WorldWideScience

Sample records for active butyrate-degrading microorganisms

  1. Population dynamics of biofilm development during start-up of a butyrate-degrading fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zellner, G.; Geveke, M.; Diekmann, H. (Hannover Univ. (Germany). Inst. fuer Mikrobiologie); Conway de Macario, E. (New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Laboratories and Research)

    1991-12-01

    Population dynamics during start-up of a fluidized-bed reactor with butyrate or butyrate plus acetate as sole substrates as well as biofilm development on the sand substratum were studied microbiologically, immunologically and by scanning electron microscopy. An adapted syntrophic consortium consisting of Syntrophospora sp., Methanothrix soehngenii, Methanosarcina mazei and Methanobrevibacter arboriphilus or Methanogenium sp. achieved high-rate butyrate degradation to methane and carbon dioxide. Desulfovibrio sp., Methanocorpusculum sp., and Methanobacterium sp. were also present in lower numbers. Immunological analysis demonstrated methanogens antigenically related to Methanobrevibacter ruminantium M1, Methanosarcina mazei S6, M. thermophila TM1, Methanobrevibacter arboriphilus AZ and Methanothrix soehngenii Opfikon in the biofilm. Immunological analysis also showed that the organisms isolated from the butyrate-degrading culture used as a source of inoculum were related to M. soehngenii Opfikon, Methanobacterium formicium MF and Methanospirillum hungatei JF1. (orig.).

  2. Effects of Heavy Metals on Activated Sludge Microorganism

    Institute of Scientific and Technical Information of China (English)

    XIE Bing; XI Dan-li; CHEN Ji-hua

    2002-01-01

    The efforts of heavy metals on activated sludge microorganisms are reviewed. Although some heavy metals play an important role in the life of microorganism, heavy metals concentrations above toxic levels inhibit biological processes. Copper, zinc, nickel,cadmium and chromium were mostly studied because of their toxicity and widely used, regardless of single or combination. The microorganism response to these heavy metals varied with species and concentrations of metals,factors such as pH, sludge age, MLSS etc. also affect toxicity on the microorganism. The acclimation could extend the microorganism tolerance of heavy metals. The effects of heavy metals on sludge microorganisms could be described with different models, such as Sigmoidal and Monod equation. The kinetic constants are the useful indexes to estimate the heavy metals inhibition on activated sludge system. Methods to measure the toxicity and effects on microorganism community were also reviewed.

  3. Effects of heat-activated persulfate oxidation on soil microorganisms

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Smets, Barth F.; Bjerg, Poul Løgstrup

    2008-01-01

    The effects of heat-activated persulfate on indigenous microorganisms and microcosms augmented with Pseudomonas putida KT2440 were studied in laboratory batch reactors with aquifer material. Microscopic enumeration was used to measure the changes in cell density, and acetate consumption was used to....../L). The results emphasize the necessity of using multiple toxicity assays and indigenous cultures in order to realistically assess the potential effects of in situ chemical oxidation on soil microorganisms. A comparison to other studies suggests that the effects of activated persulfate on soil...

  4. Antimicrobial activity of magnolol and honokiol against periodontopathic microorganisms.

    Science.gov (United States)

    Chang, B; Lee, Y; Ku, Y; Bae, K; Chung, C

    1998-05-01

    Magnolol (1) and honokiol (2), main compounds from the stem bark of Magnolia obovata Thunb., were evaluated for an antimicrobial activity against periodontopathic microorganisms, Porphyromonas gingivalis, Prevotella gingivalis, Actinobacillus actinomycetemcomitans, Capnocytophaga gingivalis, and Veillonella disper, and a cytotoxicity against human gingival fibroblasts and epithelial cells. Our results indicate that magnolol and honokiol, although less potent than chlorhexidine, show a significant antimicrobial activity against these microorganisms, and a relatively low cytotoxic effect on human gingival cells. Thus, it is suggested that magnolol and honokiol may have a potential therapeutic use as a safe oral antiseptic for the prevention and the treatment of periodontal disease. PMID:9619121

  5. Are thermophilic microorganisms active in cold environments?

    Science.gov (United States)

    Cockell, Charles S.; Cousins, Claire; Wilkinson, Paul T.; Olsson-Francis, Karen; Rozitis, Ben

    2015-07-01

    The mean air temperature of the Icelandic interior is below 10 °C. However, we have previously observed 16S rDNA sequences associated with thermophilic lineages in Icelandic basalts. Measurements of the temperatures of igneous rocks in Iceland showed that solar insolation of these low albedo substrates achieved a peak surface temperature of 44.5 °C. We isolated seven thermophilic Geobacillus species from basalt with optimal growth temperatures of ~65 °C. The minimum growth temperature of these organisms was ~36 °C, suggesting that they could be active in the rock environment. Basalt dissolution rates at 40 °C were increased in the presence of one of the isolates compared to abiotic controls, showing its potential to be involved in active biogeochemistry at environmental temperatures. These data raise the possibility of transient active thermophilic growth in macroclimatically cold rocky environments, implying that the biogeographical distribution of active thermophiles might be greater than previously understood. These data show that temperatures measured or predicted over large scales on a planet are not in themselves adequate to assess niches available to extremophiles at micron scales.

  6. Antimicrobial Activity of Protamine against Oral Microorganisms.

    Science.gov (United States)

    Kim, Yeon-Hee; Kim, Sang Moo; Lee, Si Young

    2015-01-01

    Protamine is an arginine-rich polycationic protein extracted from sperm cells of vertebrates including fishes such as salmon. The purpose of this study was to investigate the suppressive effects of protamine on the growth of oral pathogens for possible usage in dental materials. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the microdilution method. Twelve strains of oral viridans streptococci, Actinomyces naeslundii, Actinomyces odontolyticus, Enterococcus faecalis, Lactobacillus acidophilus, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis and Candida albicans were suppressed by protamine. MIC and MBC values were between 0.009 ~ 20 mg/mL and 0.019 ~ 80 mg/mL, respectively. The bactericidal activities of protamine against susceptible bacterial species were dependent on the concentration of protamine and incubation time. Based on the results of this study, protamine would be a useful compound for the development of antimicrobial agents against oral pathogens in dental materials. PMID:26699859

  7. Antimicrobial activity of Gel-entrapped catechins toward oral microorganisms.

    Science.gov (United States)

    Tamura, Muneaki; Saito, Hideo; Kikuchi, Kuniyoshi; Ishigami, Tomohiko; Toyama, Yoshio; Takami, Masao; Ochiai, Kuniyasu

    2011-01-01

    The oral cavity contains almost half of the commensal bacterial population present in the human body. An increase in the number of these microorganisms may result in systemic diseases such as infective endocarditis and aspiration pneumonia as well as oral infections. It is essential to control the total numbers of these microorganisms in order to suppress disease onset. Thus, we examined the antimicrobial activity of a newly developed gel-entrapped catechin (GEC) preparation against oral microorganisms. The minimum inhibitory concentration (MIC) of GEC was determined based on the relationship between a modified agar diffusion method and a broth microdilution method. GEC inhibited the growth of the Actinomyces, periodontopathic bacteria and Candida strains tested, but did not inhibit the growth of the oral streptococci that are important in the normal oral flora. Commercially available moisture gels containing antimicrobial components showed antimicrobial activity against all of the tested strains. After a series of washes and after a 24-h incubation, GEC retained the antimicrobial activity of the catechins. Catalase prevented GEC-induced growth inhibition of Actinomyces naeslundii and Streptococcus mutans suggesting that hydrogen peroxide may be involved in the antimicrobial activity of catechins. These results suggest that GEC may be useful for controlling oral microorganism populations and reducing the accumulation of dental plaque, thereby helping to prevent periodontal disease and oral candidiasis. PMID:21532150

  8. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  9. Selenite bioremediation potential of indigenous microorganisms from industrial activated sludge.

    Science.gov (United States)

    Garbisu, C; Alkorta, I; Carlson, D E; Leighton, T; Buchanan, B B

    1997-12-01

    Ten bacterial strains were isolated from the activated sludge waste treatment system (BIOX) at the Exxon refinery in Benicia, California. Half of these isolates could be grown in minimal medium. When tested for selenite detoxification capability, these five isolates (members of the genera Bacillus, Pseudomonas, Enterobacter and Aeromonas), were capable of detoxifying selenite with kinetics similar to those of a well characterized Bacillus subtilis strain (168 Trp+) studied previously. The selenite detoxification phenotype of the Exxon isolates was stable to repeated transfer on culture media which did not contain selenium. Microorganisms isolated from the Exxon BIOX reactor were capable of detoxifying selenite. Treatability studies using the whole BIOX microbial community were also carried out to evaluate substrates for their ability to support growth and selenite bioremediation. Under the appropriate conditions, indigenous microbial communities are capable of remediating selenite in situ.

  10. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    OpenAIRE

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  11. Humate effect on oil-oxidizing activity of hydrocarbon-oxidizing microorganisms

    Directory of Open Access Journals (Sweden)

    Faizulina Elmira

    2015-10-01

    Full Text Available The effect of humic substances on the activity of hydrocarbon-oxidizing microorganisms is studied. It is shown that sodium humate, aminogumic and sulfogumic acids did not have a negative impact on the growth of oiloxidizing microorganisms. Introduction of sodium humate in the culture medium stimulated the destructive activity of oil-oxidizing microorganisms. At its addition the degree of oil degradation was 72.5-84.5%, and atits absence – 70.7-78.3%.

  12. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Vale, Isabel Campante; Dell'Isola, Jéssica; Chernicharo, Carlos Augusto; Calabria Araujo, Juliana

    2015-01-01

    In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment. PMID:25495866

  13. ANTIBACTERIAL ACTIVITY OF SIMAROUBA GLAUCA LEAF EXTRACTS AGAINST FOOD BORNE SPOILAGE AND PATHOGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    B. L. Jangale et al.

    2012-02-01

    Full Text Available Crude ethanol and methanol extracts from dried and fresh leaves of Simarouba glauca were tested for their inhibitory activity against two food borne pathogenic microorganisms (Staphylococcus aeureus and Escherichia coli and two food spoilage microorganism (Bacillus subtilis and Pseudomonas aeurogenosa. Screening for antimicrobial activity using well diffusion assay showed the inhibition against entire tested microorganisms. On the other hand the maximum zone of inhibition was recorded of fresh leaves methanol extract (FLM about 11 mm against Escherichia coli and the lowest zone of inhibition was recorded of fresh leaves methanol extract (FLM about 2 mm against Bacillus subtilis. Minimum inhibitory concentrations (MIC’s of extracts were determined using agar dilution method on the same test microorganisms. Fresh leaves methanol (FLM extract gave MIC value ranging from 160 to 10,240 parts per million (ppm. Result showed that the Bacillus subtilis was the most sensitive microorganism.

  14. Rhamnolipids as active protective agents for microorganisms against toxic substances

    Directory of Open Access Journals (Sweden)

    Marta Woźniak

    2012-12-01

    Full Text Available The presence of microbial biosurfactants decreases the toxicity of chlorophenols towards Pseudomonas putida 2A cells. The rhamnolipid-originating micelles selectively entrapped chlorophenol molecules, which resulted in their lower bioavailability to microbial cells. It was observed that the effective concentrations causing 50% growth inhibition increased by 0.5, 0.35 and 0.15 for phenol, 4-chlorophenol and 2.4-dichlorophenol, accordingly. The application of surfactants as protective agents for microorganisms brings about new possibilities of using this phenomenon in bioremediation techniques.

  15. Assessment of the antimicrobial activity of Casearia sylvestris extract against oral pathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    V. R. SANTOS

    2009-05-01

    Full Text Available An ethanolic extract of leaves from the tree Casearia sylvestris, known as guaçatonga in Brazil, was tested for in vitro activity against oral pathogenic bacteria and fungi. The results showed susceptibility of all the microorganisms tested. This study suggests a potential use of ethanolic extract of C. sylvestris as a novel treatment of oral infectious conditions, such as denture stomatitis, periodontitis and dental caries. Keywords: Casearia sylvestris; guaçatonga; oral microorganisms; antimicrobial activity.

  16. Essential Oil Prepared from Cymbopogon citrates Exerted an Antimicrobial Activity Against Plant Pathogenic and Medical Microorganisms

    OpenAIRE

    Jeong, Mi-Ran; Park, Pyeong Beom; Kim, Dae-Hyuk; Jang, Yong-Suk; Jeong, Han Sol; Choi, Sang-Hoon

    2009-01-01

    Essential oils are mixtures of volatile, lipophilic compounds originating from plants. Some essential oils have useful biological activities including antimicrobial, spasmolytic, antiplasmodial, and insect-repelling activities. In this study, we tested the antimicrobial activity of essential oil prepared from the aromatic plant, Cymbopogon citrates, against three important plant pathogenic and medical microorganisms, Pectobacterium carotovorum, Colletotrichum gloeosporioides, and Aspergillus ...

  17. Antitumor activity of levan polysaccharides from selected microorganisms.

    Science.gov (United States)

    Yoo, Sang-Ho; Yoon, Eun Ju; Cha, Jaeho; Lee, Hyeon Gyu

    2004-04-01

    Levans were isolated from the cultures of Gluconoacetobacter xylinus (G-levan; Mw = 40,000), Microbacterium laevaniformans (M; Mw = 710,000), Rahnella aquatilis (R; Mw = 380,000), and Zymomonas mobilis (Z; Mw = 570,000). The levans were composed mainly of fructose residues when analyzed by TLC and HPLC, and their main backbones were beta-(2,6)-linkages with beta-(2,1)-branches by GC-MS and NMR. In the in vitro antitumor activity test of the levans against eight different tumor cell lines, relatively stronger activity was observed from the SNU-1 and HepG2. The M- (52.54-62.05%) and R-levan (52.15-58.58%) showed the significantly high activity against SNU-1, while M-levan showed the highest (49.93-61.82%) activity against HepG2. During the in vivo analysis of inhibitory activity of the levans against Sarcoma-180 growth, M-, R- and Z-levans showed strong antitumor activity (average 66%) but G-levan (42%) had significantly lower activity. PMID:15178007

  18. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    Science.gov (United States)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  19. Screening of flocculant-producing microorganisms and flocculating activity

    Institute of Scientific and Technical Information of China (English)

    CHENG Jin-ping; ZHANG Lan-ying; WANG Wen-hua; YANG Yi-chen; ZHENG Min; JU Su-wei

    2004-01-01

    A strain saccharomycete STSM-1 with high flocculanting activity was isolated from activated sludge with conventional methods. The high production rate and the low cost STSM-1 medium was obtained by selecting different kinds of media, carbon source, nitrogen source and inorganic salt ion. The best flocculant- producing conditions were found by changing medium initial pH, culture temperature and ventilation flow. The best flocculating effect was obtained by changing positive ion types, density and concentration of flocculant.

  20. Biological activity of Terminalia arjuna on Human Pathogenic Microorganisms

    Directory of Open Access Journals (Sweden)

    Tariq Javed

    2016-01-01

    Full Text Available World’s population relies chiefly on traditional medicinal plants, using their extracts or active constituents. Terminalia arjuna of family Combretaceae reported to be effective as aphrodisiac, expectorant, tonic, styptic, antidysenteric, sweet, acrid, purgative, laxative, astringent, diuretic, astringent, cirrhosis, cardioprotective and cancer treatment.   In present study, antibacterial, antifungal, brine shrimp lethality and phytotoxic effect of Terminalia arjuna was performed. Our results showed that methanolic extract of Terminalia arjuna leaves has moderate antifungal effect against Microsporm canis and fruit extract possess good antibacterial activity against Staphylococus aureus  and  Preudomonas aeroginosa. Moreover, Dichloromethane extract of Terminalia arjuna bark and fruit posses moderate phytotoxic activity

  1. Biological activity of Terminalia arjuna on Human Pathogenic Microorganisms

    OpenAIRE

    Tariq Javed; Sana Riaz; Muhammad Uzair; Gulam Mustafa; Ayesha Mohyuddin; Bashir Ahmad Ch.

    2016-01-01

    World’s population relies chiefly on traditional medicinal plants, using their extracts or active constituents. Terminalia arjuna of family Combretaceae reported to be effective as aphrodisiac, expectorant, tonic, styptic, antidysenteric, sweet, acrid, purgative, laxative, astringent, diuretic, astringent, cirrhosis, cardioprotective and cancer treatment.   In present study, antibacterial, antifungal, brine shrimp lethality and phytotoxic effect of Terminalia arjuna was performed. Our results...

  2. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The discovery of a new mode of action by C. thermocellum to convert biomass to biofuels is significant because the bacterium is already recognized as one of the most effective in the biosphere. Researchers found that, in addition to using common cellulase degradation mechanisms attached to cells, C. thermocellum also uses a new category of cell-free scaffolded enzymes. The new discovery will influence the strategies used to improve the cellulolytic activity of biomass degrading microbes going forward. Better understanding of this bacterium could lead to cheaper production of ethanol and drop-in fuels. Also, this discovery demonstrates that nature's biomass conversion behaviors are not fully understood and remain as opportunities for future microbial/enzyme engineering efforts.

  3. In vitro antimicrobial activity of AH Plus, EndoREZ and Epiphany against microorganisms

    Directory of Open Access Journals (Sweden)

    Lilian Eiko Maekawa

    2012-01-01

    Full Text Available Objective : The aim of the present study was to evaluate the antimicrobial activity of endodontic sealers against microorganisms. Materials and Methods : The agar diffusion method was used. A double base layer of Mueller Hinton agar was done. The microorganisms used were: Candida albicans, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The wells were obtained by removing a standardized portion of the agar. After the distribution of the sealers, Petri plates were incubated for 24 h. Inhibition halos formed around the wells were measured. Results : Epiphany did not show any antimicrobial activity on the tested microorganisms (without inhibition halo. The AH Plus showed the greatest inhibition halo on C. albicans followed by EndoREZ on S. aureus. EndoREZ also showed greater inhibition halo in comparison to AH Plus on E. faecalis and E. coli. Conclusion : It could be concluded that AH Plus and EndoREZ showed antimicrobial activity against all the tested microorganisms. No antimicrobial activity was observed for Epiphany.

  4. 40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Use of specific microorganisms in activities conducted outside a structure. 725.239 Section 725.239 Protection of Environment ENVIRONMENTAL... Bradyrhizobium japonicum. (2) Modification of traits. (i) The introduced genetic material must meet the...

  5. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    Science.gov (United States)

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively. PMID:26641641

  6. Antimicrobial activity of Zhumeria majdae Rech.F.& Wendelbo essential oil against different microorganisms from Iran

    Directory of Open Access Journals (Sweden)

    Mahboubi Mohaddese

    2009-01-01

    Full Text Available The monotypic Zhumeria majdae Rech.F. & Wendelbo was recently described as the first member of new genus Zhumeria (Lamiaceae. In Iranian folk medicine, the leaves of plant were used for antiseptic properties. The antimicrobial activity of Zhumeria majdae essential oil was evaluated against a panel of microorganisms including gram negative, gram positive, yeast and fungi using disc diffusion method and micro broth dilution assay. Generally, the oil exhibited similar levels of antimicrobial activity against different microorganisms but some microorganisms appear to be more sensitive. In particular, oil showed significant power against Klebsiella pneumoniae followed by Staphylococcus aureus, Staphylococcus saprophyticus, Vibrio cholera, Staphylococcus epidermidis and Bacillus cereus. Klebsiella pneumoniae with MIC and MBC values 0.5, 1 μl ml -1 was the most sensitive among the tested microorganisms. The oil showed bactericidal activity against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Enterobacter aerugenes. The oil showed inhibitory effect against Bacillus subtilis, Proteus vulgaris, Aspergillus flavus and Aspergillus niger. Salmonella typhi and Pseudomonas aeruginosa among Gram negative bacteria and Bacillus subtilis among Gram positive ones and Aspergillus niger among fungi and yeast were the most resistant to the essential oil.

  7. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Min Gao; Junxin Liu; Xuesong Guo

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols.Most previous work has focused on the evaluation of their biological risks.In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch.Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms.The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr.Over 85%of airborne bacteria and fungi emitted from thc oxidation ditch were adsorbed within 80 hr of continuous operation mode.Most of them had a particle size of 0.65-4.7 μm.Those airborne microorganisms with small particle size were apt to be adsorbed.The SEM/EDAX,BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC.Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms.Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon.High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon.Microscopic observation was also carried out to investigate original and used adsorbents.

  8. Distribution of the indigenous microorganisms and mechanisms of their orientational activation in Daqing Oilfield

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The distribution of indigenous microorganisms was surveyed in Block 1 of Daqing Oilfield. Based on this survey,the indigenous microorganisms in the formation water were activated with different activator systems at the simulated stratum ecological environment. The changes of the number of bacteria of various physiological groups were determined during the process of activation. Also changes of pH value and composition of gas productions were analyzed at the end of culturing. The results showed that the selected block formation water contained a great number of saprophytic bacteria,hydrocarbon-oxidizing bacteria,fermentative bacteria,methane-producing bacteria and sulfate-reducing bacteria. Under the conditions that the growth of sulfate-reducing bacteria was controlled the block had the potential to enhance oil recovery by activating beneficial bacteria. The growth of sulfate-reducing bacteria can be inhibited through the activation of nitrate-reducing bacteria. The number of nitratereducing bacteria reached 106―107 cells/mL,but sulfate-reducing bacteria reached only 0―45 cells/mL in A system. Methane-producing bacteria can be activated by C,D activators. The relative content of biological methane in the light hydrocarbon gas reached 80% in C,D systems. B activator was conducive to the propagation of acid-producing bacteria,so that the pH value of the culture medium decreased from 7.5 to around 5.0. Hydrocarbon-oxidizing bacteria can be activated by various activator systems. There was low molecular light hydrocarbon in gas production according to the analysis of gas chromatograph. According to the content of methane and the number of methane-producing bacteria,methane only can be generated through activating methane-producing bacteria. By choosing different activator systems,various populations of indigenous microorganisms can be activated accordingly.

  9. Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections.

    Science.gov (United States)

    Pereira, Juliana Vianna; Bergamo, Débora Cristina Baldoqui; Pereira, José Odair; França, Suzelei de Castro; Pietro, Rosemeire Cristina Linhares Rodrigues; Silva-Sousa, Yara T Corrêa

    2005-01-01

    This study evaluated in vitro the antimicrobial activity of rough extracts from leaves of Arctium lappa and their phases. The following microorganisms, commonly found in the oral cavity, specifically in endodontic infections, were used: Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis and Candida albicans. The agar-diffusion method allowed detection of the hexanic phase as an inhibitor of microbial growth. Bioautographic assays identified antimicrobial substances in the extract. The results showed the existence, in the rough hexanic phase and in its fractions, of constituents that have retention factors (Rf) in three distinct zones, thereby suggesting the presence of active constituents with chemical structures of different polarities that exhibited specificity against the target microorganisms. It may be concluded that the Arctium lappa constituents exhibited a great microbial inhibition potential against the tested endodontic pathogens.

  10. Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms.

    Science.gov (United States)

    Fernando, Nadeesha L; Fedorak, Phillip M

    2005-11-01

    In 1976, the activated sludge sewage treatment plant in Edmonton, Canada, was surveyed to determine the numbers of culturable airborne microorganisms. Many changes have been made at the plant to reduce odors and improve treatment efficiency, so in 2004 another survey was done to determine if these changes had reduced the bioaerosols. Covering the grit tanks and primary settling tanks greatly reduced the numbers of airborne microbes. Changing the design and operation of indoor automated sampling taps and sinks also reduced bioaerosols. The secondary was expanded and converted from a conventional activated sludge process using coarse bubble aeration to a biological nutrient removal system using fine bubble aeration. Although the surface area of the secondary more than doubled, the average number of airborne microorganisms in this part of the plant in 2004 was about 1% of that in 1976.

  11. Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions

    Directory of Open Access Journals (Sweden)

    Kalaji Hazem M.

    2016-06-01

    Full Text Available Effective microorganisms impact on photosynthetic activity of Arabidopsis plant grown under salinity stress conditions. Salinity is one of the main abiotic stressors which affects plant growth through various physiological processes such as photosynthesis. The aim of this work is to study the impact of salinity stress on Arabidopsis plants by evaluating plant growth rate and photosynthetic activity, while investigating the influence of effective microorganisms (EMs with the objective to determine if EMs could alleviate the induced stress affiliated with salinity. Results showed that salinity negatively affects photosynthesis efficiency in Arabidopsis plants based on the data obtained from the measured chlorophyll fluorescence parameters. Additionally, application of EMs enhanced plant tolerance to counteract the induced stress. Effective microorganisms concentration of 10 mL/L suggested to bring about the best results. This work advocates, that quantum efficiency of photosystem II (PSII is a reliable indicator for tolerance in Arabidopsis plants to salinity stress, the impact of which may be softened by the EMs.

  12. Assessment of lipolytic activity of isolated microorganisms from the savannah of the Tocantins

    Directory of Open Access Journals (Sweden)

    Marysa de Kássia Guedes Soares

    2015-10-01

    Full Text Available Current study assesses the biodiversity and selects lipase-producer microorganisms with industrial interest, from the savannah of the state of Tocantins, Brazil. Seventeen pequi microorganisms (Caryocar brasiliense were isolated in the decomposition stage and 35 microorganisms were retrieved from the soil fraction under the collected pequi. Yarrowia lypolitica strain was used as positive control in all assays. The 52 strains were subjected to tests in a solid medium with Tween 20 for checking halos formed by crystals, indicating lipase production by inoculated strains. Another test to confirm lipase producers was conducted in microplates with liquid medium and enriched with p-nitrophenyl palmitate (pNPP monitored at 410 ηm. The AS16 and AP5 strains showed the highest activity for test conditions, namely, 0.072 and 0.067 U mL-1 respectively. Rates were higher than the lipase activity of Yarrowia lypolitica(0.052 U mL-1, a reference strain in current assay.

  13. Demonstrated in vitro activity of nitrogenase (C2H2) rhizosphere microorganisms in sugarcane

    International Nuclear Information System (INIS)

    The sugar cane (Saccharum officinarum L.) and rice (Oryza sativa var K 017) production improvement is an urgency for tropical developing countries. In order to investigate the associative N2 fixing activity by rhizospheric microorganisms, experiments were made on Sugar cane and rice cultivated in Zaire. In vitro evidence of the Acetylene Reduction Activity (ARA) was obtained from root pe ices of sugar cane and rice seedlings (six weeks old) growing on synthetic medium supplemented with rhizospheric soil dilutions. The determined ARA was higher in root cane samples than in rice seedling cultures.

  14. Antimicrobial activity of methanolic extracts of selected marine macroalgae against some pathogenic microorganisms

    Institute of Scientific and Technical Information of China (English)

    Ehab Omer Abdalla; Mohammed Taha Abdalla Shigidi; Hassan Elsubki Khalid; Nahid Abdel Rahim Osman

    2016-01-01

    Objective:To evaluate the antimicrobial activity of methanolic extracts of six marine macroalgae belonging to green algae (Chlorophyceae), brown algae (Phaeophyceae) and the red algae (Rhodophyceae) collected from the intertidal area of the Sudanese Red Sea coast near Port Sudan. Methods:Methanol was used for extracting the active principles of the algae and the disc diffusion method was performed to examine the activity and the minimum inhibitory concentration of the samples against four pathogenic bacteria and two fungi. Results: All tested algal extracts exhibited considerable bioactivity and inhibited the growth of all pathogenic microorganisms under investigation. The green alga Caulerpa racemosa produced the maximum inhibition zone (21 mm) againstCandida albicans while the red alga Laurencia papillosa showed low antimicrobial activity with the minimum inhibition zone of 10 mm againstPseudomonas aeruginosa. The tested algal extracts did not show any special antimicrobial influence on the selected microorganisms when they were considered as Gram-positive and Gram-negative bacteria and fungi but the most efficient methanolic extracts in inhibiting microbial growth were those of green macroalgae followed by the brown and the red macroalgae respectively. Conclusions: The study demonstrated that the tested marine macroalgae from Sudanese Red Sea coast may represent a potential and alternative source for secondary metabolites with antimicrobial activity.

  15. [Regulation of biochar on matrix enzyme activities and microorganisms around cucumber roots under continuous cropping].

    Science.gov (United States)

    Zou, Chun-jiao; Zhang, Yong-yong; Zhang, Yi-ming; Guo, Xiao-ou; Li, Ming-jing; Li, Tian-lai

    2015-06-01

    The effects of addition of biochar on the matrix enzymes activity, microorganisms population and microbial community structure were evaluated under cucumber continuous cropping for 6 years (11 rotations). Cucumbers were grown in pots in greenhouse with 5% or 3% of medium (by mass) substituted with biochar. The control consisted of medium alone without biochar. The results showed that the activity of peroxidase was significantly improved to the level of the first rotation crop form 30 to 120 d after planting in both biochar treatments, with the effect of 5% biochar being more significant than that of 3% biochar. However, the neutral phosphatase activity was markedly reduced after biochar treatment. The addition of 5% biochar had significant regulation effect on the activities of invertase and urease from 30 to 90 d after planting, while the addition of 3% biochar had little effect. The populations of bacteria and actinomycetes were increased and the fungi population was reduced in both biochar treatments from 30 to 90 d after planting, and the effect of 5% biochar was more significant than that of 3% biochar. Meanwhile, the addition of biochar significantly increased the diversity of the bacterial community structure. In summary, biochar had obvious regulation effect on soil enzyme activity, microorganism quantity and microbial community in continuous cropping nutrition medium. PMID:26572031

  16. Evaluation of antimicrobial activity of alkaloids of Terminalia chebula Retz. against some multidrug-resistant microorganisms

    Directory of Open Access Journals (Sweden)

    Geeta Singh

    2012-01-01

    activity against nine bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus aureus, Bacillus subtilis, Raoultella planticola, Enterobacter aerogens, Agrobacterium tumefaciens, and Klebsiella pneumoniae and two fungi (Aspergillus flavus and Aspergillus niger and one yeast (Candida albicans. Minimum inhibitory concentration, Minimum bactericidal/fungicidal concentration, and Total activity of the extracts, against each sensitive test pathogen, were also evaluated. Alkaloids from all plant parts showed good antimicrobial activity against almost all the test microorganisms except A. niger, against which, none of the tested extracts showed activity. The largest zone of inhibition (IZ 20.75 mm was observed against P. aeruginosa. The total activity of the leaf alkaloid was found to be the same and the highest (256.41ml/g was against E. aerogens and A. tumefaciens.

  17. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases.

    Science.gov (United States)

    Cataldi, V; Di Bartolomeo, S; Di Campli, E; Nostro, A; Cellini, L; Di Giulio, M

    2015-12-01

    The failure of traditional antimicrobial treatments is becoming a worldwide problem. The use of Aloe vera is of particular interest for its role as curative agent and its efficacy in complementary therapies for a variety of illnesses. This study evaluated the antimicrobial activity of A. vera inner gel against a panel of microorganisms, Gram-positive and -negative bacteria, and Candida albicans. In addition to A. vera inner gel being used in the treatment of peptic ulcers, in dermatological treatments, and wound healing, it was also tested on the sessile phase of clinical Helicobacter pylori strains (including multi-drug-resistant strains) and on planktonic and sessile phase of Staphylococcus aureus/Pseudomonas aeruginosa clinical isolates from venous leg ulcers.A. vera inner gel expresses its prevalent activity against Gram-negative bacteria and C. albicans in respect to Gram-positive bacteria. The results of the A. vera antibiofilm activity showed a decrease of the produced biomass in a concentration-dependent-way, in each analyzed microorganism. The data obtained show that A. vera inner gel has both an antimicrobial and antibiofilm activity suggesting its potential use for the treatment of microbial infections, in particular for H. pylori gastric infection, especially in case of multi-drug-resistance, as well as for an effective wound dressing.

  18. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    Science.gov (United States)

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined. PMID:24866947

  19. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases.

    Science.gov (United States)

    Cataldi, V; Di Bartolomeo, S; Di Campli, E; Nostro, A; Cellini, L; Di Giulio, M

    2015-12-01

    The failure of traditional antimicrobial treatments is becoming a worldwide problem. The use of Aloe vera is of particular interest for its role as curative agent and its efficacy in complementary therapies for a variety of illnesses. This study evaluated the antimicrobial activity of A. vera inner gel against a panel of microorganisms, Gram-positive and -negative bacteria, and Candida albicans. In addition to A. vera inner gel being used in the treatment of peptic ulcers, in dermatological treatments, and wound healing, it was also tested on the sessile phase of clinical Helicobacter pylori strains (including multi-drug-resistant strains) and on planktonic and sessile phase of Staphylococcus aureus/Pseudomonas aeruginosa clinical isolates from venous leg ulcers.A. vera inner gel expresses its prevalent activity against Gram-negative bacteria and C. albicans in respect to Gram-positive bacteria. The results of the A. vera antibiofilm activity showed a decrease of the produced biomass in a concentration-dependent-way, in each analyzed microorganism. The data obtained show that A. vera inner gel has both an antimicrobial and antibiofilm activity suggesting its potential use for the treatment of microbial infections, in particular for H. pylori gastric infection, especially in case of multi-drug-resistance, as well as for an effective wound dressing. PMID:26526205

  20. VISUALIZATION OF BIOCHEMICAL ACTIVITY OF MICROORGANISMS GENUS AEROCOCCUS SPECIES AEROCOCCUS VIRIDANS

    Directory of Open Access Journals (Sweden)

    Stepansky DO

    2016-03-01

    Full Text Available Introduction. Aerococci are catalase-negative Gram-positive microorganisms, widespread in the environment, in the cold-blooded microbiocenoses [1, 2] and warm-blooded organisms [3]. Currently, there are seven species of the Aerococcus genus [4]. Type A. viridans got its name as a result of greening blood agar around the growing colonies. It was found that one of the products of A. viridans growth is hydrogen peroxide, has an antagonistic effect on various kinds of bacteria "in vitro" and "in vivo" [5]. It was subsequently found that hydrogen peroxide and superoxide radical are produced as a result of NAD-independent lactatoxidase [6,7] and piruvatoxidase functioning[8]. The oxidative ability of A. viridans is a distinctive feature and allows to visualize these properties using a specific indicator medium [9]. We have developed an indicator that enables to visualize oxidation and reduction properties of aerococci. Material & methods. Auto-symbiotic cultures of A. viridans was used for studying of oxidase - reductase activity, inoculated from human body, an industrial strain of A. viridans 167, used for the preparation of "A-bacterin", culture of Aureobasidium pullulans B5, isolated from the soil and having glucose oxidase activity [10]. Designed indicating medium were also tested in the inoculation of aerococci crops, having lactatoxidase activity of biomaterials from birds and mammals. As a basis for the indicating media (IM IM1 media was selected with following composition (g per 1 liter of water Iodide / potassium 26.0 Soluble starch 10.0 Nutrient agar 30.0 For visualization of oxidase-reductase activity of aerococci acellular components IM4 was developed based on IM3, in which distilled water after double purification was used instead of tap water and highly purified agar-agar was used instead of standard nutrient agar. Results & discussion. IM1 is used to test the oxidative properties of aerococci crops. IM manifests the appearance of a dark

  1. Active microorganisms as drivers of dynamic processes in soil: integration of basic teaching into research

    Science.gov (United States)

    Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2013-04-01

    Traditionally lecture courses, seminars and even practical training are disconnected from real experimental studies and from ongoing research projects. As a result students passively participate in lectures and are helpless when they come to the laboratory to prepare their BSc or MSc theses. We introduce a training course, which is developed for Bachelor students to integrate the basic knowledge on soil microbiology and modern microbiological methods in ecological studies. The training course is focused on the importance of active microbial biomass as biogeochemical driver of soil processes. According to our concept soil functioning is closely related to and depends on the microbial activities, and only active microorganisms drive all processes. Despite this importance of active microorganisms, the most of methods are focused on the estimation of the total microbial biomass and fail to evaluate its activity. Our course demonstrates how the active physiological state of soil microorganisms can be related to the activity indicators such as respiration, molecular biomarkers and viable cell compartments (ATP, PLFA, RNA) determined in situ in soil. Each lecture begins with the set of provocative questions "What is wrong?" which help students to activate their knowledge from previous lectures. Information on on-going soil incubation experiments is integrated in the lectures as a special block. The students are required not only to learn the existing methods but to compare them and to evaluate critically the applicability of these methods to explain the results of on-going experiments. The seminars foreseen within training course are focused on critical discussions of the protocols and their adaptations to current experimental tasks. During practical part of training courses the students are associated in small research groups with a certain ecological tasks. Each group uses soil sub-samples from ongoing experiments and thus, the experimental data obtaining during the

  2. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores.

    Science.gov (United States)

    Schmeller, T; Latz-Brüning, B; Wink, M

    1997-01-01

    The alkaloids berberine, palmatine and sanguinarine are toxic to insects and vertebrates and inhibit the multiplication of bacteria, fungi and viruses. Biochemical properties which may contribute to these allelochemical activities were analysed. Acetylcholine esterase, butyrylcholinesterase, choline acetyl transferase, alpha 1- and alpha 2-adrenergic, nicotinergic, muscarinergic and serotonin2 receptors were substantially affected. Sanguinarine appears to be the most effective inhibitor of choline acetyl-transferase (IC50 284 nM), while the protoberberines were inactive at this target. Berberine and palmatine were most active at the alpha 2-receptor (binding with IC50 476 and 956 nM, respectively). Furthermore, berberine and sanguinarine intercalate DNA, inhibit DNA synthesis and reverse transcriptase. In addition, sanguinarine (but not berberine) affects membrane permeability and berberine protein biosynthesis. In consequence, these biochemical activities may mediate chemical defence against microorganisms, viruses and herbivores in the plants producing these alkaloids.

  3. Overcoming of Soil Contamination with Pesticides in Forest Nurseries Using the Activity of Microorganisms

    Directory of Open Access Journals (Sweden)

    Irina A. Freiberg

    2010-01-01

    Full Text Available The use of pesticides during cultivation of pine seedlings in forest nurseries resultsin the formation two phenotypes of teratomorph seedlings – conditionally normal andabnormal. Growing forest cultures from teratomorph seedlings leads to their low survivalrate. It is known that pesticides and their metabolic products can remain in soil for manyyears. It is therefore impossible to rely only on natural degradation of pesticides in soil. Apromising way of removing pesticides from soil is their microbiological decomposition.This method is preferable because there is a meliorative organic substance not far from forestnurseries – i.e. forest litter rich in microorganisms. The purpose of these experimentswas to examine the influence of forest litter applied on pesticide decomposition in soil andmorphology of pine seedlings. The rates of forest litter that were most effective in decompositionof pesticides and the activity of microbial communities in litter, depending on foreststand structure, were determined. Estimation of that action was based on the morphologyof seedlings (rate of pine seedlings with normal, conditionally normal and abnormalphenotypes, intensity of CO2 emission from soil and catalase activity, which correlates withthe number of soil microorganisms. The results of these experiments showed the mosteffective activity of forest litter at the application rate of 20 kg/m2. The number of seedlingswith normal phenotype rose from 32% up to 40%. Besides, it was noted that saprophyteswere most effective in pine forest litter, which is characterized by a more acid reaction ofsoil solution, while most others were rich in fungi. The highest number of normal phenotypeseedlings, intensity of CO2 emission and activity of soil catalase were correlated withthe microbiological activity of the applied pine forest litter.

  4. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  5. Effect of Cl— on Behavior of Fertilizer Nitrogen, Number of Microorganisms and Enzyme Activities in Soils

    Institute of Scientific and Technical Information of China (English)

    SHIWEI-YONG; CHENGMEI-ZI; 等

    1994-01-01

    Pot experiments were conducted to study the effect of Cl- on transformation of fertilizer N,number of microorganisms and enzyme activities in soils.It is indicated that Cl- did not show significant influence on total number of bacteria,actinomyces and fungi,but significantly reduced the number of nitrosolbacteria, which led to decrease of NO3- content in the soil.Application of Cl- to soil could significantly enhance the adtivities of phosphatase and urease in the coastal saline soil and orthic aquisols,In hilly red soil,however,the application of Cl-1 at the rate of 500-1000mg Cl- kg-1 soil significantly decreased the activity of the two enzymes mentioned above.

  6. A site-specific curated database for the microorganisms of activated sludge and anaerobic digesters

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca;

    the composition and dynamics of the most abundant organisms. However, to understand the relationship between the population dynamics and operational parameters of the system, a functional role must be attributed to each organism. The Microbial Database for Activated Sludge (MiDAS) and Anaerobic Digesters (AD......) presented here provides a site specific curated taxonomy for abundant and important microorganisms and integrates it into a community knowledge web platform about the microbes in activated sludge (AS) and their associated ADs (www.midasfieldguide.org). The MiDAS taxonomy, a manual curation of the SILVA...... taxonomy, proposes putative names for each genus-level-taxon that can be used as a common vocabulary for all researchers in the field. The online database covers >250 genera found to be abundant and/or important in biological nutrient removal treatment plants, based on extensive in-house surveys with 16S r...

  7. Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Letícia Dias de Melo Carrasco

    2015-03-01

    Full Text Available The growing challenge of antimicrobial resistance to antibiotics requires novel synthetic drugs or new formulations for old drugs. Here, cationic nanostructured particles (NPs self-assembled from cationic bilayer fragments and polyelectrolytes are tested against four multidrug-resistant (MDR strains of clinical importance. The non-hemolytic poly(diallyldimethylammonium chloride (PDDA polymer as the outer NP layer shows a remarkable activity against these organisms. The mechanism of cell death involves bacterial membrane lysis as determined from the leakage of inner phosphorylated compounds and possibly disassembly of the NP with the appearance of multilayered fibers made of the NP components and the biopolymers withdrawn from the cell wall. The NPs display broad-spectrum activity against MDR microorganisms, including Gram-negative and Gram-positive bacteria and yeast.

  8. Biochar as carrier for plant nutrients and microorganisms - techniques of agro-activation

    Science.gov (United States)

    Schmidt, H.-P.

    2012-04-01

    The soil enhancing qualities of biochar are strongly linked to its influence on nutrient cycling dynamics, sorption dynamics and to changing habitat condition for soil fauna. But as shown in multiple studies, the addition of pure biochar to agricultural soils may provoke reduced plant growth caused by the immobilisation of plant nutrients. The very potent sorption dynamics of biochar makes it an effective carrier for plant nutrients and plant-root symbiotic microorganisms. At the Delinat-Institute, we tried sundry methods of charging biochars with organic and mineral plant nutrients as well as with microorganisms. This includes the use of biochar as bulk agent in aerobic composting, in malolactic fermentation and as treatment for liquid manure, but also formulations of mineral carbon-fertilizers. Those biochar products are tested in pot and also large scale field trials. Results and experiences of these trials as well as different activation methods will be explained. A short overview of industrial designing of biochar based products will be given.

  9. Investigating microbial activities of electrode-associated microorganisms in real-time

    Directory of Open Access Journals (Sweden)

    Sanja eAracic

    2014-11-01

    Full Text Available Electrode-associated microbial biofilms are essential to the function of bioelectrochemical systems. These systems exist in a number of different configurations but all rely on electroactive microorganisms utilizing an electrode as either an electron acceptor or an electron donor to catalyze biological processes. Investigations of the structure and function of electrode-associated biofilms are critical to further the understanding of how microbial communities are able to reduce and oxidize electrodes. The community structure of electrode-reducing biofilms is diverse and often dominated by Geobacter spp. whereas electrode-oxidizing biofilms are often dominated by other microorganisms. The application of a wide range of tools, such as high-throughput sequencing and metagenomic data analyses, provide insight into the structure and possible function of microbial communities on electrode surfaces. However, the development and application of techniques that monitor gene expression profiles in real-time are required for a more definite spatial and temporal understanding of the diversity and biological activities of these dynamic communities. This mini-review summarizes the key gene expression techniques used in bioelectrochemical systems research, which have led to a better understanding of population dynamics, cell-cell communication and molecule-surface interactions in mixed and pure BES communities

  10. Microorganism Billiards

    CERN Document Server

    Wahl, Colin; Spagnolie, Saverio E; Thiffeault, Jean-Luc

    2015-01-01

    Recent experiments and numerical simulations have shown that certain types of microorganisms "reflect" off of a flat surface at a critical angle of departure, independent of the angle of incidence. The nature of the reflection may be active (cell and flagellar contact with the surface) or passive (hydrodynamic) interactions. We explore the billiard-like motion of such a body inside a regular polygon and show that the dynamics can settle on a stable periodic orbit, or can be chaotic, depending on the swimmer's departure angle and the domain geometry. The dynamics are often found to be robust to the introduction of weak random fluctuations. The Lyapunov exponent of swimmer trajectories can be positive or negative, can have extremal values, and can have discontinuities depending on the degree of the polygon. A passive sorting device is proposed that traps swimmers of different departure angles into separate bins. We also study the external problem of a microorganism swimming in a patterned environment of square ...

  11. Enzyme activity and microorganisms diversity in soil contaminated with the Boreal 58 WG herbicide.

    Science.gov (United States)

    Kucharski, Jan; Tomkiel, Monika; Baćmaga, Małgorzata; Borowik, Agata; Wyszkowska, Jadwiga

    2016-07-01

    Next-generation herbicides are relatively safe when used properly, but the recommended rates are relatively low, which can lead to overdosing. This study evaluated the responses of soil-dwelling microorganisms and soil enzymes to contamination with the Boreal 58 WG herbicide. The analyzed product contains active ingredients flufenacet and isoxaflutole. All tests were performed under laboratory conditions. The analyzed material was sandy clay. Boreal 58 WG was introduced to soil in four doses. Soil without the addition of the herbicide served as the control. The soil was mixed with the tested herbicide, and its moisture content was maintained at 50% of capillary water capacity. Biochemical and microbiological analyses were performed on experimental days 0, 20, 40, 80 and 160. Accidental contamination of soil with the Boreal 58 WG herbicide led to a relatively minor imbalance in the soil microbiological and biochemical profile. The herbicide dose influenced dehydrogenase activity in only 0.84%, urease activity in 2.04%, β-glucosidase activity in 8.26%, catalase activity in 12.40%, arylsulfatase activity in 12.54%, acid phosphatase activity in 42.11%, numbers of organotrophic bacteria in 18.29%, actinomyces counts in 1.31% and fungi counts in 6.86%. PMID:27050595

  12. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan.

    Science.gov (United States)

    Green-Saxena, A; Feyzullayev, A; Hubert, C R J; Kallmeyer, J; Krueger, M; Sauer, P; Schulz, H-M; Orphan, V J

    2012-12-01

    Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment.

  13. Determination of the cellulolytic activities of microorganisms isolated from poultry litter for sawdust degradation

    Directory of Open Access Journals (Sweden)

    Akpomie O.OF

    2013-03-01

    Full Text Available Cellulolytic activities of bacterial and fungal isolates obtained from poultry droppings were determined using the ability of each isolate to produce clear zones on Carboxyl Methyl Cellulose Agar plates. The bacterial isolates were Klebsiella, Streptococcus, Celulomonas, Escherichia coli and Micrococus species. The cellulolytic counts ranged from 5.02 x 104 + 3.42 to 7.20 x 109 + 6.12 cfu/g. The cellulolytic activities of the bacterial isolates ranged from 0.04 to 0.26 iu/m with Cellulomonas having the highest cellulose activity. The fungal isolates were Aspergillus niger, Mucor mucedo, Trichoderma sp. and Penicllium chrysogenum with cellulose activities of 0.24 + 0.021 0.19 + 0.031, 0.23 + 0.05 and 0.23 + 0.028iu/ml respectively. All the isolates were able to degrade the sawdust to varying extent. The percentage degradation was highest with Micrococcus sp. (78.20% and least with Trichoderma sp. (65.83%. The study shows that is a potential source of cellulolytic microorganisms which could be employed in the degradation of sawdust.

  14. Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis.

    Science.gov (United States)

    Monnet, Christophe; Dugat-Bony, Eric; Swennen, Dominique; Beckerich, Jean-Marie; Irlinger, Françoise; Fraud, Sébastien; Bonnarme, Pascal

    2016-01-01

    The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how

  15. Investigation of the Activity of the Microorganisms in a Reblochon-Style Cheese by Metatranscriptomic Analysis.

    Science.gov (United States)

    Monnet, Christophe; Dugat-Bony, Eric; Swennen, Dominique; Beckerich, Jean-Marie; Irlinger, Françoise; Fraud, Sébastien; Bonnarme, Pascal

    2016-01-01

    The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), one ripening bacterium (Brevibacterium aurantiacum), and two yeasts (Debaryomyces hansenii and Geotrichum candidum). RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated ~75 million reads per sample. Except for B. aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids, and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The present study has exemplified how

  16. Investigation of the activity of the microorganisms in a Reblochon-style cheese by metatranscriptomic analysis

    Directory of Open Access Journals (Sweden)

    Christophe eMonnet

    2016-04-01

    Full Text Available The microbial communities in cheeses are composed of varying bacteria, yeasts, and molds, which contribute to the development of their typical sensory properties. In situ studies are needed to better understand their growth and activity during cheese ripening. Our objective was to investigate the activity of the microorganisms used for manufacturing a surface-ripened cheese by means of metatranscriptomic analysis. The cheeses were produced using two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, one ripening bacterium (Brevibacterium aurantiacum, and two yeasts (Debaryomyces hansenii and Geotrichum candidum. RNA was extracted from the cheese rinds and, after depletion of most ribosomal RNA, sequencing was performed using a short-read sequencing technology that generated approximately 75 million reads per sample. Except for Brevibacterium aurantiacum, which failed to grow in the cheeses, a large number of CDS reads were generated for the inoculated species, making it possible to investigate their individual transcriptome over time. From day 5 to day 35, G. candidum accounted for the largest proportion of CDS reads, suggesting that this species was the most active. Only minor changes occurred in the transcriptomes of the lactic acid bacteria. For the two yeasts, we compared the expression of genes involved in the catabolism of lactose, galactose, lactate, amino acids and free fatty acids. During ripening, genes involved in ammonia assimilation and galactose catabolism were down-regulated in the two species. Genes involved in amino acid catabolism were up-regulated in G. candidum from day 14 to day 35, whereas in D. hansenii, they were up-regulated mainly at day 35, suggesting that this species catabolized the cheese amino acids later. In addition, after 35 days of ripening, there was a down-regulation of genes involved in the electron transport chain, suggesting a lower cellular activity. The

  17. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms

    Science.gov (United States)

    García-Becerra, Ledy; Ortiz Martínez, David Mizael

    2016-01-01

    Biofilm is a complex microbial community highly resistant to antimicrobials. The formation of biofilms in biotic and abiotic surfaces is associated with high rates of morbidity and mortality in hospitalized patients. New alternatives for controlling infections have been proposed focusing on the therapeutic properties of medicinal plants and their antimicrobial effects. In the present study the antimicrobial and antibiofilm activities of 8 methanolic plant extracts were evaluated against clinical isolated microorganisms. Preliminary screening by diffusion well assay showed the antimicrobial activity of Prosopis laevigata, Opuntia ficus-indica, and Gutierrezia microcephala. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined ranging from 0.7 to >15 mg/mL. The specific biofilm formation index (SBF) was evaluated before and after the addition of plant extracts (MBC × 0.75). Opuntia ficus-indica caused the major reduction on SBF in dose-dependent manner. Cytotoxic activity of plant extracts was determined using brine shrimp lethality test (Artemia salina L.). Lethal Dose concentration (LD50 values) of the plant extracts was calculated. LD50 values for P. laevigata and G. microcephala were 141.6 and 323.3 µg/mL, respectively, while O. ficus-indica showed a slight lethality with 939.2 µg/mL. Phytochemical analyses reveal the presence of flavonoids, tannins, and coumarines.

  18. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms

    Directory of Open Access Journals (Sweden)

    Eduardo Sánchez

    2016-01-01

    Full Text Available Biofilm is a complex microbial community highly resistant to antimicrobials. The formation of biofilms in biotic and abiotic surfaces is associated with high rates of morbidity and mortality in hospitalized patients. New alternatives for controlling infections have been proposed focusing on the therapeutic properties of medicinal plants and their antimicrobial effects. In the present study the antimicrobial and antibiofilm activities of 8 methanolic plant extracts were evaluated against clinical isolated microorganisms. Preliminary screening by diffusion well assay showed the antimicrobial activity of Prosopis laevigata, Opuntia ficus-indica, and Gutierrezia microcephala. The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were determined ranging from 0.7 to >15 mg/mL. The specific biofilm formation index (SBF was evaluated before and after the addition of plant extracts (MBC × 0.75. Opuntia ficus-indica caused the major reduction on SBF in dose-dependent manner. Cytotoxic activity of plant extracts was determined using brine shrimp lethality test (Artemia salina L.. Lethal Dose concentration (LD50 values of the plant extracts was calculated. LD50 values for P. laevigata and G. microcephala were 141.6 and 323.3 µg/mL, respectively, while O. ficus-indica showed a slight lethality with 939.2 µg/mL. Phytochemical analyses reveal the presence of flavonoids, tannins, and coumarines.

  19. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms.

    Science.gov (United States)

    Sánchez, Eduardo; Rivas Morales, Catalina; Castillo, Sandra; Leos-Rivas, Catalina; García-Becerra, Ledy; Ortiz Martínez, David Mizael

    2016-01-01

    Biofilm is a complex microbial community highly resistant to antimicrobials. The formation of biofilms in biotic and abiotic surfaces is associated with high rates of morbidity and mortality in hospitalized patients. New alternatives for controlling infections have been proposed focusing on the therapeutic properties of medicinal plants and their antimicrobial effects. In the present study the antimicrobial and antibiofilm activities of 8 methanolic plant extracts were evaluated against clinical isolated microorganisms. Preliminary screening by diffusion well assay showed the antimicrobial activity of Prosopis laevigata, Opuntia ficus-indica, and Gutierrezia microcephala. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined ranging from 0.7 to >15 mg/mL. The specific biofilm formation index (SBF) was evaluated before and after the addition of plant extracts (MBC × 0.75). Opuntia ficus-indica caused the major reduction on SBF in dose-dependent manner. Cytotoxic activity of plant extracts was determined using brine shrimp lethality test (Artemia salina L.). Lethal Dose concentration (LD50 values) of the plant extracts was calculated. LD50 values for P. laevigata and G. microcephala were 141.6 and 323.3 µg/mL, respectively, while O. ficus-indica showed a slight lethality with 939.2 µg/mL. Phytochemical analyses reveal the presence of flavonoids, tannins, and coumarines. PMID:27429633

  20. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms

    Science.gov (United States)

    García-Becerra, Ledy; Ortiz Martínez, David Mizael

    2016-01-01

    Biofilm is a complex microbial community highly resistant to antimicrobials. The formation of biofilms in biotic and abiotic surfaces is associated with high rates of morbidity and mortality in hospitalized patients. New alternatives for controlling infections have been proposed focusing on the therapeutic properties of medicinal plants and their antimicrobial effects. In the present study the antimicrobial and antibiofilm activities of 8 methanolic plant extracts were evaluated against clinical isolated microorganisms. Preliminary screening by diffusion well assay showed the antimicrobial activity of Prosopis laevigata, Opuntia ficus-indica, and Gutierrezia microcephala. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined ranging from 0.7 to >15 mg/mL. The specific biofilm formation index (SBF) was evaluated before and after the addition of plant extracts (MBC × 0.75). Opuntia ficus-indica caused the major reduction on SBF in dose-dependent manner. Cytotoxic activity of plant extracts was determined using brine shrimp lethality test (Artemia salina L.). Lethal Dose concentration (LD50 values) of the plant extracts was calculated. LD50 values for P. laevigata and G. microcephala were 141.6 and 323.3 µg/mL, respectively, while O. ficus-indica showed a slight lethality with 939.2 µg/mL. Phytochemical analyses reveal the presence of flavonoids, tannins, and coumarines. PMID:27429633

  1. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan-peng; SHI Ji-yan; LIN Qi; CHEN Xin-cai; CHEN Ying-xu

    2007-01-01

    All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciation and availability. We studied the effects of heavy metal speciation and availability on soil microorganism activities along a Cu/Zn contamination gradient. Microbial biomass and enzyme activity of soil contaminated with both Cu and Zn were investigated. The results showed that microbial biomass was negatively affected by the elevated metal levels. The microbial biomass-C (Cmic)/organic C (Corg) ratio was closely correlated to heavy metal stress. There were negative correlations between soil microbial biomass, phosphatase activity and NH4NO3 extractable heavy metals. The soil microorganism activity could be predicted using empirical models with the availability of Cu and Zn. We observed that 72% of the variation in phosphatase activity could be explained by the NH4NO3-extractable and total heavy metal concentration. By considering different monitoring approaches and different viewpoints, this set of methods applied in this study seemed sensitive to site differences and contributed to a better understanding of the effects of heavy metals on the size and activity of microorganisms in soils. The data presented demonstrate the relationship between heavy metals availability and heavy metal toxicity to soil microorganism along a contamination gradient.

  2. Activities of microorganisms and enzymes in water-restricted environments: biological activities in aqueous compartments at micron scale

    Science.gov (United States)

    Hoppert, Michael; Mlejnek, Klaus; Seiffert, Beatrix; Mayer, Frank

    1997-07-01

    In water-in-oil microemulsions, microdroplets of water, surrounded by a layer of surfactant molecules (reversed micelles), are dispersed in an organic solvent. Various microorganisms (unicellular algae and cyanobacteria) and isolated enzymes were dispersed in microemulsions without loss of biological activity. Each biological system needed a defined quantity of water in the microemulsion for maximum activity. Under optimum conditions, microbial enzymes for various sources (hydrogenases, dehydrogenases) exhibited, besides ten-fold increase in specific activity, a temperature optimum up to 16 degree(s)C higher as compared to aqueous solutions. These experimental findings, together with theoretical considerations, imply that water structure inside reversed micelles is very different from free water, but similar to water in narrow compartments with polar or ionic surfaces. These compartments may represent a model system for environments, where (liquid) water is not available in bulk amounts, but embedded in an anhydrous matrix.

  3. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    Science.gov (United States)

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  4. In vitro evaluation of marine-microorganism extracts for anti-viral activity

    Directory of Open Access Journals (Sweden)

    Yasuhara-Bell Jarred

    2010-08-01

    Full Text Available Abstract Viral-induced infectious diseases represent a major health threat and their control remains an unachieved goal, due in part to the limited availability of effective anti-viral drugs and measures. The use of natural products in drug manufacturing is an ancient and well-established practice. Marine organisms are known producers of pharmacological and anti-viral agents. In this study, a total of 20 extracts from marine microorganisms were evaluated for their antiviral activity. These extracts were tested against two mammalian viruses, herpes simplex virus (HSV-1 and vesicular stomatitis virus (VSV, using Vero cells as the cell culture system, and two marine virus counterparts, channel catfish virus (CCV and snakehead rhabdovirus (SHRV, in their respective cell cultures (CCO and EPC. Evaluation of these extracts demonstrated that some possess antiviral potential. In sum, extracts 162M(4, 258M(1, 298M(4, 313(2, 331M(2, 367M(1 and 397(1 appear to be effective broad-spectrum antivirals with potential uses as prophylactic agents to prevent infection, as evident by their highly inhibitive effects against both virus types. Extract 313(2 shows the most potential in that it showed significantly high inhibition across all tested viruses. The samples tested in this study were crude extracts; therefore the development of antiviral application of the few potential extracts is dependent on future studies focused on the isolation of the active elements contained in these extracts.

  5. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Directory of Open Access Journals (Sweden)

    Zdeněk Farka

    2014-12-01

    Full Text Available Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter and passive (impedance analyzer modes of quartz crystal microbalance (QCM were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‑SMCC was most effective achieving the limit of detection (LOD 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  6. Reductive dehalogenation activity of indigenous microorganism in sediments of the Hackensack River, New Jersey.

    Science.gov (United States)

    Sohn, Seo Yean; Häggblom, Max M

    2016-07-01

    Organohalogen pollutants are of concern in many river and estuarine environments, such as the New York-New Jersey Harbor estuary and its tributaries. The Hackensack River is contaminated with various metals, hydrocarbons and halogenated organics, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins. In order to examine the potential for microbial reductive dechlorination by indigenous microorganisms, sediment samples were collected from five different estuarine locations along the Hackensack River. Hexachlorobenzene (HCB), hexabromobenzene (HBB), and pentachloroaniline (PCA) were selected as model organohalogen pollutants to assess anaerobic dehalogenating potential. Dechlorinating activity of HCB and PCA was observed in sediment microcosms for all sampling sites. HCB was dechlorinated via pentachlorobenzene (PeCB) and trichlorobenzene (TriCB) to dichlorobenzene (DCB). PCA was dechlorinated via tetrachloroaniline (TeCA), trichloroanilines (TriCA), and dichloroanilines (DCA) to monochloroaniline (MCA). No HBB debromination was observed over 12 months of incubation. However, with HCB as a co-substrate slow HBB debromination was observed with production of tetrabromobenzene (TeBB) and tribromobenzene (TriBB). Chloroflexi specific 16S rRNA gene PCR-DGGE followed by sequence analysis detected Dehalococcoides species in sediments of the freshwater location, but not in the estuarine site. Analysis targeting 12 putative reductive dehalogenase (rdh) genes showed that these were enriched concomitant with HCB or PCA dechlorination in freshwater sediment microcosms. PMID:27108041

  7. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  8. Antimicrobial activity of beta-lactams against multiresistant micro-organisms from the family Enterobacteriaceae, and genus Pseudomonas.

    Science.gov (United States)

    Niebla, A; González, I; Vallín, C

    1994-01-01

    The antimicrobial activity of twenty beta-lactams was determined against multiresistant micro-organisms from the Enterobacteriaceae family (450) and the genus Pseudomonas (90). The antimicrobial susceptibility was assessed by the disk diffusion method. The most effective antibiotics were cephalosporins of the second and third generation, and non-classical beta-lactams (imipenem and moxalactam). A pronounced resistance was found to carbenicillin, ampicillin, cephalotin and cefazolin. These resistance patterns corresponded to a high consumption of these antibiotics.

  9. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  10. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Science.gov (United States)

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. PMID:26836607

  11. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Brenchly, Jean E.

    2008-06-30

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolation of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.

  12. INVESTIGATION OF ANTIMICROBIAL ACTIVITY COMBINED PREPARATIONS FOR CLINICAL STRAINS OF MICROORGANISMS ISOLATED FROM PATIENTS WITH BACTERIAL VAGINIT

    Directory of Open Access Journals (Sweden)

    Aslanian M. A.

    2015-12-01

    Full Text Available The problem of bacterial vaginit in some cases the cause of severe infectious diseases genitalia of the fetus and newborn, which can impair the health of future generations. It is noted that the treatment of antibacterial agents observed numerous negative side effects- reducing the biochemical activity of the intestinal microflora, abuse microbiota, leading to the development of dysbiosis, increasing the number of resistant strains of pathogens, the risk of allergic reaction sand immunological disorders. A study was conducted towards finding effective combinations of drugs from different pharmacological groups means to create a combination of drugs. The aim of the study was to develop and explore and Flamini combination of miramistin combined medicines to treat bacterial vaginit. As a result of studies in patients with bacterial vaginit pathological material was isolated and identified 72 strains of microorganisms (Staphylococcus spp, Streptococcus spp, Enterococcus spp, Escherichia coli, Haemophillu sssp, Candida albican sand various strains of anaerobic microorganisms. For the combined treatment of infectious and in flammatory diseases (mixed infections in humans the combined drugin tablet form. All clinical strains of microorganisms isolated from patients with bacterial vaginit were tested for sensitivity to the combined preparation in tablet form with Flamini and miramistin. The greatest sensitivity to the drugs found clinical strains of microorganisms: Staphylococcu saureus, Staphylococcus epidermidis, Peptococcus niger (diameter zone growth retardation is 25,5-23,5 mm. composition tablets number 1 (0.05 g Flamini, miramistini 0.02 g, which was selected for further study shows bacteriostatic effect against a wide range of microorganisms and fungi Rod Candida. IPC for Staphylococcus sp was 20-25 pg / mL for Streptococcus sp 35,0-40,0 mg / ml, for intestinal group 35,0-40,0 for fungi 30,0 mg / ml unlike pills number 2 and number 3, where the

  13. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  14. Microorganisms for producing organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  15. Antifungal activity of a Saharan strain of Actinomadura sp. ACD1 against toxigenic fungi and other pathogenic microorganisms.

    Science.gov (United States)

    Lahoum, A; Aouiche, A; Bouras, N; Verheecke, C; Klenk, H-P; Sabaou, N; Mathieu, F

    2016-09-01

    A new strain of actinobacteria, designated ACD1, was isolated from a Saharan soil sample in the Hoggar region (Algeria). Morphological study led to this strain being classified as a member of the Actinomadura genus. Phylogenetic analysis based on the 16S rRNA gene showed that the strain is closely related to Actinomadura sediminis DSM 45500(T) (98.5% sequence similarity). Furthermore, strain ACD1 presented a strong activity against mycotoxigenic and phytopathogenic fungi, including Aspergillus and Fusarium strains, and other pathogenic microorganisms. The kinetics of antimicrobial activity were investigated on ISP-2, Bennett and TSB media. Four solvents (n-hexane, dichloromethane, ethyl acetate and n-butanol) were used for the extraction of the produced antibiotic. The highest antimicrobial activity was obtained using the butanolic extract from the ISP-2 medium after seven days of fermentation culture. The active antibiotic was purified by reverse-phase HPLC using a C18 column. The UV-visible and mass spectra were determined. The minimum inhibitory concentrations (MIC) of this antibiotic were determined against pathogenic microorganisms. PMID:26996355

  16. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory

    Institute of Scientific and Technical Information of China (English)

    HUANG Shun-hong; PENG Bing; YANG Zhi-hui; CHAI Li-yuan; ZHOU Li-cheng

    2009-01-01

    The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.

  17. Using Short-Term Enrichments and Metagenomics to Obtain Genomes from uncultured Activated Sludge Microorganisms

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Nielsen, Per Halkjær; Albertsen, Mads;

    exist today, but their ability to obtain complete genomes from complex microbial communities on a large scale is still inadequate (Lasken, 2012). In theory, conventional metagenomics should be able to recover genomes from complex communities, but in practice the approach is hampered by the presence...... of microdiversity. This leads to fragmented and chimeric de novo assemblies, which prevent the extraction of complete genomes. The new approach presented here involves reducing the impact of microdiversity and increasing genome extraction efficiency by what we term “metagenome triangulation”. The microdiversity...... was reduced by short-term enrichment under defined conditions favoring certain functional groups of organisms. Bioinformatic genome extraction was greatly improved by utilizing multiple metagenomes where the microorganisms were in different abundances. In this study we retrieved 15 complete genomes...

  18. Experimental and Theoretical Approaches for the Surface Interaction between Copper and Activated Sludge Microorganisms at Molecular Scale

    Science.gov (United States)

    Luo, Hong-Wei; Chen, Jie-Jie; Sheng, Guo-Ping; Su, Ji-Hu; Wei, Shi-Qiang; Yu, Han-Qing

    2014-11-01

    Interactions between metals and activated sludge microorganisms substantially affect the speciation, immobilization, transport, and bioavailability of trace heavy metals in biological wastewater treatment plants. In this study, the interaction of Cu(II), a typical heavy metal, onto activated sludge microorganisms was studied in-depth using a multi-technique approach. The complexing structure of Cu(II) on microbial surface was revealed by X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) analysis. EPR spectra indicated that Cu(II) was held in inner-sphere surface complexes of octahedral coordination with tetragonal distortion of axial elongation. XAFS analysis further suggested that the surface complexation between Cu(II) and microbial cells was the distorted inner-sphere coordinated octahedra containing four short equatorial bonds and two elongated axial bonds. To further validate the results obtained from the XAFS and EPR analysis, density functional theory calculations were carried out to explore the structural geometry of the Cu complexes. These results are useful to better understand the speciation, immobilization, transport, and bioavailability of metals in biological wastewater treatment plants.

  19. Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms

    Directory of Open Access Journals (Sweden)

    Grobler Sias R

    2008-07-01

    Full Text Available Abstract Background Honey has been shown to have wound healing properties which can be ascribed to its antimicrobial activity. The antimicrobial activity can be effective against a broad spectrum of bacterial species especially those of medical importance. It has also been shown that there is considerable variation in the antimicrobial potency of different types of honey, which is impossible to predict. With this in mind we tested the antimicrobial activity of honeys produced from plants grown in South Africa for their antibacterial properties on selected standard strains of oral micro-organisms. Methods The honeys used were produced from the blossoms of Eucalyptus cladocalyx (Bluegum trees, an indigenous South African plant Leucospermum cordifolium (Pincushion, a mixture of wild heather shrubs, mainly Erica species (Fynbos and a Leptospermum scoparium (Manuka honey. Only pure honey which had not been heated was used. The honeys were tested for their antimicrobial properties with a broth dilution method. Results Although the honeys produced some inhibitory effect on the growth of the micro-organisms, no exceptionally high activity occurred in the South African honeys. The carbohydrate concentration plays a key role in the antimicrobial activity of the honeys above 25%. However, these honeys do contain other antimicrobial properties that are effective against certain bacterial species at concentrations well below the hypertonic sugar concentration. The yeast C. albicans was more resistant to the honeys than the bacteria. The species S. anginosus and S. oralis were more sensitive to the honeys than the other test bacteria. Conclusion The honeys produced from indigenous wild flowers from South Africa had no exceptionally high activity that could afford medical grade status.

  20. Features of soil enzyme activities and the number of microorganisms in plantations and their relationships with soil nutrients in the Qinling Mountains,. China

    Institute of Scientific and Technical Information of China (English)

    Gang FU; Zengwen LIU; Fangfang CUI

    2009-01-01

    We studied the distribution of soil nutrients, the number of soil microorganisms, soil enzyme activities, and their relationships in pure and mixed plantations. Soil enzyme activities, the number of soil microorganisms, and soil nutrients were measured in plantations of Chinese pine (Pinustabulaeformis), larch (Larix kaempferi), sharp tooth oak (Quercus aliena var. acuteserrata), Manchurian catalpa (Catalpa fargesii), and mixed plantations in the Qinling Mountains, China. Compared with pure plantations, the conifer-broad-leaved broadleaf mixed plantations increased total N, available N, total P, available K, and organic matter in the forest soil; promoted the activities ofinvertase and urease by 16.7% and 53.8%; and increased the total amount of soil microorganisms by 95.9% and the number of bacteria by 104.5% (p<0.05). The correlations between soil enzymes, number of microorganisms, and soil nutrients were significant(p<0.05), and the correlations between the number of soil bacteria and basic nutrient prosperities (total N, available N, available K, and organic matter (OM)) were significant or highly significant. The correlations between the number of soil actinomycetes, and soil total N, available N, OM, and pH were also significant or highly significant. A suitable mixture of planted conifers and broad-leaved species improves the quality and amount of soil nutrients, increases the number of soil microorganisms and changes their redistribution. The change of soil enzymes and the number of soil microorganisms are indications of the change tendency of soil nutrients.

  1. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    Science.gov (United States)

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins. PMID:20580869

  2. [Distribution and activity of microorganisms in the deep repository for liquid radioactive waste at the Siberian Chemical Combine].

    Science.gov (United States)

    Nazina, T N; Luk'ianova, E A; Zakharova, E V; Ivoĭlov, V S; Poltaraus, A B; Kalmykov, S N; Beliaev, S S; Zubkov, A A

    2006-01-01

    The physicochemical conditions, composition of microbial communities, and the rates of anaerobic processes in the deep sandy horizons used as a repository for liquid radioactive wastes (LRW) at the Siberian Chemical Combine (Seversk, Tomsk oblast), were studied. Formation waters from the observation wells drilled into the production horizons of the radioactive waste disposal site were found to be inhabited by microorganisms of different physiological groups, including aerobic organotrophs, anaerobic fermentative, denitrifying, sulfate-reducing, and methanogenic bacteria. The density of microbial population, as determined by cultural methods, was low and usually did not exceed 10(4) cells/ml. Enrichment cultures of microorganisms producing gases (hydrogen, methane, carbon dioxide, and hydrogen sulfide) and capable of participation in the precipitation of metal sulfides were obtained from the waters of production horizons. The contemporary processes of sulfate reduction and methanogenesis were assayed; the rates of these terminal processes of organic matter destruction were found to be low. The denitrifying bacteria from the underground repository were capable of reducing the nitrates contained in the wastes, provided sources of energy and biogenic elements were available. Biosorption of radionuclides by the biomass of aerobic bacteria isolated from groundwater was demonstrated. The results obtained give us insight into the functional structure of the microbial community inhabiting the waters of repository production horizons. This study indicates that the numbers and activity of microbial cells are low both inside and outside the zone of radioactive waste dispersion, in spite of the long period of waste discharge.

  3. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    production. As an initial step in the search for a better biosurfactant-producing microorganism, 157 bacterial strains were screened for biosurfactant production under both aerobic and anaerobic conditions. A hundred and forty seven strains produced either equal or higher amounts of biosurfactant compared to B. mojavensis JF-2 and the 10 best strains were chosen for further study. In an attempt to increase biosurfactant production, a genetic recombination experiment was conducted by mixing germinating spores of four of the best strains with B. mojavensis JF-2. Biosurfactant production was higher with the mixed spore culture than in the cocultures containing B. mojavensis JF-2 and each of the other 4 strains or in a mixed culture containing all five strains that had not undergone genetic exchange. Four isolates were obtained from the mixed spores culture that gave higher biosurfactant production than any of the original strains. Repetitive sequence-based polymerase chain reaction analysis showed differences in the band pattern for these strains compared to the parent strains, suggesting the occurrence of genetic recombination. We have a large collection of biosurfactant-producing microorganisms and a natural mechanism to improve biosurfactant production in these organisms.

  4. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    Science.gov (United States)

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  5. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    Science.gov (United States)

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  6. Nucleic-acid characterization of the identity and activity of subsurface microorganisms

    Science.gov (United States)

    Madsen, E. L.

    Nucleic-acid approaches to characterizing naturally occurring microorganisms in their habitats have risen to prominence during the last decade. Extraction of deoxyribonucleic-acid (DNA) and ribonucleic-acid (RNA) biomarkers directly from environmental samples provides a new means of gathering information in microbial ecology. This review article defines: (1) the subsurface habitat; (2) what nucleic-acid procedures are; and (3) the types of information nucleic-acid procedures can and cannot reveal. Recent literature examining microbial nucleic acids in the terrestrial subsurface is tabulated and reviewed. The majority of effort to date has focused upon insights into the identity and phylogeny of subsurface microorganisms afforded by analysis of their 16S rRNA genes. Given the power of nucleic-acid-based procedures and their limited application to subsurface habitats to date, many future opportunities await exploration. Au cours des derniers dix ans, les approches basées sur les acides nucléiques sont apparues et devenues essentielles pour caractériser dans leurs habitats les microorganismes existant à l'état naturel. L'extraction directe de l'ADN et de l'ARN, qui sont des biomarqueurs, d'échantillons environnementaux a fourni un nouveau moyen d'obtenir des informations sur l'écologie microbienne. Cet article synthétique définit 1) l'habitat souterrain, 2) ce que sont les procédures basées sur les acides nucléiques, 3) quel type d'informations ces procéedures peuvent et ne peuvent pas révéler. Les travaux récemment publiés concernatn les acides nucléiques microbiens dans le milieu souterrain terrestre sont catalogués et passés en revue. La majorité des efforts pour obtenir es données s'est concentrée sur l'identité et la phylogénie des microorganismes souterrains fournies par l'analyse de leurs gènes 16S rRNA. Étant donné la puissance des procédures basées sur les acides nucléiques et leur application limitée aux habitats souterrains

  7. Comparative antimicrobial activity of ceftibuten against multiply-resistant microorganisms from Belgium.

    Science.gov (United States)

    Verbist, L; Jacobs, J; Hens, K

    1991-01-01

    To study the activity of ceftibuten, we obtained multiply-resistant isolates from approximately 20 hospitals in Belgium. Against Enterobacteriaceae, all of the tested comparative compounds were more active than cefaclor, and ceftibuten and tigemonam were the most active of the agents tested. Ceftibuten MIC50s were less than or equal to 1 microgram/ml for most enteric bacilli species and 85% of strains were susceptible (less than or equal to 8 micrograms/ml). This level of activity compared favorably to that recorded for cefaclor (less than or equal to 8 micrograms/ml), cefetamet (less than or equal to 4 micrograms/ml), and cefteram (less than or equal to 1 microgram/ml), that is, 37%, 69%, and 59%, respectively. Ceftibuten, cefetamet, cefteram, and tigemonam were highly active against isolates of Haemophilus influenzae and Neisseria gonorrhoeae. None of the comparative agents were as active as cefaclor against staphylococcal isolates. Against streptococci, cefteram was the most active, and tigemonam the least active of the agents. The MIC90s of ceftibuten for strains of Streptococcus pneumoniae and Streptococcus pyogenes were 2 micrograms/ml and 0.5 microgram/ml, respectively. Strains of Streptococcus agalactiae were resistant to both ceftibuten and tigemonam; cefaclor and cefteram inhibited 100% of isolates of this species. Strains of Enterococcus faecalis and Pseudomonas aeruginosa were consistently resistant to all of the compounds. Overall, ceftibuten exhibited potent activity against many multiply-resistant clinical isolates. PMID:1901535

  8. Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere.

    Science.gov (United States)

    Means, Nathan E; Kremer, Robert J; Ramsier, Clifford

    2007-02-01

    A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.

  9. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    Science.gov (United States)

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %). PMID:27469174

  10. Antibacterial activity of (--cubebin isolated from Piper cubeba and its semisynthetic derivatives against microorganisms that cause endodontic infections

    Directory of Open Access Journals (Sweden)

    Karen C.S. Rezende

    2016-06-01

    Full Text Available Abstract Recent publications have highlighted the numerous biological activities attributed to the lignan (--cubebin (1, Piper cubeba L. f., Piperaceae, and ongoing studies have focused on its structural optimization, in order to obtain derivatives with greater pharmacological potential. The aim of this study was the obtainment of (1, its semisynthetic derivatives and evaluation of antibacterial activity. The extract of the seeds of P. cubeba was chromatographed, subjected to recrystallization and was analyzed by HPLC and spectrometric techniques. It was used for the synthesis of: (--O-methylcubebin (2, (--O-benzylcubebin (3, (--O-acetylcubebin (4, (--O-(N, N-dimethylamino-ethyl-cubebin (5, (--hinokinin (6 and (--6.6'-dinitrohinokinin (7. The evaluation of the antibacterial activity has been done by broth microdilution technique for determination of the minimum inhibitory concentration and the minimum bactericidal concentration against Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces naeslundii, Bacteroides fragilis and Fusobacterium nucleatum. It was possible to make an analysis regarding the relationship between structure and antimicrobial activity of derivatives against microorganisms that cause endodontic infections. The most promising were minimum inhibitory concentration =50 µg/ml against P. gingivalis by (2 and (3, and minimum inhibitory concentration =100 µg/ml against B. fragilis by (6. Cytotoxicity assays demonstrated that (1 and its derivatives do not display toxicity.

  11. EVALUATION OF ANTIMICROBIAL ACTIVITIES PROPERTIES OF BASELLA RUBRA METHANOLIC EXTRACTS ON SELECTED MICROORGANISMS.

    OpenAIRE

    Krishana Priya; Ankur Gupta; Surabhi Mahajan; Agnihotri, R. K.; Rajendra Sharma

    2015-01-01

    In vitro antibacterial activity of Basella rubra commonly used by the Indian community was analyzed in this study. Traditional uses of Basella rubra include general tonics and over-the-counter medications used to treat specific conditions or diseases. The present study examined the antibacterial activity of Basella rubra extract using the disk diffusion method as part of the process of understanding the chemistry, toxicity and efficacy of Basella rubra extract. Methanolic extracts of the h...

  12. Optimization of 14C-lysine concentration and specific activity for the radiometric detection of microorganisms

    International Nuclear Information System (INIS)

    The sensitivity of the radiometric detection of microbial contamination based on the labeling of cells by 14C-lysine was studied as a function of the lysineconcentration and its specific activity for a strain of E. coli and a strain of S. cerevisiae. It was found that best conditions of detection were given by a labelled lysine specific activity of 200 mCsub(i)/mmole and a medium radioactivity of 0.2 μCsub(i)/ml. (orig.)

  13. The Development of a New Practical Activity: Using Microorganisms to Model Gas Cycling

    Science.gov (United States)

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2014-01-01

    For many in the school science classroom, the term "microbiology" has become synonymous with "bacteriology". By overlooking other microbes, teachers may miss out on powerful practical tools. This article describes the development of an activity that uses algae and yeast to demonstrate gas cycling, and presents full instructions…

  14. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms

    NARCIS (Netherlands)

    Bosmans, Lien; De Bruijn, I.; de Mot, Rene; Readers, Hans; Lievens, Bart

    2016-01-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens.Weshowed thatwhen using the samemedium, but different agar compositions, the activity of a bacterial antagonist against Agrobacteriumwas strongly affected.

  15. The comparative activity of pefloxacin, enoxacin, ciprofloxacin and 13 other antimicrobial agents against enteropathogenic microorganisms.

    Science.gov (United States)

    Vanhoof, R; Hubrechts, J M; Roebben, E; Nyssen, H J; Nulens, E; Leger, J; De Schepper, N

    1986-01-01

    In this study, we compared the activity of pefloxacin, enoxacin and ciprofloxacin against 269 enteropathogenic strains (Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella typhi, Shigella spp., Vibrio cholerae and Yersinia enterocolitica) with that of rosoxacin, flumequin, nifuroxazide, erythromycin, chloramphenicol, ampicillin, cefotaxime, tetracycline, amikacin, netilmicin, sulfamethoxazole, trimethoprim and co-trimoxazole. Pefloxacin, enoxacin and ciprofloxacin were always among the most active compounds. Furthermore, resistant strains or strains with elevated MIC values were not found. The MIC90 value for these three compounds was less than or equal to 0.25 mg/l, except for C. jejuni where it was 0.3 mg/l and 1.4 mg/l for pefloxacin and enoxacin, respectively. PMID:3546145

  16. ANTIMICROBIAL ACTIVITY OF MICROORGANISMS AND COLLOIDAL SILVER BASED ON COMPLEX MATERIALS

    Directory of Open Access Journals (Sweden)

    Voitenko O. Yu.

    2014-02-01

    Full Text Available The antimicrobial properties of complex materials containing ultradispersed silver particles directly formed in the Candida albіcans, Escherichia сolі, Pseudomonas fluorescens, and Bacillus cereus cell walls were investigated. Complex material based on pseudomonas was more active against gram-positive bacteria, the yeast like fungi based material was mainly active against colibacillus. After a cell-matrix treatment in a hypertonic solution or by acid hydrolysis, the antimicrobial properties of complex materials increased by 20—40%. In a liquid-phase medium, the complex materials with incorporated silver particles in composition with antibiotics strengthened anti-microbial properties of chloramphenicol, tetracycline and amoxiclav antibiotics with respect to E. faecalis, as well as penicillin antibiotics (ceftriaxone, cefotaxime, amoxicillin, amoxiclav against E. coli. The obtained data can serve as a basis for development of the new antibacterial and fungicide cells based materials impregnated with ultradispersed substances.

  17. Rapid determination of filamentous microorganisms in activated sludge; Determinacion rapida de microorganismos filamentosos en fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Jimenez, C.; Estevez, F. [Empresa Municipal de Abastecimiento y Saneamiento de Aguas de Sevilla (Spain)

    1999-07-01

    Despite many methods available biomass estimation of a bioprocess may sometimes become laborious and impracticable. Samples containing filamentous organisms, as in Wastewater Treatment Plants, present special counting difficulties. If they are abundant they may need to be estimated separately. In this work a counting method for these organisms is show. The main goal is to improve chlorination of activated sludge suffering bulking or foaming through a quantitative record of filamentous bacteria. (Author) 12 refs.

  18. EVALUATION OF ANTIMICROBIAL ACTIVITIES PROPERTIES OF BASELLA RUBRA METHANOLIC EXTRACTS ON SELECTED MICROORGANISMS.

    Directory of Open Access Journals (Sweden)

    Krishana Priya

    2015-02-01

    Full Text Available In vitro antibacterial activity of Basella rubra commonly used by the Indian community was analyzed in this study. Traditional uses of Basella rubra include general tonics and over-the-counter medications used to treat specific conditions or diseases. The present study examined the antibacterial activity of Basella rubra extract using the disk diffusion method as part of the process of understanding the chemistry, toxicity and efficacy of Basella rubra extract. Methanolic extracts of the herb were examined using a standard antimicrobial disk diffusion method. Extracts were tested against E. coli (MTCC No. 1652, Pseudomonas aeruginosa (MTCC No. 424, Bacillus subtilis (MTCC No. 2393 and Aspergillus flavus (MTCC No. 277 bacteria. The inhibition zones were significantly different in each plant extract. The methanolic extract of leaves showed activity with zone at (MIC of 3.125 mg/ml against E.coli and Pseudomonas aeruginosa followed by Bacillus subtilis (MIC of 6.25 mg/ml, Aspergillus flavus (MIC of 12.5 mg/ml while methanolic extract of stem showed activity with zone at (MIC of 3.125 mg/ml against E.coli, followed by Pseudomonas aeruginosa (MIC of 6.25 mg/ml, Bacillus subtilis (MIC of 12.5 mg/ml, Aspergillus flavus (MIC of 25 mg/ml. The phytochemical components of the methanolic extracts of the leaf and stem of Basella rubra showed the presence of different compounds such as leaf showed presence of steroids and carbohydrates, while stem extract showed presence of Tannin flavonoids and steroids. This study serves as basis for further research on Basella rubra extract.

  19. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  20. Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms.

    Science.gov (United States)

    Foresi, Noelia; Correa-Aragunde, Natalia; Santolini, Jerome; Lamattina, Lorenzo

    2016-01-01

    Nitric oxide (NO) functions as a signaling molecule in many biological processes in species belonging to all kingdoms of life. In animal cells, NO is synthesized primarily by NO synthase (NOS), an enzyme that catalyze the NADPH-dependent oxidation of L-arginine to NO and L-citrulline. Three NOS isoforms have been identified, the constitutive neuronal NOS (nNOS) and endothelial NOS (eNOS) and one inducible (iNOS). Plant NO synthesis is complex and is a matter of ongoing investigation and debate. Despite evidence of an Arg-dependent pathway for NO synthesis in plants, no plant NOS homologs to animal forms have been identified to date. In plants, there is also evidence for a nitrate-dependent mechanism of NO synthesis, catalyzed by cytosolic nitrate reductase. The existence of a NOS enzyme in the plant kingdom, from the tiny single-celled green alga Ostreococcus tauri was reported in 2010. O. tauri shares a common ancestor with higher plants and is considered to be part of an early diverging class within the green plant lineage.In this chapter we describe detailed protocols to study the expression and characterization of the enzymatic activity of NOS from O. tauri. The most used methods for the characterization of a canonical NOS are the analysis of spectral properties of the oxyferrous complex in the heme domain, the oxyhemoglobin (oxyHb) and citrulline assays and the NADPH oxidation for in vitro analysis of its activity or the use of fluorescent probes and Griess assay for in vivo NO determination. We further discuss the advantages and drawbacks of each method. Finally, we remark factors associated to the measurement of NOS activity in photosynthetic organisms that can generate misunderstandings in the interpretation of results. PMID:27094418

  1. Volatile constituents of Dianthus rupicola Biv. from Sicily: activity against microorganisms affecting cellulosic objects.

    Science.gov (United States)

    Casiglia, Simona; Bruno, Maurizio; Senatore, Felice

    2014-01-01

    Dianthus rupicola Biv. (cliffs carnation) is a camephytic, suffruticous, perennial plant growing up to 40 cm high. The plant is widespread in Sicily and neighbouring islands (Egadi, Lampedusa, Lipari) and in some areas of southern Italy. GC and GC-MS analyses of the essential oil distilled from the flowers showed the presence of 66 components. Its composition is characterised by the high content of thymol and carvacrol derivatives. A good antibacterial activity against Bacillus cereus and Bacillussubtilis, both infesting cellulosic historical material, was shown, whereas the antioxidant capacity was determined to be quite poor.

  2. MiDAS: A curated database for the microorganisms of activated sludge and anaerobic digesters

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca;

    A deep understanding of the microbial communities and dynamics in wastewater treatment systems is a powerful tool for process optimization and design (Rittmann et al., 2006). With the advent of amplicon sequencing of the 16S rRNA gene, the diversity within the microbial communities can now...... web platform about the microbes in activated sludge and their associated ADs. The MiDAS taxonomy proposes putative names for each genus-level-taxon that can be used as a common vocabulary for all researchers in the field....

  3. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms.

    Science.gov (United States)

    Abedini, A; Roumy, V; Mahieux, S; Gohari, A; Farimani, M M; Rivière, C; Samaillie, J; Sahpaz, S; Bailleul, F; Neut, C; Hennebelle, T

    2014-10-01

    The antimicrobial activities of 44 methanolic extracts from different parts of Iranian indigenous plant species used in traditional medicines of Iran were tested against a panel of 35 pathogenic and multiresistant bacteria and 1 yeast. The antimicrobial efficacy was determined using Müller-Hinton agar in Petri dishes seeded by a multiple inoculator and minimal inhibition concentration (MIC) method. The 21 most active extracts (MIC < 0·3 mg ml(-1) for one or several micro-organisms) were submitted to a more refined measurement. The best antibacterial activity was obtained by 10 plants. Microdilution assays allowed to determinate the MIC and MBC of the 21 most active extracts. The lowest achieved MIC value was 78 μg ml(-1), with 4 extracts. This work confirms the antimicrobial activity of assayed plants and suggests further examination to identify the chemical structure of their antimicrobial compounds. Significance and impact of the study: This study describes the antimicrobial screening of Iranian plant extracts chosen according to traditional practice against 36 microbial strains, from reference culture collections or recent clinical isolates, and enables to select 4 candidates for further chemical characterization and biological assessment: Dorema ammoniacum, Ferula assa-foetida, Ferulago contracta (seeds) and Perovskia abrotanoides (aerial parts). This may be useful in the development of potential antimicrobial agents, from easily harvested and highly sustainable plant parts. Moreover, the weak extent of cross-resistance between plant extracts and antibiotics warrants further research and may promote a strategy based on less potent but time-trained products. PMID:24888993

  4. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2015-01-01

    Full Text Available The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100 °C fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates were measured in laboratory incubations with 35S-sulfate over a range of temperatures, with microbial activity limited by the availability of organic electron donors. Thermodynamic calculations indicate energetic constraints for metabolism in the higher temperature, more altered and isolated fluids, which together with relatively higher cell-specific sulfate reduction rates reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic sulfate-reducing microorganisms. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling.

  5. Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms

    Directory of Open Access Journals (Sweden)

    Tipparat Hongpattarakere

    2008-04-01

    Full Text Available Ethyl acetate extracts and hydrodistillated-essential oils from peels of Citrus spp. were investigated for their antimicrobial activities against food related microorganisms by broth microdilution assay. Overall, ethyl acetate extracts from all citrus peels showed stronger antimicrobial activities than their essential oils obtained from hydrodistillation. The ethyl acetate extract of kaffir lime (Citrus hystrix DC. peel showed broad spectrum of inhibition against all Gram-positive bacteria, yeast and molds including Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Saccharomyces cerevisiae var. sake and Aspergillus fumigatus TISTR 3180. It exhibited minimum inhibitory concentration (MIC values of 0.28 and 0.56 mg/ml against Sac. cerevisiae var. sake and B. cereus, respectively while the minimum bactericidal concentration (MBC values against both microbes were 0.56 mg/ml. The MIC values of the extract against L. monocytogenes, A. fumigatus TISTR 3180 and S. aureus were 1.13 mg/ml while the MBC values against L. monocytogenes as well as A. fumigatus TISTR 3180 and S. aureus were 2.25 and 1.13 mg/ml, respectively. The major components of the ethyl acetate extract from kaffir lime were limonene (31.64 %, citronellal (25.96 % and b-pinene (6.83 % whereas b-pinene (30.48 %, sabinene (22.75 % and citronellal (15.66 % appeared to be major compounds of the essential oil obtained from hydrodistillation.

  6. Effect of gamma irradiation on the activity of some microorganisms producing biogenic amines in some foods

    International Nuclear Information System (INIS)

    The effect of gamma irradiation on the proximate chemical composition ( moisture content , protein , fat, ash) chemical freshness tests (TBA, TVB-N, TMA, FAN, ph) and microbiological changes (total bacterial count, proteolytic bacteria, Enterobacteriaceae, moulds and yeasts counts) occurred in sardine fish and pastirma during cold storage at (4 ± 1 degree C) were fully investigated. Furthermore, the bacterial activity causing the formation of biogenic amines were also studied. In addition, the determination of biogenic amines in sardine fish and pastirma produced by these bacteria were explored. The effects of irradiation doses (1, 3 and 5 kGy) which were applied as a trial to reduce biogenic amines formation in sardine fish and pastirma were also investigated. In addition, the effect of the tested irradiation doses (1, 3 and 5 kGy) on organoleptic properties of the treated sardine fish and pastirma were determined.

  7. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Živković Svetlana

    2010-01-01

    Full Text Available The antagonistic activities of five biocontrol agents: Trichoderma harzianum, Gliocladium roseum, Bacillus subtilis, Streptomyces noursei and Streptomyces natalensis, were tested in vitro against Colletotrichum acutatum and Colletotrichum gloeosporioides, the causal agents of anthracnose disease in fruit crops. The microbial antagonists inhibited mycelial growth in the dual culture assay and conidial germination of Colletotrichum isolates. The two Streptomyces species exhibited the strongest antagonism against isolates of C. acutatum and C. gloeosporioides. Microscopic examination showed that the most common mode of action was antibiosis. The results of this study identify T. harzianum, G. roseum, B. subtilis, S. natalensis and S. noursei as promising biological control agents for further testing against anthracnose disease in fruits. .

  8. Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms.

    Science.gov (United States)

    Kim, Yeon-Hee; Kim, Jeong Hwan; Jin, Hyung-Joo; Lee, Si Young

    2013-06-01

    Laminaria japonica is a brown alga, which is consumed widely in Korea, Japan, and China. This study investigated the antimicrobial activity of ethanol extracts of L. japonica against oral microbial species to assess the possible application of L. japonica extracts in dental care products. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in culture medium using a microdilution method. The MICs of ethanol extracts of L. japonica with oral streptococci were 62.5-500 μg/ml and the MBCs were 125-1000 μg/ml. The MICs of Actinomyces naeslundii and Actinomyces odontolyticus were 250 and 62.5 μg/ml, respectively. The MBCs of A. naeslundii and A. odontolyticus were 500 and 250 μg/ml, respectively. The MICs were 250 and 62.5 μg/ml for Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. The killing of Streptococcus mutans and P. gingivalis was dependent on the incubation time. The killing of S. mutans, A. odontolyticus, and P. gingivalis was significantly dependent on the extract concentration. Bacterial treatment with L. japonica extracts changed the cell surface texture of S. mutans, A. odontolyticus, and P. gingivalis. The results of this study suggest that L. japonica extracts may be useful for the development of antimicrobial agents to combat oral pathogens. PMID:23583539

  9. "Petit suisse" cheese from kefir: an alternative dessert with microorganisms of probiotic activity

    Directory of Open Access Journals (Sweden)

    Thanise Sabrina Souza Santos

    2012-09-01

    Full Text Available "Petit Suisse" is a creamy cheese. Kefir is a symbiotic mixture of lactic acid bacteria and yeasts with probiotic activity including immunomodulation and balance of intestinal microflora. The present study aims to develop "Petit Suisse" cheese from kefir. Kefir grains were grown in pasteurized cow milk, and after the separation of kefir the serum was discarded and the "Petit Suisse" cheese was prepared using strawberry, mangaba, herbs, and dried tomatoes. The acceptance of the different preparations was evaluated using a nine-point hedonic scale followed by ANOVA. The sweet and salty products were compared by the Student's t-test. Purchase intent was evaluated by the means test and frequency distribution. All products were well accepted by the judges. The product was characterized by low yield, but it can be prepared at home at low cost. The nutritional composition analyses and the variety of flavors as well as the range of age of the judges are alternatives for further studies.

  10. In vitro antiplaque activity of octenidine dihydrochloride (WIN 41464-2) against preformed plaques of selected oral plaque-forming microorganisms.

    OpenAIRE

    Slee, A M; O'Connor, J R

    1983-01-01

    The antibacterial activity of octenidine dihydrochloride (WIN 41464-2) against intact preformed in vitro plaques of four indigenous oral plaque-forming microorganisms, Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Actinomyces naeslundii, was studied. Both absolute (plaque bactericidal index) and relative (chlorhexidine coefficient) indices of antiplaque efficacy were established. Octenidine dihydrochloride compared favorably with chlorhexidine digluconate with respect...

  11. EVALUATION OF PHOSPHATE SOLUBILIZING MICROORGANISMS (PSMs FROM RHIZOSPHERE SOIL OF DIFFERENT CROP PLANTS AND ITS ANTAGONISTIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Samikan Krishnakumar

    2014-04-01

    Full Text Available Indigenous rhizosphere soil samples were collected during study period (October 2011 – March 2012 of different crop plant from Thiruvannamalai District, Tamilnadu, India for the enumeration of Phosphate solubilizing microorganisms (PSMs. Efficient phosphate solubilizing bacteria, fungi and heterotrophic bacteria were enumerated. Maximum heterotrophic bacterial populations (19.4 X105, phosphate solubilizing bacteria (4.7 X 105 were recorded in the month of February and phosphate solubilizing fungi (3.9 X 102 were documented in the month of December in rhizosphere soil of ground nut. Minimum bacterial populations (14.3 X 105 were observed in rhizosphere soil of chilli in the month of March. Lowest phosphate solubilizing bacteria (1.2 X105 and phosphate solubilzing fungi (1.2 X 102 were observed in rhizosphere soil of paddy during the month of October. Phosphate solubilizing bacteria Pseudomonassp. - BS1, Bacillus sp. – BS2, Micrococcus sp. – BS3 and fungi Aspergillus sp. – FS1, Penicillium sp. – FS2.and Trichoderma sp. – FS3 were identified. Pseudomonas sp. - BS1. exhibited maximum solubilizing efficiency (SE and solubilizing index (SI of 300.0 and 4.0 respectively. In fungi Aspergillus sp. – FS1 showed a maximum solubilizing efficiency (SE and solubilizing index(SI of 283.3 and 3.8 respectively. Antagonistic activity of P-solubilizing Pseudomonassp. - BS1 was deliberated against selected fungal plant pathogens. Among pathogens studied Aspergillus sp. showed a maximum inhibition activity (16 mm and minimum activity (12 mm was observed against Fusarium sp. Moreover inhibition efficiency (IE and inhibition index (II of Pseudomonas sp. - BS1. also calculated base on the antagonistic activity. Aspergillus sp. exhibited highest inhibition efficiency and inhibition index of 166.6 and 3.6 respectively.

  12. Biological Activity of Methyl tert-butyl Ether in Relation to Soil Microorganisms has a Negative Environmental Impact

    Directory of Open Access Journals (Sweden)

    Gholam H.S. Bonjar

    2005-01-01

    Full Text Available Fuel oxygenates are added to gasoline to enhance combustion efficiency of automobiles and reduce air pollution. Methyl tert-butyl ether (MTBE is the most commonly used oxygenate because of its low cost, high-octane level and ease of blending with gasoline. However, due to its water solubility, high mobility and low biodegradability it leaches in soil subsurface at the speed of groundwater. Amending gasoline with MTBE has made a widespread contamination of groundwater, surface waters in coastal environments and at low levels in well water. Although current public concern about MTBE contamination is widely discussed, but its adverse effects on soil micro flora is not yet understood. Soil Streptomycetes are beneficial to soil productivity and are of the major contributors to the biological buffering of soils having antagonistic activity against wide spectrum of pathogenic bacteria and fungi. Streptomyceticidal activity of Methyl tert-butyl ether (MTBE is being reported here. Adverse effect of MTBE against four soil-inhabitant Streptomyces spp. isolates and two plant root-pathogens was investigated. To elucidate antimicrobial activity of MTBE, it was tested against four soil isolates of Streptomyces; a plant bacterial-pathogen, Erwinia carotovora and a plant root fungal-pathogen, Fusarium solani. MTBE did not reveal any growth inhibitory-activity against E. carotovora and F. solani but showed strong inhibitory effect against Streptomyces spp. isolates. The Minimum Inhibitory Concentration (MIC was 1/800 of the original MTBE. Fuel leaks and spills can adversely suppress or eliminate the Streptomyces role in the soil causing alteration in the balance of soil micro flora. This change will lead to domination of microorganisms with adverse biological or ecological effects. Fortunately, major oil companies have decided to phase out MTBE from automobile fuels because of its adverse effect on environment and human health.

  13. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the phen

  14. Investigation of CO2 induced biogeochemical reactions and active microorganisms of two German gas fields

    Science.gov (United States)

    Hoth, N.; Kassahun, A.; Seifert, J.; Krüger, M.; Bretschneider, H.; Gniese, C.; Frerichs, J.; Simon, A.; Simon, E.; Muschalle, T.

    2009-04-01

    can be summarised, that mainly the differences between wells treated with chemical foams (to enhance the gas lift) and such without this treatment have to take into account. The autoclave experiments for the Schneeren site show the importance of biogeochemical reactions for the long-term pressure behaviour of the storage unit. During autotrophic (CO2 consuming) metabolic activities a CO2 turnover into the liquid and solid phase takes place (DOC increase, carbonate phase formation). Without the knowledge of these biogeochemical induced processes the accompanied decreasing pressure can be interpreted wrongly as a leaky storage unit. That's why a well-founded biogeochemical process understanding is important.

  15. Study on the killing of oceanic harmful micro-organisms in ship's ballast water using oxygen active particles

    International Nuclear Information System (INIS)

    Global Environment Facility has identified that the spread of marine invasive alien species is one of the four major risk factors threatening the safety of global marine environments. Ballast water discharge is the main cause of biological invasion. With physical methods of strong electric field ionization discharge at atmospheric pressure, O2 and sea water (gaseous) were ionized, and then dissociated to a number of oxygen active particles (ROS) such as ·OH, O2+, H2O+, etc. ROS was injected into 0.6 t h−1 ballast water treatment system to form high concentration ROS solution in order to kill the harmful micro-organisms in ballast water. According to the land-based test standard of International Maritime Organization (IMO) Guidelines for Approval of Ballast Water Management Systems (G8), this paper concludes that single-cell algae of 3.0 × 104 cell ml−1 and bacteria of 2.0 × 104 cfu ml−1 were killed by ROS solution of 2.0 ppm. Death rate could reach almost 100%. The results meet the requirements of Regulation D-2 of International Convention for the Control and Management of Ships' Ballast Water and Sediments completely.

  16. Serine Hydroxymethyltransferase from the Cold Adapted Microorganism Psychromonas ingrahamii: A Low Temperature Active Enzyme with Broad Substrate Specificity

    Directory of Open Access Journals (Sweden)

    Stefano Pascarella

    2012-01-01

    Full Text Available Serine hydroxymethyltransferase from the psychrophilic microorganism Psychromonas ingrahamii was expressed in Escherichia coli and purified as a His-tag fusion protein. The enzyme was characterized with respect to its spectroscopic, catalytic, and thermodynamic properties. The properties of the psychrophilic enzyme have been contrasted with the characteristics of the homologous counterpart from E. coli, which has been structurally and functionally characterized in depth and with which it shares 75% sequence identity. Spectroscopic measures confirmed that the psychrophilic enzyme displays structural properties almost identical to those of the mesophilic counterpart. At variance, the P. ingrahamii enzyme showed decreased thermostability and high specific activity at low temperature, both of which are typical features of cold adapted enzymes. Furthermore, it was a more efficient biocatalyst compared to E. coli serine hydroxymethyltransferase (SHMT particularly for side reactions. Many β-hydroxy-α-amino acids are SHMT substrates and represent important compounds in the synthesis of pharmaceuticals, agrochemicals and food additives. Thanks to these attractive properties, this enzyme could have a significant potential for biotechnological applications.

  17. Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor "indicator microorganism"

    Directory of Open Access Journals (Sweden)

    Ambrosiadis Ioannis

    2006-10-01

    Full Text Available Abstract Background Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. However, information on indicator microorganisms' performance and comparisons in bacteriocin determination with bioassays is almost non-existing in the literature. The aim of the present work was to evaluate the parameter "indicator microorganism" in bioassays carried out on solid -agar diffusion assay- and liquid -turbidometric assay- substrates, applied in the quantification of the most studied bacteriocin nisin. Results The performance of characterized microorganisms of known sources, belonging to the genera of Lactobacillus, Pediococcus, Micrococcus and Leuconostoc, has been assessed in this work in the assays of plate agar diffusion and turbidometry. Dose responses and sensitivities were examined and compared over a range of assay variables in standard bacteriocin solutions, fermentation broth filtrates and processed food samples. Measurements on inhibition zones produced on agar plates were made by means of digital image analysis. The data produced were analyzed statistically using the ANOVA technique and pairwise comparisons tests. Sensitivity limits and linearity of responses to bacteriocin varied significantly among different test-microorganisms in both applied methods, the lower sensitivity limits depending on both the test-microorganism and the applied method. In both methods, however, only two of the nine tested microorganisms (Lactobacillus curvatus ATCC 51436 and Pediococcus acidilactici ATCC 25740 were sensitive to very low concentrations of the bacteriocin and produced a linear-type of response in all kinds of samples used in this work. In all cases, very low bacteriocin concentrations, e.g. 1 IU/ml nisin, were more accurately determined in the turbidometric assay. Conclusion The present work shows that in

  18. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars

    Directory of Open Access Journals (Sweden)

    Raquel Lourdes Faria

    2011-10-01

    Full Text Available OBJECTIVE: The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L. Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. MATERIAL AND METHODS: Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash. First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group. After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group. For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL. RESULTS: The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. CONCLUSIONS: Calendula officinalis L. and Camellia sinensis (L. Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate.

  19. Phytochemical profiles and antimicrobial activity of aromatic Malaysian herb extracts against food-borne pathogenic and food spoilage microorganisms.

    Science.gov (United States)

    Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah

    2014-04-01

    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.

  20. The influence of super-high-frequency radiation on the enzyme activity and number of microorganisms in soils of southern Russia

    Science.gov (United States)

    Denisova, T. V.; Kolesnikov, S. I.

    2009-04-01

    The effects of super-high-frequency radiation (SHF radiation) on the microflora and enzymatic activity of an ordinary chernozem, a chestnut soil, a brown forest soil, and gray sands were studied. The exposure time of the 800-W SHF radiation was 30 s, 1, 10, and 60 min. The activity of the soil enzymes (catalase and invertase) was found to be more resistant to the action of SHF radiation than the number of microorganisms (ammonifying bacteria (including sporogenous ones), bacteria of the genus Azotobacter, and micromycetes). According to the resistance of the enzymes, the soils studied form the following sequence: gray sands > ordinary chernozem ≥ chestnut soil > brown forest soil. Under the action of the SHF radiation, the number of microorganisms in the ordinary chernozem decreased to a lesser extent.

  1. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 470C and 700C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  2. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles.

    Science.gov (United States)

    Casiglia, Simona; Jemia, Mariem Ben; Riccobono, Luana; Bruno, Maurizio; Scandolera, Elia; Senatore, Felice

    2015-01-01

    In this study the chemical composition of the essential oil from aerial parts of Moluccella spinosa L. collected in Sicily was evaluated by GC and GC-MS. The main components of M. spinosa L. were α-pinene (26.6%), caryophyllene oxide (16.8%) and β-caryophyllene (8.6%). A comparison with other studied oils of genus Moluccella is made. Antibacterial and antifungal activities against some microorganisms infesting historical textiles were also determined. PMID:25554361

  3. Antimicrobial activity of cationic gemini surfactant containing an oxycarbonyl group in the lipophilic portion against gram-positive and gram-negative microorganisms.

    Science.gov (United States)

    Tatsumi, Taiga; Imai, Yoshitane; Kawaguchi, Kakuhiro; Miyano, Naoko; Ikeda, Isao

    2014-01-01

    We evaluated the antimicrobial activities of a cationic Gemini surfactant, trans-1,4-bis[2-(alkanoyloxy)ethyldimethylammonio]-2-butene dichloride [II-m-2(t-butene)] and its derivatives against Gram-positive and Gram-negative microorganisms. The II-m-2(t-butene) compound was previously shown to have good surface activity and biodegradability. A dodecanoyloxy derivative (m = 12) of II-m-2(t-butene) showed excellent antimicrobial activity against Gram-positive Streptococcus aureus [minimum inhibitory concentration (MIC): 7.8 μg/mL] and Gram-negative Escherichia coli (MIC: 31.2 μg/mL). PMID:24420061

  4. 2-(Nitroaryl)benzothiazole and benzoxazole derivatives as fluorogenic substrates for the detection of nitroreductase activity in clinically important microorganisms.

    Science.gov (United States)

    Cellier, Marie; Gignoux, Amandine; James, Arthur L; Orenga, Sylvain; Perry, John D; Robinson, Shaun N; Stanforth, Stephen P; Turnbull, Graeme

    2015-12-15

    A series of carboxy-substituted 2-(nitroaryl)benzothiazole derivatives and carboxy-substituted 2-(nitroaryl)benzoxazole derivatives were prepared and evaluated as potential nitroreductase substrates for the purpose of detecting clinically important microorganisms. Several of the substrates produced highly fluorescent colonies with the majority of a panel of 10 Gram-negative bacteria and also with two of a panel of 8 Gram-positive bacteria.

  5. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms.

    Science.gov (United States)

    LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J

    2015-10-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671

  6. Abundance and activity of soil microorganisms in Cedrus atlantica forests are more related to land use than to altitude or latitude

    Science.gov (United States)

    Ramírez Rojas, Irene; Perez Fernandez, María; Moreno Gallardo, Laura; Lechuga Ordoñez, Victor; Linares, Juan Carlos

    2016-04-01

    Several environmental traits might change the abundance and the function of soil microorganisms in forest soils by plant-mediated reactions. Few studies have related the landscape-scale forest structural diversity with the micro-scale distribution of microorganism and their activities. High mountain environments harbor ecosystems that are very sensitive to global change and hence highly vulnerable, as those of Atlantic cedar. Altitudinal gradients in mountains are orrelated with changes in vegetation. We propose that altitudinal gradients drive shifts in microbial communities and are correlated with land uses. Thus, the latitudinal and longitudinal pattern of abundance and activity of soil micro-organisms was studied in an intercontinental comparison. We investigate soil extractable organic carbon (EOC) and nitrogen and carbon, microbial biomass and microbial metabolic activities at eight different sites along the latitudinal range of Cedrus atlantica, covering different altitudes and soils characteristics both in Southern Spain and Northern Morocco. Analyses of the abundances of total bacteria, (16S rRNA gene), was conducted using the Ilumina metagenomics technique. Results show that the stands at the highest altitudes had distinct microbial and biochemical characteristics compared with other areas. Overall, microbial activity, as measured by soil respiration, is higher in forests subjected to lower human pressure than in stands highly degraded, probably reflecting the quality of litter input that results of the influence of local assemblage of different tree, shrub and annual species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Our results suggest that in contrast to the observed pronounced altitudinal changes, the kind of human-mediate land management has a stronger role in defining changes in microbial composition and activities in the investigated forest systems.

  7. Microorganisms, Organic Carbon, and Their Relationship with Oxidant Activity in Hyper-Arid Mars-Like Soils: Implications for Soil Habitability

    Science.gov (United States)

    Valdivia-Silva, Julio E.; Karouia, Fathi; Navarro-Gonzalez, Rafael; McKay, Christopher

    2016-01-01

    Soil samples from the hyper-arid region in the Atacama 23 Desert in Southern Peru (La Joya Desert) were analyzed for total and labile organic carbon (TOC & LOC), phospholipid fatty acids analysis (PLFA), quantitative real time polymerase chain reaction (qRT-PCR), 4',6- diamidino-2-phenylindole (DAPI)-fluorescent microscopy, culturable microorganisms, and oxidant activity, in order to understand the relationship between the presence of organic matter and microorganisms in these types of soils. TOC content levels were similar to the labile pool of carbon suggesting the absence of recalcitrant carbon in these soils. The range of LOC was from 2 to 60 micro-g/g of soil. PLFA analysis indicated a maximum of 2.3 x 10(exp 5) cell equivalents/g. Culturing of soil extracts yielded 1.1 x 10(exp 2)-3.7 x 10(exp 3) CFU/g. qRT-PCR showed between 1.0 x 10(exp 2) and 8 x 10(exp 3) cells/g; and DAPI fluorescent staining indicated bacteria counts up to 5 x 104 cells/g. Arid and semiarid samples (controls) showed values between 10(exp 7) and 10(exp 11) cells/g with all of the methods used. Importantly, the concentration of microorganisms in hyper-arid soils did not show any correlation with the organic carbon content; however, there was a significant dependence on the oxidant activity present in these soil samples evaluated as the capacity to decompose sodium formate in 10 hours. We suggest that the analysis of oxidant activity could be a useful indicator of the microbial habitability in hyper-arid soils, obviating the need to measure water activity over time. This approach could be useful in astrobiological studies on other worlds.

  8. Textiles for protection against microorganism

    Science.gov (United States)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  9. ATIVIDADE ENZIMÁTICA DE MICRORGANISMOS ISOLADOS DO JACATUPÉ (Pachyrhizus erosus L. Urban ENZYMATIC ACTIVITY OF MICROORGANISMS ISOLATED FROM YAM BEAN LEGUME (Pachyrhizus erosus L. Urban

    Directory of Open Access Journals (Sweden)

    Tânia L. Montenegro STAMFORD

    1998-10-01

    Full Text Available O isolamento e a identificação de microrganismos produtores de enzimas de interesse comercial, utilizando tubérculos de jacatupé (Pachyrhizus erosus L. Urban, foi o objetivo principal deste trabalho. Isolaram-se microrganismos endofíticos e epifíticos identificados por observação micromorfológica. A avaliação da atividade enzimática das linhagens foi determinada pelo método de difusão em ágar. As sessenta e oito linhagens isoladas dos tubérculos de jacatupé foram cultivadas em meio sólido específico para amilase, lipase, protease e celulase por 96h a 280 C. Os microrganismos epifíticos encontrados foram Pithomyces (7,3%, Aspergillus (19,2%, Fusarium (5,9% e Trichoderma (5,8%, e os endofíticos foram Mucor (7,3%, Rhizopus (10,3%, Bacillus (19,0%, Staphylococcus (10,3% e Nocardiopsis (15%. As linhagens de Nocardiopsis sp. apresentaram atividade lipolítica superior à do padrão, porém a atividade amilolítica não apresentou diferença significativa comparada com o padrão. As linhagens de Mucor sp., Pithomyces sp. e Staphylococcus sp. produziram atividade proteolítica abaixo do padrão. Nenhum isolado apresentou atividade celulolítica.The isolation and identification of microorganisms that produce enzyme of commercial interest utilizing tubers of yam bean legume (Pachyrrizus erosus L. Urban was the main objective of this work. Endophytic and epiphytic microorganisms were isolated by micromorphologyc observation. The agar diffusion method was used to determine the enzymatic activity. Sixty-eight isolates from yam bean tubers were cultured at 280 C in solid medium specific to amylase, lipase, protease and cellulase for 96h. The epiphytic microorganisms Pithomyces (7,3%, Aspergillus (19,2%, Fusarium (5,9% and Trichoderma (5,8% and the endophytic microorganisms Mucor (7,3%, Rhizopus (10,3% Bacillus (19%, Staphylococcus (10,3% and Nocardiopsis (15% were isolated. Compared to the specific standard culture Nocardiopsis sp. showed

  10. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts.

    Science.gov (United States)

    Casiglia, Simona; Bruno, Maurizio; Senatore, Federica; Senatore, Felice

    2015-01-01

    Essential oil of the aerial parts of Allium neapolitanum Cirillo collected in Sicily were analyzed by gas-chromatography-flame-ionization detection and gas-chromatography-mass spectrometry. Nineteen compounds were identified in the oil and the main components were found to be (E)-chrysanthenyl acetate (28.1%), (Z)-chrysanthenyl acetate (23.8%), (E)-β-farnesene (9.6%), dimethyl trisulfide (9.6%), camphor (7.4%), methyl allyl disulfide (6.8%) and 1-methyl-3-allyl trisulfide (5.8%). The essential oil showed good antimicrobial activity against 11 strains of test microorganisms, including several species infesting historical material. PMID:26632947

  11. Chemical Composition of the Essential Oil of Bupleurum fontanesii (Apiaceae) Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts.

    Science.gov (United States)

    Casiglia, Simona; Bruno, Maurizio; Senatore, Federica; Senatore, Felice

    2016-01-01

    Hydrodistillation of the flowers (BpFI) of and fruits (BpFr) of Bupleurumfontanesii Guss. ex Caruel gave two oils that were analyzed by GC and GC-MS. The main components were α-elemol (16.7%), caryophyllene oxide (16.4%) and heptacosane (15.9%) in BpFl, and spathulenol (16.8%), caryophylladienol I (13.2%) and α-elemol (12.8%) in BpFr. A good antimicrobial activity against several microorganisms, including Bacillus subtilis, Staphylococcus aureus, Fusarium oxysporum and Aspergillus niger, all infesting historical art craft, was also determined. PMID:26996033

  12. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture.

    Science.gov (United States)

    Romanowicz, Karl J; Freedman, Zachary B; Upchurch, Rima A; Argiroff, William A; Zak, Donald R

    2016-10-01

    Predicting the impact of environmental change on soil microbial functions requires an understanding of how environmental factors shape microbial composition. Here, we investigated the influence of environmental factors on bacterial and fungal communities across an expanse of northern hardwood forest in Michigan, USA, which spans a 500-km regional climate gradient. We quantified soil microbial community composition using high-throughput DNA sequencing on coextracted rDNA (i.e. total community) and rRNA (i.e. active community). Within both bacteria and fungi, total and active communities were compositionally distinct from one another across the regional gradient (bacteria P = 0.01; fungi P soil moisture, pH, SOM carboxyl content, as well as C and N concentration. Our study highlights the importance of distinguishing between metabolically active microorganisms and the total community, and emphasizes that the same environmental factors shape the total and active communities of bacteria and fungi in this ecosystem. PMID:27387909

  13. Response of microbial extracellular enzyme activities and r- vs. K- selected microorganisms to elevated atmospheric CO2 depends on soil aggregate size

    Science.gov (United States)

    Dorodnikov, Maxim; Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov

    2014-05-01

    Increased belowground carbon (C) transfer by plant roots under elevated atmospheric CO2 and the contrasting environment in soil macro- and microaggregates could affect properties of the microbial community in the rhizosphere. We evaluated the effect of 5 years of elevated CO2 (550 ppm) on four extracellular enzymes: ß-glucosidase, chitinase, phosphatase, and sulfatase along with the contribution of fast- (r-strategists) and slow-growing microorganisms (K-strategists) in soil aggregates. We fractionated the bulk soil from the ambient and elevated CO2 treatments of FACE-Hohenheim (Stuttgart) into large macro- (>2 mm), small macro- (0.25-2.00 mm), and microaggregates (<0.25 mm) using a modified dry sieving. Microbial biomass (C-mic by SIR), the maximal specific growth rate (µ), growing microbial biomass (GMB) and lag-period (t-lag) were estimated by the kinetics of CO2 emission from bulk soil and aggregates amended with glucose and nutrients. In the bulk soil and isolated aggregates before and after activation with glucose, the actual and the potential enzyme activities were measured. Although C-org and C-mic as well as the activities of ß-glucosidase, phosphatase, and sulfatase were unaffected in bulk soil and in aggregate-size classes by elevated CO2, significant changes were observed in potential enzyme production after substrate amendment. After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. In addition, µ values were significantly higher under elevated than ambient CO2 for bulk soil, small macroaggregates, and microaggregates. Based on changes in µ, GMB, and lag-period, we conclude that elevated atmospheric CO2 stimulated the r-selected microorganisms, especially in soil microaggregates. In contrast, significantly higher chitinase activity in bulk soil and in large macroaggregates under elevated CO2 revealed an increased contribution of fungi to turnover processes. We conclude that quantitative and

  14. The Effect of Sedimentation Conditions of Frozen Deposits at the Kolyma Lowland on the Distribution of Methane and Microorganisms Activity

    Science.gov (United States)

    Oshurkova, V.; Kholodov, A. L.; Spektor, V.; Sherbakova, V.; Rivkina, E.

    2014-12-01

    Biogeochemical and microbiological investigations of methane distribution and origin in Northeastern Arctic permafrost sediments indicated that microbial methane production was observed in situ in thawed and permanently frozen deposits (Rivkina et al., 2007). To check the hypothesis about the correlation between permafrost ground type and quantity of methane, produced by microorganisms, the samples from deposits of thermokarst depression (alas), Yedoma and fluvial deposits of Kolyma floodplain for gas measurements and microbiological study were collected and the experiment with anaerobic incubation was conducted. Gas analysis indicated that alas and floodplain samples were characterized by high methane concentrations whereas Yedoma samples had only traces of methane. Two media with different substrates were prepared anaerobically for incubation. First medium contained sucrose as a substrate for hydrolytic microflora and the second one contained acetate as a substrate for methanogens. Two samples from alas, one sample from Yedoma and one from floodplain were placed in anaerobic bottles and media under gas mixture (N2, CO2 and H2) were added. The bottles were incubated for 2 weeks at room temperature. The results of the experiment showed that there was the increase of methane concentrations in the bottles with Yedoma and Floodplain samples to 52-60 and 67-90 %, respectively, from initial concentrations in contrast with Alas sample inoculated bottles. At the same time the concentration of methane in control bottles, which did not include substrates, increased to 15-19%. Current research is a part of NSF funded project "The Polaris".

  15. Antibiofilm activity of sandblasted and laser-modified titanium against microorganisms isolated from peri-implantitis lesions.

    Science.gov (United States)

    Drago, Lorenzo; Bortolin, Monica; De Vecchi, Elena; Agrappi, Serse; Weinstein, Roberto L; Mattina, Roberto; Francetti, Luca

    2016-10-01

    Infections due to biofilm-producing microorganisms are one of the main causes for the failure of dental implants. Increasing efforts have been made in order to develop new strategies to prevent biofilm formation. In this study, the biofilm development on a newly designed laser-modified titanium implant surface was evaluated and compared to that on conventional sandblasted titanium used in implant dentistry. The amount of biofilm produced by Staphylococcus aureus, Pseudomonas aeruginosa and Porphyromonas gingivalis isolated from peri-implantitis was assessed by a semi-quantitative spectrophotometric method and by confocal laser scanning microscopy. Results showed a lower biofilm production on laser-modified surface compared to the sandblasted one. In particular, a significantly lower total volume of the biomass was observed on laser-modified surface, while no significant changes in live/dead bacteria percentages were noticed between materials. Modifying the topography of the conventional implant surface with laser ablation could represent a promising approach for inhibiting biofilm formation. PMID:27240314

  16. Microorganisms interacting in a bio filter

    Energy Technology Data Exchange (ETDEWEB)

    Barba-Avila, M. D.; Flores-Tene, F. J.; Moreno-Terrazas, R.; Ramirez-Lopez, E. M.

    2009-07-01

    Biofilm microorganisms developed on a bio filter support media allow the metabolism of volatile organic compounds (VOCs) to carbon dioxide and water. VOCs are present in polluted gaseous streams for varied industrial activities. The main objective of this study was to identify the microorganisms present in the biofilm developed on a bio filter support media using molecular biology techniques. (Author)

  17. [Redox-sensors of microorganisms].

    Science.gov (United States)

    Lushchak, V I

    2008-01-01

    This review summarizes available literature data on the existence and operation of redox sensors of microorganisms. It is partially focused on the activation by hyrdrogen peroxide OxyR protein and by superoxide anion SoxR protein in bacteria Escherichia coli and the activation by hyrdrogen peroxide and superoxide anion of Orp1-Yap1 protein system in yeast Saccharomyces cerevisiae. The similarities and peculiarities of redox signal sensing in pro- and eukaryotes have been discussed. PMID:19140447

  18. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    Science.gov (United States)

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  19. Microorganisms (Microbes), Role of

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2013-01-01

    Microorganisms (microbes) are those life forms too small to be seen by the naked eye; that is, those that require a microscope or other form of magnification in order to be observed. The term microorganism is thus a functional description rather than a taxonomic one, and the grouping includes a w...

  20. Interactions of Marsh Orchid (Dactylorhiza spp.) and Soil Microorganisms in Relation to Extracellular Enzyme Activities in a Peat Soil

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratorybased experiment by measuring activities of β-glucosidase, phosphatase, N-acetylglucosaminidase, and arylsulphatase. The experiment was based on control (autoclaved), bacteria-inoculated, and plant (transplanted with Dactylorhiza) treatments,and samples were collected over 4 sampling intervals. Higher enzyme activities were associated with the bacteria-inoculated treatment, suggesting that soil enzyme activities are mainly of microbial origin. For example, β-glucosidase activity varied between 25-30 μmol g-1 min-1 in the bacteria-inoculated samples whilst the activity of the control ranged between 4-12μmol g-1 min-1. A similar pattern was found for all other enzymes.At the end of the incubation, the microcosms were destructively sampled and the enzyme activities determined in bulk soil, rhizospheric soil, and on the root surface. Detailed measurement in different fractions of the peat indicated that higher activities were found in rhizosphere. However, the higher activities ofβ-glucosidase, N-acetylglucosaminidase, and arylsulphatase appeared to be associated with bacterial proliferation on the root surface, whilst a larger proportion of phosphatase appeared to be released from root surface.

  1. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses.

    Science.gov (United States)

    Dekas, Anne E; Connon, Stephanie A; Chadwick, Grayson L; Trembath-Reichert, Elizabeth; Orphan, Victoria J

    2016-03-01

    To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteobacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5'-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Transcript analysis revealed that members of the deltaproteobacterial groups Desulfosarcina/Desulfococcus (DSS) and Desulfobulbaceae (DSB) exhibit increased rRNA expression in incubations with methane, suggestive of ANME-coupled activity. Direct analysis of anabolic activity in DSS cells in consortia with ANME by FISH-NanoSIMS confirmed their dependence on methanotrophy, with no (15)NH4(+) assimilation detected without methane. In contrast, DSS and DSB cells found physically independent of ANME (i.e., single cells) were anabolically active in incubations both with and without methane. These single cells therefore comprise an active 'free-living' population, and are not dependent on methane or ANME activity. We investigated the possibility of N2 fixation by seep Deltaproteobacteria and detected nifH transcripts closely related to those of cultured diazotrophic Deltaproteobacteria. However, nifH expression was methane-dependent. (15)N2 incorporation was not observed in single DSS cells, but was detected in single DSB cells. Interestingly, (15)N2 incorporation in single DSB cells was methane-dependent, raising the possibility that DSB cells acquired reduced (15)N products from diazotrophic ANME while spatially coupled, and then subsequently dissociated. With this combined data set we address several outstanding questions in methane seep microbial ecosystems and highlight the benefit of measuring microbial activity in

  2. Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses

    OpenAIRE

    Dekas, Anne E.; Connon, Stephanie A.; Chadwick, Grayson L; Trembath-Reichert, Elizabeth; Orphan, Victoria J

    2015-01-01

    To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteobacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5′-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled...

  3. Recombinant microorganisms for increased production of organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  4. Seasonality and depth distribution of the abundance and activity of ammonia oxidizing microorganisms in marine coastal sediments (North Sea

    Directory of Open Access Journals (Sweden)

    Yvonne Antonia Lipsewers

    2014-09-01

    Full Text Available Microbial processes such as nitrification and anaerobic ammonium oxidation (anammox are important for nitrogen cycling in marine sediments. Seasonal variations of archaeal and bacterial ammonia oxidizers (AOA and AOB and anammox bacteria, as well as the environmental factors affecting these groups, are not well studied. We have examined the seasonal and depth distribution of the abundance and potential activity of these microbial groups in coastal marine sediments of the southern North Sea. This was achieved by quantifying specific intact polar lipids (IPLs as well as the abundance and gene expression of their 16S rRNA gene, the ammonia monooxygenase subunit A (amoA gene of AOA and AOB, and the hydrazine synthase (hzsA gene of anammox bacteria. AOA, AOB and anammox bacteria were detected and transcriptionally active down to 12 cm sediment depth. In all seasons, the abundance of AOA was higher compared to the AOB abundance suggesting that AOA play a more dominant role in aerobic ammonia oxidation in these sediments. Anammox bacteria were abundant and active even in oxygenated and bioturbated parts of the sediment. The abundance of AOA and AOB was relatively stable with depth and over the seasonal cycle, while anammox bacteria abundance and transcriptional activity were highest in August. North Sea sediments thus seem to provide a common, stable, ecological niche for AOA, AOB and anammox bacteria.

  5. Effect of Erica sp. Honey against Microorganisms of Clinical Importance: Study of the Factors Underlying this Biological Activity

    Directory of Open Access Journals (Sweden)

    Leticia M. Estevinho

    2013-04-01

    Full Text Available This study aimed to determine the factors (phenolic compounds, flavonoids, sugars or H2O2 that contribute the most to the antimicrobial activity of heather honey samples against four yeasts and four bacteria with medical importance. To discard the effect of H2O2 in the antimicrobial activity, catalase was added. To evaluate the osmotic pressure’s effect, artificial honey was also used. Phenolic compounds and flavonoids were determined and Pearson’s correlation analysis was performed to assess whether these correlated with antimicrobial activity. The amount of phenolic compounds ranged from 630.89 ± 5.21 GAE kg−1 to 718.92 ± 4.41 GAE kg−1, while the flavonoids varied between 450.72 ± 5.67 CAE kg−1 and 673.98 ± 4.33 CAE kg−1. For the bacteria, the minimum inhibitory concentration (MIC of the honey without catalase ranged from 1.01 ± 0.50% to 10.00 ± 4.72% and was between 2.00 ± 0.94% and 13.27 ± 5.23% for honey with catalase. Concerning the yeasts, the MICs was between 13.16 ± 4.08% and 20.00 ± 5.09% for honey without catalase and between 14.95 ± 4.16% and 25.67 ± 5.50% for honey with catalase. The elucidation of the antimicrobial factors and action mechanisms is essential for the correct use of honey in therapeutic applications.

  6. Rumen microorganisms and fermentation

    Directory of Open Access Journals (Sweden)

    AR Castillo-González

    2014-01-01

    Full Text Available The rumen consists of a complex ecosystem where nutrients consumed by ruminants are digested by fermentation process, which is executed by diverse microorganisms such as bacteria, protozoa, and fungi. A symbiotic relationship is found among different groups of microorganisms due to the diverse nature of these microbial species and their adaptability and interactions also coexist. The ruminant provides the necessary environment for the establishment of such microorganisms, while the microorganisms obtain energy from the host animal from microbial fermentation end products. Within the ruminal ecosystem, the microorganisms coexist in a reduced environment and pH remains close to neutral. Rumen microorganisms are involved in the fermentation of substrates contained in thedietof the animals (carbohydrates, proteins and lipids. However, the fermentation process is not 100% effective because there are energy losses mainly in the form of methane gas (CH4, which is a problem for the environment since it is a greenhouse gas. In order to improve the efficiency of ruminant production systems, nutritional strategies that aim to manipulate ruminal fermentation using additives in the diet such as monensin, tallow, buffers, nitrogen compounds, probiotics, and others have been used. These additives allow changing the ruminal fermentation process in ways that produce better growth efficiency while decreasing energy loss. The purpose of this review is to contribute to a better understanding of the fermentation processes taking place in the rumen, providing information that can be applied in the development of new nutritional strategies for the improvement of the digestion process to achieve maximum production.

  7. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  8. The use of micro-organisms for the remediation of solutions contaminated with actinide elements, other radionuclides, and organic contaminants generated by nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Many heavy elements, including actinides, form insoluble precipitates with ligands such as inorganic phosphate (abbreviated Pi). This can be generated biochemically, e.g. using the activity of a phosphatase enzyme of a Citrobacter sp., which forms HPO42- in juxtaposition to nucleation sites on the cell surface; insoluble metal phosphate promotes the formation of large crystals of, for example, HUO2PO4 4H20, to loads of several times the weight of the biomass. For use the biomass is immobilized within a flow-through column. The metals can be removed efficiently from dilute solution since the continuous production of a high localized concentration of Pi allows the solubility product of the metal phosphate to be exceeded, even in the presence of competing chelating ligands (e.g. citrate). Application of this approach to the removal of uranium, americium, plutonium and neptunium from acid mine drainage waters (U) and laboratory test solutions (Am, Pu, Np) is described. The phosphate ''donor'' molecule (phosphatase substrate) is an organophosphate, usually glycerol 2-phosphate. Tributyl phosphate has also been cleaved enzymatically to support the removal of uranium from solution by a new mixed culture. Some metal species such as technetium (VII), TcO4-, do not form insoluble phosphates. Here, the reductase activity of other microorganisms can be harnessed to the bioreduction of Tc(VII) to insoluble species which are precipitated onto the biomass. Special problems can occur in plant decontamination, where soluble metal-ligand complexes may be generated. (Author)

  9. 海洋微生物次级代谢产物抗菌作用研究进展%Antimicrobial activity of the secondary metabolites from marine microorganisms:research advances

    Institute of Scientific and Technical Information of China (English)

    尹慢慢; 刘炎东; 张黎明

    2014-01-01

    The aim of the paper is to review the research progress on the secondary metabolites from marine microorganisms in recent years and to summarize its application in antimicrobial activity. We have earched and collected the published articles which are focused on the secondary metabolites from marine microorganisms; analysed the structure and function of the secondary metabolites and summed up the antimicrobial activities of the production from marine microorganisms; in addition,investigated the mechanism of action about the antimicrobial activities of the secondary metabolites from marine microorganisms. The secondary metabolites from marine microorganisms have rich structural diversity and different mechanisms of action. Marine microorganisms have the potential to produce large numbers of bioactive metabolites, among which the antimicrobial substance is the most prominent,making it an important resource in the development of novel marine drugs.%海洋微生物次级代谢产物种类繁多,具有丰富的结构多样性和不同的抗菌功能。其中以抗菌活性物质最为突出,已经成为近年来新药筛选的重要资源,在药品开发应用中具有良好的发展前景。本文结合近年关于海洋微生物次级代谢产物的报道,分析海洋微生物次级代谢产物的结构和功能;并对海洋微生物次级代谢产物在抗菌方面的作用及其抗菌作用机制的研究进展进行总结。

  10. rRNA Gene Expression of Abundant and Rare Activated-Sludge Microorganisms and Growth Rate Induced Micropollutant Removal.

    Science.gov (United States)

    Vuono, David C; Regnery, Julia; Li, Dong; Jones, Zackary L; Holloway, Ryan W; Drewes, Jörg E

    2016-06-21

    The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems. PMID:27196630

  11. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2

    Directory of Open Access Journals (Sweden)

    C. Müller

    2007-05-01

    Full Text Available The aim of this study was to identify the microbial communities that are actively involved in the assimilation of rhizosphere-C and are most sensitive in their activity to elevated atmospheric CO2 in grassland ecosystems. For this, we analyzed 13C signatures in microbial biomarker phospholipid fatty acids (PLFA from an in situ 13CO2 pulse-labeling experiment in the Gießen Free-Air Carbon dioxide Enrichment grasslands (GiFACE, Germany exposed to ambient and elevated (i.e. 50% above ambient CO2 concentrations. Carbon-13 PLFA measurements at 3 h, 10 h and 11 months after the pulse-labeling indicated a much faster transfer of newly produced rhizosphere-C to fungal compared to bacterial PLFA. After 11 months, the proportion of 13C had decreased in fungal PLFA but had increased in bacterial PLFA compared to a few hours after the pulse-labeling. Nevertheless, a significant proportion of the rapidly assimilated rhizosphere-C was still present in fungal PLFA after 11 months. These results demonstrate the dominant role of fungi in the immediate assimilation of rhizodeposits in grassland ecosystems, while also suggesting a long-term retention of rhizosphere-C in the fungal mycelium as well as a possible translocation of the rhizosphere-C from the fungal to bacterial biomass. Elevated CO2 caused an increase in the relative abundance of root-derived PLFA-C in the saprotrophic fungal PLFA 18:2ω6,9 as well as arbuscular mycorrhizal fungal PLFA 16:1ω5, but a decrease in the saprotrophic fungal biomarker PLFA 18:1ω9. This suggests enhanced rhizodeposit-C assimilation only by selected fungal communities under elevated CO2.

  12. Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2

    Directory of Open Access Journals (Sweden)

    C. Müller

    2007-09-01

    Full Text Available The aim of this study was to identify the microbial communities that are actively involved in the assimilation of rhizosphere-C and are most sensitive in their activity to elevated atmospheric CO2 in a temperate semi-natural low-input grassland ecosystem. For this, we analyzed 13C signatures in microbial biomarker phospholipid fatty acids (PLFA from an in-situ 13CO2 pulse-labeling experiment in the Giessen Free Air Carbon dioxide Enrichment grasslands (GiFACE, Germany exposed to ambient and elevated (i.e. 50% above ambient CO2 concentrations. Short-term 13C PLFA measurements at 3 h and 10 h after the pulse-labeling revealed very little to no 13C enrichment after 3 h in biomarker PLFAs and a much greater incorporation of new plant-C into fungal compared to bacterial PLFAs after 10 h. After a period of 11 months following the pulse-labeling experiment, the 13C enrichment of fungal PLFAs was still largely present but had decreased, while bacterial PLFAs were much more enriched in 13C compared to a few hours after the pulse-labeling. These results imply that new rhizodeposit-C is rapidly processed by fungal communities and only much later by the bacterial communities, which we attributed to either a fungal-mediated translocation of rhizosphere-C from the fungal to bacterial biomass or a preferential bacterial use of dead root or fungal necromass materials as C source over the direct utilization of fresh root-exudate C in these N-limited grassland ecosystems. Elevated CO2 caused an increase in the proportional 13C enrichment (relative to the universal biomarker 16:0 of the arbuscular mycorrhizal fungal biomarker PLFA 16:1ω5 and one gram-positive bacterial biomarker PLFA i16:0, but a decrease in the proportional 13C enrichment of 18:1ω9c, a commonly used though questionable fungal biomarker PLFA. This suggests enhanced fungal rhizodeposit-C assimilation only by arbuscular mycorrhizal fungal species under elevated CO2.

  13. 微生物沉默基因簇激活方法的研究进展%Advances of Methods for Activating Silent Gene Clusters in Microorganisms

    Institute of Scientific and Technical Information of China (English)

    齐志; 孙东昌; 裘娟萍

    2016-01-01

    微生物丰富多样的次级代谢产物一直都是天然药物的重要来源.随着微生物基因组学研究的深入,人们发现在现有的培养条件下很多生物合成基因簇未能表达,从而无法生成相应的代谢产物.这些处于沉默状态的基因簇给新型药物的开发带来了新的契机.本文综述了激活这些沉默基因簇的三种主要方法:调控基因改造、强启动子引入及小分子物质添加.激活微生物中沉默基因簇将有望得到结构新颖、活性显著的新活性分子.%The abundant secondary metabolites from microorganisms are always the main source of natural product. The investigation of microbial genomics revealed that many biosynthetic gene clusters could not be expressed under available culture conditions and thus the corresponding metabolites could not be produced. These silent gene clusters brings new opportunities for the development of novel drugs. In this review, we summarized three methods for activating these silent gene clusters:changing regulatory gene, introducing strong promoter and adding the small molecules. We anticipate that new active molecules with novel structure and strong activity will be obtained by activating silent gene clusters in microbes.

  14. 中高温油藏内源微生物厌氧激活%Anaerobic activation of indigenous microorganism in the middle and high temperature reservoir

    Institute of Scientific and Technical Information of China (English)

    冯云; 段传慧; 林军章; 孙刚正

    2016-01-01

    In order to define the characteristics of gas production by indigenous microorganism under anaerobic activation,11 blocks of middle and high temperature reservoir were selected to research in the Shengli Oilfield,which temperature ranges were 55 to 65 ℃,65 to 79 ℃ and 79 to 95 ℃. Indigenous microorganism could be activated to produce gas below 79℃ under simulated reservoir condition,whereas no significant methane gas was produced when temperature was above 79 ℃. The maximum methane production rate was up to 1 500 μmol/( g·d ) when H2/CO2 was used as carbon source, significantly higher than those of sodium acetate and starch. Furthermore,Methanobacterium was activated to become the dominant microflora under anaerobic condition in Zhengli Zhuang Zhengnan block,which favored to produce methane gas in the reservoir.Before anaerobic activation,the dominant bacteria were Pseudomonas in the samples and the dominant bacteria were changed under different activation conditions.H2/CO2 and starch can activate Thermotoga, whereas sodium acetate mainly activated Deferribacter in oil wells. In addition,the dominant flora of different oil wells tended to be identical in the block, but there were significant differences in the dominant microflora between oil well and water well. Our findings on the anaerobic activation of the internal microorganism could serve reference for further enhancing the effect of microbial oil recovery.%为了明确中高温油藏内源微生物厌氧激活产气的特点,在胜利油田选取了11个区块开展产气研究,温度范围分别为55~65℃、65~79℃、79~95℃。在模拟油藏条件下厌氧激活发现,低于79℃时,油藏内源微生物普遍能被激活并代谢产气;而高于79℃时,无明显甲烷气产生。利用不同碳源激活后发现,H2/CO2为碳源时,最大产甲烷速率可达1500μmol/( g·d),显著高于乙酸钠和淀粉,这表明中高温油藏内产甲烷古菌以氢

  15. Attaching substances to microorganisms

    NARCIS (Netherlands)

    Buist, Girbe; Leenhouts Cornelis, J.; Venema, Gerard; Kok, Jan

    2005-01-01

    The invention relates to surface display of proteins on microorganisms via the targeting and anchoring of heterologous proteins to the outer surface of cells such as yeast, fungi, mammalian, plant cells, and bacteria. The invention provides a proteinaceous substance comprising a reactive group and a

  16. Modelling microorganisms in food

    NARCIS (Netherlands)

    Brul, S.; Gerwen, van S.; Zwietering, M.H.

    2007-01-01

    Predicting the growth and behaviour of microorganisms in food has long been an aim in food microbiology research. In recent years, microbial models have evolved to become more exact and the discipline of quantitative microbial ecology has gained increasing importance for food safety management, part

  17. 秸秆还田配施化肥及微生物菌剂对水田土壤酶活性和微生物数量的影响%Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields

    Institute of Scientific and Technical Information of China (English)

    钱海燕; 杨滨娟; 黄国勤; 严玉平; 樊哲文; 方豫

    2012-01-01

    Paddy rice straw is widely used to improve soil fertility in China by returning it back to the fields after harvest. However, the straw's nutrients need a long time to be plant available. This paper examined how to accelerate the nutrients transformation to be plant available within a short period of time. In particular, the paper studied the causal connection between returning straw to fields with varying application of fertilizers and microorganism liquids on soil enzyme activities and the number of microorganisms in paddy fields. The investigation has been carried out in Experiment Base of Jiangxi Agriculture University, Nanchang, Jiangxi Province. Surface soil samples were collected from paddy fields. The experiment included eight components ranging from straw purely, straw with N-fertilizer, straw with compound fertilizer, and straw with microorganism liquids. In detail, the following fertilizer applications have been used: (1) straw 3 000 kghm-2·a-1, (2) straw 3 000 kg·hm-2a-1with Nitrogen 150 kghm-2· a-1, (3) straw 3 000 kg·hm-2·a-1with N 225 kg·hm-2·a-1, (4) straw 3000 kg·hm-2·A-1 with P2O5 75 kg·hm-2·a-1, (5) straw 3 000 kg·hm-2·a-1 with P2O5112.5 kg·hm-2·a-1, (6) straw 3 000 kghmV with N 150 kg·hm-2·a-1, P2O5 75 kg·hm-2·a-1, and K2O 37.5 kg·hm-2·a-1, (7) straw 3 000 kg·hm-2·a-1 with N 225 kg·hm-2·a-1, P2O5 112.5 kg·hm-2·a-1, and K2O 56.3 kg hm-2 a-1, (8) straw 3 000 kghm-2·a-1 with microorganism liquids 15 L·hm-2·a-1. The relationship between soil enzyme activities and microorganisms were determined by multivariate statistical analysis. In contrast to returning straw only to the field (treatment 1), the results showed that combined application of straw with NPK fertilizers and microorganism liquids increased soil catalase (37.5%-68.8%), invertase (32.3%-61.5%), urease activities (48.8%-I02%) significantly. Furthermore, the population of both, bacteria and fungi in soil rose by 95.3%-174% and 286%-351%, respectively, while the

  18. Informative communication of microorganisms

    Directory of Open Access Journals (Sweden)

    G. N. Kremenchutskу

    2010-06-01

    Full Text Available Macroorganism in combination with microbiota is considered as a “superorganism”. Microorganisms, belonging to the microbiota, are in dynamic equilibrium with a macroorganism. This balance is achieved through a molecular “language” of communication between prokaryotic and eukaryotic cells. Molecular communication between cells leads to positive and negative results. A large number of metabolites of microorganisms that carry the information load: autoinducers is revealed. Autoinducer affect on the immune systems, and variety of metabolic processes. This affects on practically all organs and systems of maсroorganism. Studied metabolites of aerococci affect on the immune system, regenerative cycles and other processes of macroorganism. The problem of informative communication between prokaryotes and eukaryotes provides new insights about vital functions of “superorganisms”.

  19. 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions

    DEFF Research Database (Denmark)

    Kong, Xianwang; Duan, Yun-Feng (Kevin); Schramm, Andreas;

    2016-01-01

    The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is widely used within agriculture to reduce nitrate leaching and improve nitrogen use efficiency of fertilizers, but few studies examined effects on non-target soil functions and microorganisms, i.e. other than the intended delay...

  20. An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: application to the construction of a cheese model.

    Science.gov (United States)

    Bonaïti, C; Irlinger, F; Spinnler, H E; Engel, E

    2005-05-01

    The aim of this study was to develop and validate an iterative procedure based on odor assessment to select odor-active associations of microorganisms from a starting association of 82 strains (G1), which were chosen to be representative of Livarot cheese biodiversity. A 3-step dichotomous procedure was applied to reduce the starting association G1. At each step, 3 methods were used to evaluate the odor proximity between mother (n strains) and daughter (n/2 strains) associations: a direct assessment of odor dissimilarity using an original bidimensional scale system and 2 indirect methods based on comparisons of odor profile or hedonic scores. Odor dissimilarity ratings and odor profile gave reliable and sometimes complementary criteria to select G3 and G4 at the first iteration, G31 and G42 at the second iteration, and G312 and G421 at the final iteration. Principal component analysis of odor profile data permitted the interpretation at least in part, of the 2D multidimensional scaling representation of the similarity data. The second part of the study was dedicated to 1) validating the choice of the dichotomous procedure made at each iteration, and 2) evaluating together the magnitude of odor differences that may exist between G1 and its subsequent simplified associations. The strategy consisted of assessing odor similarity between the 13 cheese models by comparing the contents of their odor-active compounds. By using a purge-and-trap gas chromatography-olfactory/mass spectrometry device, 50 potent odorants were identified in models G312, G421, and in a typical Protected Denomination of Origin Livarot cheese. Their contributions to the odor profile of both selected model cheeses are discussed. These compounds were quantified by purge and trap-gas chromatography-mass spectrometry in the 13 products and the normalized data matrix was transformed to a between-product distance matrix. This instrumental assessment of odor similarities allowed validation of the choice

  1. The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms

    OpenAIRE

    LaPara, Timothy M.; Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J

    2015-01-01

    The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in t...

  2. Harmonic 'signatures' of microorganisms.

    Science.gov (United States)

    Blake-Coleman, B C; Hutchings, M J; Silley, P

    1994-01-01

    The frequency/amplitude effect of various microorganisms exposed to periodic (time varying) electric fields, when proximate to immersed electrodes, has been studied using a novel analytical instrument. The harmonic distribution, in complex signals caused by cells exposed to harmonic free waveforms and occupying part of the electrode/suspension interface volume, was shown to be almost entirely due to the change in the standing interfacial transfer function by the (dielectrically nonlinear) presence of cells. Thus, the characteristic interfacial non-linearity is viewed as variable, being uniquely modulated by the presence of particular cells in the interfacial region. Little can be attributed to bulk (far field) effects. The tendency for subtle (characteristic) signal distortion to occur as a function of particulate (cell or molecular) occupancy of the near electrode interfacial region under controlled current conditions leads to the method of sample characterisation by harmonic (Fourier) analysis. We report here, as a sequel to our original studies (Hutchings et al., 1993; Hutchings and Blake-Coleman, 1993), preliminary results of the harmonic analysis of microbial suspensions under controlled signal conditions using a three-electrode configuration. These data provide three-dimensional graphical representations producing harmonic 'surfaces' for various microorganisms. Thus, cell type differences are characterised by their 'harmonic signature'. The visual distinction provided by these 'surface' forming three-dimensional plots is striking and gives a convincing impression of the ability to identify and enumerate specific microorganisms by acquisition of cell-modulated electrode interfacial Fourier spectra. PMID:8060593

  3. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars

    OpenAIRE

    FARIA, Raquel Lourdes; CARDOSO, Lincoln Marcelo Lourenço; Akisue, Gokithi; PEREIRA, Cristiane Aparecida; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; SANTOS JÚNIOR, Paulo Villela

    2011-01-01

    Objective The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Material and Methods Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left toot...

  4. Selection of potential microorganism for sago starch fermentation

    OpenAIRE

    RUTH MELLIAWATI; ROHMATUSSOLIHAT; FERRA OCTAVINA

    2006-01-01

    Fermentation process of sago starch for the production of bioproduct requires potential microorganism that have ability to hydrolyze sago starch. The purpose of this research was to get the potential of amylolytic microorganisms for their capability of amyloglucosidase activity and to know the sugar strains of the fermentation result. Eleven amylolytic microorganisms (9 strains of mold and 2 strains of yeast) were obtained from the collection Research Centre for Biotechnology – Indonesian Ins...

  5. 江蓠及其共附微生物活性物质的研究进展%Research Progress of Active Substances in Gracilaria and Symbiotic and Epiphytic Microorganism

    Institute of Scientific and Technical Information of China (English)

    李云冰; 张付云; 李妍; 杨阳; 苍桂璐

    2011-01-01

    The Gracilaria is one kind of rhodophyta, which contains many kinds of active substances and possesses nutrition and health function. The research progress of active substances in Gracilaria and symbiotic and epiphytic microorganism were summarized, so as to provide theoretical basis for development and utilization of Gracilaria.%江蓠属于大型红藻,含有多种活性物质,具有营养保健功能.对江蓠及其共附微生物的活性物质研究进展进行了概述,旨在为开发利用江蓠资源提供理论基础.

  6. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  7. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    Many industrial and biotechnological processes make use of cold-active enzymes or could benefit from the use, as the reduced temperature can be beneficial in multiple ways. Such processes may save energy and production costs, improve hygiene, maintain taste and other organoleptic properties......, and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...... on the diversity of microorganisms from the ikaite columns as well as bioprospecting for enzyme activities using both culture dependent and independent methods. Two cold-active β-galactosidases and one extremely cold-active α-amylase, all related to Clostridia, were characterized in more details....

  8. Pathogenic Microorganisms in Meat Products

    OpenAIRE

    FARKOVÁ, Barbora

    2012-01-01

    The aim of this work is the analysis and description of microorganisms occurring in meat products. The work is by definition enter the search character, so the method chosen as the research literature analysis and the subsequent description of findings. The first chapter focuses on the characteristics of microorganisms and their distribution in several respects. Chapter 2 is already covered by specific genera of microorganisms that have been using a wide range of literary sources characterize...

  9. Thermophilic microorganisms in biomining.

    Science.gov (United States)

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology. PMID:27628339

  10. Radiation sensitivity of hyperthermal composting microorganisms

    Science.gov (United States)

    Choi, Jong-Il; Yoon, Min-Chul; Kim, Jae-Hun; Yamashita, Masamichi; Kim, Geun Joong; Lee, Ju-Woon

    In the space station and vehicles designed for long human mission, high-temperature compost is a promising technology for decomposing organic waste and producing the fertilizers. In space, the microorganisms could have the changed biological activities or even be mutated by ionizing irradiation. Therefore, in this study, the effect of gamma irradiation on the sensitivity of bacteria in hyperthermal composting was investigated. The sequence analysis of the amplified 16s rDNA genes and amoA gene were used for the identification of composting microorganisms. Viability of microorganisms in compost soil after gamma irradiation was directly visualized with LIVE/DEAD Baclight viability kit. The dominant bacterial genera are Weissella cibaria and Leuconostoc sp. and fungus genera are Metschnikowia bicuspidate and Pichia guilliermondii, respectively. By the gamma irradiation up to the dose of 1 kGy, the microbial population was not changed. Also, the enzyme activities of amylase and cellulose were sustained by the gamma irradiation. These results show that these hyperthermia microorganisms might have the high resistance to gamma radiation and could be used for agriculture in the Space Station.

  11. Technetium in micro-organisms

    International Nuclear Information System (INIS)

    This paper reports the results of experimental work on the interaction of technetium with the following aquatic micro-organisms and untreated and sterilised sediments: Flavobacterium halmephilum, Uronema marinum, Chlamydomonas reinhardtii, Dunaliella bioculata, Mytilus edulis, and marine sediments, collected near Coxyde, containing a mixed population of micro-organisms, and sterilised by autoclaving. (UK)

  12. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  13. Control of microorganisms in flowing nutrient solutions.

    Science.gov (United States)

    Evans, R D

    1994-11-01

    Controlling microorganisms in flowing nutrient solutions involves different techniques when targeting the nutrient solution, hardware surfaces in contact with the solution, or the active root zone. This review presents basic principles and applications of a number of treatment techniques, including disinfection by chemicals, ultrafiltration, ultrasonics, and heat treatment, with emphasis on UV irradiation and ozone treatment. Procedures for control of specific pathogens by nutrient solution conditioning also are reviewed.

  14. Atividade de microrganismos solubilizadores de fosfatos na presença de nitrogênio, ferro, cálcio e potássio Phosphate solubilizing activity of microorganisms in the presence of nitrogen, iron, calcium and potassium

    Directory of Open Access Journals (Sweden)

    Germano Nunes Silva Filho

    2001-12-01

    Full Text Available A capacidade e o potencial de solubilização de 21 isolados de microrganismos solubilizadores de fosfatos (Bacillus, Pseudomonas, Enterobacteriaceae, Penicillium, Aspergillus e Paecilomyces foram avaliados em cultivos em meio de cultura Glicose-Extrato de Levedura contendo diferentes fosfatos (Ca, Al ou Fe, na presença de fontes de N (peptona, amônio e nitrato e teores de Fe, Ca e K. O crescimento e a atividade solubilizadora variaram em função do tipo de microrganismo e dos fatores nutricionais. Em relação às fontes de N, a presença de amônio favoreceu a solubilização em seis isolados; destes, três solubilizaram somente nesta fonte. O nitrato diminuiu a atividade solubilizadora, reduzindo ou inibindo a solubilização. Para a maioria dos microrganismos, a atividade solubilizadora não foi afetada pelas variações nos teores de ferro. Baixos teores de Ca e K limitaram o crescimento de cinco isolados que apresentam características de amplo crescimento (Aspergillus. Em dois desses isolados, a solubilização de fosfato de Ca foi favorecida. Variações na capacidade e no potencial de solubilização dos microrganismos, em resposta às condições do meio de cultura, indicam que o processo ocorre com eficiência variável ou sugerem a presença de diferentes mecanismos de solubilização.Twenty-one isolates of phosphate solubilizing microorganisms (Bacillus, Pseudomonas, Enterobacteriaceae, Penicillium, Aspergillus and Paecilomyces were evaluated for their solubilizing capacity and potential in broth media (Glucose-Yeast Extract amended with different types of phosphates (Ca, Al or Fe, in the presence of N sources (peptone, ammonium and nitrate as well as concentrations of Fe, Ca and potassium. Microbial growth and phosphate solubilizing activity varied according to the microorganism and the nutrient supplied. Ammonium increased solubilization activity of six isolates and three of these solubilized only in this source. Nitrate

  15. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  16. FUNCTIONAL POLYHYDROXYALKANOATES SYNTHESIZED BY MICROORGANISMS

    Institute of Scientific and Technical Information of China (English)

    Guo-qiang Chen; Qiong Wu; Kai Zhao; Peter H.Yu

    2000-01-01

    Many bacteria have been found to synthesize a family of polyesters termed polyhydroxyalkanoate, abbreviated as PHA. Some interesting physical properties of PHAs such as piezoelectricity, non-linear optical activity, biocompatibility and biodegradability offer promising applications in areas such as degradable packaging, tissue engineering and drug delivery.Over 90 PHAs with various structure variations have been reported and the number is still increasing. The mechanical property of PHAs changes from brittle to flexible to elastic, depending on the side-chainlength of PHA. Many attempts have been made to produce PHAs as biodegradable plastics using various microorganisms obtained from screening natural environments, genetic engineering and mutation. Due to the high production cost, PHAs still can not compete with the nondegradable plastics, such as polyethylene and polypropylene. Various processes have been developed using low cost raw materials for fermentation and an inorganic extraction process for PHA purification. However, a super PHA production strain may play the most critical role for any large-scale PHA production. Our recent study showed that PHA synthesis is a common phenomenon among bacteria inhabiting various locations, especially oil-contaminated soils. This is very important for finding a suitable bacterial strain for PHA production. In fact, PHA production strains capable of rapid growth and rapid PHA synthesis on cheap molasses substrate have been found on molasses contaminated soils. A combination of novel properties and lower cost will allow easier commercialization of PHA for many applications.

  17. Butanol tolerance in microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bramucci, Michael G.; Nagarajan, Vasantha

    2016-03-01

    Provided herein are recombinant yeast host cells and methods for their use for production of fermentation products from a pyruvate utilizing pathway. Yeast host cells provided herein comprise reduced pyruvate decarboxylase activity and modified adenylate cyclase activity. In embodiments, yeast host cells provided herein comprise resistance to butanol and increased biomass production.

  18. Isolation of microorganisms of cheese whey with lipolytic activity for removal of COD Isolamento de microrganismos do soro de queijo com atividade lipásica para remoção de DQO

    Directory of Open Access Journals (Sweden)

    Eliane Hermes

    2013-04-01

    Full Text Available The aim of this study was to isolate microorganisms that produce lipase and to assess the efficiency of COD removal intreatment of cheese whey under different operating conditions. The microorganisms were isolated from cheese whey and a commercial product; it was selectedthreemicroorganisms that obtained the best response to the lipolytic activity test through the enzyme index. Then, the microorganisms were inoculated in sterilized cheese whey samples, for two pH values (6.2 and 7.0, incubated at 35 °C and 150 rpm in shaker and the lipolityc activity and the efficiency of COD removal were measured in two time periods (24 and 48h. After incubation, it was observed that the treatments showed a good removal efficiency of COD for the pre-treatment and the isolated microorganism (S1 from the cheese whey showed the highest lipase production. Regarding the pH and time variables, there was not significant effect between the two evaluated factors. Among all treatments, T2 (S1, pH 7.0 and 24h obtained more enzyme production (4.87 U mL-1.O objetivo deste estudo foi isolar microrganismos produtores de lipase e avaliar a eficiência de remoção de DQO no tratamento de soro de leite sob diferentes condições operacionais. Os microrganismos foram isolados a partir do soro de queijo e de um produto comercial,e foram selecionados os três microrganismos que obtiveram a melhor resposta no teste da atividade lipolítica, através do índice enzimático. Em seguida, inocularam-se os micro-organismos em amostras de soro de queijo esterilizado, para dois valores de pH (6,2 e 7,0, incubaram-se a 35 ºC e 150 rpm em shaker e mensuram-se em dois períodos de tempo (24 e 48 h a atividade lipásica e a eficiência de remoção de DQO.Após a incubação, observou-se que os tratamentos apresentaram boa eficiência de remoção de DQO para o pré-tratamento,e o microrganismo (S1 isolado a partir do soro de queijo apresentou a maior produção de lipase. Com relação

  19. EM对连作大蒜根际土壤微生物和酶活性的影响%Impact of effective microorganisms on microbial communities and enzyme activities in rhizosphere soil of continuously cropped garlic

    Institute of Scientific and Technical Information of China (English)

    刘素慧; 刘世琦; 张自坤; 尉辉; 张宇; 马琳; 杨晓建; 窦娟

    2011-01-01

    A pot experiment was conducted to study the effects of effective microorganisms (EM) on dry matter accumulation, microbial communities and enzyme activities in rhizosphere soil of continuously cropped garlic at different growth stages. The number of bacteria and fungi and the soil catalase activity initially increased and then decreased, and the maximum values were observed at the stem elongation stage. The maximum promotive effects of EM on sulfur bacteria and phenol-decomposing bacteria were observed at the bulb enlargement stage, and on ammonifying bacteria and nitrifying bacteria at the differentiation stage and seeding stage, respectively. The positive effect of EM on the quantity of actinomycetes and the activity of polyphenol oxidase, urease and phosphatase increased progressively and significantly with advancement of garlic growth. The soil microbial community structure, microbial populations, soil enzyme activities and dry matter accumulation were improved by use of EM.%采用盆栽试验,研究了EM(Effective Microorganisms)对连作大蒜不同发育期干物质累积量,土壤微生物数量和酶活性的影响.结果表明,与对照相比,EM对土壤细菌、真菌和过氧化氢酶活性促进率随大蒜发育期均呈现先升后降的趋势,在蒜薹伸长期达到最大值;对硫化细菌和酚分解菌促进率最大值均出现在鳞茎膨大期;对氨化细菌和硝化细菌的促进率最大值分别出现在分化期和幼苗期.EM对放线菌、土壤多酚氧化酶、脲酶和磷酸酶活件促进率随发育期的延长而呈现持续上升的趋势.EM处理有利于改善土壤微生物群落结构,提高土壤微生物数量和土壤酶活性,增加干物质的累积量.

  20. Antimicrobial activity of extracts and fractions from aerial parts of selected plants (Garcinia achachairu, Macrosiphonia velame, Rubus niveus and Pilea microphylla) against some pathogenic microorganisms.

    Science.gov (United States)

    Melim, Carla; Guimarães, Karoliny; Martin-Quintal, Zhelmy; Alves, Aurea Damaceno; Martins, Domingos Tabajara de Oliveira; Delle Monache, Franco; Cechinel Filho, Valdir; Cruza, Alexandre Bella; Niero, Rivaldo

    2013-11-01

    As part of the program of our research group to search for new and effective substances from the Brazilian biodiversity, the present work evaluates the antibacterial activity of four species from the Brazilian flora (Garcinia achachairu, Macrosiphonia velame, Rubus niveus and Pilea microphylla) against Bacillus subtilis, Staphylococcus aureus and S. saprophyticus (Gram-positive bacteria), Escherichia coli (Gram-negative bacterium) and Candida albicans (yeast). The extracts of R. niveus and M. velame showed promising antibacterial activity with MICs, ranging from 1000 to 125 microg/mL. Bio-guided fractionation of M. velame yielded four compounds, with the highest inhibition being observed for compound 3, with a MIC of 125 microg/mL against S. aureus. The combinations of fractions 2 and 4 showed beneficial effect against Gram-positive bacteria (additive effect), suggesting a possible synergistic effect. PMID:24427943

  1. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    OpenAIRE

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increase...

  2. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Directory of Open Access Journals (Sweden)

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  3. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows.

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    Full Text Available The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43 were well represented. A new subfamily (S-8 of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.

  4. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent.

    Science.gov (United States)

    Perner, Mirjam; Petersen, Jillian M; Zielinski, Frank; Gennerich, Hans-Hermann; Seifert, Richard

    2010-10-01

    Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.

  5. Atividade antibacteriana de óleos essenciais em cepas isoladas de infecção urinária Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection

    Directory of Open Access Journals (Sweden)

    Rogério Santos Pereira

    2004-04-01

    Full Text Available A análise da atividade antibacteriana de óleos essenciais de ervas medicinais (Ocimum gratissimum, L., Cybopogum citratus (DC Stapf. e Salvia officinalis, L. foi verificada frente a 100 cepas de bactérias isoladas de indivíduos da comunidade com diagnóstico de infecção urinária. Os microrganismos foram semeados em ágar Muller Hinton e os extratos aplicados com replicador de Steers e incubados a 37°C por 24 horas. Verificou-se que Salvia officinalis, L. apresentou ação inibitória superior às outras ervas, tendo eficácia de 100% quando testadas em espécies de Klebsiella e Enterobacter, 96% em Escherichia coli, 83% contra Proteus mirabilis e 75% contra Morganella morganii.The antibacterial activity of essential oils extracted from medicinal plants (Ocimum gratissimum, L., Cybopogum citratus (DC Stapf., and Salvia officinalis, L. was assessed on bacterial strains derived from 100 urine samples. Samples were taken from subjects diagnosed with urinary tract infection living in the community. Microorganisms were plated on Müller Hinton agar. Plant extracts were applied using a Steers replicator and petri dishes were incubated at 37°C for 24 hours. Salvia officinalis, L. showed enhanced inhibitory activity compared to the other two herbs, with 100% efficiency against Klebsiella and Enterobacter species, 96% against Escherichia coli, 83% against Proteus mirabilis, and 75% against Morganella morganii.

  6. 4-氯酚对厌氧颗粒污泥产甲烷活性的影响%Influence of 4-chlorophenol on activity of methane-producing microorganisms in anaerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    罗艳; 何仕均; 王建龙; 解明曙

    2012-01-01

    With anaerobic granular sludge from an anaerobic baffled reactor(ABR) as the research object and glucose as the co-substrate, the influence of 4-chlorophenol concentration on the methane-producing microorganisms in anaerobic granular sludge was investigated. The test results showed that: 4-chlorophenol had a strong inhibition effect on the activity of methane-producing microorganisms in anaerobic granular sludge, the slightest degree of inhibition appeared when the mass concentration of 4-chlorophenol was 300 mg/L; and then, with the continuous increase of the 4-chlorophenol concentration, the methane-producing activity of anaerobic granular sludge decreased obviously; when it increased to 400, 500 and 600 mg/L, the inhibition rate were 31%, 68% and 54% respectively. The inhibition effect of 4-chlorophenol on the anaerobic biological degradation of glucose happened in the later stage of the reaction when the concentration was low, and in the early stage of the reaction when the concentration was high. In the recovery test carried out simultaneously, the inhibition effect of 4-chlorophenol with different concentrations on the production of methane was still exist; however, the inhibition degree was decreased.%利用取自ABR反应器的厌氧颗粒污泥,以葡萄糖为共基质,测定了不同浓度4-氯酚对厌氧污泥产甲烷微生物的影响以及活性恢复情况.试验结果表明:4-氯酚对厌氧颗粒污泥产甲烷活性具有较强的抑制作用,当4-氯酚的质量浓度为300 mg/L时,抑制作用最小;并且随着4-氯酚浓度的继续提高,厌氧颗粒污泥的产甲烷活性显著下降.当4-氯酚的质量浓度为400、500、600 mg/L时,相应的抑制程度为31%、68%、54%.4-氯酚对厌氧生物降解葡萄糖反应的抑制作用,在低浓度时发生在反应后期,高浓度时发生在反应初期.同时在恢复试验中不同浓度的4-氯酚对产甲烷的抑制作用仍存在,但有所降低.

  7. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  8. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Eduardo J. Gudiña

    2016-02-01

    Full Text Available Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens, and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  9. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-01

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments. PMID:26901207

  10. ANTI-MICROORGANISM ACTIVITIES AND APPLICATIONS OF CHLORINE DIOXIDE%化学消毒剂二氧化氯抗微生物作用及应用

    Institute of Scientific and Technical Information of China (English)

    熊中奎; 郎娟; 夏国园

    2011-01-01

    二氧化氯(C102)作为一种高效化学消毒剂,能有效地杀灭或抑制病毒、细菌、真菌和寄生虫等各种病原体,在饮用水处理、食品保鲜防腐、废水处理、室内环境消毒、医疗设备和口腔科消毒等领域都具有广阔的应用前景.但是由于存在一些安全性问题,在一定程度上限制了C102推广应用.%Chlorine dioxide, as a chemical sanitizer, is highly effective for sterilizing or inhibiting many pathogens, such as viruses, bacteria, fungi and parasites, so it illustrates a good prospect of application in drinking water treatment, food preservation, effluent disposal, disinfections of interior space and medical equipments, and antisepsis of medical activities in department of stomatology. To some degrees, it is restricted in application and extension for its security fla13:34 2012-7-25ws.

  11. Ultraviolet-Mediated Activation of Photo toxins from Peganum Harmala L. Seedlings to Control both Human-and Phyto-Pathogenic Microorganisms and Tumor Cells

    International Nuclear Information System (INIS)

    The medicinal plant Peganum harmala L. (zygophyllaceae) contains a number of Beta-carboline alkaloids, which are photosensitizers to bacteria, yeasts and eukaryotic cells in the presence of sunlight and artificial sources of long-wave UV radiation (365 nm). Ultraviolet irradiation of ten-day old aseptically germinated Peganum harmala inoculated on bacterial and yeast bioassay plates elicits strong phototoxic antimicrobials. Callus as well as crude methanol extracts of in vitro cultures were also investigated for the accumulation of photosensitizers. High performance liquid chromatographic analyses of irradiated and control tissues followed by fluorescent detection at 302 nm revealed the formation of serotonin (5-hydroxytryptamine) in irradiated tissues only. Eluted compounds detected at 330 nm revealed more than ten-fold accumulation of harmine, isoharmine and harmol in irradiated tissues. Moreover, several simple beta-carboline alkaloids were produced through irradiation with UV such as harmalanine and harmalacidine. UV-induced phototoxicity was proven against phyto pathogenic bacteria and human-pathogenic bacteria and yeasts. Photo-induced cytotoxicity was observed from two different toxicity bioassays, which are Artemia saline and potato discs tumor assay. The selective UV-dependent biological activities may imply a pharmacological potential of Peganum harmala in the control of infectious diseases and tumor tissues

  12. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hun; Nam, Ji Hyun; Shin, Ji Hye; Yun, Seo Yeon; Cho, Young Cheol; Oh, Kyoung hee [Chungbuk National University, Cheongju (Korea, Republic of)

    2011-04-15

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  13. Evaluation of the antibiotic activity and genetic mutation of microorganisms in the effluent treated with the electron-beam from waste-water treatment plant

    International Nuclear Information System (INIS)

    In this study, the residual concentrations and activities of antibiotics after UV or gamma-ray treatments were estimated, and the effect of irradiation of UV, gamma-ray, or electron beam was estimated on the survivability and less mutagenic effect on bacteria. The changes of bacterial communities and radiation resistant population in the effluent treated with UV and electron-beam were analyzed. The gamma-ray irradiation was more effective than UV in degradation of antibiotics. The extent of mutagenicity of electron-beam irradiation was less than those of UV or gamma-ray irradiations. The application of election-beam to the wastewater treatment system showed the high efficiency of destroying and removal effects on bacterial cells. The selective increase in population of radiation resistant bacteria was not observed. These results indicate that the application of ionizing radiation to the processes of wastewater treatment system will be suitable than UV irradiation because of its degradability of variable antibiotics, high removal rate of harmful bacteria, less mutagenicity of bacteria, and low selective effect on radiation resistant bacteria

  14. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  15. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  16. PROBIOTICS BASED ON TRANSGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    S. А. Starovoitova

    2012-02-01

    Full Text Available Modern tendencies of recombinant microorganisms creation for obtaining on their basis a new effective biopreparations (probiotics with wider spectrum of biological and therapeutic properties were considered. A lot of attention was focused on the main genera of perspective bacteria for creation of recombinant probiotics particularly: Lactococcus, Bifidobac terium,Bacillus, Escherichia. The main created Ukrainian and foreign gene-modified strains, that are widely used today in creation of effective recombinant biopreparations were characterized. Some fundamental directions and methods of gene-modified strains obtaining, which are used in getting effective biopreparations that used for therapy and prophylactic illness were reported, under which this group of pharmaceutical drugs were not used earlier. The safety matters of probiotics using on basis of genemodified strains were examined. Medical and veterinary biopreparations on basis of recombinant microorganisms could be used directly and effectively for therapy and prophylaxis of different illness, beginning from disbacteriosis up to cardiovascular diseases. It is related with some probiotic microorganisms ability for lowering of serum cholesterol at the host organism.

  17. 40 CFR 725.85 - Microorganism identity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only...

  18. Screening of microorganisms from Antarctic surface water and cytotoxicity metabolites from Antarctic microorganisms.

    Science.gov (United States)

    Zheng, Lanhong; Yang, Kangli; Liu, Jia; Sun, Mi; Zhu, Jiancheng; Lv, Mei; Kang, Daole; Wang, Wei; Xing, Mengxin; Li, Zhao

    2016-03-01

    The Antarctic is a potentially important library of microbial resources and new bioactive substances. In this study, microorganisms were isolated from surface water samples collected from different sites of the Antarctic. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay-based cytotoxicity-tracking method was used to identify Antarctic marine microorganism resources for antitumor lead compounds. The results showed that a total of 129 Antarctic microorganism strains were isolated. Twelve strains showed potent cytotoxic activities, among which a Gram-negative, rod-shaped bacterium, designated as N11-8 was further studied. Phylogenetic analysis based on 16S rRNA gene sequence showed that N11-8 belongs to the genus Bacillus. Fermented active products of N11-8 with molecular weights of 1-30 kDa had higher inhibitory effects on different cancaer cells, such as BEL-7402 human hepatocellular carcinoma cells, U251 human glioma cells, RKO human colon carcinoma cells, A549 human lung carcinoma cells, and MCF-7 human breast carcinoma cells. However, they displayed lower cytotoxicity against HFL1 human normal fibroblast lung cells. However, they displayed lower cytotoxicity against HFL1 human normal fibroblast lung cells. Microscopic observations showed that the fermented active products have inhibitory activity on BEL-7402 cells similar to that of mitomycin C. Further studies indicated that the fermented active products have high pH and high thermal stability. In conclusion, most strains isolated in this study may be developed as promising sources for the discovery of antitumor bioactive substances. The fermented active products of Antarctic marine Bacillus sp. N11- 8 are expected to be applied in the prevention and treatment of cancer.

  19. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    Science.gov (United States)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  20. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    Science.gov (United States)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  1. Mini-review: Inhibition of biofouling by marine microorganisms.

    Science.gov (United States)

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  2. Antarctic bacteria inhibit growth of foodborne microorganisms at low temperatures.

    NARCIS (Netherlands)

    A.C. O'Brien; R. Sharp; N.J. Russell; S. Roller

    2004-01-01

    The aim of this study was to identify Antarctic microorganisms with the ability to produce cold-active antimicrobial compounds with potential for use in chilled food preservation. Colonies (4496) were isolated from 12 Antarctic soil samples and tested against Listeria innocua, Pseudomonas fragi and

  3. Recent Researches of Bioactive Metabolites in Marine Organisms-associated Microor-ganisms

    Institute of Scientific and Technical Information of China (English)

    GU Qianqun; LU Jia; CUI Chengbin; ZHU Tianjiao; FANG Yuchun; LIU Hongbing; ZHU Weiming

    2004-01-01

    Recent researches have shown that some compounds isolated from marine organisms have striking structural similarities with the metabolites from known microorganisms. It is inferred from the researches that the symbiotic or associated marine microorganisms may be the true sources of those compounds or at least involved in the biosynthesizing process. This view has been further evidenced by the researches for many sponges and sponge-associated microorganisms. Importantly, growing evidence has highlighted that the symbiotic or associated marine microorganisms live in the microenvironment within the hosts, and they also produce secondary metabolites which are new and original in structure and unique in activity. All these suggest that the microorganisms associated with marine organisms are the sources with very high potential to be new natural bioactive agents. This article reviews briefly the research advances in the study of new bioactive metabolites from marine organisms-associated microorganisms since 2000.

  4. Potential role of microorganisms in the pathogenesis of rosacea.

    Science.gov (United States)

    Holmes, Anna D

    2013-12-01

    Rosacea is a skin condition of abnormal inflammation and vascular dysfunction. The active contribution of a microbial agent in the development or progression of rosacea continues to be debated. Research supports the presence of commensal Demodex folliculorum mites at increased density in the skin and associates Helicobacter pylori infection of the gut with rosacea. Fewer studies implicate Staphylococcus epidermidis, Chlamydophila pneumoniae, and the Demodex-associated bacteria Bacillus oleronius. No research, however, provides a mechanism by which colonization by a microorganism translates to manifestation of the condition. Prevailing and emerging principles in the biology of the microbiome and the pathophysiology of rosacea may help to reconcile these lingering questions. Here the microorganisms implicated in rosacea are reviewed and the reaction of the microbiome to inflammation and to changes in microenvironments and macroenvironments are discussed to explain potential roles for microorganisms in rosacea pathophysiology.

  5. Color-Removal by Microorganisms Isolated from Human Hands

    Directory of Open Access Journals (Sweden)

    Tsukasa Ito

    2013-08-01

    Full Text Available Microorganisms are essential for human life. Microorganisms decompose the carbon compounds in dead animals and plants and convert them into carbon dioxide. Intestinal bacteria assist in food digestion. Some vitamins are produced by bacteria that live in the intestines. Sewage and industrial wastewater are treated by activated sludge composed of microbial communities. All of these are due to the ability of microbes to produce many enzymes that can degrade chemicals. How do teachers make students understand that microorganisms are always associated with humans, and that microorganisms have the ability to degrade chemicals? The presence of microorganisms on humans can be shown by incubating agar plates after they are touched by the hands of students. The ability of microorganisms to degrade chemicals can be shown by an analytical measurement of the degradation of chemicals. When the chemicals are dyes (colorants in water, microbial activity on degradation of dyes can be demonstrated by observing a decreasing degree of color as a result of the enzymatic activity (e.g., azoreductase. Dyes are widely used in the textile, food, and cosmetic industries. They are generally resistant to conventional biological wastewater treatment systems such as the activated sludge process (4. The discharge of wastewater containing dye pollutes surface water. The ability of microorganisms to decolorize and degrade dyes has been widely investigated to use for bioremediation purposes (5. The goal of this tip is to understand the presence of bacteria on human skin and the ability of bacteria to degrade colorant chemicals (decolorization. In this tip, students first cultivate and isolate bacteria on their hands, and then examine potential decolorization activity of each bacterium by observing the degree of color of the liquid in tubes in which bacteria isolated from students’ hands were inoculated. Decolorization activity of bacterial isolates from human skin has been

  6. Metagenomics: Application of Genomics to Uncultured Microorganisms

    OpenAIRE

    Handelsman, Jo

    2004-01-01

    Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that ...

  7. Functional Basis of Microorganism Classification.

    Directory of Open Access Journals (Sweden)

    Chengsheng Zhu

    2015-08-01

    Full Text Available Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion. Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1 the inconsistency of functional diversity levels among different taxa and (2 an (unsurprising bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less

  8. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms.

    Directory of Open Access Journals (Sweden)

    Stefania Arioli

    Full Text Available An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms.

  9. Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    Science.gov (United States)

    Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego

    2010-01-01

    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088

  10. Biocorrosion produced by Thiobacillus-like microorganisms.

    Science.gov (United States)

    López, A I; Marín, I; Amils, R

    1994-01-01

    Biocorrosion can be produced by many different microorganisms through diverse mechanisms. The biocorrosion produced by acidophilic microorganisms of the genus Thiobacillus is based on the production of sulfuric acid and ferric ion from pyrites or related mineral structures, as a result of the chemolithotrophic metabolism of these microorganisms. The products of this aerobic respiration are also powerful oxidant elements, which can produce chemical oxidations of other metallic structures. The Tinto River, a very unusual extremophilic habitat (pH around 2, and high concentration of ferric ion), product of the growth of strict chemolithotrophic microorganisms, is discussed as a model case.

  11. Effect of Different Fertilizers on Continuous Tobacco Cropping Rhizospheric Soil Microorganisms and Enzyme Activities%不同肥料对连作烟草根际土壤微生物及酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    段玉琪; 陈冬梅; 晋艳; 王海斌; 杨宇虹; 尤垂淮; 田卫霞; 林文雄

    2012-01-01

    烟草连作障碍是制约烟草产量与品质的关键因素.以连作12年的烟草土壤为对象,通过施用不同肥料,研究了不同肥料对连作烟草产量、根际土壤微生物量、土壤酶活性的影响.结果表明:不同施肥处理对连作烟草产量及土壤微生物及酶活性的影响存在一定差异,施用农家肥有利于提高连作烟草产量.土壤微生物量分析结果显示,不同施肥处理后烟草根际土壤微生物量碳、氮及微生物呼吸强度依次为:农家肥>有机肥>氮肥>复合肥.与土壤营养循环相关酶活性的分析结果表明,不同施肥处理后烟草根际土壤中性磷酸酶、碱性磷酸酶、脲酶、蔗糖酶活性以有机肥处理后活性最大,而酸性磷酸酶则以农家肥处理后活性最高.与土壤生物抗逆性相关的多酚氧化酶、过氧化物酶、过氧化氢酶、脱氢酶活性分析的结果显示,不同施肥处理后烟草根际土壤抗性相关酶活性大小依次为:农家肥>有机肥>氮肥>复合肥.%Problems caused by continuous tobacco cropping were critical obstacles restricting the yield and quality of tobacco leaf. The trial was conducted in a filed,where tobacco was continuously planted for 12 years. By applying different fertilizers,we studied the effect of different fertilizers on the yield,quality and rhizospheric soil microbial biomass,enzyme activity of the rhizosphere. The results indicated that different fertilization treatments had different effects on leaf yield,soil microorganism and enzyme activity in continuous cropping,and farmyard manure application was favorable to improve the leaf yield. The result of soil microbial biomass analysis showed that microbial biomass C and N,and microbial respiration intensity ranked as farmyard manure > organic fertilizer > nitrogen fertilizer > compound fertilizer after different fertilizer treatments. Furthermore,the activity of neutral phosphatase,alkaline phosphatase,urease and

  12. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate.

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Yaobin; Yu, Qilin; Dang, Yan; Li, Yang; Quan, Xie

    2016-10-01

    Direct interspecies electron transfer (DIET) has been considered as an alternative to interspecies H2 transfer (IHT) for syntrophic metabolism, but the microorganisms capable of metabolizing the key intermediates, such as propionate and butyrate, via DIET have yet to be described. A strategy of culturing the enrichments with ethanol as a DIET substrate to stimulate the communities for the syntrophic metabolism of propionate and/or butyrate was proposed in this study. The results showed that the syntrophic propionate and/or butyrate degradation was significantly improved in the ethanol-stimulated reactor when propionate/butyrate was the sole carbon source. The conductivity of the ethanol-stimulated enrichments was as 5 folds (for propionate)/76 folds (for butyrate) as that of the traditional enrichments (never ethanol fed). Microbial community analysis revealed that Geobacter species known to proceed DIET were only detected in the ethanol-stimulated enrichments. Together with the significant increase of Methanosaeta and Methanosarcina species in these enrichments, the potential DIET between Geobacter and Methanosaeta or Methanosarcina species might be established to improve the syntrophic propionate and/or butyrate degradation. Further experiments demonstrated that granular activated carbon (GAC) could improve the syntrophic metabolism of propionate and/or butyrate of the ethanol-stimulated enrichments, while almost no effects on the traditional enrichments. Also, the high H2 partial pressure could inhibit the syntrophic propionate and/or butyrate degradation of the traditional enrichments, but its effect on that of the ethanol-stimulated enrichments was negligible. PMID:27403870

  13. Study on Soil Microorganism and Enzyme Activity in Root-zone of Different Flue-cured Tobacco Genotypes%不同基因型烤烟根区土壤微生物和酶活性研究

    Institute of Scientific and Technical Information of China (English)

    刘巧真; 郭芳阳; 吴照辉; 李芳芳; 梁涛; 曹华民

    2013-01-01

      为了研究不同基因型烤烟根区土壤微生物种群数量和酶活性差异,以中烟100、NC297和KRK26为材料,研究了其根区土壤主要微生物种群数量和酶活性的变化规律。结果表明:3个基因型烤烟根区土壤细菌、真菌、放线菌、解磷菌数量随生育期变化规律基本一致,但现蕾期和采收结束均表现为KRK26根区的土壤真菌和解磷菌数量明显高于其他2个品种。根区土壤解钾菌、硝化细菌和纤维素分解菌变化规律和数量在烤烟基因型间差异明显,中烟100土壤解钾菌数量呈倒“V”型变化,现蕾期最高(53.36×104个/g),明显高于其他2个品种;NC297团棵期根区土壤硝化细菌数量最高,之后逐渐降低,而中烟100表现为先升高后下降,现蕾期最高;整个生育期中烟100根区土壤纤维素分解菌数量明显高于KRK26和NC297。 NC297根区土壤过氧化氢酶活性在整个生育期均低于KRK26和中烟100,根区土壤转化酶活性则表现为中烟100明显高于KRK26和NC297。%Zhongyan 100,NC297 and KRK26 were selected as test materials to study the soil microorganism and enzyme activity in root-zone of different flue-cured tobacco genotypes.The results showed that the amounts of root-zone soil microphyte,epiphyte,actinomyces and phosphate-dissolving bacteria had the similar changes along with the growth stages,but the amounts of epiphyte and phosphate-dissolving bacteria at squaring and harvest stages were significantly higher in root-zone of KRK26 than in Zhongyan 100 and NC297.The amounts of root-zone soil po-tassium-dissolving bacteria,nitrobacteria and celluose-decomposing bacteria changed differently in different flue-cured tobacco genotypes.The amount of potassoium-dissolving bacteria in Zhongyan 100 ascended first,and then de-scended,reaching to the highest(53.36 ×10 4 cell/g of dry soil)at squaring stage.The amount of root-zone soil nitro-bacteria in NC297 reached

  14. Siderophores from Marine Microorganisms and Their Applications

    Institute of Scientific and Technical Information of China (English)

    LI Junfeng; CHI Zhenming

    2004-01-01

    In view of the fact that siderophores from microorganisms in different environments have received much attention in recent years because of their potential applications and diverse physiological functions, this review deals with siderophore-producing marine microorganisms and the detection, chemical structure and potential applications of siderophores.

  15. An Ecological Survey of Microorganisms Associated with Plantain Roots (Rhizosphere

    Directory of Open Access Journals (Sweden)

    O. S. Bello

    2011-01-01

    Full Text Available Problem statement: Micro-organisms are more predominant around root zone and as such play a vital role to plant. Micro-organisms are diverse and have property modification which are beneficial to plant growth and root development. Approach: The lack of knowledge on the specific microorganisms associated with plantain roots in Cross River State soils (which inturn leads to an avoidable loss of crop if appropriate management methods were employed led to the need for this study. Different ecological zones have different population of micro-organisms. The purpose of this study is to: to enumerate the rhizosphere microorganisms (bacteria and fungi associated with plantain roots at different locations across the ecological zones of the state and to identify the rhizosphere microorganisms associated with plantain roots of different location representing the ecological zones of the state. Results: To ascertain this, it was necessary to isolate micro-organisms from the roots of plantain in order to determine the different populations of microorganisms in different ecological zones across Cross River State, Nigeria. The isolation of bacteria and fungi colonizing the root of plantain were determined at six locations across the state, as follows: Obanliku, Boki, Etung, Obubra Biase and Odukpani Local Government Area. The activity growing roots of plantain were removed with the attached suckers and transferred to the laboratory for microbial analysis. Serial dilution method was used to determine the population of bacteria and fungi present in the root samples collected. Also, staining reaction as well as biochemical taste were carried out to identify the types of bacteria present and their biochemical reactions. Conclusion/Recommendations: The result showed that several types of bacteria and fungi were present around the roots of plantain. The types of bacteria and fungi are listed below; Bacteria: Micrococus, Rhizobium, Azomonas-agilis, Pseudomonads

  16. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  17. 盐胁迫对蔬菜地土壤微生物及土壤酶活的毒害效应%Eco-Toxicological Effects of Salt Stress on Microorganisms and Enzymes Activities in Vegetable Soil

    Institute of Scientific and Technical Information of China (English)

    周德平; 吴淑杭; 褚长彬; 刘芳芳; 姜震方; 范洁群

    2011-01-01

    采用外源投加盐分培养室模拟方法,研究了不同强度盐胁迫对蔬菜地土壤微生物和土壤酶的生态毒理效应.结果表明,在盐胁迫试验强度条件下,蔬菜地土壤细菌种群遭遇盐胁迫后,生长受抑、数量减少,放线菌种群抗逆性强、数量上升,土壤真菌种群数量因细菌种群数量的减少而出现暂时性增长现象,但随胁迫时间延长也呈现毒害效应,数量下降,且低于对照;盐胁迫造成土壤微生物优势种群演替和微生态失衡,细菌比例降低,真菌比例上升;盐胁迫明显抑制土壤脲酶和蛋白酶活性,抑制程度与外加盐量呈正比,即盐胁迫强度越大,土壤蛋白酶和脲酶活性越低;而土壤转化酶和过氧化氢酶的活性在低盐胁迫强度(外加盐量为1g,kg-1)时略高于对照组,但随盐胁迫强度的加重,转化酶和过氧化氢酶活性相应降低,盐含量越高,酶活性越低;土壤盐胁迫强度与土壤脲酶、蛋白酶、转化酶和过氧化氢酶活性均呈高度线性负相关,其中蛋白酶和转化酶与盐胁迫程度的相关性高且稳定,0.930≤|r|≤0.993.%Influence of salt stress on microfiora and enzymes activities in vegetable soil was studied through artificially adding simulated composites salt (SCS) into natural vegetable soil. The SCS was designed according to components of the saline soil in Shanghai, which comprised 14.6% Ca2+ 7.9% Na+,4.0% Mg2+, 45.4% NO-3, 16.0% SO2-4, 12.1% Cl-.Compared with the control, bacteria amount decreased, but acti-nomyeete increased in all four different salt-enhanced soils( 1, 5, 10, 20 g·kg-1) at all five testing intervals. In additions, fungi rose up in all the salt-enhanced soils at 15th day, and then dropped down at 30th, 45th and 70th day. The ratio of bacteria/microorganisms-cultured in soil ( MCS ) decreased and that of fungi/MCS increased. There were negative correlation between the activities of four enzymes (urease, protease, invertase

  18. Isolation and Identification of Electrochemically Active Microorganism from Micro-Aerobic Environment%微氧环境中电化学活性微生物的分离与鉴定

    Institute of Scientific and Technical Information of China (English)

    吴松; 肖勇; 郑志勇; 郑越; 杨朝晖; 赵峰

    2014-01-01

    电化学活性微生物在金属、碳等元素的生物地球化学循环,以及生物能源合成中具有重要作用.与微生物燃料电池厌氧阳极相比,微氧阳极能够捕集更多电能.但是相比于厌氧阳极中功能微生物的广泛研究,微氧阳极中的功能微生物还未被分离和研究.本研究采用传统好氧分离技术从微生物燃料电池微氧阳极分离获得3株纯菌Aeromonas sp. WS-XY2、Citrobacter sp. WS-XY3和Bacterium strain WS-XY4,其中WS-XY2和WS-XY3属于变形菌门,WS-XY4初步鉴定为新种.循环伏安、计时电流结果表明3株菌均具有电化学活性,且具有相似的直接胞外电子传递机制.3株菌在微生物分类学和电化学性质上的异同,表明微氧阳极能够定向筛选具有相似电化学性质的电化学活性微生物.微生物燃料电池微氧阳极具有更高效多样的功能微生物,可能是微氧阳极性能优于厌氧阳极的一个原因.因此,进一步针对微生物燃料电池微氧阳极中功能微生物的研究,将有助于阐明微氧阳极提高微生物燃料电池电能捕集的微生物机制.%Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct

  19. Nitrogen utilization pathways of soil microorganisms

    Science.gov (United States)

    Pinggera, J.; Geisseler, D.; Merbach, I.; Ludwig, B.

    2012-04-01

    Nitrogen (N) is an essential nutrient for all organisms. In terrestrial ecosystems N occurs predominantly in the form of organic matter. Here, soil microorganisms can use two possible mechanisms for the uptake of organic N: the direct route and the mobilization-immobilization-turnover (MIT) route. In the direct route simple organic molecules are taken up directly into the cell. The deamination occurs inside the cell and only the surplus N is released into the soil solution. In the second route, the deamination occurs outside the cell and all N is mineralized before assimilation. To determine the importance of the different N uptake pathways of soil microorganisms an incubation experiment (21 days, 20°C) is currently being carried out. Corn leaves with different C to N ratios (20, 40) and (NH4)2SO4 have been added to three soils (Haplic Chernozem, FAO) with different fertilization histories (300dt/ha farmyard manure every second year, mineral NPK fertilizer, no fertilization) from the long-term experiment at Bad Lauchstädt. Contents of NH4+, NO3- and microbial biomass C (Cmic) and N (Nmic), CO2 production, potential protease activity, gross N mineralization and mineralization of added amino acids will be determined after 3, 7 and 21 days. Preliminary results show that the protease activity (without addition of corn residues) decreased in the order manure-fertilized soil (18.26 mg tyrosine kg-1 soil h-1) > Soil with mineral NPK fertilizer (17.45 mg tyrosine kg-1 soil h-1) > unfertilized soil (11.34 mg tyrosine kg-1 oven dry soil h-1). The turnover of amino acids after 24h was higher for the manure-fertilized soil (99.5% of the added amino acids were consumed) than for the NPK- fertilized and unfertilized soils (76%). The effects of the fertilization histories on the temporal dynamics of the different biological properties (Cmic, Nmic), CO2 production, protease activity and N mineralization rates will be presented.

  20. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments

    Directory of Open Access Journals (Sweden)

    Xin-Qing Zhao

    2011-01-01

    Full Text Available Marine microorganisms are rich source for natural products which play important roles in pharmaceutical industry. Over the past decade, genome-based studies of marine microorganisms have unveiled the tremendous diversity of the producers of natural products and also contributed to the efficiency of harness the strain diversity and chemical diversity, as well as the genetic diversity of marine microorganisms for the rapid discovery and generation of new natural products. In the meantime, genomic information retrieved from marine symbiotic microorganisms can also be employed for the discovery of new medical molecules from yet-unculturable microorganisms. In this paper, the recent progress in the genomic research of marine microorganisms is reviewed; new tools of genome mining as well as the advance in the activation of orphan pathways and metagenomic studies are summarized. Genome-based research of marine microorganisms will maximize the biodiscovery process and solve the problems of supply and sustainability of drug molecules for medical treatments.

  1. L-methionine degradation potentialities of cheese-ripening microorganisms.

    Science.gov (United States)

    Bonnarme, P; Lapadatescu, C; Yvon, M; Spinnler, H E

    2001-11-01

    Volatile sulphur compounds are major flavouring compounds in many traditional fermented foods including cheeses. These compounds are products of the catabolism of L-methionine by cheese-ripening microorganisms. The diversity of L-methionine degradation by such microorganisms, however, remains to be characterized. The objective of this work was to compare the capacities to produce volatile sulphur compounds by five yeasts, Geotrichum candidum, Yarrowia lipolytica, Kluyveromyces lactis, Debaryomyces hansenii, Saccharomyces cerevisiae and five bacteria, Brevibacterium linens, Corynebacterium glutamicum, Arthrobacter sp., Micrococcus lutens and Staphylococcus equorum of technological interest for cheese-ripening. The ability of whole cells of these microorganisms to generate volatile sulphur compounds from L-methionine was compared. The microorganisms produced a wide spectrum of sulphur compounds including methanethiol, dimethylsulfide, dimethyldisulfide, dimethyltrisulfide and also S-methylthioesters, which varied in amount and type according to strain. Most of the yeasts produced methanethiol, dimethylsulfide, dimethyldisulfide and dimethyltrisulfide but did not produce S-methylthioesters, apart from G. candidum that produced S-methyl thioacetate. Bacteria, especially Arth. sp. and Brevi. linens, produced the highest amounts and the greatest variety of volatile sulphur compounds includling methanethiol, sulfides and S-methylthioesters, e.g. S-methyl thioacetate, S-methyl thiobutyrate, S-methyl thiopropionate and S-methyl thioisovalerate. Cell-free extracts of all the yeasts and bacteria were examined for the activity of enzymes possibly involved in L-methionine catabolism, i.e. L-methionine demethiolase, L-methionine aminotransferase and L-methionine deaminase. They all possessed L-methionine demethiolase activity, while some (K. lactis, Deb. hansenii, Arth. sp., Staph. equorum) were deficient in L-methionine aminotransferase, and none produced L-methionine deaminase

  2. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  3. Bactericidal Activities of Spicy Essential Oils on Microorganisms in Crude Food%香辛料精油成分对生鲜食品中有害菌杀灭活性研究

    Institute of Scientific and Technical Information of China (English)

    段雪娟; 吴克刚; 柴向华

    2012-01-01

    Bactericidal activities of seven spicy essential oil components on five microorganisms (Escherichia Coli, Staphylococcus Awrous, Saimonella, Listcria monocytogenes, Vibrio Parahemolyticus) were studied by plate dilution method and transferring substrate cob method. Results showed that salicylaldehyde had the best bactericidal activity,followed successively by thymol, cin-namic aldehyde, anethole, eugenol, citral, vanillin. The optimal composite essential oil ( salicylaldehyde: cinnamic aldehyde: thymol: anethole 2:5: 20: 5. ) was obtained through orthogonal test. The minimum bactericidal mass concentration of the composite essential oil for killing five pathogens was 0.25 mg/L, only 1/2 of that of salicylaldehyde. Synergistic sterilization effects of composite essential oil was analyzed. The composite essential oil showed a strong synergistic effect on Listeria monocytogenes, an additive effect on Staphylococcus Aurous , Escherichia Coli and Vibrio Parahemolyticus, and unrelated effect on Salmonella.%采用平板稀释法和菌块转移法研究了百里香酚、丁香酚、肉桂醛、茴香脑、水杨醛、柠檬醛、香兰素7种食用植物精油组分对大肠杆菌、金黄色葡萄球菌、沙门氏菌、单增李斯特菌、副溶血性弧菌等生鲜食品常见5种有害菌的杀灭活性.实验结果表明,水杨醛对5种有害菌的综合杀灭能力最强,然后依次是百里香酚、肉桂醛、茴香脑、丁香酚、柠檬醛、香兰素.通过正交试验将水杨醛、肉桂醛、百里香酚、茴香脑复配,得到最佳组合是为:水杨醛、肉桂醛、百里香酚、茴香脑的质量比为2:5:20:5,其杀灭所有供试菌的最低质量浓度为0.25 mg/L,仅为杀菌效果最好的单一水杨醛浓度的1/2.通过对香辛料精油成分杀菌作用协同效应分析得出,复配的香辛精油对单增李斯特菌的杀灭表现出很强的协同增效作用效果,对金黄色葡萄球菌、大肠杆菌和副溶血性弧菌的杀灭

  4. Impact of Transgenic Bt+CpTI Cotton on Soil Enzyme Activities and Soil Microorganisms%转双价棉种植对土壤酶活性及土壤微生物的影响

    Institute of Scientific and Technical Information of China (English)

    刘红梅; 宋晓龙; 皇甫超河; 张贵龙; 杨殿林; 赵建宁

    2013-01-01

    Due to its strong and effective insecticidal properties, transgenic Bt+CpTI cotton has witnessed an expanding planting area in recent years, and the impact of its cultivation on soil ecosystem becomes an important part of environmental risk assessment. Using transgenic Bt+CpTI cotton sGK321 and its parental homologous conventional cotton Shiyuan 321 as the study objects, a comparative analysis was conducted on the changes in enzyme activities (urease, alkaline phosphatase, and catalase) of the rhizosphere soil and changes in the number of culturable microor-ganisms (bacteria, fungi, and actinomycetes) at different growth stages (seedling stage, budding stage, flower and bol stage, and bol opening stage) of sGK321 and Shiyuan 321 under the condition of 13 years field plantings. The results showed that, the populations of bacteria, fungi, and actinomycete and the soil enzyme activi-ties of urease, alkaline phosphatase and catalase had a similar variation trend along with the cotton growing process for transgenic cotton and conventional cotton. Some occasional and inconsistent effects on soil enzyme activities and soil fungi composi-tion in the rhizosphere soil of transgenic Bt+CpTI cotton were found at the seedling stage, budding stage, flower and bol stage as compared with that of conventional cotton. The amount of bacteria and actinomycetes were not significantly different during a certain stage; however, the activities of urease, catalase, alkaline phos-phatase, also with the number of fungi were significantly different, e.g. the urease activities at seedling stage, the alkaline phosphatase at seedling and budding stages, and the soil culturable fungi at flower and bol stage were less than that of conven-tional cotton, while the soil alkaline phosphatase activities at flower and bol stage were higher. Cluster analysis showed that soil enzyme activities and microbial popu-lation changed mainly along the growth processes, suffering little from the planting of

  5. Variation of soil microorganism quantities and enzyme activities at the third year cultivation of continuous positional intercropping of tomato with garlic under plastic tunnel%大棚番茄连续定位套蒜第3年度土壤微生物数量和酶活性的变化

    Institute of Scientific and Technical Information of China (English)

    孙彩菊; 程智慧; 孟焕文; 李晓敏; 赵慧玲; 刘同金

    2012-01-01

    Objective The investigation was carried out to explore the variation and correlation of soil microorganism quantities and enzyme activities at the third year of positional intercropping garlic with to- mato in plastic tunnel cultivation. KMethodl Three treatments of monoculture tomato,tomato intercropped with normal garlic,and tomato intercropped with garlic green were set and the soil was sampled to analyze microorganism quantities and enzyme activities periodically. ~Resultl The soil microorganism quantities of the treatment intercropped with normal garlic or garlic green were improved with the following order:in- tercropping with garlic green〉intercropping with normal garlic~monoculture. It is noticeable that the soil enzyme activities were enhanced for the treatment intercropping with garlic. The catalase activities ranked as follows:intercropping with normal garlic〉intercropping with garlic green〉monoculture,while the se- quence of the invertase,urease and alkaline phosphatase activities was:intereropping with garlic green〉in-tercropping with normal garlic〉monoculture. The correlations between soil microorganism quantities and soil enzyme activities were more significant that that of activities between different soil enzymes in tomato/ garlic intercropping system. [Conclusion] Intercropping of garlic is an effective measure to increase the quantities of microorganism and activities of enzymes in soil. Continuous positional intercropping of garlic with tomato for three years can increase soil microorganism shortage and improve soil enzyme activities.%【目的】明确大棚番茄连续定位套蒜第3年度土壤微生物数量和酶活性的变化及其相关性。【方法】试验设单作番茄、套作大蒜、套作青蒜3个处理,定期采集土样并分析微生物数量和酶活性的变化。【结果】套蒜可增加土壤的微生物数量,3个处理土壤微生物数量由多到少的顺序为套作青蒜〉套作大蒜〉单作番

  6. Release of marine sedimentary microorganisms by enzymes-antibiotic association

    Energy Technology Data Exchange (ETDEWEB)

    Brisou, J.F. (Hopital d' Instruction des Armees, Ecole d' Application des Medecins de la Marine, Sainte-Anne, 83 - Toulon (France)); Makhlouf, B. (Institut Pasteur, Alger (Algeria))

    1982-12-06

    Polysaccharases release microorganisms from their natural seat, marine sediments for example. The enzymatic activity works both on the microbial adherence polysaccharides and on the support surfaces (cellulose, pectine, etc.). Dosages of glucose confirm polysaccharase activity. An association of bacitracine, thiophenicol and a few enzymes: cellulase, pectinase, amyloglucosidase, alpha amylase, hyaluronidase, release a considerable number of bacteria. The culture on specific mediums confirm the specificity of this release. E. coli polyresistant strain where isolated by amylo-glucosidase, glucuronidase association in a mixture of thiophenicol and bacitracine. Bacillus and other Gram positif bacteria are frequently isolated by this method. The number of colonizer microorganisms on solid media are considerably higher with sediments treated by enzymes, or by enzyme, antibiotic mixtures, than with untreated ones.

  7. Electrical Retrieval of Living Microorganisms from Cryopreserved Marine Sponges Using a Potential-Controlled Electrode.

    Science.gov (United States)

    Koyama, Sumihiro; Nishi, Shinro; Tokuda, Maki; Uemura, Moeka; Ishikawa, Yoichi; Seya, Takeshi; Chow, Seinen; Ise, Yuji; Hatada, Yuji; Fujiwara, Yoshihiro; Tsubouchi, Taishi

    2015-10-01

    The purpose of this study was to develop a novel electrical retrieval method (ER method) for living sponge-associated microorganisms from marine sponges frozen at -80 °C. A -0.3-V vs. Ag/AgCl constant potential applied for 2 h at 9 °C induced the attachment of the sponge-associated microorganisms to an indium tin oxide/glass (ITO) or a gallium-doped zinc oxide/glass (GZO) working electrode. The electrically attached microorganisms from homogenized Spirastrella insignis tissues had intact cell membranes and showed intracellular dehydrogenase activity. Dead microorganisms were not attracted to the electrode when the homogenized tissues were autoclaved for 15 min at 121 °C before use. The electrically attached microorganisms included cultivable microorganisms retrieved after detachment from the electrode by application of a 9-MHz sine-wave potential. Using the ER method, we obtained 32 phyla and 72 classes of bacteria and 3 archaea of Crenarchaeota thermoprotei, Marine Group I, and Thaumarchaeota incertae sedis from marine sponges S. insignis and Callyspongia confoederata. Employment of the ER method for extraction and purification of the living microorganisms holds potential of single-cell cultivation for genome, transcriptome, proteome, and metabolome analyses of bioactive compounds producing sponge-associated microorganisms. PMID:26242755

  8. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    Science.gov (United States)

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles. PMID:26894235

  9. Preparation and characterization of gelatin scaffold containing microorganism fermented cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang; Lee, Byeong Heon [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Mi Yeong; Lee, Jong Dae; Song, Sung Gi [Quegenbiotech, Co., Incheon (Korea, Republic of)

    2010-12-15

    Cellulose, chitin, chitosan and hyaluronic acid are well known as polysaccharides. These polysaccharides have many effects on cell growth and differentiation. Cell activation increases with increasing the polysaccharides concentration. In this study, gelatin scaffold containing microorganism fermented cellulose, citrus gel were prepared by using irradiation technique. Physical properties of the scaffolds were investigated as a function of the concentrations of gelatin and citrus gel and the cell attachment, cell morphology and inflammation of the scaffolds also were characterized for regeneration of skin tissue.

  10. Detection of microorganisms using terahertz metamaterials.

    Science.gov (United States)

    Park, S J; Hong, J T; Choi, S J; Kim, H S; Park, W K; Han, S T; Park, J Y; Lee, S; Kim, D S; Ahn, Y H

    2014-05-16

    Microorganisms such as fungi and bacteria cause many human diseases and therefore rapid and accurate identification of these substances is essential for effective treatment and prevention of further infections. In particular, contemporary microbial detection technique is limited by the low detection speed which usually extends over a couple of days. Here we demonstrate that metamaterials operating in the terahertz frequency range shows promising potential for use in fabricating the highly sensitive and selective microbial sensors that are capable of high-speed on-site detection of microorganisms in both ambient and aqueous environments. We were able to detect extremely small amounts of the microorganisms, because their sizes are on the same scale as the micro-gaps of the terahertz metamaterials. The resonant frequency shift of the metamaterials was investigated in terms of the number density and the dielectric constants of the microorganisms, which was successfully interpreted by the change in the effective dielectric constant of a gap area.

  11. Pseudallescheria angusta, A LIGNINOLYTIC MICROORGANISM FOR WOOD FIBRES BIOMODIFICATION

    Directory of Open Access Journals (Sweden)

    Gema Guisado,

    2011-11-01

    Full Text Available Nowadays, the discovery of lignocellulolytic microorganisms that are better adapted to operational conditions while exhibiting the strong degrading activities is highly desired for successful lignocellulose biotransformation processes. In this study, microorganisms were isolated from lignocellulose-rich composting materials by selective methods. A screening of isolates known to have lignocellulolytic abilities was performed using several tests. Seven microorganisms showed ligninolytic potential and were subjected for further analysis according to their degrading activity. The fungus Pseudallescheriaangusta MF4 demonstrated high decolorization rates for three aromatic dyes: Poly R-478, Poly S-119, and Remazol Brilliant Blue R. In addition, the fungus showed a high production rate of ligninolytic enzymes in the presence of inducers. This fungus achieved the highest values of growth after 21 days of incubation on sawdust without any additional nutrients. Owing to its proven ligninolytic activity and capability of growing on a lignocellulosic substrate, the application of this isolate could be of interest in different biotechnological applications, particularly in biological treatment of wood fibres in order to improve the production of wood-based composites.

  12. Pathogenic and opportunistic microorganisms in caves

    OpenAIRE

    Sanchez-Moral Sergio; Hermosin Bernardo; Boiron Patrick; Rodriguez-Nava Veronica; Laiz Leonila; Jurado Valme; Saiz-Jimenez Cesareo

    2010-01-01

    With today’s leisure tourism, the frequency of visits to many caves makes it necessary to know about possible potentially pathogenic microorganisms in caves, determine their reservoirs, and inform the public about the consequences of such visits. Our data reveal that caves could be a potential danger to visitors because of the presence of opportunistic microorganisms, whose existence and possible development in humans is currently unknown.

  13. Food fermentations: Microorganisms with technological beneficial use

    DEFF Research Database (Denmark)

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh;

    2012-01-01

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on “the history of use”, “traditional food”, or “general recognition of safety”. Authoritative lists of microorganism......, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature....

  14. Titanium photocatalyst against human pathogenic microorganisms

    International Nuclear Information System (INIS)

    The conventional methods of disinfection are not effective in the longer term. They are time and staff intensive and use aggressive chemicals. Photocatalytic oxidation on surfaces coated with titanium dioxide (TiO2) might offer a possible alternative. The antimicrobial activity of TiO2 powder P25 and thin films of TiO2 on glass slides against representative strains of microorganisms associated with hospital-acquired infections (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) was investigated in vitro. High efficiency has been found in the case of the studied bacterial strains, particularly for the P. aeruginosa. It was shown that it is possible to disinfect surfaces coated with TiO2 and stimulated by UV-A light. The reduction efficiencies for P. aeruginosa, S. aureus and C. albicans were 3.19, 2.32 and 1.22. In all cases sublethal UV-A doses provoked an important lethality in the presence of TiO2. (authors)

  15. Preparation of Seeding Type Immobilized Microorganisms and Their Degradation Characteristics on Di-n-Butyl Phthalate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the preparation of seeding type immobilized microorganisms and their degradation characteristics on di-n-butyl phthalate (DBP). Methods Diatomite, clinoptilolite, silk zeolite, and coal fly ash were chosen as reserved materials and modified. Their adsorption capacity and intensity in the bacteria were determined and the best carrier was picked out. The seeding type immobilized microorganisms were prepared by the best carrier and then it degraded DBP under different primary concentration, vibration rate, pH, temperature in the presence of metal compounds. Results The adsorption capacity of the modified coal fly ash, silk zeolite, clinoptilolite and zeolite was 44.2%, 71.6%, 84.0%, and 94.4%, respectively, which was 1.66, 1.49, 1.37, and 1.16 times as high as that of their natural state. Their adsorption intensity was 72.1%, 90.5%, 90.1%,and 91.1% in turn. The modified diatomite was selected to prepare the seeding type immobilized microorganisms. When the primary DBP concentration was 100 to 500 mg/L, the DBP-degraded rate of the immobilized microorganisms could be above 80%. The degradation activity of both the dissociative and immobilized microorganisms was higher in vibration than in stillness.When pH was 6.0 to 9.0, the DBP-degraded rate of the immobilized microorganisms was above 82%, which was higher than the dissociative microorganisms. When the temperature was between 20℃ and 40℃, the DBP-degraded rate could reach 84.5% in 24 h. The metal compounds could inhibit the degradation activity of both the dissociative and immobilized microorganisms. The degradation process of the immobilized microorganisms could be described by the first-order model.Conclusion The adsorption capacity of the diatomite, clinoptilolite, silk zeolite and coal fly ash on DBP-degrading bacteria can be improved obviously after they are modified. The modified diatomite is best in terms of its adsorption capacity and intensity. Its seeding type immobilized microorganisms could

  16. Detection of extracellular proteases from microorganisms on agar plates

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1996-12-01

    Full Text Available We present herein an improved assay for detecting the presence of extracellular proteases from microorganisms on agar plates. Using different substrates (gelatin, BSA, hemoglobin incorporated into the agar and varying the culture medium composition, we were able to detect proteolytic activities from Pseudomonas aeruginosa, Micrococcus luteus and Serratia marcescens as well as the influence that these components displayed in the expression of these enzymes. For all microorganisms tested we found that in agar-BHI or yeast extract medium containing gelatin the sensitivity of proteinase detection was considerably greater than in BSA-agar or hemoglobin-agar. However, when BSA or hemoglobin were added to the culture medium, there was an increase in growth along with a marked reduction in the amount of proteinase production. In the case of M. luteus the incorporation of glycerol in BHI or yeast extract gelatin-agar induced protease liberation. Our results indicate that the technique described here is of value for detecting extracellular proteases directly in the culture medium, by means of a qualitative assay, simple, inexpensive, straight forward method to assess the presence of the proteolytic activity of a given microorganism colony with great freedom in substrate selection.

  17. Selection of potential microorganism for sago starch fermentation

    Directory of Open Access Journals (Sweden)

    RUTH MELLIAWATI

    2006-02-01

    Full Text Available Fermentation process of sago starch for the production of bioproduct requires potential microorganism that have ability to hydrolyze sago starch. The purpose of this research was to get the potential of amylolytic microorganisms for their capability of amyloglucosidase activity and to know the sugar strains of the fermentation result. Eleven amylolytic microorganisms (9 strains of mold and 2 strains of yeast were obtained from the collection Research Centre for Biotechnology – Indonesian Institute of Sciences (LIPI, Cibinong-Bogor were used. The selection step was carried out based on their capability of starch hydrolysis to reducing sugar. The best result indicates that the production of reducing sugar reached the highest 18.485 ppm and amyloglucosidase activities was 3.583 units by KTU-1 strain. The highest total acid obtained was 5.85 mg/mL by Rhizopus IFO.R5442. The cell biomass was obtained between 0.5 to 1.74 g dry weight/100 mL and pH of the final fermentation (72 h were 3.57 to 8.38.

  18. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  19. Functional microorganisms for functional food quality.

    Science.gov (United States)

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods. PMID:20830633

  20. Why do microorganisms produce rhamnolipids?

    OpenAIRE

    Chrzanowski, Łukasz; Ławniczak, Łukasz; Czaczyk, Katarzyna

    2011-01-01

    We review the environmental role of rhamnolipids in terms of microbial life and activity. A large number of previous research supports the idea that these glycolipids mediate the uptake of hydrophobic substrates by bacterial cells. This feature might be of highest priority for bioremediation of spilled hydrocarbons. However, current evidence confirms that rhamnolipids primarily play a role in surface-associated modes of bacterial motility and are involved in biofilm development. This might be...

  1. Recovery of germanium from lignite by microorganism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recovery of Ge from lignite by microorganism includes two stages: (1) the breaking-down of Ge complex of humus in lignite into simple compounds assisted by microorganism; (2) the desorption of Ge compounds from the lignite. The recovery rate of Ge has been enhanced by 14% since the discovery of adsorption and desorption of Ge from coal. The effects of pH, leaching agents, and coal size on the recovery of Ge were experimentally investigated, and the optimized process parameters were obtained. The reaction heat of Ge adsorption and desorption in lignite was determined. It is about 23-53 kJ/mol, which reveals that the adsorption belongs to physical process. The recovery rate of Ge from lignite with direct microorganism leaching can reach about 85%, which is higher than that of 60% reported elsewhere. A potential process for leaching Ge in lignite was suggested.

  2. Selective enumeration of probiotic microorganisms in cheese.

    Science.gov (United States)

    Karimi, Reza; Mortazavian, Amir M; Amiri-Rigi, Atefeh

    2012-02-01

    Cheese is a dairy product which has a good potential for delivery of probiotic microorganisms into the human intestine. To be considered to offer probiotic health benefits, probiotics must remain viable in food products above a threshold level (e.g., 10(6) cfu g(-1)) until the time of consumption. In order to ensure that a minimal number of probiotic bacteria is present in the cheese, reliable methods for enumeration are required. The choice of culture medium for selective enumeration of probiotic strains in combination with starters depends on the product matrix, the target group and the taxonomic diversity of the bacterial background flora in the product. Enumeration protocol should be designed as a function of the target microorganism(s) to be quantified in the cheese. An overview of some series of culture media for selective enumeration of commercial probiotic cultures is presented in this review.

  3. Application of microorganisms in coal cleaning processes

    International Nuclear Information System (INIS)

    A secure energy supply is one of the basic pre-requisites for a sound economic system, sustained standard and quality of life and eventually for the social well-being of each individual. For a progressive country like Pakistan, it is obligatory that all energy options must be pursued vigorously including coal utilization, which given the relatively large resources available, is considered to be one of the major options for the next few hundred years. Bioprocessing of coal in an emerging technology which has started to receive considerable research attention. Recent research activities involving coal cleaning, direct coal conversion, and indirect conversion of coal-derived materials have generated a plethora of facts regarding biochemistry, chemistry, and thermodynamic behavior of coal, in that its bioprocessing is on the verge of becoming and acceptable means to great coals. In this research report, investigations pertaining to the various aspects of coal bio processing, including desulfurization and depyritization are discussed. Bituminous coals varying in total sulfur contents of 3-6% were depyritized more than 90% by mesophilic acidophiles like Thiobacillus ferroxidans and Thiobacillus thio oxidans and thermophilic Sulfolobus brierleyi. The archaebacterium, Sulfolobus brierleyi was found to desulfurize inorganic and organic sulfur components of the coal. Conditions were established under which it can remove more than 30% of the organic sulfur present in the coals. Heterotrophic microorganisms including oxenic and soil isolates were also employed for studying sulfurization. A soil isolate, Oil-2, was found to remove more than 70% dibenzothiophenic sulfur present in an oil-water emulsion (1:20 ratio). Pseudomonas putida and the bacterium oil-2 also remove 60-70% organic sulfur present in the shale-oil. Preliminary results indicate the presence of putatively known Kodama's pathway in the oil-2. The mass balance for sulfate indicated the possibility of the presence

  4. Why do microorganisms produce rhamnolipids?

    Science.gov (United States)

    Chrzanowski, Łukasz; Ławniczak, Łukasz; Czaczyk, Katarzyna

    2012-02-01

    We review the environmental role of rhamnolipids in terms of microbial life and activity. A large number of previous research supports the idea that these glycolipids mediate the uptake of hydrophobic substrates by bacterial cells. This feature might be of highest priority for bioremediation of spilled hydrocarbons. However, current evidence confirms that rhamnolipids primarily play a role in surface-associated modes of bacterial motility and are involved in biofilm development. This might be an explanation why no direct pattern of hydrocarbon degradation was often observed after rhamnolipids supplementation. This review gives insight into the current state of knowledge on how rhamnolipids operate in the microbial world. PMID:22347773

  5. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...

  6. [Metagenomics in studying gastrointestinal tract microorganism].

    Science.gov (United States)

    Xu, Bo; Yang, Yunjuan; Li, Junjun; Tang, Xianghua; Mu, Yuelin; Huang, Zunxi

    2013-12-01

    Animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. The gut microbial community of humans and animals has received significant attention from researchers because of its association with health and disease. The application of metagenomics technology enables researchers to study not only the microbial composition but also the function of microbes in the gastrointestinal tract. In this paper, combined with our own findings, we summarized advances in studying gastrointestinal tract microorganism with metagenomics and the bioinformatics technology.

  7. Rle ationships between the Soil Enzyme Activity, Physical Chemical Properties and Microorganism Quantity in Quercus aquifolioides Forest%高山栎天然林土壤酶活性与土壤理化性质和微生物数量的关系1)

    Institute of Scientific and Technical Information of China (English)

    赵维娜; 王艳霞; 陈奇伯

    2015-01-01

    With Quercus aquifolioides forest soil in the Mill Mountain National Forest Park in Yuxi City , Yunnan Province , by path analysis , we studied the relationships between the soil enzyme activity , physical chemical properties and microorgan-ism quantity.The soil urease, catalase, and invertase activities were gradually decreased with the increasing of soil depth . There were close relationships between soil urease , catalase, invertase activity, soil physical-chemical properties, and mi-crobial quantity .Urease and catalase activity were largely affected by the organic matter .The most important influencing factors on invertase activities were organic matter , available K and alkali-hydrolyzale N .%以云南省玉溪市磨盘山国家森林公园内的高山栎天然林土壤为研究对象,运用通径分析方法,对土壤酶活性与土壤理化因子、微生物数量之间的关系进行了分析。结果表明:土壤脲酶、过氧化氢酶、转化酶活性都是随着土壤深度的加深而逐渐减小;土壤脲酶、过氧化氢酶、转化酶活性均与土壤理化性质、微生物数量之间有着密切的相关关系;影响脲酶和过氧化氢酶活性程度最大的是有机质;影响转化酶活性最重要的因子是土壤有机质、速效钾和碱解氮。

  8. The hydrodynamics of swimming microorganisms

    International Nuclear Information System (INIS)

    Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies.

  9. Microorganisms as Indicators of Soil Health

    DEFF Research Database (Denmark)

    Nielsen, M. N.; Winding, A.; Binnerup, S.;

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... indicators into soil monitoring programmes as they become applicable....

  10. Attaching substances to micro-organisms

    NARCIS (Netherlands)

    Buist, Girbe; Leenhouts, Cornelis Johannes; Venema, Gerard; Kok, Jan

    1999-01-01

    The invention relates to surface display of proteins on micro-organisms via the targeting and anchoring of heterologous proteins to the outer surface of cells such as yeast, fungi, mammalian and plant cells, and bacteria. The invention provides a proteinaceous substance comprising a reactive group a

  11. Biodiversity of deep-sea microorganisms

    Directory of Open Access Journals (Sweden)

    Fengping Wang

    2013-07-01

    Full Text Available The oceans, with an average depth of 3,800 meters and an average pressure about 38 MPa, cover about 70% of the surface of the Earth. Geological structures under the seawater, such as marine sediments, oceanic crust, hydrothermal vents, and the cold seeps, vary significantly with regard to physical and chemical properties. In combination, these diverse environments contain the largest microbial ecosystem in the world. In deep seawater, the major microorganism groups are Alpha-& Gammaproteobacteria, and Marine Group I. In deep-sea sediments, the abundance of microbes is related to the content of organic matter and distance from land. Methane Oxidizing Archaea (ANME and sulfate reducing bacteria (Deltaproteobacteria are common in deep-sea cold seep environments; while in hydrothermal vents, the richness and dynamics of chemical substances have led to highly diversified archaeal and bacterial groups. In contrast, the oceanic crust is mainly composed of basic and ultrabasic rocks rich in minerals, and as a result houses microorganisms that are mainly autotrophic, utilizing iron, manganese and sulfur. Because more than 99% of deep-sea microorganisms cannot be cultured, an understanding of their diversity, physiological features, and biogeochemical roles remains to be fully achieved. In this article, we review and summarize what is known about the distribution and diversity of deep-sea microorganisms in diverse habitats. It is emphasized that there is much to learn about these microbes.

  12. Engineered microorganisms having resistance to ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  13. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  14. Photosynthetic microorganisms in cold environments

    Science.gov (United States)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    and their physiological processes are inactive. If hydrated, they are physiologically active even at subzero temperatures (Kappen et al., 1996). Although living in cold environments, the growth optimum temperature of typical phycobiont Trebouxia (Chlorophyta) sp. is above 15 ° C, so these algae are considered to be rather psychrotolerant. Acknowledgement The work was supported from projects GA AS CR Nos. KJB 601630808 and KJ KJB600050708, CAREX and long-term institutional research plan of the Institute of Botany AS CR AV0Z600050516 and the Masaryk University. Prof. Martin Backor (Safarik University in Kosice) is kindly ac-knowledged for providing the strains Trebouxia erici and T. glomerata (Backor). References Elster, J. , Benson, E.E. Life in the polar terrestrial environment with a focus on algae and cyanobacteria, in Fuller, B.J., Lane, N. , Benson, E.E. (Eds), Life in the Frozen State. CRC Press, pp. 111-150, 2004. Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. , Hestmark, G. Cold resistance and metabolic activity of lichens below 0 ° C. Adv. Space Res. 18, 119-128, 1996. Kviderova, J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. accepted, 2010. Nedbalova, L., Kocianova, M. , Lukavsky, J. Ecology of snow algae in the Giant Mountains and their relation to cryoseston in Europe. Opera Corcontica 45, 59-68, 2008.

  15. Phenomenological modeling of the motility of self-propelled microorganisms

    CERN Document Server

    Zaoli, Silvia; Formentin, Marco; Azaele, Sandro; Rinaldo, Andrea; Maritan, Amos

    2014-01-01

    The motility of microorganisms in liquid media is an important issue in active matter and it is not yet fully understood. Previous theoretical approaches dealing with the microscopic description of microbial movement have modeled the propelling force exerted by the organism as a Gaussian white noise term in the equation of motion. We present experimental results for ciliates of the genus Colpidium, which do not agree with the Gaussian white noise hypothesis. We propose a new stochastic model that goes beyond such assumption and displays good agreement with the experimental statistics of motion, such as velocity distribution and velocity autocorrelation.

  16. In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients Atividade in vitro de minociclina sobre microrganismos superinfectantes isolados de pacientes com periodontite crônica

    Directory of Open Access Journals (Sweden)

    Luciana Fernandes de Oliveira

    2006-09-01

    Full Text Available Chronic periodontitis is the most common type of periodontitis and it is associated with various species of microorganisms. Enteric rods, Pseudomonas, Staphyloccocus and Candida have been retrieved from periodontal pockets of patients with chronic periodontitis and correlated to cases of superinfection. Local or systemic antibiotic therapy is indicated to reinforce the effects of the conventional mechanical therapy. Minocycline has been suggested as one of the most effective drugs against periodontal pathogens. The aim of this work was to evaluate the minimal inhibitory concentration (MIC of minocycline on superinfecting microorganisms isolated from the periodontal pocket and the oral cavity of individuals with chronic periodontitis. Isolates of Enterobacteriaceae (n = 25, Staphylococcus spp. (n = 25, Pseudomonas aeruginosa (n = 9 and Candida spp. (n = 25 were included in the study. Minimal inhibitory concentrations (MIC of minocycline were determined using the Müeller-Hinton agar dilution method. Staphylococcus spp. isolates were the most sensitive to minocycline with a MIC of 8 µg/mL, followed by Enterobacteriaceae with a MIC of 16 µg/mL. The concentration of 16 µg/mL inhibited 96% of Candida spp. isolates. The MIC for 88.8% of the isolates of Pseudomonas aeruginosa was 128 µg/mL. A concentration of 1,000 µg/mL was not enough to inhibit 100% of the tested isolates.Periodontite crônica é a forma mais comum de periodontite e está associada a diversas espécies de microrganismos. Enterobactérias, Pseudomonas, Staphyloccocus e Candida têm sido recuperados de bolsas periodontais de indivíduos com periodontite crônica e implicados em casos de superinfecção. A terapia antimicrobiana local ou sistêmica pode ser utilizada para reforçar os efeitos da terapia mecânica convencional, e a minociclina tem sido sugerida como antimicrobiano eficaz frente a periodontopatógenos. O objetivo deste trabalho foi avaliar a concentração inibit

  17. Selection of lipase-producing microorganisms through submerged fermentation.

    Science.gov (United States)

    Colla, Luciane Maria; Primaz, Andreiza Lazzarotto; Benedetti, Silvia; Loss, Raquel Aparecida; de Lima, Marieli; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-01-01

    Lipases are enzymes used in various industrial sectors such as food, pharmaceutical and chemical synthesis industries. The selection of microorganisms isolated from soil or wastewater is an alternative to the discovery of new species with high enzymes productivity and with different catalytic activities. In this study, the selection of lipolytic fungi was carried out by submerged fermentation. A total of 27 fungi were used, of which 20 were isolated from dairy effluent and 7 from soil contaminated with diesel oil. The largest producers were the fungi Penicillium E-3 with maximum lipolytic activity of 2.81 U, Trichoderma E-19 and Aspergillus O-8 with maximum activities of 2.34 and 2.03 U where U is the amount of enzyme that releases 1 micromol of fatty acid per min per mL of enzyme extract. The fungi had maximum lipolytic activities on the 4th day of fermentation. PMID:20737918

  18. Study progress review of secondary metabolites from marine microorganisms and their antimicrobial activity%海洋微生物次级代谢产物及其抑菌活性研究进展

    Institute of Scientific and Technical Information of China (English)

    杨凯琳; 程文胜; 侯峰; 郑彩娟; 邵长伦; 王长云

    2013-01-01

    海洋微生物能够产生大量结构新颖、活性独特的次级代谢产物,这为药物先导化合物的发现提供了重要来源,已成为海洋药物研究的热点.本文综述了自2000年至今从海洋真菌、细菌、放线菌报道的具有抑菌活性次级代谢产物的研究进展,共涉及到活性化合物101个,结构类型主要包括大环内酯类、生物碱类、醌类、肽类和萜类等,其中26个化合物含有氯、溴或硫元素;体外抑菌活性测试结果表明,有33个化合物的MIC<5μg·mL-1.%Marine microorganisms could produce secondary metabolites with novel structures and significant bioactivities,as an important source of lead compounds,which has become a hotspot in the studies of marine drugs.This review introduces the research progress of antimicrobial secondary metabolites derived from marine fungi,bacteria and actinomycetes which covers the literatures published since 2000.A total of 101 antimicrobial compounds are involved,including macrolides,alkaloids,quinines,peptides,and terpenes,etc,in which 26 compounds contain an element of chlorine,bromium or sulfur.The results of antimicrobial experiments in vitro indicated that the MIC values of 33 compounds were lower than 5 μg · mL-1.

  19. Effects of Humus Fertilizer from Fermented Branches on Microorganisms and Enzyme Activity in the Soil under Dracontomelon duperreranum Trees%树枝发酵腐殖质肥对人面子林下土壤微生物和酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    宫彦章; 吴彩琼; 王丽; 刘中奇; 钟彦山

    2013-01-01

    [目的]研究树枝发酵腐殖质肥对人面子林下土壤pH、总孔隙度、有机质含量、碱解氮含量、有效磷含量、速效钾含量、土壤微生物数量以及土壤酶活性的影响.[方法]以不施任何肥料为对照,对人面子林下土壤理化性质进行分析.[结果]树枝发酵腐殖质肥能增加总孔隙度,显著增加土壤有机质、碱解氮、有效磷、速效钾含量、土壤微生物数量和土壤酶活性,土壤微生物数量与土壤酶活性呈显著正相关.[结论]施用树枝发酵腐殖质肥能提高人面子林下细菌数量与真菌数量的比值,促使土壤由真菌型向细菌型方向转化,且提高微生物数量和土壤酶活性,从而显著提高人面子林下土壤肥力,改善土壤环境.%[Objective]This study aimed to explore the effect of humus fertilizer from fermented branches on pH, total porosity, contents of organic matter, alkaline hydrolysable nitrogen, available phosphorus, rapidly available potassium, the number of microorganisms and the activity of enzymes in the soil under Dracontomelon duperreranum trees. [ Method] Experiments were carried out to study the physical and chemical properties of soil under Dracontomelon duperreranum trees, and soil without any fertilizer treatment was used as control. [ Result] The results showed that application of humus fertilizer from fermented branches raised the total porosity of soil, and improved the contents of soil organic matter, available phosphorus, rapidly available potassium, the number of soil microorganisms and the activity of soil enzymes. In addition, the number of soil microorganisms was positively related to the activity of soil enzymes. [ Conclusion] Application of humus fertilizer from fermented branches markedly raised the ratio of the number of bacteria to the number of fungi, and promoted the transformation of fungi-rich soil into bacteria-rich soil, which thus significantly enhanced the soil fertility and improved the

  20. Effects of Humus Fertilizer from Fermented Branches on Microorganisms and Enzyme Activity in the Soil under Dracontomelon duperreranum Trees%树枝发酵肥对人面子林下土壤微生物和酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    宫彦章; 王丽; 吴彩琼; 刘中奇; 钟彦山

    2012-01-01

    [Objective] This study aimed to explore the effect of humus fertilizer from fermented branches on pH, total porosity, contents of organic matter, alkaline hy- drolysable nitrogen, available phosphorus, rapidly available potassium, the number of microorganisms and the activity of enzymes in the soil under Dracontomelon duper- reranum trees. [Method] Experiments were carried out to study the physical and chemical properties of soil under Dracontomelon duperreranum trees, and soil with- out any fertilizer treatment was used as control. [Result] The results showed that application of humus fertilizer from fermented branches raised the total porosity of soil, and improved the contents of soil organic matter, available phosphorus, rapidly available potassium, the number of soil microorganisms and the activity of soil en- zymes. In addition, the number of soil microorganisms was positively related to the activity of soil enzymes. [Conclusion] Application of humus fertilizer from fermented branches markedly raised the ratio of the number of bacteria to the number of fungi, and promoted the transformation of fungi-rich soil into bacteria-rich soil, which thus significantly enhanced the soil fertility and improved the soil environment under Dracontomelon duperreranum trees.%[目的]研究树枝发酵腐殖质肥对人面子林下土壤pH、总孔隙度、有机质含量、碱解氮、有效磷、速效钾、土壤微生物数量以及土壤酶活性的影响。[方法]以不施任何肥料为对照,对人面子林下土壤进行理化性质分析。【结果】树枝发酵腐殖质肥能增加总孔隙度,能显著增加土壤有机质、碱解氮、有效磷、速效钾含量、土壤微生物数量和土壤酶活性,土壤微生物数量与土壤酶活性显著正相关。[结论】施用树枝发酵腐殖质肥能提高人面子林下细菌同真菌数量的比值,促使土壤由真菌型向细菌型方向转化,且提高了微生物数量和土壤酶活性,

  1. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  2. Consolidated bioprocessing method using thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  3. Microorganism Utilization for Synthetic Milk Production

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina Louise; Spencer, LaShelle E.; Richards, Jeffrey T.; Strayer, Richard F.; Caro, Janicce; Hummerick, Mary; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products.

  4. Boosting plant defence by beneficial soil microorganisms

    OpenAIRE

    Maria J. Pozo; Loon, L. C. van; Pieterse, C.M.J.

    2004-01-01

    Plants in their environment face potential deleterious organisms such as fungi, bacteria, viruses, nematodes, etc. Many of them are able to cause plant diseases, responsible of important losses in crop production worldwide. But often the outcome of these interactions is not disease, since plants have developed multiple mechanisms to protect themselves against pathogens attack. Moreover, beneficial microorganisms are common in the soil, improving plant growth and reducing the effects of delete...

  5. Biodiversity of deep-sea microorganisms

    OpenAIRE

    Fengping Wang; Yueheng Zhou; Xinxu Zhang; Xiang Xiao

    2013-01-01

    The oceans, with an average depth of 3,800 meters and an average pressure about 38 MPa, cover about 70% of the surface of the Earth. Geological structures under the seawater, such as marine sediments, oceanic crust, hydrothermal vents, and the cold seeps, vary significantly with regard to physical and chemical properties. In combination, these diverse environments contain the largest microbial ecosystem in the world. In deep seawater, the major microorganism groups are Alpha-& Gammaproteobact...

  6. Magnetotaxy in microorganisms of Rio de Janeiro region: an overview

    International Nuclear Information System (INIS)

    Some characteristics of several magnetotactic microorganisms found in sediments collected in Rio de Janeiro region are presented. The study of magnetic characteristics of these microorganisms indicate some general properties of the magnetotaxy phenomenons. (L.C.)

  7. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007

    Science.gov (United States)

    Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in...

  8. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Directory of Open Access Journals (Sweden)

    Sirikamon Saengmee-anupharb

    2013-01-01

    Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  9. Prokaryotic silicon utilizing microorganisms in the biosphere

    Science.gov (United States)

    Gupta, D.; Das, S.

    2012-12-01

    Although a little study has been done to determine the silicon utilizing prokaryotes, our previous experiments indicated that almost all Gram-positive bacteria are silicon utilizing; one of them, Streptococci survived exposure on the lunar surface for a long period in experiment done by others. Our initial experiments with these Gram positive microorganisms showed that there were limited growths of these microorganisms on carbon free silicate medium probably with the help of some carry over carbon and nitrogen during cultivation procedures. However, increase in growth rate after repeated subcultures could not be explained at present. The main groups of prokaryotes which were found silicon utilizing microorganisms were Mycobacterium, Bacillus, Nocardia, Streptomyces, Staphylococcus, Streptococcus, Lactobacillus, and Clostridium. In a another previous study by us when silicon level was studied in such grown up cells on carbon "free" silicate medium by electron prove microanalyser, it was found that silicon in cells grown on carbon "free" silicate medium was much higher (24.9%) than those grown on conventional carbon based medium (0.84%). However, these initial findings are encouraging for our future application of this group of organisms on extraterrestrial surfaces for artificial micro-ecosystem formation. It was found that when electropositive elements are less in extraterrestrial situation, then polymerization of silicon-oxygen profusion may occur easily, particularly in carbon and nitrogen paucity in the rocky worlds of the Universe.

  10. Stress-tolerant P-solubilizing microorganisms.

    Science.gov (United States)

    Vassilev, N; Eichler-Löbermann, B; Vassileva, M

    2012-08-01

    Drought, high/low temperature, and salinity are abiotic stress factors accepted as the main reason for crop yield losses in a world with growing population and food price increases. Additional problems create nutrient limitations and particularly low P soil status. The problem of phosphate fertilizers, P plant nutrition, and existing phosphate bearing resources can also be related to the scarcity of rock phosphate. The modern agricultural systems are highly dependent on the existing fertilizer industry based exclusively of this natural, finite, non-renewable resource. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using plant beneficial, including P-solubilizing, microorganisms. This short review paper summarizes the current and future trends in isolation, development, and application of P-solubilizing microorganisms in stress environmental conditions bearing also in mind the imbalanced cycling and unsustainable management of P. Special attention is devoted to the efforts on development of biotechnological strategies for formulation of P-solubilizing microorganisms in order to increase their protection against adverse abiotic factors. PMID:22722910

  11. Surface transport of microorganisms by water.

    Science.gov (United States)

    Moore, J A

    1991-01-01

    Several studies have reported on the quality of runoff from land that has received either an application of livestock waste or been utilized as a pasture for livestock. Unfortunately, these studies have not directed their efforts to understanding and developing the relationships among several of the important parameters that influence runoff quality. One of the reasons for this deficiency is that the list of influencing parameters is quite long. Nevertheless, it is important to identify the parameters and their probable impact on movement of organisms in water. The microbiological aspects are influenced by the fate of organisms in the environment. Radiant energy (sunlight), temperature, available nutrients, presence of toxic materials, available moisture (precipitation and humidity), and soil pH all influence the death/growth rate of the organisms in question. Site characteristics, such as slope, vegetative cover, antecedent moisture content, soil type, organic matter content, infiltration rate, and surface condition of the soil, all influence microorganism movement. Hydrologic factors, such as frequency, duration, and intensity of rainfall, are very critical in determining the characteristics of runoff events that provide the transportation to move introduced organisms from their application site. There are very few models today that can be used to calculate the microorganism population in runoff. While many of the influencing parameters have been identified, there has been little research on the surface transport of microorganisms. PMID:2009386

  12. Complete nitrification by a single microorganism.

    Science.gov (United States)

    van Kessel, Maartje A H J; Speth, Daan R; Albertsen, Mads; Nielsen, Per H; Op den Camp, Huub J M; Kartal, Boran; Jetten, Mike S M; Lücker, Sebastian

    2015-12-24

    Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 1890, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle. PMID:26610025

  13. Screening and flocculating properties of bioflocculant-producing microorganisms

    Institute of Scientific and Technical Information of China (English)

    Yanling Sheng; Qiang Zhang; Yanru Sheng; Chengbin Li; Huajun Wang

    2006-01-01

    Screening of bioflocculant-producing microorganisms was carried out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by the analytical profile index (API) identification system, and named A9. Several important factors that had an effect on A9's bioflocculant-producing and flocculating activity were studied. A total of 4 g/L Kaolin suspension was used to measure the flocculating activity of the bioflocculant from A9. It was found that maltose and urea were A9's best carbon and nitrogen sources, respectively, and the flocculating activity of the flocculating agent from A9 was markedly increased by the addition of trivalent cations such as Fe3+ and Al3+; furthermore, the bioflocculant produced by A9 was most effective when the pH value was 6.0.

  14. Effects of Mn2+ and Mg2+ on assimilation of NO3- and NH4+ by soil microorganisms.

    OpenAIRE

    McCarty, G.W.; Bremner, J. M.

    1993-01-01

    Although it has been demonstrated that Mn2+ and Mg2+ can influence the activity of glutamine synthetase in various organisms, there is little information concerning the effects of these cations on the activity of this enzyme in soil microorganisms or on ability of these microorganisms to assimilate NO3- and NH4+. We studied the effects of different concentrations of Mn2+ and Mg2+ on assimilatory NO3- reduction and NH4+ assimilation in cultures of two microorganisms commonly found in soil [Pse...

  15. Influence of microorganisms on the alteration of glasses; Influence des microorganismes sur l'alteration des verres

    Energy Technology Data Exchange (ETDEWEB)

    Besnainou, B.; Libert, M.F. [CEA Cadarache, 13 - Saint Paul lez Durance (France). Dept. d' Entreposage et de Stockage des Dechets

    1997-07-01

    Under specific conditions, microorganisms may enhance the alteration process of basaltic glass. However bacterial activity in the near field of a glass container would be possible only in environmental conditions provide nutrients and energetic substrates for bacterial growth. Depending of these conditions, microorganisms can: - modify the pH or the medium, - consume or produce soluble organic acids. To qualify the long term behaviour of glass, in presence of microorganisms, a qualitative and quantitative estimation of microbial activity potentialities and their consequences is needed. This must be achieved in studying the availability of the chemical species in the environment. (authors)

  16. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  17. Biotechnical leaching of lean ores using heterotrophic microorganisms

    International Nuclear Information System (INIS)

    After reporting briefly on leaching with Thiobacillus, it is discussed whether in those cases where thiobacilli fail to work the limits of microbial leaching are reached or still other groups of microorganisms will be suitable. In this relation the great number of carbon-heterotrophic fungi and bacteria have to be considered which are partly oligotrophic and occur e.g. in weathering biotopes of rocks and minerals and which may even include heavy metals in the dissolving processes of weathering. The active agents are, as far as is known up to now, organic acids which are produced by microorganisms and given off to the medium where they may combine with metals to form water-soluble complex compounds. In order to detect and isolate suitable strains of fungi and bacteria it will be necessary to work out a screening program which proceeds from general to special selections. Experiments to identify the active agents and the conditions of their production will have to follow. It remains still an open question whether such studies will result in technical processes. Mass production processes which are possible with the carbon-autotrophic and acidophilic thiobacilli are less probable than special processes to get hold of rare and economically valuable metals whose extraction would be difficult by other means. (orig.)

  18. Bioprospecting of lipolytic microorganisms obtained from industrial effluents

    Directory of Open Access Journals (Sweden)

    GREICE H.S. PEIL

    2016-01-01

    Full Text Available ABSTRACT The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r. Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  19. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis.

    Science.gov (United States)

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  20. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    Science.gov (United States)

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  1. Antimicrobial activity of Lactobacillus and Bifidobacterium strains against pathogenic microorganisms “in vitro”Atividade antimicrobiana de Lactobacillus e Bifodobacterium frente a microrganismos patogênicos “in vitro”

    Directory of Open Access Journals (Sweden)

    Giselle Nobre Costa

    2012-10-01

    Full Text Available Lactobacilli and bifidobacteria have a long history of safe use in foods. These bacteria have biotechnological characteristics of interest such as the inhibition of pathogens. In this work, two lactobacilli strain and a bifidobacterium strain isolated from human gut were evaluated concerning to their ability to inhibit pathogenic microorganisms in foods by diffusion agar tests. Moreover, we assessed the metabolites produced in culture broth under static and shaking growth to simulate anaerobiosis and aerobiosis conditions, respectively. L. acidophilus LA5, L. plantarum DCTA 8420 and B. lactis DCTA 8724 showed ability to inhibit S. aureus FRI 196, strains producer toxins A and D, as well as B. cereus ATCC 25923, E. coli ATCC 25922 and S. Enteritidis, whose inhibition halos reached, on average, 24 mm in diameter. In the agar diffusion method with concentrated culture medium, it was possible to observe the effect of oxygen on the production of toxic substances. This result showed that cultivation of Lactobacillus under aerobic conditions seems to exert greater inhibitory effect, whereas for Bifidobacterium strain the effect was the opposite.Lactobacilos e bifidobactérias apresentam um longo histórico de uso seguro em alimentos, além de apresentarem características de interesse biotecnológico como a inibição de patógenos. Neste trabalho duas linhagens de lactobacilos e uma de bifidobactéria, isoladas do intestino humano, foram avaliadas em testes de difusão em ágar, quanto à capacidade de inibição de microrganismos patogênicos de ocorrência comuns em toxinfecções alimentares. Adicionalmente, foram avaliados os metabólitos produzidos em caldo de cultivo estático e em agitação para simular condições de anaerobiose a aerobiose, respectivamente. As três bactérias, L. acidophilus LA5, L. plantarum DCTA 8420 e B. lactis DCTA 8724 apresentaram capacidade de inibição para S. aureus FRI 196 linhagem produtora de toxinas A e D

  2. 农用抗真菌海洋微生物的筛选及放线菌T19-07活性代谢产物的初步研究%Screening of marine microorganisms with agricultural antifungal activities and preliminary study on the bioactive metabolites produced by strain T19-07

    Institute of Scientific and Technical Information of China (English)

    胡杨; 张道敬; 李元广; 陶黎明; 田黎; 李淑兰

    2011-01-01

    Objective To screen the active strains with agricultural antifungal activity from marine microorganisms as well as the bioactive metabolites produced by marine actinomyces Streptomyces nodosus T19-07. Methods Using phytopathogenic fungi as targets, the active strains were screened out by pairing culture assay. Based on the index of antifungal activity, the characteristics of fermentation of strain T19-07 in 5 L fermentor were studied, and the bioactive substances were extracted by macro-porous resin XAD-16, and TLC bioautography combined with HPLC was used to separate the active compound Results Twelve antagonistic strains against phytopathogenic fungi were screened out from 31 marine microorganisms. The main antifungal substance of strain T19-07 was isolated with relative molecular mass of 214 Da, and its antifungal activity in vitro against Alternaria solani was similar with iprodione registrated as a chemical pesticide, MIC below 12. 5 μg · Ml-1. Conclusion Marine microorganisms are important resources to find agricultural antibiotics. The bioactive substances produced by marine actinomyces S. nodosus T19-07 exhibit potent antifungal activity in vitro, and it has the potential for further study.%通过筛选获得具有拮抗植物病原真菌活性的海洋微生物菌株,并对其中一株海洋生境的结节链霉菌(Streptomyces nodosus)T19-07的活性代谢产物进行初步研究.方法 以植物病原真菌为靶标,采用平板对峙培养法筛选出活性菌株;再以抑菌活性为指标,考察较强活性菌株T19-07在5L发酵罐中的培养过程特征,并通过大孔吸附树脂XAD-16柱层析对活性物质进行分离提取,结合TLC生物自显影和HPLC快速确定代谢产物中的活性组分.结果 从31株海洋微生物中筛选出12株对多种植物病原真菌具有拮抗作用的菌株;确定了菌株T19-07的代谢产物中的主要抑菌活性物质,其相对分子质量为214,并且它对茄交链格孢霉的

  3. Real-time detection of viable microorganisms by intracellular phototautomerism

    Directory of Open Access Journals (Sweden)

    Schuren Frank

    2010-06-01

    Full Text Available Abstract Background To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner. Results The developed method includes exposure of cells to a weak acid probe at low pH. The neutral probe rapidly permeates the membrane and enters the cytosol. In dead cells no signal is obtained, as the cytosolic pH reflects that of the acidic extracellular environment. In live cells with a neutral internal pH, the probe dissociates into a fluorescent phototautomeric anion. After reaching peak fluorescence, the population of live cells decays. This decay can be followed real-time as cell death coincides with intracellular acidification and return of the probe to its uncharged non-fluorescent state. The rise and decay of the fluorescence signal depends on the probe structure and appears discriminative for bacteria, fungi, and spores. We identified 13 unique probes, which can be applied in the real-time viability method described here. Under the experimental conditions used in a microplate reader, the reported method shows a detection limit of 106 bacteria ml-1, while the frequently used LIVE/DEAD BacLight™ Syto9 and propidium iodide stains show detection down to 106 and 107 bacteria ml-1, respectively. Conclusions We present a novel fluorescence-based method for viability assessment, which is applicable to all bacteria and eukaryotic cell types tested so far. The RTV method will have a significant impact in many areas of applied microbiology including research on biocidal activity, improvement of

  4. Genetically engineered microorganisms to rescue plants from frost injury.

    Science.gov (United States)

    Dar, G H; Anand, R C; Sharma, P K

    1993-01-01

    Ice nucleation active bacteria belonging to genera Pseudomonas, Xanthomonas and Erwinia contribute to frost damage to plants by initiating the formation of ice in plants that would otherwise supercool and avoid the damaging ice formation. The biological control of frost injury can be achieved by the application of non-ice nucleation active bacteria to the plant surfaces before they become colonized by Ice+ species. ice genes have been cloned from Pseudomonas and isogenic Ice- derivatives constructed via genetic manipulations. These genetically engineered microorganisms (GEMs) have been released into the environment to control the frost damage. The incidence of frost injury to the plants has, thereby, been reduced by 50-85% during natural frosts. These GEMs do not survive in soil and show no aerial dispersal in the environment. PMID:8213308

  5. Evolution, Metabolism and Biotechnological Usage of Methylotrophic Microorganisms

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-09-01

    Full Text Available Methylotrophs – aerobic chemoheterotrophic microorganisms submitted by cocci and bacilli mobile forms, are inhabitants of reservoirs and soils of various type, where there are going on various processes of decomposition of organic substances with formation of the one-carbon С1-compounds and some С2-, and С3-compounds, capable to be assimilated by methylotrophs. These microorganisms assimilating carbon on ribuloso-5-monophospate and serine pathways, are allocated from soil ground, the sewage containing decomposing vegetative remainss, from ruminant paunch and other sources. Methylotrophic bacteria recently draw the increasing attention of biotechnology as feasible sources of natural biologically active compounds – fodder fibers and irreplaceable amino acids, carotenoid pigments, lipids and policarbohydrates. For preparation of these compounds are used genetically marked strains of methylotrophic bacteria, obtained via genetic engineering approaches and selection. Recently developed gene-engineering methods of manipulation with the methylotrophic genom allow create on the basis of microbic DNA of methylotrophs expression vectors of eukaryotic proteins for medical and veterinary purposes, as human insulins. In this review article there are submitted data including the results of the authors’ own research on evolution of methylotrophic bacteria, the metabolism and their biotechnological usage

  6. Fossil micro-organisms evidenced by electronic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prashnowsky, A.A.; Oberlies, F.; Burger, K.

    1983-04-01

    Fossil microorganisms in colonies and in the form of isolated cells (iron bacteria, fungi, actinomycetes etc.) were detected by electron microscopy of rocks containing remains of plant roots, carbonaceous substance, and strata of clay iron stone with ooids. These findings suggest an environment favourable to bacterial activity during sedimentation in the Upper Carboniferous and during the later processes of peat and coal formation. They also suggest that bacterial processes are an important factor in coal formation. Accurate data on coal formation can only be obtained by systematic biochemical studies. Analyses of the defined organic substances provide a better understanding of the conversion processes of the original substances. For example, the results of sterine analysis provide information on the mycoplancton, phytoplancton and zooplancton of the Upper Carboniferous. For some types of rock, the ratio of saponifiable to non-saponifiable constituents of the organic compounds yield information on stability under various geochemical conditions. The interactions between the various groups of microorganisms also play a major role in the solution of ecological problems.

  7. Yeasts in table olive processing: desirable or spoilage microorganisms?

    Science.gov (United States)

    Arroyo-López, F N; Romero-Gil, V; Bautista-Gallego, J; Rodríguez-Gómez, F; Jiménez-Díaz, R; García-García, P; Querol, A; Garrido-Fernández, A

    2012-11-01

    Yeasts are unicellular eukaryotic microorganisms isolated from many foods, and are commonly found in table olive processing where they can play a double role. On one hand, these microorganisms can produce spoilage of fruits due to the production of bad odours and flavours, the accumulation of CO(2) leading to swollen containers, the clouding of brines, the softening of fruits and the degradation of lactic acid, which is especially harmful during table olive storage and packaging. But on the other hand, fortunately, yeasts also possess desirable biochemical activities (lipase, esterase, β-glucosidase, catalase, production of killer factors, etc.) with important technological applications in this fermented vegetable. Recently, the probiotic potential of olive yeasts has begun to be evaluated because many species are able to resist the passage through the gastrointestinal tract and show beneficial effects on the host. In this way, yeasts may improve consumers' health by decreasing cholesterol levels, inhibiting pathogens, degrading non assimilated compounds, producing antioxidants and vitamins, adhering to intestinal cells or by maintaining epithelial barrier integrity. Many yeast species, usually also found in table olive processing, such as Wicherhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens and Kluyveromyces lactis, have been reported to exhibit some of these properties. Thus, the selection of the most appropriate strains to be used as starters, alone or in combination with lactic acid bacteria, is a promising research line to develop in a near future which might improve the added value of the commercialized product. PMID:23141644

  8. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed. PMID:23028016

  9. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  10. Complete nitrification by a single microorganism

    DEFF Research Database (Denmark)

    van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads;

    2015-01-01

    but higher growth yields than canonical ammonia-oxidizing microorganisms3. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite...... unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance...

  11. 不同解磷菌剂对美国山核桃根际微生物和酶活性的影响%Effects of Different Phosphate-Solubilizing Bacteria on Rhizosphere Microorganism and Enzyme Activities of Pecan Seedlings

    Institute of Scientific and Technical Information of China (English)

    余旋; 朱天辉; 刘旭

    2012-01-01

    A potting experiment was conducted to evaluate effects of three phosphate-solubilizing bacteria ( PSB) (Pseudomonas chlororaphis, P. Fluorescens, Bacillus cereus) and their mixture on rhizosphere soil microorganism and enzyme activities at three growth stages of pecan ( Carya illinoensis) seedlings subjected to three application levels of calcium-superphosphate. Results showed that; Inoculation of the three PSB and their mixture increased the amounts of rhizosphere bacteria and actinomyces, reduced the amounts of rhizosphere fungi, and enhanced activities of phosphatase and urease. However, the effects on rhizosphere microorganism and enzyme activities decreased progressively with increase of calcium-superphosphate content. The bacteria mixture was stronger effects than that of any single bacterium, and brought about the most rhizosphere bacteria and actinomyces, the lest rhizosphere fungi, and the highest activities of phosphatase and urease in all three application levels of calcium-superphosphate compared to inoculation with any single bacteria.%通过盆栽试验研究3种施P水平下绿针假单胞菌、荧光假单胞菌、蜡样芽孢杆菌3种细菌及其混合菌群对美国山核桃苗3个生长时期根际微生物数量和酶活性的影响.结果表明:施加4种细菌菌剂后山核桃根际土壤中的细菌和放线菌数量增加,真菌数量减少,土壤磷酸酶和脲酶活性上升;3种施P水平下,随着施P水平的提高,各种菌剂对根际微生物数量和酶活性的影响逐渐降低,且3种细菌的混合菌剂较单一菌种对根际微生物数量及土壤磷酸酶和脲酶活性的影响更大.

  12. Aerobic activation of endogenous microorganisms in middle and high temperature reservoir%中高温油藏内源微生物好氧激活技术研究

    Institute of Scientific and Technical Information of China (English)

    王静; 段传慧; 李彩风; 高光军

    2016-01-01

    In order to study the endogenous microbial aerobic activation characteristics in middle and high temperature reservoir,12 typical blocks in high temperature reservoirs in Shengli Oilfield were selected to carry out the aerobic activation evaluation.Three reservoir temperature range were selected,namely from 55 to 65 ℃,65 to 79 ℃ and 79 to 95 ℃.6 different carbon sources were selected as the main activator:different activator formulation was prepared.Under the simulated reservoir conditions of aerobic activation evaluation,we found that the additional nutrient agent of corn syrup, molasses and yeast powder could effectively activate the functional strain below 79 ℃ oil reservoir blocks,the cell density could reach 3× 109 cell/mL.The emulsifying and dispersing effect of crude oil was obvious. In oil reservoir blocks above 79 ℃,the activation effect and emulsifying effect of crude oil were generally worse than that in 79 ℃ oil reservoir blocks.The cell density and emulsifying effect after activation show a positive correlation in each block center,whereas the surface tension and emulsifying effect had no obvious correlation. The surface tension of the solution after aerobic activation was reduced from 65 mN/m to 47 mN/m. The dominant bacteria after aerobic activation were mainly Geobacillus and Bacillus thermoamylovorans.%为了掌握中高温油藏内源微生物好氧激活特征,在胜利油田选取12个中高温油藏典型区块开展了好氧激活评价:在所选油藏温度范围分别为55~65℃、65~79℃、79~95℃,通过模拟油藏条件下好氧激活评价发现:在小于79℃油藏区块中,以玉米浆干粉、糖蜜、酵母粉等作为外加营养剂能够有效激活水样中的功能菌株,激活后菌密度最高能够达到3×109个/mL,原油乳化分散作用明显;在大于79℃的油藏区块中,激活效果和原油乳化效果普遍比小于79℃的油藏区块差。各区块中心井激活后的菌

  13. Appraisal of the biocide activity of products for the control of microorganisms associated with corrosive processes in the Bacia de Campos pipelines; Avaliacao da acao biocida de produtos para o controle de microrganismos associados a processos corrosivos em oledutos da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Penna, Monica de Oliveira [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Setor de Biotecnologia e Ecossistemas]. E-mail: mpena@cenpes.petrobras.com.br; Andrade, Cynthia de Azevedo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Setor de Tecnologia de Materiais, Equipamentos e Corrosao]. E-mail: cynthiaandrade@cenpes.petrobras.com.br; Nascimento, Juliana Rangel do; Silva, Edilson Domingos da; Souza, Leonardo Suhett de [Fundacao GORCEIX, Ouro Preto, MG (Brazil)]. E-mail: julianarn@cenpes.petrobras.com.br; edilson@cenpes.petrobras.com.br; suhett@cenpes.petrobras.com.br

    2001-12-01

    The possible effect of corrosion inhibitors on bacteria has significant interest for the oil and gas industry since, in addition to presenting lower operational costs than biocides due to the low concentrations used, they allow a simultaneous activity on the inhibition of corrosion and adhesion of sulfate reducing-bacteria. In the case of pipes with low BSW oil fluid low, the benefit of using corrosion inhibitors in microorganism combat is even more significant in view of their dispersing characteristics during the oil phase. Herein presented are the laboratorial analysis results of the biocidal effects of six commercial products, four of which having corrosion inhibition function and two with biocidal quality. During this analysis, an oil sample collected from a Petrobras pipeline and a mixed culture of sulfate-reducing mesophilic bacteria (m-BRS) obtained from this sample were used. The study was divided in two phases: the first phase performed in semi-static conditions and, the second phase performed in dynamic conditions (loop). Compositions were analyzed according to their activities regarding the growth control of sulfate-reducing planktonic bacteria, according to their time reducing performance regarding microbial growth (activity) detection and regarding sessile bacteria (pre-adhered bacteria). Results showed that the two biocidal products had the best performance in the presence of oil and that the tetra kishidroximethyl phosphonium sulfate (THPS) at 75% was the most effective. Of the four corrosion inhibitors tested for efficiency regarding BRS growth in solution, three were slightly stimulating and the fourth was intensely stimulating. (author)

  14. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho [Korea University, Seoul (Korea, Republic of)

    2010-04-15

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of {gamma}-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The {gamma}--irradiated B.cereus({gamma}--BC) St.aureus({gamma}--SA), MRSA({gamma}--MRSA) and E.coli O157({gamma}--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D{sub 10}-value of {gamma}--SA in the optimum condition was 0.152 kGy, and these of {gamma}--MRSA and {gamma}--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D{sub 10}-values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  15. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    International Nuclear Information System (INIS)

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of γ-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The γ--irradiated B.cereus(γ--BC) St.aureus(γ--SA), MRSA(γ--MRSA) and E.coli O157(γ--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D10-value of γ--SA in the optimum condition was 0.152 kGy, and these of γ--MRSA and γ--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D10-values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  16. Susceptibility of microorganism to selected medicinal plants in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    S M Masud Rana; Md Mustahsan Billah; Mohammad Salim Hossain; A K M Saifuddin; S K M Azizul Islam; Sujan Banik; Zannatul Naim; Golam Sarwar Raju

    2014-01-01

    Objective: To analyze in-vitro antimicrobial activities of some ethno-pharmacologically significant medicinal plants (methanol extract) against the pathogenic microorganisms (Escherichiacoli, Salmonella spp., Bacillus cereus, Staphylococcus aureus, Aspergillus niger and Candida albicans).Methods:The disc diffusion method was applied for antibacterial test and the poisoned food technique was applied for antifungal test.Results:The methanol extract of Terminalia chebula (bark), Phyllanthus acidus (fruits), Sarcochlamys pulcherrima (leaves) and Abelmoschus esculentus (fruits) had significant in vitro antibacterial activity angainst the entire test samples in comparison to standard drug ciprofloxacin. Most of the plant extracts showed low activity against Gram negative bacteria while potential activity against Gram positive bacteria. The antifungal activities of methanol extracts of these plants and standard drug griseofulvin were determined against two pathogenic fungi, andPolygonum lapathifolium (leaves) and Cinnamomum tamala (leaves) showed maximum activity, while Erioglossum rubiginosum (leaves) showed no antifungal activity.Conclusions:Further chemical and pharmacological investigations are required to identify and isolate chemical constituents responsible for these potential bioactivities and thus to determine their full spectrum of efficacy.

  17. Susceptibility of microorganism to selected medicinal plants in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    S.M.Masud; Rana; Md.Mustahsan; Billah; Mohammad; Salim; Hossain; A.K.M.Saifuddin; S.K.M.Azizul; Islam; Sujan; Banik; Zannatul; Nairn; Golam; Sarwar; Raju

    2014-01-01

    Objective:To analyze in-vitro antimicrobial activities of some ethno-pharmacologically significant medicinal plants(methanol extract) against the pathogenic microorganisms(Escherichia coli,Salmonella spp..Bacillus cereus.Staphylococcus aureus.Aspergillus niger and Candida albicans).Methods:The disc diffusion method was applied for antibacterial test and the poisoned food technique was applied for antifungal test.Results:The methanol extract of Terminalia chebula(bark),Fhyllanthus acidus(fruits).Sarcochlamys pulcherrima(leaves) and Abelmoschus esculcntus(fruits) had significant in vitro antibacterial activity angainst the entire test samples in comparison to standard drug ciprofloxacin.Most of the plant extracts showed low activity against Gram negative bacteria while potential activity against Gram positive bacteria.The antifungal activities of methanol extracts of these plants and standard drug griseofulvin were determined against two pathogenicfungi,and Polygonum Iapathifolium(leaves) and Cinnamomum tamala(leaves) showed maximum activity,while Erioglossum rubiginosum(leaves) showed no antifungal activity.Conclusions:Further chemical and pharmacological investigations are required to identify and isolate chemical constituents responsible for these potential bioactivities and thus to determine their full spectrum of efficacy.

  18. Treatment of landfill leachate by immobilized microorganisms

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.

  19. Microorganisms resistant to free-living amoebae.

    Science.gov (United States)

    Greub, Gilbert; Raoult, Didier

    2004-04-01

    Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.

  20. Treatment of landfill leachate by immobilized microorganisms

    Institute of Scientific and Technical Information of China (English)

    YE ZhengFang; YU HongYan; WEN LiLi; NI JinRen

    2008-01-01

    This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl's method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L-1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L-1 and NH3 over 150 mg·L-1, At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.

  1. Soil:An Extreme Habitat for Microorganisms?

    Institute of Scientific and Technical Information of China (English)

    M.BOLTER

    2004-01-01

    The question is asked whether soils can be regarded as extreme environments with respect to microorganisms. After defining some extreme environments in a general sense, special properties of extreme environments are compared to soil habitats, with special emphasis laid on time frame and localities. In relation to water availability, nutrients and other properties, such places as aggregates can show properties of extreme habitats. These features, which can act at different levels of the system from the community level down to the cellular level, are summarized as stress factors. The latter,where many switches are located leading to different strategies of survival, is described as the most important one. This raises the question of how organisms have adapted to such conditions. The soil system demands a broad spectrum of adaptations and/or adjustments for a highly variable environment.The soil microorganisms'adaptation can thus be seen as the highest kind of flexibility and is more useful than any other special adaptation.

  2. Venturing into new realms? Microorganisms in space.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Cockell, Charles; Rettberg, Petra

    2016-09-01

    One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board. PMID:27354346

  3. Nonenzymatic microorganism identification based on ribosomal RNA

    Science.gov (United States)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  4. Identification of periodontopathogen microorganisms by PCR technique

    Directory of Open Access Journals (Sweden)

    Milićević Radovan

    2008-01-01

    Full Text Available INTRODUCTION Periodontitis is an inflammatory disease of the supporting tissues of teeth and is a major cause of tooth loss in adults. The onset and progression of periodontal disease is attributed to the presence of elevated levels of a consortium of pathogenic bacteria. Gram negative bacteria, mainly strict anaerobes, play the major role. OBJECTIVE The present study aimed to assess the presence of the main types of microorganisms involved in the aetiopathogenesis of periodontal disease: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Treponema denticola, Tanerella forsythia and Prevotella intermedia in different samples collected from the oral cavity of 90 patients diagnosed with periodontitis. METHOD Bacterial DNA detection was performed in diverse biological materials, namely in dental plaque, gingival tissue and saliva, by means of multiplex PCR, a technique that allows simultaneous identification of two different bacterial genomes. RESULTS In the dental plaque of the periodontitis patients, Treponema denticola dominated. In the gingival tissue, Tannerella forsythia and Treponema denticola were the microbiota most frequently detected, whilst in saliva Treponema denticola and Eikenella corrodens were found with the highest percentage. CONCLUSION The identification of microorganisms by multiplex PCR is specific and sensitive. Rapid and precise assessment of different types of periodontopathogens is extremely important for early detection of the infection and consequently for the prevention and treatment of periodontal disease. In everyday clinical practice, for routine bacterial evaluation in patients with periodontal disease, the dental plaque is the most suitable biological material, because it is the richest in periodontal bacteria.

  5. Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem.

    Science.gov (United States)

    Arfi, Kenza; Amárita, Felix; Spinnler, Henry-Eric; Bonnarme, Pascal

    2003-11-01

    Two Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G. candidum accumulated KMBA when cultivated on this amino acid, contrary to B. linens suggesting that the transamination pathway is not active in this microorganism. Conversely, a L-methionine gamma-lyase activity--which catalyses the one step L-methionine to methanethiol (MTL) degradation route--was only found in B. linens strains. Several other enzymatic activities involved in the catabolism of the precursors tested were investigated. KMBA transiently accumulated in G. candidum cultures, and was then reduced to HMBA by a KMBA dehydrogenase (KDH) activity. This activity was not detected in B. linens. Despite no HMBA dehydrogenase (HDH) was found in G. candidum, a strong HMBA oxidase (HOX) activity was measured in this microorganism. This latter activity was weakly active in B. linens. KMBA and HMBA demethiolating activities were found in all the microorganisms. Our results illustrate the metabolic diversity between cheese-ripening microorganisms of the cheese ecosystem.

  6. The taxonomic composition of soil microorganisms in the ecosystems of southern chernozems of Northern Kazakhstan

    Directory of Open Access Journals (Sweden)

    Galina Churkina

    2012-11-01

    Full Text Available This article discusses the species composition of soil microorganisms in the ecosystems of the southern chernozem of Northern Kazakhstan. Microorganisms are an essential soil component. In fallow soil where there has been no cultivation for over 50 years they amount to over 35 million cells per gram of soil, while in arable ground this increases to 46.2 million cells. Actinomyces tend to dominate in the biotic communities of uncultivated land. In cultivated arable land bacteria assimilating mineral and organic nitrogen predominate - a fact which testifies to the activity of soil-biochemical processes leading to profound mineralization of the organic substances in the soil.

  7. Role of soil micro-organisms in the sorption of radionuclides in organic systems

    International Nuclear Information System (INIS)

    Although the fraction of radionuclides linked to soil organic matter and soil microorganisms may be relatively small when compared to the amount bound to the mineral constituents, (mostly irreversibly bound), this fraction is of great importance as it remains readily exchangeable and is thus available for plant uptake. Many studies have measured the uptake of radionuclides by organic soils but the role of soil micro-organisms may have been masked by the presence of even small amounts of clay minerals occurring in these soils. We have carried out a series of experiments using a biologically active, 'mineral-free' organic soil produced under laboratory conditions, to determine the potential of soil micro-organisms to accumulate radionuclides Cs-134 and Sr-85. Biological uptake and release was differentiated from abiotic processes by comparing experimental results with inoculated and non-inoculated sterile organic material. We have investigated the role of different clay minerals, competing potassium and calcium ions, and changes in temperature on the sorption of Cs and Sr isotopes. The results from studies so far show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material, microorganisms also influence the importance of chemical factors (e.g. adsorption to clay minerals) which may play a secondary role in these highly organic systems. In further experiments we hope to define the precise role of specific soil micro-organisms in these organic systems. (author)

  8. Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    This report presents a broad and thorough description of how microorganisms may influence safety of repositories for radioactive waste. First, an overview of the Swedish concepts for disposal is given, including a discussion of the geological, chemical and hydrological conditions in repositories. Then the limiting and stimulating factors for life of microorganisms are reviewed, such as relations to oxygen, temperature, pH, radiation, pressure, water and nutrients availability. Bacteria in the cycles of carbon, nitrogen, sulfur, iron, manganese and hydrogen are also discussed. A literature review of subterranean bacteria is given in chapter 4. Chapter 5 treats investigations of microorganisms in repository-like environments, and microbial corrosion and redox processes relevant for materials in the repository and for the mobility of radionuclides. Possibilities to predict the activity and presence of microorganisms through mathematical models are discussed in chapter 6. Chapter 7 summarizes the conclusion drawn in the report, how microorganisms may influence performance safety assessment of radioactive waste disposal, and also identifies research needs. 293 refs, 43 figs, 36 tabs

  9. Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [Goeteborg Univ. (Sweden). General and Marine Microbiology; Karlsson, Fred [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1995-06-01

    This report presents a broad and thorough description of how microorganisms may influence safety of repositories for radioactive waste. First, an overview of the Swedish concepts for disposal is given, including a discussion of the geological, chemical and hydrological conditions in repositories. Then the limiting and stimulating factors for life of microorganisms are reviewed, such as relations to oxygen, temperature, pH, radiation, pressure, water and nutrients availability. Bacteria in the cycles of carbon, nitrogen, sulfur, iron, manganese and hydrogen are also discussed. A literature review of subterranean bacteria is given in chapter 4. Chapter 5 treats investigations of microorganisms in repository-like environments, and microbial corrosion and redox processes relevant for materials in the repository and for the mobility of radionuclides. Possibilities to predict the activity and presence of microorganisms through mathematical models are discussed in chapter 6. Chapter 7 summarizes the conclusion drawn in the report, how microorganisms may influence performance safety assessment of radioactive waste disposal, and also identifies research needs. 293 refs, 43 figs, 36 tabs.

  10. Use of 4-Nitrophenoxyacetic Acid for Detection and Quantification of 2,4-Dichlorophenoxyacetic Acid (2,4-D)/(alpha)-Ketoglutarate Dioxygenase Activity in 2,4-D-Degrading Microorganisms

    OpenAIRE

    Sassanella, T. M.; Fukumori, F; Bagdasarian, M; Hausinger, R P

    1997-01-01

    Purified 2,4-dichlorophenoxyacetic acid (2,4-D)/(alpha)-ketoglutarate dioxygenase (TfdA) was shown to use 4-nitrophenoxyacetic acid (K(infm) = 0.89 (plusmn) 0.04 mM, k(infcat) [catalytic constant] = 540 (plusmn) 10 min(sup-1)), producing intensely yellow 4-nitrophenol. This reagent was used to develop a rapid, continuous, colorimetric assay for the detection of TfdA and analogous activities in 2,4-D-degrading bacterial cells and extracts.

  11. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    Science.gov (United States)

    The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts orga...

  12. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    NARCIS (Netherlands)

    Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y.

    2009-01-01

    The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts orga

  13. Metabolism of glycosylsucrose by oral microorganisms and its hydrolysis by Streptococcus salivarius fructosyltransferase.

    Science.gov (United States)

    Hojo, S; Mitsutomi, M; Yamada, T

    1987-01-01

    Resting-cell suspensions of oral microorganisms grown in sucrose were studied for the production of acid from glucosylsucrose and maltosylsucrose. Most oral microorganisms fermented these sugars to only a limited extent. Streptococcus salivarius, however, metabolized glucosylsucrose as well as sucrose. We therefore looked for a specific enzyme in S. salivarius which was capable of hydrolyzing glucosylsucrose. Fructosyltransferase and invertase were purified from S. salivarius 13419, and the substrate specificities and hydrolytic activities of these enzymes were determined. Purified fructosyltransferase catalyzed fructan synthesis from glucosylsucrose or maltosylsucrose, whereas purified invertase barely hydrolyzed these sugars. These results suggest that the high fermentative efficiency of glycosylsucrose by S. salivarius is due to the hydrolysis of these sugars by fructosyltransferase, but not by invertase. The partially purified fructosyltransferases of Actinomyces viscosus NY1 and Streptococcus mutans NCIB 11723 catalyzed fructan synthesis from glucosylsucrose or maltosylsucrose. The fructosyltransferases of these oral microorganisms are also responsible for the hydrolysis of glycosylsucrose. Images PMID:3818092

  14. EFFECTS OF FEEDING MICROORGANISMS ON GROWTH PERFORMANCE AND THE ACTIVITIES DIGESTIVE ENZYMES OF OREOCHROMIS NILOTICUS×O.AUREUS%微生物制剂对奥尼罗非鱼生长及消化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    江永明; 付天玺; 张丽; 许国焕; 吴月嫦; 龚全

    2011-01-01

    In the present experiment, the effects of Debaryomyces hanseni, Bacillus subtilis and Bacillus coagulans (3.0×l011 cfu/kg feed) on growth and the digestive enzyme activities of Oreochromis niloticus×O. Aureus[average initial weight about (34.50±0.25) g] for 56 days were studied. The results showed that compared with the control group (non-supplemented), the weight gain rates of Bacillus subtilis and Bacillus coagulans were 12.27% and 8.18%, which were higher than that of the control (P<0.05). The feed coefficients of Bacillus subtilis and Bacillus coagulans were 10.92% and 8.18%, which were lower than that of the control respectively (P<0.05). Compared with the control group, the apparent digestibility on dry matter of Bacillus subtilis and Bacillus coagulans increased by 10.54% and 10.07%, and the protein apparent digestibility increased by 4.18% and 3.65% (P<0.05). Bacillus subtilis and Bacillus coagulans adding to the diets could significantly improve the activities of proteinase in intestine, hepatopancreas and stomach of Oreochromis niloticus×O. Aureus (P<0.05) compared to the control group and Debaryomyces hanseni group, but three Micoecologics adding to the diets showed no significant difference with the activities of amylase and lipase in intestine, hepatopancreas and stomach of Oreochromis niloticus/O. Aureus (P>0.05). The results suggested that diet with 3.0×l011 cfu/kg feed of Bacillus subtilis supplement could significantly promote the growth of Oreochromis niloticus×O. Aureus and the activities of proteinase in intestine, hepatopancreas and stomach of Oreochromis niloticus×O. Aureus.%选用192 尾初始体重(34.50±0.25) g 的健康奥尼罗非鱼(Oreochromis niloticus×O.aureu),研究在基础饲料中分别添加相同剂量(活菌含量为3.0×1011 cfu/kg 饲料)的汉逊德巴利酵母、枯草芽孢杆菌和凝结芽孢杆菌对奥尼罗非鱼生长及消化酶活性的影响,试验期56d.试验结果表明,与对照组相比,添

  15. Turbulent fluid acceleration generates clusters of gyrotactic microorganisms

    CERN Document Server

    De Lillo, Filippo; Durham, William M; Barry, Michael; Stocker, Roman; Climent, Eric; Boffetta, Guido

    2014-01-01

    The motility of microorganisms is often biased by gradients in physical and chemical properties of their environment, with myriad implications on their ecology. Here we show that fluid acceleration reorients gyrotactic plankton, triggering small-scale clustering. We experimentally demonstrate this phenomenon by studying the distribution of the phytoplankton Chlamydomonas augustae within a rotating tank and find it to be in good agreement with a new, generalized model of gyrotaxis. When this model is implemented in a direct numerical simulation of turbulent flow, we find that fluid acceleration generates multi-fractal plankton clustering, with faster and more stable cells producing stronger clustering. By producing accumulations in high-vorticity regions, this process is fundamen- tally different from clustering by gravitational acceleration, expanding the range of mechanisms by which turbulent flows can impact the spatial distribution of active suspensions.

  16. Pentachlorophenol (PCP) degradation microorganism community structure under microaeration condition

    Institute of Scientific and Technical Information of China (English)

    Chen Yuancai; Hao Yuan; Fu Shiyu; Zhan Huaiyu

    2007-01-01

    The comparison of pentachlorophenol (PCP)degradation was conducted under micro-aeration and anaerobic condition with three series of batch experiment,results of which indicated that during micro-aeration condition co-immobilized of anaerobic granular sludge and isolated aerobic bacterial species could enhance the efficiency of PCP reduction through the synergism of aerobes and anaerobes reductive dechlorination and exchange of metabolites within the co-immobilized granular sludge.While during anaerobic condition,there was no great difference in the three series.The specific activities experiment further confirmed that strict anaerobes were not affected over the presence of micro aeration environment.Microorganism community construction of co-immobilized anaerobic granular sludge and the mixed isolated aerobic community was also deduced.By the efficient cooperation of aerobes and anaerobes,the high efficiency removal rate of PCP was implemented.

  17. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.

  18. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. PMID:26070720

  19. CHANGES IN COUNTS OF MICROORGANISMS AND BIOGENIC AMINES PRODUCTION DURING THE MANUFACTURE OF FERMENTED SAUSAGES POLIČAN

    OpenAIRE

    Libor Kalhotka; Olga Cwiková; Veronika Čírtková(Kovářová); Zuzana Matoušová; Jitka Přichystalová

    2012-01-01

    Poličan is classic raw fermented sausage with low acidity. Dry fermented sausages Poličan were used for the analysis and drawn once a week during production from ripening chambers of meat-packing plants. Those sausages ripened for 35 days under controlled temperature and humidity conditions. The aim of this article is to evaluate microorganisms accompanying ripening of fermented sausages Poličan and characterize relationships between activity of microorganisms and content of biogenic amines. ...

  20. Biosorption of 241Am by microorganism

    International Nuclear Information System (INIS)

    The biosorption of 241Am on A. niger, R. arrihizus and Candida albicans from aqueous solution, and the effects of the experimental conditions on the biosorption are investigated by the batch technique. The experimental results show that all the microorganism above are very efficient as the sorbent. The biosorption equilibrium time is 2 h and the optimum pH ranges 1-3. No significant differences on 241Am biosorption are observed at the temperature of 15-45 degree C, or in the presence and absence of Au3+ or Ag+. The relationship between concentrations of 241Am in aqueous solutions and adsorption capacities of 241Am can be described by the Freundlich adsorption equation on A. niger and R. arrihizus, while as it can be done by the Langmuir adsorption equation on Candida albicans

  1. Genetic engineering of microorganisms for biodiesel production.

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.

  2. Microorganism billiards in closed plane curves

    CERN Document Server

    Krieger, Madison S

    2016-01-01

    Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.

  3. Breakdown of plastics and polymers by microorganisms.

    Science.gov (United States)

    Kawai, F

    1995-01-01

    The interest in environmental issues is still growing and there are increasing demands to develop materials which do not burden the environment significantly. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. Biodegradation is necessary for water-soluble or water-miscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires both biochemical insight and understanding of the interactions between materials and microorganisms. It is now widely requested that polymeric materials come from renewable resources instead of petrochemical sources. The microbial production of polymeric and oligomeric materials is also described. PMID:7484358

  4. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  5. High-cell-density cultivation of microorganisms.

    Science.gov (United States)

    Riesenberg, D; Guthke, R

    1999-04-01

    High-cell-density cultivation (HCDC) is required to improve microbial biomass and product formation substantially. An overview of HCDC is given for microorganisms including bacteria, archae and eukarya (yeasts). Problems encountered by HCDC and their possible solutions are discussed. Improvements of strains, different types of bioreactors and cultivation strategies for successful HCDC are described. Stirred-tank reactors with and without cell retention, a dialysis-membrane reactor, a gas-lift reactor and a membrane cyclone reactor used for HCDC are outlined. Recently modified traditional feeding strategies and new ones are included, in particular those for unlimited growth to very dense cultures. Emphasis is placed on robust fermentation control because of the growing industrial interest in this field. Therefore, developments in the application of multivariate statistical control, artificial neural networks, fuzzy control and knowledge-based supervision (expert systems) are summarized. Recent advances using Escherichia coli--the pioneer organism for HCDC--are outlined. PMID:10341426

  6. Safety Assessment of Foods Derived from Genetically Modified Microorganisms

    OpenAIRE

    Schlundt, J

    2011-01-01

    Microorganisms have a long history of use in food production, e.g. in the production of sausages, cheeses, etc. Roughly one quarter of all food products rely on microbiological processes, and the safe use of microorganisms for food production is essential. The transfer of novel traits to food microorganisms through recombinant gene technology will result in new potential food safety issues. This requires the elaboration of criteria for safety assessment of foods derived from genetic microorga...

  7. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    OpenAIRE

    Douglas, Angela E.

    2014-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contr...

  8. Enhancement of uranium-accumulating ability of microorganisms by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Takashi; Nakajima, Akira; Tsuruta, Takehiko [Miyazaki Medical Coll., Kiyotake (Japan)

    1998-01-01

    Some microorganisms having excellent ability to accumulate uranium were isolated, from soil and water systems in and around the Ningyo-toge Station of Power Reactor and Nuclear Fuel Development Corporation. The enhancement of uranium-accumulating ability of microorganisms by electron-beam irradiation was examined, and the ability of JW-046 was increased 3-5% by the irradiation. The irradiation affect the growth of some of microorganisms tested. (author)

  9. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.;

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  10. Analysis of Membrane Lipids of Airborne Micro-Organisms

    Science.gov (United States)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  11. Collective motion of micro-organisms from field theoretical viewpoint

    CERN Document Server

    Kawamura, M; Kawamura, Masako; Sugamoto, Akio

    1995-01-01

    We analyze the collective motion of micro-organisms in the fluid and consider the problem of the red tide. The red tide is produced by the condensation of the micro-organisms, which might be a similar phenomenon to the condensation of the strings. We propose a model of the generation of the red tide. By considering the interaction between the micro-organisms mediated by the velocity fields in the fluid, we derive the Van der Waals type equation of state, where the generation of the red tide can be regarded as a phase transition from the gas of micro-organisms to the liquid.

  12. "Petit suisse" cheese from kefir: an alternative dessert with microorganisms of probiotic activity Queijo "Petit suisse" de kefir: uma alternativa de sobremesa com microorganismos de ação probiótica

    Directory of Open Access Journals (Sweden)

    Thanise Sabrina Souza Santos

    2012-09-01

    Full Text Available "Petit Suisse" is a creamy cheese. Kefir is a symbiotic mixture of lactic acid bacteria and yeasts with probiotic activity including immunomodulation and balance of intestinal microflora. The present study aims to develop "Petit Suisse" cheese from kefir. Kefir grains were grown in pasteurized cow milk, and after the separation of kefir the serum was discarded and the "Petit Suisse" cheese was prepared using strawberry, mangaba, herbs, and dried tomatoes. The acceptance of the different preparations was evaluated using a nine-point hedonic scale followed by ANOVA. The sweet and salty products were compared by the Student's t-test. Purchase intent was evaluated by the means test and frequency distribution. All products were well accepted by the judges. The product was characterized by low yield, but it can be prepared at home at low cost. The nutritional composition analyses and the variety of flavors as well as the range of age of the judges are alternatives for further studies.Petit suisse é um queijo de consistência pastosa. O kefir é um produto resultante da simbiose entre bactérias ácido-láticas e leveduras, e apresenta ação probiótica, como imunomodulação e balanço da microbiota intestinal. O presente estudo buscou desenvolver petit suisse de kefir. Os grãos foram cultivados no leite de vaca pasteurizado e, após separação do kefir, seguiu-se para dessoragem e preparo do petit suisse nos sabores morango, mangaba, ervas e tomate seco. Com escala hedônica estruturada de nove pontos, avaliou-se aceitação pela ANOVA. As amostras doces e salgadas foram comparadas por meio do teste t de Student e a intenção de compra foi avaliada por meio do teste de médias e de distribuição das frequências. As amostras apresentaram boa aceitação pelos julgadores. O produto pronto apresentou baixo rendimento, mas pode ser reproduzido em nível domiciliar com baixo custo. A análise da composição nutricional e a variação dos sabores e

  13. Scientific Opinion on the substantiation of health claims related to various microorganisms and reduction of gastro-intestinal discomfort (ID 1030, 2956, 2958, 2961, 2963, 2966, 2970, decreasing potentially pathogenic gastro-intestinal microorganisms (ID 1030, 2956, 2958, 2961, 2963, 2966, 2970, improved lactose digestion (ID 1030, 2956, 2958, 2961, 2963, 2966, 2970, “intestinal flora/digestive health” (ID 4231, defence against vaginal pathogens (ID 2950, 2957, 2967 and increasing IL-10 production and/or enhancing the activity of natural killer cells (ID 2960, 2962, 2971 (further assessment pursuant to Article 13(1 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies

    2012-08-01

    Full Text Available

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to provide a scientific opinion on health claims pursuant to Article 13 of Regulation (EC No 1924/2006 in the framework of further assessment related to various microorganisms and reduction of gastro-intestinal discomfort, decreasing potentially pathogenic gastro-intestinal microorganisms, improved lactose digestion, “intestinal flora/digestive health”, defence against vaginal pathogens and increasing IL-10 production and/or enhancing the activity of natural killer cells. The food constituents Lactobacillus crispatus BCCM/LMG P-17631, Lactobacillus gasseri BCCM/LMG P-17632, Lactobacillus gasseri BCCM/LMG P-18137, Lactobacillus paracasei CNCM I-1687, Lactobacillus paracasei CNCM I-1688, Lactobacillus plantarum BCCM/LMG P-17630, Lactobacillus salivarius CNCM I-1794 and a combination of Bifidobacterium animalis ssp. lactis Bf-6 and Lactobacillus johnsonii La-1 (ACD-1(CLbA22 are sufficiently characterised. The evidence provided did not establish that the proposed claimed effect, increasing IL-10 production and/or enhancing the activity of natural killer cells, is a beneficial physiological effect. The claimed effect “intestinal flora/digestive health” is general and non-specific, and does not refer to any specific health claim as required by Regulation (EC No 1924/2006. The references provided in relation to the claims evaluated in this opinion included studies which assessed the effects of food constituents other than the food constituents which are the subject of the claims and/or investigated health outcomes unrelated to the claimed effects. No human studies which investigated the effects of the food constituents on appropriate measures of the claimed effects were provided. On the basis of the data presented, the Panel

  14. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  15. Protein expression on Cr resistant microorganism using electrophoresis method

    Directory of Open Access Journals (Sweden)

    SAJIDAN

    2009-01-01

    Full Text Available Fatmawati U, Suranto, Sajidan. 2009. Protein expression on Cr resistant microorganism using electrophoresis method. Nusantara Bioscience 1: 31-37. Hexavalent chromium (Cr(VI is known as toxic heavy metals, so the need is reduced to Cr(III is much less toxicity. Pseudomonas aeruginosa, Pseudomonas putida, Klebsiella pneumoniae, Pantoea sp. and Saccharomyces cerevisiae are resistant Cr(VI microorganism and have ability to reduce Cr(VI. The aim of this research is to know ability of microorganism to reduce Cr(VI and to know protein band pattern between Cr(VI resistant microorganism and non resistant microorganism which inoculated on LB broth. SDS-PAGE was used to indentify protein expression. While, Cr(VI concentration was identified by 1.5 diphenylcarbazide method. The quantitative data was analyzed by two factorial ANOVA that continued with DMRT at 1% level test. The qualitative data i.e. protein expression analyzed by relative mobility (Rf. The results showed that the ability of microorganisms to reduce Cr(VI at initial concentration of 0.5 ppm, 1 ppm, 5 ppm and 10 ppm may vary, the average percentage of the ability of each microorganism in reducing Cr(VI is P. putida (65% > S. cerevisiae (64.45% >. P. aeruginosa (60.73% > Pantoea sp. (50.22% > K. pneumoniae (47.82% > without microorganisms (34.25%. The adding microorganisms have significantly influenced toward reduction of Cr(VI. The SDS-PAGE shows that protein expression between resistant and not resistant microorganisms are no different, but resistant microorganisms have more protein (protein band is thicker.

  16. Screening of lipid degrading microorganisms for wastewater treatment

    Directory of Open Access Journals (Sweden)

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  17. Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Ann M. Stock

    2009-04-08

    Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environments is currently very active in a large number of laboratories worldwide. An increasingly wide range of prokaryotic and eukaryotic species are being studied with regard to their sensing of diverse chemical and physical stimuli, including nutrients, toxins, intercellular signaling molecules, redox indicators, light, pressure, magnetic fields, and surface contact, leading to adaptive responses affecting motile behavior, gene expression and/or development. The ease of manipulation of microorganisms has facilitated application of a broad range of techniques that have provided comprehensive descriptions of cellular behavior and its underlying molecular mechanisms. Systems and their molecular components have been probed at levels ranging from the whole organism down to atomic resolution using behavioral analyses; electrophysiology; genetics; molecular biology; biochemical and biophysical characterization; structural biology; single molecule, fluorescence and cryo-electron microscopy; computational modeling; bioinformatics and genomic analyses. Several model systems such as bacterial chemotaxis and motility, fruiting body formation in Myxococcus xanthus, and motility and development in Dictyostelium discoideum have traditionally been a focus of this meeting. By providing a basis for assessment of similarities and differences in mechanisms, understanding of these pathways has advanced the study of many other microbial sensing systems. This conference aims to bring together researchers investigating different prokaryotic and eukaryotic microbial systems using diverse approaches to compare data, share methodologies and ideas, and seek to understand the fundamental principles underlying sensory responses. Topic areas include: (1) Receptor Sensing and Signaling; (2) Intracellular Signaling (two-component, c-di-GMP, c-AMP, etc.); (3) Intracellular Localization and

  18. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    Directory of Open Access Journals (Sweden)

    C. E. Morris

    2011-01-01

    Full Text Available For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  19. Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms

    Directory of Open Access Journals (Sweden)

    Valarini Pedro J.

    2002-01-01

    Full Text Available The soil quality was evaluated following the addition of organic matter and microorganisms to a clay loam soil collected in Aranjuez (Madrid under controlled conditions of temperature and moisture, and over a period of three months. The following treatments were carried out: soil (control; soil + 50 t/ha of animal manure (E50; soil + 50 t/ha of animal manure + 30l/ha of effective microorganisms (E50EM; soil + 30 t/ha of combination of various green crop residues and weeds (RC30 and soil + 30 t/ha of combination of various green crop residues and weeds + 30l/ha of effective microorganisms (RC30EM. The soil samples were taken before and after the incubation and analysed using physical, chemical and microbiological parameters. A significant increase in the production of polysaccharides and alkaline phosphatase and esterase enzymes in the treatments E50EM and RC30EM was observed, being in direct correlation with the humification of the organic matter, with the water retention at field capacity, and with the cationic exchange capacity (CEC. It can be concluded that the incorporation of microorganisms EM potentialized the soil biological activity and improved physico-chemical soil properties, contributing to a quick humification of fresh organic matter. Those findings were proved by microbiological activities of exopolysaccharides by alcaline phosphatase and esterase enzymes, which can be used as earlier and integral soil health indicators.

  20. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    Science.gov (United States)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  1. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism

    OpenAIRE

    Hassaninasab, Azam; Hashimoto, Yoshiteru; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2011-01-01

    Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli...

  2. Microorganisms in the Coloured Rain of Sri Lanka

    Science.gov (United States)

    Samaranayake, Anil; Wickramarathne, K.; Wickramasinghe, N. C.

    2013-02-01

    A variety of pigmented microorganisms have been identified in the red, yellow, blue and black rain that fell over Sri Lanka in December 2012 and January 2013. There is tentative evidence for the presence of similar organisms, including diatoms, in meteorites falling over the same time period. These microorganisms are likely to have served as nuclei for the condensation of rain drops.

  3. Prospects of effective microorganisms technology in wastes treatment in Egypt

    Institute of Scientific and Technical Information of China (English)

    Emad A Shalaby

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  4. Prospects of effective microorganisms technology in wastes treatment in Egypt.

    Science.gov (United States)

    Shalaby, Emad A

    2011-06-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  5. Dynamic Change of Ginger Rhizosphere Soil Enzyme Activities and Microorganism Quantity under Different Fertilizers Combined Application%不同肥料配施下生姜根际土壤酶活性和微生物数量的动态变化

    Institute of Scientific and Technical Information of China (English)

    孔祥波

    2012-01-01

    以生姜为试材,分析了不同种类肥料配施对生姜根系及根际土壤酶活性和微生物数量的影响.结果表明:生物有机肥配施处理的生姜根鲜质量增加,根系活力增强,分别比普通化肥处理和普通有机肥处理的根鲜质量增加28.3%、16.4%,根系活力提高41.2%、20.6%;生物有机肥处理的土壤有机质含量有所提高,在生姜生长旺盛期达到最大值,分别比普通化肥处理和普通有机肥处理增加45.4%、11.1%;生物有机肥配施可提高土壤微生物数量,与普通化肥处理相比土壤细菌增加了449.1%,真菌增加了374.3%,放线菌增加了489.8%,总量增加了451.5%,增幅高于普通有机肥处理;生物有机肥配施可提高土壤蔗糖酶、脲酶、过氧化氢酶活性,促进了土壤有机质的分解转化.%Taking ginger ( Zingiber officinale Rose.) as experiment material, this paper analyzed the effects of different fertilizers combined application on ginger root system and rhizosphere soil enzyme activities and micro-organism quantity. The results show that the biological organic fertilizer can improve the fresh weight of ginger root and strengthen the root activity. The fresh weight of ginger root was higher than that applying common chemical fertilizer or common organic fertilizer by 28.3% and 16.4%, and the root activities were increased by 41.2% and 20.6%. The biological organic fertilizer can increase the soil organic matter. The max value of soil organic matter is achieved during vigorous stage. The contents were higher than that applying common chemical fertilizer and common organic fertilizer by 45.4% and 11.1%, respectively. This fertilizer could significantly improve soil microbe quantity. Compared with that applying common chemical fertilizer, the population of bacteria increased by 449.1%, that of fungi increased by 374.3%, that of actinomycetes increased by 489.8%, and the total population of these 3 kinds of

  6. Effectiveness of ozone against periodontal pathogenic microorganisms.

    Science.gov (United States)

    Huth, Karin C; Quirling, Martina; Lenzke, Stefanie; Paschos, Ekaterini; Kamereck, Klaus; Brand, Korbinian; Hickel, Reinhard; Ilie, Nicoleta

    2011-06-01

    Ozone has been proposed as an adjunct antiseptic in periodontitis therapy. The aim of this study was to investigate the antimicrobial effectiveness of gaseous/aqueous ozone, in comparison with that of the established antiseptic chlorhexidine digluconate (CHX), against periodontal microorganisms. Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, and Parvimonas micra in planktonic or biofilm cultures were exposed, for 1 min, to gaseous ozone, aqueous ozone, CHX, or phosphate-buffered saline (control). None of the agents was able to substantially reduce the A. actinomycetemcomitans count in biofilm cultures. In contrast, P. gingivalis, T. forsythia, and P. micra could be eliminated by 2% CHX or by ozone gas at 53 gm(-3) . Significantly greater antimicrobial effects were observed against planktonic cultures than against biofilm-associated bacteria. The rate of killing was influenced by the species of bacteria, and by the type and concentration of agent. There were no significant differences in the effectiveness of aqueous ozone (20 μg ml(-1) ) or gaseous ozone (≥ 4 gm(-3) ) compared with 2% CHX but they were more effective than 0.2% CHX. Therefore, high-concentrated gaseous and aqueous ozone merit further investigation as antiseptics in periodontitis therapy. A safe system for applying gaseous ozone into the periodontal pocket that avoids inhalation still needs to be developed.

  7. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  8. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  9. Hydrodynamic theory of swimming of flagellated microorganisms.

    Science.gov (United States)

    de la Torre, J G; Bloomfield, V A

    1977-10-01

    A theory of the type commonly used in polymer hydrodynamics is developed to calculate swimming properties of flagellated microorganisms. The overall shape of the particle is modeled as an array of spherical beads which act, at the same time, as frictional elements. The fluid velocity field is obtained as a function of the forces acting at each bead through Oseen-type, hydrodynamic interaction tensors. From the force and torque equilibrium conditions, such quantities as swimming velocity, angular velocity, and efficiency can be calculated. Application is made to a spherical body propelled by a helical flagellum. A recent theory by Lighthill, and earlier formulations based on tangential and normal frictional coefficients of a curved cylinder, CT and CN, are analyzed along with our theory. Although all the theories predict similar qualitative characteristics, such as optimal efficiency and the effect of fluid viscosity, they lead to rather different numerical values. In agreement with Lighthill, we found the formalisms based on CN and CT coefficients to be somewhat inaccurate, and head-flagellum interactions are shown to play an important role. PMID:901902

  10. Tracking microorganisms and gene in the environment

    International Nuclear Information System (INIS)

    Studies have been conducted to determine the sensitivities and limitations of various methods for determining the fate of genetically engineered microorganisms (GEMs) and their genes in the environment. Selective viable plate count procedures can be designed to detect the introduced organisms with high sensitivity; but they are restricted by potential mutations affecting the expression of the selective characteristic in the introduced organism, the occurrence of the particular selective characteristic in the indigenous organisms, and the need to culture the organism. The accuracy of this approach is greatly improved by colony hybridization procedures that use a specific gene probe to detect the introduced genes, but this approach is still only as sensitive as the plating procedure. Direct extraction of DNA from environmental samples, coupled with dot blot hybridization with radiolabeled probe DNA or solution hybridization, gives a high degree of both sensitivity and precision. This approach does not require culturing of the organism; and even if an introduced gene moves into a new organism or if the introduced organism is viable but nonculturable, the gene probe methods will detect the persistence of the introduced genes in the environment. Efficient direct DNA extraction methods have been developed and tested following in vitro experimental additions of GEMs to sediment and water samples

  11. Snow as a habitat for microorganisms

    Science.gov (United States)

    Hoham, Ronald W.

    1989-01-01

    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  12. Rhamnolipids as active protective agents for microorganisms against toxic substances

    OpenAIRE

    Marta Woźniak; Roman Marecik; Łukasz Ławniczak; Łukasz Chrzanowski

    2012-01-01

    The presence of microbial biosurfactants decreases the toxicity of chlorophenols towards Pseudomonas putida 2A cells. The rhamnolipid-originating micelles selectively entrapped chlorophenol molecules, which resulted in their lower bioavailability to microbial cells. It was observed that the effective concentrations causing 50% growth inhibition increased by 0.5, 0.35 and 0.15 for phenol, 4-chlorophenol and 2.4-dichlorophenol, accordingly. The application of surfactants as protective agents...

  13. ANTIMICROBIAL ACTIVITY OF ROSA CANINA FLOWERS AGAINST SELECTED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Katarína Rovná

    2015-02-01

    Full Text Available Rosa canina flowers were screened against various plant pathogenic microbial strains to study the antimicrobial properties of the plant. Ethanolic and methanolic extracts of flowers were screened applying agar well diffusion method against two Gram-negative bacteria including Escherichia coli CCM 3988 and Pseudomonas aeruginosa CCM 1960 and three microscopic filamentous fungi strains Aspergillus niger, Fusarium culmorum and Alternaria alternata, respectively. The best antimicrobial effect of ethanolic extract of Rosa canina flowers was found against Pseudomonas aeruginosa and the best antimicrobial effect of methanolic extract of Rosa canina flowers was found against Escherichia coli.

  14. Granulation of filamentous microorganisms in a sequencing batch reactor with saline wastewater.

    Science.gov (United States)

    Li, Zhihua; Zhang, Ting; Li, Na; Wang, Xiaochang

    2010-01-01

    Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure with 5% sodium chloride in the substrate. In the early period of experiment, coccoid and rode-like bacteria predominated in the yellowish-brown granules, and later the white and the black granules were developed by filamentous microorganisms. The filamentous granules exhibited low porosity and fast settling velocity, and were more compact even than bacteria granules. It was hypothesized that the elevated pH in the later period might be a possible reason for the compact growth of filamentous granules. However, the bacteria granules showed the high bioactivity in terms of specific oxygen utilizing rate, and comprised of a wider diversity of compounds based on the thermogravimetric evaluation. The findings in this study demonstrated that filamentous microbes could form compact granular structure, which may encourage the utilization of filamentous microorganisms rather than the inhibition of their growth, as the latter is frequently used for sludge bulking control. PMID:20397388

  15. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  16. Autecology of microorganisms of typical Ecuador biotopes.

    Science.gov (United States)

    Tashyrev, O B; Pidgorskyi, V S; Toro, Miguel Naranjo; Gualoto, Miguel; Gladka, G V; Tashyreva, H O; Rokitko, P V; Romanovskaya, V A

    2014-01-01

    34 strains of aerobic chemoorganotrophic microorganisms were isolated from 23 soil and plant samples selected from highland biotopes of Ecuador-Andes massif (Papallacta, 4020 m), ash at the foot of the volcano Tungurahua, mountainous jungle (La Favorita, 1600 m), as well as in humid tropic botanical garden (state Puyo, 950 m). In mountain jungle samples the high number of bacteria--10(5)-10(7) CFU/g of sample were represented by 2-5 morphotypes. In highland (4020 m) samples the bacterial counts made from 10(2) to 10(7) CFU/g of sample. The current study describes resistance of isolated strains to high salinity, UV radiation and toxic metal ions. The majority of isolated strains were halotolerant. Isolates from volcanic ash showed high resistance level to UV radiation--LD99,99 made 1000-1440 J/m2; resistance level for isolates from the soil of Puyo Botanical Garden and isolates from rock lichen (Papallacta) LD99,99 made 1160 and 800 J/m2 respectively. Strains isolated from mountain jungle (La Favorita) showed lower UV-resistance. In highland biotopes of Ecuador occurred bacteria resistant to toxic metal ions. The highest resistance to Hg2+ was shown by isolate of lichen from mountain jungle, the maximal growth concentration was 0.025 g/L; to Cr(VI)--by isolate from lichen rock massif--3,0 g/L. Correlation between metal-resistance, halotolerace and UV resistance for studied strains was not detected, probably because of different microbial cell damage/repair mechanisms under the action of these factors. PMID:25639037

  17. Single cell genomics of subsurface microorganisms

    Science.gov (United States)

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  18. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.

    Science.gov (United States)

    Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T

    2005-08-01

    The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.

  19. Study of microorganisms present in deep geologic formations

    International Nuclear Information System (INIS)

    This work has been executed in the scope of the studies on high activity radioactive wastes storage in deep geological environments. The authors make reference to an as complete as possible literature on the existence of microorganisms in those environments or under similar conditions. Then they describe the equipment and methods they have implemented to perform their study of the populations present in three deep-reaching drill-holes in Auriat (France), Mol (Belgique) and Troon (Great Britain). The results of the study exhibit the presence of a certain biological activity, well adapted to that particular life environment. Strains appear to be very varied from the taxonomic point of view and seemingly show an important potential of mineral alteration when provided with an adequate source of energy. Complementary studies, using advanced techniques such as those employed during the work forming the basis of this paper, seem necessary for a more accurate evaluation of long-term risks of perturbation of a deep storage site

  20. Use of indigenous or injected microorganisms for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, M.J.; Knapp, R.M.; Chisholm, J.L.; Bhupathiraju, V.K.; Coates, J.D. [Oklahoma Univ., Norman, OK (United States)

    2000-07-01

    Microbial enhanced oil recovery (MEOR) as an economically attractive alternative to conventional oil recovery methods which rely on thermal or chemical processes. Microbial growth occurs at exponential rates. It is therefore possible to produce large amounts of products quickly from inexpensive and renewable resources. MEOR can be grouped into the following three main categories: (1) well bore clean out process which makes use of hydrocarbon-degrading or scale-removing bacteria to remove deposits from the oil well, (2) well stimulation where an oil well close to its economic limit is treated with a mixture of anaerobic bacteria and a fermentable carbohydrate, and (3) microbially enhanced waterflooding processes which involve the injection of nutrients or microorganisms into the reservoir to stimulate microbial activity. Permeability is a limiting factor in oil production. In this study, laboratory experiments were conducted to show that stimulation of in situ microbial growth by nutrient injection can reduce permeability in sandstone significantly. It was shown that plugging high permeability regions diverts fluid flow to less permeable regions. A field test of this process was conducted at the Southeast Vassar Vertz sandstone reservoir in Oklahoma. The test confirmed that metabolic activity occurred as a consequence of nutrient injection and sulfide production was observed. 18 refs., 1 tab., 1 fig.

  1. Effect on microorganisms of volatile compounds released from germinating seeds.

    Science.gov (United States)

    Schenck, S; Stotzky, G

    1975-10-01

    Volatile compounds evolved from germinating seeds of slash pine, bean, cabbage, corn, cucumber, and pea were evaluated for their ability to support growth of microorganisms in liquid mineral salts media lacking a carbon source. Growth of eight bacteria was measured turbidimetrically and of six fungi as dry weight of mycelium. Volatiles caused increased growth of Pseudomonas fluorescens, Bacillus cereus, Erwinia carotovora, Agrobacterium tumefaciens, A. radiobacter, Rhizobium japonicum, Mucor mucedo, Fusarium oxysporum f. conglutinans, Trichoderma viride, and Penicillium vermiculatum but not of Sarcina lutea, Serratia marcescens, Chaetomium globosum, or Schizophyllum commune. Spores of Trichoderma viride showed higher germination in the presence of volatiles. Effects on growth were apparent only during the first 3 or 4 days after planting the seeds. Killed or dried seeds had no effect. The volatiles did not support microbial growth in the absence of nitrogen nor did they supply growth factors. Passing volatiles through KMnO4 or hydrazone reduced growth of the bacteria, indicating that oxidizable organic compounds, primarily aldehydes, were the active components. The volatiles were not absorbed by sterile soil, clay minerals, or water, but they were absorbed by non-steril soil and activated charcoal.

  2. [Metagenomics as a Tool for the Investigation of Uncultured Microorganisms].

    Science.gov (United States)

    Ravin, N V; Mardanova, A V; Skryabin, K G

    2015-05-01

    Uncultured microorganisms represent a significant part of the Earth's biodiversity. Natural ecosystems contain less than 0.1-1% of the microorganisms that can be cultured in the laboratory. Therefore, new methodological approaches are required for the identification and description of uncultured microorganisms, for studies of their genetic diversity and the structure of microbial associations, and for an understanding of their ecological importance in the biosphere. Metagenomics, a method of analyzing the collective genome.of a microbial community without cultivation, makes it possible to unravel fundamental matters of the microbiology and ecology of microorganisms. Another efficient method of analysis of uncultured forms of microorganisms is "single cell genomics," which involves the isolation of single cells from microbial communities and the sequencing of their genomes. Developed in the last decade, the high throughput technologies of next-generation sequencing provide important input into the investigation of genome reconstruction for all of the microorganisms residing and interacting within ecosystems. This review describes the major methodological approaches used in metagenomic analysis of microbial communities, as well as accomplishments in the search for new uncultured microorganism, the unraveling of their genomes, and an elucidation of their role in ecosystems.

  3. Participation of microorganisms in processes of waste biodegradation

    Directory of Open Access Journals (Sweden)

    V. V. Kolomoets

    2009-11-01

    Full Text Available It is shown, that microorganisms can be used for utilisation of products of waste degradation. The influence of microelements small doses on the ability of secured cultures of soil microorganisms to grow on poor nutrient medium was studied. The cultures simulate the relationship of the end products of waste pyrolysis. The positive influence of MnCl2, K2HPO4, NH4NО3 as well as the complex of microelements on the ability of secured microorganisms to accumulate the biomass and assimilate the substrate is shown. Among two secured and studied germ culturesthe genus of –Bacillus is more promising.

  4. Microorganisms associated particulate matter: a preliminary study.

    Science.gov (United States)

    Alghamdi, Mansour A; Shamy, Magdy; Redal, Maria Ana; Khoder, Mamdouh; Awad, Abdel Hameed; Elserougy, Safaa

    2014-05-01

    This study aims to determine the microbiological quality of particulate matter (PM) in an urban area in Jeddah, Saudi Arabia, during December 2012 to April 2013. This was achieved by the determination of airborne bacteria, fungi, and actinobacteria associated PM10 and PM2.5, as well as their relationships with gaseous pollutants, O3, SO2 and NO2, and meteorological factors (T°C, RH% and Ws). High volume samplers with PM10 and PM2.5 selective sizes, and glass fiber filters were used to collect PM10 and PM2.5, respectively. The filters were suspended in buffer phosphate and aliquots were spread plated onto the surfaces of trypticase soy agar, malt extract agar, and starch casein agar media for counting of bacteria, fungi and actinobacteria-associated PM, respectively. PM10 and PM2.5 concentrations averaged 159.9 μg/m(3) and 60 μg/m(3), respectively, with the ratio of PM2.5/PM10 averaged ~0.4. The concentrations of O3, SO2 and NO2 averaged 35.73 μg/m(3), 38.1μg/m(3) and 52.5 μg/m(3), respectively. Fungi and actinobacteria associated PM were found in lower concentrations than bacteria. The sum of microbial loads was higher in PM10 than PM2.5, however a significant correlation (r=0.57, P ≤ 0.05) was found between the sum of microbial loads associated PM10 and PM2.5. Aspergillus fumigatus and Aspergillus niger were the common fungal types associated PM. Temperature significantly correlated with both PM10 (r=0.44), and PM2.5 (r=0.5). Significant negative correlations were found between O3 and PM2.5 (r=-0.47), and between SO2 with PM10 (r=-0.48). Wind speed positively correlated with airborne microorganisms associated PM. The regression model showed that the inverse PM2.5 concentration (1/PM2.5) was a significant determinant of fungal count associated PM. Chemical processes and environmental factors could affect properties of PM and in turn its biological quality.

  5. Radioactive Fingerprinting of Microorganisms That Oxidize Atmospheric Methane in Different Soils

    OpenAIRE

    Roslev, Peter; Iversen, Niels

    1999-01-01

    Microorganisms that oxidize atmospheric methane in soils were characterized by radioactive labelling with 14CH4 followed by analysis of radiolabelled phospholipid ester-linked fatty acids (14C-PLFAs). The radioactive fingerprinting technique was used to compare active methanotrophs in soil samples from Greenland, Denmark, the United States, and Brazil. The 14C-PLFA fingerprints indicated that closely related methanotrophic bacteria were responsible for the oxidation of atmospheric methane in ...

  6. In vitro degradation of linamarin by microorganisms isolated from cassava wastewater treatment lagoons

    Directory of Open Access Journals (Sweden)

    S. P Vasconcellos

    2009-12-01

    Full Text Available This study aimed at isolating and characterizing of microorganisms able to use linamarin as sole carbon source. Thirty one microbial strains were isolated from manipueira, a liquid effluent of cassava processing factories. Among these strains, Bacillus licheniformis (isolate 2_2 and Rhodotorulla glutinis (isolate L1 were able to degrade 71% and 95% of added linamarin, respectively, within 7 days, showing high biodegradation activity and great potential for detoxification of cassava processing wastewaters.

  7. Deciphering the Role of Phytoalexins in Plant-Microorganism Interactions and Human Health

    Directory of Open Access Journals (Sweden)

    Philippe Jeandet

    2014-11-01

    Full Text Available Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. As such they take part in an intricate defense system which enables plants to control invading microorganisms. In this review we present the key features of this diverse group of molecules, namely their chemical structures, biosynthesis, regulatory mechanisms, biological activities, metabolism and molecular engineering.

  8. Influence of ethereal oils extracted from Lamiaceae family plants on some pathogen microorganisms

    OpenAIRE

    Klaus Anita S.; Beatović Damir V.; Nikšić Miomir P.; Jelačić Slavica Ć.; Nedović Viktor K.; Petrović Tanja S.

    2008-01-01

    As pathogen microorganisms can be found in different kinds of food, using of natural antimicrobial compounds, like ethereal oils, could be important in the preservation of different groceries. To evaluate antimicrobial activity of ethereal oils extracted from Lamiaceae family plants - Rosmarinus officinalis L., Thymus vulgaris L., Majorana hortensis M o e n c h, and Salvia officinalis L screening of their effects against food borne bacteria Staphylococcus aureus, Enterococcus faecalis, Proteu...

  9. SELECTION OF MICROORGANISMS FOR FERMENTATION OF MEAT MATERIALS

    Directory of Open Access Journals (Sweden)

    Danylenko S. G.

    2014-08-01

    Full Text Available Principal criteria for the selection of microorganisms with a wide range of biological and technological properties for fermentation of raw meats are considered. Attention is paid to the main groups of microorganisms such as Micrococсus, Staphylococcus, Lactobacillus, Bifidobacterium and Propionibacterium which are promising for creation of bacterial preparations. To create bacterial preparations, the basic criteria of selection for microorganisms were determined as follows: the ability of microorganisms to be developed within the specific ecological niche (raw meat materials and their influence on flavor characteristics of the final product under the conditions of intensification of production technologies of meat products. Methods used for search and retrieval of technologically promising strains from different natural sources (fresh meats, minced meats, meat, dairy and sour-milk products, vegetables, fruit, brines and mixtures for salting are considered.

  10. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    Science.gov (United States)

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications. PMID:26920850

  11. Evolution, Metabolism and Biotechnological Usage of Methylotrophic Microorganisms

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Methylotrophs – aerobic chemoheterotrophic microorganisms submitted by cocci and bacilli mobile forms, are inhabitants of reservoirs and soils of various type, where there are going on various processes of decomposition of organic substances with formation of the one-carbon С1-compounds and some С2-, and С3-compounds, capable to be assimilated by methylotrophs. These microorganisms assimilating carbon on ribuloso-5-monophospate and serine pathways, are allocated from soil ground, the sewage c...

  12. Microorganisms having enhanced tolerance to inhibitors and stress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  13. Microorganisms -indicators of the level of soil pollution with lead

    OpenAIRE

    Stavreva Veselinovska, Snezana

    2011-01-01

    Environmental pollution with heavy metals present a real threat to wildlife because the metals cannot be naturally decomposed as is the case with organic pollutants, and as such they can survive in the environment while accumulating the heavy metals in different parts. Pollution with metals can affect different organisms in the environment, such as microorganisms, plants and animals, but the degree of toxicity depends on the species. Microorganisms have different mechanisms of coping with...

  14. The microorganisms as a renewable source of ecological clean fuel

    International Nuclear Information System (INIS)

    Five families of microorganisms (Bacillaceae, Rhodospirillaceae, Cyanophyceae, Chlorophyceae and Euglenophyceae) as hydrogen producers were tested and the conditions that are necessary for hydrogen photoproduction were investigated. It was shown, that the most effective producers of hydrogen were Rhodobacter spheroides, Clostridium sp.; Euglena gracilis var. bacillaris and Chlamydomonas reinhardtii. Addition of glucose, iron and vanadium salts resulted in the increase of hydrogen production. Polycultures consisted of two or three microorganisms were more effective hydrogen producers compared to separate monocultures. (authors)

  15. Production of gaba (γ - aminobutyric acid) by microorganisms: a review

    OpenAIRE

    Radhika Dhakal; Bajpai, Vivek K.; Kwang-Hyun Baek

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and als...

  16. Production of gaba (γ - aminobutyric acid) by microorganisms: a review

    OpenAIRE

    Radhika Dhakal; Bajpai, Vivek K.; Kwang-Hyun Baek

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has...

  17. Investigation of heavy metal stress on chemoheterotrophic microorganisms

    OpenAIRE

    Monballiu, Annick; Chiang, Yi Wai; Cardon, Nele; Cornelly, Christel; Meesschaert, Boudewijn

    2013-01-01

    Bioleaching uses microorganisms to extract valuable metals from minerals. It has risen as a sustainable alternative to conventional metal recovery processes for low grade ores and industrial waste materials such as incineration ashes as it could be more economical and environmentally friendly [1-2]. However, inherently to these materials is the presence of the hazardous heavy metals that can become toxic to the bioleaching microorganisms when released from its solid form, and potentially can ...

  18. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  19. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    from moderately barophilic or barotolerant microorganisms. The effect of pressure on cell membrane, protein and gene expression are studied in detail in some of these microorganisms. Cold temperatures and high pressures decrease membrane fluidity... and affect a number of membrane-associated processes including ion and nutrient flux and DNA replication (Bartlett, 1992). A barotolerant strain of Alteromonas isolated from 4033 m in the Izu-Ogasawara Trench, Japan showed an increase in the proportion...

  20. VARIETY OF MICROORGANISMS GROUPS LIVING ON BERRIES OF GRAPES

    Directory of Open Access Journals (Sweden)

    Ageeva N. M.

    2015-09-01

    Full Text Available The wide variety of microorganisms has been identified in many wine-making countries on the berries of grapes. These are yeasts of different families, forms and kinds, bacterium, mold fungi. In the article, we present the results of investigating species composition of microflora of berries of white and red types of grape, which grows in different economies of the Krasnodar region and the republic of Abkhaziya. The sowings onto the elective media were conducted for the development of entire spectrum of yeast. The grown colonies after preliminary microscoping were separated into the cultures and subjected to testing according to the culturalmorphological signs, being guided by determinants and benefits. It was established the specific variety of microflora on the surface of the berries of grapes of all investigated types, without dependence on the place of their growth. Obtained data showed that the group of yeast, which constantly is present in the complex of the epiphytic microorganisms of grapes of Saccharomyces, Pichia, Hansenula, Hanseniaspora was characteristic for all types of grapes in all investigated regions. The heterogeneity of the taxonometric composition of microflora is shown. Prevailed yeasts were of family Saccharomycetaceae, form Saccharomyces vini. A quantity of yeast of Saccharomyces vini decreases in a number of Myskhako-Caucasus-Fanagoriya, that as a whole will be coordinated with the climatic conditions. Only the type of Pinot nuar grapes had yeasts of Brettanomyces Dekkera. On the berries of Cabernets and Karaburnu we have discovered yeasts of Schisosaccharomyces acidodevoratus, causing acid-reduction. On the berries of the grapes, which grew in joint stock company APF “Fanagoriya” we haven’t revealed the presence of lactic acid bacteria Lactobacillus brevis and yeasts of the form of Schisosaccharomyces acidodevoratus. In the same farm the smallest quantity of yeastswreckers is noted, which we the forms of Pichia and

  1. Characteristics of radiocesium concentration by mushrooms and microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Hideo; Terada, Hiroshi [National Institute of Public Health, Tokyo (Japan); Kuwahara, Chikako [Kanagawa Prefectural Public Health Laboratory, Yokohama, Kanagawa (Japan); Shibata, Hisashi [Yamanashi Forestry and Forest Products Research Institute, Masuho, Yamanashi (Japan); Maeda, Yoko [Hitachi Instruments Service Co., Ltd., Tokyo (Japan); Kato, Fumio [School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba (Japan)

    2000-07-01

    The {sup 137}Cs values in cultured edible fruiting bodies of Pleurotus ostreatus (Fr.) Kummer Y-1 (P. ostreatus) were 2-3 orders of magnitude higher than those in the wild mushrooms. The concentration ratio (CR, {sup 137}Cs or Cs concentration in the dried cultured fruiting bodies or mycelia/{sup 137}Cs or Cs concentration in the fresh medium) suggested that {sup 137}Cs in the medium actively migrated into the mushroom. The {sup 137}Cs and stable Cs uptake by the cultured fruiting bodies of P. ostreatus were affected by the presence of K the same as the mycelia. Streptomyces lividans TK24 (S.lividans) and Streptomyces sp. TOHO-2 (Streptomyces sp.), one of the soil microorganisms, grown in the presence of Cs showed high accumulation of Cs in the mycelia. Elementary analysis of P. ostreatus and S. lividans were performed using a scanning electron microscopy-energy dispersive X-ray microanalyzer. The ratio of Cs in the stationary phase to that in the proliferation phase at the mycelial root of P. ostreatus formed in the early stage was about five times that at the mycelial tip. S. lividans and Streptomyces sp. grown on the YM agar plate containing CsCl showed white spots locating at a similar intervals. Concentrations of Cs, P, O and Mg in the white spots were higher than those in other regions. (author)

  2. Characteristics of radiocesium concentration by mushrooms and microorganisms

    International Nuclear Information System (INIS)

    The 137Cs values in cultured edible fruiting bodies of Pleurotus ostreatus (Fr.) Kummer Y-1 (P. ostreatus) were 2-3 orders of magnitude higher than those in the wild mushrooms. The concentration ratio (CR, 137Cs or Cs concentration in the dried cultured fruiting bodies or mycelia/137Cs or Cs concentration in the fresh medium) suggested that 137Cs in the medium actively migrated into the mushroom. The 137Cs and stable Cs uptake by the cultured fruiting bodies of P. ostreatus were affected by the presence of K the same as the mycelia. Streptomyces lividans TK24 (S.lividans) and Streptomyces sp. TOHO-2 (Streptomyces sp.), one of the soil microorganisms, grown in the presence of Cs showed high accumulation of Cs in the mycelia. Elementary analysis of P. ostreatus and S. lividans were performed using a scanning electron microscopy-energy dispersive X-ray microanalyzer. The ratio of Cs in the stationary phase to that in the proliferation phase at the mycelial root of P. ostreatus formed in the early stage was about five times that at the mycelial tip. S. lividans and Streptomyces sp. grown on the YM agar plate containing CsCl showed white spots locating at a similar intervals. Concentrations of Cs, P, O and Mg in the white spots were higher than those in other regions. (author)

  3. Degradation of azo dyes by environmental microorganisms and helminths

    Energy Technology Data Exchange (ETDEWEB)

    Kingthom Chung; Stevens, S.E. Jr. (Memphis State Univ., TN (United States). Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  4. Evolution of plant colonization in acid and alkaline mine tailing ponds after amendments and microorganisms application

    Science.gov (United States)

    Acosta, Jose Alberto; Faz, Ángel; Kabas, Sebla; Zornoza, Raúl; Martínez-Martínez, Silvia

    2014-05-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on plant cover establishment, as a consequence of metal immobilization and the improvement of soil properties. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Identification of plant species and biodiversity was determined on each plot, after 2, 4, 6 and 8 months of amendment addition. The results showed that, in those plots without application of microorganism, 8 months after applications the number of species and individuals of each

  5. Interactions between novel micro-organisms and intestinal flora.

    Science.gov (United States)

    Aureli, P; Franciosa, G

    2002-09-01

    Microbial strains traditionally used to ferment food have a long history of safe use and are, therefore, considered as generally recognised as safe. Many of these micro-organisms have also functional attributes and are included among probiotics. New species and strains of bacteria with desirable technological and functional properties are constantly being identified; in addition, micro-organisms can be engineered by recently developed biotechnological tools in order to accelerate strain improvement. Although the potentialities of novel micro-organisms with better probiotic and technological properties are promising, it cannot be assumed that they share the safety record of traditional micro-organisms, since they may pose unique challenges for human health. The risk assessment and safety evaluation of novel micro-organisms must focus, primarily, on their potential harmful effects, both direct and indirect, upon host resident intestinal microflora. Genetically modified micro-organisms need further assessment for the complete characterisation of the DNA rearrangement and of the final product, in order to establish the "substantial equivalence" with the parental strain. PMID:12408436

  6. Design and Efficiency of a Domestic Sewage Treatment System with Microorganism-membrane on Island Based on Entropy Theory

    Directory of Open Access Journals (Sweden)

    Jinchao Wu

    2013-12-01

    Full Text Available Domestic sewage treatment by water drainage network plus septic tank is not suitable on very small islands because of traffic and urban infrastructure problem. This study deals with a microorganism-membrane domestic sewage treatment system on small islands, which can degrade and clean the domestic sewage locally by effective microorganism and membrane system and makes the emission in market. Eight kinds of commercial complex microorganisms decompose powder were chosen to analysis the activities of protease, lipase, cellulose and amylase. And relating model based on entropy theory was constructed to evaluate the effect of enzyme activity, then the best commercial complex microorganism decompose powder was confirmed. The designed microorganism-membrane wastewater treatment system was applied to treat domestic sewage on a small island. The results showed that the removal rate of organic matters including the five-day Biological Oxygen Demand (BOD5, Chemical Oxygen Demand (COD and ammonia nitrogen (NH3-N reached more than 98%. The removal rate of Total Dissolved Salts (TDS of the outlet water was higher than 99%. This system was especially suitable for small islands domestic wastewater treatment.

  7. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    Science.gov (United States)

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency.

  8. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    Science.gov (United States)

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. PMID:27664750

  9. Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina Resistência a metais pesados em microrganismos isolados de ambientes da mineração do carvão de Santa Catarina

    OpenAIRE

    Marcus Adonai Castro-Silva; André Oliveira de Souza Lima; Ana Valéria Gerchenski; Daniela Batista Jaques; André Luis Rodrigues; Pricila Lima de Souza; Leonardo Rubi Rörig

    2003-01-01

    The coal mining activity is characterized by the generation of large amount of by-products. One of them is pyrite, which tends to acidify the water, solubilizing heavy metals. As a consequence the environment becomes acid and rich in heavy metals, selecting microorganisms able to survive in this condition, which are of great interest as bioremediation agents. This work describes the isolation and characterization of microorganisms from a coal mining area in Santa Catarina. These microorganism...

  10. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey

    Directory of Open Access Journals (Sweden)

    Sulaiman Siti

    2009-09-01

    Full Text Available Abstract Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%. Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75% for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25% against Acinetobacter baumannii compared to manuka honey (12

  11. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism

    Institute of Scientific and Technical Information of China (English)

    Chun LIU; Xia HUANG

    2008-01-01

    Bioaugmentation with genetically engineered microorganisms (GEMs) in a membrane bioreactor (MBR) for enhanced removal of recalcitrant pollutants was explored. An atrazine-degrading genetically engi-neered microorganism (GEM) with green fluorescent pro-tein was inoculated into an MBR and the effects of such a bioaugmentation strategy on atrazine removal were inves-tigated. The results show that atrazine removal was improved greatly in the bioaugmented MBR compared with a control system. After a start-up period of 6 days, average 94.7% of atrazine was removed in bioaugmented MBR when atrazine concentration of influent was 14.5 mg/L. The volu-metric removal rates increased linearly followed by atrazine loading increase and the maximum was 65.5 mg/(L·d). No negative effects were found on COD removal although carbon oxidation activity of bioaugmented sludge was lower than that of common sludge. After inoculation, adsorption to sludge flocs was favorable for GEM sur-vival. The GEM population size initially decreased shortly and then was kept constant at about 104-105 CFU/mL. Predation of micro-organisms played an important role in the decay of the GEM population. GEM leakage from MBR was less than 102 CFU/mL initially and was then undetectable. In contrast, in a conventionally activated sludge bioreactor (CAS), sludge bulking occurred possibly due to atrazine exposure, resulting in bioaugmentation failure and serious GEM leakage. So MBR was superior to CAS in atrazine bioaugmentation treatment using GEM.

  12. Use of MTT assay for determination of the biofilm formation capacity of microorganisms in metalworking fluids.

    Science.gov (United States)

    Trafny, Elżbieta Anna; Lewandowski, Rafał; Zawistowska-Marciniak, Irena; Stępińska, Małgorzata

    2013-09-01

    Biofilm formation is a well-known problem in management of metalworking fluid systems. Due to persistence of microorganisms within biofilms, the reappearance of various species of bacteria, including nontuberculous mycobacteria is often observed after the use of biocides and/or cleaning of delivery systems and replacement of cooling fluid. The aim of this study was to determine the usefulness of the tetrazolium salt assay (MTT assay) for assessing the viability of bacteria in biofilms formed in vitro in fresh and used cutting oils, as well as their susceptibility to antimicrobial biocides. Biofilms were established in the microtiter plate format. The results showed that quantification of formazan, a product of the tetrazolium salt reduction by electron transport system could be used for determination of the propensity of bacteria to form biofilms in these complex media. The use of the assay allows also determination of antimicrobial activity of biocides against biofilms in fresh and used metalworking fluids. Biofilms produced by Gram-negative isolates recovered from field metalworking fluids as well as the wild bacterial communities differed in metabolic activity depending on the type of fresh coolants. The MTT assay has high-throughput potential and can be efficiently used for determination of biofilm-forming capacity of microorganisms from individual machines in metalworking industry. The use of the assay may also guide the selection of the most appropriate biocide to fight these microorganisms. PMID:23515965

  13. North Western Spain hot springs are a source of lipolytic enzyme-producing thermophilic microorganisms.

    Science.gov (United States)

    Deive, Francisco J; Alvarez, María S; Sanromán, M Angeles; Longo, Maria A

    2013-02-01

    Several hot springs in Galicia (North Western Spain) have been investigated as potential sources of lipolytic enzyme-producing thermophilic microorganisms. After isolating 12 esterase producing strains, 9 of them were assured to be true lipase producers, and consequently grown in submerged cultures, obtaining high extracellular activities by two of them. Furthermore, a preliminary partial characterization of the crude lipase, obtained by ultrafiltration of the cell-free culture supernatant, was carried out at several pH and temperature values. It is outstanding that several enzymes turned out to be multiextremozymes, since they had their optimum temperature and pH at typical values from thermoalkalophiles. The thermal stability in aqueous solution of the crude enzymes was also assayed, and the influence of some potential enzyme stabilizing compounds was tested. Finally, the viability of the selected microorganisms has been demonstrated at bioreactor scale.

  14. Effect of anaerobiosis on indigenous microorganisms in blackwater with fish offal as co-substrate

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Heiske, Stefan; Jensen, Pernille Erland;

    2014-01-01

    . Addition of fish offal had no effect on survival of coliphages. The results of the recovery study indicated that a fraction of the E. coli in the aerobic blackwater sample and of the faecal streptococci in both the anaerobic and aerobic samples containing blackwater and Greenlandic Halibut were injured......The aim of this study was to compare the effect of mesophilic anaerobic digestion with aerobic storage on the survival of selected indigenous microorganisms and microbial groups in blackwater, including the effect of addition of Greenlandic Halibut and shrimp offal. The methane yield...... of the different substrate mixtures was determined in batch experiments to study possible correlation between methanogenic activity in the anaerobic digesters and reduction of indigenous microorganisms in the blackwater. By the end of the experiments a recovery study was conducted to determine possible injury...

  15. Influence of ethereal oils extracted from Lamiaceae family plants on some pathogen microorganisms

    Directory of Open Access Journals (Sweden)

    Klaus Anita S.

    2008-01-01

    Full Text Available As pathogen microorganisms can be found in different kinds of food, using of natural antimicrobial compounds, like ethereal oils, could be important in the preservation of different groceries. To evaluate antimicrobial activity of ethereal oils extracted from Lamiaceae family plants - Rosmarinus officinalis L., Thymus vulgaris L., Majorana hortensis M o e n c h, and Salvia officinalis L screening of their effects against food borne bacteria Staphylococcus aureus, Enterococcus faecalis, Proteus mirabilis, Salmonella enteritidis, Pseudomonas aeruginosa, Bacillus cereus, Bacillus subtilis, Escherichia coli, Escherichia coli O157:H7, Listeria monocytogenes and yeasts Candida albicans and Saccharomyces cerevisiae were applied. All investigated concentrations and pure Majorana hortensis and Thymus vulgaris ethereal oils showed microbicidal effect on majority of tested microorganisms.

  16. Microorganisms isolated from subsurface environments and their importance for astrobiology and theoretical biology

    Directory of Open Access Journals (Sweden)

    Sergiu Fendrihan

    2010-07-01

    Full Text Available Objective: the article is a review of the very controversial microbial life in subsurfaceenvironments like caves, rocks, mines, deep subsurface water and springs, in very special extremeenvironments. Material and Methods: the methods of isolation of the bacteria and archaea fromsubsurface environments are discussed too and analysed. Results: the results of years of investigationsshowed the possiblilities of adaptation to extreme environments and survival on very long periods oftimes, even geological eras, of some microorganisms. The inner biochemical, physical, biological andenergetic mechanisms are still not elucidated, even some features were discovered. Conclusion: anextensive and intensive work of cooperation in this field of activity is required to discover themechanisms of long term survival in extreme conditions of the subsurface microorganisms.

  17. Seeking of "missed" microorganisms%追寻被“遗漏”的微生物

    Institute of Scientific and Technical Information of China (English)

    全哲学

    2013-01-01

    The knowledge of microorganisms in ecological environments is already reached to the level of metabolic process study of microbial community with omics methods from the isolation dependent study. However, the normally used microbial community analysis method which is based on PCR amplification with "universal" primers would cause the "miss" of various microorganisms. Therefore, we need to seek some methods to find the "missed" microorganisms. Although there are critical limitations in cultivation of microorganisms, the modification of cultivation method to isolate novel types of microorganisms or enrich special functional microorganisms is still a useful method to increase the boundary of our knowledge. Based on the metagenome databases, we can analyze the coverage of "universal" primers and can also analyze the global patterns of different functional microorganisms. Because of high content of ribosomal RNA, modified metatranscriptome analysis will become a useful method for the simultaneous determination of active bacteria, archaea and microeukaryotes. Seeking "missed" microorganisms is an important research field to extend our knowledge about microorganisms and correctly understand different earth element cycles.%人类对生态环境中微生物的认识从依赖于纯培养微生物的研究阶段已进入到结合各种组学方法的微生物群落代谢机制的研究阶段.在微生物群落组成的研究中,基于“通用”引物的PCR扩增方法会“遗漏”很多种类微生物,因此需要探索一些方法,以找回这些被“遗漏”的微生物.目前生态环境中能培养的微生物种类较为有限,但是通过培养方法的改进,分离培养新的微生物或富集培养特殊功能的微生物依然是扩展微生物种类认知范围的重要途径.而且,通过元基因组数据库分析,可以了解常用的“通用”引物所不能覆盖的微生物范围,并能阐明不同生态环境中各种微生物类型的分布情况.

  18. Shotgun Isotope Array for Rapid, Substrate-Specific Detection of Microorganisms in a Microbial Community ▿ †

    OpenAIRE

    Tobino, Tomohiro; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2011-01-01

    The shotgun isotope array method has been proposed to be an effective new tool for use in substrate-specific microbe exploration without any prior knowledge of the community composition. Proof of concept was demonstrated by detection of acetate-degrading microorganisms in activated sludge and further verified by independent stable isotope probing (SIP).

  19. Isolation and evaluation of microorganisms for MEOR process; Yuyo biseibutsu no tansaku to hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M.; Asaumi, H.; Yonebayashi, E. [Japan National Oil Corp., Tokyo (Japan)

    1998-10-30

    JNOC has been carrying out isolation of microorganisms for MEOR since 1988. This process strongly depends on abilities of microorganisms. To increase temperature criterion for MEOR, a survey of thermophilic microorganisms has been carried out. As a result, five microorganisms which can survive at 80-85 degree C and produce gas and/or show emulsification were isolated. (author)

  20. 40 CFR 725.12 - Identification of microorganisms for Inventory and other listing purposes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Identification of microorganisms for... MICROORGANISMS General Provisions and Applicability § 725.12 Identification of microorganisms for Inventory and...) Taxonomic designation. The taxonomic designation of a microorganism must be provided for the donor...

  1. Investigation of ginkgo biloba leave extracts as corrosion and Oil field microorganism inhibitors.

    Science.gov (United States)

    Chen, Gang; Zhang, Min; Zhao, Jingrui; Zhou, Rui; Meng, Zuchao; Zhang, Jie

    2013-05-07

    Ginkgo biloba (Ginkgoaceae), originating from China, now distributes all over the world. Wide application of Ginkgo biloba extracts is determined by the main active substances, flavonoids and terpenoids, which indicates its extracts suitable to be used as an effective corrosion inhibitor. The extracts of Ginkgo biloba leave have been investigated on the corrosion inhibition of Q235A steel with weight loss and potentiodynamic polarisation techniques. The inhibition efficiency of the extracts varies with extract concentration. The extracts inhibit corrosion mainly by adsorption mechanism. Potentiodynamic polarisation studies show that extracts are mixed type inhibitors. The antibacterial activity of the extracts against oil field microorganism (SRB, IB and TGB) was also investigated.

  2. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea RID A-8182-2008

    DEFF Research Database (Denmark)

    Leloup, Julie; Loy, Alexander; Knab, Nina J.;

    2007-01-01

    to understand how these microorganisms are distributed relative to the chemical zonation: in the upper sulfate zone, at the sulfate-methane transition zone, and deeply within the methane zone. Total bacteria were quantified by real-time PCR of 16S rRNA genes whereas sulfate-reducing microorganisms (SRM) were...... SRM were also abundant in sulfate-poor, methanogenic areas of the Black Sea sediment, their activities and possibly very versatile metabolic capabilities remain subject of further study....

  3. [Soil Microorganism Characteristics and Soil Nutrients of Different Wetlands in Sanjinag Plain, Northeast China].

    Science.gov (United States)

    Xiao, Ye; Huang, Zhi-gang; Wu, Hai-tao; Lü, Xian-guo

    2015-05-01

    Four typical wetland types (i.e. wetlands with the following dominant plant species: Calamagrostis angustifolia + Salix brachypoda, Calamagrostis angustifolia, Carex lasiocarpa and Phragmites australis) of the Honghe reserve in Sanjiang Plain were studied to investigate the distribution of soil microorganism quantity and enzyme activity and their relationships with soil nutrients. The results showed that in 0-30 cm soil layer of these four wetlands: (1) Contents of soil total organic carbon, total nitrogen and total phosphorus decreased with the increase of soil depth, while available nitrogen, phosphorus and potassium did not exhibit regularly changes. Moreover, there were significantly different for soil nutrient contents among different wetland types (P actinomycetes > fungi, furthermore, the number of three microbial colonies all decreased with the increase of soil depth. Total soil microbial number of C. angustifolia wetland was the highest and that of C. lasiocarpa wetland was the lowest. (3) Soil invertase and cellulase activities decreased with soil depth, while soil catalase activity showed no consistent changes. Three kinds of enzyme activities in C. angustifolia + S. brachypoda and C. angustifolia wetlands were significantly higher than those of C. lasiocarpa and P. australis wetlands (P activity had a significant correlation with indicators of soil nutrients. But there was no correlation between actinomyces, invertase and available potassium, as well as between catalase and available potassium, available phosphorus. Overall, soil microorganism and enzyme activities are important indicators for reflecting the status of soil nutrients. PMID:26314138

  4. Studies on soil microorganism quantities and soil enzyme activities in the garlic-cotton and wheat-cotton intercropping systems%蒜棉、麦棉套作对土壤微生物数量及相关酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    赵庆龙; 宋宪亮; 孙学振; 张美玲; 李宗秦

    2011-01-01

    在大田生产条件下,以棉花单作为对照,设置蒜棉套作、麦棉套作处理,研究蒜棉套作与麦棉套作对棉田土壤微生物数量及酶活性的影响,以揭示蒜棉、麦棉套作棉田棉花高产原因。结果显示:与单作棉田相比,蒜棉套作与麦棉套作均有利于棉田土壤中细菌、放线菌的增殖,并抑制真菌的增殖,其中蒜棉套作效果更显著;蒜棉套作0—20cm土层脲酶活性和蔗糖酶活性在整个生育期显著高于棉田单作,碱性磷酸酶活性除花铃期外也均显著高于单作,过氧化氢酶在苗期与吐絮期显著高于单作;麦棉套作0—20 cm土层脲酶活性和蔗糖酶活性亦在苗期、花铃期显著高于单作,碱性磷酸酶活性在蕾期显著高于单作,过氧化氢酶活性在苗期与吐絮期显著高于单作。结论:蒜棉套作与麦棉套作能提高棉田土壤微生物中细菌和放线菌的数量,有效抑制棉田连作障碍的发生。蒜棉套作与麦棉套作能提高棉田土壤相关酶活性,对棉田健康土壤的培育有积极意义。%The soil microorganism quantities and enzyme activities were studied in fields under the wheat-cotton intercropping and garlic-cotton intercropping systems.The results show that compared with the cotton monoculture,both garlic-cotton and wheat-cotton intercropping are conductive to the proliferation of soil bacteria and actinomycetes and inhibit the proliferation of fungi,and the effects of the garlic-cotton intercropping system are more pronounced than those of the wheat-cotton intercropping system.The soil urease activity and sucrase activity in 0-20 cm soil layer in the whole growth period of the garlic-cotton intercropping system are significantly higher than those of the cotton monoculture,and the alkaline phosphatase activity of the garlic-cotton intercropping system is significantly higher than that of the cotton monoculture except the flowering and blooming stage of cotton.The catalase

  5. Opportunistic microorganisms in individuals with lesions of denture stomatitis.

    Science.gov (United States)

    Pereira, Cristiane Aparecida; Toledo, Bruna Costa; Santos, Camila Teles; Pereira Costa, Anna Carolina Borges; Back-Brito, Graziella Nuernberg; Kaminagakura, Estela; Jorge, Antonio Olavo Cardoso

    2013-08-01

    The aim of this study was to isolate, quantify, identify, and compare opportunistic microorganisms (Candida and Staphylococcus genera and Enterobacteriaceae/Pseudomonadaceae families) from prosthesis-fitting surfaces, the hard palate, and mouth rinses of individuals wearing removable maxillary prosthesis with (50) and without (50) lesions of denture stomatitis (DS). The strains were collected and identified using phenotypic, biochemical and molecular tests. The counts of microorganisms were significantly higher in the group of individuals with DS (P < 0.05). C. albicans was the most frequently isolated yeast species in both groups, following by C. tropicalis and C. glabrata. Six isolates were identified as C. dubliniensis. S. aureus and S. epidermidis were the most frequent Staphylococcus species in both groups. Klebsiella pneumoniae was the predominant species in both groups. The association between Candida spp. and bacteria isolated in this study with DS suggests that these microorganisms may play important roles in the establishment and persistence of this disease.

  6. Optical Biosensors for the Detection of Pathogenic Microorganisms.

    Science.gov (United States)

    Yoo, Seung Min; Lee, Sang Yup

    2016-01-01

    Pathogenic microorganisms are causative agents of various infectious diseases that are becoming increasingly serious worldwide. For the successful treatment of pathogenic infection, the rapid and accurate detection of multiple pathogenic microorganisms is of great importance in all areas related to health and safety. Among various sensor systems, optical biosensors allow easy-to-use, rapid, portable, multiplexed, and cost-effective diagnosis. Here, we review current trends and advances in pathogen-diagnostic optical biosensors. The technological and methodological approaches underlying diverse optical-sensing platforms and methods for detecting pathogenic microorganisms are reviewed, together with the strengths and drawbacks of each technique. Finally, challenges in developing efficient optical biosensor systems and future perspectives are discussed. PMID:26506111

  7. Inactivation of microorganisms with microwaves at reduced temperatures.

    Science.gov (United States)

    Kozempel, M F; Annous, B A; Cook, R D; Scullen, O J; Whiting, R C

    1998-05-01

    We developed a pilot-plant nonthermal flow process using microwave energy to inactivate microorganisms. The process consists of multiple passes through the microwave generator. Each passed material goes to a receiving tank for subsequent passes. The flow rate was 0.96 to 1.26 kg/min and the dwell time per pass was 1.1 to 1.5 min. Five passes were used. The microwave energy is instantaneously and simultaneously applied to the system, and thermal energy is removed by a cooling tube within the process line in the microwave generator. The cooling tube maintains the temperature below 40 degrees C. There was significant reduction in microorganisms in water, 10% glucose solution, and apple juice, and in yeast in beer. There was a slight decrease in microorganisms in tomato juice, pineapple juice, apple cider, and beer; and no effect in skim milk. PMID:9709231

  8. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  9. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    Science.gov (United States)

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. PMID:27395079

  10. Macromolecular networks and intelligence in microorganisms

    Science.gov (United States)

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  11. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  12. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment. PMID:26857464

  13. Fermentation of various sugars and sugar substitutes by oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Boonyanit Thaweboon; Sroisiri Thaweboon; Doan Minh Tri

    2011-01-01

    Objective: To examine acid production of caries-associated strains of oral microorganisms and salivary microorganisms from sugar and sugar substitutes. Methods:Standard and clinical strains of Streptococcus mutans (S. mutans), Lactobacillus casei (L. casei) and Candida albicans were incubated in peptone-yeast-extract media containing 1% test sugar (sucrose, glucose, fructose) or sugar substitutes (xylitol, sorbitol, trehalulose and palatinose) at 37 ℃in 5% CO2 for 24-48 h. The pH of each culture was measured and microbial growth was determined as optical density at 660 nm. Paraffin-stimulated saliva collected from high caries-risk persons were added to media containing 10%test sugar or sugar substitutes. The pH of medium was measured at each time interval from 0-90 minutes. Results:All types of sugar and trehalulose could be fermented by all test microorganisms in pH lower than 5.5 except sucrose by standard strain of L. casei. All sugar and sugar substitutes supported growth of all organisms except xylitol for S. mutans. In the fermentation assay by salivary microorganisms, all sugar could be utilized and produced pH< 5.5 within 10 minutes of incubation and the pH drop was prolonged to until 90 minutes. Conversely, xylitol and palatinose were not fermented by microorganisms in saliva. Conclusions:All test microorganisms could ferment sucrose, glucose, fructose and trehalulose to pH lower than 5.5. Sugar alcohols and palatinose were not utilized well by organisms and may be used as sugar substitutes to reduce dental caries incidence. However, further studies particularly clinical investigations are required to evaluate the cariogenicity of these sugar substitutes.

  14. STABILITY IN REAL TIME OF SOME CRYOPRESERVED MICROBIAL STRAINS WITH REFERENCE TO GENETICALLY MODIFIED MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    DANIELA VINTILĂ

    2013-12-01

    Full Text Available The aim of this work is to analyze the viability of microorganisms from Collection of Industrial Microorganisms from Faculty of Animal Science and Biotechnology – Timisoara, during freezing and thawing as part of cryopreservation technique. The stability in real time of 19 strains cryopreserved in 16% glycerol was evaluated during a 6-months period. The strains studied were: Escherichia coli, Lactobacillus acidophilus, Rhizobium meliloti, Saccharomyces cerevisiae, Aspergillus oryzae, Aspergillus niger, Trichoderma viride, Bacillus globigii, Bacillus licheniformis, and 9 strains of Bacillus subtilis. The strains cryopreserved at -20oC and -70oC were activated using the fast thawing protocol. A better cell recovery was achieved with the -70oC protocol reaching an average viability for E. coli of 86,3%, comparing with 78,6% in -20oC protocol. The cell recovery percentages for the other strains were: 92,4% for L. acidophilus, 93,9% for A.niger, 89% for A. oryzae, 86,7% for T. viride, 94,2% for R. meliloti, 82,1% for S. cerevisiae, 89,9% for B. licheniformis. Regarding the viability of genetically modified microorganisms, the values shows a good recovering after freezing and thawing, even after 180 days of cryopreservation. With the -20oC protocol lower viability was observed due probably to the formation of eutectic mixtures and recrystalization processes.

  15. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    Science.gov (United States)

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  16. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview

    Science.gov (United States)

    Fernández, María; Hudson, John Andrew; de los Reyes-Gavilán, Clara G.

    2015-01-01

    Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health. PMID:25839033

  17. Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes.

    Science.gov (United States)

    Herrero, Mónica; Quirós, Covadonga; García, Luis A; Díaz, Mario

    2006-10-01

    The flow cytometry (FC) technique used with certain fluorescent dyes (ChemChrome V6 [CV6], DRAQ5, and PI) has proven useful to label and to detect different physiological states of yeast and malolactic bacterium starters conducting cider fermentation over time (by performing sequential inoculation of microorganisms). First, the technique was tested with pure cultures of both types of microorganisms grown in synthetic media under different induced stress conditions. Metabolically active cells detected by FC and by the standard plate-counting method for both types of microorganisms in fresh overnight pure cultures gave good correlations between the two techniques in samples taken at this stage. Otherwise, combining the results obtained by FC and plating during alcoholic and malolactic fermentation over time in the cider-making process, different subpopulations were detected, showing significant differences between the methods. A small number of studies have applied the FC technique to analyze fermentation processes and mixed cultures over time. The results were used to postulate equations explaining the different physiological states in cell populations taken from fresh, pure overnight cultures under nonstress conditions or cells subjected to stress conditions over time, either under a pure-culture fermentation process (in this work, corresponding to alcoholic fermentation) or under mixed-fermentation conditions (for the malolactic-fermentation phase), that could be useful to improve the control of the processes. PMID:17021224

  18. OPTICAL AND DIELECTRIC SENSORS BASED ON ANTIMICROBIAL PEPTIDES FOR MICROORGANISMS DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Rafael Ramos Silva

    2014-08-01

    Full Text Available Antimicrobial peptides (AMPs are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.

  19. Culture-Dependent and -Independent Methods to Investigate the Predominant Microorganisms Associated with Wet Processed Coffee.

    Science.gov (United States)

    Feng, Xiaomin; Dong, Honghong; Yang, Pan; Yang, Ruijuan; Lu, Jun; Lv, Jie; Sheng, Jun

    2016-08-01

    The fermentation process of Yunnan arabica coffee is a typical wet fermentation. Its excellent quality is closely related to microbes in the process of fermentation. The purpose of this study was to isolate and identify the microorganisms in the wet method of coffee processing in Yunnan Province, China. Microbial community structure and dominant bacterial species were evaluated by traditional cultivated separation method and PCR-DGGE technology, and were further analyzed in combination with the changes of organic acid content, activity of pectinase, and physical parameters (pH and temperature). A large number of microorganisms which can produce pectinase were found. Among them, Enterobacter cowanii, Pantoea agglomerans, Enterobacteriaceae bacterium, and Rahnella aquatilis were the predominant gram-negative bacteria, Bacillus cereus was the predominant gram-positive bacterium, Pichia kluyveri, Hanseniaspora uvarum, and Pichia fermentans were the predominant yeasts, and all those are pectinase-producing microorganisms. As for the contents of organic acids, oxalic was the highest, followed by acetic and lactic acids. Butyrate and propionate, which were unfavorable during the fermentation period, were barely discovered. PMID:27113591

  20. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.)

  1. Gut Microorganisms Found Necessary for Successful Cancer Therapy | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer Humans play host to trillions of microorganisms that help our bodies perform basic functions, like digestion, growth, and fighting disease. In fact, bacterial cells outnumber the human cells in our bodies by 10 to 1.1 The tens of trillions of microorganisms thriving in our intestines are known as gut microbiota, and those that are not harmful to us are referred to as commensal microbiota. In a recent paper in Science, NCI scientists described their discovery that, in mice, the presence of commensal microbiota is needed for successful response to cancer therapy.

  2. Stringy and membranic theory of swimming of micro-organisms

    CERN Document Server

    Kawamura, M; Kawamura, Masako; Sugamoto, Akio

    1996-01-01

    When the swimming of micro-organisms is viewed from the string and membrane theories coupled to the velocity field of the fluid, a number of interesting results are derived; 1) importance of the area (or volume) preserving algebra, 2) usefulness of the N-point Reggeon (membranic) amplitudes, and of the gas to liquid transition in case of the red tide issues, 3) close relation between the red tide issue and the generation of Einstein gravity, and 4) possible understanding of the three different swimming ways of micro-organisms from the singularity structure of the shape space.

  3. Conceptualizing "suicidal genetically engineered microorganisms" for bioremediation applications.

    Science.gov (United States)

    Pandey, Gunjan; Paul, Debarati; Jain, Rakesh K

    2005-02-18

    Use of genetically modified microorganisms (GEMs) for pollution abatement has been limited because of risks associated with their release in the environment. Recent developments in the area of recombinant DNA technologies have paved the way for conceptualizing "suicidal genetically engineered microorganisms" (S-GEMS) to minimize such anticipated hazards and to achieve efficient and safer bioremediation of contaminated sites. Our strategy of designing a novel S-GEM is based on the knowledge of killer-anti-killer gene(s) that would be susceptible to programmed cell death after detoxification of any given contaminated site(s). PMID:15649393

  4. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Andrade Carolina M.M.C.

    1999-01-01

    Full Text Available Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.

  5. Screening the importance of soil micro-organisms on radionuclides mobility

    Energy Technology Data Exchange (ETDEWEB)

    Roussel-Debet, S. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France); Deneux-Mustin, S. [Nancy-1 Univ. Henri Poincare, LIMOS Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les sols, UMR7137 CNRS, 54 - Vandoeuvre-les-Nancy (France)

    2004-07-01

    In surface soils, the native physical and chemical properties of the abiotic components mostly control the sorption-desorption processes but micro-organisms can significantly modify the speciation of trace elements and/or radionuclides and subsequently determine to a large extent their fate. Microorganisms, mainly bacteria and fungi, develop many strategies affecting indirectly or directly the behaviour of trace elements. Due to their activity, changes in the pore-water composition: pH, redox potential, may occur in relation with organic acid production or solid phase alteration, reduction or oxidation of metallic oxi-hydroxides, organo-metallic complexes mineralization... Micro-organisms may also directly vary the speciation of radionuclides as a result of bio-accumulation in living cells, bio-sorption on cellular components, direct reduction or oxidation, bio-methylation... Each of these microbial processes may either increase or decrease radionuclide mobility, depending on the element, the soil reactivity and the environmental conditions. The resulting effect of the involved processes remains still poorly known. This literature review is intended to give a comprehensive overview of the role of micro-organisms on radionuclide mobility. It aims at classifying these elements regarding to their potential aptitude to be sensitive to these microbial processes. It summarizes the theoretical effect of these mechanisms, resulting in a potential increase or decrease of the the solid-liquid distribution. The environmental significance and full impact of such processes on a range of biogeochemical cycles still remain to be confirmed by subsequent experiments on the most sensitive radionuclides. (This study is part of a research program supported by ANDRA). (author)

  6. Isolation of marine microorganisms from the Peniche coast with high biotechnological potential

    Directory of Open Access Journals (Sweden)

    Clélia Neves Afonso

    2014-06-01

    Full Text Available The marine environment represents more than two thirds of our planet and although it is a possible source of natural products with bioactivity, is still largely unexplored, which represents a huge window of opportunity. During the last decades Marine Biotechnology has focused some of their efforts in the search and study of marine bacteria and fungi. These microorganisms have been a valuable tool in several scientific studies, basically because they grow with relative ease, achieving considerable densities of cell mass. This is an important feature because these organisms also produce bioactive compounds, with applications in the pharmaceutical, cosmetic and food area, among others. Such compounds frequently arise from defense mechanisms or as response to stress. Annually, a growing number of new compounds from marine organisms are discovered, characterized and identified, and from these most are originated from bacteria and fungi. In the search process for natural products with proven activity, it is generally accepted that one should have a diverse and largely unexplored repertoire of microorganisms, as it enlarges the possibility of obtaining new and diverse metabolites. In the present work, results concerning the isolation of microorganisms of marine origin, obtained from the water and sediments of the Peniche coast, are shown. The main objective is to create a database of isolated microorganisms, and at the same time obtaining a basic characterization, with some interesting features from the biotechnology point of view, on viability of long-term of their cultures, as well as prepare raw extracts for bioactivity screening. Also basic microbiology characteristics will be register: gram stain, catalase, oxidase, use of different sugars and amino acids as a carbon source and on different concentrations growths of salinity, relatively to 20 strains already isolated.

  7. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    Science.gov (United States)

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  8. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils.

    Science.gov (United States)

    Pajares, Silvia; Bohannan, Brendan J M

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  9. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    Science.gov (United States)

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  10. Microbial solar cells: applying photosynthetic and electrochemically active organisms

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to gener

  11. Microorganisms applying for artificial soil regeneration technology in space greenhouses

    Science.gov (United States)

    Krivobok, A. S.

    2012-04-01

    The space greenhouse and technology for growing plants are being designed in frame of bio-technical life support systems development. During long-term space missions such greenhouse could provide the crew with vitamins and rough plant fiber. One of the important elements of the plant cultivation technology in the absence of earth gravity is organization and support the optimum root area. The capillary-porous substrate composed of anionites (FIBAN -1) and cationites (FIBAN -22-1) synthetic salt-saturated fibers is developed for plant cultivation in space and named "BIONA-V3". The BIONA main features are high productivity and usability. But the pointed features are not constant: the substrate productivity will be decreasing gradually from vegetation to vegetation course of plant residues and root secretions accumulation. Also, the basic hydro-physical characteristic of root zone will be shifted. Furthermore, saprotrophic microflora will develop and lead to increasing the level of microbial contamination of whole inhabit isolated module. Due to these changes the substrate useful life is limited and store mass is increased in long-term missions. For overhaul-period renewal it' necessary to remove the roots residues and other organic accumulation providing safety of the substrate capillary-porous structure. The basic components of 24-days old plant roots (Brassica chinensis, L) are cellulose (35 %) hemicellulose (11 %) and lignin (10 %). We see that one of the possible ways for roots residues removal from fibrous BIONA is microorganisms applying with strong cellulolytic and ligninolytic activities. The fungi Trichoderma sp., cellulolytic bacteria associations, and some genus of anaerobic thermophilic cellulolitic bacteria have been used for roots residues biodegradation. In case of applying cellulolytic fungi Trichoderma sp. considerable decrease of microcrystalline cellulose has been noted in both liquid and solid state fermentation. Cellulolytic fungi weight has been

  12. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  13. Radiation for crude drugs contaminated with microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Satake, Motoyoshi; Sekita, Setsuko; Kamakura, Hiroyuki [National Inst. of Health Sciences, Tokyo (Japan)

    1997-02-01

    Recently, it became urgent to develop an effective method for repressing the microbials in a crude drug and its preparation. In some countries in Asia and Western countries, radiosterilization for natural drugs has been approved and the dose was within a range. 10-30 kGy. This study aimed to investigate the efficacy and the safety of such radiosterilization for crude drugs. Concerning bacterial contamination in the original materials for crude drugs, the proportion rates of materials containing less than 10{sup 3}, 10{sup 3}-10{sup 4} and more than 10{sup 5} cells were 54, 27 and 19%, respectively. Since the previous study revealed that those microbials were almost diminished by exposure to 10 kGy, various crude drugs were exposed to 5 kGy and the amounts of remaining microbials were determined. The number of microbials remained after radiation at 5 kGy was 1 x 10{sup 3} for plantago seed, rhubarb and cyperus rhizome and less than 10{sup 2} for other samples tested. The effects of radiation on the respective active ingredients of each crude drug underwent using HPLC. (M.N.)

  14. Search for and characterization of microorganisms in deep geological compartments

    International Nuclear Information System (INIS)

    Over the past 50 years, the scientific community has shown a growing interest for deep geological compartments. However, these ecosystems remain largely unknown due to their inaccessibility. The aim of the present thesis was double; the first aim was to characterize, from a microbiological perspective, four terrestrial Triassic sedimentary formations located between 1700 and 2000 m depth in the Parisian Basin and collected by the ANDRA during a deep drilling campaign in 2008, and the second aim was to study the combined effects of temperature, pressure and salinity on the metabolic activity of anaerobic prokaryotes in order to predict their reaction to geological burial. Incubations in a large variety of media were carried out in order to stimulate the growth of the main trophic types found in such environments such as methanogens, fermenters and bacteria reducing sulphur compounds, however, no viable and cultivable microorganisms could be isolated. In parallel, a molecular approach was used to i) compare the efficacy of several DNA extractions methods and ii) analyse the bacterial diversity, using DGGE (Denaturing Gel Gradient Electrophoresis) and cloning, present in rock inner cores conserved either at atmospheric pressure or under pressure, in their initial states and following incubations in various media. The genetic exploration of these samples revealed a very low biomass and a poor diversity composed mainly of aerobic and mesophilic members of the Bacteria domain, a priori unadapted to such a deep, hot, saline and anoxic environment. This unexpected microbial community also found in many subsurface ecosystems as well as in extreme ecosystems could have partially originated from a paleo-recharge of the Trias aquifer with cold waters coming from the melting of ice formed during the last Pleistocene glaciation. The second objective was to study the combined effects of temperature (40, 55 and 70 C), pressure (1, 90 and 180 bars) and salinity (13, 50, 110, 180

  15. Sugarcane residue decomposition by white and brown rot microorganisms

    Science.gov (United States)

    Harvesting sugarcane with chopper harvesters results in up to 10 tons of field crop residue per acre. Residue management by soil microorganism decomposition offers numerous ecological and economical benefits to growers; however, this natural process is dependent on the biotic density, diversity and...

  16. Measuring airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread

  17. The metabolism and biotechnological application of betaine in microorganism.

    Science.gov (United States)

    Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xian, Mo; Song, Yimin; Liu, Junhong

    2016-05-01

    Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology. PMID:27005411

  18. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...

  19. Causes and implications of colloid and microorganism retention hysteresis

    Science.gov (United States)

    Experiments were designed to better understand the causes and implications of colloid and microorganism retention hysteresis with transients in solution ionic strength (IS). Saturated packed column experiments were conducted using two sizes of carboxyl modified latex (CML) microspheres (0.1 and 1.1...

  20. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were ide

  1. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    Science.gov (United States)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  2. 21 CFR 866.2660 - Microorganism differentiation and identification device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microorganism differentiation and identification device. 866.2660 Section 866.2660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology...

  3. Nitrification in acid soils: micro-organisms and mechanisms

    NARCIS (Netherlands)

    De Boer, W.; Kowalchuk, G.A.

    2001-01-01

    Nitrification in acid soils was first reported in the beginning of the 20th century. Although this finding has been well substantiated by countless studies since then, it has until recently remained unclear which micro-organisms were responsible for nitrate production at low pH. Substantial evidence

  4. Microorganisms in metalworking fluids: current issues in research and management.

    Science.gov (United States)

    Trafny, Elżbieta A

    2013-03-01

    The microbial contamination of water miscible metalworking fluids (MWFs) is a serious problem in metal industry. A good maintenance of MWF re-circulation systems can extend the lifetime of coolants and ensure the quality of the tools produced. In MWFs, as in the other water-based environments, microorganisms usually live in the form of biofilms, the communities of bacteria and fungi attached to the surface of sumps, metal parts and also to each other. Biofilms exhibit very high resistance to biocides. The effect of biocides that are used as additives to MWFs to control the growth of the bacterial and fungal microbiomes (microorganisms characteristic to the individual coolant system) have become the subject of research only in recent years. There are also only sparse reports on the impact of biocides on microorganisms growing in biofilms in MWF installations. Fast growing mycobacteria are important members of these biofilm communities. Their presence has recently been linked with the occurrence of cases of hypersensitivity pneumonitis, a serious respiratory disorder in the metal industry employees. The new, relatively fast and inexpensive techniques to assess the species diversity within MWF microbiomes and their population size should be developed in order to control the microorganisms' proliferation in MWFs and to diminish the occupational exposure to harmful bioaerosols in metal industry. PMID:23526197

  5. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. Azizur, E-mail: Mohammad.Rahman@uts.edu.au [Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007 (Australia); Hassler, Christel [Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland (Switzerland)

    2014-01-15

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As{sup V}, which is thermodynamically stable in oxic waters, and As{sup III}, which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As{sup V}, biotransform it to As{sup III}, then biomethylate it to methylarsenic (MetAs) forms. Although As{sup III} is more toxic than As{sup V}, As{sup III} is much more easily excreted from the cells than As{sup V}. Therefore, majority of researchers consider the reduction of As{sup V} to As{sup III} as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA{sup V}, dimethylarsonate; DMA{sup V}, and trimethylarsenic oxide; TMAO{sup V}) and trimethylarsine (TMAO{sup III}). However, biomethylation by microorganisms also produces monomethylarsenite (MMA{sup III}) and dimethylarsenite (DMA{sup III}), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.

  6. 郫县豆瓣中可培养细菌多样性分析及酶活性初筛%IsoIation of CuIturabIe Microorganisms in Pixian Bean Paste and Its PhyIogenetic Diversity AnaIysis and Enzyme Activity Screening

    Institute of Scientific and Technical Information of China (English)

    赵辉平; 车振明; 关统伟; 董丹; 张怡; 张静; 李可; 郑萍; 陈健骁; 马力

    2015-01-01

    In order to study and improve the application of modern biological science and technology to the traditional food production,the method of culture-dependent method and the phylogenetic analysis of 16S rRNA gene sequence are used.Microorganisms isolated from Pixian bean paste are studied. Thirty-five typical strains are sequenced and analyzed diversity duplicate removal from 2 1 9 cultured strains.The research results show that,Pixian bean paste has a rich microbial diversity,which including eight genera,including Bacillus which is the dominant group,accounting for 59.8%,and 11.4% for Myroides,5.72% for Providencia,5.72% for Alcaligenes,2.86% for Massilia,2.86%for Virgibacillus,2.86% for Morganella,2.86% for Geobacillus,2.86% for Fictibacillus.The results of screening of amylase and protease show that the microbial from bean paste with high enzyme activity ,among which ,the positive strains produce protease accounting for 70.1%,the positive strains produce amylase accounting for 64.8%.This study provides theoretical basis and production materials for large-scale modernized production.%为了将现代生物科学技术应用于传统食品生产的研究和改良,应用纯培养方法和基于16 S rRNA基因序列的系统发育分析,对郫县豆瓣中的细菌进行了研究,对所得的219株纯培养细菌经去重后的35株典型菌株进行了16 S rRNA 基因测序和多样性分析。研究结果表明,郫县豆瓣中细菌多样性丰富,包含8个属,其中Bacillus是优势类群,占所有菌株比例达59.8%;另外还含有 Myroides(11.4%), Providencia(5.72%),Alcaligenes (5.72%),Massilia (2.86%),Virgibacillus (2.86%),Morganella (2.86%),Geobacillus(2.86%),Fictibacillus(2.86%)。淀粉酶和蛋白酶筛选结果表明,豆瓣细菌具有良好的产酶活性,其中产蛋白酶的阳性菌株占70.1%,产淀粉酶阳性菌株占64.8%。该研究为

  7. NEW LIPASE-PRODUCERS MICROORGANISMS FROM PERUVIAN AMAZONIA WHICH HYDROLYZE PALM OIL AND DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Roxana Trujillo

    2014-04-01

    Full Text Available Two yeasts: Cryptococcus uchicensis TMY9 and Pichia uchicensis TMY10 and one fungus Verticillium tingalensis TMFMB are described for the first time as lipase producer microorganisms. The strains have been isolated after an ecological screening in a palm oil industry. The yeasts- C. uchicensis and Pichia uchicensis - mainly produce extracellular lipases as active as those produced by traditional lipase producing microorganisms. The extracellular lipases are active in the hydrolysis of crude palm oil and its industrial derivatives. Contrarily in the isolated fungus, the lipase mainly remains bonded to biomass. In all cases, greater hydrolytic activities are observed in the hydrolysis of palm olein and super-olein than with saturated substrates as stearine. P. uchicensis lipase shows moderated selectivity versus saturated acid triglycerides compared to substrates with high proportion of oleic acid (olein or superolein. The opposite behavior is observed with C. uchicensis and fungal lipases. P. uchicensis produces a more active crude lipase than C. uchicensis with lower biomass production. The kinetic runs performed with crude yeast lipases suggest a three steps mechanism where the high penetration of lipase in the fat gouts favors the hydrolysis.

  8. The effect of ajowan (Carum copticum L. essential oils on eukaryotic ruminal microorganisms of Mehraban sheep.

    Directory of Open Access Journals (Sweden)

    Razieh Talebzadeh

    2013-12-01

    Full Text Available Essential oils may improve the utilization of nutrients by ruminal microorganisms. The aim of this study was to assess the effect of different doses of ajowan essential oils (AEO on growth and fibrolytic activity of anaerobic fungi, and generic distribution of ciliated protozoa (in vitro.Different doses of AEO (0, 150, 300, 450 and 600 ppm were added to experimental tubes. The effect of AEO was evaluated on growth and fibrolytic enzyme activity of an anaerobic fungus (Neocalimastix spp.. Generic distribution of ciliated protozoa were evaluated in response to different doses of AEO.The growth of fungus (Neocalimastix spp. were inhibited and activity of fibrolytic enzymes of fungus were reduced by adding AEO. Also, an inhibitory effect was seen in concentration of ciliated protozoa and some genus were completely disappeared at the doses of 300 ppm and higher. The doses used in this study reduced the fibrolytic activity of the studied rumen microorganisms which is undesirable in practical animal nutrition. Further research is needed to assess the effects of AEO at lower doses on these parameters and also proteolysis and methanogenesis.

  9. Colonization of compacted backfill materials by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, L.M.; Stroes-Gascoyne, S.; Miller, S.H.; Hamon, C.J.; Dixon, D.A

    1997-11-01

    Experiments were carried out to investigate the occurrence of pore clogging in backfill by bacterial activity. Four differently prepared and treated backfill materials were used to determine the effects of the quality and preparation method of the backfill materials on the occurrence of pore clogging. The backfills were compacted in permeameters which were infused with either groundwater or sterile distilled water. A constant pressure was applied to increase the rate of saturation. Results showed different inflow rates for the four materials despite the use of the same packing method for each specimen, the same dry density for each backfill and indications of similar initial pore volumes. These differences were likely caused by the fact that the two slowest-flowing permeameters contained a mixture of Na-bentonite and illitic shale simulating a glacial lake clay. Hydraulic conductivities measured ranged from 5 x 10{sup -11} m/s to 5 x 10{sup -12} m/s for the backfills containing glacial lake clay and 4 x 10{sup -12} m/s to 9 s 10{sup -13} m/s for the backfills containing a mixture of Na-bentonite and illitic shale. Weekly samples of outflow from the permeameters were analyzed microbially. Aerobic heterotrophs were low initially but stabilized around 10{sup 6} to 10{sup 7} colony forming units (CFU)/mL after about one week. Anaerobic heterotrophs stabilized at around 10{sup 2} to 10{sup 3} CFU/mL. Sulphate-reducing bacteria (SRB) were measured by the most probable number (MPN) method. Results showed low initial numbers but they stabilized around 10{sup 4} MPN/mL after one to two months. No significant numbers of aerobic or anaerobic sulphur oxidizing bacteria were found. Enumeration of methanogens indicated that they were generally present in the permeameters that contained non-autoclaved backfill. Results are partially inconclusive because of the lack of confirmation of methane gas present in the headspace of part of the MPN culture tubes. Microbial pore clogging

  10. Isolation of Resistance-Bearing Microorganisms

    Science.gov (United States)

    Venkateswaran, Kasthuri, J.; Probst, Alexander; Vaishampayan, Parang A.; Ghosh, Sudeshna; Osman, Shariff

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  11. 棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响%Effects of Cotton Root Exudates on Available Soil Nutrition, Enzyme Activity and Microorganism Quantity

    Institute of Scientific and Technical Information of China (English)

    赵小亮; 刘新虎; 贺江舟; 万传星; 龚明福; 张利莉

    2009-01-01

    采用水培法收集棉花根系分泌物,在耕作1年的土壤中添加棉花根系分泌物,培养10 d后测定土壤中速效养分、酶活性及微生物数量.结果显示,(1)棉花根系分泌物能极显著提高土壤中速效K和速效P含量4.31%~15.03%和5.99%~24.31%(P<0.01);高浓度分泌物处理下速效N含量比对照显著提高11.39%(P<0.05),其它处理影响不显著;各浓度分泌物对土壤有机质含量均无显著影响.(2)各浓度棉花根系分泌物均使土壤中转化酶活性显著提高,且随分泌物浓度的增加而显著增强;低浓度分泌物能显著提高土壤中磷酸酶的活性,所有浓度处理对土壤脲酶活性均无显著影响.(3)中、高浓度的棉花根系分泌物能显著增加土壤中细菌的数量,低浓度的分泌物能显著增加土壤中真菌的数量,而不同浓度处理的土壤中放线菌的数量均无显著的变化.研究表明,棉花根系分泌物可通过促进土壤细菌及土壤真菌的繁殖来增强土壤转化酶和磷酸酶活性,提高土壤速效P、速效K及速效N含量,从而对棉花根际微环境产生深刻影响.%Cotton seedlings were cultured in hydroponics,root exudates were collected by concentrating the deionized water,in which the cotton seedlings transferring to.Collected root exudates were subjected to the soil with cotton cultivation for one year.Soil available nutrition contents,enzyme activities and microorganism quantity were determined after ten days incubation of treated soil.The results showed that the root exudates of cotton can significantly enhance the contents of the available K and available P in soil.In three treatments,soil available P significantly increased by 5.99%,13.14% and 24.31% (P<0.01)and available K significantly elevated by 4.31%,8.26% and 15.03% (P<0.01).Only higher input of cotton root exudates improved the content of the available N by 11.39% (P<0.05) in soil.And any influence was observed in soil organic matter in all

  12. Effect of Lead on Microorganisms with Respect to Antibiogram, Glucose and Amino Acid Metabolism

    Directory of Open Access Journals (Sweden)

    Aishwarya Pradeep Rao

    2014-07-01

    Full Text Available Background: Lead poisoning is a prevalent health hazard in today's world of industrialization and is gaining the concern of medical professionals globally. The first organisms in the biosphere to be affected by this are the microorganisms. Many studies have established that metal tolerance is accompanied by antibiotic resistance as both the genes are present on plasmids. Aims and Objectives: The study was conducted to identify the concentrations of lead at which the microbial growth and antibiotic sensitivity was affected and also to identify whether any of the key metabolic activities were influenced. Microorganisms like Escherichia coli, Staphylococcus aureus and Candida albicans. Pseudomonas aeruginosa were chosen due to their increasing importance as a potent hospital acquired pathogen. Material and Methods: American Type Culture Collection (ATCC strains were chosen and exposed to varying concentrations of lead acetate ranging from 1 to 1000 ppm. The growth was quantitatively analyzed spectrophotometrically at 600 nm. The antibiogram was done using disk diffusion method. The sugar fermenting property and the amino acid utilization was studied as they are the basic requirements for growth of any microorganism. Results: On exposure to lead, a decrease in the growth was seen with the three organisms but the growth pattern was different with Pseudomonas as it showed a sudden increase at 100 ppm accompanied by the production of H S at certain concentrations. The 2 antibiotic sensitivity tests which were carried out after exposure to lead, showed a resistance pattern to the β lactam group of antibiotics, hence implying that tolerance to the heavy metal affected the sensitivity of these organisms to the antibiotics. The biochemical tests showed no change in the presence of lead. Lead may exist in the soil in various concentrations but may exert a selective pressure only at certain concentrations. It has been established that a pattern exists

  13. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    Science.gov (United States)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    by an elevated abundance of methane-oxidizing microorganisms, which consume a considerable amount of methane before it escapes into the atmosphere. Based on our study we hypothesize that the Bubble Shuttle transport mechanism contributes to this pelagic methane sink by a sediment-water column transfer of methane oxidizing microorganisms. Furthermore, this Bubble Shuttle may influence the methanotrophic community in the water column after massive short-term submarine inputs of methane (e.g. release of methane from bore holes). Especially in deep-sea regions, where the abundance of methane oxidizing microorganisms in the water column is low in general, Bubble Shuttle may inject a relevant amount of methane oxidizing microorganisms into the water column during massive inputs, supporting indirectly the turnover of this greenhouse active trace gas in the submarine environment.

  14. Where microorganisms meet rocks in the Earth's Critical Zone

    Directory of Open Access Journals (Sweden)

    D. M. Akob

    2011-12-01

    processes. With the recent development of "omics" technologies, microbial ecologists have new methods that can be used to link the composition and function of in situ microbial communities. In particular, these methods can be used to search for new metabolic pathways that are relevant to biogeochemical nutrient cycling and determine how the activity of microorganisms can affect transport of carbon, particulates, and reactive gases between and within CZ regions.

  15. Where microorganisms meet rocks in the Earth's Critical Zone

    Science.gov (United States)

    Akob, D. M.; Küsel, K.

    2011-12-01

    can be used to link the composition and function of in situ microbial communities. In particular, these methods can be used to search for new metabolic pathways that are relevant to biogeochemical nutrient cycling and determine how the activity of microorganisms can affect transport of carbon, particulates, and reactive gases between and within CZ regions.

  16. Selection and application of microorganisms to improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P.F.; Moreira, R.S.; Almeida, R.C.C.; Guimaraes, A.K.; Carvalho, A.S. [Laboratorio de Biotecnologia e Ecologia de Microrganismos da Universidade Federal da Bahia, Avenida Reitor Miguel Calmon, s/n, Vale do Canela, CEP 41.160-100 Salvador BA (Brazil); Quintella, C.; Esperidia, M.C.A. [Instituto de Quimica da Universidade Federal da Bahia, Rua Barao de Geremoabo, s/n, Campus Universitario de Ondina, CEP 40.170-290, Salvador BA (Brazil); Taft, C.A. [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 150, Urca, 22290-180, Rio de Janeiro (Brazil)

    2004-08-01

    Microbial enhanced oil recovery (Meor) is an incontestably efficient alternative to improve oil recovery, especially in mature fields and in oil reservoirs with high paraffinic content. This is the case for most oil fields in the Reconcavo basin of Bahia, Brazil. Given the diverse conditions of most oil fields, an approach to apply Meor technology should consider primarily: (i) microbiological studies to select the appropriate microorganisms and (ii) mobilization of oil in laboratory experiments before oil field application. A total of 163 bacterial strains, selectively isolated from various sources, were studied to determine their potential to be used in Meor. A laboratory microbial screening based on physiological and metabolic profiles and growth rates under conditions representative for oil fields and reservoirs revealed that 10 bacterial strains identified as Pseudomonas aeruginosa (2), Bacillus licheniformis (2), Bacillus brevis (1), Bacillus polymyxa (1), Micrococcus varians (1), Micrococcus sp. (1), and two Vibrio species demonstrated potential to be used in oil recovery. Strains of B. licheniformis and B. polymyxa produced the most active surfactants and proved to be the most anaerobic and thermotolerant among the selected bacteria. Micrococcus and B. brevis were the most salt-tolerant and polymer producing bacteria, respectively, whereas Vibrio sp. and B. polymyxa strains were the most gas-producing bacteria. Three bacterial consortia were prepared with a mixture of bacteria that showed metabolic and technological complementarity and the ability to grow at a wide range of temperatures and salinity characteristics for the oil fields in Bahia, Brazil. Oil mobilization rates in laboratory column experiments using the three consortia of bacteria varied from 11.2 to 18.3 % [v/v] of the total oil under static conditions. Consortia of B. brevis, B. icheniformis and B. polymyxa exhibited the best oil mobilization rates. Using these consortia under anaerobic

  17. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  18. Protease expression by microorganisms and its relevance to crucial physiological/pathological events

    Institute of Scientific and Technical Information of China (English)

    AndréLuis; Souza; dos; Santos

    2011-01-01

    The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells,which are similar in several biochemical and genetic aspects to host cells.Aggravating this scenario,very few antifungal and anti-trypanosomatidal agents are in clinical use and,therefore,therapy is limited by drug safety considerations and their narrow spectrum of activity,efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition,growth, proliferation,signaling,differentiation and death.In this context,proteolytic enzymes produced by these eukaryotic microorganisms are appointed and,in some cases,proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds,in order to cure or prevent invasive fungal/trypanosomatid diseases.With this task in mind,our research group and others have focused on aspartic-type proteases,since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures.In the present paper,a concise revision of the beneficial effects of aspartic protease inhibitors,with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy,will be presented and discussed using our experience with the following microbial models:the yeast Candida albicans,the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.

  19. Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria: Possible Involvement of Halophilic Microorganisms.

    Directory of Open Access Journals (Sweden)

    Guadalupe Piñar

    Full Text Available The prosperity of Hallstatt (Salzkammergut region, Austria is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C. being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find.As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms.Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus. Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities.The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental

  20. Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments

    Energy Technology Data Exchange (ETDEWEB)

    MacGillivray, A.R.; Shiaris, M.P. (Univ. of Massachusetts, Boston, MA (United States))

    1994-04-01

    The relative role of eukaryotic versus prokaryotic microorganisms in phenanthrene transformation was measured in slurries of coastal sediment by two different approaches: detection of marker metabolites and use of selective inhibitors on phenanthrene biotransformation. Phenanthrene biotransformation was measured by polar metabolite formation and CO[sub 2] evolution from [9-[sup 14]C]phenanthrene. Both yeasts and bacteria transformed phenanthrene in slurries of coastal sediment. Two products of phenanthrene oxidation by fungi, phenanthrene trans-3,4-dihydrodiol and 3-phenanthrol, were produced in yeast-inoculated sterile sediment. However, only products of phenanthrene oxidation typical of bacterial transformation, 1-hydroxy-2-naphthoic acid and phenanthrene cis-3,4-dihydrodiol, were isolated from slurries of coastal sediment with natural microbial populations. Phenanthrene trans-dihydrodiols or other products of fungal oxidation of phenanthrene were not detected in the slurry containing a natural microbial population. A predominant role for bacterial transformation of phenanthrene was also suggested from selective inhibitor experiments. Addition of streptomycin to slurries, at a concentration which suppressed bacterial viable counts and rates of [methyl-[sup 3]H]thymidine uptake, completely inhibited phenanthrene transformation. Treatment with colchicine, at a concentration which suppressed yeast viable counts, depressed phenanthrene transformation by 40%, and this was likely due to nontarget inhibition of bacterial activity. The relative contribution of eukaryotic microorganisms to phenanthrene transformation in inoculated sterile sediment was estimated to be less than 3% of the total activity. We conclude that the predominant degraders of phenanthrene in muddy coastal sediments are bacteria and not eukaryotic microorganisms. 35 refs., 2 figs., 1 tab.

  1. Temporal-spatial dynamics of distribution patterns of microorganism relating to biological soil crusts in the Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    WU Nan; WANG Hongling; LIANG Shaoming; NIE Huali; ZHANG Yuanming

    2006-01-01

    Biological soil crusts serve as an important biological factor contributing to the sand fixation. This study was conducted to investigate the temporal-spatial variability of microorganism in crusts relating to locations, soil layers of sand dunes and seasons. At moss-dominated inter-dune areas,higher soil nutrient and water concentrations were likely to maintain the microbial activities. Bacteria showed the highest capabilities of settlement and growth in inter-dunes in both spring and autumn. Soil water content reached the highest value in soil crusts in the inter-dune areas, especially in spring. Variations of quantities of actinomyces and fungi basically showed the consistent trend in different locations of sand dunes. With the deepening of soil layers, vertical distribution of quantities of each microorganism group showed different characteristics because environmental factors fluctuated in both spring and autumn. Among different microorganism groups, bacteria were predominant, actinomyces the next and fungi the least in both spring and autumn in all soil layers (0-20 cm). The proportion of bacteria and soil water content were higher in spring than those in autumn in all soil layers (0-20 cm). No consistent trends were found in actinomyces and fungi. The results showed that the quantities of microorganisms were significantly positive correlated with organic matter content,soil water content, total N, total P, available P, available K, pH, electrical conductivity, total salt content,catalase, urease, phosphatase and alkaline phosphatase.

  2. Biological Synthesis of Nanoparticles from Plants and Microorganisms.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yu-Jin; Zhang, Dabing; Yang, Deok-Chun

    2016-07-01

    Nanotechnology has become one of the most promising technologies applied in all areas of science. Metal nanoparticles produced by nanotechnology have received global attention due to their extensive applications in the biomedical and physiochemical fields. Recently, synthesizing metal nanoparticles using microorganisms and plants has been extensively studied and has been recognized as a green and efficient way for further exploiting microorganisms as convenient nanofactories. Here, we explore and detail the potential uses of various biological sources for nanoparticle synthesis and the application of those nanoparticles. Furthermore, we highlight recent milestones achieved for the biogenic synthesis of nanoparticles by controlling critical parameters, including the choice of biological source, incubation period, pH, and temperature.

  3. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  4. MICROORGANISMS ANTIBIOTIC SENSITIVITY DETERMINATION IN URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    Shapovalova O.V.

    2016-06-01

    Full Text Available Introduction. Nowadays Urinary tract infections (UTI are considered to be the most common bacterial infections. Escherichia coli is the most frequently uropathogen. Other microorganisms of the genera Enterococcus, Klebsiella, Enterobacter, Proteus, Morganella, Citrobacter, Serratia, Pseudomonas, Streptococcus, Staphylococcus, Candida are also isolated with variable frequency. In recent years there has been a decreasing tendency of the causative agents of UTI sensitivity to various antibiotics, which causes growth of an inefficiency treatment risk. In connection with the above the investigations were carried out with the purpose to identify the actual causative agents of bacteriuria and their sensitivity to antibiotics and antifungal drugs. Materials and methods. Bacteriological examination of urine was performed at 42 patients of SI "Sytenko Institute of Spine and Joint Pathology, AMS of Ukraine" clinic. The bacteriological method for determining the number of bacteria in the test material, cultural and bacterioscopic methods for identifying microorganisms and disk-diffusion method for sensitivity of microorganisms to antibiotics determining were used. The clinical material for the study was an average portion of the morning urine or urine collected by catheter. The biological material collection and bacteriological examination was carried by quantitative method, the isolated microorganisms identification and their sensitivity to antibiotics determining was performed by standard methods in accordance with current guidelines. We used the following antibiotics group to determine the microorganisms sensitivity: penicillin, cephalosporin, karbapenems, tetracyclines, aminoglycoside, fluoroquinolones, oxazolidinones, macrolides, lincosamides, glycopeptides, antifungal antibiotics. Results and discussion. During the biological material study 55 isolates of bacterial and fungal pathogens were obtained. The microorganisms’ concentration in urine was in

  5. Direct measurement of the flow field around swimming microorganisms

    CERN Document Server

    Drescher, Knut; Michel, Nicolas; Polin, Marco; Tuval, Idan

    2010-01-01

    Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute ~0.3% density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a "puller" stresslet, and can be described by a simple three-Stokeslet model.

  6. Degradation of crude oil by indigenous microorganisms supplemented with nutrients

    Institute of Scientific and Technical Information of China (English)

    XIA Wen-xiang; ZHENG Xi-lai; LI Jin-cheng; SONG Zhi-wen; ZHOU Li; SUN Hao-fen

    2005-01-01

    Different kinds of mineral nutrients( NO3-N, NH4-N and PO4-P) were applied in the simulated oil-polluted seawater for enhancing oil biodegradation in the N/P ratio 10:1 and 20: 1. Although indigenous microorganisms have the ability to degrade oil, adding nutrients accelerated biodegradation rates significantly. For the group amended with NO3-N and PO4-P in the ratio 10:1, the reaction rate coefficient was 4 times higher than the natural biodegradation. Chemical and microbiological analysis showed that the optimal N/P ratio in the system is 10:1, and microorganisms tend to utilize nitrate rather than ammonium as N source.

  7. Accumulation of motile elongated micro-organisms in turbulence

    CERN Document Server

    Zhan, Caijuan; Lushi, Enkeleida; Brandt, Luca

    2013-01-01

    We study the effect of turbulence on marine life by performing numerical simulations of motile microorganisms, modelled as prolate spheroids, in isotropic homogeneous turbulence. We show that the clustering and patchiness observed in laminar flows, linear shear and vortex flows, are significantly reduced in a three-dimensional turbulent flow mainly because of the complex topology; elongated micro-orgamisms show some level of clustering in the case of swimmers without any preferential alignment whereas spherical swimmers remain uniformly distributed. Micro-organisms with one preferential swimming direction (e.g. gyrotaxis) still show significant clustering if spherical in shape, whereas prolate swimmers remain more uniformly distributed. Due to their large sensitivity to the local shear, these elongated swimmers react slower to the action of vorticity and gravity and therefore do not have time to accumulate in a turbulent flow. These results show how purely hydrodynamic effects can alter the ecology of microor...

  8. [Ecological relationships between Bursaphelenchus xylophilus and its companion microorganisms].

    Science.gov (United States)

    Tian, Xue-liang; Mao, Zhen-chuan; Chen, Guo-hua; Xie, Bing-yan

    2011-03-01

    Pine wood nematode Bursaphelenchus xylophilus is a notorious invasive species from North America, which can kill a large amount of pine trees and causes economic losses and ecosystem destruction. There is a close relationship and ecological interaction between B. xylophilus and its companion microorganisms. This paper listed the species of companion microorganisms, reviewed their important ecological roles in the propagation and pathogenicity of the nematode, and discussed the pine wilt disease from the viewpoint of microecosystem. The companion fungi can supply food for B. xylophilus, hold the cycle of second infection of the nematode, increase the proportions of dauer juveniles, and benefit the infection and distribution of B. xylophilus. The companion bacteria can enhance the pathogenicity of B. xylophilus, promote the propagation of the nematode, benefit the pinene degradation, and thereby, promote the adaptability of the nematode. PMID:21657042

  9. Direct measurement of the flow field around swimming microorganisms

    Science.gov (United States)

    Polin, Marco; Drescher, Knut; Goldstein, Raymond E.; Michel, Nicolas; Tuval, Idan

    2010-11-01

    Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute (˜0.3%) density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a "puller" stresslet, and can be described by a simple three-Stokeslet model.

  10. Metal-microorganism interactions; Interactions metaux-microorganismes

    Energy Technology Data Exchange (ETDEWEB)

    Andres, Y. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France); Thouand, G. [Departement de Biologie Appliquee, La Roch sur Yon (France); Redercher, S.; Boualam, M. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France); Texier, A.Cl.; Hoeffer, R. [Centre du Genie des Procedes de l`Environnement, Ecole des Mines de Nantes (France)

    1997-10-01

    The physico-chemical procedures of treating the metalliferous effluents are not always adapted to de polluting the slightly concentrated industrial wastes. An alternative idea was advanced, implying the ability of some microorganisms to fix in considerable amounts the metal ions present in aqueous solutions, possibly in a selective way. This approach has been investigated thoroughly during the last 30 years, particularly from a mechanistic point of view. The advantage of the microorganisms lies mainly in the large diversity of bacteria and in their chemical state dependent interaction with metals, as well as, in the possibilities of developing their selective and quantitative separation properties. A biomass from Mycobacterium smegmatis, an acidic alcoholic resistant bacteria, has been used to prepare a bio-sorption support allowing the preferential sorption of thorium as compared to uranium and lanthanum. These studies have been extended to biological polymers such as chitosan and to studies related to bioaccumulation mechanisms and/or to the microbial resistances towards metals

  11. Effect of effective microorganisms on soil physical properties

    International Nuclear Information System (INIS)

    Effective Microorganisms solution is being used in various parts of Sindh as fertilizer substitute in the agriculture fields since years. Soils of two locations at Bozdar Wada Khairpur Mir's and Nawazabad farm Mirpurkhas were surveyed. Soil samples were collected at a depth of 0.6 and 6-12 inches. Using analytical methods, given in the Laboratory manual for Soil Analysis, carried out the Physico-chemical analysis. The comparative study of 20-Acre land area of both soils, the one treated with EM (Effective Microorganisms) technology and the other without treatment was carried out. The soil color, soil texture/Particle size analysis, soil moisture, bulk density, soil pH, Electric conductivity, and organic matter were determined. The analysis showed positive results, and it is observed that the quality of the soil was improved by using EM technology. (author)

  12. Influence of swimming strategy on microorganism separation by asymmetric obstacles

    CERN Document Server

    Berdakin, I; Moshchalkov, V V; Venken, L; Dierckx, S; Vanderleyden, S J; Silhanek, A V; Condat, C A; Marconi, V I

    2013-01-01

    It has been shown that a nanoliter chamber separated by a wall of asymmetric obstacles can lead to an inhomogeneous distribution of self-propelled microorganisms. Although it is well established that this rectification effect arises from the interaction between the swimmers and the non-centrosymmetric pillars, here we demonstrate numerically that its efficiency is strongly dependent on the detailed dynamics of the individual microorganism. In particular, for the case of run-and-tumble dynamics, the distribution of run lengths, the rotational diffusion and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency. In addition, we optimize the geometrical dimensions of the asymmetric pillars in order to maximize the swimmer concentration and we illustrate how it can be used for sorting by swimming strategy in a long array of parallel obstacles.

  13. Influence of swimming strategy on microorganism separation by asymmetric obstacles

    Science.gov (United States)

    Berdakin, I.; Jeyaram, Y.; Moshchalkov, V. V.; Venken, L.; Dierckx, S.; Vanderleyden, S. J.; Silhanek, A. V.; Condat, C. A.; Marconi, V. I.

    2013-05-01

    It has been shown that a nanoliter chamber separated by a wall of asymmetric obstacles can lead to an inhomogeneous distribution of self-propelled microorganisms. Although it is well established that this rectification effect arises from the interaction between the swimmers and the noncentrosymmetric pillars, here we demonstrate numerically that its efficiency is strongly dependent on the detailed dynamics of the individual microorganism. In particular, for the case of run-and-tumble dynamics, the distribution of run lengths, the rotational diffusion, and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency. In addition, we optimize the geometrical dimensions of the asymmetric pillars in order to maximize the swimmer concentration and we illustrate how it can be used for sorting by swimming strategy in a long array of parallel obstacles.

  14. Biosynthesis of Nanoparticles by Microorganisms and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiangqian Li

    2011-01-01

    Full Text Available The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation science, and magnetic resonance imaging (MRI. The current limitations and future prospects for the synthesis of inorganic nanoparticles by microorganisms are discussed.

  15. Photodynamic/photocatalytic effects on microorganisms processed by nanodyes

    Science.gov (United States)

    Tuchina, Elena S.; Tuchin, Valery V.

    2010-02-01

    Photodynamic therapy uses laser, LED or lamp light sources in combination with dyes - exogenous photosensitizers for the enhancement and localization of photodynamic effects within the human body. We are developing a new approach of improvement of the efficiency of antimicrobial phototherapy via combined application of photosensitizers and the photocatalysts to pathogenic microorganisms. The main goal of the paper is to conduct experiments to study the action of nanodyes, based on mixtures of nanoparticles and photosensitizers, in combination with LED irradiation of pathogens.

  16. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    Science.gov (United States)

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K.

    2015-01-01

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB. PMID:27682089

  17. Mitigating abiotic stress in crop plants by microorganisms

    OpenAIRE

    Milošević Nada A.; Marinković Jelena B.; Tintor Branislava B.

    2012-01-01

    Microorganisms could play an important role in adaptation strategies and increase of tolerance to abiotic stresses in agricultural plants. Plant-growth-promoting rhizobacteria (PGPR) mitigate most effectively the impact of abiotic stresses (drought, low temperature, salinity, metal toxicity, and high temperatures) on plants through the production of exopolysaccharates and biofilm formation. PGPR mitigate the impact of drought on plants through a process so-called induced systemic tolera...

  18. Metabolic shifts in microorganisms: the case of Lactococcus lactis

    OpenAIRE

    Goel, A.

    2013-01-01

      A commonly observed organismal response to changing growth rate is a metabolic shift from one mode of metabolism to another. This phenomenon is potentially interesting from a fundamental and industrial perspective because it can influence cellular choices and can limit the capacity of industrial microorganisms to channel nutrients to desired products. The mechanistic cause of the metabolic shift may vary between species, but the presence of such shifts from bacteria to man suggests fun...

  19. Biotransformation of citrus aromatics nootkatone and valencene by microorganisms.

    Science.gov (United States)

    Furusawa, Mai; Hashimoto, Toshihiro; Noma, Yoshiaki; Asakawa, Yoshinori

    2005-11-01

    Biotransformations of the sesquiterpene ketone nootkatone from the crude drug Alpiniae Fructus and grapefruit oil, and the sesquiterpene hydrocarbon valencene from Valencia orange oil were carried out with microorganisms such as Aspergillus niger, Botryosphaeria dothidea, and Fusarium culmorum to afford structurally interesting metabolites. Their stereostructures were established by a combination of high-resolution NMR spectral and X-ray crystallographic analysis and chemical reaction. Metabolic pathways of compounds and by A. niger are proposed. PMID:16272725

  20. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-06-01

    Full Text Available Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL. The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  1. Isolation of Microorganisms Able To Metabolize Purified Natural Rubber

    OpenAIRE

    Heisey, R. M.; Papadatos, S.

    1995-01-01

    Bacteria able to grow on purified natural rubber in the absence of other organic carbon sources were isolated from soil. Ten isolates reduced the weight of vulcanized rubber from latex gloves by >10% in 6 weeks. Scanning electron microscopy clearly revealed the ability of the microorganisms to colonize, penetrate, and dramatically alter the physical structure of the rubber. The rubber-metabolizing bacteria were identified on the basis of fatty acid profiles and cell wall characteristics. Seve...

  2. Reducing of microorganisms in meat products - effect of storage temperature

    OpenAIRE

    Záhorová, Jana

    2013-01-01

    In this thesis I deal with the influence of storage temperature on reducing the number of microorganisms in meat products. In this work is analyzed cooling and freezing storage of meat and meat products. The next section provides an overview of the major contributors to food-borne illness (Salmonella, Escherichia coli, Campylobacter, Listeria monocytogenes, Bacillus cereus, etc.). At the end of research is the mention of the HACCP system. The research was focused on the refrigerated storage o...

  3. General Purpose Segmentation for Microorganisms in Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Sebastian H. Nesgaard; Moeslund, Thomas B.; Rankl, Christian

    2014-01-01

    In this paper, we propose an approach for achieving generalized segmentation of microorganisms in mi- croscopy images. It employs a pixel-wise classification strategy based on local features. Multilayer percep- trons are utilized for classification of the local features and is trained for each...... specific segmentation problem using supervised learning. This approach was tested on five different segmentation problems in bright field, differential interference contrast, fluorescence and laser confocal scanning microscopy. In all instance good results were achieved with the segmentation quality...

  4. Store data from experiments with microorganisms used in food industry

    OpenAIRE

    Bosakova-Ardenska, Atanaska

    2013-01-01

    The aim of this paper is to present results from collaboration of computer engineers and experimenters in microbiology working with molecular-genetic methods. The experimenters in microbiological laboratory at the University of Food Technologies use ARDRA (Amplified Ribosomal DNA Restriction Analysis) analyses and DNA sequencing processed with BLAST (Basic Local Alignment Search Tool) algorithm to identify some microorganisms. Their results have been accumulated in designed database. This wil...

  5. Tolerance of sewage treatment plant microorganisms to mosquitocides.

    Science.gov (United States)

    Tietze, N S; Olson, M A; Hester, P G; Moore, J J

    1993-12-01

    Beneficial protozoa and rotifers collected from a wastewater treatment plant in Panama City, FL, were tested for tolerance to 11 commonly used mosquito larvicides and adulticides in the laboratory. The acute effects were assessed using selected concentrations of the adulticides fenthion, malathion, naled, permethrin, and resmethrin; and the larvicides Bacillus thuringiensis israelensis, Bacillus sphaericus, diflubenzuron, larviciding oil, methoprene, and temephos for the following microorganism taxa: ameoboids, flagellates, free-swimming ciliates, stalked ciliates, and rotifers. PMID:8126488

  6. Evidence and identification of microorganisms in argillite from Tournemire (France)

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Generalised corrosion is one of the main processes taken into account in the dimensioning of non-alloy steel overpacks for high level nuclear waste packages. However, the presence of microorganisms such as sulfate-reducing bacteria in the host rock in contact with these non-alloy materials may also influence localised corrosion processes, leading to a premature loss of the overpack watertightness. Available void and presence of free water are key conditions for bacterial development, which are not often met in an argillaceous environment. Nevertheless, microbial activity has been proven to occur in argillaceous formations such as the Opalinus Clay in the Mont Terri Underground Research Laboratory. Indigenous sulfate-reducing bacteria have also been put into evidence in MX-80 bentonite, a clayey material likely to be used as engineered barrier in many countries for nuclear waste repositories. The French Institute of Radioprotection and Nuclear Safety (IRSN) has been conducting a research program at the Tournemire experimental platform on the biodiversity of Toarcian argillite, aiming at assessing the potential development of a microbial activity in deep clayey environments, disturbed or not by an excavation. The occurrence of microbial processes in this formation was first shown by the study of time evolution of the chemical and isotopic composition of fracture groundwaters collected in several boreholes. These investigations suggested that aqueous sulfates and their isotopic composition were controlled by bacterial sulfate reduction. The presence of living sulfate-reducing bacteria in water samples from an air-drilled borehole crossing a tectonic fracture (MB1) was later shown. Thus, a characterisation of the microbial biodiversity of the Toarcian argillite was launched. Samples have been collected in different locations of the Tournemire experimental platform: pieces of wall of the gallery, as well as cores from

  7. In vivo investigations of genetically modified microorganisms using germ-free rats

    DEFF Research Database (Denmark)

    Lund jacobsen, Bodil

    Risk evaluation of genetically modified microorganism (GMMO) in relation to human health effects brings into consideration the ability of the microorganism to survive and colonise the gastrointestinal tract and the potential gene transfer to the resident microbiota. Different biological containment...

  8. Engineering biofuel tolerance in non-native producing microorganisms.

    Science.gov (United States)

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria.

  9. Diversity of Phosphate-Dissolving Microorganisms in Corn Rhizosphere

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-rong; LIN Qi-mei; LI Bao-guo

    2003-01-01

    Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generally, the rhizosphere soil contained around 5 to 100 times more of these bacteria and fungi than the non-rhizosphere soil. However, the actinomycetes in the rhizosphere soil were significantly lower than those in the non-rhizosphere soil. The numbers of these microorganisms didnt significantly change during corn growth in the soils. However, the proportion of the phosphate-dissolving microorganisms in the total changed markedly during corn growth. Generally there were much higher percentages of phosphate-dissolving bacteria and phosphate-dissolving fungi in the rhizosphere soil than the nonrhizosphere soil. More than 90% of the fungi in rhizosphere dissolved inorganic phosphate at the seedling period, but this proportion declined to 20 %at the harvesting time. The community of phosphate-dissolving microorganisms also changed during corn growth. Bacillus was dominant in the nonrhizosphere soil. However, in the rhizosphere, Pseudomonas and Enterobacter became predominant. Penicillium and Streptomyces were the main fungi and actinomycetes capable of dissolving phosphate.

  10. The diversity of microorganisms associated with Acromyrmex leafcutter ants

    Directory of Open Access Journals (Sweden)

    Boomsma Jacobus J

    2002-05-01

    Full Text Available Abstract Background Molecular biological techniques are dramatically changing our view of microbial diversity in almost any environment that has so far been investigated. This study presents a systematic survey of the microbial diversity associated with a population of Acromyrmex leafcutter ants. In contrast to previous studies on social insects, which targeted specific groups of symbionts occurring in the gut (termites, Tetraponera ants or in specialised cells (Camponotus ants the objective of our present study was to do a total screening of all possible micro-organisms that can be found inside the bodies of these leafcutter ants. Results We amplified, cloned and sequenced SSU rRNA encoding gene fragments from 9 microbial groups known to have insect-associated representatives, and show that: (1 representatives of 5 out of 9 tested groups are present, (2 mostly several strains per group are present, adding up to a total of 33 different taxa. We present the microbial taxa associated with Acromymex ants in a phylogenetic context (using sequences from GenBank to assess and illustrate to which known microorganisms they are closely related. The observed microbial diversity is discussed in the light of present knowledge on the evolutionary history of Acromyrmex leafcutter ants and their known mutualistic and parasitic symbionts. Conclusions The major merits of the screening approach documented here is its high sensitivity and specificity, which allowed us to identify several microorganisms that are promising candidates for further study of their interactions with Acromyrmex leafcutter ants or their gardens.

  11. Magnetization of microorganism cells by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; ZHAN TianZhuo; LIAN ZhiYang; ZHANG DeYuan

    2008-01-01

    Microorganism cells could be used as templates during fabrication of magnetic or conductive microstructures in different standard shapes.In this paper,feasibility of magnetizing microorganism cells by sol-gel method,which is to coat cells of Spirulina (a type of natural micro-helical microorganism) with the ferrite (a kind of magnetic material),was discussed and investigated.Then the cell form,compo-nents and the phase structure were observed and analyzed using various tools including optical microscopy,scanning electron microscopy (SEM),energy dis-persive X-ray detector (EDX),transmission electron microscopy (TEM),and X-ray diffraction analysis (XRD).Results showed that spirulina cells could be coated with ferrite after the sol-gel process,with the shape of natural helixes well kept,that the components of different sampling points on the surface layer were consistent and the thickness of layer was uniform,and that the type of the surface ferrite layer formed was cubic Fe304.It was also observed that there were nano-parUcles yielded in the cells and certain deposit on the walls between cells.The kinetics of the cell magnetization technology by sol-gel was also discussed.

  12. Magnetization of microorganism cells by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microorganism cells could be used as templates during fabrication of magnetic or conductive microstructures in different standard shapes. In this paper, feasibility of magnetizing microorganism cells by sol-gel method, which is to coat cells of Spirulina (a type of natural micro-helical microorganism) with the ferrite (a kind of magnetic material), was discussed and investigated. Then the cell form, components and the phase structure were observed and analyzed using various tools including optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). Results showed that spirulina cells could be coated with ferrite after the sol-gel process, with the shape of natural helixes well kept, that the components of different sampling points on the surface layer were consistent and the thickness of layer was uniform, and that the type of the surface ferrite layer formed was cubic Fe3O4. It was also observed that there were nano-particles yielded in the cells and certain deposit on the walls between cells. The kinetics of the cell magnetization technology by sol-gel was also discussed.

  13. [Secretion of proteolytic enzymes by three phytopathogenic microorganisms].

    Science.gov (United States)

    2013-01-01

    Serine proteinases from three phytopathogenic microorganisms that belong to different fungal families and cause diseases in potatoes were studied and characterized. The oomycete Phytophthora infestans (Mont.) de Bary and the fungi Rhizoctonia solani and Fusarium culmorum were shown to secrete serine proteinases. An analysis of the substrate specificity of these enzymes and their sensitivity to synthetic and protein inhibitors allowed us to refer them to trypsin- and subtilisin-like proteinases. The correlation between the trypsin- and subtilisin-like proteinases depended on the composition of the culture medium, particularly on the form of the nitrogen source. A phylogenetic analysis was carried out. In contrast to basidiomycetes R. solani, ascomycetes F. culmorum and oomycetes P. infestans produced a similar set of exoproteinases, although they had more distant phylogenetic positions. This indicated that the secretion of serine proteinases by various phytopathogenic microorganisms also depended on their phylogenetic position. These results allowed us to suggest that exoproteinases from phytopathogenic fungi play a different role in pathogenesis. They may promote the adaptation of fungi if the range of hosts is enlarged. On the other hand, they may play an important role in the survival of microorganisms in hostile environements outside their hosts. PMID:25508654

  14. Raft-Like Membrane Domains in Pathogenic Microorganisms

    Science.gov (United States)

    Farnoud, Amir M.; Toledo, Alvaro M.; Konopka, James B.; Del Poeta, Maurizio; London, Erwin

    2016-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids packed in a liquid-ordered state, commonly known as lipid rafts, are believed to exist. While less studied in bacterial cells, reports on the presence of sterol or protein-mediated microdomains in bacterial cell membranes are also appearing with increasing frequency. Recent efforts have been focused on addressing the biophysical and biochemical properties of lipid rafts. However, most studies have been focused on synthetic membranes, mammalian cells, and/or model, non-pathogenic microorganisms. Much less is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and the developing field of microdomains in pathogenic bacteria. The current literature on the structure and function and of microdomains is reviewed and the potential role of microdomains in growth, pathogenesis, and drug resistance of pathogens are discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of the process of pathogenesis and development of raft-mediated approaches for new methods of therapy. PMID:26015285

  15. Biosorption and recycling of gold using various microorganisms.

    Science.gov (United States)

    Tsuruta, Takehiko

    2004-08-01

    In order to obtain basic information on the biosorption and recycling of gold from aqueous systems using microbial cells, the biosorption of gold by various microorganisms was investigated. Of 75 strains of microorganisms tested (25 bacteria, 19 actinomycetes, 17 fungi and 14 yeasts), high abilities of gold biosorption from a solution containing hydrogen tetrachloroaurate (III) were found in some gram-negative bacterial strains, such as Acinetobacter calcoaceticus, Erwinia herbicola, Pseudomonas aeruginosa, and P. maltophilia. Most of the gram-positive bacteria, actinomycetes, fungi and yeasts had a lower ability for gold biosorption than gram-negative bacteria. On the other hand, all of the microorganisms tested adsorbed far smaller amounts of gold from a solution containing gold dicyanoaurate (I). The biosorption of gold from a solution containing hydrogen tetrachloroaurate (III) using P. maltophilia having a high adsorbing ability for gold was very rapid and was affected by the pH of the solution, external gold concentration, and cell amounts. P. maltophilia cells immobilized with polyacrylamide gel also have a high ability for gold biosorption. The gold adsorbed on the immobilized cells is easily desorbed with 0.1 M thiourea solution. The immobilized P. maltophilia cells can be used repeatedly in biosorption-desorption cycles. PMID:15754248

  16. The plastic-associated microorganisms of the North Pacific Gyre

    International Nuclear Information System (INIS)

    Highlights: • Microorganisms mediate processes affecting the fate and impacts of marine plastic. • North Pacific Gyre (NPG) plastics were examined with scanning-electron microscopy. • Bacillus bacteria and pennate diatoms dominated the NPG plastic fouling community. • Bacterial abundance was patchily distributed but increased on foamed polystyrene. • Diatom abundance increased on rough surfaces and at sites with high plastic density. -- Abstract: Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm−2) and pennate diatoms (1097 ± 154 mm−2) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution

  17. Microorganisms in metalworking fluids: Current issues in research and management

    Directory of Open Access Journals (Sweden)

    Elżbieta A. Trafny

    2013-02-01

    Full Text Available The microbial contamination of water miscible metalworking fl uids (MWFs is a serious problem in metal industry. A good maintenance of MWF re-circulation systems can extend the lifetime of coolants and ensure the quality of the tools produced. In MWFs, as in the other water-based environments, microorganisms usually live in the form of biofi lms, the communities of bacteria and fungi attached to the surface of sumps, metal parts and also to each other. Biofi lms exhibit very high resistance to biocides. The effect of biocides that are used as additives to MWFs to control the growth of the bacterial and fungal microbiomes (microorganisms characteristic to the individual coolant system have become the subject of research only in recent years. There are also only sparse reports on the impact of biocides on microorganisms growing in biofi lms in MWF installations. Fast growing mycobacteria are important members of these biofi lm communities. Their presence has recently been linked with the occurrence of cases of hypersensitivity pneumonitis, a serious respiratory disorder in the metal industry employees. The new, relatively fast and inexpensive techniques to assess the species diversity within MWF microbiomes and their population size should be developed in order to control the microorganisms’ proliferation in MWFs and to diminish the occupational exposure to harmful bioaerosols in metal industry.

  18. Procedure for Adaptive Laboratory Evolution of Microorganisms Using a Chemostat.

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Sang J; Kim, Pil

    2016-01-01

    Natural evolution involves genetic diversity such as environmental change and a selection between small populations. Adaptive laboratory evolution (ALE) refers to the experimental situation in which evolution is observed using living organisms under controlled conditions and stressors; organisms are thereby artificially forced to make evolutionary changes. Microorganisms are subject to a variety of stressors in the environment and are capable of regulating certain stress-inducible proteins to increase their chances of survival. Naturally occurring spontaneous mutations bring about changes in a microorganism's genome that affect its chances of survival. Long-term exposure to chemostat culture provokes an accumulation of spontaneous mutations and renders the most adaptable strain dominant. Compared to the colony transfer and serial transfer methods, chemostat culture entails the highest number of cell divisions and, therefore, the highest number of diverse populations. Although chemostat culture for ALE requires more complicated culture devices, it is less labor intensive once the operation begins. Comparative genomic and transcriptome analyses of the adapted strain provide evolutionary clues as to how the stressors contribute to mutations that overcome the stress. The goal of the current paper is to bring about accelerated evolution of microorganisms under controlled laboratory conditions. PMID:27684991

  19. Antibiotic producing microorganisms from River Wiwi, Lake Bosomtwe and the Gulf of Guinea at Doakor Sea Beach, Ghana

    Directory of Open Access Journals (Sweden)

    Tawiah Adelaide A

    2012-10-01

    Full Text Available Abstract Background Microorganisms have provided a wealth of metabolites with interesting activities such as antimicrobial, antiviral and anticancer. In this study, a total of 119 aquatic microbial isolates from 30 samples (taken from water bodies in Ghana were screened by the agar-well diffusion method for ability to produce antibacterial-metabolites. Results Antibacterial activity was exhibited by 27 of the isolates (14 bacteria, 9 actinomycetes and 4 fungi against at least one of the indicator microorganisms: Enterococcus faecalis (ATCC 29212, Bacillus thuringiensis (ATCC 13838, Pseudomonas aeruginosa (ATCC 27853, Staphylococcus aureus (ATCC 25923, Proteus vulgaris (NCTC 4635 and Bacillus Subtilis (NCTC 10073. A sea isolate MAI2 (identified as a strain of Pseudomonas aeruginosa exhibited the highest antibacterial activity (lowest zone of inhibition = 22 mm. The metabolites of MAI2 extracted with chloroform were stable to heat and gave minimum inhibitory concentrations ranging between 250 and 2000 μg/ml. Bioautography of the extract revealed seven active components. Conclusion This study has therefore uncovered the potential of water bodies in the West African sub-region as reservoirs of potent bioactive metabolite producing microorganisms.

  20. Removal and Recovery of Uranium using Microorganisms Isolated from North American Uranium Deposits

    OpenAIRE

    Takehiko Tsuruta

    2007-01-01

    Some attempts were made to remove and recover uranium that may be present in nuclear fuel effluents and mine tailings using microorganisms isolated from North American uranium deposits. To establish which microorganisms accumulate the most uranium, hundreds strains of microorganisms were screened. Of these strains of microorganisms tested, extremely high uranium accumulating ability was found in some bacteria isolated from North American uranium deposits. These bacterial strains, such as Arth...