presented and results from chemical pressure on the bichalcogenide lattices of (La,CeCrS2O, transforming doubly [CrS3/3S2/2O1/1]3− (5+1 into singly [CrS4/2S2/3]7/3− (6+0 and [CrS4/3O2/1]11/3− (4+2 coordinations. Also, magnetic anisotropy is imposed by the anion ordering in BaCoSO, where magnetic interactions via S or O occur along two different crystallographic directions. Further, the potential of the anion lattice is discussed as a parameter for future materials design.

  17. Aggregation-Induced Emission Active Metal-Free Chemosensing Platform for Highly Selective Turn-On Sensing and Bioimaging of Pyrophosphate Anion.

    Science.gov (United States)

    Gogoi, Abhijit; Mukherjee, Sandipan; Ramesh, Aiyagari; Das, Gopal

    2015-07-01

    We report the synthesis of a metal-free chemosensor for highly selective sensing of pyrophosphate (PPi) anion in physiological medium. The novel phenylbenzimidazole functionalized imine containing chemosensor (L; [2,6-bis(((4-(1H-benzo[d]imidazol-2-yl)phenyl)imino) methyl)-4 methyl phenol]) could sense PPi anion through "turn-on" colorimetric and fluorimetric responses in a very competitive environment. The overall sensing mechanism is based on the aggregation-induced emission (AIE) phenomenon. Moreover, a real time in-field device application was demonstrated by sensing PPi in paper strips coated with L. Interestingly, detection of intracellular PPi ions in model human cells could also be possible by fluorescence microscopic studies without any toxicity to these cells. PMID:26059015

  18. Resonant spectra of quadrupolar anions

    CERN Document Server

    Fossez, K; Nazarewicz, W; Michel, N; Garrett, W R; Płoszajczak, M

    2016-01-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as extreme halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-molecule problem using a non-adiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational ban...

  19. Synthesis and Characterization of Two Novel Organic-Inorganic Compounds Based on Tetrahexyl and Tetraheptyl Ammonium Ions and the Preyssler Anion and Their Catalytic Activities in the Synthesis of 4-Aminopyrazolo[3,4-d]- Pyrimidines

    Directory of Open Access Journals (Sweden)

    Fatemeh Farrash Bamoharram

    2010-04-01

    Full Text Available Two novel organic–inorganic compounds based on tetrahexylammonium (THA and tetraheptylammonium (THPA ions and the Preyssler anion, [NaP5W30O110]14-, were synthesized and formulated as (THA7.7H6.3 [NaP5W30O110] (A and (THPA7.5 H6.5[N aP5W30O110] (B. The synthesized compounds were characterized by IR, UV, and TGA and used for the catalytic synthesis of 4-aminopyrazolo[3,4,-d]pyrimidine derivatives 2a-2d. Our findings showed efficient catalytic activities for A and B.

  20. Deletion of the anion exchanger Slc26a4 (pendrin) decreases apical Cl−/HCO3− exchanger activity and impairs bicarbonate secretion in kidney collecting duct

    OpenAIRE

    Amlal, Hassane; Petrovic, Snezana; Xu, Jie; Wang, Zhaohui; Sun, Xuming; Barone, Sharon; Soleimani, Manoocher

    2010-01-01

    The anion exchanger Pendrin, which is encoded by SLC26A4 (human)/Slc26a4 (mouse) gene, is localized on the apical membrane of non-acid-secreting intercalated (IC) cells in the kidney cortical collecting duct (CCD). To examine its role in the mediation of bicarbonate secretion in vivo and the apical Cl−/HCO3− exchanger in the kidney CCD, mice with genetic deletion of pendrin were generated. The mutant mice show the complete absence of pendrin expression in their kidneys as assessed by Northern...

  1. Improving the Enzyme Catalytic Efficiency Using Ionic Liquids with Kosmotropic Anions

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Hua; CAMPBELL, Sophia; SOLOMON, Jonathan; SONG, Zhi-Yan; OLUBAJO, Olarongbe

    2006-01-01

    The kosmotropicity of cations and anions in ionic liquids has a strong influence on the enzyme catalytic efficiency in aqueous environments. The kosmotropic anion CF3COO- seemed to activate the protease, and the chaotropic anions tended to destabilize the enzyme.

  2. Resonant spectra of quadrupolar anions

    Science.gov (United States)

    Fossez, K.; Mao, Xingze; Nazarewicz, W.; Michel, N.; Garrett, W. R.; Płoszajczak, M.

    2016-09-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-rotor problem using a nonadiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. The rotor is treated as a linear triad of point charges with zero monopole and dipole moments and nonzero quadrupole moment. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational bands could be identified above the detachment threshold. We study the evolution of a bound state of an anion as it dives into the continuum at a critical quadrupole moment and we show that the associated critical exponent is α =2 . Everything considered, quadrupolar anions represent a perfect laboratory for the studies of marginally bound open quantum systems.

  3. Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides' structure: implications for peptide toxicity and activity

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2006-01-01

    Molecular dynamics simulations of three related helical antimicrobial peptides have been carried out in zwitterionic diphosphocholine (DPC) micelles and anionic sodiumdodecylsulfate (SDS) micelles. These systems can be considered as model mammalian and bacterial membrane interfaces, respectively...... properties. Based on the simulations, we argue that secondary structure stability often leads to toxic properties. We also propose that G10 and T7 operate by the carpet mechanism of cell lysis. Toxicity of peptides operating by the carpet mechanism can be attenuated by reducing the peptide helical content...... amphipathic peptide structures, which bind weakly to the micelle. Simulations in SDS were carried out to compare the influence of membrane electrostatics on peptide structure. All three peptides bound strongly to SDS, and retained helical form. This corresponds well with their equally potent antibacterial...

  4. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia

    Science.gov (United States)

    Li, Hongyu; Valkenier, Hennie; Judd, Luke W.; Brotherhood, Peter R.; Hussain, Sabir; Cooper, James A.; Jurček, Ondřej; Sparkes, Hazel A.; Sheppard, David N.; Davis, Anthony P.

    2016-01-01

    Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.

  5. Pentaarylfullerenes as noncoordinating cyclopentadienyl anions

    NARCIS (Netherlands)

    Bouwkamp, Marco W.; Meetsma, Auke

    2009-01-01

    The first example of an early-transition-metal complex involving a pentaarylfullerene was prepared. Instead of half-sandwich complexes, solvent separated ion pairs were obtained in which the pentaarylfullerene moiety acts as noncoordinating cyclopentadienyl anion.

  6. Anion Transport with Chalcogen Bonds.

    Science.gov (United States)

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  7. Intercellular HOCl-mediated Apoptosis Induction in Malignant Cells: Interplay Between NOX1-Dependent Superoxide Anion Generation and DUOX-related HOCl-generating Peroxidase Activity.

    Science.gov (United States)

    Pottgiesser, Stefanie J; Heinzelmann, Sonja; Bauer, Georg

    2015-11-01

    Intercellular apoptosis-inducing HOCl signaling is discussed as a control step during oncogenesis. It is defined as a sophisticated interplay between transformed target cells and non-transformed or transformed effector cells. In this study, transformed target cells were seeded as clumps of high local cell density, but low total cell number. They were surrounded by large numbers of effector cells, seeded at low local density. This spatially defined experimental arrangement allowed study of the impact of siRNA-mediated knockdown of NADPH oxidase 1 (NOX1) or dual oxidase 1 (DUOX1) on intercellular HOCl signaling. Our data show that the target function of transformed cells is defined as expression of NOX1 and subsequent extracellular superoxide anion generation. The NOX domain of DUOX1 does not contribute to the target function. The peroxidase domain of DUOX1 is released from transforming growth factor β1-treated non-transformed and transformed cells and acts in trans as HOCl-synthesizing peroxidase. These findings clarify the biochemical source of HOCl during HOCl-mediated signaling. PMID:26504017

  8. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  9. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated. PMID:22886112

  10. Metal ion separations using hydrophobic anions: Aspects of ligand design

    International Nuclear Information System (INIS)

    Metal ion extraction using hydrophobic anions has been investigated by several researchers for remediation of Cs-137 and Sr-90 in nuclear waste. The rich derivative chemistry of the cobalt bis-dicarbollide anion makes it amendable to systematic studies of the relative importance of anion structure, solvent, and synergists on the extraction selectivity and efficiency. Halogenation or alkylation of cobalt dicarbollide strongly influences the anion's solubility and stability but has little effect on extraction properties. Alkali metal selectivity depends primarily on solvent, while alkaline earth selectivity is driven by the concentration and molecular weight of polyethylene glycol synergists. Additional aspects of ligand design, including a simple extraction and recovery cycle based on redox-active metal centers, will be discussed

  11. The proton complex of a diaza-macropentacycle: structure, slow formation, and chirality induction by ion pairing with the optically active 1,1'-binaphthyl-2,2'-diyl phosphate anion.

    Science.gov (United States)

    Bonnot, Clément; Chambron, Jean-Claude; Espinosa, Enrique; Bernauer, Klaus; Scholten, Ulrich; Graff, Roland

    2008-10-17

    The protonation of a sterically crowded [N2S6] macropentacycle (1) with 1 equiv of CF3SO3H in CDCl3 is slow and gives the singly (oo(+) [1 x H](+)) and doubly (o(+)o(+) [1 x 2H](2+)) protonated forms as kinetic products, the i(+)o form of [1 x H](+) being the thermodynamic product. i(+)o [1 x H](+) is C3 helically chiral in the solid state and in solution. The barrier to racemization (DeltaG(double dagger)) of the [1 x H](+) propeller is >71 kJ mol(-1). The ammonium proton is encapsulated in the tetrahedral coordination sphere provided by the endo (i) nitrogen bridgehead atom and the three proximal thioether sulfurs, which makes [1 x H](+) a proton complex. Use of the optically active acid (R)-(-)- or (S)-(+)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPH) in chloroform allowed us to induce a significant diastereomeric excess (24% de), which produced a detectable ICD. The de was decreased in acetone-d6 (10%), suggesting that the sense of chirality of [1 x H](+) is controlled by ion-pair interactions. Detailed NMR studies allowed us to locate the chiral anion on the endo side of [1 x H](+), in the cavity lined by endo t-Bu groups, and to establish that the rate of anion exchange in [1 x H][(S,R)-(+/-)-BNP] was higher than the rate of propeller inversion of [1 x H](+). PMID:18811199

  12. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  13. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Michael Rajamathi; Grace S Thomas; P Vishnu Kamath

    2001-10-01

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance for many modern applications. In this article, we discuss many different ways of making anionic clays and compare and contrast the rich diversity of this class of materials with the better-known cationic clays.

  14. Inhibition of formyl peptide-stimulated superoxide anion generation by Fal-002-2 occurs mainly through the blockade of the p21-activated kinase and protein kinase C signaling pathways in ratneutrophils.

    Science.gov (United States)

    Tsai, Ya-Ru; Huang, Li-Jiau; Lin, Hui-Yi; Hung, Yun-Jie; Lee, Miau-Rong; Kuo, Sheng-Chu; Hsu, Mei-Feng; Wang, Jih-Pyang

    2013-02-15

    In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, a synthetic compound, 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), inhibited superoxide anion (O2(•-)) generation with an IC50 value of about 11μM, which was not mediated by scavenging the generated O2(•-) or by a cytotoxic effect on neutrophils. Fal-002-2 effectively attenuated the phosphorylation of Ser residues in p47(phox) and the association between p47(phox) and p22(phox) in fMLP-stimulated neutrophils. The interaction of p47(phox) with protein kinase C (PKC) isoforms (α, βI, βII, δ and ζ) was attenuated by Fal-002-2 with a similar IC50 value to that required for inhibition of O2(•-) generation, whereas Fal-002-2 had no prominent effect on PKC isoform membrane translocation and did not affect the kinase activity. Moreover, Fal-002-2 had no effect on the phosphorylation of Akt and downstream glycogen synthase kinase-3β, only slightly affected the intracellular free Ca(2+) concentration, phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase (MAPK), but effectively attenuated the downstream MAPK-activated protein kinase-2 phosphorylation. The interaction of p21-activated kinase (PAK) 1with p47(phox), phosphorylation of PAK1 (Thr423/Ser144) and the membrane recruitment of PAK1 were effectively inhibited by Fal-002-2. Fal-002-2 also blocked the activation of Rac1 and Cdc42 in a concentration range that effectively inhibited PAK activation. Taken together, these results suggest that Fal-002-2 inhibits fMLP-stimulated O2(•-) generation in neutrophils mainly through the blockade of PKC and PAK signaling pathways and partly through p38 MAPK signaling.

  15. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  16. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  17. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis

    OpenAIRE

    Seufi AlaaEddeen M; Hafez Elsayed E; Galal Fatma H

    2011-01-01

    Abstract Background Defensins are a well known family of cationic antibacterial peptides (AMPs) isolated from fungi, plants, insects, mussels, birds, and various mammals. They are predominantly active against gram (+) bacteria, and a few of them are also active against gram (-) bacteria and fungi. All insect defensins belonging to the invertebrate class have a consensus motif, C-X5-16-C-X3-C-X9-10-C-X4-7-CX1-C. Only seven AMPs have already been found in different lepidopteran species. No repo...

  18. The action of cytochrome b(5) on CYP2E1 and CYP2C19 activities requires anionic residues D58 and D65.

    Science.gov (United States)

    Peng, Hwei-Ming; Auchus, Richard J

    2013-01-01

    The capacity of cytochrome b(5) (b(5)) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b(5) enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not that of CYP2E1 or CYP2D6, suggesting that the b(5) interaction varies among P450s. We previously showed that b(5) residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b(5) activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b(5). Using purified P450, b(5), and reductase (POR) in reconstituted assays, the D58G/D65G double mutation, of residues located in a hydrophilic α-helix of b(5), totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G/D65G double mutation retained the full ability to stimulate the 17,20-lyase activity of CYP17A1. The D58G/D65G double mutation competes poorly with wild-type b(5) for binding to the CYP2E1·POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b(5) stimulation and specificity, particularly for CYP17A1, in the following order: phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. The D58G/D65G double mutation also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas the E48G/E49G double mutation stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b(5). We conclude that b(5) residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that the phospholipid composition significantly influences the b(5)-P450 interaction. At least two surfaces of b(5) differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b(5) alone. PMID:23193974

  19. The action of cytochrome b5 on both CYP2E1 and CYP2C19 activities requires the anionic residues D58 and D65

    Science.gov (United States)

    Peng, Hwei-Ming; Auchus, Richard J.

    2013-01-01

    The capacity of cytochrome b5 (b5) to influence cytochrome P450 activities has been extensively studied and physiologically validated. Apo-b5 enhances the activities of CYP3A4, CYP2A6, CYP2C19, and CYP17A1 but not of CYP2E1 or CYP2D6, suggesting that the b5 interaction varies amongst P450s. We previously showed that b5 residues E48 and E49 are required to stimulate the 17,20-lyase activity of CYP17A1, but these same residues might not mediate b5 activation of other P450 reactions, such as CYP2E1-catalyzed oxygenations, which are insensitive to apo-b5. Using purified P450, b5, and reductase (POR) in reconstituted assays, mutation D58G+D65G, residues located in a hydrophilic α-helix of b5, totally abolished the ability to stimulate CYP2E1-catalyzed chlorzoxazone 6-hydroxylation. In sharp contrast, the D58G+D65G mutation retained full capability to stimulate the 17,20 lyase activity of CYP17A1. Mutation D58G+D65G competes poorly with wild-type b5 for binding to the CYP2E1•POR complex yet accepts electrons from POR at a similar rate. Furthermore, the phospholipid composition markedly influences P450 turnover and b5 stimulation and specificity, particularly for CYP17A1, in the order phosphatidylserine > phosphatidylethanolamine > phosphatidylcholine. Mutation D58G+D65G also failed to stimulate CYP2C19-catalyzed (S)-mephenytoin 4-hydroxylation, whereas mutation E48G+E49G stimulated these activities of CYP2C19 and CYP2E1 equivalent to wild-type b5. We conclude that b5 residues D58 and D65 are essential for the stimulation of CYP2E1 and CYP2C19 activities and that phospholipid composition significantly influences the b5-P450 interaction. At least two surfaces of b5 differentially influence P450 activities, and the critical residues for individual P450 reactions cannot be predicted from sensitivity to apo-b5 alone. PMID:23193974

  20. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  1. Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation.

    Science.gov (United States)

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine; Fine, Ludovic; Frossard, Amanda A; Cohen, Ronald C

    2016-03-15

    Recent analyses of atmospheric aerosols from different regions have demonstrated the ubiquitous presence of strong surfactants and evidenced surface tension values, σ, below 40 mN m(-1), suspected to enhance the cloud-forming potential of these aerosols. In this work, this approach was further improved and combined with absolute concentration measurements of aerosol surfactants by colorimetric titration. This analysis was applied to PM2.5 aerosols collected at the Baltic station of Askö, Sweden, from July to October 2010. Strong surfactants were found in all the sampled aerosols, with σ = (32-40) ± 1 mN m(-1) and concentrations of at least 27 ± 6 mM or 104 ± 21 pmol m(-3). The absolute surface tension curves and critical micelle concentrations (CMC) determined for these aerosol surfactants show that (1) surfactants are concentrated enough in atmospheric particles to strongly depress the surface tension until activation, and (2) the surface tension does not follow the Szyszkowski equation during activation but is nearly constant and minimal, which provides new insights on cloud droplet activation. In addition, both the CMCs determined and the correlation (R(2) ∼ 0.7) between aerosol surfactant concentrations and chlorophyll-a seawater concentrations suggest a marine and biological origin for these compounds. PMID:26895279

  2. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN

    2005-01-01

    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.

  3. Anion Solvation in Carbonate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  4. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  5. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  6. Anion-induced urea deprotonation.

    Science.gov (United States)

    Boiocchi, Massimo; Del Boca, Laura; Esteban-Gómez, David; Fabbrizzi, Luigi; Licchelli, Maurizio; Monzani, Enrico

    2005-05-01

    The urea-based receptor 1 (1-(7-nitrobenzo[1,2,5]oxadiazol-4-yl)-3-(4-nitrophenyl)urea, L--H), interacts with X- ions in MeCN, according to two consecutive steps: 1) formation of a hydrogen-bond complex [L--H...X]-; 2) deprotonation of L--H to give L- and [HX2]-, as shown by spectrophotometric and 1H NMR titration experiments. Step 2) takes place with more basic anions (fluoride, carboxylates, dihydrogenphosphate), while less basic anions (Cl-, NO2-, NO3-) do not induce proton transfer. On crystallisation from a solution containing L--H and excess Bu4NF, the tetrabutylammonium salt of the deprotonated urea derivative (Bu4N[L]) was isolated and its crystal and molecular structure determined. PMID:15770711

  7. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels.

    Science.gov (United States)

    Ding, Haiyan; Lu, Haiping; Lavoie, Michel; Xie, Jun; Li, Yali; Lv, Xiaolu; Fu, Zhengwei; Qian, Haifeng

    2014-11-01

    Residual soil concentrations of the herbicide diclofop-methyl (DM) can be toxic to other nontarget plant species, but the toxicity mechanisms at play are not fully understood. In the present study, we analyzed the toxic effect of DM on root growth and metabolism in the rice species Oryza sativa. The results show that a 48-h exposure to a trace level (5 μg/L) of DM inhibits rice root growth by almost 70%. A 48-h exposure to 5 μg/L DM also leads to an ≈2.5-fold increase in citrate synthase (CS) activity (and CS gene transcription) and an ≈2-fold decrease in the citrate lyase gene transcripts, which lead to an increase in the intracellular concentration of citrate and in citrate exudation rate. Addition of a specific inhibitor of cell membrane anion channel, anthracene-9-carboxylic acid, decreased citrate release in the culture, suggesting that DM-induced citrate loss from the cells is mediated by a specific membrane-bound channel protein. This study brings new insights into the key biochemical mechanisms leading to DM toxicity in rice.

  8. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    Science.gov (United States)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  9. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    Science.gov (United States)

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems.

  10. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid.

    Science.gov (United States)

    Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-06-20

    Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe

  11. Effect of Several Anions on Fe-Based Catalyst for Fischer-Tropsch Synthesis

    Institute of Scientific and Technical Information of China (English)

    Jingchang Zhang; Xuehua Guo; Weiliang Cao

    2007-01-01

    The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction of catalytic activity. When the anion content in the catalyst was 500 ppm, the influence of different anions on the catalysis activity was as follows: S2->Cl->SO42->NO3-. The addition of S2- improved the selectivity of total hydrocarbons in the products, and Cl- reduced this selectivity but increased the olefin content in the total hydrocarbons at the same time. When the contents of S2- and Cl- in the catalyst were less than 50 ppm, their influence could be ignored. The XRD results indicated that the addition of anions reduced the contents of a-Fe and Fe3C, which were the active components in the catalyst.

  12. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  13. Environmental behavior of inorganic anions

    International Nuclear Information System (INIS)

    Recent efforts have addressed two aspects of anion behavior in the soil/plant system. The first involves evaluation of the gaseous component of the terrestrial iodine cycle in soils and plants. Field analyses of 129I in soils and vegetation adjacent to a fuels reprocessing facility, which was idle for 10 years prior to the study, indicated that there may be a significant gaseous component to the terrestrial iodine cycle. Soil substrates, including a silt-sand, organic forest soil, quartz sand, and a sterilized soil, were amended with radioiodide, and the rates and quality of the volatile components evaluated

  14. Anion channelrhodopsins for inhibitory cardiac optogenetics.

    Science.gov (United States)

    Govorunova, Elena G; Cunha, Shane R; Sineshchekov, Oleg A; Spudich, John L

    2016-01-01

    Optical control of the heart muscle is a promising strategy for cardiology because it is more specific than traditional electrical stimulation, and allows a higher temporal resolution than pharmacological interventions. Anion channelrhodopsins (ACRs) from cryptophyte algae expressed in cultured neonatal rat ventricular cardiomyocytes produced inhibitory currents at less than one-thousandth of the light intensity required by previously available optogenetic tools, such as the proton pump archaerhodopsin-3 (Arch). Because of their greater photocurrents, ACRs permitted complete inhibition of cardiomyocyte electrical activity under conditions in which Arch was inefficient. Most importantly, ACR expression allowed precisely controlled shortening of the action potential duration by switching on the light during its repolarization phase, which was not possible with previously used optogenetic tools. Optical shortening of cardiac action potentials may benefit pathophysiology research and the development of optogenetic treatments for cardiac disorders such as the long QT syndrome. PMID:27628215

  15. Anion channelrhodopsins for inhibitory cardiac optogenetics

    Science.gov (United States)

    Govorunova, Elena G.; Cunha, Shane R.; Sineshchekov, Oleg A.; Spudich, John L.

    2016-01-01

    Optical control of the heart muscle is a promising strategy for cardiology because it is more specific than traditional electrical stimulation, and allows a higher temporal resolution than pharmacological interventions. Anion channelrhodopsins (ACRs) from cryptophyte algae expressed in cultured neonatal rat ventricular cardiomyocytes produced inhibitory currents at less than one-thousandth of the light intensity required by previously available optogenetic tools, such as the proton pump archaerhodopsin-3 (Arch). Because of their greater photocurrents, ACRs permitted complete inhibition of cardiomyocyte electrical activity under conditions in which Arch was inefficient. Most importantly, ACR expression allowed precisely controlled shortening of the action potential duration by switching on the light during its repolarization phase, which was not possible with previously used optogenetic tools. Optical shortening of cardiac action potentials may benefit pathophysiology research and the development of optogenetic treatments for cardiac disorders such as the long QT syndrome. PMID:27628215

  16. Effect of divalent anions on photodegradation kinetics and pathways of riboflavin in aqueous solution.

    Science.gov (United States)

    Ahmad, Iqbal; Ahmed, Sofia; Sheraz, Muhammad Ali; Vaid, Faiyaz H M; Ansari, Izhar A

    2010-05-10

    The present investigation is based on a study of the effect of buffer and non-buffer divalent anions (phosphate, sulphate, tartrate, succinate, malonate) on the kinetics, product distribution and photodegradation pathways of riboflavin (RF) at pH 6.0-8.0. RF solutions (5x10(-5)M) were photodegraded in the presence of divalent anions (0.2-1.0M) using a visible light source and the photoproducts, cyclodehydroriboflavin (CDRF), formylmethylflavin (FMF), lumichrome (LC) and lumiflavin (LF) were assayed by a specific multicomponent spectrophotometric method. RF degradation in the presence of divalent anions follows parallel first-order kinetics to give CDRF and LC as the final products through photoaddition and photoreduction reactions, respectively. The divalent anion-catalysed CDRF formation is affected in the order: phosphate>sulphate>tartrate>succinate>malonate, showing maximum activity of the anions around pH 7. The divalent anions cause deviation of the photoreduction pathway in favour of the photoaddition pathway to form CDRF. The first- and second-order rate constants for the reactions involved in the photodegradation of RF have been determined and the rate-pH profiles and pathway relationships discussed. The catalytic activity of the divalent anions appears to be a function of the relative strength and chemical reactivity of the RF-divalent anion complex acting as a mediator in the photoaddition reaction.

  17. Adsorption affinity of anions on metal oxyhydroxides

    Science.gov (United States)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  18. Ursodeoxycholic acid and superoxide anion

    Institute of Scientific and Technical Information of China (English)

    Predrag Ljubuncic; Omar Abu-Salach; Arieh Bomzon

    2005-01-01

    AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.

  19. Antimicrobial Ionic Liquids with Fumarate Anion

    Directory of Open Access Journals (Sweden)

    Biyan He

    2013-01-01

    Full Text Available The shortage of new antimicrobial drugs and increasing resistance of microbe to antimicrobial agents have been of some concern. The formulation studies of new antibacterial and antifungal agents have been an active research field. Ionic liquids are known as designed liquids with controllable physical/chemical/biological properties and specific functions, which have been attracting considerable interest over recent years. However, no attention has been made towards the preparation of ionic liquids with antimicrobial activities. In this paper, a new class of ionic liquids (ILs with fumarate anion was synthesized by neutralization of aqueous 1-butyl-3-methylimidazolium hydroxide with equimolar monoester fumarate and characterized using NMR and thermal gravimetric analysis. The ILs are soluble in water and polar organic solvents and also soluble in the common ILs. The antimicrobial activities of the ILs are more active than commercially available potassium sorbate and are greatly affected by the alkyl chain length. The significant antimicrobial properties observed in this research suggest that the ILs may have potential applications in the modern biotechnology.

  20. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  1. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  2. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  3. Counterintuitive interaction of anions with benzene derivatives

    Science.gov (United States)

    Quiñonero, David; Garau, Carolina; Frontera, Antonio; Ballester, Pau; Costa, Antonio; Deyà, Pere M.

    2002-06-01

    Ab initio calculations were carried out on complexes between 1,3,5-trinitrobenzene (TNB) and anions, where the anion is positioned over the ring along the C3 axis. This study combines crystallographic and computational evidences to demonstrate an attractive interaction between the anion and the π-cloud of TNB. This interaction is rationalized based on the important role of the quadrupole moment of TNB and the anion-induced polarization. In addition, this study has been extended to 1,3,5-trifluorobenzene (TFB), which possesses a very small quadrupole moment. As a result, minimum energy complexes have been found between TFB and both anions and cations due to the stabilization obtained from the ion-induced polarization.

  4. Highly active carbon supported palladium-rhodium PdXRh/C catalysts for methanol electrooxidation in alkaline media and their performance in anion exchange direct methanol fuel cells (AEM-DMFCs)

    International Nuclear Information System (INIS)

    Highlights: • Synthesis and physical evaluation of carbon supported, Rh containing Pd electrocatalysts. • Electroactivity towards methanol oxidation strongly enhanced in alkaline media. • Bimetallic catalyst show low CO oxidation and OH adsorption potentials. • CO2 current efficiency higher for bimetallic catalysts than for Pt/C or Pd/C. • Power density of 105 mW cm−2 for platinum-free alkaline direct methanol fuel cell. - Abstract: In this study carbon supported PdXRh electrocatalysts synthesized by wet chemical reduction process were tested for the potential use in anion-exchange membrane direct methanol fuel cells (AEM-DMFC) and compared to Pd/C and commercially available Pt/C. A metal loading of 20wt% on carbon was confirmed by thermogravimetric analysis (TGA) and catalyst compositions of PdRh3/C, PdRh/C and Pd3Rh/C were found via inductively coupled plasma optical emission spectroscopy (ICP-OES). Transmission electron microscopy (TEM) and x-ray diffraction (XRD) studies showed that the average particle and crystallite sizes of the PdXRh/C catalysts are in the range of 3.1 to 4.3 nm. It was also found that these catalysts are not alloyed. Cyclic voltammetry (CV) data reveals a 85–140 mV lower CH3OH oxidation onset potential and higher mass current densities for PdXRh/C catalysts compared with Pd/C. Steady-state measurements via chronoamperometry (CA) showed a good stability against poisoning during methanol oxidation and higher mass activities for PdRh/C and Pd3Rh/C compared to Pt/C. By using differential electrochemical mass spectrometry (DEMS) it was successfully shown that adding Rh to Pd results in an enhanced CO2 current efficiency (CCE) compared to Pd/C or Pt/C. AEM-DMFCs free from platinum were fabricated and single cell tests at 60 °C showed a significant increase of power density at 0.5 V cell potential from 4.8 mW cm−2 for Pd/C to 16.5 mW cm−2 for PdRh/C with the anode and cathode fed with 1 M methanol + 2 M KOH and synthetic air

  5. Separation of coagulation factor Ⅷ with high activity using gigaporous anion exchange chromatography%超大孔离子交换制备色谱分离纯化高活性凝血因子Ⅷ

    Institute of Scientific and Technical Information of China (English)

    康丽梅; 张焱; 罗坚; 李由; 周月芳; 余蓉; 苏志国

    2012-01-01

    建立了一条从人血浆中分离高活性凝血因子Ⅷ(FⅧ)的纯化工艺.基于FⅧ和介质孔径的尺度比及其对蛋白质活性影响的分析,设计了以超大孔离子交换制备色谱为核心步骤的新型分离纯化工艺.分别进行超大孔离子交换色谱与传统离子交换色谱的条件优化,并对优化工艺所得产品进行了活性检测(底物显色法)和纯度检测(高效凝胶过滤和凝胶电泳).结果表明,超大孔介质结构不但可以有效地保护蛋白质大分子结构,而且能够大幅度地提高制备色谱的传质速率,从而得到具有高凝血活性的FⅧ产品.FⅧ在超大孔制备色谱过程中的回收率(85%)比传统离子交换制备色谱高4~5倍,产品比活高达154 IU/mg.此外,还研究了超大孔介质的再生程序,采用5个柱体积的1mol/L NaOH低流速清洗色谱柱,保证了色谱工艺的稳定性.本纯化工艺步骤简单,重现性好,易于放大生产.%A purification process to obtain coagulation factor Vffl (FVI) with high activity from human plasma was established. Based on the analysis of the size ratio between FVi and matrix porous medium and its effect on the protein activity, a novel purification process designed was superporous ion exchange chromatography (IEC). The operating conditions of gigaporous and traditional anion exchange chromatography were optimized separately. The chromogenic substrate , gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis ( SDS-PAGE) were used to monitor the bioactivity and purity of the chromatographic products. The results showed that the superporous medium could not only protect structure of macro-protein but also enhance its mass transfer, finally giving FVI product with high activity. The yield of FVM in superporous chromatography was about five times of commercially agarose chromatography and the specific activity was up to 154 IU/mg protein. Furthermore, we studied the regeneration process of

  6. Synthesis of Cationic Extended Frameworks for Anion-Based Applications

    OpenAIRE

    Fei, Honghan

    2012-01-01

    Many of the metal pollutants listed as priorities by the EPA (U.S. Environmental Protection Agency) occur in water as their oxo-hydroxo anionic forms (e.g. perchlorate, chromate, selenite, etc.). Radioactive technetium (Tc-99) in the form of soluble pertechnetate (TcO4−) is highly problematic in low-activity waste (LAW) to separate the nuclear waste into primary solids. Its easy leakage from glass after vitrification does not meet long-term storage performance assessment requirements. ...

  7. Off-On-Off fluorescence behavior of an intramolecular charge transfer probe toward anions and CO2.

    Science.gov (United States)

    Ali, Rashid; Razi, Syed S; Shahid, Mohammad; Srivastava, Priyanka; Misra, Arvind

    2016-11-01

    The photophysical behavior of a newly developed fluorescent probe, tricyanoethylphenyl phenanthroimidazole (TCPPI) has been studied. Upon interaction of different class of anions TCPPI displayed naked-eye sensitive fluorescence "turn-on" response to detect selectively F(-) (0.98μM, 18.62ppb) and CN(-) (1.12μM, 29.12ppb) anions in acetonitrile (MeCN). Job's plot analysis revealed a 1:1 binding stoichiometry between probe and anions. The spectral data analysis and 1H NMR titration studies suggested about the affinity of F(-) and CN(-) anions with moderately acidic -NH fragment of imidazolyl unit of probe through deprotonation and H-bonding interaction. Moreover, the anion activated probe upon interaction with CO2 revived photophysical properties of probe, "On-Off-On" type fluorescence and enabled anion-induced CO2 sensing in the medium. PMID:27267280

  8. Off-On-Off fluorescence behavior of an intramolecular charge transfer probe toward anions and CO2

    Science.gov (United States)

    Ali, Rashid; Razi, Syed S.; Shahid, Mohammad; Srivastava, Priyanka; Misra, Arvind

    2016-11-01

    The photophysical behavior of a newly developed fluorescent probe, tricyanoethylphenyl phenanthroimidazole (TCPPI) has been studied. Upon interaction of different class of anions TCPPI displayed naked-eye sensitive fluorescence "turn-on" response to detect selectively F- (0.98 μM, 18.62 ppb) and CN- (1.12 μM, 29.12 ppb) anions in acetonitrile (MeCN). Job's plot analysis revealed a 1:1 binding stoichiometry between probe and anions. The spectral data analysis and 1H NMR titration studies suggested about the affinity of F- and CN- anions with moderately acidic - NH fragment of imidazolyl unit of probe through deprotonation and H-bonding interaction. Moreover, the anion activated probe upon interaction with CO2 revived photophysical properties of probe, "On-Off-On" type fluorescence and enabled anion-induced CO2 sensing in the medium.

  9. Photocatalytic O{sub 2} evolution from water over Zn–Cr layered double hydroxides intercalated with inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Tadanaga, Kiyoharu, E-mail: tadanaga@eng.hokudai.ac.jp [Faculty of Engineering, Hokkaido University, Kita-Ku, Sapporo 060-8628 (Japan); Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2015-02-15

    Graphical abstract: The photocatalytic activity of Zn–Cr LDHs intercalated with various inorganic anions was studied by O{sub 2} evolution from aqueous solution of AgNO{sub 3} as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. The interlayer anions affected the photocatalytic activity of the LDHs. - Highlights: • Zn–Cr layered double hydroxides intercalated with inorganic anions were synthesized. • Photocatalytic activity of the LDHs was studied by O{sub 2} evolution. • All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. • The interlayer anions affected the photocatalytic activity of the LDHs. - Abstract: Zn–Cr layered double hydroxides (LDHs) intercalated with inorganic anions (CO{sub 3}{sup 2−}, Cl{sup −}, SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) were synthesized by the co-precipitation method and the anion exchange process. The photocatalytic activity of the LDHs was studied by O{sub 2} evolution from aqueous solution of AgNO{sub 3} as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. Besides, the interlayer anions affected the photocatalytic activity of the LDHs. After irradiation, Ag particles were formed on the LDHs by accepting the electrons generated during the photocatalytic reaction.

  10. Renal elimination of organic anions in cholestasis

    Institute of Scientific and Technical Information of China (English)

    Adriana Mónica Tortes

    2008-01-01

    The disposition of most drugs is highly dependent on specialized transporters.OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells,identified as contributors to xenobiotic and endogenous organic anion secretion.It is well known that cholestasis may cause renal damage.Impairment of kidney function produces modifications in the renal elimination of drugs.Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis.Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters.The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.

  11. Anion release and uptake kinetics: structural changes of layered 2-dimensional ZnNiHN upon uptake of acetate and chlorinated acetate anions.

    Science.gov (United States)

    Machingauta, Cleopas; Hossenlopp, Jeanne M

    2013-12-01

    X-ray diffraction and UV-vis spectroscopy were used for the investigation of ion exchange reaction kinetics of nitrates with acetate (Ac), chloro acetate (ClAc), dichloro acetate (dClAc) and trichloro acetate (tClAc) anions, using zinc nickel hydroxy nitrate (ZnNiHN) as the exchange precursor. The exchange reactions conducted at 24, 30, 40 and 50°C revealed that rate constants were inversely related to the calculated anion electronic spatial extent (ESE), while a direct relationship between rate constants and the average oxygen charges was observed. Temporal solid phase structural transformations were shown to be affected by the nature of the guest anions. The amount of nitrates released into solution has been shown to decrease as the guest anions became more chlorinated. Use of isoconversional approach revealed that activation energies changed significantly with α during dClAc intercalation than for the other anions. The topotactic intercalation of the guest anions, except dClAc, followed the Avrami-Erofe'ev kinetic model for the entire reaction progress. PMID:24054447

  12. Analysis of anionic post-blast residues of low explosives from soil samples of forensic interest

    International Nuclear Information System (INIS)

    The growing threats and terrorist activities in recent years have urged the need for rapid and accurate forensic investigation on post-blast samples. The analysis of explosives and their degradation products in soils are important to enable forensic scientist to identify the explosives used in the bombing and establish possible links to their likely origin. Anions of interest for post-blast identification of low explosives were detected and identified using ion chromatography (IC). IC separations of five anions (Cl-, NO2-, NO3-, SO42-, SCN-) employed a Metrosep Anion Dual 2 column with carbonate eluent. The anions were separated within 17 minutes. Sampling of post blast residues was carried out in Rompin, Pahang. The post-blast explosive residues were extracted from soil samples collected at the seat of three simulated explosion points. The homemade explosives comprised of black powder of various amounts (100 g, 150 g and 200 g) packed in small plastic sauce bottles. In black powder standard, three anions (Cl-, NO3-, SO42-) were identified. However, low amounts of nitrite (NO2-) were found present in post-blast soil samples. The amounts of anions were generally found to be decreased with decreasing amount of black powder explosive used. The anions analysis was indicative that nitrates were being used as one of the black powder explosive ingredients. (author)

  13. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  14. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution

    Energy Technology Data Exchange (ETDEWEB)

    Verdal, Nina [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Udovic, Terrence J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Rush, John J. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Skripov, Alexander V. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2015-10-05

    Highlights: • NaBH{sub 4}–NaX (X = Cl, I) solutions were made by ball-milling/annealing pure compounds. • BH{sub 4}{sup −} reorientational motions were studied by quasielastic neutron scattering. • Mobility increased from X = Cl to NaBH{sub 4} to X = I, consistent with expanding lattices. • Near 400 K, BH{sub 4}{sup −} favored cubic tumbling for X = Cl and tetrahedral tumbling for X = I. • Activation energies were in the range of 11–12 kJ mol{sup −1} for both compounds. - Abstract: Equimolar NaBH{sub 4}–NaX (X = Cl and I) solid solutions were synthesized to study, via quasielastic neutron scattering, the effect of partial halide anion substitution on the reorientational dynamics of tetrahydroborate (BH{sub 4}{sup −}) anions in NaBH{sub 4}. The BH{sub 4}{sup −} reorientational mobility increased in the order of NaBH{sub 4}–NaCl, NaBH{sub 4}, and NaBH{sub 4}–NaI, which corresponded with expanding face-centered-cubic lattices accommodating the respective increasing sizes of the Cl{sup −}, BH{sub 4}{sup −}, and I{sup −} anions. The BH{sub 4}{sup −} anions in NaBH{sub 4}–NaCl were found (at least above 400 K) to undergo ‘cubic’ tumbling motions with the four H atoms per anion visiting all eight corners of a cube, similar to what was previously observed for NaBH{sub 4}. In contrast, the BH{sub 4}{sup −} anions in NaBH{sub 4}–NaI were found to undergo something more akin to ‘tetrahedral’ tumbling motions, where the H atoms visit all four corners of a tetrahedron. Despite a noticeable softening of the BH{sub 4}{sup −} torsional energies with increasing lattice constant amongst NaBH{sub 4} and the two solid solutions, all three compounds exhibited similar activation energies for reorientation of about 11–12 kJ mol{sup −1}.

  15. IMPACT OF CRITICAL ANION SOIL SOLUTION CONCENTRATION ON ALUMINUM ACTIVITY IN ALPINE TUNDRA SOIL Andrew Evans, Jr.1 , Michael B. Jacobs2, and Jason R. Janke1, (1) Metropolitan State University of Denver, Dept. of Earth and Atmospheric Sciences, (2) Dept. of Chemistry, Denver, CO, United States.

    Science.gov (United States)

    Evans, A.

    2015-12-01

    Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.

  16. Calcium-regulated anion channels in the plasma membrane of Lilium longiflorum pollen protoplasts.

    Science.gov (United States)

    Tavares, Bárbara; Dias, Pedro Nuno; Domingos, Patrícia; Moura, Teresa Fonseca; Feijó, José Alberto; Bicho, Ana

    2011-10-01

    • Currents through anion channels in the plasma membrane of Lilium longiflorum pollen grain protoplasts were studied under conditions of symmetrical anionic concentrations by means of patch-clamp whole-cell configuration. • With Cl(-) -based intra- and extracellular solutions, three outward-rectifying anion conductances, I(Cl1) , I(Cl2) and I(Cl3) , were identified. These three activities were discriminated by differential rundown behaviour and sensitivity to 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), which could not be attributed to one or more channel types. All shared strong outward rectification, activated instantaneously and displayed a slow time-dependent activation for positive potentials. All showed modulation by intracellular calcium ([Ca(2+) ](in) ), increasing intensity from 6.04 nM up to 0.5 mM (I(Cl1) ), or reaching a maximum value with 8.50 μM (I(Cl2) and I(Cl3) ). • After rundown, the anionic currents measured using NO(3) (-) -based solutions were indistinguishable, indicating that the permeabilities of the channels for Cl(-) and NO(3) (-) are similar. Additionally, unitary anionic currents were measured from outside-out excised patches, confirming the presence of individual anionic channels. • This study shows for the first time the presence of a large anionic conductance across the membrane of pollen protoplasts, resulting from the presence of Ca(2+) -regulated channels. A similar conductance was also found in germinated pollen. We hypothesize that these putative channels may be responsible for the large anionic fluxes previously detected by means of self-referencing vibrating probes. PMID:21668885

  17. Novel pseudo-delocalized anions for lithium battery electrolytes.

    Science.gov (United States)

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  18. Studies of anions sorption on natural zeolites.

    Science.gov (United States)

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  19. Effect of temperature on O anion radical reactions and equilibria: a pulse radiolysis study

    International Nuclear Information System (INIS)

    The pKa of the hydroxyl radical was measured over the 20-800C temperature range. At 200C, the pKa was 11.84 and fell to 10.81 at 800C. The dissociation constant for the ozonide anion (O2-anion radical ↔ O2 + O anion radical) was found to be 5.5 x 10-7 mol dm-3 at 200C and 46.2 x 10-7 mol dm-3 at 700C. The rate constants and activation energies for the reaction of O anion radical and OH with 2-propanol, methanol and 3-hexene-1,6-dicarboxylate ions have also been measured. (author)

  20. Conformational equilibrium of talin is regulated by anionic lipids.

    Science.gov (United States)

    Ye, Xin; McLean, Mark A; Sligar, Stephen G

    2016-08-01

    A critical step in the activation of integrin receptors is the binding of talin to the cytoplasmic domain of the β subunits. This interaction leads to separation of the integrin α and β transmembrane domains and significant conformational changes in the extracellular domains, resulting in a dramatic increase in integrin's affinity for ligands. It has long been shown that the membrane bilayer also plays a critical role in the talin-integrin interaction. Anionic lipids are required for proper interaction, yet the specificity for specific anionic headgroups is not clear. In this report, we document talin-membrane interactions with bilayers of controlled composition using Nanodiscs and a FRET based binding and structural assay. We confirm that recruitment of the talin head domain to the membrane surface is governed by charge in the absence of other adapter proteins. In addition, measurement of the donor-acceptor distance is consistent with the hypothesis that anionic lipids promote a conformational change in the talin head domain allowing interaction of the F3 domain with the phospholipid bilayer. The magnitude of the F3 domain movement is altered by the identity of the phospholipid headgroup with phosphatidylinositides promoting the largest change. Our results suggest that phoshpatidylinositol-4,5-bisphosphate plays key a role in converting talin head domain to a conformation optimized for interactions with the bilayer and subsequently integrin cytoplasmic tails.

  1. Photocatalytic O-2 evolution from water over Zn-Cr layered double hydroxides intercalated with inorganic anions

    OpenAIRE

    Hirata, Naoya; TADANAGA, Kiyoharu; Tatsumisago, Masahiro

    2015-01-01

    Zn-Cr layered double hydroxides (LDHs) intercalated with inorganic anions (CO32-, Cl-, SO42- and NO3-) were synthesized by the co-precipitation method and the anion exchange process. The photocatalytic activity of the LDHs was studied by O-2 evolution from aqueous solution of AgNO3 as a sacrificial agent. All the prepared LDHs showed photocatalytic activity under either UV and/or visible light irradiation. Besides, the interlayer anions affected the photocatalytic activity of the LDHs. After ...

  2. Specific adsorption of perchlorate anions on Pt{hkl} single crystal electrodes.

    Science.gov (United States)

    Attard, Gary A; Brew, Ashley; Hunter, Katherine; Sharman, Jonathan; Wright, Edward

    2014-07-21

    The voltammetry of Pt{111}, Pt{100}, Pt{110} and Pt{311} single crystal electrodes as a function of perchloric acid concentration (0.05-2.00 M) has been studied in order to test the assertion made in recent reports by Watanabe et al. that perchlorate anions specifically adsorb on polycrystalline platinum. Such an assertion would have significant ramifications for our understanding of electrocatalytic processes at platinum surfaces since perchlorate anions at low pH have classically been assumed not to specifically adsorb. For Pt{111}, it is found that OHad and electrochemical oxide states are both perturbed significantly as perchloric acid concentration is increased. We suggest that this is due to specific adsorption of perchlorate anions competing with OHad for adsorption sites. The hydrogen underpotential deposition (H UPD) region of Pt{111} however remains unchanged although evidence for perchlorate anion decomposition to chloride on Pt{111} is reported. In contrast, for Pt{100} no variation in the onset of electrochemical oxide formation is found nor any shift in the potential of the OHad state which normally results from the action of specifically adsorbing anions. This suggests that perchlorate anions are non-specifically adsorbed on this plane although strong changes in all H UPD states are observed as perchloric acid concentration is increased. This manifests itself as a redistribution of charge from the H UPD state situated at more positive potential to the one at more negative potential. For Pt{110} and Pt{311}, marginal changes in the onset of electrochemical oxide formation are recorded, associated with specific adsorption of perchlorate. Specific adsorption of perchlorate anions on Pt{111} is deleterious to electrocatalytic activity in relation to the oxygen reduction reaction (ORR) as measured using a rotating disc electrode (RDE) in a hanging meniscus configuration. This study supports previous work suggesting that a large component of the ORR

  3. Recognition of anions by protonated methylazacalixpyridines

    Institute of Scientific and Technical Information of China (English)

    Han-yuan GONG; De-xian WANG; Zhi-tang HUANG; Mei-xiang WANG

    2009-01-01

    Methylazacalixpyridines are a unique kind of macro-cyclic molecules that are able to self-regulate their conformations to best fit the guests. They had shown good recognition to both neutral molecules such as diols and fullerenes and cations. After protonation, the conformation of methylazacalixpyridines became more flexible and could serve as receptors for anions.In the solution, the protonated methylazacalix[2]pyri-dine[2]arene formed complexes with halides yield-ing biding constants of 79(mol/L)-1 for chloride,10 (mol/L)-1 for bromide, and 79 (mol/L)-1 for iodide,respectively. The crystal structures of the complexes between protonated methylazaealix[4]pyridine (MACP-4), methylazacalix[2]pyridine[2] arene (MACP-2-A-2), and iodide anion showed a multiple interaction mode including electrostatic attraction,hydrogen bonding, and anion-π interactions.

  4. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  5. Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport.

    Science.gov (United States)

    Wu, Meng; Heneghan, John F; Vandorpe, David H; Escobar, Laura I; Wu, Bai-Lin; Alper, Seth L

    2016-08-01

    Genetic deficiency of the SLC26A1 anion exchanger in mice is known to be associated with hyposulfatemia and hyperoxaluria with nephrolithiasis, but many aspects of human SLC26A1 function remain to be explored. We report here the functional characterization of human SLC26A1, a 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS)-sensitive, electroneutral sodium-independent anion exchanger transporting sulfate, oxalate, bicarbonate, thiosulfate, and (with divergent properties) chloride. Human SLC26A1-mediated anion exchange differs from that of its rodent orthologs in its stimulation by alkaline pHo and inhibition by acidic pHo but not pHi and in its failure to transport glyoxylate. SLC26A1-mediated transport of sulfate and oxalate is highly dependent on allosteric activation by extracellular chloride or non-substrate anions. Extracellular chloride stimulates apparent V max of human SLC26A1-mediated sulfate uptake by conferring a 2-log decrease in sensitivity to inhibition by extracellular protons, without changing transporter affinity for extracellular sulfate. In contrast to SLC26A1-mediated sulfate transport, SLC26A1-associated chloride transport is activated by acid pHo, shows reduced sensitivity to DIDS, and exhibits cation dependence of its DIDS-insensitive component. Human SLC26A1 resembles SLC26 paralogs in its inhibition by phorbol ester activation of protein kinase C (PKC), which differs in its undiminished polypeptide abundance at or near the oocyte surface. Mutation of SLC26A1 residues corresponding to candidate anion binding site-associated residues in avian SLC26A5/prestin altered anion transport in patterns resembling those of prestin. However, rare SLC26A1 polymorphic variants from a patient with renal Fanconi Syndrome and from a patient with nephrolithiasis/calcinosis exhibited no loss-of-function phenotypes consistent with disease pathogenesis. PMID:27125215

  6. Organic anion transporter (Slc22a) family members as mediators of toxicity

    International Nuclear Information System (INIS)

    Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents

  7. Electron Photodetachment from Aqueous Anions. III. Dynamics of Geminate Pairs Derived from Photoexcitation of Mono- vs. Poly- atomic Anions

    CERN Document Server

    Lian, R; Crowell, R A; Shkrob, I A; Chen, X; Bradforth, S E; Lian, Rui; Oulianov, Dmitri A.; Crowell, Robert A.; Shkrob, Ilya A.; Bradforth, Stephen E.

    2005-01-01

    Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer. Here we contrast the behavior of halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS-) and common polyvalent anions (e.g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I-, Br-, OH-, HS-, CNS-, CO32-, SO32-, and Fe(CN)64-) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy (225 nm or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions (including all polyvalent anions studied) the initial electron distributi...

  8. Photoelectron spectroscopy and theoretical studies of anion-π interactions: binding strength and anion specificity.

    Science.gov (United States)

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-π interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1 : 1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-π binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron

  9. Donnan Membrane Technique (DMT) for Anion Measurement

    NARCIS (Netherlands)

    Alonso Vega, M.F.; Weng, L.P.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2010-01-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl-, 1-2 days for NO3-, 1-4 days for SO42-

  10. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  11. Synthesis of azaphenanthridines via anionic ring closure

    DEFF Research Database (Denmark)

    Hansen, Henriette Møller; Lysén, M.; Begtrup, M.;

    2005-01-01

    A new and convergent synthesis of azaphenanthridines via an anionic ring closure is reported. Ortho-lithiation/in situ borylation of cyanopyridines produces the corresponding cyanopyridylboronic esters, which undergo a Suzuki-Miyaura cross-coupling to give the key intermediates. Addition of lithi...

  12. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion...

  13. Purification and Characterization of Two Voltage-Dependent Anion Channel Isoforms from Plant Seeds1

    Science.gov (United States)

    Abrecht, Helge; Wattiez, Ruddy; Ruysschaert, Jean-Marie; Homblé, Fabrice

    2000-01-01

    Mitochondria were isolated from imbibed seeds of lentil (Lens culinaris) and Phaseolus vulgaris. We copurified two voltage-dependent anion channel from detergent solubilized mitochondria in a single purification step using hydroxyapatite. The two isoforms from P. vulgaris were separated by chromatofocusing chromatography in 4 m urea without any loss of channel activity. Channel activity of each isoform was characterized upon reconstitution into diphytanoyl phosphatidylcholine planar lipid bilayers. Both isoforms form large conductance channels that are slightly anion selective and display cation selective substates. PMID:11080295

  14. Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds.

    Science.gov (United States)

    Abrecht, H; Wattiez, R; Ruysschaert, J M; Homblé, F

    2000-11-01

    Mitochondria were isolated from imbibed seeds of lentil (Lens culinaris) and Phaseolus vulgaris. We copurified two voltage-dependent anion channel from detergent solubilized mitochondria in a single purification step using hydroxyapatite. The two isoforms from P. vulgaris were separated by chromatofocusing chromatography in 4 M urea without any loss of channel activity. Channel activity of each isoform was characterized upon reconstitution into diphytanoyl phosphatidylcholine planar lipid bilayers. Both isoforms form large conductance channels that are slightly anion selective and display cation selective substates.

  15. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    Science.gov (United States)

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  16. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan L. Sessler

    2007-09-21

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  17. Anion transport and GABA signaling

    Directory of Open Access Journals (Sweden)

    Christian Andreas Huebner

    2013-10-01

    Full Text Available Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.

  18. Reversible photochromism of an N-salicylidene aniline anion.

    Science.gov (United States)

    Jacquemin, Pierre-Loïc; Robeyns, Koen; Devillers, Michel; Garcia, Yann

    2014-01-21

    The first N-salicylidene aniline anion showing reversible solid state thermochromic and photochromic properties is described. The photo-isomerization involves a trans-keto form which is stabilized thanks to the local anion surrounding. This photochromic anion can be used as a guest for the preparation of hybrid materials by insertion into a cationic host matrix. PMID:24022381

  19. 酶法制备鲽鱼鱼皮胶原蛋白肽及其清除超氧阴离子自由基的研究%Study on the Enzymatic Preparation and Superoxide Anion Radical Scavenging Activity of Collagen Peptide from Plaice Skin

    Institute of Scientific and Technical Information of China (English)

    王群; 郑海涛; 葛尧; 何计国

    2011-01-01

    采用碱性蛋白酶酶解鲽鱼鱼皮胶原蛋白制备胶原蛋白肽,对其清除超氧阴离子自由基的能力进行研究.通过单因素试验和响应面法分析不同酶解条件对超氧阴离子自由基清除率的影响,优化得到最佳酶解工艺条件:pH 9.5,加酶量158l U/g,底物浓度10 mg/mL,酶解时间为6h,酶解温度60℃,最高清除率为75.51%,半数清除浓度(IC5o)为7.98 mg/mL.%Alcalase was used to hydrolyze plaice skin for preparing collagen peptide, and the superoxide anion radical scavenging activity of this collagen peptide was studied. Effect of the different enzymatic hydrolysis conditions on superoxide anion radical scavenging activity were analyzed by single factor experiment and response surface method. The optimal hydrolytic conditions of plaice skin collagen using Alcalase with high scavenging rate were pH=9.5, enzyme dosage 1581 U/g, concentration of substrate 10 mg/mL, hydrolysis time 6 h, temperature 60℃. The maximum scavenging rate of 75.51% and half scavenging concentration (IC50) of 7.98 mg/mL were obtained.

  20. Functional role of anion channels in cardiac diseases

    Institute of Scientific and Technical Information of China (English)

    Da-yue DUAN; Luis LH LIU; Nathan BOZEAT; Z Maggie HUANG; Sunny Y XIANG; Guan-lei WANG; Linda YE; Joseph R HUME

    2005-01-01

    In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore,anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels,like cation channels, might function as a multiprotein complex or functional module.In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.

  1. Fibrin solubilizing properties of certain anionic and cationic detergents.

    Science.gov (United States)

    Chakrabarty, S

    1989-08-15

    The fibrinolytic (fibrin dissolving) properties of several anionic, cationic, nonionic and zwitterionic detergents were assessed in an in vitro fibrin agarose assay. Of the 4 anionic detergents tested, only sodium dodecyl sulfate (SDS) was found to be fibrinolytic. SDS was fibrinolytic either in the absence or presence of factor XIII. Four other cationic detergents were found to possess similar fibrinolytic properties. These cationic detergents were cetyltrimethylammonium bromide (CTAB), mix alkyltrimethyl ammonium bromide (MTAB), hexadecyltrimethylammonium bromide (HTAB) and cetylpyridium chloride (CPC). The nonionic (digitonin, triton X-100/tween 20) and zeitterionic (CHAPS, zeittergent 3-08) detergents were not fibrinolytic. Detergents mediated fibrinolysis, unlike that of tissue type plasminogen activator and urokinase, was independent of the presence of plasminogen. Non-detergents such as polyethylene glycol and highly charged compounds such as poly-1-lysine and poly-1-glutamic acid were not fibrinolytic. Fibrinolytic activity was observed for SDS and the cationic detergents at concentrations ranging from 0.1-10 percent. The effects of these fibrinolytic detergents (SDS, CTAB, MTAB, HTAB and CPC) on clot formation and on pre-formed clots were then assessed, using freshly drawn human venous blood. Incorporation of these detergents into blood inhibited the formation of clots in a concentration dependent manner. The detergents were also able to dissolve pre-formed clots in a similar fashion. SDS was found to be most potent in these properties. PMID:2510356

  2. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  3. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  4. Specific anion effects in Artemia salina.

    Science.gov (United States)

    Lo Nostro, Pierandrea; Ninham, Barry W; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2015-09-01

    The specific anion effect on the vitality of Artemia salina was investigated by measuring the Lethal Time LT50 of the crustaceans in the presence of different sodium salts solutions at room temperature and at the same ionic strength as natural seawater. Fluoride, thiocyanate and perchlorate are the most toxic agents, while chloride, bromide and sulfate are well tolerated. The rates of oxygen consumption of brine shrimps were recorded in mixed NaCl+NaF or NaCl+NaSCN solutions as a function of time. The results are discussed in terms of the Hofmeister series, and suggest that, besides the biochemical processes that involve F(-), SCN(-) and ClO4(-), the different physico-chemical properties of the strong kosmotropic and chaotropic anions may contribute in determining their strong toxicity for A. salina. PMID:25978674

  5. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between intri...... cannot be expected to catalyze hydrogen abstraction reactions by the hydroxyl radical under atmospherically relevant conditions....... from the solvent to the anion, resulting in a HO−(HOOH) rather than a HOO−(H2O) structure. However, the results demonstrate that the reactive nucleophile is nonetheless the HOO− anion. Finally, microsolvation applied to radical-molecule reactions allows us to demonstrate that a single water molecule......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...

  6. Politseiuuringud kooskõlastamisele / Liivia Anion

    Index Scriptorium Estoniae

    Anion, Liivia

    2003-01-01

    1. aprillil 2003. a. moodustatud uurimistööde kooskõlastamise komisjoni tegevuse eesmärk on saada ülevaade kõrgkoolides õppivate töötajate poolt politseis korraldatavatest uurimustest, kasutada saadud infot politsei kasuks ja vältida teenistujate tööd segavate uurimuste tegemist. Komisjoni liige Liivia Anion teeb ülevaate komisjoni otsustuspädevuse valdkondadest ja töökorraldusest

  7. Lowest autodetachment state of the water anion

    Science.gov (United States)

    Houfek, Karel; Čížek, Martin

    2016-05-01

    The potential energy surface of the ground state of the water anion H2O- is carefully mapped using multireference CI calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O-+H2 and OH-+H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The autodetachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O- + H2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slighly off the linear geometry and is separated by a saddle from the autodetachment region. The autodetachment region is directly accessible from the OH-+H asymptote. For the molecular geometries in the autodetachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  8. Donnan membrane technique (DMT) for anion measurement.

    Science.gov (United States)

    Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2010-04-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.

  9. Several hemicyanine dyes as fluorescence chemosensors for cyanide anions

    Science.gov (United States)

    Liang, Muhan; Wang, Kangnan; Guan, Ruifang; Liu, Zhiqiang; Cao, Duxia; Wu, Qianqian; Shan, Yanyan; Xu, Yongxiao

    2016-05-01

    Four hemicyanine dyes as chemosensors for cyanide anions were synthesized easily. Their photophysical properties and recognition properties for cyanide anions were investigated. The results indicate that all the dyes can recognize cyanide anions with obvious color, absorption and fluorescence change. The recognition mechanism analysis basing on in situ 1H NMR and Job plot data indicates that to the compounds with hydroxyl group, the recognition mechanism is intramolecular hydrogen bonding interaction. However, to the compounds without hydroxyl group, cyanide anion is bonded to carbon-carbon double bond in conjugated bridge and induces N+ CH3 to neutral NCH3. Fluorescence of the compounds is almost quenched upon the addition of cyanide anions.

  10. Bound anions differentially stabilize multiprotein complexes in the absence of bulk solvent.

    Science.gov (United States)

    Han, Linjie; Hyung, Suk-Joon; Mayers, Jonathan J S; Ruotolo, Brandon T

    2011-07-27

    The combination of ion mobility separation with mass spectrometry is an emergent and powerful structural biology tool, capable of simultaneously assessing the structure, topology, dynamics, and composition of large protein assemblies within complex mixtures. An integral part of the ion mobility-mass spectrometry measurement is the ionization of intact multiprotein complexes and their removal from bulk solvent. This process, during which a substantial portion of protein structure and organization is likely to be preserved, imposes a foreign environment on proteins that may cause structural rearrangements to occur. Thus, a general means must be identified to stabilize protein structures in the absence of bulk solvent. Our approach to this problem involves the protection of protein complex structure through the addition of salts in solution prior to desorption/ionization. Anionic components of the added salts bind to the complex either in solution or during the electrospray process, and those that remain bound in the gas phase tend to have high gas phase acidities. The resulting 'shell' of counterions is able to carry away excess energy from the protein complex ion upon activation and can result in significant structural stabilization of the gas-phase protein assembly overall. By using ion mobility-mass spectrometry, we observe both the dissociation and unfolding transitions for four tetrameric protein complexes bound to populations of 12 different anions using collisional activation. The data presented here quantifies, for the first time, the influence of a large range of counterions on gas-phase protein structure and allows us to rank and classify counterions as structure stabilizers in the absence of bulk solvent. Our measurements indicate that tartrate, citrate, chloride, and nitrate anions are among the strongest stabilizers of gas-phase protein structure identified in this screen. The rank order determined by our data is substantially different when compared to

  11. Developing principles for predicting ionic liquid effects on reaction outcome. The importance of the anion in controlling microscopic interactions.

    Science.gov (United States)

    Keaveney, Sinead T; Haines, Ronald S; Harper, Jason B

    2015-03-28

    A series of ionic liquids containing anions of differing coordination strength were investigated as solvents for the condensation reaction of an alkyl amine and an aromatic aldehyde. As predicted, the rate constant of the process was found to increase with the proportion of the ionic liquid in the reaction mixture. Temperature-dependent kinetic analyses demonstrated that by varying the ability of the anion to interact with the cation the magnitude of both the enthalpy and entropy of activation could be controlled in a predictable manner, with the activation parameters being linearly dependent on the ionic liquid basicity. Interestingly, the unexpected trend in the rate constants observed when altering the anion of the ionic liquid highlighted the presence of more subtle secondary microscopic interactions involving the anion, further emphasizing the fragility of the enthalpy - entropy balance.

  12. Kinetics and mechanism of protection of thymine from sulphate radical anion under anoxic conditions

    Indian Academy of Sciences (India)

    M Sudha Swaraga; M Adinarayana

    2003-04-01

    The rates of photooxidation of thymine in presence of peroxydisulphate (PDS) have been determined by measuring the absorbance of thymine at 264 nm spectrophotometrically. The rates and the quantum yields () of oxidation of thymine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of thymine suggesting that caffeic acid acts as an efficient scavenger of SO$^{\\bullet -}_{4}$ and protects thymine from it. Sulphate radical anion competes for thymine as well as for caffeic acid. The rate constant of sulphate radical anion with caffeic acid has been calculated to be 1.24 × 1010 dm3 mol-1 s-1. The quantum yields of photooxidation of thymine have been calculated from the rates of oxidation of thymine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cl) assuming caffeic acid acting only as a scavenger of SO$^{\\bullet -}_{4}$ radicals show that exptl values are lower than cl values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for SO$^{\\bullet-}_{4}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the thymine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  13. Rigid-rod anion-pi slides for multiion hopping across lipid bilayers.

    Science.gov (United States)

    Gorteau, Virginie; Bollot, Guillaume; Mareda, Jiri; Matile, Stefan

    2007-09-21

    Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F > Br approximately I, Cl/Br approximately Cl/I > 7) implied strong anion binding along the anion-pi slides with relatively weak contributions from size exclusion (F >or= OAc). Anomalous mole fraction effects (AMFE) supported the occurrence of multiion hopping along the pi-acidic O-NDI rods. The existence of anion-pi interactions was corroborated by high-level ab initio and DFT calculations. The latter revealed positive NDI quadrupole moments far beyond the hexafluorobenzene standard. Computational studies further suggested that anion binding occurs at the confined, pi-acidic edges of the sticky NDI surface and is influenced by the nature of the phenyl spacer between two NDIs. With regard to methods development, a detailed analysis of the detection of ion selectivity with the HPTS assay including AMFE in vesicles is provided. PMID:17728867

  14. Renal Organic Anion Transporters (SLC22 Family): Expression, Regulation, Roles in Toxicity, and Impact on Injury and Disease

    OpenAIRE

    Wang, Li; Sweet, Douglas H.

    2012-01-01

    Organic solute flux across the basolateral and apical membranes of renal proximal tubule cells is a key process for maintaining systemic homeostasis. It represents an important route for the elimination of metabolic waste products and xenobiotics, as well as for the reclamation of essential compounds. Members of the organic anion transporter (OAT, SLC22) family expressed in proximal tubules comprise one pathway mediating the active renal secretion and reabsorption of organic anions. Many drug...

  15. Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.

    Science.gov (United States)

    Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian

    2012-05-01

    The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo. PMID:22852346

  16. Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.

    Science.gov (United States)

    Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian

    2012-05-01

    The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo.

  17. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Johannes Ranke

    2009-03-01

    Full Text Available The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  18. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    International Nuclear Information System (INIS)

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined

  19. Superoxide Anion Radical Scavenging Ability of Quaternary Ammonium Salt of Chitosan

    Institute of Scientific and Technical Information of China (English)

    Xiao Yan ZHU; Jian Min WU; Zhi Shen JIA

    2004-01-01

    A series of N-alkyl or N-aryl chitosan quaternary ammonium salt were prepared using 96% deacetylated chitosan. Their scavenging activities against superoxide anion radical were investigated by chemiluminescence. The IC50 values of these compounds range from 280 to 880 μg/mL, which should be attributed to their different substitutes.

  20. Anionic complexes of Cu(I) with the closo-decaborate anion

    International Nuclear Information System (INIS)

    General procedures for synthesis of anionic Cu(I) complexes with the closo-decaborate anion were worked out; they make it possible to prepare coordination compounds with a wide set of organic cations. The interaction of onium closo-decaborates with [Cu2B10H10] in acetonitrile acidified with anhydrous trifluoroacetic acid was found to be the most effective synthetic method that secures high yield and quality of the obtained products. The structure of {(C2H5)3NH[CuB10H10]} was determined by X-ray diffraction analysis

  1. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    Science.gov (United States)

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.

  2. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1.

    Science.gov (United States)

    Lobo, Miguel J; Amaral, Margarida D; Zaccolo, Manuela; Farinha, Carlos M

    2016-07-01

    Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis. PMID:27206858

  3. Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography.

    Science.gov (United States)

    Alpert, Andrew J; Hudecz, Otto; Mechtler, Karl

    2015-01-01

    Most phosphoproteomics experiments rely on prefractionation of tryptic digests before online liquid chromatography-mass spectrometry. This study compares the potential and limitations of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and anion-exchange chromatography (AEX). At a pH higher than 5, phosphopeptides have two negative charges per residue and are well-retained in AEX. However, peptides with one or two phosphate groups are not separated from peptides with multiple Asp or Glu residues, interfering with the identification of phosphopeptides. At a pH of 2, phosphate residues have just a single negative charge but Asp and Glu are uncharged. This facilitates the separation of phosphopeptides from unmodified acidic peptides. Singly phosphorylated peptides are retained weakly under these conditions, due to electrostatic repulsion, unless hydrophilic interaction is superimposed in the ERLIC mode. Weak anion-exchange (WAX) and strong anion-exchange (SAX) columns were compared, with both peptide standards and a HeLa cell tryptic digest. The SAX column exhibited greater retention at pH 6 than did the WAX column. However, only about 60% as many phosphopeptides were identified with SAX at pH 6 than via ERLIC at pH 2. In one ERLIC run, 12 467 phosphopeptides were identified, including 4233 with more than one phosphate. We conclude that chromatography of phosphopeptides is best performed at low pH in the ERLIC mode. Under those conditions, the performances of the SAX and WAX materials were comparable. The data have been deposited with the ProteomeXchange with identifier PXD001333. PMID:25827581

  4. Organic superconductors with an incommensurate anion structure

    Directory of Open Access Journals (Sweden)

    Tadashi Kawamoto and Kazuo Takimiya

    2009-01-01

    Full Text Available Superconducting incommensurate organic composite crystals based on the methylenedithio-tetraselenafulvalene (MDT-TSF series donors, where the energy band filling deviates from the usual 3/4-filled, are reviewed. The incommensurate anion potential reconstructs the Fermi surface for both (MDT-TSF(AuI20.436 and (MDT-ST(I30.417 neither by the fundamental anion periodicity q nor by 2q, but by 3q, where MDT-ST is 5H-2-(1,3-dithiol-2-ylidene-1,3-diselena-4,6-dithiapentalene, and q is the reciprocal lattice vector of the anion lattice. The selection rule of the reconstructing vectors is associated with the magnitude of the incommensurate potential. The considerably large interlayer transfer integral and three-dimensional superconducting properties are due to the direct donor–donor interactions coming from the characteristic corrugated conducting sheet structure. The materials with high superconducting transition temperature, Tc, have large ratios of the observed cyclotron masses to the bare ones, which indicates that the strength of the many-body effect is the major determinant of Tc. (MDT-TS(AuI20.441 shows a metal–insulator transition at TMI=50 K, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene-1,3,4,6-tetrathiapentalene, and the insulating phase is an antiferromagnet with a high Néel temperature (TN=50 K and a high spin–flop field (Bsf=6.9 T. There is a possibility that this material is an incommensurate Mott insulator. Hydrostatic pressure suppresses the insulating state and induces superconductivity at Tc=3.2 K above 1.05 GPa, where Tc rises to the maximum, Tcmax=4.9 K at 1.27 GPa. This compound shows a usual temperature–pressure phase diagram, in which the superconducting phase borders on the antiferromagnetic insulating phase, despite the unusual band filling.

  5. On the electronic structure of fullerene anions

    Energy Technology Data Exchange (ETDEWEB)

    Bergomi, L.; Jolicoeur, T. (CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1994-02-03

    The authors study the electronic states of isolated fullerene anions C[sub 60][sup n-] (1 [<=] n [<=] 6) taking into account the effective interaction between electrons due to exchange of intramolecular phonons. If the vibronic coupling is strong enough such an effect may overwhelm Hund's rule and lead to an ordering of levels that can be interpreted as on-ball pairing, in a manner similar to the pairing in atomic nuclei. The authors suggest that such effects may be sought in solutions of fulleride ions and discuss recent experimental results.

  6. Monocarbaborane anion chemistry. [COOH], [CH2OH] and [CHO] units as functional groups on ten-vertex monocarbaborane anionic compounds.

    Science.gov (United States)

    Franken, Andreas; Carr, Michael J; Clegg, William; Kilner, Colin A; Kennedy, John D

    2004-11-01

    B(10)H(14) reacts with para-C(6)H(4)(CHO)(COOH) in aqueous KOH solution to give the [nido-6-CB(9)H(11)-6-(C(6)H(4)-para-COOH)](-) anion 1, which undergoes cage closure with iodine in alkaline solution to give the [closo-2-CB(9)H(9)-2-(C(6)H(4)-para-COOH)](-) anion 2. Upon heating, anion 2 rearranges to form the [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-COOH)](-) anion 3. Similarly, B(10)H(14) with glyoxylic acid OHCCOOH in aqueous KOH gives the [arachno-6-CB(9)H(13)-6-(COOH)](-) anion 4, which undergoes cage closure with iodine in alkaline solution to give the [closo-2-CB(9)H(9)-2-(COOH)](-) anion 5. Upon heating, anion 5 rearranges to give the [closo-1-CB(9)H(9)-1-(COOH)](-) anion 6. Reduction of the [COOH] anions 3 and 6 with diisobutylaluminium hydride gives the [CH(2)OH] hydroxy anions [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CH(2)OH)](-) and [closo-1-CB(9)H(9)-1-(CH(2)OH)](-) 8 respectively. The [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CH(2)OH)](-) anion 7 can also be made via isomerisation of the [closo-2-CB(9)H(9)-2-(C(6)H(4)-para-CH(2)OH)](-) anion 9, in turn obtained from the [nido-6-CB(9)H(11)-6-(C(6)H(4)-para-CH(2)OH)](-) anion 10, which is obtained from the reaction of B(10)H(14) with terephthaldicarboxaldehyde, C(6)H(4)-para-(CHO)(2), in aqueous KOH solution. Oxidation of the hydroxy anions 7 and 8 with pyridinium dichromate gives the aldehydic [closo-1-CB(9)H(9)-1-(C(6)H(4)-para-CHO)](-) anion 11 and the aldehydic [closo-1-CB(9)H(9)-1-(CHO)](-) anion 12 respectively, characterised as their 2,4-dinitrophenylhydrazone derivatives, the [closo-1-CB(9)H(9)-1-C(6)H(4)-para-CH=N-NHC(6)H(3)(NO(2))(2)](-) anion 13 and the [closo-1-CB(9)H(9)-1-CH=N-NHC(6)H(3)(NO(2))(2)](-) anion respectively.

  7. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  8. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  9. Preorganized anion traps for exploiting anion-π interactions: an experimental and computational study.

    Science.gov (United States)

    Bretschneider, Anne; Andrada, Diego M; Dechert, Sebastian; Meyer, Steffen; Mata, Ricardo A; Meyer, Franc

    2013-12-01

    1,3-Bis(pentafluorophenyl-imino)isoindoline (A(F)) and 3,6-di-tert-butyl-1,8-bis(pentafluorophenyl)-9H-carbazole (B(F)) have been designed as preorganized anion receptors that exploit anion-π interactions, and their ability to bind chloride and bromide in various solvents has been evaluated. Both receptors A(F) and B(F) are neutral but provide a central NH hydrogen bond that directs the halide anion into a preorganized clamp of the two electron-deficient appended arenes. Crystal structures of host-guest complexes of A(F) with DMSO, Cl(-), or Br(-) (A(F):DMSO, A(F):Cl(-), and A(2)(F):Br(-)) reveal that in all cases the guest is located in the cleft between the perfluorinated flaps, but NMR spectroscopy shows a more complex situation in solution because of E,Z/Z,Z isomerism of the host. In the case of the more rigid receptor B(F), Job plots evidence 1:1 complex formation with Cl(-) and Br(-), and association constants up to 960 M(-1) have been determined depending on the solvent. Crystal structures of B(F) and B(F):DMSO visualize the distinct preorganization of the host for anion-π interactions. The reference compounds 1,3-bis(2-pyrimidylimino)isoindoline (A(N)) and 3,6-di-tert-butyl-1,8-diphenyl-9H-carbazole (B(H)), which lack the perfluorinated flaps, do not show any indication of anion binding under the same conditions. A detailed computational analysis of the receptors A(F) and B(F) and their host-guest complexes with Cl(-) or Br(-) was carried out to quantify the interactions in play. Local correlation methods were applied, allowing for a decomposition of the ring-anion interactions. The latter were found to contribute significantly to the stabilization of these complexes (about half of the total energy). Compounds A(F) and B(F) represent rare examples of neutral receptors that are well preorganized for exploiting anion-π interactions, and rare examples of receptors for which the individual contributions to the binding energy have been quantified. PMID

  10. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    Science.gov (United States)

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. PMID:26818656

  11. Porating anion-responsive copolymeric gels.

    Science.gov (United States)

    England, Dustin; Yan, Feng; Texter, John

    2013-09-24

    A polymerizable ionic liquid surfactant, 1-(11-acryloyloxyundecyl)-3-methylimidiazolium bromide (ILBr), was copolymerized with methyl methacrylate (MMA) in aqueous microemulsions at 30% (ILBr w/w) and various water to MMA ratios. The ternary phase diagram of the ILBr/MMA/water system was constructed at 25 and 60 °C. Homopolymers and copolymers of ILBr and MMA were produced by thermally initiated chain radical microemulsion polymerization at various compositions in bicontinuous and reverse microemulsion subdomains. Microemulsion polymerization reaction products varied from being gel-like to solid, and these materials were analyzed by thermal and scanning electron microscopy methods. Microemulsion polymerized materials were insoluble in all solvents tested, consistent with light cross-linking. Ion exchange between Br(-) and PF6(-) in these copolymeric materials resulted in the formation of open-cell porous structures in some of these materials, as was confirmed by scanning electron microscopy (SEM). Several compositions illustrate the capture of prepolymerization nanoscale structure by thermally initiated polymerization, expanding the domain of compositions exhibiting this feat and yet to be demonstrated in any other system. Regular cylindrical pores in interpenetrating ILBr-co-MMA and PMMA networks are produced by anion exchange in the absence of templates. A percolating cluster/bicontinuous transition is "captured" by SEM after using anion exchange to visualize the mixed cluster/pore morphology. Some design principles for achieving this capture and for obtaining stimuli responsive solvogels are articulated, and the importance of producing solvogels in capturing the nanoscale is highlighted. PMID:23968242

  12. Anions in laser-induced plasmas

    Science.gov (United States)

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  13. The removal of anionic surfactants from water in coagulation process.

    Science.gov (United States)

    Kaleta, Jadwiga; Elektorowicz, Maria

    2013-01-01

    This paper presents the results of a laboratory study on the effectiveness of the coagulation process in removing surfactants from water. The application of traditional coagulants (aluminium sulfate and iron chlorides) has not brought satisfactory results, the reduction in anionic surfactant (AS) content reached 7.6% and 10%, respectively. Adding cationic polyelectrolyte (Zetag-50) increased the removal efficiency to 24%. Coagulation using a polyelectrolyte alone proved to be more efficient, the reduction in surfactant content fluctuated at a level of about 50%. Complete surfactant removal was obtained when powdered activated carbon was added 5 minutes before the basic coagulant to the coagulation process. The efficiency of surfactant coagulation also increased after the application of powdered clinoptilolite, but to a smaller degree. Then the removal of AS was found to be improved by dosing powdered clinoptilolite simultaneously or with short delay after the addition of the basic coagulant. PMID:23837351

  14. Reversible photochromism of an N-salicylidene aniline anion

    OpenAIRE

    Jacquemin, Pierre-Loïc; Robeyns, Koen; Devillers, Michel; Garcia, Yann

    2014-01-01

    The first N-salicylidene aniline anion showing reversible solid state thermochromic and photochromic properties is described. The photo-isomerization involves a trans-keto form which is stabilized thanks to the local anion surrounding. This photochromic anion can be used as a guest for the preparation of hybrid materials by insertion into a cationic host matrix. © 2014 The Royal Society of Chemistry.

  15. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t1/2 = 1,6 . 107 a), Tc-99 (t1/2 = 2,1 . 105 a), and Se-79 (t1/2 = 6,5 . 104 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO-4 > I- > NO-3 > Cl- > SO2-4 > SeO2-3. This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  16. Surface electrochemistry of CO on Pt(111): Anion Effects

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, N.M.; Lucas, C.A.; Rodes, A.; Stamenkovic, V.; Ross, P.N.

    2001-07-30

    In-situ studies of CO adsorption by surface x-ray scattering (SXS) and Fourier transform infrared (FTIR) spectroscopy techniques are used to create the link between the macroscopic kinetic rates of CO oxidation and the microscopic level of understanding the structure/site occupancy of CO on Pt(111). A remarkable difference in activity was observed between alkaline and acid solutions. In alkaline solution the oxidation of CO proceeds at low overpotential (<0.2 V) by the surface reaction between the adsorbed CO and OH, the latter forming selectively in the hydrogen underpotential potential region at defect sites. In acid solution these sites are blocked by specific adsorption of anions, and consequently in a solution containing Br{sup -} the ignition potential is shifted positively by 0.6 V. Anions of supporting electrolytes also have dramatic effects on both the potential range of stability and the domain size of the p(2x2)-3CO structure which is formed at 0.05 V. The stability/domain size of this structure increases from KOH (ca. 30 {angstrom} between 0.05 < E < 0.3V), to HClO{sub 4} (ca. 140 {angstrom} between 0.05 < E < 0.6V) to HClO{sub 4} + Br{sup -} (ca 350 {angstrom} between 0.05 < E < 0.8V). The larger the ordered domains of the p(2x2)-CO{sub ad} structure are, the less active the surface is towards CO oxidation.

  17. Identification and characterization of anion binding sites in RNA.

    Science.gov (United States)

    Kieft, Jeffrey S; Chase, Elaine; Costantino, David A; Golden, Barbara L

    2010-06-01

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions. PMID:20410239

  18. Approach to the Patient With a Negative Anion Gap.

    Science.gov (United States)

    Emmett, Michael

    2016-01-01

    When anion gap calculation generates a very small or negative number, an explanation must be sought. Sporadic (nonreproducible) measurement errors and systematic (reproducible) laboratory errors must be considered. If an error is ruled out, 2 general possibilities exist. A true anion gap reduction can be generated by either reduced concentrations of unmeasured anions such as albumin or increased concentrations of unmeasured cations such as magnesium, calcium, or lithium. This teaching case describes a patient with aspirin (salicylate) poisoning whose anion gap was markedly reduced (-47 mEq/L). The discussion systematically reviews the possibilities and provides the explanation for this unusual laboratory result. PMID:26363848

  19. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and AcO-) to a s......The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  20. Aza-Bambusurils En Route to Anion Transporters.

    Science.gov (United States)

    Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer

    2016-06-20

    Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. PMID:27225332

  1. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  2. Experimental evidence for the functional relevance of anion-π interactions

    Science.gov (United States)

    Dawson, Ryan E.; Hennig, Andreas; Weimann, Dominik P.; Emery, Daniel; Ravikumar, Velayutham; Montenegro, Javier; Takeuchi, Toshihide; Gabutti, Sandro; Mayor, Marcel; Mareda, Jiri; Schalley, Christoph A.; Matile, Stefan

    2010-07-01

    Attractive in theory and confirmed to exist, anion-π interactions have never really been seen at work. To catch them in action, we prepared a collection of monomeric, cyclic and rod-shaped naphthalenediimide transporters. Their ability to exert anion-π interactions was demonstrated by electrospray tandem mass spectrometry in combination with theoretical calculations. To relate this structural evidence to transport activity in bilayer membranes, affinity and selectivity sequences were recorded. π-acidification and active-site decrowding increased binding, transport and chloride > bromide > iodide selectivity, and supramolecular organization inverted acetate > nitrate to nitrate > acetate selectivity. We conclude that anion-π interactions on monomeric surfaces are ideal for chloride recognition, whereas their supramolecular enhancement by π,π-interactions appears perfect to target nitrate. Chloride transporters are relevant to treat channelopathies, and nitrate sensors to monitor cellular signaling and cardiovascular diseases. A big impact on organocatalysis can be expected from the stabilization of anionic transition states on chiral π-acidic surfaces.

  3. Bioactive Metabolites from Propolis Inhibit Superoxide Anion Radical, Acetylcholinesterase and Phosphodiesterase (PDE4)

    OpenAIRE

    Abd El-Hady, Faten K.; Shaker, Kamel H.; Imhoff, Johannes F.; Zinecker, Heidi; Salah, Nesma M.; Ibrahim, Amal M.

    2013-01-01

    Cycloartane-triterpenes (cycloartenol, 3α-cycloartenol-26-oic acid and 3β-cycloartenol-26-oic acid) together with α-amyrin acetate and flavonoids (pinostrobin, tectochrysin and chrysin) were isolated from Egyptian propolis for the first time. Their antioxidant activity was evaluated with DPPH and superoxide anion radical (O2 .-). All compounds possessed both (O2 .-) scavenging as well as XOD inhibitory activity in the range of 50 – 75 %. With DPPH, only the flavonoids showed sc...

  4. Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin

    DEFF Research Database (Denmark)

    Harck, A F; Larsen, Erik Hviid

    1986-01-01

    The isolated toad (Bufo bufo) skin was mounted under voltage-clamp conditions in a chamber shown to cause no significant edge damage. The serosal side of the skin was bathed with NaCl-Ringer's, and the passive voltage-sensitive anion conductance studied in its fully voltage activated state, V = -...... of the red cell membrane accounts for our findings, and for an inwardly directed active Cl- flux in terms of Cl-/HCO3- exchange....

  5. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Experiments were carried out to study the effects of several anions on the photocatalytic degradation rates of sodium dodecylbenzene sulphonate (DBS) with TiO2 as catalyst. The anions were added as Na2 SO4, NaNO3, NaCl, NaHCO3, NaH2 PO4 and Na3 PO4, and two levels of anion content, i.e. 12 mmol/L and 36 mmol/L in terms of Na+ , were studied. The results revealed that: Cl , SO24- , NO-3 and HCO3-retarded the rates of DBS degradation to different degrees; PO43 - increased the DBS degradation rate at low concentration and decreased the rate at high concentration; H2PO-4 accelerated the rate of DBS degradation. The mechanism of the effects of anions on DBS degradation was concluded as the following three aspects: anions compete for the radicals; anions are absorbed on the surface of catalyst and block the active site catalyst.

  6. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  7. Advanced polymer chemistry of organometallic anions

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, R.M.; Abney, K.D. [Los Alamos National Lab., NM (United States); Balaich, G.J.; Fino, S.A. [Air Force Academy, CO (United States)

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  8. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O2·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm−2 μM−1) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  9. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined...

  10. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.;

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The...

  11. Triflyloxy-substituted carboranes as useful weakly coordinating anions.

    Science.gov (United States)

    Press, Loren P; McCulloch, Billy J; Gu, Weixing; Chen, Chun-Hsing; Foxman, Bruce M; Ozerov, Oleg V

    2015-09-25

    New carborane anions carrying one or three triflyloxy substituents are described. The mono-triflyloxy substituted carborane can be halogenated to give pentabromo and decachloro derivatives with preservation of the B-OTf linkage. The use of [HCB11Cl10OTf](-) as a weakly coordinating anion is demonstrated. PMID:26251850

  12. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai;

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  13. ARE MODELS OF ANION HYDRATION OVERBOUND ? THE SOLVATION OF THE ELECTRON AND CHLORIDE ANION COMPARED

    OpenAIRE

    Sprik, M.

    1991-01-01

    By means of a fully polarizable model for the chloride ion-water interaction we show that the modelling of anion solvation suffers from a similar inconsistency as the current electron-solvent potentials. Either the bulk hydration enthalpies are correct with the first hydration shell overbound, or the potential is adapted to describe the local environment of the solute at the expense of a major loss of solvation enthalpy. It is argued that boundary effects in the simulation are at least partly...

  14. Theoretical and Experimental Studies on Interactions of Cationic-Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    王大喜; 杜永顺; 岳长涛; 侯建国; 栗秀刚; 杨文杰

    2003-01-01

    Typical cationic and anionic surfactants were chosen and their interactions were calculated by quantum chemical method. Interaction energies are -0.2378 kJ·mol-1, -3.3394 kJ·mol-1 and 0.1204 kJ·mol-1 for the molecular pairs with fluocarbon and hydrocarbon chain: C4H10/C5H12, C4F10/C5H12, and C4F10 /C5F12, respectively.When hydrophilic group with cationic and anionicions is introduced, interaction energies are -287.40kJ·mol-1,-311.18 kJ·mo1-1 and -345.83 kJ·mo1-1. The results show that there is strong static interaction between cationic and anionic surfactants. It has been predicted that mixed monolayer may be formed and surface activity is enhanced favorably, especially for mixtures of cationic and anionic surfactants with fluocarbon and hydrocarbon chains. The anionic surfactants, sodium octadecylbenzenesulfonate perfluopolyetherbenzenesulonate(ANF-I) was synthesized, mixture effects of ANF-I with sodium octadecylbenzenesulfonate or dodecyldimethyl benzylammonium bromide were studied. The results indicate that the efficiency of mixing increased and the theoretical prediction was testified. These results can provide useful information for the design of new surfactants.

  15. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    International Nuclear Information System (INIS)

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin

  16. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  17. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria.

    Science.gov (United States)

    Lehninger, A L

    1974-04-01

    Measurements of extra oxygen consumption, (45)Ca(2+) uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca(2+) from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, beta-hydroxybutyrate, lactate, and bicarbonate + CO(2) supported Ca(2+) uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate "pulling" force for the influx of Ca(2+) on the electrogenic Ca(2+) carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO(2) system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca(2+) and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP(3-) for internal ATP(4-) during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca(2+), K(+), and other cations.

  18. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  19. Production of the carbonate radical anion during xanthine oxidase turnover in the presence of bicarbonate.

    Science.gov (United States)

    Bonini, Marcelo G; Miyamoto, Sayuri; Di Mascio, Paolo; Augusto, Ohara

    2004-12-10

    Xanthine oxidase is generally recognized as a key enzyme in purine catabolism, but its structural complexity, low substrate specificity, and specialized tissue distribution suggest other functions that remain to be fully identified. The potential of xanthine oxidase to generate superoxide radical anion, hydrogen peroxide, and peroxynitrite has been extensively explored in pathophysiological contexts. Here we demonstrate that xanthine oxidase turnover at physiological pH produces a strong one-electron oxidant, the carbonate radical anion. The radical was shown to be produced from acetaldehyde oxidation by xanthine oxidase in the presence of catalase and bicarbonate on the basis of several lines of evidence such as oxidation of both dihydrorhodamine 123 and 5,5-dimethyl-1-pyrroline-N-oxide and chemiluminescence and isotope labeling/mass spectrometry studies. In the case of xanthine oxidase acting upon xanthine and hypoxanthine as substrates, carbonate radical anion production was also evidenced by the oxidation of 5,5-dimethyl-1-pyrroline-N-oxide and of dihydrorhodamine 123 in the presence of uricase. The results indicated that Fenton chemistry occurring in the bulk solution is not necessary for carbonate radical anion production. Under the conditions employed, the radical was likely to be produced at the enzyme active site by reduction of a peroxymonocarbonate intermediate whose formation and reduction is facilitated by the many xanthine oxidase redox centers. In addition to indicating that the carbonate radical anion may be an important mediator of the pathophysiological effects of xanthine oxidase, the results emphasize the potential of the bicarbonate-carbon dioxide pair as a source of biological oxidants. PMID:15448145

  20. An outwardly rectifying anionic background current in atrial myocytes from the human heart

    OpenAIRE

    Li, H.; Zhang, H.; Hancox, J C; Kozlowski, R. Z.

    2007-01-01

    This report describes a hitherto unreported anionic background current from human atrial cardiomyocytes. Under whole-cell patch-clamp with anion-selective conditions, an outwardly rectifying anion current (I ANION) was observed, which was larger with iodide than nitrate, and with nitrate than chloride as charge carrier. In contrast with a previously identified background anionic current from small mammal cardiomyocytes, I ANION was not augmented by the pyrethroid tefluthrin (10 μM); neither w...

  1. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, TiH5- and VH6- as well as hyperhalogen anions, BH4-y(BH4)y-(y = 1 to 4). Our density functional calculations show that Li-salts of these complex anions possess similar characteristics as those of electrolytic salts in LIBs. Note that they all are halogen free and hence, non-toxic and safer than LiBF4, LiPF6 etc. In particular, LiB4H13 and LiB5H16 are two potential candidates for electrolytic salt due to their smaller Li-dissociation energy ({\\Delta}E) than those of LiBF4, LiPF6 etc. We have also noticed that {\\Delta}E of Li...

  2. Differential modulation of microglia superoxide anion and thromboxane B2 generation by the marine manzamines

    OpenAIRE

    Mayer, Alejandro MS; Hall, Mary L.; Lynch, Sean M.; Gunasekera, Sarath P.; Sennett, Susan H.; Pomponi, Shirley A

    2005-01-01

    Background Thromboxane B2 (TXB2) and superoxide anion (O2 -) are neuroinflammatory mediators that appear to be involved in the pathogenesis of several neurodegenerative diseases. Because activated-microglia are the main source of TXB2 and O2 - in these disorders, modulation of their synthesis has been hypothesized as a potential therapeutic approach for neuroinflammatory disorders. Marine natural products have become a source of novel agents that modulate eicosanoids and O2 - generation from ...

  3. Helix-Sense-Selective Polymerization of N,N-Diphenyl(Meth)acrylamide by Anionic Catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, the helix-sense-selective polymerization of N,N-diphenyl acrylamide (DPAA) and N,N-diphenyl methacrylamide(DPMAA) were studied with living helix prepolymer as anionic initiator, and the chiral optical properties of the obtained polymers were investigated too.It was shown that optically active polymers of DPAA and DPMAA could be obtained under the experimental condition, and exhibited the same screw sense as that of the prepolymer.

  4. Pyruvate anions neutralize peritoneal dialysate cytotoxicity.

    Science.gov (United States)

    Mahiout, A; Brunkhorst, R

    1995-01-01

    A new peritoneal dialysate containing pyruvate anions was developed in order to avoid cytotoxic effect of conventional lactate-based dialysate. The dialysate has a final pH of 5.4 to 5.6 and is composed of 1.36-3.86% glucose-monohydrate; 132 mmol/l sodium; 1.75 mmol/l calcium; 0.75 mmol/l magnesium; 102 mmol/l chloride and 35 mmol/l pyruvate. For cytotoxicity testing peritoneal macrophages, and mesothelial cells (MC) were exposed to conventional lactate dialysate, and pyruvate dialysate. We investigated the O2- generation and cytokine synthesis after endotoxin stimulation in peritoneal macrophages and the proliferation of mesothelial cells of cultured human MC. After exposure to lactate dialysate O2- generation and cytokine synthesis in peritoneal macrophages and proliferation of mesothelial cells were inhibited when compared to solution containing pyruvate and the control solution. After preincubation with 3.86% glucose containing solutions, all negative effects became even more pronounced in the lactate group whereas after pre-exposure to pyruvate containing solution the toxic effects were absent. These results suggest that the acute toxic effects of commercially available peritoneal dialysates can be avoided by the use of sodium pyruvate instead of sodium lactate.

  5. Survey of organic acid eluents for anion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Book, D.E.

    1981-10-01

    Of all the potential eluents surveyed (including aromatic, sulfonic, phosphonic, among other acids), only the carboxylic acids and the nitrophenols are recommended as eluents for anion chromatography. The concentration of the eluent should be in the range 5 x 10/sup -5/ to 1 x 10/sup -3/ M. The eluent should have the same charge as inorganic anions, a higher charge than organic acid samples. Choice of eluents for separation of halides, chloride and sulfate, multivalent inorganic anions, small alkyl acids, and aromatic acids is discussed. (DLC)

  6. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  7. Determination of Anions in Landifll Leachate Water by Activated Carbon Adsorption-Solid Phase Extraction-Ion Chromatography%活性炭吸附-固相萃取-离子色谱法快速测定垃圾渗滤液中的阴离子

    Institute of Scientific and Technical Information of China (English)

    黄朝颜; 孟洁; 吴艳芬

    2014-01-01

    建立了活性炭吸附–固相萃取–离子色谱法快速测定垃圾渗滤液中F–,Cl-,NO3–,PO43–,SO42–5种阴离子的方法。100 mL样品先经10 g预先洗涤烘干的活性炭吸附,然后通过吸附特性不同的ENVI–18(C18小柱)、PSA固相萃取小柱。利用C18小柱对水中有机污染物的萃取及键合相有双齿配体的PSA小柱对金属离子的螯合,除去渗滤液中大量的有机物和重金属,再经离子色谱检测。5种离子的质量浓度在1~10 mg/L范围内与其色谱峰面积呈良好的线性关系,线性相关系数大于0.999,F–,Cl-,NO3–,PO43–,SO42–的检出限分别为0.02,0.02,0.08,0.15,0.09 mg/L。5种离子的平均加标回收率为96%~105%,测定结果的相对标准偏差小于6%(n=6)。该方法简便快捷,测定结果准确可靠,可用于垃圾渗滤液中F–,Cl-,NO3–,PO43–,SO42–5种阴离子的测定。%A method based on activated carbon adsorption–solid phase extraction–ion chromatography for the determination of anions (F–,Cl–,NO3–,PO43–,SO42–) in landfill leachate water was developed. 100 mL landfill leachate water was enriched by 10 g activated carbon, two different kinds of solid phase extraction column: ENVI–18 and PSA. After the pretreatment,much of the organic matter and high heavy metal content have been removed. Then the sample was analyzed by ion chromatography. The concentration offive aions had good linear relationship with the chromatography peak area in the range of 1–10 mg/L. The recoveries were 96%–105%,with coefficients of variation below 5%(n=6). The method is simple,reliable and suitable for determining anions in landfill leachate water.

  8. Unmeasured anions and mortality in critically ill patients in 2016.

    Science.gov (United States)

    Kotake, Yoshifumi

    2016-01-01

    The presence of acid-base disturbances, especially metabolic acidosis may negatively affect the outcome of critically ill patients. Lactic acidosis is the most frequent etiology and has largest impact on the prognosis. Since lactate measurement might not have always been available at bedside, it had been regarded as one of the unmeasured anions. Therefore, anion gap and strong ion gap has been used to as a surrogate of lactate concentration. From this perspective, the relationship between either anion gap or strong ion gap and mortality has been explored. Then, lactate became routinely measurable at bedside and the direct comparison between directly measured lactate and these surrogate parameters can be possible. Currently available evidence suggests that directly measured lactate has larger prognostic ability for mortality than albumin-corrected anion gap and strong ion gap without lactate. In this commentary, the rationale and possible clinical implications of these findings are discussed. PMID:27429758

  9. Hydrocarbon anions in interstellar clouds and circumstellar envelopes

    CERN Document Server

    Millar, T J; Cordiner, M A; Herbst, Eric; Walsh, C

    2007-01-01

    The recent detection of the hydrocarbon anion C6H- in the interstellar medium has led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC+10216 and TMC-1 can be reproduced. Our calculations also predict that other hydrocarbon anions, such as C4H- and C8H-, are viable candidates for detection in IRC+10216, TMC-1 and photon-dominated regions such as the Horsehead Nebula.

  10. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  11. Determination of nitrate by anion exchange with ultraviolet detection

    Energy Technology Data Exchange (ETDEWEB)

    McComas, J.G.

    1976-01-01

    A weak base anion exchange resin is synthesized by surface bonding 3-aminopropyltriethoxysilane to silica gel. This silylated silica gel is used to separate nitrate from interferences. The nitrate is then determined by measuring its absorbance at 220 nm. An interference study was performed and no anions commonly found in potable water interferes. A comparison of this method was made with the brucine method on real samples and satisfactory agreement was obtained between the two methods.

  12. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  13. Synthesis and Binding Properties of Two New Artificial Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhen-Ya; HUANG Yan-Yan; HU Ling; WANG Fa-Jun; HE Yong-Bing

    2003-01-01

    @@ The development of anion receptor has attracted increasing interest in supramolecular chemistry, due to poten tial applications in clinical diagnosis, environmental monitoring and biological process. [1] In comparison with thelarge variety of ligands that have been described for cations, [2] the development of selective artificial receptors foranion is still very limited. [3] Two new neutral anion receptors (1 and 2) containing thiourea and amide groups weresynthesized as shown in Scheme 1.

  14. Reaction of tungsten anion clusters with molecular and atomic nitrogen

    OpenAIRE

    Kim, Young Dok; Stolcic, Davor; Fischer, Matthias; Ganteför, Gerd

    2003-01-01

    Ultraviolet photoelectron spectra for WnN-2 (n=1 8) clusters produced by addition of atomic and molecular nitrogen on W anion clusters are presented. Evidence is provided that molecular chemisorption of N2 is more stable than the dissociative one on tungsten anion clusters consisting of eight atoms or less, which is completely different from the results on tungsten bulk surfaces. A general tendency toward molecular chemisorption for small clusters can be explained by reduced charge transfer f...

  15. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    International Nuclear Information System (INIS)

    Long-chain hydrocarbon anions CnH– (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with nH2∼>105 cm–3). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H– anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  16. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cordiner, M. A. [Also at Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Charnley, S. B., E-mail: martin.cordiner@nasa.gov [Astrochemistry Laboratory and Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2012-04-20

    Long-chain hydrocarbon anions C{sub n}H{sup -} (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n{sub H{sub 2}}{approx}>10{sup 5} cm{sup -3}). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C{sub 6}H{sup -} anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C{sub 6}O, C{sub 7}O, HC{sub 6}O, and HC{sub 7}O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  17. Core-modified octaphyrins: Syntheses and anion-binding properties

    Indian Academy of Sciences (India)

    Rajneesh Misra; Venkataramanarao G Anand; Harapriya Rath; Tavarekere K Chandrashekar

    2005-03-01

    In this paper, a brief review of the syntheses, characterization and anion-binding properties of core-modified octaphyrins is presented. It has been shown that the core-modified octaphyrins exhibit aromaticity both in solution and in solid state, confirming the validity of the (4 + 2) Huckel rule for larger -electron systems. Solid-state binding characteristics of TFA anions of two core-modified octaphyrins are also described.

  18. Evidence for functional interaction of plasma membrane electron transport, voltage-dependent anion channel and volume-regulated anion channel in frog aorta

    Indian Academy of Sciences (India)

    Rashmi P Rao; J Prakasa Rao

    2010-12-01

    Frog aortic tissue exhibits plasma membrane electron transport (PMET) owing to its ability to reduce ferricyanide even in the presence of mitochondrial poisons, such as cyanide and azide. Exposure to hypotonic solution (108 mOsmol/kg H2O) enhanced the reduction of ferricyanide in excised aortic tissue of frog. Increment in ferricyanide reductase activity was also brought about by the presence of homocysteine (100 M dissolved in isotonic frog Ringer solution), a redox active compound and a potent modulator of PMET. Two plasma-membrane-bound channels, the volume regulated anion channel (VRAC) and the voltage-dependent anion channel (VDAC), are involved in the response to hypotonic stress. The presence of VRAC and VDAC antagonists–tamoxifen, glibenclamide, fluoxetine and verapamil, and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS), respectively–inhibited this enhanced activity brought about by either hypotonic stress or homocysteine. The blockers do not affect the ferricyanide reductase activity under isotonic conditions. Taken together, these findings indicate a functional interaction of the three plasma membrane proteins, namely, ferricyanide reductase (PMET), VDAC and VRAC.

  19. Photoelectron spectroscopic and computational study of the PtMgH3,5(-) cluster anions.

    Science.gov (United States)

    Zhang, Xinxing; Ganteför, Gerd; Alexandrova, Anastassia N; Bowen, Kit

    2016-07-28

    The two cluster anions, PtMgH3(-) and PtMgH5(-), were studied by photoelectron spectroscopy and theoretical calculations. Experimentally-determined electron affinity (EA) and vertical detachment energy (VDE) values were compared with those predicted by our computations; excellent agreement was found. The calculated structures of PtMgH3(-) and PtMgH3 both exhibit η2-bonded H2 moieties. Activation of these H2 moieties is implied by the elongation of their bond lengths relative to the bond length of free H2. The calculated structures of PtMgH5(-) and PtMgH5 both exhibit all-hydrogen, five-member, σ-aromatic rings. These attributes are responsible for this anion's special stability. PMID:27373793

  20. Imidiazolium based ionic liquids: effects of different anions and alkyl chains lengths on the barley seedlings.

    Science.gov (United States)

    Cvjetko Bubalo, Marina; Hanousek, Karla; Radošević, Kristina; Gaurina Srček, Višnja; Jakovljević, Tamara; Radojčić Redovniković, Ivana

    2014-03-01

    We studied the effects of five imidiazolium based ionic liquids with different anions and length of alkyl chains linked to imidazolium ring on the early development of barley (Hordeum vulgare). The inhibitory effect depends on the ionic liquids concentration and chemical structure, whereby the most toxic one was [C10mim][Br], followed by [C7mim][Br], [C4mim][Br], [C4mim][CH3CO2] and [C4mim][BF4]. Both anion and cation structures affected the toxicity of ionic liquid indicating that selection of more biocompatible anions such as [CH3CO2] does not necessarily indicate lower toxicity. Alternation in the extent of oxidative stress and antioxidant enzymes activities were found in barley plants due to ionic liquid treatments. When seedlings were exposed to higher concentrations of ionic liquids, antioxidant system could not effectively remove reactive oxidative species, leading to lipid peroxidation and damage of the photosynthetic system. However, overall data indicated that the performance of barley seedling was improved when all measured enzymes involved in scavenging of reactive oxygen species (ROS) were increased with special emphasis on GPX activities. Since there are no studies about ionic liquid (IL) toxicity in plants, that simultaneously evaluates the antioxidative enzyme system in response to different ILs, this work is valuable for gaining knowledge about the protection mechanism of plants from oxidative stress caused by IL exposure.

  1. Electroactive Materials for Anion Separation -- Technetium from Nitrate

    International Nuclear Information System (INIS)

    The general aim of this project is to design and prepare new electroactive ion-exchange (EaIX) materials that can be used to remove the radioactive components from high-level radioactive waste (HLW) at U.S. Department of Energy (DOE) sites nationwide. The specific objective is to develop and investigate redox-active polymers, such as polyvinylferrocene (PVF), that can be used to remove pertechnetate (TcO4-) ion from HLW. Electroactive materials are an important class of materials for this application because they can minimize or eliminate secondary waste streams associated with HLW processing, thereby reducing the costs of environmental cleanup. The technologies currently available for treatment and disposal of approximately 90 million gallons of HLW at the DOE Savannah River Site, Idaho National Engineering and Environmental Laboratory, and Hanford Site are neither cost-effective nor practical. Processes to separate the HLW constituents from the low-level waste (LLW) fraction are required to reduce the volume of waste that must be treated and disposed of and to reduce the cost of treatment and disposal. Use of EaIX materials, conjoined with the use of porous membranes that also are under development, can significantly reduce or eliminate secondary wastes associated with more traditional ion-exchange or solvent extraction technologies and, thus, can help improve the effectiveness and reduce the cost of DOE's waste treatment and disposal efforts. Beyond its importance as a cost issue, separation of TcO4- from HLW also addresses a critical environmental issue. The most common isotope of technetium (99Tc) has an extremely long half-life of 210,000 years. Rapid development of advanced methods to remove and separate this long-lived radioactive isotope is important because most of the technetium in the DOE HLW probably is in the form of TcO4-, which is highly mobile in soils and groundwater. This project is focused on anion separation and, in particular, the selective

  2. Hydroxide Solvation and Transport in Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen [Univ. of Chicago, IL (United States); Wuhan Univ. (China); Tse, Ying-Lung Steve [Univ. of Chicago, IL (United States); Lindberg, Gerrick E. [Northern Arizona Univ., Flagstaff, AZ (United States); Knight, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Voth, Gregory A. [Univ. of Chicago, IL (United States)

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  3. Inactivation of Bacillus Subtilis by Atomic Oxygen Radical Anion

    Institute of Scientific and Technical Information of China (English)

    LI Longchun; WANG Lian; YU Zhou; LV Xuanzhong; LI Quanxin

    2007-01-01

    UAtomic oxygen radical anion (O- ) is one of the most active oxygen species, and has extremely high oxidation ability toward small-molecules of hydrocarbons. However, to our knowledge, little is known about the effects of O- on cells of micro-organisms. This work showed that O- could quickly react with the Bacillus subtilis cells and seriously damage the cell walls a s well as their other contents, leading to a fast and irreversible inactivation. SEM micrographs revealed that the cell structures were dramatically destroyed by their exposure to O-. The inactivation efficiencies of B. subtilis depend on the O-- intensity, the initial population of cells and the treatment temperature, but not on the pH in the range of our investigation. For a cell concentration of 106 cfu/ml, the number of survived cells dropped from 106 cfu/ml to 103 cfu/ml after about five-minute irradiation by an O- flux in an intensity of 233 nA/cm2 under a dry argon environment (30 ℃, 1 atm, exposed size: 1.8 cm2). The inactivation mechanism of micro-organisms induced by O- is also discussed.

  4. A study of quasi reversible nitro radical anion from -nitrostyrene at wax-impregnated carbon paste electrode

    Indian Academy of Sciences (India)

    Ronald J Mascarenhas; Irishi N Namboothiri; B S Sherigara; Vijayakumar K Reddy

    2006-05-01

    A comprehensive study of the electrochemical reduction of -nitrostyrene and the corresponding heterocyclic analogue has been carried out in aprotic media using wax-impregnated carbon paste electrodes. Nitrostyrene exhibits quasi-reversible reduction process in aprotic medium at the waximpregnated carbon paste electrodes as compared to other electrodes reported in the literature. The nitroradical anion couple detected in the presence of tetrabutyl ammonium perchlorate is found to be stable only in aprotic media. Though, as reported, the pharmacological activity related to this nitro radical anion and its therapeutic value are related to the stability of the nitro radical anion, the stability itself depends on the electrode system employed. Added benzoic acid is found to bring about a positive shift in cathodic peak potential.

  5. Determination of trace inorganic anions in anionic surfactants by single-pump column-switching ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Jia Jie Zhang; Hai Bao Zhu; Yan Zhu

    2012-01-01

    An ion chromatography method has been proposed for the determination of three common inorganic anions (chloride,nitrate and sulfate) in anionic surfactants using a single pump system.The new system consists of an ion exclusion column,a concentrator column,and an anion exchange column connected in series via two 6-ports valves in a Dionex ICS-2000 ion chromatograph.The valves were switched several times for removing surfactants,concentrating and separating the three anions.The chromatographic conditions were optimized.Detection limits (S/N =3) were in the range of 0.10-0.68 μg/L.The relative standard deviations (RSDs)of peak area were less than 4.6%.The recoveries were in the range of 84.1-112.6%.

  6. Potentiometric anion selectivity of polymer-membrane electrodes based on cobalt, chromium, and aluminum salens

    Energy Technology Data Exchange (ETDEWEB)

    Badr, Ibrahim H.A. [Department of Chemistry, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo (Egypt)]. E-mail: ibadr1@yahoo.com

    2006-06-16

    Metallo-salens of cobalt(II) (Co-Sal), chromium(III) (Cr-Sal), and aluminum(III) (Al-Sal) are used as the active ionophores within plasticized poly(vinyl chloride) membranes. It is shown that central metal-ion plays a critical role in directing the ionophore selectivity. Polymer-membrane electrodes based on Co-Sal, Cr-Sal, and Al-Sal are demonstrated to exhibit enhanced responses and selectivity toward nitrite/thiocyanate, thiocyanate, and fluoride anions, respectively. The improved anion selectivity of the three ionophore systems is shown to deviate significantly from the classical Hofmeister pattern that is based only on ion lipophilicity. For example, optimized membrane electrodes for nitrite ion based on Co-Sal exhibit logK{sub Nitrite,Anion}{sup pot} values of -5.22, -4.66, -4.48, -2.5 towards bromide, perchlorate, nitrate, and iodide anions, respectively. Optimized membrane electrodes based on Co-Sal and Cr-Sal show near-Nernstian responses towards nitrite (-57.9+/-0.9mV/decade) and thiocyanate (-56.9+/-0.8mV/decade), respectively, with fast response and recovery times. In contrast, Al-Sal based membrane electrodes respond to fluoride ion in a super-Nernstian (-70+/-3mV/decade) and nearly an irreversible mode. The operative response mechanism of Co-Sal, Cr-Sal, and Al-Sal membrane electrodes is examined using the effect of added ionic sites on the potentiometric response characteristics. It is demonstrated that addition of lipophilic anionic sites to membrane electrodes based on the utilized metallo-salens enhances the selectivity towards the primary ion, while addition of cationic sites resulted in Hofmeister selectivity patterns suggesting that the operative response mechanism is of the charged carrier type. Electron spin resonance (ESR) data indicates that Co(II) metal-ion center of Co-Sal ionophore undergoes oxidation to Co(III). This process leads to formation of a charged anion-carrier that is consistent with the response behavior obtained for Co

  7. DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA

    International Nuclear Information System (INIS)

    We report the detection of microwave emission lines from the hydrocarbon anion C6H- and its parent neutral C6H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  8. RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells

    DEFF Research Database (Denmark)

    Carton, Iris; Trouet, Dominique; Hermans, Diane;

    2002-01-01

    pathway reduces the swelling-dependent activation of I(Cl,swell). However, these experiments did not allow us to discriminate between a direct activator role or a permissive effect. We now show that the Rho pathway did not affect VRAC activity if this pathway was activated by transfecting CPAE cells......'-O-(3-thiotriphosphate) or C3 exoenzyme had no effect on VRACs in caveolin-1-expressing Caco-2 cells. We conclude that the Rho pathway exerts a permissive effect on VRACs in CPAE cells, i.e., swelling-induced opening of VRACs requires a functional Rho pathway, but not an activation of the Rho pathway.......Cell swelling triggers in most cell types an outwardly rectifying anion current, I(Cl,swell), via volume-regulated anion channels (VRACs). We have previously demonstrated in calf pulmonary artery endothelial (CPAE) cells that inhibition of the Rho/Rho kinase/myosin light chain phosphorylation...

  9. Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors

    Science.gov (United States)

    Fukutsuka, Tomokazu; Nakagawa, Takuya; Miyazaki, Kohei; Abe, Takeshi

    2016-02-01

    Compatibility of LiF + anion receptors/propylene carbonate (PC) electrolyte solution with high potential positive electrode for lithium-ion batteries was examined by cyclic voltammetry. As anion receptors, tripropyl borate (TPB), tris(pentafluorophenyl) borane (TPFPB), and tris(hexafluoroisopropyl) borate (THFIPB) were used. LiCoPO4 thin-film electrodes were prepared by sol-gel method and used as both carbon- and binder-free model electrodes. From cyclic voltammograms, LiCoPO4 showed better cycleability in 0.1 mol dm-3 LiF + 0.1 mol dm-3 THFIPB/PC, however, other anion receptors did not give positive influence. It is indicated that the surface protecting layer from F--THFIPB complex and made LiCoPO4 stable. Electrochemical behavior depending on anion receptors was discussed according to reaction activity of F-.

  10. Anion exchange resin as support for invertase immobilization

    Directory of Open Access Journals (Sweden)

    M. Vitolo

    2009-01-01

    Full Text Available

    The invertase (EC 3.2.1.26 from Saccharomyces cerevisiae was employed as a model enzyme in the evaluation of the adsorption capacity of DOWEX-1X8-50®, a basic anion exchange resin, when used as support in enzyme immobilization. By mixing 100mg of resin with 27mg of invertase (pI = 4.0 in buffer solution (pH 4.6, 25°C, stirred at 100rpm, an adsorption of 93% was achieved. The activities (1U = amount of enzyme forming 1mg reducing sugars/min of soluble and insoluble invertase were 0.084 U/mgE and 0.075 U/mgE, respectively, giving an immobilization coefficient of 90.4%. The immobilized invertase had a higher thermal stability than the soluble form. The highest activity was observed at pH 4.5 in both forms of the enzyme, whereas the pH stability ranges for soluble and insoluble invertase were 3.5-5.0 and 4.5-5.5, respectively. The kinetic constants for soluble invertase were KM = 18.3 mM and Vmax = 0.084 U/mgE, and for the insoluble form, KM = 29.1 mM and Vmax = 0.075 U/mgE. The resin tested adsorbed the invertase very well, provided the enzyme molecule had a net negative charge, i.e., the immobilization and reaction procedures had to be carried out at pH > pI. Keywords: Invertase, immobilization, adsorption, anionexchange resin.

  11. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    Science.gov (United States)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  12. Effect of anionic surfactant concentration on the variable range hopping conduction in polypyrrole nanoparticles

    Science.gov (United States)

    Rawal, Ishpal; Kaur, Amarjeet

    2014-01-01

    The mechanism of charge transport in polypyrrole (PPy) nanoparticles prepared with different concentrations (5 to 30 mM) of anionic surfactant (sodium dodecyl sulfate) is reported. Transmission electron microscopy technique confirms the formation of PPy nanoparticles of sizes ˜52 to 28 nm under surfactant directed approach. The room temperature electrical conductivity of the prepared nanoparticles found to increase from 3 to 22 S/cm with surfactant concentration. The temperature dependent activation energy rules out the possibility of band conduction mechanism in the prepared PPy nanoparticles and thus the synthesized nanoparticles are analyzed under variable range hopping (VRH) model for conduction mechanism. The PPy nanoparticles, reduced with liquid ammonia, hold 3D VRH conduction mechanism for the charge transport. However, in the doped samples, some deviation from 3D VRH conduction behavior at higher temperatures (>150 K) has been observed. This may be attributed to the presence of anionic surfactant in these samples. The doping of anionic surfactant causes rise in conducting islands, which may lead to the change in the shape/distribution of density of states governed by Gaussian or exponential type near Fermi level.

  13. Li(+) intercalation in isostructural Li2VO3 and Li2VO2F with O(2-) and mixed O(2-)/F(-) anions.

    Science.gov (United States)

    Chen, Ruiyong; Ren, Shuhua; Yavuz, Murat; Guda, Alexander A; Shapovalov, Viktor; Witter, Raiker; Fichtner, Maximilian; Hahn, Horst

    2015-07-14

    Mixed-anion materials for Li-ion batteries have been attracting attention in view of their tunable electrochemical properties. Herein, we compare two isostructural (Fm3̅m) model intercalation materials Li2VO3 and Li2VO2F with O(2-) and mixed O(2-)/F(-) anions, respectively. Synchrotron X-ray diffraction and pair distribution function data confirm large structural similarity over long-range and at the atomic scale for these materials. However, they show distinct electrochemical properties and kinetic behaviour arising from the different anion environments and the consequent difference in cationic electrostatic repulsion. In comparison with Li2VO3 with an active V(4+/5+) redox reaction, the material Li2VO2F with oxofluoro anions and the partial activity of V(3+/5+) redox reaction favor higher theoretical capacity (460 mA h g(-1)vs. 230 mA h g(-1)), higher voltage (2.5 V vs. 2.2 V), lower polarization (0.1 V vs. 0.3 V) and faster Li(+) chemical diffusion (∼10(-9) cm(2) s(-1)vs. ∼10(-11) cm(2) s(-1)). This work not only provides insights into the understanding of anion chemistry, but also suggests the rational design of new mixed-anion battery materials. PMID:26073634

  14. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    International Nuclear Information System (INIS)

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., Cn H–), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For Cn H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  15. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    Science.gov (United States)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  16. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  17. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  18. Making a match for Valinomycin: steroidal scaffolds in the design of electroneutral, electrogenic anion carriers.

    Science.gov (United States)

    Valkenier, Hennie; Davis, Anthony P

    2013-12-17

    The natural product Valinomycin is a well-known transmembrane cation carrier. Despite being uncharged, this molecule can extract potassium ions from water without counterions and ferry them through a membrane interior. Because it only transports positive ions, it is electrogenic, mediating a flow of charge across the membrane. Equivalent agents for anions would be valuable research tools and may have therapeutic applications, especially in the treatment of "channelopathies" such as cystic fibrosis. However, no such molecules have been found in nature. In this Account, we describe our research toward synthetic and rationally designed "anti-Valinomycins". As our core approach to this problem, we used the steroid nucleus, provided by cholic acid, as a scaffold for the assembly of anion receptors. By positioning H-bond donors on this framework, especially urea and thiourea groups in conformationally constrained axial positions, we created binding sites capable of exceptionally high affinities (up to 10(11) M(-1) for R4N(+)Cl(-) in chloroform). The extended hydrocarbon surface of the steroid helped to maintain compatibility with nonpolar media. When we tested these "cholapods" for chloride transport in vesicles, they provided the first evidence for electrogenic anion transport mediated by electroneutral organic carriers: in other words, they are the first authenticated anti-Valinomycins. They also proved active in live cells that we grew and assayed in an Ussing chamber. In subsequent work, we have shown that the cholapods can exhibit very high activities, with transport observed down to carrier/lipid ratios of 1:250,000. We also understand some of the effects of structure on the activity of these molecules. For example, in most cases, powerful transporters also act as powerful receptors. On the other hand, some modifications which favor binding do not promote transport. We gained functional advantages by cyclizing the cholapod architecture, which encloses the anion

  19. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  20. Analysis of anions in geological brines using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.M.

    1985-03-01

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  1. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  2. Infrared Predissociation Spectroscopy of H_2-TAGGED Dicarboxylic Acid Anions

    Science.gov (United States)

    Wolk, Arron B.; Kamrath, Michael Z.; Leavitt, Christopher M.; Johnson, Mark A.

    2011-06-01

    Singly charged dicarboxylic acid anions, studied in depth by Wang et al. offer insight into the role of ring strain and conformation on the formation of intramolecular hydrogen bonds. These shared proton bonds, common in proteins and polymer systems, can be crucial in secondary and tertiary structure formation. By tracking the infrared spectra of dicarboxylic acid anions as charge and aliphatic chain length are varied, the tendency of these anions to form ring-like structures with an internally shared proton can be asssesed. To adapt the time-of-flight mass spectrometry/infrared presdissociation experiment to larger systems with significant latent vibrational energy and negligible vapor pressure, an electrospray ionization (ESI)/cryogenic quadrupole trap ion source has been interfaced to the Yale time of flight mass spectrometer. Infrared predissociation spectroscopy is carried out on a series of carboxylate anions cooled to 10K and H_2-tagged in a cryogenic ion trap, underscoring the power of this technique to vibrationally quench and structurally characterize large (> 20 atoms) gaseous ions. This technique recovers sharp transitions (~6 cm^-^1 FWHM) in the linear single photon absorption regime which greatly facilitates comparison with ab initio calculations. The methodology used to condense H_2 on these ions is described, revealing the benefits of a pulsed trapping gas paired with a time delay before ion extraction. The sensitivity of the perturbed H_2 transition to charge center exposure is probed by varying the charge and aliphatic chain length of carboxylate anions. Finally, the structure of four carboxylate anions are characterized using their predissociation spectra. H. K. Woo, X. B. Wang, K. C. Lau and L. S. Wang J. Chem. Phys. A 110, 7801-7805 2006.

  3. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants. PMID:26782304

  4. The thiocyanate anion as a polydentate halogen bond acceptor

    OpenAIRE

    Cauliez, Pascal; Polo, Victor; Roisnel, Thierry; Llhusar, Rosa; Fourmigué, Marc

    2010-01-01

    International audience Co-crystallisation of the Et4N+ or n-Bu4N+ salts of the thiocyanate anion with o-, m- and p-diodoperfluorobenzene or the sym-trifluorotriiodobenzene allowed for the isolation of six different salts which were structurally characterized by single crystal X-ray diffraction. Halogen bonding interactions are observed between the neutral iodinated molecules acting as halogen bond donors and the S or N ends of the thiocyanate anion, with a variety of bonding modes (termina...

  5. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  6. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  7. A lanthanide complex for metal encapsulations and anion exchanges.

    Science.gov (United States)

    Sun, Yan-Qiong; Wan, Fang; Li, Xin-Xiong; Lin, Jian; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui

    2016-08-01

    A cationic lanthanide metalloligand with 3 dangling carboxylate groups on its periphery co-assembles with nitrate into a porous thermochromic solid responsive to both external cations and anions, owing to the presence of exchangeable NO3(-) as well as cation cavities arising from cooperative orientation of free carboxylate groups. An especially interesting feature is the structural memory effect during crystallization exhibited by the metalloligand, even after dissolution and binding to secondary cations (Cu(2+), Cd(2+)…). Moreover, the porous solid can undergo ion-exchange with various anions, leading to tunable thermochromic temperature and color range. PMID:27463609

  8. Gas-grain models for interstellar anion chemistry

    OpenAIRE

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances ...

  9. Electron Photodetachment from Aqueous Anions. I. Quantum Yields for Generation of Hydrated Electron by 193 and 248 nm Laser Photoexcitation of Miscellaneous Inorganic Anions

    CERN Document Server

    Sauer, M C; Shkrob, I A; Sauer, Myran C.; Shkrob, Ilya A.

    2004-01-01

    Time resolved transient absorption spectroscopy has been used to determine quantum yields for electron photodetachment in 193 nm and (where possible) 248 nm laser excitation of miscellaneous aqueous anions, including hexacyanoferrate(II), sulfate, sulfite, halide anions (Cl-, Br-, and I-), pseudohalide anions (OH-, HS-, CNS-), and several common inorganic anions for which no quantum yields have been reported heretofore: SO3=, NO2-, NO3-, ClO3- and ClO4-. Molar extinction coefficients for these anions and photoproducts of electron detachment from these anions at the excitation wavelengths were also determined. These results are discussed in the context of recent ultrafast kinetic studies and compared with the previous data obtained by product analyses. We suggest using electron photodetachment from the aqueous halide and pseudohalide anions as actinometric standard for time-resolved studies of aqueous photosystems in the UV.

  10. Anion-Anion Bonding and Topology in Ternary Iridium Seleno-Stannides

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Benjamin A.; Tutmaher, Jake A.; McQueen, Tyrel M. [JHU

    2016-09-06

    The synthesis and physical properties of two new and one known Ir–Sn–Se compound are reported. Their crystal structures are elucidated with transmission electron microscopy and powder X-ray diffraction. IrSn0.45Se1.55 is a pyrite phase which consists of tilted corner-sharing IrX6 octahedra with randomly distributed (Sn–Se)4– and (Se–Se)2– dimers. Ir2Sn3Se3 is a known trigonally distorted skutterudite that consists of cooperatively tilted corner-sharing IrSn3Se3 octahedra with ordered (Sn–Se)24– tetramers. Ir2SnSe5 is a layered, distorted β-MnO2 (pyrolusite) structure consisting of a double IrSe6 octrahedral row, corner sharing in the a direction and edge sharing in the b direction. This distorted pyrolusite contains (Se–Se)2– dimers and Se2– anions, and each double row is “capped” with a (Sn–Se)n polymeric chain. Resistivity, specific heat, and magnetization measurements show that all three have insulating and diamagnetic behavior, indicative of low-spin 5d6 Ir3+. Electronic structure calculations on Ir2Sn3Se3 show a single, spherical, nonspin–orbit split valence band and suggest that Ir2Sn3Se3 is topologically nontrivial under tensile strain due to inversion of Ir-d and Se-p states.

  11. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    Directory of Open Access Journals (Sweden)

    Jeong HU

    2015-01-01

    Full Text Available Hyeon-Uk Jeong,1 Mihwa Kwon,2 Yongnam Lee,3 Ji Seok Yoo,3 Dae Hee Shin,3 Im-Sook Song,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea; 3Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea Abstract: We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1, OAT3, organic anion transporting polypeptide 1B1 (OATP1B1, OATP1B3, organic cation transporter 1 (OCT1, OCT2, P-glycoprotein (P-gp, and breast cancer resistance protein (BCRP. The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3 and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3. The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km =41.5 µM, maximum uptake rate (Vmax =46.2 pmol/minute, and intrinsic clearance (CLint =1.11 µL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 µL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 µ

  12. A new anionic exchange stir bar sorptive extraction coating based on monolithic material for the extraction of inorganic anion.

    Science.gov (United States)

    Huang, Xiaojia; Lin, Jianbing; Yuan, Dongxing

    2010-07-23

    A novel anionic exchange stir bar sorptive extraction (SBSE) coating based on poly(2-(methacryloyloxy)ethyltrimethylammonium chloride-co-divinylbenzene) monolithic material for the extraction of inorganic anion was prepared. The effect of preparation conditions such as ratio of functional monomer to cross-linker, content of porogenic solvent on the extraction efficiencies were investigated in detailed. The monolithic material was characterized by elemental analysis, scanning electron microscopy and infrared spectroscopy. In order to investigate the extraction capacity of the new coating for inorganic anion, the new SBSE was combined with ionic chromatography with conductivity detection, Br-, NO3-, PO4(3-) and SO4(2-) were selected as detected solutes. Several extractive parameters, including pH value and ionic strength in sample matrix, desorption solvent, extraction and desorption time were optimized. The results showed that strongly ionic strength did not favor the extraction of anlaytes. Under the optimum experimental conditions, low detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.92-2.62 and 3.03-9.25 microg/L, respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was successfully used to detect the two different trademarks of commercial purified water with satisfactory recovery in the range of 70.0-92.6%. To the best of our knowledge, this is the first to use SBSE to enrich inorganic anions. PMID:20576270

  13. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  14. Parthenolide induces superoxide anion production by stimulating EGF receptor in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    D'Anneo, A; Carlisi, D; Emanuele, S; Buttitta, G; Di Fiore, R; Vento, R; Tesoriere, G; Lauricella, M

    2013-12-01

    The sesquiterpene lactone parthenolide (PN) has recently attracted considerable attention because of its anti-microbial, anti-inflammatory and anticancer effects. However, the mechanism of its cytotoxic action on tumor cells remains scarcely defined. We recently provided evidence that the effect exerted by PN in MDA-MB-231 breast cancer cells was mediated by the production of reactive oxygen species (ROS). The present study shows that PN promoted the phosphorylation of EGF receptor (phospho-EGFR) at Tyr1173, an event which was observed already at 1 h of incubation with 25 µM PN and reached a peak at 8-16 h. This effect seemed to be a consequence of ROS production, because N-acetylcysteine (NAC), a powerful ROS scavenger, prevented the increment of phospho-EGFR levels. In addition fluorescence analyses performed using dihydroethidium demonstrated that PN stimulated the production of superoxide anion already at 2-3 h of incubation and the effect further increased prolonging the time of treatment, reaching a peak at 8-16 h. Superoxide anion production was markedly hampered by apocynin, a well known NADPH oxidase (NOX) inhibitor, suggesting that the effect was dependent on NOX activity. The finding that AG1478, an EGFR kinase inhibitor, substantially blocked both EGFR phosphorylation and superoxide anion production strongly suggested that phosphorylation of EGFR can be responsible for the activation of NOX with the consequent production of superoxide anion. Therefore, EGFR phosphorylation can exert a key role in the production of superoxide anion and ROS induced by PN in MDA-MB-231 cells.

  15. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S406)/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na2CO3) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH)2) at approximately equal to 1.9 cents/lb, were effective in removing (S406)/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  16. Synthesis and Anion Recognition of a Novel Heterocyclic Organotin Complex

    Institute of Scientific and Technical Information of China (English)

    Li Xin ZHANG; Gui Zhi LI; Zhi Qiang LI

    2004-01-01

    A novel heterocyclic hexacoordinate organotin(IV) complex, bis(O-vanillin)-semi ethylenediamino dibenzyltin (VEDBT) was synthesized by the reaction of dibenzyltin dichloride with bis(O-vanillin)-semiethyenediamine, its structure has been characterized by spectral methods.The electrodes using VEDBT as a neutral carrier show high selectivity for salicylate anions.

  17. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    Science.gov (United States)

    Voipio, Juha; Boron, Walter F; Jones, Stephen W; Hopfer, Ulrich; Payne, John A; Kaila, Kai

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses." If this were possible, perpetual ion-motion machines could be constructed. The authors' conclusions conflict with basic thermodynamic principles.

  18. Photocatalytic Anion Oxidation and Applications in Organic Synthesis.

    Science.gov (United States)

    Hering, Thea; Meyer, Andreas Uwe; König, Burkhard

    2016-08-19

    Ions and radicals of the same kind differ by one electron only. The oxidation of many stable inorganic anions yields their corresponding highly reactive radicals, and visible light excitable photocatalysts can provide the required oxidation potential for this transformation. Air oxygen serves as the terminal oxidant, or cheap sacrificial oxidants are used, providing a very practical approach for generating reactive inorganic radicals for organic synthesis. We discuss in this perspective several recently reported examples: Nitrate radicals are obtained by one-electron photooxidation of nitrate anions and are very reactive toward organic molecules. The photooxidation of sulfinate salts yields the much more stable sulfone radicals, which smoothly add to double bonds. A two-electron oxidation of chloride anions to electrophilic chlorine species reacting with arenes in aromatic substitutions extends the method beyond radical reactions. The chloride anion oxidation proceeds via photocatalytically generated peracidic acid as the oxidation reagent. Although the number of reported examples of photocatalytically generated inorganic radical intermediates for organic synthesis is still small, future extension of the concept to other inorganic ions as radical precursors is a clear perspective.

  19. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  20. Molecular Anions in Protostars, Prestellar Cores and Dark Clouds

    Science.gov (United States)

    Cordiner, Martin; Charnley, Steven; Buckle, Jane; Wash, Catherine; Millar, Tom

    2011-01-01

    From our recent survey work using the Green Bank Telescope, microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H have been detected in six new sources. Using HC3N = 10(exp -9) emission maps, we targeted the most carbon-chain-rich sources for our anion survey, which included the low-mass Class 0 protostar L1251A-IRS3, the prestellar cores L1389-SMM1 and L1512, and the interstellar clouds Ll172A, TMC-1C and L1495B. Derived [C6H(-)]/[C6H] anion-to-neutral ratios are approximately 1-10. The greatest C6H(-) column densities are found in the quiescent clouds TMC-1C and L1495B, but the anion-to-neutral ratios are greatest in the prestellar cores and protostars. These results are interpreted in terms of the physical and chemical properties of the sources, and the implications for molecular cloud chemistry are discussed.

  1. Oxidation of silicon surface with atomic oxygen radical anions

    Institute of Scientific and Technical Information of China (English)

    Wang Lian; Song Chong-Fu; Sun Jian-Qiu; Hou Ying; Li Xiao-Guang; Li Quan-Xin

    2008-01-01

    The surface oxidation of silicon (Si) wafers by atomic oxygen radical anions (O- anions) and the preparation of metal-oxide-semiconductor (MOS) capacitors on the O--oxidized Si substrates have been examined for the first time. The O- anions are generated from a recently developed O- storage-emission material of [Ca24Al28O64]4+.4O- (C12A7-O- for short). After it has been irradiated by an O- anion beam (0.5 μA/cm2) at 300℃ for 1-10 hours, the Si wafer achieves an oxide layer with a thickness ranging from 8 to 32 nm. X-ray photoelectron spectroscopy (XPS) results reveal that the oxide layer is of a mixture of SiO2, Si2O3, and Si2O distributed in different oxidation depths. The features of the MOS capacitor of are investigated by measuring capacitance-voltage (C - V) and current-voltage (Ⅰ - Ⅴ) curves. The oxide charge density is about 6.0×1011 cm-2 derived from the C - V curves. The leakage current density is in the order of 10-6 A/cm2 below 4 MV/cm, obtained from the Ⅰ - Ⅴ curves. The Oanions formed by present method would have potential applications to the oxidation and the surface-modification of materials together with the preparation of semiconductor devices.

  2. Spectral modulation through controlling anions in nanocaged phosphors

    NARCIS (Netherlands)

    H. Bian; Y. Liu; D. Yan; H. Zhu; C. Liu; C.S. Xu; Y. Liu; H. Zhang; X. Wang

    2013-01-01

    A new approach has been proposed and validated to modulate the emission spectra of europium-doped 12CaO center dot 7Al(2)O(3) phosphors by tuning the nonradiative and radiative transition rates, realized by controlling the sort and amount of the encaged anions. A single wavelength at 255 nm can exci

  3. Advancing Analytical Methods for Characterization of Anionic Carbohydrate Biopolymers

    OpenAIRE

    Langeslay, Derek Joseph

    2013-01-01

    The focus of this dissertation is on the development of improved analytical methods for the characterization of anionic carbohydrate biopolymers. Our goal is to extract important information from complex mixtures of heterogeneous polysaccharides by characterizing their substituent oligosaccharides in terms of monosaccharide composition and primary and secondary structure. This work focuses on the application of two major analytical platforms: spectroscopy and chromatography. The development ...

  4. Functional Block Copolymers via Anionic Polymerization for Electroactive Membranes

    OpenAIRE

    Schultz, Alison

    2013-01-01

           Ion-containing block copolymers blend ionic liquid properties with well-defined polymer architectures. This provides conductive materials with robust mechanical stability, efficient processability, and tunable macromolecular design. Conventional free radical polymerization and anion exchange achieved copolymers containing n-butyl acrylate and phosphonium ionic liquids. These compositions incorporated vinylbenzyl triphenyl phosphonium and vinylbenzyl tricyclohexyl phosphonium cations be...

  5. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  6. Nuclear magnetic resonance studies of atomic motion in borohydride-based materials: Fast anion reorientations and cation diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Skripov, A.V., E-mail: skripov@imp.uran.ru; Soloninin, A.V.; Babanova, O.A.; Skoryunov, R.V.

    2015-10-05

    Highlights: • Solid solutions LiBH{sub 4}–LiI: extremely fast BH{sub 4} reorientations down to low T. • LiLa(BH{sub 4}){sub 3}Cl: Li-ion diffusive jumps and BH{sub 4} reorientations at the same frequency scale. • Dramatic acceleration of B{sub 12}H{sub 12} reorientations in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. • Fast Na-ion diffusion in the disordered phase of Na{sub 2}B{sub 12}H{sub 12}. - Abstract: Two basic types of thermally activated atomic jump motion are known to exist in solid borohydrides and the related systems: the reorientations of complex anions ([BH{sub 4}]{sup −}, [B{sub 12}H{sub 12}]{sup 2−}) and the translational diffusion of metal cations or complex anions. This paper reviews recent progress in nuclear magnetic resonance (NMR) studies of these jump processes in complex hydrides, such as solid solutions of halide anions in borohydrides, bimetallic borohydrides and borohydride–chlorides, borohydride–amides, and B{sub 12}H{sub 12}-based compounds. The emphasis is put on the systems showing fast-ion conductivity. For these systems, we discuss a possible relation between the reorientational motion of complex anions and the translational motion of metal cations.

  7. Ferrous Ion Chelating, Superoxide Anion Radical Scavenging and Tyrosinase Inhibitory Properties of Pure and Commercial Essential Oils of Anetrhum Graveolens

    Directory of Open Access Journals (Sweden)

    Sh Darvish Alipour Astaneh

    2013-04-01

    Full Text Available Introduction: Despite slight toxicities of essential oils, they are not under strict control in many countries. Anethum graveolens is widely consumed and its essential oils are at public reach. This study was designed to study essential oils of Anethum graveolens. Methods: The biological properties of pure and commercial essential oils of Anethum graveolens were investigated. In fact, Ferrous ion chelating activity, superoxide anion radical scavenging property, tyrosinase inhibition and total flavonoids of the oils were determined. Results: Chelating activity of 7.8 µg of EDTA was equivalent to 2 µg of the pure oil. The oils had superoxide anion radical scavenging activities which may be related to their total phenol and flavonoid contents. IC50 of ferrous ion chelating, antityrosiase and superoxide anion radical scavenging activities of pure and commercial oils were 1.3, 1.4, 1 and (171.6, 589, 132 µg respectively. Antityrosiase activity of 6.4 µg pure oil was equal to 1000 µg of the commercial oil. Conclusion: Anethum possesses antioxidative and free radical scavenging properties. This oil chelates ferrous ions and superoxide radicals. It is effective in formation of reactive toxic products. Anethum has good potentials regarding its applications in food and drug industries.

  8. Cholangiocyte anion exchange and biliary bicarbonate excretion

    Institute of Scientific and Technical Information of China (English)

    Jesús M Banales; Jesús Prieto; Juan F Medina

    2006-01-01

    Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. Theexcretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3-exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.

  9. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  10. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    OpenAIRE

    Stephen Majoni; Jeanne M. Hossenlopp

    2014-01-01

    Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release i...

  11. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    Science.gov (United States)

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits. PMID:27397895

  12. Anion-Controlled Positional Switching of a Phenyl Group about the Dinuclear Core of a AuSb Complex.

    Science.gov (United States)

    Sen, Srobona; Ke, Iou-Sheng; Gabbaï, François P

    2016-09-19

    As part of our continuing interest in redox-active, anion-responsive main-group transition-metal platforms, we have investigated the effect of chloride by fluoride anion substitution on the core structure of a dinuclear AuSb platform. Starting from [(o-(iPr2P)C6H4)2Cl2SbPh]AuCl (2) in which the antimony-bound phenyl group is positioned trans to the gold atom, we found that the introduction of fluoride anions, as in [(o-(iPr2P)C6H4)2F2SbPh]AuCl (3) and [(o-(iPr2P)C6H4)2ClFSbPh]AuCl (4), produces structures in which the phenyl group switches to a perpendicular direction with respect to the gold atom. Replacement of the gold-bound chloride anion in 3 by a fluoride anion can be achieved by successive treatment with TlPF6 and [nBu4N][Ph3SiF2]. These reactions, which proceed via the intermediate zwitterionc gold antimonate complex [o-(iPr2P)C6H4)2F3SbPh]Au (6), trigger migration of the phenyl group to gold and afford [(o-(iPr2P)C6H4)2F3Sb]AuPh (7). Because the phenyl group in 7 is orthogonal to that in 3 and opposite to that in 2, the title AuSb platform can be regarded as a molecular analogue of a mechanical three-way switch in which the switching element is a phenyl group. Finally, while all complexes involved retain a Au → Sb interaction, this interaction is no longer present in the zwitterionic derivative 6 because of the neutralization of the Lewis acidity of the antimony center. PMID:27583565

  13. Synthesis of unsymmetrical N-carboranyl NHCs: directing effect of the carborane anion.

    Science.gov (United States)

    Asay, Matthew J; Fisher, Steven P; Lee, Sarah E; Tham, Fook S; Borchardt, Dan; Lavallo, Vincent

    2015-03-28

    The syntheses of unsymmetrical N-heterocyclic carbenes (NHCs) that contain a single N-bound icosahedral carborane anion substituent are reported. Both anionic C-2 and doubly deprotonated dianionic C-2/C-5 NHC lithium complexes are isolated. The latter species is formed selectively, which reveals a surprising directing effect conveyed by icosahedral carborane anion substituents. PMID:25387660

  14. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance. Final Report

    International Nuclear Information System (INIS)

    increased understanding of the chemical rules that govern the selective sequestration of anions.

  15. Helix—Sense—Selective Polymerization of N,N—Diphenyl (Meth) acrylamide by Anionic Catalysts

    Institute of Scientific and Technical Information of China (English)

    HongXUE; YongAnXU; 等

    2002-01-01

    In this paper, the helix-sense-selective polymerization of N,N-diphenyl acrylamide (DPAA) and N,N-diphenyl methacrylamide (DPMAA) were studied with living helix prepolymer as anionic initiator, and the chiral optical properties of the obtained polymers were investigated too. It was shown that optically active polymers of DPAA and DPMAA could be obtained under the experimental condition, and exhibited the same screw sense as that of the prepolymer.

  16. The ozonide anion: A theoretical study

    Science.gov (United States)

    Borowski, Piotr; Roos, Björn O.; Racine, Stephen C.; Lee, Timothy J.; Carter, Stuart

    1995-07-01

    Complete active space self-consistent field (CASSCF) and CASSCF second-order perturbation theory (CASPT2) methods have been used for the geometry optimization and calculation of harmonic and fundamental frequencies of the ozonide ion (O-3) and the ozonide lithium complex (Li+O-3). For O-3 harmonic frequencies have also been obtained using the coupled-cluster method, CCSD(T). Infrared intensities are computed from dipole moment derivatives at the CASSCF level. The predicted equilibrium geometry for O-3 is ROO=1.361 Å and ∠OOO=115.4°, and the fundamental frequencies are ν1=989 cm-1, ν2=556 cm-1, ν3=870 cm-1 [experimental values are ROO=1.36±0.02 Å, ∠OOO=111.8±2.0°, ν1=975(50) cm-1, ν2=550(50) cm-1, ν3=880(50) cm-1]. Corresponding data for the lithium ozonide complex have also been obtained. The presented data contradict the previous interpretation of the IR and Raman spectrum obtained after codeposition of ozone and alkali atoms in N2, argon, or neon matrices. The presence of the lithium cation raises the asymmetric stretch frequency to about 940 cm-1, which is contradictory to assumptions made in the assignments of the matrix spectra. Calculations made in a dielectric medium strongly suggest that the effect of the matrix on the IR spectrum is small for O-3 itself. The dissociation and atomization energies of O-3 are found to be in agreement with experiment.

  17. Characterization of the anion sensitive ATPase in intact vacuoles of Kalanchoe diagremontiana

    Energy Technology Data Exchange (ETDEWEB)

    Kobza, J.; Uribe, E.G.

    1986-04-01

    A method for the isolation of intact vacuoles from K. daigremontiana was developed which produced high yields of relatively pure vacuoles as determined by marker enzyme contamination. Upon isolation, the vacuoles were stabilized by the inclusion of 5% (w/v) ficoll. Enzyme activity was insensitive to vanadate and azide but was strongly inhibited by DCCD. Enzyme activity was strictly dependent on the inclusion of Mg/sup 2 +/ and was stimulated by anions as depicted by the series, NO/sub 3//sup -/ < Br/sup -/ < SO/sub 4//sup -/ < HCO/sub 3//sup -/ < Cl/sup -/. It was found that in intact vacuoles the ATPase activity was stimulated by phosphate to a level equivalent to that found with the chloride. The enzyme exhibited Michaelis-Menten kinetics with a Km for Mg-ATP complex of 0.51 mM.

  18. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    Science.gov (United States)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  19. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    International Nuclear Information System (INIS)

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher kcat/Km and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems

  20. Synthetic ion transporters that work with anion-π interactions, halogen bonds, and anion-macrodipole interactions.

    Science.gov (United States)

    Vargas Jentzsch, Andreas; Hennig, Andreas; Mareda, Jiri; Matile, Stefan

    2013-12-17

    The transport of ions and molecules across lipid bilayer membranes connects cells and cellular compartments with their environment. This biological process is central to a host of functions including signal transduction in neurons and the olfactory and gustatory sensing systems, the translocation of biosynthetic intermediates and products, and the uptake of nutrients, drugs, and probes. Biological transport systems are highly regulated and selectively respond to a broad range of physical and chemical stimulation. A large percentage of today's drugs and many antimicrobial or antifungal agents take advantage of these systems. Other biological transport systems are highly toxic, such as the anthrax toxin or melittin from bee venom. For more than three decades, organic and supramolecular chemists have been interested in developing new transport systems. Over time, curiosity about the basic design has evolved toward developing of responsive systems with applications in materials sciences and medicine. Our early contributions to this field focused on the introduction of new structural motifs with emphasis on rigid-rod scaffolds, artificial β-barrels, or π-stacks. Using these scaffolds, we have constructed selective systems that respond to voltage, pH, ligands, inhibitors, or light (multifunctional photosystems). We have described sensing applications that cover the three primary principles of sensor development: immunosensors that use aptamers, biosensors (an "artificial" tongue), and differential sensors (an "artificial" nose). In this Account, we focus on our recent interest in applying synthetic transport systems as analytical tools to identify the functional relevance of less common noncovalent interactions, anion-π interactions, halogen bonds, and anion-macrodipole interactions. Anion-π interactions, the poorly explored counterpart of cation-π interactions, occur in aromatic systems with a positive quadrupole moment, such as TNT or hexafluorobenzene. To observe

  1. Facile synthesis of hollow silica nanospheres employing anionic PMANa templates

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Takai, Chika; Shirai, Takashi; Fuji, Masayoshi, E-mail: fuji@nitech.ac.jp [Nagoya Institute of Technology, Advanced Ceramic Research Center (Japan)

    2015-05-15

    This article presents a facile and green route to the synthesis of hollow silica particles by means of anionic particles of poly(sodium methacrylate) (PMANa) as templates. This method was composed of the following three steps: formation of PMANa particles in ethanol by nanoprecipitation, the deposition of silica shell on the polymer cores through sol–gel process of tetraethylorthosilicate under catalysis of ammonia, and removal of the polymer templates by washing with water. The templates’ size can be controlled in the range of about 70–140 nm by altering the ratio of ethanol to water, the polymer solution concentration, the ethanol amount in polymer solution, and the silica shell thickness can be adjusted between 15 and 30 nm by varying the ratio of silica precursor to the polymer cores. A tentative interpretation about the silica-coating process on the anionic PMANa particles was also proposed according to the experimental results.

  2. Macrocyclic bis(ureas as ligands for anion complexation

    Directory of Open Access Journals (Sweden)

    Claudia Kretschmer

    2014-08-01

    Full Text Available Two macrocyclic bis(ureas 1 and 2, both based on diphenylurea, have been synthesized. Compound 1 represents the smaller ring with two ethynylene groups as linkers and 2 the larger ring with two butadiynylene groups. On thermal treatment to 130 °C molecule 1 splits up into two dihydroindoloquinolinone (3 molecules. Both compounds 1 and 2 form adducts with polar molecules such as dimethyl sulfoxide (DMSO and dimethylformamide (DMF and act as complexing agents towards a series of anions (Cl−, Br−, I−, NO3−, HSO4−. The crystal structures of 3, 2·2DMSO, 2·2DMF, and of the complex NEt4[Br·2] have been determined. Quantitative investigations of the complexation equilibria were performed via 1H NMR titrations. While 1 is a rather weak complexing agent, the large ring of 2 binds anions with association constants up to log K = 7.93 for chloride ions.

  3. Epithelial Anion Transport as Modulator of Chemokine Signaling

    Science.gov (United States)

    Schnúr, Andrea; Hegyi, Péter; Rousseau, Simon; Lukacs, Gergely L.; Veit, Guido

    2016-01-01

    The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases. PMID:27382190

  4. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    S Radha; P Vishnu Kamath

    2013-10-01

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal charge transfer transitions of the ferricyanide anion show a red shift on intercalation. The ferrocyanide ion shows a significant blue shift of – bands due to the increased separation between 2g and g levels on intercalation. MnO$^{-}_{4}$ ion shows a blue shift in its ligand to metal charge transfer transition since the non-bonding 1 level of oxygen from which the transition arises is stabilized.

  5. Coumarin Based Neutral Sensor for Biologically Important Anions

    Institute of Scientific and Technical Information of China (English)

    SHAO Jie

    2011-01-01

    A coumarin Shiff-base derivative,salicylaldehyde-N-(6-phenylazo-coumarin-3-formyl)-hydrazone(1),was obtained by simple organic synthesis from cheap and commercially available starting materials.Sensor 1 exhibits a very weak fluorescence emission,however,in the presence of acetate ions “turn-on” fluorescence is observed,which results from binding-induced conformational restriction of the fluorophore.Importantly,sensor 1 can also be used as colorimetric chemosensor for the anions with strong basicity,which is easily observed from yellow to red by naked eyes.Consequently,compound l can behave as a colorimetric and fluorescence sensor for biologically important F,CH3COO and H2PO4- in the presence of the other anions tested such as Cl-,Br- and I- in dimethyl sulfoxide(DMSO).

  6. Microsolvation effects on the electron binding energies of halide anions

    Science.gov (United States)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Streit, L.; Ortiz, J. V.

    2014-02-01

    Ab initio electron propagator calculations in the partial third order (P3) and P3+ approximations were performed to obtain vertical electron detachment energies (VEDEs) of fluoride and chloride clusters with one through three molecules of water. Larger clusters of F- and Cl- with six water molecules were also treated with and without the polarisable continuum model (PCM). For the smaller clusters, good agreement between calculated VEDEs and peak positions in photoelectron spectra is achieved. Large shifts in VEDEs are observed for both hexameric fluoride-water and chloride-water complexes when the PCM is applied. Significant changes in coordination geometries about the chloride anion also occur in this model. In all fluoride complexes, Dyson orbitals for the lowest VEDEs are delocalised over oxygen atoms. On the contrary, for the case of chloride-water clusters, the Dyson orbitals corresponding to the lowest VEDEs are localised on the anion.

  7. Enhanced conductivity detection of common inorganic anions in electrostatic ion chromatography using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Chao-Hong SHI; Kazuhiko TANAKA; Nobutake NAKATANI

    2012-01-01

    To enhance the conductivity detection sensitivity of common anions (Na-anions) in electrostatic ion chromatography (EIC) by elution with water,a conductivity enhancement column packed with strong acid cation exchange resin in the H-form was inserted between an octadecyl silane (ODS)-silica separation column modified with zwitterionic surfactant ( CHAPS:3- { ( 3-cholamidopropyl ) -dimethylammonio } propanesulfonate ) and a conductivity detector.Specifically,the Na-anion pairing is converted to H-anion pairing after the EIC separation and then detected sensitively by the conductivity detector.The effects of conductivity enhancement and suppression in the EIC by the enhanced conductivity detection were characterized for the common strong acid anions such as SO42-,Cl-,NO3-,I- and ClO4- and weak acid anions such as F-,NO2-,HCOO-,CH3COO- and HCO3-.For the conductivity enhancement effect in the EIC,it is found that the conductivity of measured for all strong acid anions (Na-anions) was enhanced acording to the theoretical conductivity predicted for H-anions and that of the measured for weak acid anions was suppressed depending on their pKa of H-anions.For the calibration linearity in the EIC,the strong acid anions were linear (r2 =0.99 - 1.00) because the degree of dissociation is almost 1.0 over all the concentration range and that of the weak acid anions was non-linear because the degree of dissociation decreased by increasing the concentration of the weak acid anions.In conclusion,the EIC by enhanced conductivity detection was recognized to be useful only for the strong acid anions in terms of conductivity detection and calibration linearity.

  8. Studies on treatment of low level radioactive liquid waste for removal of anionic species of 125Sb, 99Tc and 106Ru. Contributed Paper RD-14

    International Nuclear Information System (INIS)

    The treatment of intermediate level waste at Waste Immobilization Plant generates low level radioactive waste which would require further management before discharge to sea. This waste is expected to contain polymeric oxo anions of 125Sb, 99Tc, 106Ru in addition to cationic species like 137Cs, 90Sr etc. Chemical treatment takes care of the major contributors to radioactivity viz 137Cs, 90Sr etc but traces of activity due to anionic species remain in the treated waste effluent. Novel composite anionic exchanger namely Polyurethane foam coated with Hydrous Zirconium Oxide was developed for removal of these anionic species. This material was successfully employed for removal of anionic 125Sb from radioactive waste effluent at Waste Management Division, Trombay. Based on our experience with Sb removal using the above material it was decided to assess the ability of the exchanger in removal of other anionic species bearing Ru and Tc. It was observed that in addition to complete removal of Sb, 50% Ru removal and 40% Tc could also be removed using this material from radioactive waste effluents. In lab experiments, similar results were obtained with simulated low level waste bearing inactive Ru. Among several hydrous oxides tried in a batch study, Hydrous Zirconium Oxide showed a maximum removal of 40% for Tc in actual waste generated from reprocessing plant. Based on the above it has been planned to set up an anion exchange column with Hydrous Zirconium Oxide coated Polyurethane foam for final treatment of chemically treated waste effluent prior to discharge as a prime step towards achieving our goal of minimum discharge to Sea. (author)

  9. Impact of microstructure on anion exclusion in compacted clay media

    OpenAIRE

    Tournassat, Christophe; Gaboreau, Stéphane; Robinet, Jean-Charles; Bourg, Ian C.; Steefel, Carl I

    2015-01-01

    International audience The sensitivity of ion concentration distribution models to three key model assumptions, the pore-size distribution of clay media, the distance of closest approach of ions to the clay surface, and the accessibility of sub-nanometer-wide clay mineral interlayer spaces to anions, was explored by solving the Poisson-Boltzmann equation for swelling and non-swelling clay materials. Our calculations show that all three model assumptions significantly impact values predicte...

  10. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Organic anion exchange resins are evaluated for 99-TcO4- (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I-, NO3-, SO4=, CO3=, Cl- and OH-. Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  11. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO3-, OH- and BO3- environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  12. Factors Affecting Anion Movement and Retention in Four Forest Soils

    OpenAIRE

    D. W. Johnson; Cole, D. W.; Van Miegroet, Helga; Horng, F. W.

    1986-01-01

    Three hypotheses concerning the movement and retention of anions in forest soils were tested in a series of laboratory and field studies on two Tennessee Ultisols with mixed deciduous forest cover and two Washington Inceptisols, one with deciduous (red alder Alnus rubra Bong.) and one with coniferous [Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco] forest cover. The first hypothesis, that sulfate and phosphate retention was related to adsorption to free Fe and Al oxides, which were in turn...

  13. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    Science.gov (United States)

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  14. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    OpenAIRE

    Yubin He; Jiefeng Pan; Liang Wu; Yuan Zhu; Xiaolin Ge; Jin Ran; ZhengJin Yang; Tongwen Xu

    2015-01-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH− conductiv...

  15. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Kilb, Werner

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) proposed that cytoplasmic impermeant anions and polyanionic extracellular matrix glycoproteins establish the local neuronal intracellular chloride concentration, [Cl(-)]i, and thereby the polarity of γ-aminobutyric acid type A (GABAA) receptor signaling. The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to.

  16. Chemistry of nitrile anions in the interstellar medium

    International Nuclear Information System (INIS)

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm3), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C4H¯, C6H¯, C8H¯, CN¯, C3N¯ and C5N¯. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN¯ and C3N¯ anions by dissociative electron attachment on the molecular precursors BrCN and BrC3N

  17. Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Chouyyok, Wilaiwan; Wiacek, Robert J.; Pattamakomsan, Kanda; Sangvanich, Thanapon; Grudzien, Rafal M.; Fryxell, Glen E.; Yantasee, Wasanna

    2010-03-26

    Phosphate was captured from aqueous solutions by cationic metal-EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II)-EDA-SAMMS and Fe(III)-EDA-SAMMS). Fe-EDA-SAMMS was more effective at capturing phosphate than the Cu-EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent; it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMS was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to ~ 10 µg/L of phosphorus, which is lower than the EPA’s established freshwater contaminant level for phosphorous (20 µg/L).

  18. Stability of atoms in the anionic domain (Z

    CERN Document Server

    Gil, G

    2013-01-01

    We study the stability and universal behaviour of the ionization energy of N-electron atoms with nuclear charge Z in the anionic domain (Zanionic instability threshold. As testing systems we choose inert gases (He-like, Ne-like and Ar-like isoelectronic sequences) and alkali metals (Li-like, Na-like, K-like sequences). From the results, it is apparent that, for inert gases case, the stability relation with N is completely inverted in the singly-charged anion region (Z=N-1) with respect to the neutral atom region (Z=N), i.e. larger systems are more stable than the smaller ones. We devised a semi-analytical model (inspired by the zero-range forces theory) which lead us to establish the ionization energy dependence on the nuclear charge n...

  19. pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones.

    Science.gov (United States)

    Howe, Ethan N W; Busschaert, Nathalie; Wu, Xin; Berry, Stuart N; Ho, Junming; Light, Mark E; Czech, Dawid D; Klein, Harry A; Kitchen, Jonathan A; Gale, Philip A

    2016-07-01

    Gated ion transport across biological membranes is an intrinsic process regulated by protein channels. Synthetic anion carriers (anionophores) have potential applications in biological research; however, previously reported examples are mostly nonspecific, capable of mediating both electrogenic and electroneutral (nonelectrogenic) transport processes. Here we show the transmembrane Cl(-) transport studies of synthetic phenylthiosemicarbazones mimicking the function of acid-sensing (proton-gated) ion channels. These anionophores have remarkable pH-switchable transport properties with up to 640-fold increase in transport efficacy on going from pH 7.2 to 4.0. This "gated" process is triggered by protonation of the imino nitrogen and concomitant conformational change of the anion-binding thiourea moiety from anti to syn. By using a combination of two cationophore-coupled transport assays, with either monensin or valinomycin, we have elucidated the fundamental transport mechanism of phenylthiosemicarbazones which is shown to be nonelectrogenic, inseparable H(+)/Cl(-) cotransport. This study demonstrates the first examples of pH-switchable nonelectrogenic anion transporters. PMID:27299473

  20. Anion composition of açaı́ extracts.

    Science.gov (United States)

    Liao, Hongzhu; Shelor, C Phillip; Chen, Yongjing; Sabaa-Srur, Armando U O; Smith, Robert E; Dasgupta, Purnendu K

    2013-06-26

    Many products labeled açaı́ are presently marketed as natural supplements with various claimed health benefits. Authentic açaı́ is expensive; as a result, numerous products labeled as containing açaı́ are being sold that actually contain little or no açaı́. Authentic açaı́ samples from Brazil and Florida as well as several reputed açaı́ products were analyzed by suppressed conductometric anion chromatography. Columns with different selectivities were used to obtain a complete separation of all anions. Tandem mass spectrometry was used for confirmation of the less common ions. Quinate, lactate, acetate, formate, galacturonate, chloride, sulfate, malate, oxalate, phosphate, citrate, isocitrate, and myo-inositol hexakisphosphate (phytate) were found. Only the Florida açaı́ had detectable levels of hexanoate. No açaı́ sample had any detectable levels of tartrate, which is present in abundance in grape juice, the most common adulterant. The highly characteristic anion profile and in particular the absence of tartrate can readily be used to identify authentic açaı́ products. Açaı́ from Florida had a 6 times greater level of phytate. The present analytical approach for phytate may be superior to extant methods.

  1. Coumarin benzothiazole derivatives as chemosensors for cyanide anions

    Science.gov (United States)

    Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao

    2015-06-01

    Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.

  2. Effect of Anion on Adsorption of Rare Earth Elements on Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Jianjun

    2007-01-01

    For a better understanding the adsorption of rare earth elements (REEs) on minerals and its controlling factors, adsorption experiments were performed with kaolin in a matrix of various concentration of anion (Cl-, ClO4-, SO42-) in the pH 6.5. The adsorption of REEs onto the kaolin increase with increasing anion concentration, especially in the presence of SO42-, which is ascribe to the Na+ mass effect and anion complexation. furthermore, the heavy REEs are more adsorbed onto kaolin in presence of higher concentration of anion, especially for Cl- and SO42-, presumably due to the difference of anion complexation with light REE and heavy REEs.

  3. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    Science.gov (United States)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  4. Electron exchange between dipole-bound anion and polar molecule and dipole-bound anions dimer formation

    International Nuclear Information System (INIS)

    We consider collision between a dipole-bound molecular anion and a neutral polar molecule and show that the excess electron can bind two neutral molecules into a dimer. Using a variational approach similar to the Heitler-London model of H''+2 ion we obtain the energy terms of such a dimer. Their difference determines the cross-section of electron transfer from the anion to the neutral molecule in quasiclassical near-resonant Born-Oppenheimer approximation. We obtain for the cross-section an analytic expression containing the weak (logarythmic) factor depending on the molecular dipole moment, and collision velocity. Our analytic calculations are in a good accordance with the results of a recent experiment.

  5. A fluorescent coumarin-thiophene hybrid as a ratiometric chemosensor for anions: Synthesis, photophysics, anion sensing and orbital interactions

    Science.gov (United States)

    Yanar, Ufuk; Babür, Banu; Pekyılmaz, Damla; Yahaya, Issah; Aydıner, Burcu; Dede, Yavuz; Seferoğlu, Zeynel

    2016-03-01

    A colorimetric and fluorimetric fluorescent chemosensor (CT-2), having a coumarin ring as a signaling unit and an acetamido thiophene ring as an H-donor receptor, has been synthesized from amino derivative (CT-1) of CT-2 for the purpose of recognition of anions in DMSO. The absorption and emission maxima were both determined for the fluorescent dye in different solvents. Both hypsochromic shift at the absorption maximum, and quenching of fluorescence after interactions between the anions and the receptoric part, were observed. This phenomenon was explained using orbital interactions based on quantum chemical calculations. The selectivity and sensitivity of CT-2 for F-, Cl-, Br-, I-, AcO-, CN-, H2PO4-, HSO4- and ClO4- anions were determined with spectrophotometric, fluorimetric and 1H NMR titration techniques and it was found that CT-2 be utilized for the detection of CN-, F- and AcO- in the presence of other ions as competitors. Color and fluorescence changes visible to the naked eye and under UV (365 nm) were observed upon addition of CN-, F- and AcO- to the solution of chemosensor (CT-2) in DMSO. The sensor showed no colorimetric and fluorimetric response for the anions such as Cl-, Br-, I-, H2PO4-, HSO4-, and ClO4-. However, 1H NMR titration shows that the chemosensor was more sensitive to CN-, than F- and AcO- at the stochiometric ratio of 1:2.5 respectively. Additionally, the compounds CT-1 and CT-2 showed good thermal stability for practical applications.

  6. Determination of arsenate in water by anion selective membrane electrode using polyurethane-silica gel fibrous anion exchanger composite.

    Science.gov (United States)

    Khan, Asif Ali; Shaheen, Shakeeba

    2014-01-15

    Polyurethane (PU)-silica (Si gel) based fibrous anion exchanger composites were prepared by solid-gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU-Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1×10(-8)M to 1×10(-1)M), response time (45s) and working pH range (5-8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO4(3-)) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  7. Epitaxial InN/InGaN quantum dots on Si: Cl‑ anion selectivity and pseudocapacitor behavior

    Science.gov (United States)

    Rodriguez, Paul E. D. Soto; Mari, Claudio Maria; Sanguinetti, Stefano; Ruffo, Riccardo; Nötzel, Richard

    2016-08-01

    Epitaxial InN quantum dots (QDs) on In-rich InGaN, applied as an electrochemical electrode, activate Cl‑-anion-selective surface attachment, bringing forth faradaic/pseudocapacitor-like behavior. In contrast to traditional pseudocapacitance, here, no chemical reaction of the electrode material occurs. The anion attachment is explained by the unique combination of the surface and quantum properties of the InN QDs. A high areal capacitance is obtained for this planar electrode together with rapid and reversible charge/discharge cycles. With the growth on cheap Si substrates, the InN/InGaN QD electrochemical electrode has great potential, opening up new application fields for III–nitride semiconductors.

  8. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction

    Science.gov (United States)

    Wandschneider, F. T.; Finke, D.; Grosjean, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.

    2014-12-01

    Membranes are an important part of vanadium redox flow battery cells. Most cell designs use Nafion®-type membranes which are cation exchange membranes. Anion exchange membranes are reported to improve cell performance. A model for a vanadium redox flow battery with an anion exchange membrane is developed. The model is then used to calculate terminal voltages for open circuit and charge-discharge conditions. The results are compared to measured data from a laboratory test cell with 40 cm2 active membrane area. For higher charge and discharge currents, an empirical correction for the terminal voltage is proposed. The model geometry comprises the porous electrodes and the connected pipes, allowing a study of the flow in the entrance region for different state-of-charges.

  9. Oxidation of caffeine by phosphate radical anion in aqueous solution under anoxic conditions

    Indian Academy of Sciences (India)

    Maram Ravi Kumar; Mundra Adinarayana

    2000-10-01

    The photooxidation of caffeine in presence of peroxydiphosphate (PDP) in aqueous solution at natural H (∼7 5) has been carried out in a quantum yield reactor using a high-pressure mercury lamp. The reactions were followed spectrophotometrically by measuring the absorbance of caffeine at max (272 nm). The rates of reaction were calculated under different experimental conditions. The quantum yields were calculated from the rates of oxidation of caffeine and the intensity of light at 254 nm which was measured by using peroxydisulphate solution as a standard chemical actinometer. The reaction rates of oxidation of caffeine by PDP increase with increase in [PDP] as well as with increase in light intensity, while they are independent of [caffeine]. The quantum yields of oxidation of caffeine by PDP are independent of [PDP] as well as light intensity. However, quantum yields of oxidation of caffeine by PDP increase with increase in caffeine concentration. On the basis of these experimental results and product analysis, a probable mechanism has been suggested in which PDP is activated to phosphate radical anions (PO$_{4}^{\\bullet 2-}$) by direct photolysis of PDP and also by the sensitizing effect of caffeine. The phosphate radical anions thus produced react with caffeine by electron transfer reaction, resulting in the formation of caffeine radical cation, which deprotonates in a fast step to produce C8OH adduct radicals. These radicals might react with PDP to give final product 1,3,7-trimethyluric acid and PO$_{4}^{\\bullet 2-}$ radicals, the latter propagates the chain reaction.

  10. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion

    Science.gov (United States)

    Yancheva, D.; Velcheva, E.; Glavcheva, Z.; Stamboliyska, B.; Smelcerovic, A.

    2016-03-01

    The ability of syringaldehyde, a naturally occurring phenolic antioxidant and medicinally important compound, to scavenge free radicals according different mechanisms was elucidated by computing the respective reaction enthalpies at DFT B3LYP/6-311++G** level. Bond dissociation enthalpy, ionization potentials and proton affinities were calculated in gas phase, benzene, water and DMSO in order to account for different environment (nonpolar lipid membranes and polar physiological liquids) where the antioxidant action in the living organism could take place and various experimental in vitro conditions. Molecular and electronic properties influencing the reactivity of syringaldehyde according to the different mechanisms were discussed in the light of the reported radical scavenging activities in crocin bleaching, oxidation potential of the first anodic peak and DPPH test. According to the calculated reaction enthalpies, in polar environment the syringaldehyde reacts preferably by sequential proton loss electron transfer which is related to the formation of a phenoxy anion. Such phenoxy anion was generated in DMSO solution and the changes in the force field, steric and electronic structure, resulting from the conversion, were described in detail based on the IR spectral data and DFT computations.

  11. Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography.

    Science.gov (United States)

    Popova, Inna E; Morra, Matthew J

    2014-11-01

    Although mustards such as Sinapis alba and Brassica juncea contain glucosinolates (sinalbin and sinigrin, respectively) that hydrolyze to form biopesticidal products, routine quality control methods to measure active ingredients in seed and seed meals are lacking. We present a simple and fast ion chromatography method for the simultaneous quantification of sinigrin, sinalbin, and anionic hydrolysis products in mustard seed to assess biological potency. Optimum conditions include isocratic elution with 100 mM NaOH at a flow rate of 0.9 mL/min on a 4 × 210 mm hydroxide-selective anion-exchange column. All anion analytes including sinigrin, sinalbin, SO4(2-), and SCN(-) yielded recoveries ranging from 83 to 102% and limits of detection ≤0.04 mM, with samples displaying little interference from plant matrix components. Sample preparation is minimized and analysis times are shortened to <90 min as compared with previous methods that took days and multiple instruments.

  12. Silazyl-Lithiums: A kind of new Initiators for the Anionic Non- equilibrium Ring-opening Polymerization of Octamethylcyclotetrasiloxane (D4)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The initiation reactions in the anionic non-equilibrium polymerization of octamethy- lcyclotetrasiloxane (D4) initiated by silazyllithiums were investigated. It was found that the structure of the substituents on the Si atom had great influences on the initiation activity of silazyllithiums.

  13. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts

    Directory of Open Access Journals (Sweden)

    Anna Gramza-Michałowska

    2015-12-01

    Full Text Available Background. Plant polyphenols are known for their limiting of adverse effects on reactive oxygen species (ROS in biological systems. The photochemiluminescence (PCL assay allows to evaluate the antiradical activity of a compound in the presence of a superoxide anion-radical (O •-, which is one of the ROS directly associated with the human body. In this work, determination of the superoxide anion radical scavenging ac- tivity of different tea extracts using the PCL assay was performed. Material and methods. Investigations were conducted on different tea leaves extracts. The study included five kinds of tea leaves subjected to aqueous and ethanol extraction procedure. Catechins content was evalu- ated using HPLC. Antiradical activity of the samples was conducted with use of Photochem assay. Results. Analysis of total catechins content in tea aqueous extracts enabled them to be arranged as follows: yellow > green > white > red > black, while for ethanol extracts it was: yellow = green > white > red > black. The examined tea extracts were ranked from highest to lowest water-soluble antioxidative capacity (ACW values as follows: yellow > green > white > red > black. The results of lipid-soluble antioxidative capacity (ACL values for aqueous extracts were similar; however, were approximately 50% lower than those pre- sented as ACW. The second examined group were ethanol extracts, which ranked for ACW values: yellow > green = red = white > black, while ACL values ranked as follows: yellow > white = black = red > green. PCL assay results were correlated with total catechin content in aqueous extracts. Conclusions. Antiradical activity of different tea leaves extracts in PCL assay, showed that the highest activ- ity was found in extracts of yellow tea; the lowest, however, was identified in black tea extracts.

  14. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    Science.gov (United States)

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM.

  15. M8L12 cubic cages with all facial Δ or facial Λ configuration: effects of surface anions on the occupancy of the cage and anion exchange.

    Science.gov (United States)

    Yang, Jing; Chang, Xiao-Yong; Sham, Kiu-Chor; Yiu, Shek-Man; Kwong, Hoi-Lun; Che, Chi-Ming

    2016-05-21

    M8L12 cubic cages (M = Mn(II), Zn(II) or Cd(II)), with all eight metal ions having all facial Δ or facial Λ configurations and having an encapsulated anion, were prepared by the self-assembly of m-xylene-bridged imidazolyl-imine ligands and MX2 (X = PF6(-), SbF6(-), TfO(-)) salts; the encapsulated anion exchange with different anions (SbF6(-), Tf2N(-), NO3(-), TsO(-)) was studied and the results with NO3(-) and TsO(-) indicate that anions on the cage surfaces affect the encapsulated anion exchange and the occupancy of the cage. PMID:27064122

  16. Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport

    Science.gov (United States)

    Lang, Chao; Zhang, Xin; Dong, Zeyuan; Luo, Quan; Qiao, Shanpeng; Huang, Zupeng; Fan, Xiaotong; Xu, Jiayun; Liu, Junqiu

    2016-01-01

    An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications.An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications. Electronic supplementary information (ESI) available: Synthetic procedure and

  17. Solvation of benzophenone anion radical in ethanol and ethanol/2-methyltetrahydrofuran mixture

    International Nuclear Information System (INIS)

    The electron spin-echo modulations and the absoprtion spectra of benzophenone anion radicals generated by γ-irradiation in the glassy matrices of ethanol and ethanol2-methyltetrahydrofuran mixtures have been measured for elucidating the mechanism of spectral shift observed during the solvation of the anion radicals in alcohols. The anion radical generated at 4.2 K in the ethanol matrix maintains the same solvation structure as that of neutral benzophenone. At 77 K ethanol molecules solvate the anion radical by orienting the O-H dipoles toward the anion radical. The anion radical is hydrogen-bonded by two ethanol molecules through the p/sub z/ orbital on the benzophenone oxygen which composes the π orbitals of anion radical. Three kinds of anion radicals are observed in the mixed matrix at 77 K. Two of them are essentially the same as those observed in the ethanol matrix at 4.2 and 77 K. The third has the absorption maximum at 700 nm and is attributed to the anion radical hydrogen-bonded by one ethanol molecule through the p/sub z/ orbital. It is concluded that the spectral shift observed in alcohols is caused by the stabilization of a SOMO π* orbital induced by the hydrogen bonding with the (RO)H--O--H(OR) angle perpendicular to the molecular plane of the anion radical

  18. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  19. Chemistry of nitrile anions in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Carles, S.; Le Garrec, J.-L.; Biennier, L. [Institut de Physique de Rennes, Département de Physique Moléculaire, Astrophysique de Laboratoire, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837,35708 Rennes Cedex 7 (France)

    2015-12-31

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm{sup 3}), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C{sub 4}H{sup ¯}, C{sub 6}H{sup ¯}, C{sub 8}H{sup ¯}, CN{sup ¯}, C{sub 3}N{sup ¯} and C{sub 5}N{sup ¯}. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN{sup ¯} and C{sub 3}N{sup ¯} anions by dissociative electron attachment on the molecular precursors BrCN and BrC{sub 3}N.

  20. Organic anion transporter OAT1 is involved in renal handling of citrulline.

    Science.gov (United States)

    Nakakariya, Masanori; Shima, Yoichiro; Shirasaka, Yoshiyuki; Mitsuoka, Keisuke; Nakanishi, Takeo; Tamai, Ikumi

    2009-07-01

    Because citrulline plasma concentration is elevated in kidney failure, citrulline could be a biomarker of renal insufficiency, although the mechanism regulating its disposition in the kidney has not been clarified. In rat kidney slices, citrulline uptake was apparently Na(+) dependent, saturable with K(m) 556 microM, and significantly inhibited by anionic (PAH) and cationic (TEA) compounds, but not by probenecid at 1 mM. Preincubation of kidney slices with glutarate increased citrulline uptake, while such an increase was not observed after preincubation of the slices in Na(+)-free buffer. This result suggested that a sodium-dependent dicarboxylate cotransporter is involved in citrulline uptake by rat kidney slices. In studies using transporter-overexpressing cells, human organic anion transporter 1 (OAT1) and rat Oat1 exhibited citrulline transport activity with K(m) values of 238 and 373 microM, respectively, while other OATs and organic cation transporters (OCTs) did not transport citrulline. Based on the relative activity factor method, the contribution of rat Oat1 to the overall uptake of citrulline in rat kidney slices was approximately 70%. Moreover, the interaction among citrulline, PAH, and probenecid uptakes via rat Oat1 suggested that there are multiple functional sites on Oat1 and that the citrulline site may be distinct from the PAH and probenecid site. Thus OAT1/Oat1 appears to be one of the major contributors to renal basolateral uptake of citrulline, and impaired activities of these transporters may contribute substantially to the increase in plasma citrulline in renal failure. Accordingly, citrulline may be useful for diagnosis of kidney function as is creatinine. PMID:19403644

  1. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters.

    Science.gov (United States)

    Leuthold, Simone; Hagenbuch, Bruno; Mohebbi, Nilufar; Wagner, Carsten A; Meier, Peter J; Stieger, Bruno

    2009-03-01

    Organic anion transporting polypeptides (humans OATPs, rodents Oatps) are expressed in most mammalian tissues and mediate cellular uptake of a wide variety of amphipathic organic compounds such as bile salts, steroid conjugates, oligopeptides, and a large list of drugs, probably by acting as anion exchangers. In the present study we aimed to investigate the role of the extracellular pH on the transport activity of nine human and four rat OATPs/Oatps. Furthermore, we aimed to test the concept that OATP/Oatp transport activity is accompanied by extrusion of bicarbonate. By using amphibian Xenopus laevis oocytes expressing OATPs/Oatps and mammalian cell lines stably transfected with OATPs/Oatps, we could demonstrate that in all OATPs/Oatps investigated, with the exception of OATP1C1, a low extracellular pH stimulated transport activity. This stimulation was accompanied by an increased substrate affinity as evidenced by lower apparent Michaelis-Menten constant values. OATP1C1 is lacking a highly conserved histidine in the third transmembrane domain, which was shown by site-directed mutagenesis to be critically involved in the pH dependency of OATPs/Oatps. Using online intracellular pH measurements in OATP/Oatp-transfected Chinese Hamster Ovary (CHO)-K1 cells, we could demonstrate the presence of a 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-sensitive chloride/bicarbonate exchanger in CHO-K1 cells and that OATP/Oatp-mediated substrate transport is paralleled by bicarbonate efflux. We conclude that the pH dependency of OATPs/Oatps may lead to a stimulation of substrate transport in an acidic microenvironment and that the OATP/Oatp-mediated substrate transport into cells is generally compensated or accompanied by bicarbonate efflux.

  2. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating in th...... in the case of fluoride minerals, and a theory is presented which involves the joint action of ionic and hydrogen bonds. A precondition is the compatibility of the crystal geometry with the configuration of the polar group of the collector molecules....

  3. Ionic conductivity in crystal structures with isolated tetragonal anions

    International Nuclear Information System (INIS)

    A unique peculiarity - the presence of complex isolated tetrahedron anions TZK4(4y-Z), where K - oxygen or Hal atom, y - its valency, Z - T element valency, is showh to be characteristic for different groups of superionic conductors including complex oxides of zirconium, scandium and molybdenum. It is possible to integrate and systematize a large number of ionic conductors on the basis of the given peculiarities of the crystal structure. Such an approach allows to consider the structure and electrophysical properties of a great number of cation conductors on the common ground, and to mark the concrete ways for searching new ion conducting materials

  4. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay;

    2010-01-01

    dynamic model for transport of multiple ions through an anion exchange membrane is derived based on an irreversible thermodynamics approach. This model accounts for the convective transport of the dissociated and undissociated species in the channels with diffusion and migration across the boundary...... boundary layers and membranes. The model consists of a system of partial differential equations that are solved numerically. The aim of this paper is to corroborate this general model for several monoprotic carboxylic acids reported in the literature. The model reproduces satisfactorily experimental fluxes...

  5. Development of an Ion Chromatography Method for Analysis of Organic Anions (Fumarate, Oxalate, Succinate, and Tartrate) in Single Chromatographic Conditions.

    Science.gov (United States)

    Kaviraj, Yarbagi; Srikanth, B; Moses Babu, J; Venkateswara Rao, B; Paul Douglas, S

    2015-01-01

    A single organic counterion analysis method was developed by using an ion chromatography separation technique and conductivity detector. This allows the rapid characterization of an API to support clinical studies and to fulfil the regulatory requirements for the quantitation of fumarate, oxalate, succinate, and tartrate counterions in active pharmaceutical ingredients (quetiapine fumarate, escitalopram oxalate, sumatriptan succinate, and tolterodine tartrate). The method was developed by using the Metrohm Metrosep A Supp 1 (250 × 4.0 mm, 5.0 µm particle size) column with a mobile phase containing an isocratic mixture of solution A: 7.5 mM sodium carbonate and 2.0 mM sodium bicarbonate in Milli-Q water and solution B: acetonitrile. The flow rate was set at 1.0 mL/min and the run time was 25 minutes. The developed method was validated as per ICH guidelines, and the method parameters were chosen to ensure the spontaneous quantitation of all four anions. The method was validated for all four anions to demonstrate the applicability of this method to common anions present in various APIs.

  6. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.

    Science.gov (United States)

    Love, Catherine; Gilchrist, Elizabeth; Smith, Norman; Barron, Leon

    2013-09-10

    The ability to link criminal activity and identity using validated analytical approaches can be of great value to forensic scientists. Herein, the factors affecting the recovery and detection of inorganic and organic energetic material residues within chemically or physically enhanced fingermarks on paper and glass substrates are presented using micro-bore anion exchange chromatography with suppressed conductivity detection. Fingermarks on both surfaces were enhanced using aluminium powder or ninhydrin after spiking with model test mixtures or through contact with black-powder substitutes. A quantitative study of the effects of environmental/method interferences, the sweat matrix, the surface and the enhancement technique on the relative anion recovery of forensically relevant species is presented. It is shown that the analytical method could detect target analytes at the nanogram level even within excesses of enhancement reagents and their reaction products when using solid phase extraction and/or microfiltration. To our knowledge, this work demonstrates for the first time that ion chromatography can detect anions in energetic materials within fingermarks on two very different surfaces, after operational enhancement techniques commonly used by forensic scientists and police have been applied.

  7. A Molecular Precursor to Phosphaethyne and its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion

    Energy Technology Data Exchange (ETDEWEB)

    Transue, Wesley J.; Velian, Alexandra; Nava, Matthew; Martin-Drummel, Marie A.; Womack, Caroline C.; Jiang, Jun; Hou, Gao-Lei; Wang, Xue B.; McCarthy, Michael C.; Field, Robert W.; Cummins, Christopher C.

    2016-06-01

    Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been characterized by molecular beam mass spectrometry (MBMS), laser-induced fluorescence (LIF), microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH = 25.5 kcal/mol and ΔS = ₋2.43 e.u., and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3- , for which structural data have been obtained in a single-crystal Xray diffraction study. Negative ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3- has been assessed using nucleus-independent chemical shift (NICS), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) methods.

  8. Towards the Rational Design of Ionic Liquid Matrices for Secondary Ion Mass Spectrometry: Role of the Anion

    Science.gov (United States)

    Dertinger, Jennifer J.; Walker, Amy V.

    2013-08-01

    The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.

  9. A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion.

    Science.gov (United States)

    Transue, Wesley J; Velian, Alexandra; Nava, Matthew; Martin-Drumel, Marie-Aline; Womack, Caroline C; Jiang, Jun; Hou, Gao-Lei; Wang, Xue-Bin; McCarthy, Michael C; Field, Robert W; Cummins, Christopher C

    2016-06-01

    Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported here as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been observed by molecular beam mass spectrometry, laser-induced fluorescence, microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH(⧧) = 25.5 kcal/mol and ΔS(⧧) = -2.43 eu and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high-temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3(-), for which structural data have been obtained in a single-crystal X-ray diffraction study. Negative-ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3(-) has been assessed using nucleus-independent chemical shift, quantum theory of atoms in molecules, and natural bond orbital methods. PMID:27171847

  10. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  11. A bidentate Lewis acid with a telluronium ion as an anion-binding site

    Science.gov (United States)

    Zhao, Haiyan; Gabbaï, François P.

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F --> Te chelate motif supported by a strong lone-pair(F) --> σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  12. Chloride-Anion-Templated Synthesis of a Strapped-Porphyrin-Containing Catenane Host System.

    Science.gov (United States)

    Brown, Asha; Langton, Matthew J; Kilah, Nathan L; Thompson, Amber L; Beer, Paul D

    2015-12-01

    The synthesis, structure and anion-recognition properties of a new strapped-porphyrin-containing [2]catenane anion host system are described. The assembly of the catenane is directed by discrete chloride anion templation acting in synergy with secondary aromatic donor-acceptor and coordinative pyridine-zinc interactions. The [2]catenane incorporates a three-dimensional, hydrogen-bond-donating anion-binding pocket; solid-state structural analysis of the catenane⋅chloride complex reveals that the chloride anion is encapsulated within the catenane's interlocked binding cavity through six convergent CH⋅⋅⋅⋅Cl and NH⋅⋅⋅Cl hydrogen-bonding interactions and solution-phase (1) H NMR titration experiments demonstrate that this complementary hydrogen-bonding arrangement facilitates the selective recognition of chloride over larger halide anions in DMSO solution. PMID:26508679

  13. Zn-Al LAYERED DOUBLE HYDROXIDE PILLARED BY DIFFERENT DICARBOXYLATE ANIONS

    Directory of Open Access Journals (Sweden)

    S. Gago

    2004-12-01

    Full Text Available Zn-Al layered double hydroxides (LDHs intercalated by terephthalate (TPH and biphenyl-4,4'-dicarboxylate (BPH anions have been synthesized by direct co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was 1.8. The products were characterized by powder X-ray diffraction, thermogravimetric analysis, FTIR and FT Raman spectroscopy, and MAS NMR spectroscopy. The basal spacing for the TPH-LDH intercalate was 14.62 Å, indicating that the guest anions stack to form a monolayer with the aromatic rings perpendicular to the host layers. For the LDH intercalate containing BPH anions, a basal spacing of at least 19.2 Å would be expected if the anions adopted an arrangement similar to that for the TPH anions. The observed spacing was 18.24 Å, suggesting that the anions are tilted slightly with respect to the host layers.

  14. Interpretative optimization of the isocratic ion chromatographic separation of anions

    Directory of Open Access Journals (Sweden)

    Todorović Žaklina N.

    2016-01-01

    Full Text Available Interpretive retention modeling was utilized to optimize the isocratic ion chromatographic (IC separation of the nine anions (formate, fluoride, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate. The carbonate-bicarbonate eluent was used and separation was done on a Dionex AS14 ion-exchange column. The influence of combined effects of two mobile phase factors, the total eluent concentration (2 - 6 mM and the carbonate/bicaronate ratio from 1:9 to 9:1 (which corespondent to pH range 9.35 - 11.27, on the IC separation was studied. The multiple species analyte/eluent model that takes into account ion-exchange equilibria of the eluent and sample anions was used. In order to estimate the parameters in the model, a non-linear fitting of the retention data, obtained at two-factor three-level experimental design, was applied. To find the optimal conditions in the experimental design, the normalized resolution product as a chromatographic objective function was employed. This criterion includes both the individual peak resolution and the total analysis time. A good agreement between experimental and simulated chromatograms was obtained. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  15. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (SN2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of SN2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing SN2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout SN2 mechanism involving CH3-rotation. (orig.)

  16. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  17. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  18. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs+ and Sr2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs+ and Sr2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  19. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    Science.gov (United States)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  20. Pulse radiolysis study of the formation and the reactivity of baicalin radical anion, and in comparison with rutin, quercetin and acyrlate ester radical anions in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sun Gang [Department of Applied Chemistry, College of Chemical and Molecular Engineering, Peking University, Beijing 100871 (China) and Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St Louis, MO 63110 (United States)]. E-mail: gangsun@wustl.edu; Wang Wenfeng [Shanghai Institute of Applied Physics, Academic Sinica, P.O. Box 800-204, Shanghai 201800 (China); Wu Jilan [Department of Applied Chemistry, College of Chemical and Molecular Engineering, Peking University, Beijing 100871 (China)]. E-mail: wangwqchem@pku.edu.cn

    2007-06-15

    The reaction of solvated electrons with baicalin in N{sub 2}-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3x10{sup 4} M{sup -1} cm{sup -1}. The rate constant for the build-up of the baicalin radical anion is 1.3({+-}0.4)x10{sup 10} M{sup -1} s{sup -1}. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6({+-}0.4)x10{sup 3} s{sup -1} and a second-order reaction with rate constant 1.3({+-}0.2)x10{sup 9} M{sup -1} s{sup -1}. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.

  1. Corrosion inhibition of mild steel in 1 M sulfuric acid solution using anionic surfactant

    International Nuclear Information System (INIS)

    The anionic surfactant [p-myristyloxy carbonyl methoxy-p'-sodium carboxylate-azobenzene] was prepared. The surface tension at 298 K was measured, the critical micelle concentration (cmc) and some surface active parameters were calculated. The inhibition efficiency (η%) of this surfactant has been studied by both chemical and electrochemical techniques at 25 deg. C. A significant decrease in the corrosion rate was observed in presence of the investigated inhibitor. The galvanostatic polarization curves showed that, the inhibitor behaves as mixed type but the cathodic effect is more pronounced. Tafel slopes are approximately constant and independent on the inhibitor concentration. The observed corrosion data indicate that, the inhibition of mild steel corrosion is due to the adsorption of the inhibitor molecules on the surface, which follow Langmuir adsorption isotherm. The surface morphology of mild steel samples in absence and presence of the inhibitor was examined using scanning electron microscopy

  2. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis.

    Science.gov (United States)

    Lopes, Milene Valéria; Desoti, Vânia Cristina; Caleare, Angelo de Oliveira; Ueda-Nakamura, Tânia; Silva, Sueli Oliveira; Nakamura, Celso Vataru

    2012-01-01

    Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through (1)H and (13)C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC(50) of 11 ± 1.0 and 17.5 ± 0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death. PMID:23304195

  3. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Milene Valéria Lopes

    2012-01-01

    Full Text Available Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through 1H and 13C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC50 of 11±1.0 and 17.5±0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death.

  4. Study on the adsorption kinetics of orthophosphate anions on layer double hydroxide

    Institute of Scientific and Technical Information of China (English)

    PENG Shuchuan; L(U) Lü; WANG Jin; HAN Lu; CHEN Tianhu; JIANG Shaotong

    2009-01-01

    A kinetic study was conducted on the adsorption of orthophosphate anions on layer double hydroxide (LDH). The adsorption has proved itself to be a spontaneous endothermic process and is large in capacity and rate. The adsorption isotherm correlates well with the Freundlich model, and a rise in temperature will lead to an increase in adsorption efficiency. Additionally, the results suggested that the adsorption is an entropy-increasing process and is in good agreement with the pseudo-second order kinetics. The free energy (ΔG) of adsorption of orthophosphate onto LDH varies within the range of -1.75- -3.34 kJ/mol, the enthalpy (ΔH) varies by 7.96 kJ/mol and the entropy (ΔS) by 33.59 kJ/mol. The adsorption activation energy is 8.3 kJ/mol, showing that the adsorption of orthophosphate onto LDH is determined to be a physical adsorption.

  5. SORPTION OF PHENOL AND P-NITROPHENOL ONTO A WEAKLY ANION EXCHANGER: XPS ANALYSIS AND MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS ) was adopted to elucidate sorption mechanism of phenol and p-nitrophenol onto a weakly anion exchanger D301. The distribution of specific forms of tertiary amino group on D301 was obtained and effect of free tertiary amino group on phenol sorption onto D301 was discussed. The result indicated that the percent of the protonated tertiary amine group on polymeric matrix was much lower than the reference compound N,N-dimethylbenzylamine at an identical pH value in solution due to the much lower activity degree of hydrogen ion in inner resin phase than in the external solution. Less free amino group on D301 results in less sorption capacity of phenol and p-nitrophenol in an acidic solution. Under the experimental conditions both phenol sorption onto D301 can be explained as solid extraction and the distribution coefficient varies linearly with the content of free amino group on D301.

  6. Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques

    DEFF Research Database (Denmark)

    Hutchings, M T; Clausen, Kurt Nørgaard; Dickens, M H;

    1984-01-01

    Some materials with the fluorite structures show a pronounced specific heat anomaly well below their melting temperature. This anomaly is a consequence of lattice disorder and is associated with the onset of fast-ion conduction. This paper presents the results of a series of experiments in which ...... anion Frenkel interstitials, anion vacancies and relaxed anions has been developed which satisfactorily accounts for the distribution of intensity....

  7. Anion-exchangeable inorganic-organic hybrid materials synthesized without using templates

    Institute of Scientific and Technical Information of China (English)

    XU Xianzhu; SONG Jiangwei; LI Defeng; XIAO Fengshou

    2004-01-01

    Inorganic-organic hybrid materials have been obtained at room temperature in aqueous solution without using the templates of surfactants. The materials are care fully characterized by anion-exchange measurement, elements analysis, X-ray diffraction, and infrared spectroscopy. Notably, the anion-exchange capacity of the samples (3.9 Interestingly, both small and large anions could be easily exchanged into the samples due to the plasticity of the sam pies, along with the phase transition.

  8. Removal of chromium complex dye from aqueous solutions using strongly basic and weakly basic anion exchangers

    OpenAIRE

    Kauspediene, D.; Kazlauskiene E.; Selskiene, A.

    2010-01-01

    Removal of chromium complex dye from aqueous solutions by sorption onto a weakly basic, acrylic matrix anion exchanger Purolite A845 and a strongly basic, polystyrene matrix anion exchanger Purolite A 500P has been investigated under various experimental conditions: the initial dye concentration, pH and temperature. The sorption of chromium complex dye proceeds as a result of miscellaneous interactions between the dye and anion exchanger: ion exchange and physical sorption. The removal effici...

  9. Preparation, Characterization and Adsorption Performance of a Novel Anionic Starch Microsphere

    OpenAIRE

    Yati Yang; Xiuzhi Wei; Peng Sun; Juanmin Wan

    2010-01-01

    Neutral starch microspheres (NSMs) were synthesized by an inverse microemulsion technology with epichlorohydrin as a crosslinker and soluble starch as starting material. Anionic starch microspheres (ASMs) were prepared from NSMs by the secondary polymerization with chloroacetic acid as the anionic etherifying agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and laser diffraction particle size analyzer were used to characterize the anionic starch micro...

  10. On the Formation of (Anionic) Excited Helium Dimers in Helium Droplets

    OpenAIRE

    Huber, Stefan E.; Mauracher, Andreas

    2014-01-01

    Metastable atomic and molecular helium anions exhibiting high-spin quartet configurations can be produced in helium droplets via electron impact. Their lifetimes allow detection in mass spectrometric experiments. Formation of atomic helium anions comprises collision-induced excitation of ground state helium and concomitant electron capture. Yet the formation of molecular helium anions in helium droplets has been an unresolved issue. In this work, we explore the interaction of excited helium a...

  11. Modeling the interaction of nitrate anions with ozone and atmospheric moisture

    Institute of Scientific and Technical Information of China (English)

    A. Y. Galashev

    2015-01-01

    The molecular dynamics method is used to investigate the interaction between one–six nitrate anions and water clus-ters absorbing six ozone molecules. The infrared (IR) absorption and reflection spectra are reshaped significantly, and new peaks appear at Raman spectra due to the addition of ozone and nitrate anions to the disperse water system. After ozone and nitrate anions are captured, the average (in frequency) IR reflection coefficient of the water disperse system increased drastically and the absorption coefficient fell.

  12. The remarkable ability of anions to bind dihydrogen.

    Science.gov (United States)

    Della, Therese Davis; Suresh, Cherumuttathu H

    2016-05-25

    The structural features and hydrogen binding affinity of anions F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-) have been explored at the CCSD(T)/aug-cc-pVTZ//CCSD/6-311++G(d,p) level of coupled cluster theory and the M06L/6-311++G(d,p) level of density functional theory along with a two-point extrapolation to the complete basis set limit and a benchmark study at CCSD(T) and MP2 levels. The coupled cluster, MP2 and DFT methods yield comparable results and show that anions have very high capacity to store hydrogen as the weight percent of H2 in the highest H2-coordinated state of F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-) is 56.0, 47.6, 33.5, 64.0, 65.4, 41.2, 55.4, and 40.0 wt%, respectively. The CCSD(T)/aug-cc-pVTZ//CCSD/6-311++G(d,p) results are presented for anions coordinated with up to nine or ten H2 molecules, while up to the entire first coordination shell is computed using the M06L method which revealed H2 coordination numbers of 12, 16, 20, 15, 15, 16, 16, and 17, respectively, for F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-). An increase in the total interaction energy (Eint) and a decrease in the interaction energy per H2 molecule (Eint/H2) with an increase in the number of coordinated H2 molecules are observed. However, the decrease in Eint/H2 is very less and even in the highest coordinated anions, substantially good values of Eint/H2 are observed, viz. 4.24, 2.59, 2.09, 3.32, 3.07, 2.36, 2.31, and 2.63 kcal mol(-1) for F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-), respectively, which are comparable with the values obtained for complexes with lesser H2 coordination. The stability of the complexes is attributed to the formation of a large number of non-covalent X(-)H bonds as revealed by the identification of bond critical points in the quantum theory of atoms in molecules (QTAIM) analysis. Further, critical features of molecular electrostatic potential (MESP) have been used to correlate the

  13. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  14. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-15

    We have cloned, purified and investigated the catalytic activity and anion inhibition profiles of a full catalytic domain (358 amino acid residues) carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, PfCAdom, an enzyme belonging to the η-CA class and identified in the genome of the malaria-producing protozoa. A truncated such enzyme, PfCA1, containing 235 residues was investigated earlier for its catalytic and inhibition profiles. The two enzymes were efficient catalysts for CO2 hydration: PfCAdom showed a kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), whereas PfCA showed a lower activity compared to PfCAdom, with a kcat of 1.4×10(5)s(-1) and kcat/Km of 5.4×10(6)M(-1)×s(-1). PfCAdom was generally less inhibited by most anions and small molecules compared to PfCA1. The best PfCAdom inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 9-68μM, followed by bicarbonate, hydrogensulfide, stannate and N,N-diethyldithiocarbamate, which were submillimolar inhibitors, with KIs in the range of 0.53-0.97mM. Malaria parasites CA inhibition was proposed as a new strategy to develop antimalarial drugs, with a novel mechanism of action. PMID:27480028

  15. Antimicrobial properties of magnesium chloride at low pH in the presence of anionic bases.

    Science.gov (United States)

    Oyarzúa Alarcón, Pía; Sossa, Katherine; Contreras, David; Urrutia, Homero; Nocker, Andreas

    2014-01-01

    Magnesium is an element essential for life and is found ubiquitously in all organisms. The different cations play important roles as enzymatic co-factors, as signaling molecules, and in stabilizing cellular components. It is not surprising that magnesium salts in microbiological experiments are typically associated with positive effects. In this study with Listeria monocytogenes as a model organism, we focus however on the usefulness of magnesium (in form of MgCl2) as a stress enhancer. Whereas MgCl2 does not affect bacterial viability at near-neutral pHs, it was found to strongly compromise culturability and redox activity when cell suspensions were exposed to the salt at acidic pH. The principle was confirmed with a number of gram-negative and gram-positive species. The magnesium salt dramatically increased the acidity to a level that was antimicrobial in the presence of anionic bases such as phosphate, lactate, or acetate, but not TRIS. The antimicrobial activity of MgCl2 was much stronger than that of NaCl, KCl, or CaCl2. No effect was observed with MgSO4 or when cells were exposed to MgCl2 in phosphate buffer with a pH ≥ 5. Acid stress was reinforced by an additional, salt-specific effect of MgCl2 on microbial viability that needs further examination. Apart from its implications for surface disinfection, this observation might support the commonly stated therapeutic properties of MgCl2 for the treatment of skin diseases (with healthy skin being an acidic environment), and could contribute to understanding why salt from the Dead Sea, where Mg(2+) and Cl(-) are the most abundant cation/anion, has healing properties in a microbiological context. PMID:25252874

  16. The anionic basis of fluid secretion by the rabbit mandibular salivary gland

    DEFF Research Database (Denmark)

    Case, R M; Hunter, M; Novak, I;

    1984-01-01

    The role played by anions in salivary secretion has been studied in experiments on the isolated, perfused mandibular gland of the rabbit, in which perfusate Cl- and/or HCO3- were replaced by other anions. Replacement of Cl- with Br- had no significant effect on salivary secretion rate, but replac......The role played by anions in salivary secretion has been studied in experiments on the isolated, perfused mandibular gland of the rabbit, in which perfusate Cl- and/or HCO3- were replaced by other anions. Replacement of Cl- with Br- had no significant effect on salivary secretion rate...

  17. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    Science.gov (United States)

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-07-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A‑ interactions (A‑ = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A‑ interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.

  18. Halides with Fifteen Aliphatic C-H···Anion Interaction Sites.

    Science.gov (United States)

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J; Lastovickova, Dominika N; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W; Kim, Kwang S

    2016-01-01

    Since the aliphatic C-H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C-H (Cali-H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali-H groups. An X-ray structure of imidazolium-based scaffolds using Cali-H···A(-) interactions (A(-) = anion) shows that a halide anion is directly interacting with fifteen Cali-H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali-H···A(-) interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms. PMID:27444513

  19. Reillex/trademark/ HPQ: A new, macroporous polyvinylpyridine resin for separating plutonium using nitrate anion exchange

    International Nuclear Information System (INIS)

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greater stability to chemical and radiolytic degradation. 8 refs., 12 figs

  20. A colorimetric and fluorescence enhancement anion probe based on coumarin compounds.

    Science.gov (United States)

    Zhao, Limin; Liu, Ge; Zhang, Baofeng

    2016-12-01

    In this paper, anion probe 1 was designed and synthesized by using phenprocoumon containing acyl hydrazine with p-nitro azo salicylaldehyde reaction Dickson et al. (2008) Dickson et al. (2008) [1]. In the anion probe 1, the nitro moiety is a signaling group and the phenolic hydroxyl moiety is anion binding site. Then the anion probe 1 was characterized by mass spectra (MS) and infrared spectra (IR). The binding properties of the anion probe 1 for anions such as F(-), AcO(-), H2PO4(-), OH(-), Cl(-), Br(-) and I(-) were investigated by ultraviolet-visible (UV-Vis) spectra and fluorescence spectra Shao et al. (2008) Shao et al. (2008) [2]. Furthermore, the color of anion probe 1 after addition of F(-), AcO(-), H2PO4(-) and OH(-) in DMSO changed from yellow to blue, while no obvious color changes were observed by addition of other tested anions. Accordingly, the anion probe 1 could sense visually F(-), AcO(-), H2PO4(-) and OH(-) without resorting to any spectroscopic instrumentation Amendola et al. (2010) Amendola et al. (2010) [3]. PMID:27323317

  1. A photoelectron spectroscopic and computational study of the o-dicarbadodecaborane parent anion.

    Science.gov (United States)

    Zhang, Xinxing; Bowen, Kit

    2016-06-14

    We report a combined photoelectron spectroscopic and computational study of the o-dicarbadodecaborane (o-carborane) parent anion, (C2B10H12)(-). Previous studies that focused on the electrophilic nature of o-carborane led to tantalizing yet mixed results. In our study, we confirmed that o-carborane does in fact form a parent anion and that it has considerable stability. This anion is an isomer ("Anion iso 2") where unlike in neutral o-carborane, the two carbon atoms are not bound. PMID:27306011

  2. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    Institute of Scientific and Technical Information of China (English)

    Anabel Brandoni; María Herminia Hazelhoff; Romina Paula Bulacio; Adriana Mónica Torres

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pathology.Prolonged cholestasis may alter both liver and kidney function.Lactam antibiotics,diuretics,non-steroidal anti-inflammatory drugs,several antiviral drugs as well as endogenous compounds are classified as organic anions.The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds.It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions.The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis,such as multidrug resistanceassociated protein 2,organic anion transporting polypeptide 1,organic anion transporter 3,bilitranslocase,bromosulfophthalein/bilirubin binding protein,organic anion transporter 1 and sodium dependent bile salt transporter.The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions.

  3. Synthesis of the Anionic Fluororeceptors and Recognition Property for α,ω-Dicarboxylate

    Institute of Scientific and Technical Information of China (English)

    HE,Yong-Bing; WU,Jin-Long; MENG,Ling-Zhi; QIN,Hai-Juan

    2004-01-01

    @@ Anions, especially dicarboxylates, play an important role in chemical and biological processes,[1] dicarboxylates are critical components of numerous metabolic processes including, for instance, the citric acid and glyoxylate cycles.[1a]They also play an important role in the generation of high-energy phosphate bonds and in the biosynthesis of important intermediates.[1b] To date, several receptors containing different functional groups for selective binding of dicarboxylate anions have been reported.[2,3] However, the sensors based on the fluorescence emission for dicarboxylate anions are still rare.3 In this paper, we report the synthesis and binding properties of two new neutral anion receptors (1 and 2).

  4. A photoelectron spectroscopic and computational study of the o-dicarbadodecaborane parent anion

    Science.gov (United States)

    Zhang, Xinxing; Bowen, Kit

    2016-06-01

    We report a combined photoelectron spectroscopic and computational study of the o-dicarbadodecaborane (o-carborane) parent anion, (C2B10H12)-. Previous studies that focused on the electrophilic nature of o-carborane led to tantalizing yet mixed results. In our study, we confirmed that o-carborane does in fact form a parent anion and that it has considerable stability. This anion is an isomer ("Anion iso 2") where unlike in neutral o-carborane, the two carbon atoms are not bound.

  5. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    Science.gov (United States)

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-01

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  6. Formation reaction mechanisms of hydroxide anions from Mg(OH)2 layers

    International Nuclear Information System (INIS)

    Highlights: • Mg(OH)2 hydroxide anion migrates to the surface thus producing an adsorbed free hydroxide anion. • Orbital contributions from adsorbed free hydroxide anion dominate the shape of total DOS in the region near the Fermi level. • The hydroxide anion formation reaction in Mg(OH)2 from Mg(OH)2 dissociation is slower than the formation from H2O dissociation. • Formation of hydroxide anions in a layered hydroxide would involve reaction of H2O molecules with layer hydroxide anions. - Abstract: DFT calculations with periodic boundary conditions were used to study two formation reaction mechanisms of adsorbed free hydroxide anions on the surface of the brucite, Mg(OH)2. In the first mechanism, we investigated the migration of a hydroxide anion present in the structure of Mg(OH)2 to the layer surface. In the second, a mechanism composed of three elementary reactions was examined for the reaction of H2O molecules with the brucite layer surface. The result in both mechanisms is the formation of hydroxide anions and a hydroxide vacancy in the positively charged Mg(OH)2 layer. The global reaction is the same in both cases and the computed Gibbs free energy variation equals 37.5 kcal/mol at room temperature. The reaction barrier for the formation of hydroxide anion on Mg(OH)2 surface from H2O dissociation (27.6 kcal/mol) is lower than the reaction barrier for the formation of hydroxide anions from Mg(OH)2 dissociation (43.2 kcal/mol)

  7. "Like-charge attraction" between anionic polyelectrolytes: molecular dynamics simulations.

    Science.gov (United States)

    Molnar, Ferenc; Rieger, Jens

    2005-01-18

    "Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging. PMID:15641856

  8. Mechanism and kinetics for scavenging superoxide anion by progesterone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chemical reaction of progesterone with superoxide anion in 0.1 mol/L NaHCO3 medium is studied by polarography. Differing from the indirect inhibition of generation by synthesized glucocorticoids in mechanism, the function that progesterone scavenges is ascribed to that directly oxidizes the C == C double bond conjugated with the carbonyl moiety of progesterone molecule to a free radical, and then is reduced to H2O2. The result obtained in this work gives new evidence for biomedical research. The equation of rate constant of the oxidization reaction is de-duced, and the apparent rate constant obtained is 308 L·mol-1·s-1.

  9. Vertical ionization energies of halogen anions in solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the constrained equilibrium state theory,the nonequilibrium solvation energy is derived in the framework of the continuum model.The formula for spectral shift and vertical ionization energy are deduced for a single sphere cavity with the point charge assumption.The new model is adopted to investigate the vertical ionization for halogen atomic and molecular anions X(X = Cl,Br,I,Cl2,Br2,I2) in aqueous solution.According to the calculation using the CCSD-t/aug-cc-pVQZ method in vacuum,our final estimated vertical ionization energies in solution are very close to the experimental observations,while the traditional nonequilibrium solvation theory overestimates these vertical ionization energies.

  10. UNCERTAINTIES OF ANION AND TOC MEASUREMENTS AT THE DWPF LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.

    2011-04-07

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) has identified a technical issue related to the amount of antifoam added to the Chemical Process Cell (CPC). Specifically, due to the long duration of the concentration and reflux cycles for the Sludge Receipt and Adjustment Tank (SRAT), additional antifoam has been required. The additional antifoam has been found to impact the melter flammability analysis as an additional source of carbon and hydrogen. To better understand and control the carbon and hydrogen contributors to the melter flammability analysis, SRR's Waste Solidification Engineering (WSE) has requested, via a Technical Task Request (TTR), that the Savannah River National Laboratory (SRNL) conduct an error evaluation of the measurements of key Slurry Mix Evaporator (SME) anions. SRNL issued a Task Technical and Quality Assurance Plan (TTQAP) [2] in response to that request, and the work reported here was conducted under the auspices of that TTQAP. The TTR instructs SRNL to conduct an error evaluation of anion measurements generated by the DWPF Laboratory using Ion Chromatography (IC) performed on SME samples. The anions of interest include nitrate, oxalate, and formate. Recent measurements of SME samples for these anions as well as measurements of total organic carbon (TOC) were provided to SRNL by DWPF Laboratory Operations (Lab OPS) personnel for this evaluation. This work was closely coordinated with the efforts of others within SRNL that are investigating the Chemical Process Cell (CPC) contributions to the melter flammability. The objective of that investigation was to develop a more comprehensive melter flammability control strategy that when implemented in DWPF will rely on process measurements. Accounting for the uncertainty of the measurements is necessary for successful implementation. The error evaluations conducted as part of this task will facilitate the integration of appropriate uncertainties for the

  11. Benzimidazole-derived anion for lithium-conducting electrolytes

    Science.gov (United States)

    Niedzicki, Leszek; Oledzki, Piotr; Bitner, Anna; Bukowska, Maria; Szczecinski, Przemyslaw

    2016-02-01

    In this work we announce new lithium salt of 5,6-dicyano-2-(trifluoromethyl)benzimidazolide (LiTDBI) designed for application in lithium conductive electrolytes. It was synthesized and completely characterized by NMR techniques. Studies show salt's thermal stability up to 270 °C and electrochemical stability in liquid solvents up to +4.7 V vs. metallic lithium anode. Basic characterization of electrolytes made with this salt show conductivity over 1 mS cm-1 and unusually high transference number at high concentrations (0.74 in EC:DMC 1:2 ratio mixture) along with low onset of conductivity peak. As a final proof of concept, cycling in half-cell was performed and electrolyte based on LiTDBI showed perfect capacity retention. Such properties show remarkable progress in creating efficient lithium-conducting electrolytes with use of weakly-coordinating anions.

  12. Experimental studies of single-photon photodetachment of atomic anions

    Science.gov (United States)

    Duvvuri, Srividya S.

    Laser photodetachment electron spectroscopy (LPES) has been used to study the structure of the terbium anion. The data was analyzed assuming that the terbium anion forms in dysprosium-like states. Using this assumption, the electron affinity of Tb([Xe]4f96s 2 6 Ho15/2 ) equals 1.98 +/- 0.10 eV, and the ground state of the terbium anion is assigned to the Dy-like Tb-([Xe]4f 106s2 5I 8) electronic configuration. At lust two bound excited states of Tb - are also evident in the photoelectron kinetic energy spectra, with binding energies of 0.449 +/- 0.01 and 1.67 +/- 0.07 eV relative to the Tb(6 Ho15/2 ) ground state. The energy scale of each Tb- photoelectron spectrum way calibrated using reference photoelectron peaks from 12 C-, 16O- and 23Na-, which have well known binding energies [1]. Photoelectron angular distribution measurements following the single-photon photodetachment of the lanthanide anions Tb- and Lu - are also presented. The asymmetry parameters were determined from the non-linear least-square fits of the photoelectron yields as a function of the angle between the photon polarization vector and the photoelectron momentum vector of the collected photoelectrons. The measurements indicated the single-photon photodetachment process hnu + Tb -([Xe]4f106s 2 5I8) → Tb([Xe]4 f96s2 6) Ho15/2 + e - has beta values of 1.51 +/- 0.08 and 1.35 +/- 0.08 at wavelengths of 514.5 and 488 nm, respectively. For Lu -, the fine-structure resolved photodetachment process hnu +Lu-([Xe]4f146s 26p5d 1D 2) → Lu([Xe]4f145 d6s2 2D 3/2) + e-, has been measured at wavelength of 532 nm yielding beta = 0.8 +/- 0.1, supporting the assertion that Lu - forms via the attachment of a 6p-electron to the neutral Lu atom [2]. Finally, photodetachment cross sections and the angular distributions of photo-electrons produced by the single-photon detachment of the Fe - and Cu- have also been measured at discrete visible photon wavelengths. From the measured photodetachment cross sections, the

  13. Porphyrin Analogues of a Trityl Cation and Anion.

    Science.gov (United States)

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-05-17

    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  14. Anion formation in sputter ion sources by neutral resonant ionization

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. S., E-mail: johnsvogel@yahoo.com [University of California, 8300 Feliz Creek Dr., Ukiah, California 95482 (United States)

    2016-02-15

    Focused Cs{sup +} beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm{sup 2} C{sup −} current density compared to the 20 μA/mm{sup 2} from a 1 mm recess.

  15. Removal of both cationic and anionic contaminants by amphoteric starch.

    Science.gov (United States)

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. PMID:26794754

  16. Anion formation in sputter ion sources by neutral resonant ionization

    International Nuclear Information System (INIS)

    Focused Cs+ beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm2 C− current density compared to the 20 μA/mm2 from a 1 mm recess

  17. Adsorption of Anionic Dyes onto Chitosan-modified Diatomite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ge-shan; XUE Hong-hai; TANG Xiao-jian; PENG Fei; KANG Chun-li

    2011-01-01

    The purpose of this work is to study the possibility of anionic dyes Reactive Red M-8B(RR)and Direct Green B(DG)adsorbed on chitosan-modified diatomite.The characteristics of adsorbent,adsorption isotherms and the influence of adsorption time,temperature and pH were researched in this work.The results show that the modified diatomite had a much better adsorption capability than the natural diatomite.The adsorption capacities of chitosan-modified diatomite for RR and DG were 94.46 and 137.0 mg/g,respectively.Both adsorption time and adsorption temperature provided a positive effect on the dye adsorption.Within the experimental pH range,the adsorbance was enhanced at lower pH but reduced sharply at high pH.On the basis of the experimental results and discussion,electrostatic attraction is considered as the main mechanism of this chemisorption.

  18. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  19. Anion exchange kinetics of uranium in sulphate media

    International Nuclear Information System (INIS)

    Experiments have shown that the sorption of uranium from acidic sulphate solutions onto strong base-anion exchange resins is particle diffusion controlled in the uranium concentration range 0.0001 to 0.004 M. A simplified diffusion model, based on Fick's Law, fits the kinetic data at each concentration. The rate of sorption falls significantly at lowered solution concentration. This corresponds with a lowered equilibrium loading of uranium and can be predicted with the Nernst-Planck equations using the measured self diffusion coefficient of uranium (1.65 x 10-8 cm2/s) and sulphate ions. The importance of this lowering of uranium sorption on the design of ion exchange equipment is stressed. (author)

  20. Optimized anion exchange membranes for vanadium redox flow batteries.

    Science.gov (United States)

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance. PMID:23799776

  1. Optimized anion exchange membranes for vanadium redox flow batteries.

    Science.gov (United States)

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance.

  2. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  3. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    Science.gov (United States)

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application.

  4. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers

    Science.gov (United States)

    Alper, Seth L.

    2009-01-01

    Summary Plasmalemmal Cl–/HCO3– exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl–] and cell volume. The Cl–/HCO3– exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid–base equivalents and Cl–. This review focuses on Na+-independent electroneutral Cl–/HCO3– exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2–/– mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2–/– mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3–/– mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl–/anion exchange, but trout erythroid Ae1 also mediates Cl– conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl– conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO42–/Cl– exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure–function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers. PMID:19448077

  5. Programmable cellular retention of nanoparticles by replacing the synergistic anion of transferrin.

    Science.gov (United States)

    Wu, Li-Chen; Chu, Li-Wei; Lo, Leu-Wei; Liao, Yen-Chen; Wang, Yu-Chao; Yang, Chung-Shi

    2013-01-22

    The ability to program the intracellular retention of nanoparticles (NPs) would increase their applicability for imaging and therapeutic applications. To date, there has been no efficient method developed to control the fate of NPs once they enter cells. Existing approaches to manipulate the intracellular retention of NPs are mostly "passive" and particle size-dependent. Different sized particles hold distinct cellular responses. The adverse effect of particle size may limit the utility of nanodelivery systems. Therefore, the development of tunable/"active" NP intracellular retention systems with fixed particle sizes remains a considerable challenge. By replacing the synergistic anions of transferrin (Tf) immobilized on quantum dots (Tf-QDs, ca. 25 nm), we have examined the feasibility of this concept. Substitution of synergistic anions of Tf from carbonate (holo-Tf) to oxalate (oxa-Tf) significantly increased the intracellular accumulation of the oxa-Tf-QDs as a result of (i) a delay in cellular removal triggered by oxalate (oxa-Tf)-induced endosomal Tf iron-release retardation and (ii) enhanced recycling of Tf-QD/TfR (Tf receptor) complexes from early endosomes to the plasma membrane. This accumulation extended the intracellular NP retention interval. The half-maximum fluorescence intensity of the oxa-Tf-QDs in vivo was 4 times higher than that of the holo-Tf-QDs. Programming of the intracellular NP retention time was accomplished through manipulation of the ratio of holo- and oxa-Tfs on the surfaces of the QDs. Using this simple and efficient approach, it was possible to readily achieve a desirable intracellular retention interval for the NPs. PMID:23194060

  6. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    Science.gov (United States)

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application. PMID:27337346

  7. Band-gap-confinement and image-state-recapture effects in the survival of anions scattered from metal surfaces

    International Nuclear Information System (INIS)

    The resonant charge transfer process in the collision of hydrogen anions with metal surfaces is described within a single-active-electron wave-packet propagation method. The ion-survival probability is found to be strongly enhanced at two different surface-specific perpendicular velocities of the ion. It is shown that, while the low-velocity enhancement is induced from a dynamical confinement of the ion level inside the band gap, the high-velocity enhancement is due to electron recapture from transiently populated image states. Results are presented for Li(110), Cu(111), and Pd(111) surfaces.

  8. Refolding with Simultaneous Purification of Recombinant Human Granulocyte Colony-stimulating Factor from Escherichia coli Using Strong Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Chao Zhan WANG; Jiang Feng LIU; Xin Du GENG

    2005-01-01

    The urea denatured recombinant human granulocyte colony-stimulating factor (rhGCSF) which was expressed in Escheriachia coli (E. coli) was refolded with simultaneous purification by strong anion exchange chromatography (SAX) in the presence of low concentration of urea. The effect of urea concentration on this refolding process was investigated. The obtained refolded rhG-CSF has a high specific activity of 2.3×108 U/mg, demonstrating that the proteins were completely refolded during the chromatographic process. With only one step by SAX in 40 min, purity and mass recovery of the refolded and purified rhG-CSF were 97% and43%, respectively.

  9. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    A method of dynamic elution of recoiled 51Cr+3, formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author)

  10. A new family of anionic organic–inorganic hybrid doughnut-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuxiu; Gao, Wen-Yang; Wojtas, Lukasz; Zhang, Zhenjie; Zaworotko, Michael J. (Limerick); (USF)

    2015-06-15

    A family of soluble organic–inorganic hybrid doughnut-like anions, hydoughnuts, has been prepared by the self-assembly of polyoxovanadate anions and 1,3-benzenedicarboxylate (bdc) linkers. Derivatives of the parent hydoughnut, [(V₄O₈Cl)₄(bdc)₈]⁴⁻, can be obtained by changing the counter-ion or by using a variant of bdc.

  11. Ureaphosphanes as hybrid, anionic or supramolecular bidentate ligands for asymmetric hydrogenation reactions

    NARCIS (Netherlands)

    Meeuwissen, J.; Detz, R.; Sandee, A. J.; de Bruin, B.; Siegler, M. A.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    We report the coordination behavior of ureaphosphane ligand 1-[2-(diphenylphosphanyl)ethyl]-3-phenylurea (L1) towards different rhodium precursor complexes. Depending on the nature of the anion and the ligand/metal ratio, L1 acts either as a hybrid P,O-coordinating chelate, as an anionic P,N-coordin

  12. The saccharinate anion: a versatile and fascinating ligand in coordination chemistry

    Directory of Open Access Journals (Sweden)

    Enrique J. Baran

    2005-03-01

    Full Text Available The saccharinate anion, obtained by deprotonation of the N-H moiety of saccharin (o-sulfobenzimide is a very versatile and polyfunctional ligand in coordination chemistry. In this review the different forms of metal-to-ligand interactions involving this anion and some other coordination peculiarities are briefly discussed on the basis of some selected examples.

  13. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  14. Preassembly-driven ratiometric sensing of H2PO4(-) anions in organic and aqueous environments.

    Science.gov (United States)

    Gong, Wei-tao; Na, Duo; Fang, Le; Mehdi, Hassan; Ning, Gui-ling

    2015-02-21

    Gemini surfactant-like receptor is designed and synthesized. The special preassembly phenomenon of in a nonpolar solvent facilitates the novel ratiometric fluorescence sensing of H2PO4(-)via an anion-induced reassembly process in organic solvents and an anion-induced disassembly process in water. PMID:25563510

  15. Colorimetric sensing of anions in water using ratiometric indicator-displacement assay.

    Science.gov (United States)

    Feng, Liang; Li, Hui; Li, Xiao; Chen, Liang; Shen, Zheng; Guan, Yafeng

    2012-09-19

    The analysis of anions in water presents a difficult challenge due to their low charge-to-radius ratio, and the ability to discriminate among similar anions often remains problematic. The use of a 3×6 ratiometric indicator-displacement assay (RIDA) array for the colorimetric detection and identification of ten anions in water is reported. The sensor array consists of different combinations of colorimetric indicators and metal cations. The colorimetric indicators chelate with metal cations, forming the color changes. Upon the addition of anions, anions compete with the indicator ligands according to solubility product constants (K(sp)). The indicator-metal chelate compound changes color back dramatically when the competition of anions wins. The color changes of the RIDA array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis and hierarchical clustering analysis. No confusion or errors in classification by hierarchical clustering analysis were observed in 44 trials. The limit of detection was calculated approximately, and most limits of detections of anions are well below μM level using our RIDA array. The pH effect, temperature influence, interfering anions were also investigated, and the RIDA array shows the feasibility of real sample testing.

  16. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of Kd values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  17. Anion-Exchange Properties of Trifluoroacetate and Triflate Salts of N-Alkylammonium Resorcinarenes.

    Science.gov (United States)

    Pan, Fangfang; Beyeh, Ngong Kodiah; Bertella, Stefania; Rissanen, Kari

    2016-03-01

    The synthesis of N-benzyl- and N-cyclohexylammonium resorcinarene trifluoroacetate (TFA) and triflate (OTf) salt receptors was investigated. Solid-state analysis by single-crystal X-ray diffraction revealed that the N-alkylammonium resorcinarene salts (NARSs) with different upper substituents had different cavity sizes and different affinities for anions. Anion-exchange experiments by mixing equimolar amounts of N-benzylammonium resorcinarene trifluoroacetate and N-cyclohexylammonium resorcinarene triflate, as well as N-benzylammonium resorcinarene triflate and N-cyclohexylammonium resorcinarene trifluoroacetate showed that the NARS with flexible benzyl groups preferred the larger OTf anion, whereas the rigid cyclohexyl groups preferred the smaller TFA anions. The anion-exchange processes were confirmed in the solid state by single-crystal and powder X-ray diffraction experiments and in the gas phase by electrospray ionization mass spectrometry. PMID:26749383

  18. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Directory of Open Access Journals (Sweden)

    Stephen Majoni

    2014-01-01

    Full Text Available Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs and hydroxy double salts (HDSs can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.

  19. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  20. Action spectroscopy of gas-phase carboxylate anions by multiple photon IR electron detachment/attachment

    CERN Document Server

    Steill, Jeffrey D

    2008-01-01

    We report on a form of gas-phase anion action spectroscopy based on infrared multiple photon electron detachment and subsequent capture of the free electrons by a neutral electron scavenger in a Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer. This method allows one to obtain background-free spectra of strongly bound anions, for which no dissociation channels are observed. The first gas-phase spectra of the acetate and propionate anions are presented using SF6 as electron scavenger and a free electron laser as source of intense and tunable infrared radiation. To validate the method, we compare infrared spectra obtained through multiple photon electron detachment/attachment and multiple photon dissociation for the benzoate anion. In addition, different electron acceptors are used, comparing both associative and dissociative electron capture. The relative energies of dissociation (by CO2 loss) and electron detachment are investigated for all three anions by DFT and CCSD(T) methods. DFT calcu...

  1. Two Multi-armed Neutral Receptors for α, ω-Dicarboxylate Anions

    Institute of Scientific and Technical Information of China (English)

    WU, Jin-Long; HE, Yong-Bing; WEI, Lan-Hua; LIU, Shun-Ying; XU, Kuo-Xi; MENG, Ling-Zhi

    2006-01-01

    Two new multi-armed neutral receptors 1 and 2 containing thiourea and amide groups were synthesized by simple steps in good yields. Receptors 1 and 2 have a better selectivity and higher association constants for malonate anion than other anions examined by the present work. In particular, distinct color changes were observed upon addition of dicarboxylate anions to the solution of 1 in DMSO. The UV-Vis and fluorescence spectra data indicate that a 1: 2 stoichiometry complex was formed between compound 1 or 2 and dicarboxylate anions of shorter carbon chain, and a 1: 1 stoichiometry complex was formed between compound 1 or 2 and dicarboxylate anions of longer carbon chain through hydrogen bonding interactions.

  2. The Effects of Molecular Anions on the Chemistry of Dark Clouds

    CERN Document Server

    Walsh, Catherine; Herbst, Eric; Millar, T J

    2009-01-01

    We have investigated the role of molecular anion chemistry in pseudo-time dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in TMC-1 (CP). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families CnH, CnH2, and HCnN. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations obtained in the absence of anions.

  3. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert L; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  4. Simultaneous determination of NH4+, NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent%Simultaneous determination of NH4+,NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent

    Institute of Scientific and Technical Information of China (English)

    Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Nobutake NAKATANI; Daisuke KOZAKI; Kazuhiko TANAKA

    2012-01-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH--form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion ( NH4+ ),nitrite ion (NO2-),and nitrate ion (NO3-) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions,In the optimization of the basic eluent,lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH4+,NO2-,and NO3- ranged 1.28% - 3.57% and 0.54% - 1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH4+,1.87 μmol/L for NO2- and 2.83 μmol/L for NO3-.

  5. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    Science.gov (United States)

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules. PMID:27346242

  6. Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel

    Science.gov (United States)

    Sun, Jianxin; Liao, James K.

    2002-01-01

    Endothelium-derived nitric oxide (NO) is an important regulator of vascular function. NO is produced by endothelial NO synthase (eNOS) whose function is modulated, in part, by specific protein interactions. By coimmunoprecipitation experiments followed by MS analyses, we identified a human voltage-dependent anion/cation channel or porin as a binding partner of eNOS. The interaction between porin and eNOS was demonstrated by coimmunoprecipitation studies in nontransfected human endothelial cells and Cos-7 cells transiently transfected with eNOS and porin cDNAs. In vitro binding studies with glutathione S-transferase–porin indicated that porin binds directly to eNOS and that this interaction augmented eNOS activity. The calcium ionophore, A23187, and bradykinin, which are known to activate eNOS, markedly increased porin–eNOS interaction, suggesting a potential role of intracellular Ca2+ in mediating this interaction. Theses results indicate that the interaction between a voltage-dependent membrane channel and eNOS may be important for regulating eNOS activity. PMID:12228731

  7. Conversion kinetics for smelt anions: cyanate and sulfide

    Energy Technology Data Exchange (ETDEWEB)

    DeMartini, N.

    2004-07-01

    Cyanate and sulfide are two anions found in the molten salts (smelt) from the kraft recovery boiler of the chemical recovery cycle. Their concentrations in smelt are significantly different, as are their origins. The concentration of cyanate in smelt ranges between 0.4 and 2.1 g OCN{sup -}/kg smelt while the concentration of sulfide ranges between 78 and 115 g S{sup 2-}/kg smelt. Cyanate is a by-product of black liquor combustion. It is formed from organic nitrogen compounds in black liquor during the char burning stage. The charge of the cyanate anion is balanced by the alkali metals found in smelt, namely sodium and potassium. It has been found that the nitrogen in cyanate represents about 30% of the nitrogen entering the recovery boiler with the black liquor. This flow is similar in magnitude to the flows of black liquor nitrogen exiting the recovery boiler as the gaseous compounds NO and N{sub 2}. The method for cyanate analysis used in this work is presented in the Methods chapter of this thesis and Paper I. The results from nitrogen balances at three European kraft pulp mills are discussed in this thesis and Papers II and III, with a focus on the fate of cyanate in the recovery boiler and recausticizing process. Cyanate exits the recovery boiler with the smelt and reacts to form ammonia in the recausticizing solutions of the chemical recovery cycle. Papers IV and V of this thesis focus on the rate of ammonia formation from cyanate in model solutions and in kraft green liquors. The experiments were carried out at temperatures of 80 to 95 deg C, which are temperatures similar to those found in the recausticizing process of a kraft pulp mill. The kinetic studies help clarify the catalytic effect of bicarbonate. A rate equation applicable for use in describing ammonia formation from cyanate in highly alkaline solutions such as pulp mill recovery streams is presented. The sulfide anion, on the other hand, is a desired product of black liquor combustion as the

  8. Potential applications of solar reactions photocatalysed by the decatungstate anion

    Science.gov (United States)

    Texier, I.; Giannotti, C.; Malato, S.; Richter, C.; Ouazzani, J.; Delaire, J.

    1999-03-01

    Two potential applications of photocatalysed reactions in the presence of the decatungstate anion W{10}O{32}4- under solar ligth irradiation were explored. Firstly, we investigated the possibility offered by alkane fonctionalisation. By irradiation with [ (tBut)4N] 4W{10}O{32}, cyclohexane was converted into cyclohexanone and cyclohexane hydroperoxide, which give cyclohexanol after reduction. A small amount of polyoxygenated products is also formed. Secondly, we studied the potential of Na4W{10}O{32} to act as a photocatalyst for water depollution processes. Several phenols and pesticides, especially atrazine, were used as substrates and the results were compared to those obtained in the presence of TiO2. Since neither TiO2 nor Na4W{10}O{32} lead to the total mineralisation of atrazine, we made an attempt for integrating photo- and biodegradation processes in order to achieve the total mineralisation of the pollutant. Deux applications potentielles des réactions photocatalysées par l'anion décatungstate W{10}O{32}4- sous irradiation solaire ont été explorées. Premièrement, nous avons examiné les possibilités offertes pour la functionalization des alcanes. Par irradiation en présence de [ (tBut)4N] 4W{10}O{32}, le cyclohexane est converti directement en cyclohexanone et en hydroperoxyde, qui produit après réduction du cyclohexanol. Une petite quantité de produits polyoxygénés est également formée. Deuxièmement, nous avons étudié les potentialités d'action de Na4W{10}O{32} en tant que photocatalyseur pour la dépollution des eaux. Différents phénols et pesticides, dont l'atrazine, ont été utilisés comme substrats et les résultats comparés à ceux obtenus en présence de TiO2. Ni TiO2, ni Na4W{10}O{32} ne conduisant à la minéralisation de l'atrazine, nous avons essayé d'intégrer photo- et biodégradation dans le but d'obtenir la minéralisation totale du polluant.

  9. Effects of Alchornea cordifolia on elastase and superoxide anion produced by human neutrophils.

    Science.gov (United States)

    Kouakou-Siransy, Gisèle; Sahpaz, Sevser; Nguessan, G Irié; Datté, Jacques Yao; Brou, Jérome Kablan; Gressier, Bernard; Bailleul, François

    2010-02-01

    The ability of Alchornea cordifolia (Schum. and Thonn.) Müll. Arg. (Euphorbiaceae) leaves to inhibit human neutrophil elastase (HNE) and superoxide anion (O(2)(*-)) activities was evaluated on aqueous and ethyl acetate extracts as they allow for a targeted extraction of polyphenols. The direct effect of A. cordifolia extracts on HNE and O(2)(*-) was assessed in an acellular system. Results showed that extracts scavenge HNE and O(2)(*-) in a dose-dependent manner. Better activity was exhibited by the ethyl acetate extract with lower IC(50) (2.2 and 4. 1 mg/L for HNE and O(2)(*-), respectively) than for the aqueous extract. Cellular systems including isolated human polymorphonuclear neutrophils (PMN) were investigated to assess the effect of extracts on PMN metabolism. PMN were stimulated with 4beta-phorbol-12-myristate-13-acetate (PMA), calcium ionophore (CaI), or N-formyl-methionyl-leucine-phenylalanine (fMLP), each stimulant having its own stimulation pathway. From the IC(50) obtained, it can be concluded that A. cordifolia reduces HNE and O(2)(*-) liberation. Furthermore it was demonstrated that A. cordifolia extracts have no cytotoxic activity on PMN by measuring release of the cytosolic enzyme lactate dehydrogenase. As the ethyl acetate extract offers a higher rate of total phenols than the aqueous extract as well as better scavenging activity, it can be supposed that polyphenols, which are well known for their potent antioxidant and antielastase activity, are implicated in the activity of the plant. Phenolic substances such as quercetin, myricetin-3-glucopyranoside, myricetin-3-rhamnopyranoside, and proanthocyanidin A2 were identified in the ethyl acetate extract. In conclusion, the study provides proof of ethnomedical claims and partly explains the mechanisms of the anti-inflammatory action of A. cordifolia leaves. PMID:20645828

  10. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  11. Raman and IR studies and DFT calculations of the vibrational spectra of 2,4-Dithiouracil and its cation and anion

    Science.gov (United States)

    Singh, R.; Yadav, R. A.

    2014-09-01

    Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5sbnd C6 bond length increases and loses its double bond character while the C4sbnd C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled Nsbnd H stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled.

  12. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels.

    Science.gov (United States)

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry; Lee, C Justin

    2016-04-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  13. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    Science.gov (United States)

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  14. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and “turn on” fluorescent sensors for fluoride anion sensing employing hydrogen bonding

    Science.gov (United States)

    Ashok Kumar, S. L.; Saravana Kumar, M.; Sreeja, P. B.; Sreekanth, A.

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques.

  15. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    2000-01-01

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic...

  16. Generation of naphthoquinone radical anions by electrospray ionization: solution, gas-phase, and computational chemistry studies.

    Science.gov (United States)

    Vessecchi, Ricardo; Naal, Zeki; Lopes, José N C; Galembeck, Sérgio E; Lopes, Norberto P

    2011-06-01

    Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(•-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(•-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses. PMID:21561138

  17. Polyethyleneimine as a novel desorbent for anionic organic dyes on layered double hydroxide surface.

    Science.gov (United States)

    Wang, Siming; Li, Zenghe; Lu, Chao

    2015-11-15

    Polyethyleneimine (PEI) is a positively charged polymer with hydrogen-bonding sites and hydrophobic chains. Therefore, it has been clearly established as an efficient adsorbent by means of these native properties in the literatures. However, there is apparently no good reason to disregard the use of PEI as a desired desorbent. Herein, using methyl orange as a model anionic dye, we investigated the desorption performances of PEI toward anionic dyes adsorbed on the surface of CO3-layered double hydroxides (LDHs) in a wide range of pH values. The experiment results showed that the positively charged PEI had very strong desorption capacity for anionic dyes at low pH values (9.5), PEI existed as neutral molecule, it could desorb methyl orange via hydrogen bonding between the amino groups of it and sulfonate group of methyl orange; simultaneously, the anion-exchange process occurred between abundant hydroxyl anions and anionic methyl orange. The adsorption capacity of the used LDH adsorbent was about 80% after five cycles of adsorption-desorption-regeneration, which was much higher than that conducted by 0.1M NaOH solution. These findings suggested that PEI could be regarded as a promising desorbent for enriching anionic dyes in wastewater and regenerating LDHs through surface adsorption-desorption cycles. PMID:26255712

  18. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to the free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.

  19. Theoretical investigations on the layer-anion interaction in Mg-Al layered double hydroxides: Influence of the anion nature and layer composition

    Science.gov (United States)

    Cuautli, Cristina; Ireta, Joel

    2015-03-01

    The influence of the anion nature and layer composition on the anion-layer interaction in Mg-Al layered double hydroxides (LDHs) is investigated using density functional theory. Changes in the strength of the anion-layer interaction are assessed calculating the potential energy surface (PES) associated to the interlayer anion (OH-/Cl-) in Mg-Al-OH and Mg-Al-Cl LDHs. The layer composition is varied changing the divalent to trivalent cation proportion (R). Mg-Al-OH is thus investigated with R = 2, 3, 3.5 and Mg-Al-Cl with R = 3. It is found that the PES for OH- in Mg-Al-OH/R = 3 presents wider energy basins and lower energy barriers than any other of the investigated compositions. It is shown that the latter is connected to the number of hydrogen bonds formed by the anions. These results have interesting implications for understanding the enhancement of the physicochemical properties of LDHs upon changing composition.

  20. ラット肝Anionic Glutathione S-transferaseの同定とGlucocorticoid結合性に関する研究

    OpenAIRE

    丸山, 裕

    1985-01-01

    A new isozyme of Glutathione-S-transferase (GST) with a more acidic pI (6.7) than other forms of GST hitherto reported was isolated from rat liver cytosol by consecutive chromatographies on a DEAE cellulose column, lysyl-GSH affinity column and Sephadex G-100 column. This anionic form of GST represented approximately one third of the total GST activity in rat liver cytosol. Amino Acid composition, immunological reactivity, enzymatic properties, and secondary structures as measured by circular...

  1. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-02-15

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.

  2. Anion-exchange separations of metal ions in thiocyanate media.

    Science.gov (United States)

    Fritz, J S; Kaminski, E E

    1971-05-01

    The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI). PMID:18960914

  3. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  4. Conductance hysteresis in the voltage-dependent anion channel.

    Science.gov (United States)

    Rappaport, Shay M; Teijido, Oscar; Hoogerheide, David P; Rostovtseva, Tatiana K; Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2015-09-01

    Hysteresis in the conductance of voltage-sensitive ion channels is observed when the transmembrane voltage is periodically varied with time. Although this phenomenon has been used in studies of gating of the voltage-dependent anion channel, VDAC, from the outer mitochondrial membrane for nearly four decades, full hysteresis curves have never been reported, because the focus was solely on the channel opening branches of the hysteresis loops. We studied the hysteretic response of a multichannel VDAC system to a triangular voltage ramp the frequency of which was varied over three orders of magnitude, from 0.5 mHz to 0.2 Hz. We found that in this wide frequency range the area encircled by the hysteresis curves changes by less than a factor of three, suggesting broad distribution of the characteristic times and strongly non-equilibrium behavior. At the same time, quasi-equilibrium two-state behavior is observed for hysteresis branches corresponding to VDAC opening. This enables calculation of the usual equilibrium gating parameters, gating charge and voltage of equipartitioning, which were found to be almost insensitive to the ramp frequency. To rationalize this peculiarity, we hypothesize that during voltage-induced closure and opening the system explores different regions of the complex free energy landscape, and, in the opening branch, follows quasi-equilibrium paths.

  5. Light-responsive viscoelastic fluids based on anionic wormlike micelles.

    Science.gov (United States)

    Lu, Yechang; Zhou, Tengfei; Fan, Qing; Dong, Jinfeng; Li, Xuefeng

    2013-12-15

    A new class of light-responsive viscoelastic fluids based on anionic wormlike micelles is reported. The key components are sodium oleate (NaOA) and a cationic azobenzene dye, 1-[2-(4-phenylazo-phenoxy)-ethyl]-3-methylimidazolium bromide (C0AZOC2IMB). These binary systems are gel-like fluids at certain concentration ratios of [C0AZOC2IMB]/[NaOA], e.g. 35/100, owing to the formation of long, entangled wormlike micelles. The viscosity of these fluids can be controlled reversibly by light due to photo isomerization between trans-C0AZOC2IMB and cis-C0AZOC2IMB. For example, the zero-shear viscosity (η0) of an originally gel-like sample is high up to ~1300 Pa s when C0AZOC2IMB is in its trans from, whereas the mixture becomes a Newtonian fluid with η0 about 0.01 Pa s after UV light irradiation. For the post-irradiated cis-C0AZOC2IMB, short cylindrical micelles form, hence accounting for the lower viscosity. Evidence for the structural transition is provided by UV-vis spectra, rheology, (1)H NMR and cryo-transmission electronic microscopy measurements. PMID:24144381

  6. Gamma radiation effect on gas production in anion exchange resins

    International Nuclear Information System (INIS)

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H2g) and carbon dioxide (CO2g). TMA and H2g are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMAaq was associated with aqueous dimethylamine (DMAaq), monomethylamine (MMAaq) and ammonia (NH4+aq). CO2g is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMAg

  7. Studies on Anionic Surfactant Structure in the Aggregation with (Hydroxypropylcellulose

    Directory of Open Access Journals (Sweden)

    Ricardo M. de Martins

    2002-01-01

    Full Text Available Fluorescence probing, viscosity and light scattering measurements have been combined to study the aggregation of different anionic surfactants mainly in dilute solutions (0.5% w/v of (hydroxypropylcellulose (HPC MW 173,000, in moderate ionic strength (NaCl 0.1 mol.L-1. The set of surfactants includes natural cholesterol derivatives, sodium cholate (CS and sodium deoxycholate (DC, and the alkylsulphate, sodium dodecylsulphate (SDS. At 298 K the critical surfactant concentration related to aggregate/HPC formation (C1 decreases for SDS and DC whereas it increases slightly for CS. At 312 K the C1 values for CS and DC are slightly shifted toward higher values whereas it is not changed for SDS. All surfactant/HPC systems increase C1 values as the HPC concentration increases to 1.2%. Above C1 the viscosity increases for all surfactant/HPC systems but it is sharper in the increasing order CS, DC and SDS. The hydrodynamic behavior indicates that CS induces higher diffusion to HPC than SDS and DC. The aggregation in the surfactant/HPC systems is analyzed through the feature of surfactant/aggregate structure (size, charge density, etc.

  8. Positive Anharmonicities: The Oxonide Anion as an Example

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    An accurate ab initio quartic force field for the ozonide anion has been determined at the singles and doubles coupled-cluster level of theory that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), using the augmented valence triple-zeta correlation consistent one-particle basis set. Convergence of the harmonic frequencies with respect to the one-particle basis set has been demonstrated by computing quadratic force fields at the CCSD(T) level using augmented valence double-zeta and quadruple-zeta basis sets. Fundamental vibrational frequencies have been determined via second-order ro-vibrational perturbation theory and also using exact variational methods. Agreement is very good, and they both show that the antisymmetric O-O stretch, v 3, possesses a positive anharmonic correction (that is, the fundamental frequency is predicted to be higher in energy than the harmonic frequency). Comparison of the O_3 and O3 quartic force fields shows that the positive anharmonic correction is the result of a particularly large F3333 symmetry internal coordinate force constant. The reasonableness of this force constant has been tested by computing both F33 and F3333 at the CCSD, CCSD(T), and CASPT2 levels of theory. A discussion of known positive anharmonicities for stretching modes is presented.

  9. Photoelectron imaging spectroscopy of niobium mononitride anion NbN(.).

    Science.gov (United States)

    Berkdemir, Cuneyt; Gunaratne, K Don Dasitha; Cheng, Shi-Bo; Castleman, A W

    2016-07-21

    In this gas-phase photoelectron spectroscopy study, we present the electron binding energy spectrum and photoelectron angular distributions of NbN(-) by the velocity-map imaging technique. The electron binding energy of NbN(-) is measured to be 1.42 ± 0.02 eV from the X band maximum which defines the 0-0 transition between ground states of anion and neutral. Theoretical binding energies which are the vertical and adiabatic detachment energies are computed by density functional theory to compare them with experiment. The ground state of NbN(-) is assigned to the (2)Δ3/2 state and then the electronic transitions originating from this state into X(3)ΔΩ (Ω = 1-3), a(1)Δ2, A(3)Σ1 (-), and b(1)Σ0 (+) states of NbN are reported to interpret the spectral features. As a prospective study for catalytic materials, spectral features of NbN(-) are compared with those of isovalent ZrO(-) and Pd(-). PMID:27448881

  10. Communication: Solute Anisotropy Effects in Hydrated Anion and Neutral Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Hui; Hou, Gao-Lei; Kathmann, Shawn M.; Valiev, Marat; Wang, Xue B.

    2013-01-21

    Specific ion effects in solvation processes are often rationalized in terms of spherically symmetric models involving an ion’s size, charge, and polarizability. The effects of permanent charge anisotropy, related to the polyatomic nature of complex solutes, are expected to play a role in solvation but the extent of their importance remains unexplored. In this work we provide compelling experimental and theoretical evidence that the anisotropic nature of complex polyoxyanion solutes can have a critical influence on the solvation process. Combined photoelectron spectroscopy and theoretical modeling results show that the electron binding energy (EBE) of IO3-(H2O)n (n = 0 - 12) clusters is characterized by an anomalous drop at n = 10. Such behavior is unprecedented for rigid solute molecules, and is related to the anisotropy of the neutral iodate radical that displays a strong selectivity to solvent configurations generated by the charged anion complex. These results highlight the significance of solute anisotropy and its potential impact on ion specificity and selectivity in aqueous environments.

  11. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  12. TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates.

    Science.gov (United States)

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2015-11-01

    The TiO2 photocatalytic degradation of the active pharmaceutical ingredient (API) naproxen (NPX) has been studied using a laboratory-scale photoreactor equipped with a medium pressure mercury lamp. UV/TiO2 photocatalysis proved highly efficient in the elimination of NPX from a variety of water matrices, including distilled water, unfiltered river water and drinking water, although the rate of reaction was not always proportional to TiO2 concentration. However, the NPX degradation rate, which follows first-order kinetics, was appreciably reduced in river water spiked with phosphate and chloride ions, a dual anion system. Addition of chloride into drinking water enhanced the TiO2-photocatalysed degradation rate. Competitive degradation studies also revealed that the NPX degradation was greatly reduced in the presence of increased concentrations of another API, diclofenac (DCF). This was established by (i) the extent of mineralization, as determined by dissolved organic carbon (DOC) content, and (ii) the formation of intermediate NPX by-products, identified using liquid chromatography and electrospray ionization (positive and negative mode) mass spectrometry techniques. This study demonstrates that competition for active sites (anions or DCF) and formation of multiple photoproducts resulting from synergistic interactions (between both APIs) are key to the TiO2-photocatalysed NPX degradation.

  13. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7.

    Science.gov (United States)

    Yeldho, Deepthi; Rebello, Sharrel; Jisha, M S

    2011-01-01

    Sodium dodecyl sulphate (SDS), an anionic surfactant, has been used extensively due to its low cost and excellent foaming properties. Fifteen different bacterial isolates capable of degrading SDS were isolated from detergent contaminated soil by enrichment culture technique and the degradation efficiency was assessed by Methylene Blue Active Substances (MBAS) assay. The most efficient SDS degrading isolate was selected and identified as Pseudomonas aeruginosa S7. The selected isolate was found to harbor a single 6-kb plasmid. Acridine orange, ethidium bromide, SDS and elevated temperatures of incubation failed to cure the plasmid. The cured derivatives of SDS degrading Pseudomonas aeruginosa were obtained only when ethidium bromide and elevated temperature (40 °C) were used together. Transformation of E. coli DH5α with plasmid isolated from S7 resulted in subsequent growth of the transformants on minimal salt media with SDS (0.1%) as the sole source of carbon. The SDS degradation ability of S7 and the transformant was found to be similar as assessed by Methylene Blue Active Substance Assay. The antibiotic resistance profiles of S7, competent DH5α and transformant were analyzed and it was noted that the transfer of antibiotic resistance correlated with the transfer of plasmid as well as SDS degrading property.

  14. Studies on the interactions of bisphenols with anionic phospholipids of decomposer membranes in model systems.

    Science.gov (United States)

    Broniatowski, Marcin; Sobolewska, Katarzyna; Flasiński, Michał; Wydro, Paweł

    2016-04-01

    Bisphenol A (BPA) and other bisphenols constitute a class of organic pollutants, which because of their estrogenic properties, low dose activity and bioaccumulation pose considerable risk for public health as well as for the environment. Accumulated in the sediment bisphenols can endanger the decomposers' populations being incorporated into their cellular membranes; however, the mechanism of their membrane activity is unknown. Therefore, to study these phenomena we applied anionic phospholipid Langmuir monolayers as simple but versatile models of decomposers biomembranes. Phosphatidylglycerols and cardiolipins are not only the main components of bacterial membranes but also of crucial importance in mitochondrial and thylakoid membranes in eukaryotic cells. In our investigations we applied five compounds of the bisphenol class most commonly detected in the environment. To characterize the bisphenols-model membrane interactions we applied multiple mutually independent methods of physical chemistry; namely: the Langmuir monolayer technique, surface potential measurements, Brewster angle microscopy for the visualization of the monolayers' texture and grazing incidence X-ray diffraction for the discussion of the phospholipids packing within the monolayers. Our studies indicated that all the investigated bisphenols interact with the model membrane, but the strength of the interactions is dependent on the bisphenol structure and hydrophobicity and the fluidity of the model membranes. We proved that bisphenol S often treated as the least toxic BPA analog can also be incorporated to the model membranes changing their structure and fluidity.

  15. Adsorption and intercalation of anionic surfactants onto layered double hydroxides—XRD study

    Indian Academy of Sciences (India)

    R Anbarasan; W D Lee; S S Im

    2005-04-01

    Layered double hydroxides (LDH) with brucite like structure was modified with various anionic surfactants containing sulfonate, carboxyl, phosphonate and sulfate end group through ion-exchange method. XRD reports indicated that the sulfonate group containing surfactants led to an adsorption process whereas the sulfate, carboxyl and phosphonate group containing surfactant led to an intercalation process. This can be evidenced from the change in basal spacing of LDH. The presence of anionic surfactants in the LDH was supported by FTIR spectroscopy. The FTIR spectrum indicated that complete removal of carbonate anion from the inter layer space of LDH is very difficult. The phosphonate intercalated HT showed less thermal stability than pristine LDH.

  16. Novel anthracene-based fluorescent sensor for selective recognition of acetate anions in protic media

    Science.gov (United States)

    Xu, Kuoxi; Kong, Huajie; Li, Qian; Song, Pan; Dai, Yanpeng; Yang, Li

    2015-02-01

    Novel 9-substituted anthracene derivatives were synthesized and characterized by IR, HRMS, 1H and 13C NMR. The fluorescence titration experiments were explored to study the interaction between the compounds and some anions, such as H2PO4-, P2O74-, F-, Cl-, Br-, I-, AcO- in H2O (0.01 M HEPES, pH = 7.4) under imitated physiological conditions. One of these compounds, bearing a phenylalaninol unit, showed specific fluorescence enhancement with acetate anion. The sensor L1 was found to present good selective fluorescence sensing ability to acetate anion through photoinduced electron-transfer mechanism in protic media.

  17. Cation-π versus anion-π interactions: A theoretical NMR study

    Science.gov (United States)

    Ebrahimi, Ali; Khorassani, Mostafa Habibi; Masoodi, Hamid Reza

    2011-03-01

    The influences of cation-π and anion-π interactions on NMR data have been investigated in complexes of cations and anions with 1,3,5-trifluorobenzene (TFB). Cation-π interaction increases 1JC-F, 1JC-H and the chemical shifts of hydrogen and fluorine while it decreases 1JC-C. The changes are in reverse direction in the presence of anion-π interaction. The role of geometry and electronic effects on the NMR data was considered. The distance dependence of NMR parameters has been studied in these complexes. The NMR data have been investigated in isoelectronic complexes.

  18. Adsorption of anionic surfactant at the electrode–NaClO4 solution interface

    OpenAIRE

    Gugała-Fekner, Dorota; Nieszporek, Jolanta; Sieńko, Dorota

    2015-01-01

    Abstract Adsorption of 1-decanesulfonic acid at the electrode–NaClO4 solution interface was determined by double-layer differential capacity measurements. At potentials less than −1,200 mV, the adsorption of the anionic surfactant on the electrode does not occur. Low concentrations of the anionic surfactant (below cmc) causes slight changes in the zero charge potential, E z, and the surface tension at this potential, γ z. The adsorption of the anionic surfactant was analyzed using the constan...

  19. Electrochemical behavior of LiFePO4 cathode materials in the presence of anion adsorbents

    International Nuclear Information System (INIS)

    The poor rate capability is a major problem of olivine-structured lithium iron phosphate (LFP) cathode material in lithium-ion batteries due to its low electric conductivity and sluggish lithium diffusion. Other than the custom strategies to solve this problem like carbon coating and nano-size treatment, we simply mixed LFP with some anion adsorbents, which can store anions from the electrolytes swiftly. The effect of anion adsorbents on the performance of LFP composite electrode has been investigated by cyclic voltammetric tests and the corresponding apparent lithium diffusion coefficients have been measured

  20. Anionic and zwitterionic carboranyl N-heterocyclic carbene Au(i) complexes.

    Science.gov (United States)

    Fisher, Steven P; El-Hellani, Ahmad; Tham, Fook S; Lavallo, Vincent

    2016-06-14

    The syntheses of the first carboranyl N-heterocyclic carbene complexes with transition metals are reported. Both unsymmetrical mono-anionic and symmetrical dianionic NHCs readily react with ClAuSMe2 to afford unusual zwitterionic and anionic Au(i) dimethyl sulfide adducts. The compounds are characterized by NMR, mass spectrometry, and single crystal X-ray diffraction studies. Percent buried volume (%Vbur) calculations indicate that replacement of an adamantyl group by a hydride substituted icosahedral carborane anion results in a 3.7% increase in %Vbur. PMID:26922968

  1. The Al(I) molecule, Ph2COAl and its anion

    Science.gov (United States)

    Zhang, Xinxing; Eichhorn, Bryan; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-01

    We have formed the Al(I)-containing molecule, benzophenone-aluminum, i.e., Ph2COAl, and studied it by conducting density functional theory calculations on both its neutral and anionic forms and by measuring the photoelectron spectrum of its anion. Our calculations identified two nearly iso-energetic anion isomers, (Ph2COAl)-, the vertical detachment energies (VDE) of which are in excellent agreement with our photoelectron spectrum. Natural population analysis (NPA) of Ph2COAl found the Al moiety to be positively charged by +0.81 e, indicating a strongly ionic bond between Al and Ph2CO, i.e., Ph2CO-Al+.

  2. DFT modeling of adsorption of formaldehyde and methanediol anion on the (111) face of IB metals

    Science.gov (United States)

    Starodubov, S. S.; Nechaev, I. V.; Vvedenskii, A. V.

    2016-01-01

    Gas-phase adsorption of formaldehyde and gas- and liquid-phase adsorption of the methanediol anion on the (111) face of copper, silver, and gold was modeled in terms of the density functional theory and the cluster model of the metal single-crystal surface. In the gas phase, formaldehyde was found to be physically adsorbed on the metals, while the methanediol anion was found to be chemisorbed. It exists on the surface in two different stable states. In aqueous solution, the H3CO 2 - anion can spontaneously dissociate into the formate ion and two hydrogen atoms.

  3. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells.

    Science.gov (United States)

    Hayashi, M; Inagaki, A; Novak, I; Matsuda, H

    2016-07-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl(-) channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl(-) currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl(-) currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl(-) currents through CFTR Cl(-) channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl(-) currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl(-) channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion. PMID:26965147

  4. Improvement of barrier function and stimulation of colonic epithelial anion secretion by Menoease Pills

    Institute of Scientific and Technical Information of China (English)

    Jin-Xia Zhu; Ning Yang; Gui-Hong Zhang; Lai-Ling Tsang; Yu-Lin Gou; Hau-Yan Connie Wong; Yiu-Wa Chung; Hsiao-Chang Chan

    2004-01-01

    AIM: Menoease Pills (MP), a Chinese medicine-based new formula for postmenopausal women, has been shown to modulate the endocrine and immune systems[1]. The present study investigated the effects of MP and one of its active ingredients, ligustrazine, on epithelial barrier and ion transport function in a human colonic cell line, T84.METHODS: Colonic transepithelial electrophysiological characteristics and colonic anion secretion were studied using the short circuit current (ISC) technique. RT-PCR was used to examine the expression of cytoplasmic proteins associated with the tight junctions, ZO-1(zonula occludens-1) and ZO-2 (zonula occludens-2).RESULTS: Pretreatment of T84 cells with MP (15 μg/mL) for 72 h significantly increased basal potential difference,transepithelial resistance and basal ISC. RT-PCR results showed that the expressions of ZO-1 and ZO-2 were significantly increased after MP treatment, consistent with improved epithelial barrier function. Results of acute stimulation showed that apical addition of MP produced a concentrationdependent (10-5 000 μg/mL, EC50 = 293.9 μg/mL) increase in ISC. MP-induced ISC was inhibited by basolateral treatment with bumetanide (100 μmol/L), an inhibitor of the Na+-K+-2Cl- cotransporter, apical addition of Cl-channel blockers, diphenylamine-2, 2'-dicarboxylic acid (1 mmol/L) or glibenclamide (1 mmol/L), but not 4, 4'-diisothiocyanostilbene2, 2'-disulfonic acid or epithelial Na+ channel blocker,amiloride. The effect of MP on ZO-1 and ZO-2 was mimicked by Ligustrazine and the ligustrazine-induced ISC was also blocked by basolateral application of bumetanide and apical addition of diphenylamine-2, 2'-dicarboxylic acid or glibenclamide, and reduced by a removal of extracellular Cl-.CONCLUSION: The results of the present study suggest that MP and lligustrazine may improve epithelial barrier function and exert a stimulatory effect on colonic anion secretion, indicating the potential use of MP and its active ingredients

  5. The application of Guided Ion Beam Tandem Mass Spectrometer; Bond dissociation energies of bare and ligated copper group cluster anions

    International Nuclear Information System (INIS)

    Threshold energies, fragmentation patterns, and integral cross sections for the reactions of collision induced dissociations of bare and ligated copper group cluster anions are determined using a Guided Ion Beam Tandem Mass Spectrometer (GIB-MS). The bond breaking patterns for the copper cluster anions show dramatic even/odd tendencies, e.g., all copper group anions generate as the predominant reaction product, Carbon monoxide is weakly bound to copper group cluster anions. Cohesive energies of the bare copper and silver cluster anions are determined and exhibit a good correspondence with estimate cohesive energies by the model of Miedema.

  6. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    Science.gov (United States)

    Arulraj, James; Rajamathi, Michael

    2013-02-01

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni3Zn2(OH)8(OAc)2·2H2O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used.

  7. Nanostructure-controlled anion exchange membranes for fuel cell applications by high-energy heavy-ion irradiation. Preparation and characterization of anion exchange membranes

    International Nuclear Information System (INIS)

    Heavy ions at kinetic energies typically from several hundreds of MeV to a few GeV passing through a polymer substrate induce a continuous trail of excitations and ionizations called latent tracks. We used a direct ion-track grafting method for preparation of anion exchange membranes for fuel cells. The functional anion exchange groups were introduced inside the latent tracks, thereby achieving OH--conductive channels through the thickness. These straight channels increased conductivities, while the isolated cylindrical structure of tracks restricted the water uptake. (author)

  8. Anion directed supramolecular architecture of benzimidazole-based receptor

    Science.gov (United States)

    Singh, Udai P.; Maurya, Radha Raman; Kashyap, Sujata

    2015-02-01

    The reaction of N,N,N‧,N‧-tetrakis-(1H,benzimidazol-2ylmethyl)ethane-1,2-diamine (L) with different inorganic as well as organic acid afford salts viz., LH44+·4ClO4-·4H2O (1), LH44+·4Br-·4(CH3)2SO (2), 2LH33+·3SiF62-·14H2O (3), LH44+·4H2PO4-·2H3PO4 (4) and L·2CH3COOH (5) with different structures. The X-ray crystallographic studies revealed that these compounds are all ionic in nature due to proton transfer except 5 and are stabilized in the solid state by networks of hydrogen bonds between their respective components as well as solvent molecules. It also demonstrates that different types of hydrogen bond between protonated ligand and the anions are responsible for the extensive supramolecular frame work. The three dimensional packing is mainly guided by well-balanced primary N-H⋯O, O-H⋯N, O-H⋯O hydrogen bonds and secondary C-H⋯O interactions between benzimidazole and acids. Moreover, the hydrogen bonds, π⋯π and C-H⋯π stacking interactions appear to be effective in stabilizing the crystal structures. The colorimetric test showed color change upon the addition of acids in solution of the ligand. The photo-physical experiments suggest that the ligand shows fluorescence properties in the presence of acids.

  9. 3D Printing of Micropatterned Anion Exchange Membranes.

    Science.gov (United States)

    Seo, Jiho; Kushner, Douglas I; Hickner, Michael A

    2016-07-01

    Micropatterned anion exchange membranes (AEMs) have been 3D printed via a photoinitiated free radical polymerization and quaternization process. The photocurable formulation, consisting of diurethane dimethacrylate (DUDA), poly(ethylene glycol) diacrylate (PEGDA), dipentaerythritol penta-/hexa- acrylate, and 4-vinylbenzyl chloride (VBC), was directly cured into patterned films using a custom 3D photolithographic printing process similar to stereolithography. Measurements of water uptake, permselectivity, and ionic resistance were conducted on the quaternized poly(DUDA-co-PEGDA-co-VBC) sample series to determine their suitability as ion exchange membranes. The water uptake of the polymers increased as the ion exchange capacity (IEC) increased due to greater quaternized VBC content. Samples with IEC values between 0.98 to 1.63 mequiv/g were synthesized by varying the VBC content from 15 to 25 wt %. The water uptake was sensitive to the PEGDA content in the network resulting in water uptake values ranging from 85 to 410 wt % by varying the PEGDA fractions from 0 to 60 wt %. The permselectivity of the AEM samples decreased from 0.91 (168 wt %, 1.63 mequiv/g) to 0.85 (410 wt %, 1.63 mequiv/g) with increasing water uptake and to 0.88 (162 wt %, 0.98 mequiv/g) with decreasing IEC. Permselectivity results were relatively consistent with the general understanding of the correlation between permselectivity, water uptake, and ion content of the membrane. Lastly, it was revealed that the ionic resistance of patterned membranes was lower than that of flat membranes with the same material volume or equivalent thickness. A parallel resistance model was used to explain the influence of patterning on the overall measured ionic resistance. This model may provide a way to maximize ion exchange membrane performance by optimizing surface patterns without chemical modification to the membrane. PMID:27218137

  10. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. © 2013 American Chemical Society.

  11. Anion exchange purification of plasmid DNA using expanded bed adsorption.

    Science.gov (United States)

    Ferreira, G N; Cabral, J M; Prazeres, D M

    2000-01-01

    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step.

  12. Effect of Competing Anions on Arsenate Adsorption onto Maghemite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    T. Tuutijarvi; E. Repo; R. Vahala; M. Sillanpaa; G. Chen

    2012-01-01

    This paper reports the effect of several competing anions on arsenate adsorption with maghemite nanoparticles. Sulphate (as SO4), nitrate (as NO3-N), phosphate (as PO4-P) ions and silicate-(as SiO2) were-studied in dual solution with arsenate. Moreover, the combined effect of ions and other water characteristics were examined with a natural groundwater sample which was spiked with a certain amount of arsenate. Arsenate batch adsorption experiments were carried out with two different kinds of maghemite-a commercially, available one and a homemade one using the sol-gel orocess. Sulohate (≤250 mg.L-1) and nitrate (≤ 12 mg.L-1) had a neglivible effect onthe arsenate (0.5 mg.L-1) adsorption at pH 3. However, both phosphate (42.9 mg·L-1) and silicate (450 mg.L-j) had an adverse impact on arsenate (43 mg.L-1) adsorption at pH 7. Phosphate (41.5 mg.L-1) showed minimal competition with arsenate (0.5 mg.L-1), while silicate (410 mg.L-1) inhibition was insignificant for all studied As(V) concentrations at p.H 3. The removal of arsenate from the groundwater sample was as efficient as from labo-ratory water tor 0.3 mgL -1 AS(V) botll at pH3 and pH7.

  13. Induction of Apoptosis by Superoxide Anion and the Protective Effects of Selenium and Vitamin E

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective The purpose of this study is to investigate the effect of superoxide anion on the apoptosis of cultured fibroblasts and the protective role of selenium and Vitamin E. Methods Cultured fibroblasts (NIH3T3), with or without selenium or vitamin E in the medium, were treated by superoxide anion produced by xanthine/xanthine oxidase reaction system and changes in cell structure and DNA were observed microscopically and electrophoretically. Results Apoptosis was observed when superoxide anion at a concentration of 5 nmol/L or 10 nmol/L had acted on the fibroblasts for 5-10 h. Selenium and Vitamin E in the medium inhibited the apoptosis significantly when their concentrations reached 1.15 mol/L and 2.3 mol/L respectively. Conclusion Selenium and vitamin E have protective effect against the apoptosis induced by superoxide anion. The effect of selenium is more remarkable than that of vitamin E.

  14. OD ESR detection of the radical anions of cyclic nitrones in liquid solutions

    Science.gov (United States)

    Barlukova, M. M.; Gritsan, N. P.; Bagryansky, V. A.; Starichenko, V. F.; Grigor'ev, I. A.; Molin, Yu. N.

    2005-01-01

    The radical anions of five-membered cyclic nitrone spin traps, 3,3,5,5-tetramethyl-1-pyrroline-1-oxide and 1,2,2,5,5-pentamethyl-3-imidazoline-3-oxide, formed under radiolysis of liquid squalane solutions at 250-268 K, were registered by the method of optically detected ESR, and the hfc constants and g-values of the radical anions were determined. The hfc constants of these radical anions were predicted by DFT calculations and were found to be in quantitative agreement with experiment. It was demonstrated that radical anions of the five-membered cyclic nitrones have non-planar geometry with the spin density localized in the C dbnd N sbnd O fragment.

  15. Effects of Hofmeister salt series on gluten network formation: Part II. Anion series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different anion salts from the Hofmeister series were used to investigate their effects on gluten network formation. The effects of these anion salts on the mixing properties of the dough and the rheological and chemical properties of gluten samples extracted from the dough with these respective salts were compared. The aim of this work was to determine how different anion salts influence the formation of the gluten structure during dough mixing. It was found that the Hofmeister anion salts affected the gluten network formation by interacting directly with specific amino acid residues that resulted in changes in gluten protein composition, specifically the percentage of the unextractable polymeric protein fractions (%UPP). These changes consequently led to remarkable differences in the mixing profiles and microstructural features of the dough, small deformation rheological properties of the gluten and a strain hardening behaviour of both dough and gluten samples. PMID:27374597

  16. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants

    Science.gov (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.

    2015-11-01

    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  17. Aquaporins with anion/monocarboxylate permeability: mechanisms, relevance for pathogen-host interactions

    Directory of Open Access Journals (Sweden)

    Janis eRambow

    2014-09-01

    Full Text Available Classically, aquaporins are divided based on pore selectivity into water specific, orthodox aquaporins and solute-facilitating aquaglyceroporins, which conduct e.g. glycerol and urea. However, more aquaporin-passing substrates have been identified over the years, such as the gases ammonia and carbon dioxide or the water-related hydrogen peroxide, and it became apparent that not all aquaporins clearly fit into one of only two subfamilies. Furthermore, certain aquaporins from both major subfamilies have been reported to conduct inorganic anions, such as chloride, or monoacids/monocarboxylates, such as lactic acid/lactate. Here, we summarize the findings on aquaporin anion transport, analyze the pore layout of such aquaporins in comparison to prototypical non-selective anion channels, monocarboxylate transporters, and formate-nitrite transporters, and discuss in which scenarios anion conducting aquaporins may be of physiological relevance.

  18. A Simple Colorimetric Procedure for Differentiating Anions Using Flower Pigments from Anthurium andreanum

    Directory of Open Access Journals (Sweden)

    Maynard O. Galingana

    2016-06-01

    Full Text Available A simple, “green” and colorimetric approach in differentiating various anions is presented. Acidified ethanolic extracts from flowers of Anthurium andreanum undergo color changes in the presence of HSO4-, CH3COO-, C6H5COO-, HCO3-, CO32-, HPO42- and PO43- anions in aqueous solutions. Anionic acid-base conjugate pairs such as HCO3- and CO32-, HSO4- and SO42-, and phosphates H2PO4-, HPO42-, and PO43- can also be discriminated from each other. Visible spectroscopic analysis indicates possible structural changes in pigments due to pH change of solution as a consequence of the basic property of anions.

  19. Optical properties of the radical anion derived from {alpha}-alanine by deamination

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P.; Przybytniak, G.K. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-12-31

    The free radical anion CH{sub 3}CHCOO derived during high energy irradiation from {alpha}-alanine by deamination has been investigated until now by EPR, in irradiated single crystals, for basic research or in completely randomized polycrystalline material for {gamma}-dosimetric purposes. It has been found by spectrophotometry of irradiated single crystals that the free radical absorbs light at {lambda}{sub max}=350 nm. The same radical anion is observed by pulse radiolysis of {alpha}-chloropropionic or propionic anion in aqueous solutions by Cl resp. {alpha}-H abstraction.Basic and applied aspects of the identity of the radical anion obtained in different ways are discussed, as well as consequences for dosimetric techniques. (author). 11 refs, 4 figs.

  20. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  1. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) hydrophobic segments

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Amphiphilic diblock copolymers incorporating hydrophobic poly(2-methoxyethyl acrylate) (PMEA) and hydrophilic neutral poly(ethylene glycol) monomethyl ether (mPEG), anionic poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA), cationic poly(2-dimethylaminoethyl methacrylate) (PDMAEMA...

  2. Urea/thiourea derivatives and Zn(II)-DPA complex as receptors for anionic recognition—A brief account

    Indian Academy of Sciences (India)

    Priyadip Das; Prasenjit Mahato; Amrita Ghosh; Amal K Mandal; Tanmay Banerjee; Sukdeb Saha; Amitava Das

    2011-03-01

    This review covers few examples of anion complexation chemistry, with a special focus on urea/thiourea-based receptors and Zn(II)-dipicolyl amine-based receptors. This article specially focuses on structural aspects of the receptors and the anions for obtaining the desire specificity along with an efficient receptor-anion interaction. Two types of receptors have been described in this brief account; first one being the strong hydrogen bond donor urea/thiourea derivatives, which binds the anionic analytes through hydrogen bonded interactions; while, the second type of receptors are coordination complexes, where the coordination of the anion to the metal centre. In both the cases the anion binding modulate the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and thereby the spectroscopic response. Appropriate choice of the signalling unit may allow probing the anion binding phenomena through visual detection.

  3. Near-Threshold Photodetachment Cross Section of (SF6)(n)(-) Cluster Anions: The Ion Core Structure.

    Science.gov (United States)

    Luzon, Itamar; Nagler, Maoz; Chandrasekaran, Vijayanand; Heber, Oded; Strasser, Daniel

    2016-01-21

    Photodetachment cross sections as a function of photon energy are measured for cold (SF6)n(-) cluster anions stored in an electrostatic ion beam trap. Absolute photodetachment cross sections near the adiabatic limit are reported. The strong dependence of the SF6(-) absolute photodetachment cross section on the anion equilibrium bond length leads to the conclusion that the excess charge is localized on a SF6(-) ion core that is only subtly perturbed by the neighboring cluster units. PMID:26667587

  4. Membrane Separator for Redox Flow Batteries that Utilize Anion Radical Mediators.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    A Na + ion conducting polyethylene oxide membrane is developed for an organic electrolyte redox flow battery that utilizes anion radical mediators. To achieve high specific ionic conductivity, tetraethyleneglycol dimethylether (TEGDME) is used as a plasticizer to reduce crystallinity and increase the free volume of the gel film. This membrane is physically and chemically stable in TEGDME electrolyte that contains highly reactive biphenyl anion radical mediators.

  5. Determination of common anions in oxalate by ion chromatography coupled with UV photolysis pretreatment

    Institute of Scientific and Technical Information of China (English)

    Sheng Lin Cao; Ming Li Ye; Wei De Lv; Guang Wen Pan; Ting Ting Zhang; Zhong Yang Hu; Li Na Liang; Yan Zhu

    2012-01-01

    A new and simple method was developed to determine anions in oxalate of analytical reagent grade.After UV photolysis with optimal 1% H2O2 in 10,000 mg/L oxalate in the fabricated photoreactor,sample was directly injected into IC system.Satisfactory linearity,detections limits,good repeatability and spiked recovery were obtained.The method was successfully applied to determine anions in two commercial oxalate samples.

  6. Carborane Anions: As Weakly Coordinating Counterions and Coordinating Ligands for Catalyst Design

    OpenAIRE

    Wright, James Henry

    2013-01-01

    1-carba-closo-dodecaborates, more commonly referred to as carborane anions, are icosahedral CB11 cages with substituents at each vertex. These substituents are highly variable allowing for a large range of properties. Such properties include being weakly basic, chemically inert, non-nucleophilic, and resistant to reduction or oxidation. Due to these properties, carborane anions have been given the term "weakly coordinating" to describe their interactions with cations. The isolation of numerou...

  7. Effects on anionic salts in a pre-partum dairy ration on calcium metabolism

    OpenAIRE

    C.J. Van Dijk; D.C. Lourens

    2001-01-01

    The effects of anionic salts in the transition diet on serum and urine calcium at calving and on peripartal health, subsequent milk production and fertility performance were studied in a well-managed, high-producing Friesland dairy herd. Over a period of a year, approximately 21 days before the expected date of calving, 28 pre-partum heifers and 44 multiparous dry cows were randomly allocated within parity to 1 of 2 transition diets, designated control and experimental anionic diets. The anio...

  8. Parent Anions of Iron, Manganese, and Nickel Tetraphenyl Porphyrins: Photoelectron Spectroscopy and Computations.

    Science.gov (United States)

    Buytendyk, Allyson M; Graham, Jacob D; Gould, Julian; Bowen, Kit H

    2015-08-13

    The singly charged, parent anions of three transition metal, tetraphenyl porphyrins, M(TPP) [Fe(TPP), Mn(TPP), and Ni(TPP)], were studied by negative ion photoelectron spectroscopy. The observed (vertical) transitions from the ground state anions of these porphyrins to the various electronic states of their neutral counterparts were modeled by density functional theory computations. Our experimental and theoretical results were in good agreement. PMID:26186172

  9. Research on the Microstructure and Property of an Anion Rubber Modified Asphalt

    OpenAIRE

    Wei Hong; Qingshan Li; Guoquan Guan; Youbo Di; Jing Sun; Tifeng Jiao; Guangzhong Xing

    2013-01-01

    The anion rubber modified asphalt (ARMA) mixture was first successfully developed with a unique process. In the development process, rubber and asphalt were mixed in the same proportion. Furthermore, the microstructure and modification mechanism of the material were characterized by SEM, FT-IR, TG, and XRD tests. The mechanical property of the mixture was also tested in accordance with the relevant standards. In the end, the material’s capacity of releasing anion was measured by DLY-6A232 atm...

  10. Further development of capillary electrophoresis for the quantitative determination of small inorganic anions

    OpenAIRE

    King, Marion

    2003-01-01

    Factors influencing the separation and indirect UV absorbance detection of common inorganic anions using capillary zone electrophoresis (CZE) have been investigated. Initially a number of different aspects of indirect background electrolyte (BGE) systems were studied, with the resultant observations indicating the requirements of an 'ideal' BGE system for the separation and detection of common inorganic anions in water samples. In addition to the above the correct use of buffers within BGE us...

  11. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  12. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication.

    Science.gov (United States)

    Lee, Sun-Hyo; Park, Samel; Lee, Jung-Won; Hwang, Il-Woong; Moon, Hyung-Jun; Kim, Ki-Hwan; Park, Su-Yeon; Gil, Hyo-Wook; Hong, Sae-Yong

    2016-07-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na(+), K(+), Cl(-) HCO3 (-), Ca(++)), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P < 0.001), and time lag after ingestion (P = 0.048) were significant risk factors for death in univariate analyses. Among these, age, anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P < 0.001). In conclusions, high anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication. PMID:27366016

  13. Anionic Lipids Enriched at the ExPortal of Streptococcus pyogenes▿

    OpenAIRE

    Rosch, Jason W.; Hsu, Fong Fu; Caparon, Michael G.

    2006-01-01

    The ExPortal of Streptococcus pyogenes is a membrane microdomain dedicated to the secretion and folding of proteins. We investigated the lipid composition of the ExPortal by examining the distribution of anionic membrane phospholipids. Staining with 10-N-nonyl-acridine orange revealed a single microdomain enriched with an anionic phospholipid whose staining characteristics and behavior in a cardiolipin-deficient mutant were characteristic of phosphatidylglycerol. Furthermore, the location of ...

  14. Anion-dipole interactions make the homopolymers self-assemble into multiple nanostructures.

    Science.gov (United States)

    Wang, Long-Hai; Zhang, Zi-Dan; Hong, Chun-Yan; He, Xue-Hao; You, Wei; You, Ye-Zi

    2015-05-27

    Anion-dipole interactions can make homopolymers self-assemble like an amphiphilic block copolymer. Generally, common homopolymers cannot self-assemble into multiple nanostructures. Here, it is reported that anion-dipole interactions can enable a number of homopolymers to achieve a variety of self-assembly behaviors in aqueous solution. Such interactions and self-assembly features have been exclusively reserved for amphiphilic (block) polymers until now. PMID:25873566

  15. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    Science.gov (United States)

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  16. Effect of proquinazid and copper hydroxide on homeostasis of anions in winter wheat plants in generative phase of development

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-03-01

    Full Text Available The study deals with the effect of proquinazid and copper oxide application on structural characteristics and resistance of wheat to powdery mildew, as well as remobilisation and redistribution of anions pools at generative stage of development. The trial series was conducted in the experimental agricultural production of the Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine. Field experiments were carried out with Smuglyanka variety of winter wheat. The trial series included the application of fungicides such as Talius (proquinazid, 200 g/L 0,25 L/ha and Kocide 2000 (copper hydroxide, 350 g/kg 150 and 300 g/ha, and combination of both fungicides. Sprays were applied at tillering stage in autumn in the first trial series and at tillering-booting stage in spring in the second one. Assessment of affected plants by powdery mildew was carried out visually in points. Anion concentration was determined with the use of ion chromatography. Application of fungicides at tillering stage increases the amount of productive stems in wheat plants. The highest effect was recorded for application of copper hydroxide at dose of 300 g/ha in autumn. Analysis of plants affected by powdery mildew shows that application of proquinazid and its composition with copper hydroxide provides sustained protection against Blumeria graminis (DC Speer. Application of fungicides at tillering stage contributes to increase of the pool of free nitrogen, phosphorus and sulfur anions in leaf tissues compared to control. These changes in anion composition may be caused by fungicide effect on activity of N, P, S transporters, as well as internal regulatory mechanisms of elements’ uptake by plants. Comparing the results of the autumn and spring application of fungicides should note the increase in concentration of free phosphates in wheat leaves in the 2nd trial with proquinazid and its composition with copper hydroxide. Accumulation of nitrogen in the

  17. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    Science.gov (United States)

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  18. Biliary secretion of organic anions in the dog: association with defined lipid particles

    International Nuclear Information System (INIS)

    Organic anions have recently been found to partition in vitro into various biliary lipid particulate species according to their relative hydrophobicities. To establish the physiological relevance of these observations, we intravenously injected various radiolabeled organic anions and assessed the distributions of parent compounds and their metabolites to lipid particles in canine bile. Partitioning into various biliary lipid particles was determined by gel permeation chromatography. Relative hydrophobicities of the various organic anions and their radiolabeled conjugates were determined by reverse-phase high-pressure liquid chromatography. A strong positive correlation (P less than 0.001) was found between percent vesicular association and degree of hydrophobicity for a given organic anion and/or its more polar conjugate. We conclude that 1) the hydrophobic-hydrophilic balance of organic anions is a key factor governing their partitioning to lipid particles secreted in bile; 2) the present study agrees well with our previously published in vitro observations; and 3) other chemical constituents, e.g., proteins, mucin, etc., appear to have little or no effect on organic anion transport in bile

  19. Research on the Microstructure and Property of an Anion Rubber Modified Asphalt

    Directory of Open Access Journals (Sweden)

    Wei Hong

    2013-01-01

    Full Text Available The anion rubber modified asphalt (ARMA mixture was first successfully developed with a unique process. In the development process, rubber and asphalt were mixed in the same proportion. Furthermore, the microstructure and modification mechanism of the material were characterized by SEM, FT-IR, TG, and XRD tests. The mechanical property of the mixture was also tested in accordance with the relevant standards. In the end, the material’s capacity of releasing anion was measured by DLY-6A232 atmospheric ion gauge. The results indicated that the addition of anion additive into the rubber modified asphalt (RMA was a mere physical mixture, and the anion additives and rubber particles uniformly dispersed in the ARMA. The addition of anion additive could improve the thermal stability of the RMA. Compared with the traditional asphalt pavement material, the ARMA material shows excellent mechanical properties as well as the ability of releasing anion. Moreover, the material has enormous economic and social benefits by taking full advantage of a large amount of waste tires, thus improving the road surrounding environment.

  20. Tuning the optical properties of 2-thienylpyridyl iridium complexes through carboranes and anions.

    Science.gov (United States)

    Zhu, Lin; Tang, Xiao; Yu, Qi; Lv, Wen; Yan, Hong; Zhao, Qiang; Huang, Wei

    2015-03-16

    2-Thienylpyridyl iridium(III) complexes containing an o-, m-, or p-carboranylvinyl-2,2'-bipyridine ligand and various counteranions (denoted o-PF6, m-BF4, m-PF6, m-SbF6, m-ClO4, m-OTf, m-NO3, m-BPh4, m-F, m-Cl, and p-PF6) were synthesized by using C-formyl carboranes as starting materials. The solid-state structures of o-PF6, m-PF6, m-ClO4, and m-BF4 showed that the cations form twisted cavities in which the anions are fixed by multiple hydrogen bonds. Anion-hydrogen interactions were investigated for nine m-carborane-based complexes with different counteranions. All carborane-based iridium(III) complexes show similar phosphorescence yields in solution but significantly different emission in the solid state. Anion-exchange titration and theoretical calculations revealed the relationships between structures and optical properties. The size of the anion and C-H⋅⋅⋅X anion-hydrogen bonds strongly influence the phosphorescence quantum yield in the solid state. In particular, the Ccar-H⋅⋅⋅X hydrogen bonds between the carboranyl unit and the anion play an important role in solid-state phosphorescence. Complex p-PF6 was successfully applied in phosphorescence-lifetime bioimaging owing to its low toxicity and near-infrared emission. PMID:25663604