WorldWideScience

Sample records for active breathing control

  1. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  2. WE-DE-209-02: Active Breathing Control

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D. [Stronach Regional Cancer Centre (Canada)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  3. WE-DE-209-02: Active Breathing Control

    International Nuclear Information System (INIS)

    Comsa, D.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  4. Advantage of using deep inspiration breath hold with active breathing control and image-guided radiation therapy for patients treated with lung cancers

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Madhusudhansresty; Sha, Rajib Lochan; Raut, Birendra Kumar; Poornima; Subash; Mallikarjun; Anil; Krishnam Raju, A.; Vidya; Sudarshan, G.; Mahadev, Shankar; Narayana Murthy, P.

    2008-01-01

    To evaluate the impact of moderate deep inspiration breath hold (mDIBH) using an active breathing control (ABC) apparatus on heart, spinal cord, liver and contra lateral lung doses and its volumes compared with free breathing (FB) with lung cancer irradiation

  5. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Yin, Y [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  6. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  7. Patient's breath controls comfort devices

    Science.gov (United States)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  8. Short-term displacement and reproducibility of the breast and nodal targets under active breathing control

    NARCIS (Netherlands)

    Moran, Jean M.; Balter, James M.; Ben-David, Merav A.; Marsh, Robin B.; van Herk, Marcel; Pierce, Lori J.

    2007-01-01

    PURPOSE: The short-term displacement and reproducibility of the breast or chest wall, and the internal mammary (IM), infraclavicular (ICV), and supraclavicular (SCV) nodal regions have been assessed as a function of breath-hold state using an active breathing control (ABC) device for patients

  9. Initial experience with active breathing control of liver motion during ventilation

    International Nuclear Information System (INIS)

    Robertson, John M.; Sharpe, Michael B.; Jaffray, David A.; Wong, John W.

    1997-01-01

    Purpose: Recent evidence has shown that some patients with hepatic tumors can be safely irradiated to a dose well over twice the whole liver tolerance dose if portions of normal liver are spared. Correction during treatment planning for the ventilatory motion of the liver can add a large volume of normal liver to the planning target volume. Any reduction in ventilatory motion has the potential to allow a higher dose of radiation to be given safely. Active Breathing Control (ABC) can be used to temporarily stop the airflow to a patient, thus immobilizing the liver, at any part of a patient's ventilatory cycle. ABC during helical CT scanning can be used to study the full three dimensional motion of the liver and other abdominal organs during ventilation. Ultimately, if the use of ABC is found to be clinically feasible, tolerable for patients, and, most importantly, reproducible over time, then ABC may be used during radiation treatment. Materials and Methods: An ABC apparatus was constructed using a flow monitor and scissor valves on both the inhalation and exhalation paths to the patient. The patient breathed through either a mouthpiece or facemask during the procedure. The ventilatory cycle was displayed in real time. When a stable breathing pattern was observed, the ABC was activated at a specific lung volume, closing both scissors valves, and preventing ventilation. The length of time for comfortable activation of the ABC machine for the individual patient was determined during a teaching and practice period prior to CT scanning. Helical CT scans (slice thickness 0.5 cm) to assess the potential benefit of immobilizing breathing were obtained for normal breathing, end-inspiration and end-expiration. The reproducibility of ABC over time was assessed by repeating the end-inspiration scan both immediately and one week later. The contours of the liver and kidneys were entered for each study. Results: Five patients have undergone ABC study of the abdomen. End

  10. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  11. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    Pulmonary Function Responses to Active Cycle. Breathing ... Key Words: Heart Failure, Active Cycle of Breathing ... cough, fatigue, reduced respiratory muscle mass, and. [5] ... an amount of exercise which is said to lower disease. [9].

  12. [Death by erotic asphyxiation (breath control play)].

    Science.gov (United States)

    Madea, Burkhard; Hagemeier, Lars

    2013-01-01

    Most cases of sexual asphyxia are due to autoerotic activity. Asphyxia due to oronasal occlusion is mostly seen in very old or very young victims. Oronasal occlusion is also used in sadomasochistic sexual practices like "breath control play" or "erotic asphyxiation". If life saving time limitations of oronasal occlusion are not observed, conviction for homicide caused by negligence is possible.

  13. Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound

    International Nuclear Information System (INIS)

    Boda-Heggemann, J.; Walter, C.; Mai, S.; Dobler, B.; Wenz, F.; Lohr, F.; Dinter, D.

    2006-01-01

    Background and purpose: radiosurgery of liver metastases is effective but a technical challenge due to respiration-induced movement. The authors report on the initial experience of the combination of active breathing control (ABC registered ) with stereotactic ultrasound (B-mode acquisition and targeting [BAT registered ]) for frameless radiosurgery. Patient and methods: a patient with a solitary, inoperable liver metastasis from cholangiocellular carcinoma is presented. ABC registered was used for tumor/liver immobilization. Tumor/liver position was controlled and corrected using ultrasound (BAT registered ). The tumor was irradiated with a single dose of 24 Gy. Results: using ABC registered , the motion of the tumor was significantly reduced and the overall positioning error was registered allowed a rapid localization of the lesion during breath hold which could be performed without difficulties for 20 s. Overall treatment time was acceptable (30 min). Conclusion: frameless stereotactic radiotherapy with the combination of ABC registered and BAT registered allows the delivery of high single doses to targets accessible to ultrasound with high precision comparable to a frame-based approach. (orig.)

  14. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Brock, Kristy K.; Kazanjian, Sahira; Fitch, Dwight; McGinn, Cornelius J.; Lawrence, Theodore S.; Haken, Randall K. ten; Balter, James

    2001-01-01

    Purpose: To evaluate the intrafraction and interfraction reproducibility of liver immobilization using active breathing control (ABC). Methods and Materials: Patients with unresectable intrahepatic tumors who could comfortably hold their breath for at least 20 s were treated with focal liver radiation using ABC for liver immobilization. Fluoroscopy was used to measure any potential motion during ABC breath holds. Preceding each radiotherapy fraction, with the patient setup in the nominal treatment position using ABC, orthogonal radiographs were taken using room-mounted diagnostic X-ray tubes and a digital imager. The radiographs were compared to reference images using a 2D alignment tool. The treatment table was moved to produce acceptable setup, and repeat orthogonal verification images were obtained. The positions of the diaphragm and the liver (assessed by localization of implanted radiopaque intra-arterial microcoils) relative to the skeleton were subsequently analyzed. The intrafraction reproducibility (from repeat radiographs obtained within the time period of one fraction before treatment) and interfraction reproducibility (from comparisons of the first radiograph for each treatment with a reference radiograph) of the diaphragm and the hepatic microcoil positions relative to the skeleton with repeat breath holds using ABC were then measured. Caudal-cranial (CC), anterior-posterior (AP), and medial-lateral (ML) reproducibility of the hepatic microcoils relative to the skeleton were also determined from three-dimensional alignment of repeat CT scans obtained in the treatment position. Results: A total of 262 fractions of radiation were delivered using ABC breath holds in 8 patients. No motion of the diaphragm or hepatic microcoils was observed on fluoroscopy during ABC breath holds. From analyses of 158 sets of positioning radiographs, the average intrafraction CC reproducibility (σ) of the diaphragm and hepatic microcoil position relative to the skeleton

  15. Thoracic radiotherapy and breath control: current prospects; Radiotherapie thoracique et controle de la respiration: perspectives actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R. [Institut Sainte-Catherine, 84 - Avignon (France)

    2002-11-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  16. Active Breathing Control for Hodgkin's Disease in Childhood and Adolescence: Feasibility, Advantages, and Limits

    International Nuclear Information System (INIS)

    Claude, Line; Malet, Claude Phys.; Pommier, Pascal; Thiesse, Philippe; Chabaud, Sylvie; Carrie, Christian

    2007-01-01

    Purpose: The challenge in early Hodgkin's disease (HD) in children is to maintain good survival rates while sparing organs at risk. This study assesses the feasibility of active breathing control (ABC) in children, and compares normal tissue irradiation with and without ABC. Methods and Materials: Between May 2003 and June 2004, seven children with HD with mediastinal involvement, median age 15, were treated by chemotherapy and involved-field radiation therapy. A free-breathing computed tomography simulation scan and one additional scan during deep inspiration using ABC were performed. A comparison between planning treatment with clinical target volume including supraclavicular regions, mediastinum, and hila was performed, both in free breathing and using ABC. Results: For a prescription of 36 Gy, pulmonary dose-volume histograms revealed a mean reduction in lung volume irradiated at more than 20 Gy (V20) and 30 Gy (V30) of 25% and 26%, respectively, using ABC (p = 0.016). The mean volume of heart irradiated at 30 Gy or more decreased from 15% to 12% (nonsignificant). The mean dose delivered to breasts in girls was small in both situations (less than 2 Gy) and stable with or without ABC. Considering axillary irradiation, the mean dose delivered to breasts remained low (<9 Gy), without significant difference using ABC or not. The mean radiation dose delivered to thyroid was stable using ABC or not. Conclusions: Using ABC is feasible in childhood. The use of ABC decreases normal lung tissue irradiation. Concerning heart irradiation, a minimal gain is also shown. No significant change has been demonstrated concerning breast and thyroid irradiation

  17. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.

    Science.gov (United States)

    Baertsch, Nathan Andrew; Baertsch, Hans Christopher; Ramirez, Jan Marino

    2018-02-26

    The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.

  18. Magnitude of shift of tumor position as a function of moderated deep inspiration breath-hold: An analysis of pooled data of lung patients with active breath control in image-guided radiotherapy

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the reproducibility and magnitude of shift of tumor position by using active breathing control and iView-GT for patients with lung cancer with moderate deep-inspiration breath-hold (mDIBH technique. Eight patients with 10 lung tumors were studied. CT scans were performed in the breath-holding phase. Moderate deep-inspiration breath-hold under spirometer-based monitoring system was used. Few important bony anatomic details were delineated by the radiation oncologist. To evaluate the interbreath-hold reproducibility of the tumor position, we compared the digital reconstruction radiographs (DRRs from planning system with the DRRs from the iView-GT in the machine room. We measured the shift in x, y, and z directions. The reproducibility was defined as the difference between the bony landmarks from the DRR of the planning system and those from the DRR of the iView-GT. The maximum shift of the tumor position was 3.2 mm, 3.0 mm, and 2.9 mm in the longitudinal, lateral, and vertical directions. In conclusion, the moderated deep-inspiration breath-hold method using a spirometer is feasible, with relatively good reproducibility of the tumor position for image-guided radiotherapy in lung cancers.

  19. Characterising infant inter-breath interval patterns during active and quiet sleep using recurrence plot analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M

    2009-01-01

    Breathing patterns are characteristically different between active and quiet sleep states in infants. It has been previously identified that breathing dynamics are governed by a non-linear controller which implies the need for a nonlinear analytical tool. Further, it has been shown that quantified nonlinear variables are different between adult sleep states. This study aims to determine whether a nonlinear analytical tool known as recurrence plot analysis can characterize breath intervals of active and quiet sleep states in infants. Overnight polysomnograms were obtained from 32 healthy infants. The 6 longest periods each of active and quiet sleep were identified and a software routine extracted inter-breath interval data for recurrence plot analysis. Determinism (DET), laminarity (LAM) and radius (RAD) values were calculated for an embedding dimension of 4, 6, 8 and 16, and fixed recurrence of 0.5, 1, 2, 3.5 and 5%. Recurrence plots exhibited characteristically different patterns for active and quiet sleep. Active sleep periods typically had higher values of RAD, DET and LAM than for quiet sleep, and this trend was invariant to a specific choice of embedding dimension or fixed recurrence. These differences may provide a basis for automated sleep state classification, and the quantitative investigation of pathological breathing patterns.

  20. Effect of upper costal and costo-diaphragmatic breathing types on electromyographic activity of respiratory muscles.

    Science.gov (United States)

    Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl

    2015-04-01

    To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.

  1. An Acute Bout of a Controlled Breathing Frequency Lowers Sympathetic Neural Outflow but not Blood Pressure in Healthy Normotensive Subjects

    Science.gov (United States)

    MCCLAIN, SHANNON L.; BROOKS, ALEXA M.; JARVIS, SARA S.

    2017-01-01

    Controlled or paced breathing is often used as a stress reduction technique but the impact on blood pressure (BP) and sympathetic outflow have not been consistently reported. The purpose of this study was to determine whether a controlled breathing (12 breaths/min, CB) rate would be similar to an individual’s spontaneous breathing (SB) rate. Secondly, would a CB rate of 12 breaths/min alter heart rate (HR), BP, and indices of muscle sympathetic nerve activity (MSNA). Twenty-one subjects (10 women, 11 men) performed two trials: SB, where the subject chose a comfortable breathing rate; and CB, where the subject breathed at a pace of 12 breaths/min. Each trial was 6 min during which respiratory waveforms, HR, BP (systolic, SBP; diastolic, DBP), and MSNA were recorded. During CB, the 6 min average breathing frequency (14±4 vs 12±1 breaths/min, P<0.05 for SB and CB, respectively), MSNA burst frequency (18±12 vs 14±10 bursts/min, P<0.01) and MSNA burst incidence (28±19 vs 21± 6 bursts/100 heart beats, P<0.01) were significantly lower than during SB. HR (66±9 vs 67±9 beats/min, P<0.05) was higher during CB. SBP (120±13 vs 121±15 mmHg, P=0.741), DBP (56±8 vs 57±9 mmHg, P=0.768), and MSNA total activity (166±94 vs 145±102 a.u./min, P=0.145) were not different between the breathing conditions. In conclusion, an acute reduction in breathing frequency such as that observed during CB elicited a decrease in indices of MSNA (burst frequency and incidence) with no change in BP. PMID:28344733

  2. An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish.

    Science.gov (United States)

    Perry, Steve; Kumai, Y; Porteus, C S; Tzaneva, V; Kwong, R W M

    2016-02-01

    Three gases comprising nitric oxide, carbon monoxide and hydrogen sulphide, collectively are termed gasotransmitters. The gasotransmitters control several physiological functions in fish by acting as intracellular signaling molecules. Hydrogen sulphide, first implicated in vasomotor control in fish, plays a critical role in oxygen chemoreception owing to its production and downstream effects within the oxygen chemosensory cells, the neuroepithelial cells. Indeed, there is emerging evidence that hydrogen sulphide may contribute to oxygen sensing in both fish and mammals by promoting membrane depolarization of the chemosensory cells. Unlike hydrogen sulphide which stimulates breathing in zebrafish, carbon monoxide inhibits ventilation in goldfish and zebrafish whereas nitric oxide stimulates breathing in zebrafish larvae while inhibiting breathing in adults. Gasotransmitters also modulate ionic uptake in zebrafish. Though nothing is known about the role of CO, reduced activities of branchial Na(+)/K(+)-ATPase and H(+)-ATPase activities in the presence of NO donors suggest an inhibitory role of NO in fish osmoregulation. Hydrogen sulphide inhibits Na(+) uptake in zebrafish larvae and contributes to lowering Na(+) uptake capacity in fish acclimated to Na(+)-enriched water whereas it stimulates Ca(2+) uptake in larvae exposed to Ca(2+)-poor water.

  3. The effects of metronome breathing on the variability of autonomic activity measurements.

    Science.gov (United States)

    Driscoll, D; Dicicco, G

    2000-01-01

    Many chiropractors hypothesize that spinal manipulation affects the autonomic nervous system (ANS). However, the ANS responses to chiropractic manipulative therapy are not well documented, and more research is needed to support this hypothesis. This study represents a step toward the development of a reliable method by which to document that chiropractic manipulative therapy does affect the ANS by exploring the use of paced breathing as a way to reduce the inherent variability in ANS measurements. To examine the hypothesis that the variability of ANS measurements would be reduced if breathing were paced to a metronome at 12 breaths/min. The study was performed at Parker College Research Institute. Eight normotensive subjects were recruited from the student body and staff. Respiration frequency was measured through a strain gauge. A 3-lead electrocardiogram (ECG) was used to register the electric activity of the heart, and arterial tonometry monitors were used to record the left and right radial artery blood pressures. Signals were recorded on an IBM-compatible computer with a sampling frequency of 100 Hz. Normal breathing was used for the first 3 recordings, and breathing was paced to a metronome for the final 3 recordings at 12 breaths/min. Fourier analysis was performed on the beat-by-beat fluctuations of the ECG-determined R-R interval and systolic arterial pressure (SBP). Low-frequency fluctuations (LF; 0.04-0.15 Hz) reflected sympathetic activity, whereas high-frequency fluctuations (HF; 0.15-0.4 Hz) represented parasympathetic activity. Sympathovagal indices were determined from the ratio of the two bandwidths (LF/HF). The coefficient of variation (CV%) for autonomic parameters was calculated ([average/SD] x 100%) to compare breathing normally and breathing to a metronome with respect to variability. One-way analysis of variance was used to detect differences. A value of P Metronome breathing did not produce any significant changes in blood pressure for the

  4. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  5. Daily activities and breathing parameters for use in respiratory tract dosimetry

    International Nuclear Information System (INIS)

    Roy, M.; Courtay, C.

    1991-01-01

    Dosimetry of inhaled substances is based on the air volumes breathed every day by people under exposure to gases and aerosols. In order to assess modern standards for average inspired air volumes according to age and gender, information was recorded on daily activities and breathing rates both indoors and outdoors, of specific categories of the population. Economic surveys recently published provided time budgets and activities of adults, teenagers and children. The data were matched with published data on physical activities and breathing parameters in order to calculate the daily inspired volumes of air. The results were given for adults (age > 17 years), neonates, and children 1, 5, 10 and 15 years old. The values obtained are close to those published by the Internal Commission for Radiological Protection and the reports of the United Nations Scientific Committee on the Effects of Atomic Radiation. (author)

  6. Differences in tidal breathing between infants with chronic lung diseases and healthy controls

    Directory of Open Access Journals (Sweden)

    Wilitzki S

    2005-09-01

    Full Text Available Abstract Background The diagnostic value of tidal breathing (TB measurements in infants is controversially discussed. The aim of this study was to investigate to what extent the breathing pattern of sleeping infants with chronic lung diseases (CLD differ from healthy controls with the same postconceptional age and to assess the predictive value of TB parameters. Methods In the age of 36–42 postconceptional weeks TB measurements were performed in 48 healthy newborns (median age and weight 7d, 3100 g and 48 infants with CLD (80d, 2465 g using the deadspace-free flow-through technique. Once the infants had adapted to the mask and were sleeping quietly and breathing regularly, 20–60 breathing cycles were evaluated. Beside the shape of the tidal breathing flow-volume loop (TBFVL 18 TB parameters were analyzed using ANOVA with Bonferroni correction. Receiver-operator characteristic (ROC curves were calculated to investigate the discriminative ability of TB parameters. Results The incidence of concave expiratory limbs in CLD infants was 31% and significantly higher compared to controls (2% (p Conclusion The breathing pattern of CLD infants differs significantly from that of healthy controls. Concave TBFVL and an increased RR measured during quiet sleep and under standardized conditions may indicate diminished respiratory functions in CLD infants whereas most of the commonly used TB parameters are poorly predictive.

  7. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis - a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva

    2016-11-01

    Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

  8. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    Science.gov (United States)

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  9. The effects of Pilates breathing trainings on trunk muscle activation in healthy female subjects: a prospective study.

    Science.gov (United States)

    Kim, Sung-Tae; Lee, Joon-Hee

    2017-02-01

    [Purpose] To investigate the effects of Pilates breathing on trunk muscle activation. [Subjects and Methods] Twenty-eight healthy female adults were selected for this study. Participants' trunk muscle activations were measured while they performed curl-ups, chest-head lifts, and lifting tasks. Pilates breathing trainings were performed for 60 minutes per each session, 3 times per week for 2 weeks. Post-training muscle activations were measured by the same methods used for the pre-training muscle activations. [Results] All trunk muscles measured in this study had increased activities after Pilates breathing trainings. All activities of the transversus abdominis/internal abdominal oblique, and multifidus significantly increased. [Conclusion] Pilates breathing increased activities of the trunk stabilizer muscles. Activation of the trunk muscle indicates that practicing Pilates breathing while performing lifting tasks will reduce the risk of trunk injuries.

  10. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  11. Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Burns, David P; Roy, Arijit; Lucking, Eric F; McDonald, Fiona B; Gray, Sam; Wilson, Richard J; Edge, Deirdre; O'Halloran, Ken D

    2017-11-01

    Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO 2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO 2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and

  12. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    Science.gov (United States)

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  13. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    International Nuclear Information System (INIS)

    Gifford, K.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  14. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, K. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  15. The management of tumor motions in the stereotactic irradiation to lung cancer under the use of Abches to control active breathing

    Energy Technology Data Exchange (ETDEWEB)

    Tarohda, Tohru I.; Ishiguro, Mitsuru; Hasegawa, Kouhei; Kohda, Yukihiko; Onishi, Hiroaki; Aoki, Tetsuya; Takanaka, Tsuyoshi [Department of Radiology, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Department of Neurosurgery, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Naruwa Clinic, 1-16-6 Naruwa, Kanazawa 920-0818 (Japan); Department of Radiation Therapy, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641 (Japan)

    2011-07-15

    Purpose: Breathing control is crucial to ensuring the accuracy of stereotactic irradiation for lung cancer. This study monitored respiration in patients with inoperable nonsmall-cell lung cancer using a respiration-monitoring apparatus, Abches, and investigated the reproducibility of tumor position in these patients. Methods: Subjects comprised 32 patients with nonsmall-cell lung cancer who were administered stereotactic radiotherapy under breath-holding conditions monitored by Abches. Computed tomography (CT) was performed under breath-holding conditions using Abches (Abches scan) for treatment planning. A free-breathing scan was performed to determine the range of tumor motions in a given position. After the free-breathing scan, Abches scan was repeated and the tumor position thus defined was taken as the intrafraction tumor position. Abches scan was also performed just before treatment, and the tumor position thus defined was taken as the interfraction tumor position. To calculate the errors, tumor positions were compared based on Abches scan for the initial treatment plan. The error in tumor position was measured using the BrainSCAN treatment-planning device, then compared for each lung lobe. Results: Displacements in tumor position were calculated in three dimensions (i.e., superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) dimensions) and recorded as absolute values. For the whole lung, average intrafraction tumor displacement was 1.1 mm (L-R), 1.9 mm (A-P), and 2.0 mm (S-I); the average interfraction tumor displacement was 1.1 mm (L-R), 2.1 mm (A-P), and 2.0 mm (S-I); and the average free-breathing tumor displacement was 2.3 mm (L-R), 3.5 mm (A-P), and 7.9 mm (S-I). The difference between using Abches and free breathing could be reduced from approximately 20 mm at the maximum to approximately 3 mm in the S-I direction for both intrafraction and interfraction positions in the lower lobe. In addition, maximum intrafraction tumor

  16. [New theory of holistic integrative physiology and medicine. I: New insight of mechanism of control and regulation of breathing].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    The modern systemic physiology, based on limit-understand functional classification, has significant limitation and one-sidedness. Human being is organic; we should approach the mechanism of control and regulation of breathing integrating all the systems. We use new theory of holistic integrative physiology and medicine to explain the mechanism of control and regulation of breathing. Except the mean level information, the up-down "W" waveform information of arterial blood gas (ABG) is core signal to control and regulate breathing. In order to do so, we must integrate all systems together. New theory will help to explain some unanswered questions in physiology and medicine, for example: fetal does not breathing; how first breath generate; how respiratory rhythm and frequency generate, etc. Breathing is the sign of life. Mechanism of control and regulation of breathing has to integrate respiration, circulation, nerves, metabolism, exercise, sleep and digestion, absorption and elimination and etc altogether.

  17. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  18. 'Breath figure' PLGA films as implant coatings for controlled drug release

    Science.gov (United States)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  19. Effects of high-frequency yoga breathing called kapalabhati compared with breath awareness on the degree of optical illusion perceived.

    Science.gov (United States)

    Telles, Shirley; Maharana, Kanchan; Balrana, Budhi; Balkrishna, Acharya

    2011-06-01

    Prior research has shown that methods of meditation, breath control, and different kinds of yoga breathing affect attention and visual perception, including decreasing the size of certain optical illusions. Evaluating relationships sheds light on the perceptual and cognitive changes induced by yoga and related methods, and the locus of the effects. In the present study, the degree of optical illusion was assessed using Müller-Lyer stimuli before and immediately after two different kinds of practice, a high frequency yoga breathing called kapalabhati, and breath awareness. A nonyoga, control session tested for practice effects. Thirty participants (with group M age = 26.9 yr., SD = 5.7) practiced the two techniques for 18 min. on two separate days. The control group had 15 nonyoga practitioners assessed before and after 18 min. in which they did not perform any specific activity but were seated and relaxed. After both kapalabhati and breath awareness there was a significant decrease in the degree of optical illusion. The possibility that this was due to a practice or repetition effect was ruled out when 15 nonyoga practitioners showed no change in the degree of illusion when retested after 18 min. The changes were interpreted as due to changes in perception related to the way the stimuli were judged.

  20. Breath pacing system and method for pacing the respiratory activity of a subject

    NARCIS (Netherlands)

    2016-01-01

    To provide a breath pacing system and a corresponding method for pacing the respiratory activity of a subject that provide the possibility to adapt the output signal to the respiration characteristics of the subject automatically and effectively a breath pacing system (10) for pacing the respiratory

  1. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  2. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  3. The impact of dysfunctional breathing on the assessment of asthma control

    DEFF Research Database (Denmark)

    Veidal, Sandra; Jeppegaard, Maria; Sverrild, Asger

    2017-01-01

    asthma control compared to asthmatics without DB (Median (range) ACQ score: 2.40 (0.20-4.60) vs 1.20 (0.00-4.40); p asthma control was independent of airway hyperresponsiveness or airway inflammation in patients with DB. CONCLUSION......BACKGROUND AND OBJECTIVE: Dysfunctional breathing (DB) is a respiratory disorder, which involves a pattern of breathing too deeply, too superficially and/or too rapidly. In asthma patients, DB may lead to an overestimation of the severity of asthma symptoms, and hence potentially to overtreatment....... However, it is not known to which degree DB may affect estimates of asthma control, in a specialist clinical setting. METHODS: The MAPOut-study examined all patients referred consecutively over a 12-months period for specialist assessment of asthma at the Respiratory Outpatient Clinic at Bispebjerg...

  4. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  5. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Guo, Y; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  7. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    International Nuclear Information System (INIS)

    Gong, G; Guo, Y; Yin, Y

    2016-01-01

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  8. Activity of Lower Limb Muscles During Squat With and Without Abdominal Drawing-in and Pilates Breathing.

    Science.gov (United States)

    Barbosa, Alexandre C; Martins, Fábio M; Silva, Angélica F; Coelho, Ana C; Intelangelo, Leonardo; Vieira, Edgar R

    2017-11-01

    Barbosa, AC, Martins, FM, Silva, AF, Coelho, AC, Intelangelo, L, and Vieira, ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res 31(11): 3018-3023, 2017-The purpose of this study was to assess the effects of abdominal drawing-in and Pilates breathing on the activity of lower limb muscles during squats. Adults (n = 13, 22 ± 3 years old) with some Pilates experience performed three 60° squats under each of the following conditions in a random order: (I) normal breathing, (II) drawing-in maneuver with normal breathing, and (III) drawing-in maneuver with Pilates breathing. Peak-normalized surface electromyography of the rectus femoris, biceps femoris, gastrocnemius medialis, and tibialis anterior during the knee flexion and extension phases of squat exercises was analyzed. There were significant differences among the conditions during the knee flexion phase for the rectus femoris (p = 0.001), biceps femoris (p = 0.038), and tibialis anterior (p = 0.001), with increasing activation from conditions I to III. For the gastrocnemius medialis, there were significant differences among the conditions during the knee extension phase (p = 0.023), with increased activity under condition I. The rectus and biceps femoris activity was higher during the extension vs. flexion phase under conditions I and II. The tibialis anterior activity was higher during the flexion compared with the extension phase under all conditions, and the medial gastrocnemius activity was higher during the extension phase under condition I. Doing squats with abdominal drawing-in and Pilates breathing resulted in increased rectus, biceps femoris, and tibialis anterior activity during the flexion phase, increasing movement stability during squat exercises.

  9. The cerebral cost of breathing: an FMRI case-study in congenital central hypoventilation syndrome.

    Directory of Open Access Journals (Sweden)

    Mike Sharman

    Full Text Available Certain motor activities--like walking or breathing--present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks--including various frontal lobe areas--subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the "resting state" pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS, a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB, mechanical ventilation (MV restored the default mode network (DMN associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the

  10. Computer tomography guided lung biopsy using interactive breath-hold control

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Krag-Andersen, Shella; Naqibullah, Matiullah

    2017-01-01

    Background: Interactive breath-hold control (IBC) may improve the accuracy and decrease the complication rate of computed tomography (CT)-guided lung biopsy, but this presumption has not been proven in a randomized study. Methods: Patients admitted for CT-guided lung biopsy were randomized...

  11. Effects of Mat Pilates training and habitual physical activity on thoracoabdominal expansion during quiet and vital capacity breathing in healthy women.

    Science.gov (United States)

    Campos, Jeniffer L; Vancini, Rodrigo L; Zanoni, Graziely R; Barbosa DE Lira, Claudio A; Santos Andrade, Marilia; Sarro, Karine J

    2017-10-27

    Pilates is a body/mind method that requires different types of exercise (balance, endurance, strength, and flexibility) and attention to muscle control, posture, and breathing. The aim of the present study was to investigate the effects of 12 weeks of Mat Pilates training and habitual physical activity on thoracoabdominal motion of healthy and physically active women. Thirty-five women without experience in Pilates exercise, aged between 18 and 35 years, participated in the study (habitual physical activity group, n=14; and Mat Pilates group, n=21). Three- dimensional kinematic analysis was used to evaluate total and separate thoracoabdominal compartments' expansion (superior and inferior thorax and abdomen), contribution of each compartment to total thoracoabdominal expansion, and coordination between thoracoabdominal compartments. After 12 weeks of Mat Pilates training, thoracoabdominal expansion during quiet breathing was improved by increasing the expansion of abdomen by about 33% (P=0.01). Moreover, expansion of superior (P=0.04) and inferior thorax (P=0.02) and abdomen (P=0.01) was also improved in Pilates (35%, 33% and 37%, respectively) compared to the habitual physical activity group, after the experimental protocol. Finally, the habitual physical activity group presented a decrease of 13% in the expansion of abdomen (P = 0.002). The results suggest the capability of Mat Pilates in improving the action of respiratory and abdominal muscles during breathing and, thus, its benefits to breathing mechanics.

  12. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients

    DEFF Research Database (Denmark)

    Schmidt, L E; Olsen, A K; Stentoft, K

    2001-01-01

    BACKGROUND: Interindividual variation in the pharmacokinetics of the immunosuppressive agents cyclosporine (INN, ciclosporin) and tacrolimus may result from differences in the activity of cytochrome P4503A (CYP3A). The erythromycin breath test is an in vivo assay of hepatic CYP3A activity......, but the method has never been directly validated. The aim of the study was to investigate whether an early postoperative erythromycin breath test correlated with the hepatic CYP3A protein level and catalytic activity in liver transplant recipients. METHODS: In 18 liver transplant recipients, the erythromycin...... breath test was performed within 2 hours after transplantation. A graft biopsy was obtained during surgery and analyzed for the CYP3A protein level by Western blotting and for CYP3A activity with erythromycin demethylation and testosterone 6beta- hydroxylation assays. RESULTS: The erythromycin breath...

  13. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    Science.gov (United States)

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  14. The Cerebral Cost of Breathing: An fMRI Case-Study in Congenital Central Hypoventilation Syndrome

    Science.gov (United States)

    Sharman, Mike; Gallea, Cécile; Lehongre, Katia; Galanaud, Damien; Nicolas, Nathalie; Similowski, Thomas; Cohen, Laurent; Straus, Christian; Naccache, Lionel

    2014-01-01

    Certain motor activities - like walking or breathing - present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks - including various frontal lobe areas - subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the “resting state” pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS), a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB), mechanical ventilation (MV) restored the default mode network (DMN) associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the active

  15. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  16. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  17. pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Directory of Open Access Journals (Sweden)

    Thamires Marques de Lima

    2013-12-01

    Full Text Available OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study. RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively. Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers.

  18. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Eccles, Cynthia; Bissonnette, Jean-Pierre; Brock, Kristy K.

    2005-01-01

    Purpose: A six-fraction, high-precision radiotherapy protocol for unresectable liver cancer has been developed in which active breathing control (ABC) is used to immobilize the liver and daily megavoltage (MV) imaging and repositioning is used to decrease geometric uncertainties. We report the accuracy of setup in the first 20 patients consecutively treated using this approach. Methods and materials: After setup using conventional skin marks and lasers, orthogonal MV images were acquired with the liver immobilized using ABC. The images were aligned to reference digitally reconstructed radiographs using the diaphragm for craniocaudal (CC) alignment and the vertebral bodies for anterior-posterior (AP) and mediolateral (ML) alignment. Adjustments were made for positioning errors >3 mm. Verification imaging was repeated after repositioning to assess for residual positioning error. Offline image matching was conducted to determine the setup accuracy using this approach compared with the initial setup error before repositioning. Real-time beam's-eye-view MV movies containing an air-diaphragm interface were also evaluated. Results: A total of 405 images were evaluated from 20 patients. Repositioning occurred in 109 of 120 fractions because of offsets >3 mm. Three to eight beam angles, with up to four segments per field, were used for each isocenter. Breath holds of up to 27 s were used for imaging and treatment. The average time from the initial verification image to the last treatment beam was 21 min. Image guidance and repositioning reduced the population random setup errors (σ) from 6.5 mm (CC), 4.2 mm (ML), and 4.7 mm (AP) to 2.5 mm (CC), 2.8 mm (ML), and 2.9 mm (AP). The average individual random setup errors (σ) were reduced from 4.5 mm (CC), 3.2 mm (AP), and 2.5 mm (ML) to 2.2 mm (CC), 2.0 mm (AP), and 2.0 mm (ML). The standard deviation of the distribution of systematic deviations (Σ) was also reduced from 5.1 mm (CC), 3.4 mm (ML), and 3.1 mm (AP) to 1.4 mm (CC

  19. The impact of dysfunctional breathing on the assessment of asthma control.

    Science.gov (United States)

    Veidal, Sandra; Jeppegaard, Maria; Sverrild, Asger; Backer, Vibeke; Porsbjerg, Celeste

    2017-02-01

    Dysfunctional breathing (DB) is a respiratory disorder, which involves a pattern of breathing too deeply, too superficially and/or too rapidly. In asthma patients, DB may lead to an overestimation of the severity of asthma symptoms, and hence potentially to overtreatment. However, it is not known to which degree DB may affect estimates of asthma control, in a specialist clinical setting. The MAPOut-study examined all patients referred consecutively over a 12-months period for specialist assessment of asthma at the Respiratory Outpatient Clinic at Bispebjerg Hospital in Copenhagen. All patients were examined with the Nijmegen questionnaire with a DB defined as a score ≥23 and the ACQ questionnaire. Linear regression analysis of predictors of ACQ score was performed. Asthma was defined as asthma symptoms and a positive asthma test. Of the 256 patients referred to the lung clinic, data on both the Nijmegen questionnaire and ACQ score was obtained in 127 patients, who were included in the present analysis. Median (range) age: 30 (15-63) years, and 76 (59.8%) were females. DB was found in 31 (24.4%). Asthmatic patients with co-existing DB had a poorer asthma control compared to asthmatics without DB (Median (range) ACQ score: 2.40 (0.20-4.60) vs 1.20 (0.00-4.40); p < 0.001.). A regression analysis showed that the effect of DB on asthma control was independent of airway hyperresponsiveness or airway inflammation in patients with DB. Dysfunctional breathing is common among asthma patients in a specialist setting, and results in a clinically significant underestimation of asthma control, which may potentially lead to overtreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Breathing rates and daily activities: parameters of exposure to inhaled substances

    International Nuclear Information System (INIS)

    Roy, M.; Malarbet, J.L.; Courtay, C.

    1993-01-01

    The intake of inhaled toxic substances is based upon the air volumes breathed every day by people under exposure to gases and aerosols. On the occasion of the revision of the respiratory tract model by the International Commission on Radiological Protection (ICRP), modern standards have been assessed for average inspired air volumes according to age and sex. Recent data of breathing rates as a function of physical activity have been recorded, and economical surveys recently published by the National Institute of Statistics and Economical studies (INSEE) provided time budgets and activities of specific categories of the population. The results were calculated for adults and children, 3 months, 1, 5, 10 and 15 years old. These values are slightly different from those formerly published by ICRP and the United Nations scientific committee on the effects of atomic radiation (UNSCEAR). (author). 27 refs., 6 tabs

  1. Completion report : Effect of Comprehensive Yogic Breathing program on type 2 diabetes: A randomized control trial

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2014-01-01

    Full Text Available Background: Yoga has been shown to be benefi cial in diabetes in many studies, though randomized control trials are few. The aim of this randomized control trial was to see the effect of Sudarshan Kriya and related practices (comprehensive yogic breathing program on quality of life, glycemic control, and cardiac autonomic functions in diabetes. Diabetes mellitus is a risk factor for sudden cardiac death. Cardiac autonomic neuropathy has been implicated in the causation of sudden cardiac death. Therefore, a maneuver to prevent progression of cardiac autonomic neuropathy holds signifi cance. Materials and Methods: A total of 120 patients of diabetes on oral medication and diet and exercise advice were randomized into two groups: (1 Continued to receive standard treatment for diabetes. (2 Patients administered comprehensive yogic breathing program and monitored to regularly practice yoga in addition to standard treatment of diabetes. At 6 months, quality of life and postprandial plasma glucose signifi cantly improved in the group practicing yoga compared to baseline, but there was no significant improvement in the fasting plasma glucose and glycated hemoglobin. Results: On per protocol analysis, sympathetic cardiac autonomic functions signifi cantly improved from baseline in the group practicing comprehensive yogic breathing. Conclusion: This randomized control trial points towards the beneficial effect of yogic breathing program in preventing progression of cardiac neuropathy. This has important implications as cardiac autonomic neuropathy has been considered as one of the factors for sudden cardiac deaths.Keywords: comprehensive yogic breathing program, diabetes mellitus, cardiac autonomic function

  2. The study of target delineation and target movement of whole breast assisted by active breathing control in intensity modulated radiotherapy after breast conservative surgery

    International Nuclear Information System (INIS)

    Li Jianbing; Yu Jinming; Ma Zhifang; Lu Jie; Sun Tao; Guo Shoufang; Wang Jingguo

    2009-01-01

    Objective: To explore the influence of different delineators and different delineating time on target determination of the whole breast and to explore intrafraction and interfraction target displacements of the breast on moderate deep inspiration breathing hold (mDIBH) assisted by active breathing control (ABC) alter breast conservative surgery. Methods: Twenty patients received primary CT-simulation assisted by ABC to get five sets of CT image on the three breathing condition which included one set from free breath (FB), two sets from mDIBH and two sets from deep expiration breathing control (DEBH). After radiotherapy with ten to fifteen fractions, the repeat CT-simulation was carried out to get the same five sets of CT image as the primary CT- simulation. The whole breast target were delineated at different time by the same delineator and delineated respectively by five delineators on the first set of CT images got with mDIBH from the primary CT-simulation, and to compare the influence of delineator and delineating time on the whole breast target. The total silver clips in the cavity were marked respectively on the two sets of CT images got with mDIBH from the primary CT-simulation, and to compare the intrafraction displacement of geometric body structured by the total of silver clips. The two ribs near the isocentric plane of the breast target were delineated respectively on two sets of the mDIBH CT image from the primary CT-simulation and on one set of the mDIBH CT image from the repeat CT-simulation, and comparing the movement of the point of interest (POI) of the ribs delineated to get the value of intrafraction and interfraction thoracic expansion. Results: There was not statistically significant between the four volumes of whole breast targets delineated by the same delineator at different time, but with statistics significant between the volumes of whole breast target delineated by the different delineators ( F=19.681, P=0.000). There was not statistically

  3. Periaqueductal Gray Control of Breathing

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert; Homma,; Onimaru, H; Fukuchi, Y

    2010-01-01

    Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and

  4. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  5. Heart rate autonomic regulation system at rest and during paced breathing among patients with CRPS as compared to age-matched healthy controls.

    Science.gov (United States)

    Bartur, Gadi; Vatine, Jean-Jacques; Raphaely-Beer, Noa; Peleg, Sara; Katz-Leurer, Michal

    2014-09-01

    The objective of this study is to assess the autonomic nerve heart rate regulation system at rest and its immediate response to paced breathing among patients with complex regional pain syndrome (CRPS) as compared with age-matched healthy controls. Quasiexperimental. Outpatient clinic. Ten patients with CRPS and 10 age- and sex-matched controls. Participants underwent Holter ECG (NorthEast Monitoring, Inc., Maynard, MA, USA) recording during rest and biofeedback-paced breathing session. Heart rate variability (HRV), time, and frequency measures were assessed. HRV and time domain values were significantly lower at rest among patients with CRPS as compared with controls. A significant association was noted between pain rank and HRV frequency measures at rest and during paced breathing; although both groups reduced breathing rate significantly during paced breathing, HRV time domain parameters increased only among the control group. The increased heart rate and decreased HRV at rest in patients with CRPS suggest a general autonomic imbalance. The inability of the patients to increase HRV time domain values during paced breathing may suggest that these patients have sustained stress response with minimal changeability in response to slow-paced breathing stimuli. Wiley Periodicals, Inc.

  6. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  8. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  9. The impact of respiratory motion and active breathing control on the displacement of target area in patients with gastric cancer treated with post-operative radiotherapy

    International Nuclear Information System (INIS)

    Yu Xiaoli; Zhang Zhen; Gu Weilie; Hu Weigang; Zhu Ji; Cai Gang; Li Guichao; He Shaoqin

    2010-01-01

    Objective: To assess the impact of respiratory motion on the displacement of target area and to analyze the discrimination between free breathing and active breathing control (ABC) in patients with gastric cancer treated with post-operative radiotherapy. Methods: From January 2005 to November 2006, 22 patients with post-operatively confirmed gastric cancer were enrolled in this study. All diseases were T 3 / N +, staging II - IV. Patients were CT scanned and treated by radiation with the use of ABC. Image J software was used in image processing, motion measurement and data analysis. Surgical clips were implanted as fiducial marks in the tumor bed and lymphatic drainage area. The motion range of each clip was measured in the resultant-projection image. Motions of the clips in superior-inferior (S-I), right-left (R-L) and anterior-posterior (A-P) directions were determined from fluoroscopy movies obtained in the treatment position. Results: The motion ranges in S-I, R-L and A-P directions were 11.1 mam, 1.9 mm and 2.5 mm (F = 85.15, P = 0. 000) under free breathing, with 2.2 mm, 1.1 mm and 1.7 nun under ABC (F = 17.64, P = 0. 000), and the reduction of motion ranges was significant in both S-I and A-P directions (t = 4.36, P = 0. 000;t = 3.73,P = 0.000). When compared with under free-breathing, the motion ranges under ABC were kept unchanged in the same breathing phase of the same treatment fraction, while significant increased in different breathing phase in all three directions (t = - 4.36, P = 0. 000; t = - 3.52, P = 0.000; t =-3.79, P = 0. 000), with a numerical value of 3.7 mm, 1.6 mm and 2.8 mm, respectively (F = 19.46, P = 0. 000) . With ABC between different treatment fractions , the maximum displacements were 2.7 mm, 1.7 mm and 2.5 mm for the centre of the clip cluster (F =4.07,P =0. 019), and were 4.6 mm, 3.1 mm and 4.2 mm for the clips (F =5.17 ,P =0.007). The motion ranges were significant increased in all the three directions (t = - 4.09, P=0.000 ; t =-4

  10. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    Science.gov (United States)

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  11. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  12. The effect of deep and slow breathing on pain perception, autonomic activity, and mood processing--an experimental study.

    Science.gov (United States)

    Busch, Volker; Magerl, Walter; Kern, Uwe; Haas, Joachim; Hajak, Göran; Eichhammer, Peter

    2012-02-01

    Deep and slow breathing (DSB) techniques, as a component of various relaxation techniques, have been reported as complementary approaches in the treatment of chronic pain syndromes, but the relevance of relaxation for alleviating pain during a breathing intervention was not evaluated so far. In order to disentangle the effects of relaxation and respiration, we investigated two different DSB techniques at the same respiration rates and depths on pain perception, autonomic activity, and mood in 16 healthy subjects. In the attentive DSB intervention, subjects were asked to breathe guided by a respiratory feedback task requiring a high degree of concentration and constant attention. In the relaxing DSB intervention, the subjects relaxed during the breathing training. The skin conductance levels, indicating sympathetic tone, were measured during the breathing maneuvers. Thermal detection and pain thresholds for cold and hot stimuli and profile of mood states were examined before and after the breathing sessions. The mean detection and pain thresholds showed a significant increase resulting from the relaxing DSB, whereas no significant changes of these thresholds were found associated with the attentive DSB. The mean skin conductance levels indicating sympathetic activity decreased significantly during the relaxing DSB intervention but not during the attentive DSB. Both breathing interventions showed similar reductions in negative feelings (tension, anger, and depression). Our results suggest that the way of breathing decisively influences autonomic and pain processing, thereby identifying DSB in concert with relaxation as the essential feature in the modulation of sympathetic arousal and pain perception. Wiley Periodicals, Inc.

  13. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  14. Beta-adrenergic control of plasma glucose and free fatty acid levels in the air-breathing African catfish Clarias gariepinus Burchell 1822

    NARCIS (Netherlands)

    van Heeswijk, JCF; Vianen, GJ; van den Thillart, GEEJM; Zaagsma, J

    In several water-breathing fish species, P-adrenergic receptor stimulation by noradrenaline leads to a decrease in plasma free fatty acid (FFA) levels, as opposed to an increase in air-breathing mammals. We hypothesised that this change in adrenergic control is related to the mode of breathing.

  15. Double blind randomised controlled trial of two different breathing techniques in the management of asthma.

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic-Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-08-01

    Previous studies have shown that breathing techniques reduce short acting beta(2) agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non-specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non-specific upper body exercises.

  16. UNDERWATER STROKE KINEMATICS DURING BREATHING AND BREATH-HOLDING FRONT CRAWL SWIMMING

    Directory of Open Access Journals (Sweden)

    Nickos Vezos

    2007-03-01

    Full Text Available The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05, the backward hand displacement relative to the water (t9 = 2.471; p<0.05 and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05. On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05 and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05 were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing

  17. Breathing Difficulties

    Science.gov (United States)

    ... symptoms. Symptoms associated with weak respiratory muscles: Air “hunger” (gasping, labored breathing) with an without activity Fatigue ... Start your own fundraising event & help create a world without ALS Start an Event Site Map | Press ...

  18. Double blind randomised controlled trial of two different breathing techniques in the management of asthma

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic‐Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-01-01

    Background Previous studies have shown that breathing techniques reduce short acting β2 agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non‐specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. Methods After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Results Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Conclusion Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non‐specific upper body exercises. PMID:16517572

  19. 13C mixed triglyceride breath test: a noninvasive method to assess lipase activity in children.

    Science.gov (United States)

    van Dijk-van Aalst, K; Van Den Driessche, M; van Der Schoor, S; Schiffelers, S; van't Westeinde, T; Ghoos, Y; Veereman-Wauters, G

    2001-05-01

    Results from the 13C mixed triglyceride (MTG) breath test correlate with duodenal lipase activity in adults. This noninvasive test is a potential screening and diagnostic tool for children with fat malabsorption. The aim of this study was to adapt the methodology of the MTG breath test to study test meals and sampling methods and to define normal values for healthy children of all age groups; premature and full-term infants have similar pancreatic lipase deficiencies. After parental consent was obtained, 12 premature infants ( 2 kg), 12 full-term infants (1-6 months old), 20 children (3-10 years old), and 20 teenagers (11-17 years old) were tested. All children were thriving well, had no gastrointestinal or respiratory problems, and had not received any medication that contained natural 13C. For the premature and full-term infants, a formula was prepared that had a low and stable natural 13C content mixed with 100 mg 13C-labeled MTG (1,3-distearyl, 2-[13C-carboxyl] octanoyl glycerol) and 1 g polyethylene-glycol 3350. The best accepted test meal for children over 3 years old was a slice of white bread with 5 g butter and 15 g chocolate paste, mixed with 250 mg 13C-labeled MTG, and a glass of 100 mL whole-fat milk. Children over 3 years old were able to blow through a straw in a vacutainer for collecting the breath samples. In children under 3 years old, expired air was collected by aspirating breath via a nasal prong. Carbon dioxide production was calculated according to weight, age, and sex. For healthy pediatric control participants, the mean values for cumulative excretion of 13CO2 as a percentage of the administered dose after 6 hours were 23.9 +/- 5.2% in premature infants, 31.9 +/- 7.7% in full-term infants, 32.5 +/- 5.3% in children, and 28.0 +/- 5.4% in teenagers. The mean value for healthy adults is 35.6% with a lower reference limit of 22.8%. Age-specific test meals and breath-sampling techniques for the MTG breath test were defined. The mean values for

  20. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    Science.gov (United States)

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  1. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    OpenAIRE

    Arden-Close, E; Yardley, L; Kirby, S; Thomas, M; Bruton, A

    2017-01-01

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retr...

  2. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    International Nuclear Information System (INIS)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu

    1999-01-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3±0.2 l/min in controls vs 1.0±0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0±0.2 l/min in controls vs 0.9±0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5±0.2 l/min in controls vs 1.1±0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6±8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5±4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8±9.4% vs +5.9±11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly physiologic conditions

  3. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu [Saiseikai Wakakusa Hospital, Yakohama (Japan)

    1999-07-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3{+-}0.2 l/min in controls vs 1.0{+-}0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0{+-}0.2 l/min in controls vs 0.9{+-}0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5{+-}0.2 l/min in controls vs 1.1{+-}0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6{+-}8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5{+-}4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8{+-}9.4% vs +5.9{+-}11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly

  4. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    Science.gov (United States)

    Arden-Close, Emily; Yardley, Lucy; Kirby, Sarah; Thomas, Mike; Bruton, Anne

    2017-10-05

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retraining delivered by digital versatile disc (DVD) or face-to-face sessions with a respiratory physiotherapist) took part in semi-structured telephone interviews about their experiences. Interviews were analysed using thematic analysis. Breathing retraining was perceived positively as a method of asthma management. Motivations for taking part included being asked, to enhance progress in research, to feel better/reduce symptoms, and to reduce medication. Participants were positive about the physiotherapist, liked having the materials tailored, found meetings motivational, and liked the DVD and booklet. The impact of breathing retraining following regular practice included increased awareness of breathing and development of new habits. Benefits of breathing retraining included increased control over breathing, reduced need for medication, feeling more relaxed, and improved health and quality of life. Problems included finding time to practice the exercises, and difficulty mastering techniques. Breathing retraining was acceptable and valued by almost all participants, and many reported improved wellbeing. Face to face physiotherapy was well received. However, some participants in the DVD group mentioned being unable to master techniques. PATIENTS RECEPTIVE TO BREATHING RETRAINING: Patients with asthma taught how to change their unconscious breathing patterns generally like non-pharmacological interventions. Researchers in the UK, led by Mike Thomas from the University of Southampton

  5. Afternoon serum-melatonin in sleep disordered breathing.

    Science.gov (United States)

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  6. The role of CO2 and central chemoreception in the control of breathing in the fetus and the neonate

    Science.gov (United States)

    Darnall, Robert A.

    2010-01-01

    Central chemoreception is active early in development and likely drives fetal breathing movements, which are influenced by a combination of behavioral state and powerful inhibition. In the premature human infant and newborn rat ventilation increases in response to CO2; in the rat the sensitivity of the response increases steadily after ~P12. The premature human infant is more vulnerable to instability than the newborn rat and exhibits periodic breathing that is augmented by hypoxia and eliminated by breathing oxygen or CO2 or the administration of respiratory stimulants. The sites of central chemoreception active in the fetus are not known, but may involve the parafacial respiratory group which may be a precursor to the adult RTN. The fetal and neonatal rat brainstem spinal-cord preparations promise to provide important information about central chemoreception in the developing rodent and will increase our understanding of important clinical problems, including The Sudden Infant Death Syndrome, Congenital Central Hypoventilation Syndrome, and periodic breathing and apnea of prematurity. PMID:20399912

  7. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  8. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Directory of Open Access Journals (Sweden)

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  9. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    Science.gov (United States)

    2016-12-07

    advantages over rocket - based systems for space access vehicles. The major advantage of using air-breathing engine is that the extra oxidizer is not...sideslip angle (β) is calculated as Vt = p u2 + v2 +w2, α= t an−1 ( wu ), β= si n−1 ( vVt ) The rotational dynamic equations of AHV are given as Ṗ = c1QR...inverse controller for hypersonic vehicle. In 2010 International Conference on Information, Networking and Automation (ICINA), volume 2, pages V2 –240

  10. Robust adaptive multivariable higher-order sliding mode flight control for air-breathing hypersonic vehicle with actuator failures

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-10-01

    Full Text Available This article proposes an adaptive multivariable higher-order sliding mode control for the longitudinal model of an air-breathing vehicle under system uncertainties and actuator failures. Firstly, a fast finite-time control law is designed for a chain of integrators. Secondly, based on the input/output feedback linearization technique, the system uncertainty and external disturbances are modeled as additive certainty and the actuator failures are modeled as multiplicative uncertainty. By using the proposed fast finite-time control law, a robust multivariable higher-order sliding mode control is designed for the air-breathing hypersonic vehicle with actuator failures. Finally, adaptive laws are proposed for the adaptation of the parameters in the robust multivariable higher-order sliding mode control. Thus, the bounds of the uncertainties are not needed in the control system design. Simulation results show the effectiveness of the proposed robust adaptive multivariable higher-order sliding mode control.

  11. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    International Nuclear Information System (INIS)

    Mistry, Nilesh N.; Diwanji, Tejan; Shi, Xiutao; Pokharel, Sabin; Feigenberg, Steven; Scharf, Steven M.; D'Souza, Warren D.

    2013-01-01

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R 2 of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance

  12. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Diwanji, Tejan; Shi, Xiutao [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Pokharel, Sabin [Morgan State University, Baltimore, Maryland (United States); Feigenberg, Steven [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Scharf, Steven M. [Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  13. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  14. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability.

    Science.gov (United States)

    Bloomfield, D M; Magnano, A; Bigger, J T; Rivadeneira, H; Parides, M; Steinman, R C

    2001-03-01

    R-R interval variability (RR variability) is increasingly being used as an index of autonomic activity. High-frequency (HF) power reflects vagal modulation of the sinus node. Since vagal modulation occurs at the respiratory frequency, some investigators have suggested that HF power cannot be interpreted unless the breathing rate is controlled. We hypothesized that HF power during spontaneous breathing would not differ significantly from HF power during metronome-guided breathing. We measured HF power during spontaneous breathing in 20 healthy subjects and 19 patients with heart disease. Each subject's spontaneous breathing rate was determined, and the calculation of HF power was repeated with a metronome set to his or her average spontaneous breathing rate. There was no significant difference between the logarithm of HF power measured during spontaneous and metronome-guided breathing [4.88 +/- 0.29 vs. 5.29 +/- 0.30 ln(ms(2)), P = 0.32] in the group as a whole and when patients and healthy subjects were examined separately. We did observe a small (9.9%) decrease in HF power with increasing metronome-guided breathing rates (from 9 to 20 breaths/min). These data indicate that HF power during spontaneous and metronome-guided breathing differs at most by very small amounts. This variability is several logarithmic units less than the wide discrepancies observed between healthy subjects and cardiac patients with a heterogeneous group of cardiovascular disorders. In addition, HF power is relatively constant across the range of typical breathing rates. These data indicate that there is no need to control breathing rate to interpret HF power when RR variability (and specifically HF power) is used to identify high-risk cardiac patients.

  15. Deep breathing exercises with positive expiratory pressure at a higher rate improve oxygenation in the early period after cardiac surgery--a randomised controlled trial.

    Science.gov (United States)

    Urell, Charlotte; Emtner, Margareta; Hedenström, Hans; Tenling, Arne; Breidenskog, Marie; Westerdahl, Elisabeth

    2011-07-01

    In addition to early mobilisation, a variety of breathing exercises are used to prevent postoperative pulmonary complications after cardiac surgery. The optimal duration of the treatment is not well evaluated. The aim of this study was to determine the effect of 30 versus 10 deep breaths hourly, while awake, with positive expiratory pressure on oxygenation and pulmonary function the first days after cardiac surgery. A total of 181 patients, undergoing cardiac surgery, were randomised into a treatment group, performing 30 deep breaths hourly the first postoperative days, or into a control group performing 10 deep breaths hourly. The main outcome measurement arterial blood gases and the secondary outcome pulmonary function, evaluated with spirometry, were determined on the second postoperative day. Preoperatively, both study groups were similar in terms of age, SpO(2), forced expiratory volume in 1s and New York Heart Association classification. On the second postoperative day, arterial oxygen tension (PaO(2)) was 8.9 ± 1.7 kPa in the treatment group and 8.1 ± 1.4 kPa in the control group (p = 0.004). Arterial oxygen saturation (SaO(2)) was 92.7 ± 3.7% in the treatment group and 91.1 ± 3.8% in the control group (p = 0.016). There were no differences in measured lung function between the groups or in compliance to the breathing exercises. Compliance was 65% of possible breathing sessions. A significantly increased oxygenation was found in patients performing 30 deep breaths the first two postoperative days compared with control patients performing 10 deep breaths hourly. These results support the implementation of a higher rate of deep breathing exercises in the initial phase after cardiac surgery. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  16. Airflow Characteristics at the Breathing Zone of a Seated Person

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Bolashikov, Zhecho Dimitrov; Nagano, Hideaki

    2011-01-01

    A method for active control over the interaction between the free convection flow around occupant‘s body and locally applied airflow from front on the velocity field at the breathing zone of a seated person was studied. A workplace equipped with personalised ventilation (PV) generating flow from......) was installed below the table board, above the thighs of the manikin, and was used to exhaust the air of the free convection flow coming from the lower body parts of the manikin. The velocity field at the breathing zone was measured with Particle Image Velocimetry consisting of a dual cavity laser and two CCD...

  17. Controlled breathing with or without peppermint aromatherapy for postoperative nausea and/or vomiting symptom relief: a randomized controlled trial.

    Science.gov (United States)

    Sites, Debra S; Johnson, Nancy T; Miller, Jacqueline A; Torbush, Pauline H; Hardin, Janis S; Knowles, Susan S; Nance, Jennifer; Fox, Tara H; Tart, Rebecca Creech

    2014-02-01

    With little scientific evidence to support use of aromatherapy for postoperative nausea and/or vomiting (PONV) symptoms, this study evaluated controlled breathing with peppermint aromatherapy (AR) and controlled breathing alone (CB) for PONV relief. A single blind randomized control trial design was used. On initial PONV complaint, symptomatic subjects received either CB (n = 16) or AR (n = 26) intervention based on randomization at enrollment. A second treatment was repeated at 5 minutes if indicated. Final assessment occurred 10 minutes post initial treatment. Rescue medication was offered for persistent symptoms. Among eligible subjects, PONV incidence was 21.4% (42/196). Gender was the only risk factor contributing to PONV symptoms (P = .0024). Though not statistically significant, CB was more efficacious than AR, 62.5% versus 57.7%, respectively. CB can be initiated without delay as an alternative to prescribed antiemetics. Data also support use of peppermint AR in conjunction with CB for PONV relief. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  18. The effects of progressive muscular relaxation and breathing control technique on blood pressure during pregnancy

    Directory of Open Access Journals (Sweden)

    Mahboobeh Aalami

    2016-01-01

    Full Text Available Background: Hypertensive disorders in pregnancy are the main cause of maternal and fetal mortality; however, they have no definite effective treatment. The researchers aimed to study the effects of progressive muscular relaxation and breathing control technique on blood pressure (BP during pregnancy. Materials and Methods: This three-group clinical trial was conducted in Mashhad health centers and governmental hospitals. Sixty pregnant (after 20 weeks of gestational age women with systolic BP ≥ 135 mmHg or diastolic BP ≥ 85 mmHg were assigned to three groups. Progressive muscular relaxation and breathing control exercises were administered to the two experimental groups once a week in person and in the rest of the days by instructions given on a CD for 4 weeks. BP was checked before and after the interventions. BP was measured before and after 15 min subjects' waiting without any especial intervention in the control group. Results: After 4 weeks of intervention, the systolic (by a mean of 131.3 to 117.2, P = 0.001 and by a mean of 131.05 to 120.5, P = 0.004, respectively and diastolic (by a mean of 79.2 to 72.3, P = 0.001 and by a mean of 80.1 to 76.5, P = 0.047, respectively BPs were significantly decreased in progressive muscular relaxation and breathing control groups, but they were not statistically significant in the control group. Conclusions: The interventions were effective on decreasing systolic and diastolic BP to normal range after 4 weeks in both the groups. The effects of both the interventions were more obvious on systolic BP compared to diastolic BP.

  19. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  20. The effect of mouth breathing on chewing efficiency.

    Science.gov (United States)

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  1. MRI-based volumetric assessment of cardiac anatomy and dose reduction via active breathing control during irradiation for left-sided breast cancer

    International Nuclear Information System (INIS)

    Krauss, Daniel J.; Kestin, Larry L.; Raff, Gilbert; Yan Di; Wong, John; Gentry, Ralph; Letts, Nicola; Vargas, Carlos E.; Martinez, Alvaro A.; Vicini, Frank A.

    2005-01-01

    Purpose: Heart dose-volume analysis using computed tomography (CT) is limited because of motion artifact and poor delineation between myocardium and ventricular space. We used dedicated cardiac magnetic resonance imaging (MRI) to quantify exclusion of left ventricular (LV) myocardium via active breathing control (ABC) during left breast irradiation and to determine the correlation between irradiated whole heart and LV volumes. Methods and materials: Fifteen patients who completed adjuvant irradiation for early-stage left breast cancer participated. Treatment consisted of 45 Gy to the entire breast using ABC followed by a 16-Gy electron boost to the lumpectomy cavity. Patients underwent planning CT scans in free breathing (FB) and moderate deep inspiration breath hold (mDIBH). Electrocardiogram-gated cardiac MRI was performed in the treatment position using α-cradle immobilization. MRI scans were acquired in late diastole (LD), mid-diastole (MD), and systole (S) for both FB and mDIBH. After image fusion with the patients' radiation therapy planning CT scan, MRI LV volumes were defined for the three examined phases of the cardiac cycle, and comparative dose-volume analysis was performed. Results: Cardiac volume definition was found to differ significantly because of combinations of respiratory and intrinsic heart motion. The fraction of LV myocardium receiving 50% (22.5 Gy) of the prescribed whole breast dose (V 22.5 ) was reduced by 85.3%, 91.8%, and 94.6% via ABC for LD, MD, and S, respectively. Linear regression revealed strong correlation between MRI-defined whole heart and LV V 22.5 reduction via ABC, suggesting that LV myocardium accounts for up to approximately 50% of the excluded heart volume through this technique. Significant but weaker correlations were noted between CT-defined whole heart and LV V 22.5 reductions with marked variability in the measurements of patients with larger amounts of heart in the treatment field. Conclusions: Cardiac MRI

  2. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    Science.gov (United States)

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  3. Simultaneous Analysis of Sensor Data for Breath Control in Respiratory Air

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-04-01

    Full Text Available There is a broad field of applications of breath monitoring in human health care, medical applications and alcohol control. In this report, an innovative mobile sensor system for breath control in respiratory air called AGaMon will be introduced. The sensor system is able to recognize a multitude of different gases like ethanol (which is the leading component of alcoholic drinks, H2S (which is the leading component for halitosis, H2 (which is the leading component for dyspepsia and food intolerance, NO (which is the leading component for asthma or acetone (which is the leading component for diabetes, thus ,covering almost all significant aspects. An innovative calibration and evaluation procedure called SimPlus was developed which is able to evaluate the sensor data simultaneously. That means, SimPlus is able to identify the samples simultaneously; for example, whether the measured sample is ethanol or another substance under consideration. Furthermore, SimPlus is able to determine the concentration of the identified sample. This will be demonstrated in this report for the application of ethanol, H2, acetone and the binary mixture ethanol-H2. It has been shown that SimPlus could identify the investigated gases and volatile organic compounds (VOCs very well and that the relative analysis errors were smaller than 10% in all considered applications.

  4. Breath acetone concentration; biological variability and the influence of diet

    International Nuclear Information System (INIS)

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, Alžběta; Chippendale, Thomas W E; Smith, David

    2011-01-01

    Previous measurements of acetone concentrations in the exhaled breath of healthy individuals and the small amount of comparable data for individuals suffering from diabetes are briefly reviewed as a prelude to the presentation of new data on the sporadic and wide variations of breath acetone that occur in ostensibly healthy individuals. Data are also presented which show that following a ketogenic diet taken by eight healthy individuals their breath acetone concentrations increased up to five times over the subsequent 6 h. Similarly, the breath acetone increased six and nine times when a low carbohydrate diet was taken by two volunteers and remained high for the several days for which the diet was continued. These new data, together with the previous data, clearly indicate that diet and natural intra-individual biological and diurnal variability result in wide variations in breath acetone concentration. This places an uncertainty in the use of breath acetone alone to monitor blood glucose and glycaemic control, except and unless the individual acts as their own control and is cognizant of the need for dietary control. (note)

  5. Medical Issues: Breathing

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common ...

  6. [Likeness between respiratory responses on CO2 in conditions of natural breathing and voluntary-controlled mechanical ventilation].

    Science.gov (United States)

    Pogodin, M A; Granstrem, M P; Dimitrienko, A I

    2007-04-01

    We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.

  7. Sensing the effects of mouth breathing by using 3-tesla MRI

    Science.gov (United States)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  8. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  9. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    Science.gov (United States)

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  10. Double-blind, placebo-controlled trial on the effect of piracetam on breath-holding spells.

    Science.gov (United States)

    Sawires, Happy; Botrous, Osama

    2012-07-01

    Breath-holding spells (BHS) are apparently frightening events occurring in otherwise healthy children.The aim of this study was to evaluate the efficacy of piracetam in the treatment of breath-holding spells. Forty patients with BHS (who were classified into two groups)were involved in a double-blinded placebo-controlled prospective study. Piracetam was given to group A while group B received placebo. Patients were followed monthly for a total period of 4 months. The numbers of attacks/month before and monthly after treatment were documented, and the overall number of attacks/month after treatment was calculated in both groups. The median number of attacks/month before treatment in the two groups was 5.5 and 5,respectively, while after the first month of treatment, it was 2 and 5, respectively. The median overall number of attacks/month after treatment in both groups was 1 and 5, respectively.There was a significant decline of number of attacks after piracetam treatment compared to placebo (p valuepiracetam throughout the study period. In conclusion, piracetam is a safe and effective drug for the treatment of breath-holding spells in children.

  11. Activity calibration in breath test for diagnosis of Helicobacter pylori

    International Nuclear Information System (INIS)

    Wasilewka-Radwanska, M.; Pysklak, S.; Gilewicz-Wolter, J.; Kuc, T.; Jung, A.; Niziol, J.; Kopanski, J.; Micherdzinski, J.; Cienciala, A.

    1996-01-01

    Some technical and measurement problems of the breath test for diagnosis of Helicobacter pylori are briefly discussed. Calibrated results obtained for population of 108 cases indicate difference between HP+ (infected with Helicobacter pylori) and HP- (non infected with Helicobacter pylori) in exhaled 14 C activity not less than 3.9 kBq while the lower limit for HP+ cases was set at 6.8 kBq at the detection limit: 0.9 Bq/mmol of CO 2 . It was estimated that in exhalation way up to 29% of the taken activity was removed in HP+ cases during first 35 minutes. Radiation hazard for the patient system is negligibly small - dose equipment not exceeds 0.29% of the natural (environmental) yearly exposure. (author)

  12. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  13. Synthesis of ¹³C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity.

    Science.gov (United States)

    Mitome, Hidemichi; Sugiyama, Erika; Sato, Hitoshi; Akira, Kazuki

    2014-01-01

    (13)C-Labeled lidocaine, 2-di[1-(13)C]ethylamino-N-(2,6-dimethylphenyl)acetamide (1), was synthesized from [1-(13)C]acetic acid in six steps, as a probe for a breath test to evaluate in vivo cytochrome P450 activity. The measurement of (13)CO2 in breath was successfully performed following oral administration of (13)C-lidocaine 1 to mice.

  14. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Senthilkumar [Madurai Medical College ' Govt. Rajaji Hospital, Madurai (India)

    2014-06-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  15. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    International Nuclear Information System (INIS)

    Shanmugam, Senthilkumar

    2014-01-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  16. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  17. Altered Nocturnal Cardiovascular Control in Children With Sleep-Disordered Breathing.

    Science.gov (United States)

    El-Hamad, Fatima; Immanuel, Sarah; Liu, Xiao; Pamula, Yvonne; Kontos, Anna; Martin, James; Kennedy, Declan; Kohler, Mark; Porta, Alberto; Baumert, Mathias

    2017-10-01

    To assess cardiovascular control during sleep in children with sleep-disordered breathing (SDB) and the effect of adenotonsillectomy in comparison to healthy nonsnoring children. Cardiorespiratory signals obtained from overnight polysomnographic recordings of 28 children with SDB and 34 healthy nonsnoring children were analyzed. We employed an autoregressive closed-loop model with heart period (RR) and pulse transit time (PTT) as outputs and respiration as an external input to obtain estimates of respiratory gain and baroreflex gain. Mean and variability of PTT were increased in children with SDB across all stages of sleep. Low frequency power of RR and PTT were attenuated during non-rapid eye movement (REM) sleep. Baroreflex sensitivity was reduced in children with SDB in stage 2 sleep, while respiratory gain was increased in slow wave sleep. After adenotonsillectomy, these indices normalized in the SDB group attaining values comparable to those of healthy children. In children with mild-to-moderate SDB, vasomotor activity is increased and baroreflex sensitivity decreased during quiet, event-free non-REM sleep. Adenotonsillectomy appears to reverse this effect. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment.

    Science.gov (United States)

    Sivathamboo, Shobi; Perucca, Piero; Velakoulis, Dennis; Jones, Nigel C; Goldin, Jeremy; Kwan, Patrick; O'Brien, Terence J

    2018-04-01

    Epilepsy is a group of neurological conditions in which there is a pathological and enduring predisposition to generate recurrent seizures. Evidence over the last few decades suggests that epilepsy may be associated with increased sleep-disordered breathing, which may contribute towards sleep fragmentation, daytime somnolence, reduced seizure control, and cardiovascular-related morbidity and mortality. Chronic sleep-disordered breathing can result in loss of gray matter and cause deficits to memory and global cognitive function. Sleep-disordered breathing is a novel and independent predictor of sudden cardiac death and, as such, may be involved in the mechanisms leading to sudden unexpected death in epilepsy. Despite this, the long-term consequences of sleep-disordered breathing in epilepsy remain unknown, and there are no guidelines for screening or treating this population. There is currently insufficient evidence to indicate continuous positive airway pressure (CPAP) for the primary or secondary prevention of cardiovascular disease, and recent evidence has failed to show any reduction of fatal or nonfatal cardiovascular endpoints. Treatment of sleep-disordered breathing may potentially improve seizure control, daytime somnolence, and neurocognitive outcomes, but few studies have examined this relationship. In this review, we examine sleep-disordered breathing in epilepsy, and discuss the potential effect of epilepsy treatments. We consider the role of CPAP and other interventions for sleep-disordered breathing and discuss their implications for epilepsy management.

  19. Cardiorespiratory interactions during resistive load breathing.

    Science.gov (United States)

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  20. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Science.gov (United States)

    2010-01-01

    Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used. PMID:20187962

  1. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2010-02-01

    Full Text Available Abstract Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT guided hypofractionated radiotherapy with active breathing control (ABC for patients with non-small cell lung cancer (NSCLC or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR, superior-inferior (SI, anterior-posterior (AP directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20% grade1-2 acute pneumonitis, 3 (15% grade1 acute esophagitis, 2 (10% grade1 late pneumonitis and 1 (5% grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used.

  2. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    International Nuclear Information System (INIS)

    Shen, Yali; Zhang, Hong; Wang, Jin; Zhong, Renming; Jiang, Xiaoqing; Xu, Qinfeng; Wang, Xin; Bai, Sen; Xu, Feng

    2010-01-01

    To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used

  3. Psychological predictors of the antihypertensive effects of music-guided slow breathing.

    Science.gov (United States)

    Modesti, Pietro Amedeo; Ferrari, Antonella; Bazzini, Cristina; Costanzo, Giusi; Simonetti, Ignazio; Taddei, Stefano; Biggeri, Annibale; Parati, Gianfranco; Gensini, Gian Franco; Sirigatti, Saulo

    2010-05-01

    The possibility that daily sessions of music-guided slow breathing may reduce 24-h ambulatory blood pressure (ABP), and predictors of efficacy were explored in a randomized, placebo-controlled trial with parallel design. Age-matched and sex-matched hypertensive patients were randomized to music-guided slow breathing exercises (4-6 breaths/min; 1: 2 ratio of inspiration: expiration duration) (Intervention; n = 29) or to control groups who were thought to relax while either listening to slow music (Control-M; n = 26) or reading a book (Control-R; n = 31). At baseline and at follow-up visits (1 week and 1, 3 and 6 months), ABP monitoring was performed. At mixed model analysis, intervention was associated with a significant reduction of 24-h (P = 0.001) and night-time (0100-0600 h) (P music-guided slow breathing significantly reduce 24-h systolic ABP, and psychological predictors of efficacy can be identified.

  4. Effects of Controlled Breathing, With or Without Aromatherapy, in the Treatment of Postoperative Nausea.

    Science.gov (United States)

    Cronin, Sherill Nones; Odom-Forren, Jan; Roberts, Holli; Thomas, Melissa; Williams, Sandy; Wright, Margaret Imelda

    2015-10-01

    The purpose of this study was to compare the effectiveness of controlled breathing (CB), with and without aromatherapy (isopropyl alcohol [IPA]), in the treatment of postoperative nausea (PON) in adult females undergoing elective outpatient laparoscopic procedures. A prospective randomized two-group quasi-experimental design was used. A convenience sample was used. Patients were consented and assigned to either a control (CB) or treatment (IPA) group. Symptomatic patients rated nausea severity before and at 2 and 5 minutes after receiving either CB or CB with IPA. Complete data for one episode of nausea were obtained on 82 patients (41 in each group). Results showed that although nausea severity decreased significantly over time, there was no significant difference in PON treatment effectiveness between the two groups, nor was there a difference in requests for rescue medications. Patients who experience PON should be encouraged to take slow deep breaths as an initial response to symptoms. This approach has no side effects or costs and could also aid the patient to self-manage symptoms after discharge. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  5. Effects of breathing exercises on lung capacity and muscle activities of elderly smokers

    Science.gov (United States)

    Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon

    2016-01-01

    [Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength. PMID:27390394

  6. Effects of breathing exercises on lung capacity and muscle activities of elderly smokers.

    Science.gov (United States)

    Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon

    2016-06-01

    [Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength.

  7. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  8. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  9. Perspective: Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups

    Science.gov (United States)

    A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breat...

  10. Theme and variations: amphibious air-breathing intertidal fishes.

    Science.gov (United States)

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  11. 14C-urea breath test for the detection of Helicobacter pylori

    NARCIS (Netherlands)

    Veldhuyzen van Zanten, S. J.; Tytgat, K. M.; Hollingsworth, J.; Jalali, S.; Rshid, F. A.; Bowen, B. M.; Goldie, J.; Goodacre, R. L.; Riddell, R. H.; Hunt, R. H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14C-urea breath test which uses 5 microCi 14C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared

  12. The ins and outs of breath holding: simple demonstrations of complex respiratory physiology.

    Science.gov (United States)

    Skow, Rachel J; Day, Trevor A; Fuller, Jonathan E; Bruce, Christina D; Steinback, Craig D

    2015-09-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology behind breath-hold duration. These activities require minimal equipment and are easily adapted to small-group demonstrations or a larger-group inquiry format where students can design a protocol and collect and analyze data from their classmates. Specifically, breath-hold duration is measured during a number of maneuvers, including after end expiration, end inspiration, voluntary prior hyperventilation, and inspired hyperoxia. Further activities illustrate the potential contribution of chemoreflexes through rebreathing and repeated rebreathing after a maximum breath hold. The outcome measures resulting from each intervention are easily visualized and plotted and can comprise a comprehensive data set to illustrate and discuss complex and integrated cardiorespiratory physiology. Copyright © 2015 The American Physiological Society.

  13. Off-line breath acetone analysis in critical illness.

    Science.gov (United States)

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  14. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.

    Science.gov (United States)

    Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato

    2014-06-01

    On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.

  15. Concise Neural Nonaffine Control of Air-Breathing Hypersonic Vehicles Subject to Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Xiangwei Bu

    2017-01-01

    Full Text Available In this paper, a novel simplified neural control strategy is proposed for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV directly using nonaffine models instead of affine ones. For the velocity dynamics, an adaptive neural controller is devised based on a minimal-learning parameter (MLP technique for the sake of decreasing computational loads. The altitude dynamics is rewritten as a pure feedback nonaffine formulation, for which a novel concise neural control approach is achieved without backstepping. The special contributions are that the control architecture is concise and the computational cost is low. Moreover, the exploited controller possesses good practicability since there is no need for affine models. The semiglobally uniformly ultimate boundedness of all the closed-loop system signals is guaranteed via Lyapunov stability theory. Finally, simulation results are presented to validate the effectiveness of the investigated control methodology in the presence of parametric uncertainties.

  16. Measuring breath acetone for monitoring fat loss: Review.

    Science.gov (United States)

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  17. Practical recommendations for breathing-adapted radiotherapy

    International Nuclear Information System (INIS)

    Simon, L.; Giraud, P.; Rosenwald, J.C.; Dumas, J.L.; Lorchel, F.; Marre, D.; Dupont, S.; Varmenot, N.; Ginestet, C.; Caron, J.; Marchesi, V.; Ferreira, I.; Garcia, R.

    2007-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  18. Air-breathing behavior, oxygen concentrations, and ROS defense in the swimbladders of two erythrinid fish, the facultative air-breathing jeju, and the non-air-breathing traira during normoxia, hypoxia and hyperoxia.

    Science.gov (United States)

    Pelster, Bernd; Wood, Chris M; Jung, Ellen; Val, Adalberto L

    2018-05-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two neighboring genera from the family of erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized, and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Measurement of swimbladder oxygen partial pressure (PO 2 ) of fish kept at 26 °C in normoxic, hyperoxic (28-32 mg O 2 L - 1 ) or hypoxic (1-1.5 mg O 2 L - 1 ) water revealed constant values in traira swimbladder. Under normoxic conditions in the jeju swimbladder PO 2 was higher than in traira, and the PO 2 significantly increased under hyperoxic conditions, even in the absence of air breathing. In jeju, air-breathing activity increased significantly under hypoxic conditions. Hypoxic air-breathing activity was negatively correlated to swimbladder PO 2 , indicating that the swimbladder was intensely used for gas exchange under these conditions. In traira, the capacity of the ROS defense system, as assessed by measurement of activities of enzymes involved in ROS degradation and total glutathione (GSH + GSSG) concentration, was elevated after 4 h of hyperoxic and/or hypoxic exposure, although swimbladder PO 2 was not affected. In jeju, experiencing a higher variability in swimbladder PO 2 due to the air-breathing activity, only a reduced responsiveness of the ROS defense system to changing environmental PO 2 was detected.

  19. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: A quality improvement project.

    Science.gov (United States)

    Glenski, Todd A; Diehl, Carrie; Clopton, Rachel G; Friesen, Robert H

    2017-09-01

    Anesthesia machines have evolved to deliver desired tidal volumes more accurately by measuring breathing circuit compliance during a preuse self-test and then incorporating the compliance value when calculating expired tidal volume. The initial compliance value is utilized in tidal volume calculation regardless of whether the actual compliance of the breathing circuit changes during a case, as happens when corrugated circuit tubing is manually expanded after the preuse self-test but before patient use. We noticed that the anesthesia machine preuse self-test was usually performed on nonexpanded pediatric circuit tubing, and then the breathing circuit was subsequently expanded for clinical use. We aimed to demonstrate that performing the preuse self-test in that manner could lead to incorrectly displayed tidal volume on the anesthesia machine monitor. The goal of this quality improvement project was to change the usual practice and improve the accuracy of displayed tidal volume in infants undergoing general anesthesia. There were four stages of the project: (i) gathering baseline data about the performance of the preuse self-test and using infant and adult test lungs to measure discrepancies of displayed tidal volumes when breathing circuit compliance was changed after the initial preuse self-test; (ii) gathering clinical data during pressure-controlled ventilation comparing anesthesia machine displayed tidal volume with actual spirometry tidal volume in patients less than 10 kg before (machine preuse self-test performed while the breathing circuit was nonexpanded) and after an intervention (machine preuse self-test performed after the breathing circuit was fully expanded); (iii) performing department-wide education to help implement practice change; (iv) gathering postintervention data to determine the prevalence of proper machine preuse self-test. At constant pressure-controlled ventilation through fully expanded circuit tubing, displayed tidal volume was 83

  20. Association of oral breathing with dental malocclusions and general health in children.

    Science.gov (United States)

    Jiménez, Emilio L; Barrios, Rocío; Calvo, Juan C; de la Rosa, Maria T; Campillo, José S; Bayona, José C; Bravo, Manuel

    2017-06-01

    The aims of this study were to analyze the association of oral breathing with dental malocclusions and aspects of general health such as acute illnesses, oxygen saturation in blood and its possible implication in the process of nutrition. A prevalence analytic study was carried out. Five dentists explored to children between 6 and 12 years and measured their oxygen saturation. Parents completed a questionnaire of 11 items about general health (colds, ear infections, tonsillitis and taking antibiotics) and the food preferences of their children. At the end, children were classified in oral breathing group (prevalence cases) or nasal breathing group (controls). There were statistical differences between cases (452 children) and controls (752 children) in the facial morphometric measurements. Oral breathing children had statistically less percentage of oxygen saturation than controls (92.3±3.3% versus 96.5±2.3%), took less time to have lunch and preferred less consistent and sugary food. Cases had had more prevalence of pathologies in the last year and of taking the antibiotics. This group also had higher prevalence of allergies compared with controls group (POral breathing is significantly associated with specific dental malocclusions and important aspects of general health such as oxygen saturation and the nutrition. On the same line, oral breathing is related to a significantly higher prevalence of allergies and a significantly more likely getting sick and taking medication.

  1. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    Science.gov (United States)

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    Science.gov (United States)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  3. Sex differences in sleep disordered breathing in adults.

    Science.gov (United States)

    Lozo, Tijana; Komnenov, Dragana; Badr, M Safwan; Mateika, Jason H

    2017-11-01

    The prevalence of sleep disordered breathing is greater in men compared to women. This disparity could be due to sex differences in the diagnosis and presentation of sleep apnea, and the pathophysiological mechanisms that instigate this disorder. Women tend to report more non-typical symptoms of sleep apnea compared to men, and the presentation of apneic events are more prevalent in rapid compared to non-rapid eye movement sleep. In addition, there is evidence of sex differences in upper airway structure and mechanics and in neural mechanisms that impact on the control of breathing. The purpose of this review is to summarize the literature that addresses sex differences in sleep-disordered breathing, and to discuss the influence that upper airway mechanics, chemoreflex properties, and sex hormones have in modulating breathing during sleep in men and women. Published by Elsevier B.V.

  4. Study on the feasibility of intensity-modulated treatments with breath control; Estudio sobre la viabilidad de tratamientos de intensidad modulada con control respiratorio

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrrilla, J.; Minambres Moro, A.

    2011-07-01

    The present work is to study the feasibility of IMRT treatments, both static and dynamic, with breath control offered by BrainLAB gating system and to quantify how the shadows of the measured dose profiles in case of respiratory motion are distorted for the case of NO movement.

  5. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    International Nuclear Information System (INIS)

    Su, T.-H.; Jin, E.-H.; Shen, H.; Zhang, Y.; He, W.

    2012-01-01

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ( 1 H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using 1 H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=–2.646, p = 0.008) and Cho peak visible status (Z=–2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9–4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p 1 H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. 1 H MRS during breath-holding acquisition is superior to that during free-breathing acquisition.

  6. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    Science.gov (United States)

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  7. Breathing pattern and head posture: changes in craniocervical angles.

    Science.gov (United States)

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  8. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  9. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  10. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  11. Awareness of breathing: the structure of language descriptors of respiratory sensations.

    Science.gov (United States)

    Petersen, Sibylle; Orth, Bernhard; Ritz, Thomas

    2008-01-01

    Recent research suggests that dyspnea is not a single sensation but a multidimensional construct reflected in different verbal descriptors that can provide useful diagnostic information. In this study superordinated clusters of dyspnea were investigated in combination with a dimensional approach. We examined the use of 20 respiratory symptom descriptors by healthy volunteers who completed a protocol of seven experimental conditions: Quiet breathing, breath holding, paced breathing, climbing stairs, resistive load breathing, voluntary hyperinflation, and voluntary hyperventilation. We analyzed the ratings of these descriptors with multidimensional scaling (MDS) and cluster analysis. While similarities with prior studies were found on a lower fusion level, we were able to demonstrate the usefulness of interpreting higher fusion levels with four clusters related to work of breathing, coordination, suffocation, and struggling for air, merging into two superordinated clusters, effort and air hunger that are compatible with widely accepted primary components of dyspnea. MDS results also suggested that future studies should consider further breathing sensations related to cognitive control of breathing.

  12. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    Science.gov (United States)

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  13. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing

    Directory of Open Access Journals (Sweden)

    Áron Kőszeghy

    2018-04-01

    Full Text Available The orbitofrontal cortex (OFC has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  14. What Causes Bad Breath?

    Science.gov (United States)

    ... Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  15. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  16. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy

    International Nuclear Information System (INIS)

    Eccles, Cynthia; Brock, Kristy K.; Bissonnette, Jean-Pierre; Hawkins, Maria; Dawson, Laura A.

    2006-01-01

    Purpose: To measure the intrabreath-hold liver motion and the intrafraction and interfraction reproducibility of liver position relative to vertebral bodies using an active breathing coordinator (ABC) in patients with unresectable liver cancer treated with hypofractionated stereotactic body radiation therapy (SBRT). Methods: Tolerability of ABC and organ motion during ABC was assessed using kV fluoroscopy in 34 patients. For patients treated with ABC, repeat breath-hold CT scans in the ABC breath-hold position were acquired at simulation to estimate the volumetric intrafraction reproducibility of the liver relative to the vertebral bodies. In addition, preceding each radiation therapy fraction, with the liver immobilized using ABC, repeat anteroposterior (AP) megavoltage verification images were obtained. Off-line alignments were completed to determine intrafraction reproducibility (from repeat images obtained before one treatment) and interfraction reproducibility (from comparisons of the final image for each fraction with the AP) of diaphragm position relative to vertebral bodies. For each image set, the vertebral bodies were aligned, and the resultant craniocaudal (CC) offset in diaphragm position was measured. Liver position during ABC was also evaluated from kV fluoroscopy acquired at the time of simulation, kV fluoroscopy at the time of treatment, and from MV beam's-eye view movie loops acquired during treatment. Results: Twenty-one of 34 patients were screened to be suitable for ABC. The average free breathing range of these patients was 13 mm (range, 5-1 mm). Fluoroscopy revealed that the average maximal diaphragm motion during ABC breath-hold was 1.4 mm (range, 0-3.4 mm). The MV treatment movie loops confirmed diaphragm stability during treatment. For a measure of intrafraction reproducibility, an analysis of 36 repeat ABC computed tomography (CT) scans in 14 patients was conducted. The average mean difference in the liver surface position was -0.9 mm, -0

  17. Cardiorespiratory and autonomic interactions during snoring related resistive breathing.

    Science.gov (United States)

    Mateika, J H; Mitru, G

    2001-03-15

    We hypothesized that blood pressure (BP) is less during snoring as compared to periods of non-snoring in non-apneic individuals. Furthermore, we hypothesized that this reduction may be accompanied by a simultaneous decrease in sympathetic (SNSA) and parasympathetic (PNSA) nervous system activity and an increase in heart rate (HR). N/A. N/A. N/A. The variables mentioned above in addition to breathing frequency were measured in 9 subjects during NREM sleep. In addition, the lowest systolic (SBP) and diastolic blood pressure (DBP) during inspiration and the highest SBP and DBP during expiration was determined breath-by-breath from segments selected from each NREM cycle. Heart rate variability was used as a marker of autonomic nervous system activity. Our results showed that BP during snoring decreased compared to non-snoring and the breath-by-breath BP analysis suggested that this difference may have been mediated by changes in intrathoracic pressure. In conjunction with the decrease in BP, SNSA decreased and HR increased however PNSA remained constant. Thus, a decrease in PNSA was likely not the primary mechanism responsible for the HR response. We conclude that BP responses and SNSA during snoring are similar to that reported previously in non-snoring individuals. However, the causal mechanisms maybe different and manifested in other measures such as HR. Thus, nocturnal cardiovascular and autonomic function maybe uniquely different in non-apneic snoring individuals.

  18. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  19. Breath in the technoscientific imaginary

    OpenAIRE

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentr...

  20. The Ins and Outs of Breath Holding: Simple Demonstrations of Complex Respiratory Physiology

    Science.gov (United States)

    Skow, Rachel J.; Day, Trevor A.; Fuller, Jonathan E.; Bruce, Christina D.; Steinback, Craig D.

    2015-01-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology…

  1. Analysis of breath volatile organic compounds in children with chronic liver disease compared to healthy controls.

    Science.gov (United States)

    Eng, Katharine; Alkhouri, Naim; Cikach, Frank; Patel, Nishaben; Yan, Chen; Grove, David; Lopez, Rocio; Rome, Ellen; Dweik, Raed A

    2015-04-20

    Breath testing is increasingly being used as a non-invasive diagnostic tool for disease states across medicine. The purpose of this study was to compare the levels of volatile organic compounds (VOCs) as measured by mass spectrometry in healthy children and children with chronic liver disease (CLD). Patients between the ages of 6 and 21 were recruited for the study. Control subjects were recruited from a general pediatric population during well-child visits, while patients with CLD were recruited from pediatric gastroenterology clinic visits. The diagnosis of CLD was confirmed by clinical, laboratory, and/or histologic data. A single exhaled breath was collected and analyzed by means of selected-ion flow-tube mass spectrometry per protocol. A total of 104 patients were included in the study (49 with CLD and 55 healthy controls). Of the patients with CLD, 20 had advanced liver fibrosis (F3-F4). In the CLD cohort, levels of exhaled 1-decene, 1-heptene, 1-octene and 3 methylhexane were found to be significantly higher when compared to the control population (p CLD patients when compared to controls (p CLD was excellent (AUROC = 0.97). Our study demonstrates that children with CLD have a unique pattern of exhaled VOCs. Utilization of a combination of these VOCs represents a promising non-invasive diagnostic tool and may provide further insight into the pathophysiologic processes and pathways leading to pediatric liver disease. Further analysis of these compounds in external cohorts are needed to validate our findings.

  2. Adaptive Neural Back-Stepping Control with Constrains for a Flexible Air-Breathing Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-01-01

    Full Text Available The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances.

  3. Treating hypertension with a device that slows and regularises breathing: a randomised, double-blind controlled study.

    Science.gov (United States)

    Schein, M H; Gavish, B; Herz, M; Rosner-Kahana, D; Naveh, P; Knishkowy, B; Zlotnikov, E; Ben-Zvi, N; Melmed, R N

    2001-04-01

    To examine the efficacy of a new device, which slows and regularises breathing, as a non-pharmacological treatment of hypertension and thus to evaluate the contribution of breathing modulation in the blood pressure (BP) reduction. Randomised, double-blind controlled study, carried out in three urban family practice clinics in Israel. Sixty-five male and female hypertensives, either receiving antihypertensive drug therapy or unmedicated. Four patients dropped out at the beginning of the study. Self treatment at home, 10 minutes daily for 8 consecutive weeks, using either the device (n = 32), which guides the user towards slow and regular breathing using musical sound patterns, or a Walkman, with which patients listened to quiet music (n = 29). Medication was unchanged 2 months prior to and during the study period. Systolic BP, diastolic BP and mean arterial pressure (MAP) changes from baseline. BP reduction in the device group was significantly greater than a predetermined 'clinically meaningful threshold' of 10.0, 5.0 and 6.7 mm Hg for the systolic BP, diastolic BP and MAP respectively (P = 0.035, P = 0.0002 and P = 0.001). Treatment with the device reduced systolic BP, diastolic BP and MAP by 15.2, 10.0 and 11.7 mm Hg respectively, as compared to 11.3, 5.6 and 7.5 mm Hg (P = 0.14, P = 0.008, P = 0.03) with the Walkman. Six months after treatment had stopped, diastolic BP reduction in the device group remained greater than the 'threshold' (P < 0.02) and also greater than in the walkman group (P = 0.001). The device was found to be efficacious in reducing high BP during 2 months of self-treatment by patients at home. Breathing pattern modification appears to be an important component in this reduction.

  4. A rapid non invasive L-DOPA-¹³C breath test for optimally suppressing extracerebral AADC enzyme activity - toward individualizing carbidopa therapy in Parkinson’s disease.

    Science.gov (United States)

    Modak, Anil; Durso, Raymon; Josephs, Ephraim; Rosen, David

    2012-01-01

    Peripheral carbidopa (CD) levels directly impact on central dopamine (DA) production in Parkinson disease (PD) through extracerebral inhibition of dopa decarboxylase (AADC) resulting in an increase in levodopa (LD) bioavailability. Recent data suggests that higher CD doses than those presently used in PD treatment may result in improved clinical response. Optimizing CD doses in individual patients may, therefore, result in ideal individualized treatment. A single center, randomized, double-blind study was carried out recruiting 5 Parkinson’s disease (PD) patients already on LD/CD and 1 treatment näve PD patient using stable isotope labeled LD-1-¹³C as a substrate for a noninvasive breath test to evaluate individual AADC enzyme activity. Each patient was studied five times, receiving 200 mg LD-¹³C at each visit along with one of five randomized CD doses (0, 25, 50, 100 and 200 mg). The metabolite ¹³CO₂ in breath was measured for evaluating AADC enzyme activity and plasma metabolite levels for LD-¹³C and homovanillic acid (HVA) were measured for 4 hours. HVA in plasma and ¹³CO₂ in breath are metabolic products of LD. We found a significant positive correlation of ¹³CO₂ DOB AUC0-240 with serum HVA AUC0-240 following the oral dose of LD-1-¹³C for all 5 doses of CD (r² = 0.9378). With increasing inhibition of AADC enzyme activity with CD, we observed an increase in the plasma concentration of LD.We found an inverse correlation of the 13CO2 DOB AUC with serum LD-¹³C AUC. Our studies indicate the optimal dose of CD for maximal suppression of AADC enzyme activity can be determined for each individual from ¹³CO₂ generation in breath. The LD-breath test can be a useful noninvasive diagnostic tool for evaluation of AADC enzyme activity using the biomarker ¹³CO₂ in breath, a first step in personalizing CD doses for PD patients.

  5. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    Science.gov (United States)

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  6. Efficacy of device-guided breathing for hypertension in blinded, randomized, active-controlled trials : a meta-analysis of individual patient data

    NARCIS (Netherlands)

    Landman, Gijs W. D.; van Hateren, Kornelis J. J.; van Dijk, Peter R.; Logtenberg, Susan J. J.; Houweling, Sebastiaan T.; Groenier, Klaas H.; Bilo, Henk J. G.; Kleefstra, Nanne

    IMPORTANCE: Device-guided breathing (DGB) is recommended by the American Heart Association for its blood pressure-lowering effects. Most previous studies that showed beneficial effects on blood pressure had low methodological quality and only investigated short-term blood pressure effects.

  7. Wellness through a comprehensive Yogic breathing program – A controlled pilot trial

    Directory of Open Access Journals (Sweden)

    Norlander Torsten

    2007-12-01

    Full Text Available Abstract Background Increasing rates of psychosocial disturbances give rise to increased risks and vulnerability for a wide variety of stress-related chronic pain and other illnesses. Relaxation exercises aim at reducing stress and thereby help prevent these unwanted outcomes. One of the widely used relaxation practices is yoga and yogic breathing exercises. One specific form of these exercises is Sudarshan Kriya and related practices (SK&P which are understood to have favourable effects on the mind-body system. The goal of this pilot study was to design a protocol that can investigate whether SK&P can lead to increased feeling of wellness in healthy volunteers. Methods Participants were recruited in a small university city in Sweden and were instructed in a 6-day intensive program of SK&P which they practiced daily for six weeks. The control group was instructed to relax in an armchair each day during the same period. Subjects included a total of 103 adults, 55 in the intervention (SK&P group and 48 in the control group. Various instruments were administered before and after the intervention. Hospital Anxiety Depression Scale measured the degree of anxiety and depression, Life Orientation Test measured dispositional optimism, Stress and Energy Test measured individual's energy and stress experiences. Experienced Deviation from Normal State measured the experience of altered state of consciousness. Results There were no safety issues. Compliance was high (only 1 dropout in the SK&P group, and 5 in the control group. Outcome measures appeared to be appropriate for assessing the differences between the groups. Subjective reports generally correlated with the findings from the instruments. The data suggest that participants in the SK&P group, but not the control group, lowered their degree of anxiety, depression and stress, and also increased their degree of optimism (ANOVA; p Conclusion These data indicate that the experimental protocol that is

  8. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    Science.gov (United States)

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  9. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  10. Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Spilak, Michal

    2014-01-01

    Inhaled air quality at a reduced supply of clean air was studied by controlling the airflow interaction at the breathing zone of a person using lobed jets as part of personalized ventilation (PV). Experiments were performed in a full-scale test room at 23°C (73.4°F) with a breathing thermal manikin...... seated at a workstation, with realistic free-convection flow around the body and a normal breathing cycle. The air in the room was mixed with tracer gas R134a. Clean air was supplied isothermally from three nozzles with circular, four-leafed clover, and six-edged star openings of 0.025 m (0.08 ft...... over the interaction between the inserted jets and the free convection flow was efficient. Over 80% clean PV air was measured in inhalation. The worst performing nozzle was the four-leafed clover: its best performance yielded 23% clean air inhalation, at the shortest distance and the highest velocity...

  11. Effects of age and physical activity on the autonomic control of heart rate in healthy men

    Directory of Open Access Journals (Sweden)

    R.C. Melo

    2005-09-01

    Full Text Available The effects of the aging process and an active life-style on the autonomic control of heart rate (HR were investigated in nine young sedentary (YS, 23 ± 2.4 years, 16 young active (YA, 22 ± 2.1 years, 8 older sedentary (OS, 63 ± 2.4 years and 8 older active (OA, 61 ± 1.1 years healthy men. Electrocardiogram was continuously recorded for 15 min at rest and for 4 min in the deep breathing test, with a breath rate of 5 to 6 cycles/min in the supine position. Resting HR and RR intervals were analyzed by time (RMSSD index and frequency domain methods. The power spectral components are reported in normalized units (nu at low (LF and high (HF frequency, and as the LF/HF ratio. The deep breathing test was analyzed by the respiratory sinus arrhythmia indices: expiration/inspiration ratio (E/I and inspiration-expiration difference (deltaIE. The active groups had lower HR and higher RMSSD index than the sedentary groups (life-style condition: sedentary vs active, P < 0.05. The older groups showed lower HFnu, higher LFnu and higher LF/HF ratio than the young groups (aging effect: young vs older, P < 0.05. The OS group had a lower E/I ratio (1.16 and deltaIE (9.7 bpm than the other groups studied (YS: 1.38, 22.4 bpm; YA: 1.40, 21.3 bpm; OA: 1.38, 18.5 bpm. The interaction between aging and life-style effects had a P < 0.05. These results suggest that aging reduces HR variability. However, regular physical activity positively affects vagal activity on the heart and consequently attenuates the effects of aging in the autonomic control of HR.

  12. 14C-urea breath test for the detection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Veldhuyzen van Zanten, S.J.; Tytgat, K.M.; Hollingsworth, J.; Jalali, S.; Rshid, F.A.; Bowen, B.M.; Goldie, J.; Goodacre, R.L.; Riddell, R.H.; Hunt, R.H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14 C-urea breath test which uses 5 microCi 14 C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared the outcome of the breath test to the results of histology and culture of endoscopically obtained gastric biopsies in 84 patients. The breath test discriminated well between the 50 positive patients and the 34 patients negative for Helicobacter pylori: the calculated sensitivity was 100%, specificity 88%, positive predictive value 93%, and negative predictive value 100%. Treatment with bismuth subsalicylate and/or ampicillin resulted in lower counts of exhaled 14 CO 2 which correlated with histological improvement in gastritis. The 14 C-urea breath test is a better gold standard for the detection of Helicobacter pylori than histology and/or culture

  13. Breath-hold duration in man and the diving response induced by face immersion.

    Science.gov (United States)

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  14. Improved State Feedback H∞ Control for Flexible Air-Breathing Hypersonic Vehicles on LMI Approach

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2017-01-01

    Full Text Available Focusing on a nonlinear longitudinal dynamical model for Air-breathing Hypersonic Flight Vehicles (AHFV, a linearized model on a nominal trim condition is proposed. To stabilize the flight of an AHFV in the presence of external disturbances and actuator uncertainties, a state feedback H∞ control is designed. With bounds on the uncertainties, a feedback stabilization problem is converted to an optimal control problem and the cost function is minimized by solving a set of linear matrix inequalities. Since uncertainties in the design of AHFV are inevitable, to make a comparison, a general H∞ robust controller is constructed by only considering the disturbances firstly. Then the results are extended by incorporating the actual existing uncertainties as well as the external disturbances in the AHFV system. Numerical simulation shows that the controller, which takes both disturbances and uncertainties into account, can effectively stabilize the AHFV system.

  15. Comprehensive yogic breathing program improves quality of life in patients with diabetes

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2012-01-01

    Full Text Available Objective: To assess the effect of a comprehensive yogic breathing program on glycemic control and quality of life (QOL in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Patients having HbA1c between 6 and 9% for at least 3 months with lifestyle modification and oral antidiabetic medication were included. They were followed-up and randomized at 6 months into two groups: one group receiving standard treatment of diabetes and the other group receiving standard treatment of diabetes and taught and told to regularly practice the comprehensive yogic breathing program (Sudarshan Kriya Yoga and Pranayam. Change in fasting and post-prandial blood sugars, glycated hemoglobin and QOL as assessed by the World Health Organization QOL WHOQOL BREF questionnaire were assessed. Results: There was a trend toward improvement in glycemic control in the group practicing the comprehensive yogic breathing program compared with the group following standard treatment alone, although this was not significant. There was significant improvement in physical, psychological and social domains and total QOL post-intervention in the group practicing the comprehensive yogic breathing program as compared with the group following standard treatment alone. Conclusion: There was significant improvement in the QOL and a non-significant trend toward improvement in glycemic control in the group practicing the comprehensive yogic breathing program compared with the group that was following standard treatment alone.

  16. Fractionated breath condensate sampling: H2O2 concentrations of the alveolar fraction may be related to asthma control in children

    Directory of Open Access Journals (Sweden)

    Trischler Jordis

    2012-02-01

    Full Text Available Abstract Background Asthma is a chronic inflammatory disease of the airways but recent studies have shown that alveoli are also subject to pathophysiological changes. This study was undertaken to compare hydrogen peroxide (H2O2 concentrations in different parts of the lung using a new technique of fractioned breath condensate sampling. Methods In 52 children (9-17 years, 32 asthmatic patients, 20 controls measurements of exhaled nitric oxide (FENO, lung function, H2O2 in exhaled breath condensate (EBC and the asthma control test (ACT were performed. Exhaled breath condensate was collected in two different fractions, representing mainly either the airways or the alveoli. H2O2 was analysed in the airway and alveolar fractions and compared to clinical parameters. Results The exhaled H2O2 concentration was significantly higher in the airway fraction than in the alveolar fraction comparing each single pair (p = 0.003, 0.032 and 0.040 for the whole study group, the asthmatic group and the control group, respectively. Asthma control, measured by the asthma control test (ACT, correlated significantly with the H2O2 concentrations in the alveolar fraction (r = 0.606, p = 0.004 but not with those in the airway fraction in the group of children above 12 years. FENO values and lung function parameters did not correlate to the H2O2 concentrations of each fraction. Conclusion The new technique of fractionated H2O2 measurement may differentiate H2O2 concentrations in different parts of the lung in asthmatic and control children. H2O2 concentrations of the alveolar fraction may be related to the asthma control test in children.

  17. Examination of dialysis patients with the aminophenazone breath test

    International Nuclear Information System (INIS)

    Heinrich, H.G.; Adler, D.; Hornak, H.; Wuenschmann, H.J.; Mayer, W.K.

    1989-01-01

    In 12 endstage kidney disease patients (8 without and 4 with liver diseases) the activities of cytochrome P 450 -dependent mixed functional oxidases system (MFO) of the liver were studied by using the 14 C-aminophenazone breath test before and after dialysis. The results showed that uremia seems to have a pressing influence on MFO activity. The activity was only significantly increased after dialysis in the group of patients without liver diseases. The MFO activity was reduced in patients with liver diseases. This is a restriction of the hepatic metabolic demethylation capacity. It is unclear if the 14 C-aminophenazone breath test in dialysis patients is qualified to estimate metabolic capacity of the liver. Differentiation between the influence of uremia and of the liver disease on the alteration of MFO activity cannot be made. (author)

  18. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Breath 14CO2 after intravenous administration of [14C]aminopyrine in liver diseases

    International Nuclear Information System (INIS)

    Pauwels, S.; Geubel, A.P.; Dive, C.; Beckers, C.

    1982-01-01

    The determination of of 14 CO2 in breath after oral administration of [ 14 C]aminopyrine has been proposed as a quantitative liver function test. In order to shorten the procedure and avoid misinterpretations related to variable rates of intestinal absorption, the [ 14 C]aminopyrine breath test (ABT) was performed after intravenous administration of [ 14 C]aminopyrine in 21 controls and 89 patients with biopsy-proven liver disease. The specific activity of the first hour sample corrected for body weight (SA1) was the most discriminant expression of breath data. The SA1 value, expressed as the percentage of the administered dose, was 0.86 +/- 0.1% (mean +/- SD) in controls and significantly less in patients (0.46 +/- 0.31%). Low values were observed in patients with untreated chronic active hepatitis (0.16 +/- 0.13%), alcoholic cirrhosis (0.2 +/ 0.15%0, and untreated postnecrotic cirrhosis (0.47 +/- 0.17%). In contrast, normal values were obtained in chronic persistent hepatitis (0.86 +/- 0.13%) and 58% of noncirrhotic alcoholic liver diseases (0.83 +/- 0.27%). The results of duplicate studies were reproducible and SA1 correlated with other conventional liver function tests, including 45-min BSP retention. Among these, ABT was the most sensitive screening test for the presence of cirrhosis, especially in alcoholic patients, where it allowed a sharp distinction between cirrhotic and noncirrhotic cases. The results obtained in chronic hepatitis suggested that ABT may provide a reliable index of the activity of the disease. In our hands, intravenous ABT, performed over a 1-hr period, was a fast, sensitive, and discriminant liver function test

  20. Dose-dependent social-cognitive effects of intranasal oxytocin delivered with novel Breath Powered device in adults with autism spectrum disorder: a randomized placebo-controlled double-blind crossover trial

    OpenAIRE

    Quintana, D S; Westlye, L T; Hope, S; N?rland, T; Elvs?shagen, T; D?rum, E; Rustan, ?; Valstad, M; Rezvaya, L; Lishaugen, H; Stens?nes, E; Yaqub, S; Smerud, K T; Mahmoud, R A; Djupesland, P G

    2017-01-01

    The neuropeptide oxytocin has shown promise as a treatment for symptoms of autism spectrum disorders (ASD). However, clinical research progress has been hampered by a poor understanding of oxytocin?s dose?response and sub-optimal intranasal delivery methods. We examined two doses of oxytocin delivered using a novel Breath Powered intranasal delivery device designed to improve direct nose-to-brain activity in a double-blind, crossover, randomized, placebo-controlled trial. In a randomized sequ...

  1. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  2. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  3. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  4. Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 - Dry Exercise

    Science.gov (United States)

    2016-01-01

    endurance times. 15. SUBJECT TERMS control of breathing, ventilation, CO2, carbon dioxide, hypercapnia, CO2 retention , dyspnea, exercise, performance...to be near his exercise capacity , until the subject could no longer continue. Subjects were asked to give scores of Relative Perceived Exertion (RPE...span gas (5% CO2 and 16% O2 in nitrogen). The pressure transducer outputs were compared to a water manometer. Data analysis Breath by breath

  5. A simple test of one minute heart rate variability during deep breathing for evaluation of sympathovagal imbalance in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Fareedabanu, A.B.

    2011-01-01

    Heart rate variability (HRV) refers to the magnitude of the fluctuation in the number of heart beats per minute in conjunction with respiration. HRV with deep breathing (HRVdb) has recently become a popular non-invasive research tool in cardiology. This study was carried out to determine and compare the HRV in patients with Type 2 DM with those of Non diabetic controls. Methods: Sixty diabetic patients attending out patient department in Karnataka Institute of Diabetology, Bangalore and 60 age-matched controls were enrolled. HRV was performed on all the subjects and the results obtained were compared between the groups. The One minute HRV was analysed during deep breathing and defined as the difference in beats/minute between the shortest and the longest heart rate interval measured by lead II electrocardiographic recording during six cycles of deep breathing. Results: Statistically significant decrease in mean minimal heart rate and 1 minute HRV (16.30 +- 6.42 vs 29.33 +- 8.39) was observed during deep breathing among Type 2 Diabetic patients on comparison with that of healthy controls. There was no significant difference in mean maximal heart rate between the groups. Conclusion: Significant decrease in HRV in Type 2 DM patients is suggestive of reduced parasympathetic activity or an imbalance between sympathetic and parasympathetic neural activity in them. Hence HRVdb provides a sensitive screening measure for parasympathetic dysfunction in many autonomic disorders. (author)

  6. Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs.

    Science.gov (United States)

    Trefz, Phillip; Kamysek, Svend; Fuchs, Patricia; Sukul, Pritam; Schubert, Jochen K; Miekisch, Wolfram

    2017-03-20

    Breath analysis not only holds great potential for the development of new non-invasive diagnostic methods, but also for the identification and follow up of drug levels in breath. This is of interest for both, forensic and medical science. On the one hand, the detection of drugs of abuse in exhaled breath-similar to the well-known breath alcohol tests-would be highly desirable as an alternative to blood or urine analysis in situations such as police controls for drugged driving. The non-invasive detection of drugs and their metabolites is thus of great interest in forensic science, especially since marijuana is becoming legalized in certain parts of the US and the EU. The detection and monitoring of medical drugs in exhaled breath without the need of drawing blood samples on the other hand, is of high relevance in the clinical environment. This could facilitate a more precise medication and enable therapy control without any burden to the patient. Furthermore, it could be a step towards personalized medicine. This review gives an overview of the current state of drug detection in breath, including both volatile and non-volatile substances. The review is divided into two sections. The first section deals with qualitative detection of drugs (drugs of abuse), while the second is related to quantitative drug detection (medical drugs). Chances and limitations are discussed for both aspects. The detection of the intravenous anesthetic propofol is presented as a detailed example that demonstrates the potential, requirements, pitfalls and limitations of therapeutic drug monitoring by means of breath analysis.

  7. Breathing thermal manikin for indoor environment assessment: Important characteristics and requirements

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2003-01-01

    Recently breathing thermal manikins have been developed and used for indoor environment measurement, evaluation and optimization as well as validation of Computational Fluid Dynamics (CFD) predictions of airflow around a human body. Advances in the assessment of occupants¿ thermal comfort...... and shape of body segments, control mode, breathing simulation, etc. are discussed and specified in this paper....

  8. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  9. /sup 14/C-D-galactose breath test for evaluation of liver function in patients with chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Caspary, W F; Schaffer, J

    1978-01-01

    D-galactose metabolism and demethylation of aminopyrine by healthy controls and patients with chronic active hepatitis (CAH) and cirrhosis (Ci), were assessed by a breath analysis technique measuring /sup 14/CO2 exhalation after oral ingestion of /sup 14/C-D-galactose or /sup 14/C-aminopyrine. Patients with CAH and Ci exhibited decreased /sup 14/CO2-exhalation rates following /sup 14/-D-galactose or /sup 14/C-aminopyrine. D-galactose oxidation capacity of the liver can be assessed by a breath analysis technique in analogy to the demethylating function for aminopyrine. The ordinary oral D-galactose tolerance test seems, however, superior in comparison to the /sup 14/C-D-galactose tolerance test, in discriminating between healthy controls and patients with chronic liver disease.

  10. The non-invasive 13C-methionine breath test detects hepatic mitochondrial dysfunction as a marker of disease activity in non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Banasch M

    2012-06-01

    Full Text Available Abstract Introduction Mitochondrial dysfunction plays a central role in the general pathogenesis of non-alcoholic fatty liver disease (NAFLD, increasing the risk of developing steatosis and subsequent hepatocellular inflammation. We aimed to assess hepatic mitochondrial function by a non-invasive 13C-methionine breath test (MeBT in patients with histologically proven NAFLD. Methods 118 NAFLD-patients and 18 healthy controls were examined by MeBT. Liver biopsy specimens were evaluated according to the NASH scoring system. Results Higher grades of NASH activity and fibrosis were independently associated with a significant decrease in cumulative 13C-exhalation (expressed as cPDR(%. cPDR1.5h was markedly declined in patients with NASH and NASH cirrhosis compared to patients with simple steatosis or borderline diagnosis (cPDR1.5h: 3.24 ± 1.12% and 1.32 ± 0.94% vs. 6.36 ± 0.56% and 4.80 ± 0.88% respectively; p 13C-exhalation further declined in the presence of advanced fibrosis which was correlated with NASH activity (r = 0.36. The area under the ROC curve (AUROC for NASH diagnosis was estimated to be 0.87 in the total cohort and 0.83 in patients with no or mild fibrosis (F0-1. Conclusion The 13C-methionine breath test indicates mitochondrial dysfunction in non-alcoholic fatty liver disease and predicts higher stages of disease activity. It may, therefore, be a valuable diagnostic addition for longitudinal monitoring of hepatic (mitochondrial function in non-alcoholic fatty liver disease.

  11. Control of breathing in African lungfish (Protopterus dolloi): A comparison of aquatic and cocooned (terrestrialized) animals

    DEFF Research Database (Denmark)

    Perry, S.F.; Euverman, R.; Wang, Tobias

    2008-01-01

    in terrestrialized fish consisted of multiple bouts of inspiration and expiration in rapid succession, the mean frequency of pulmonary breathing events was unaltered in the terrestrialized fish (16.7 ± 1.4 h-1 versus 20.1 ± 4.9 h-1 in the aquatic and terrestrialized fish, respectively). Hypoxia ( 20 mmHg) increased...... the frequency of breathing events by 16 and 23 h-1 in the aquatic and terrestrialized fish, respectively. Hyperoxia ( 550 mmHg) decreased breathing event frequency by 10 and 15 h-1 in the aquatic and terrestrialized animals. Aquatic hypercapnia ( 37.5 mmHg) increased pulmonary breathing frequency (from 15......African lungfish, Protopterus dolloi exhibited constant rates of O2 consumption before (0.95 ± 0.07 mmol kg-1 h-1), during (1.21 ± 0.32 mmol kg-1 h-1) and after (1.14 ± 0.14 mmol kg-1 h-1) extended periods (1-2 months) of terrestrialization while cocooned. Although a breathing event...

  12. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing

    Science.gov (United States)

    Tellez, Helio Fernandez; Morrison, Shawnda A.; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B.; Meeusen, Romain

    2016-01-01

    Study Objectives: Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Methods: Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12–14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Results: Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R2 = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R2 = 0.3062; P = 0.049). Conclusions: Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration Citation: Tellez HF, Morrison SA, Neyt X, Mairesse O, Piacentini MF, Macdonald-Nethercott E, Pangerc A, Dolenc-Groselj L, Eiken O, Pattyn N, Mekjavic IB, Meeusen R. Exercise during short-term and long

  13. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  14. Cheyne-Stokes respiration: hypoxia plus a deep breath that interrupts hypoxic drive, initiating cyclic breathing.

    Science.gov (United States)

    Guntheroth, Warren G

    2011-11-01

    In the 19th Century, Cheyne and Stokes independently reported cycles of respiration in patients with heart failure, beginning with apnea, followed by a few breaths. However Cheyne-Stokes respiration (C-SR) can also occur in healthy individuals with sleep, and was demonstrated in 1908 with voluntary hyperventilation, followed by apnea that Haldane blamed on hypoxia, subsequently called post-hyperventilation apnea. Additional theories explaining C-SR did not appear until 1954, based on control theory, specifically a feed-back regulator controlling CO(2). This certainly describes control of normal respiration, but to produce an unstable state such as C-SR requires either a very long transit time (3½ min) or an increase of the controller gain (13 times), physiologically improbable. There is general agreement that apnea initiates C-SR but that has not been well explained except for post-hyperventilation apnea, and that explanation is not compatible with a study by Nielsen and Smith in 1951. They plotted the effects of diminished oxygen on ventilation (V) in relation to CO(2) (Fig. 1). They found that the slope of V/CO(2) (gain) increased with hypoxia, but it flattened at a moderate CO(2) level and had nointercept with zero (apnea). It is also incompatible with our published findings in 1975 that showed that apnea did not occur until an extreme level of hypoxia occurred (the PO(2) fell below 10 mmHg), followed shortly by gasping. Much milder hypoxia underlies most cases of C-SR, when hypoxic drive replaces the normal CO(2)-based respiratory drive, in a failsafe role. I hypothesize that the cause of apnea is a brief interruption of hypoxic drive caused by a pulse of oxygen from a stronger than average breath, such as a sigh. The rapidity of onset of apnea in response to a pulse of oxygen, reflects the large pressure gradient for oxygen from air to lung with each breath, in contrast to CO(2). With apnea, there is a gradual fall in oxygen, resulting in a resumption of

  15. Ventilatory muscle endurance training in quadriplegia: effects on breathing pattern.

    Science.gov (United States)

    Loveridge, B; Badour, M; Dubo, H

    1989-10-01

    We examined the effects of ventilatory muscle endurance training on resting breathing pattern in 12 C6-C7 traumatic quadriplegics at least 1 year post-injury. All subjects had complete motor loss below the lesion level. Subjects were randomly assigned to a training (N = 6), or a control group (N = 6). Baseline tests included measurement of resting ventilation and breathing pattern using mercury in rubber strain gauges for 20 minutes in a seated position; maximum inspiratory mouth pressure (MIP) at FRC, and sustainable inspiratory mouth pressure for 10 minutes (SIP); lung volumes, and arterial blood gases (ABG's). The training protocol consisted of breathing through an inspiratory resistor equivalent to 85% SIP for 15 minutes twice daily, 5 days a week for 8 weeks. Both trainers and controls attended the lab every 2 weeks for reassessment of MIP and SIP and the inspiratory resistance was increased in the training group as SIP increased. At the end of 8 weeks, baseline tests were repeated. All subjects had normal ABG's. There was a significant increase in mean MIP and SIP in both the control group (30% +/- 19% and 31% +/- 18% respectively), and in the training group (42% +/- 24% and 78% +/- 49% respectively). Although the absolute values for both MIP and SIP were greater in the training group than in the control group, the differences were not significant. The alterations in resting breathing pattern were also the same in both groups. Mean frequency decreased significantly in the control group (20.2/minute to 16.9/minute) and, while insignificant, the change in frequency in the training group was the same, 19.4/minute to 16.4/minute. Mean tidal volume (Vt) increased 18.2% of baseline Vt in the control group and 17.0% baseline in the trainers, resulting in no change in minute ventilation. As MIP and SIP increased similarly in both groups, the data from the control and trainers was pooled and timing changes re-evaluated pre- and post-study. A significant decrease in

  16. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    Science.gov (United States)

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  17. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    Science.gov (United States)

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  18. Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Directory of Open Access Journals (Sweden)

    Marta Cavagnaro

    2013-01-01

    Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.

  19. Cardio-metabolic Diseases Prevention by Self-monitoring the Breath

    Directory of Open Access Journals (Sweden)

    Danila GERMANESE

    2017-08-01

    Full Text Available As new as very promising technique, breath analysis allows for monitoring the biochemical processes that occur in human body in a non-invasive way. Nevertheless, the high costs for standard analytical instrumentation (i.e., gas chromatograph, mass spectrometer, the need for specialized personnel able to read the results and the lack of protocols to collect breath samples, set limit to the exploitation of breath analysis in clinical practice. Here, we describe the development of a device, named Wize Sniffer, which is portable and entirely based on low cost technology: it uses an array of commercial, semiconductor gas sensors and a widely employed open source controller, an Arduino Mega2560 with Ethernet module. In addition, it is very easy-to-use also for non-specialized personnel and able to analyze in real time the composition of the breath. The Wize Sniffer is composed of three modules: signal measurement module, signal conditioning module and signal processing module. The idea was born in the framework of European SEMEiotic Oriented Technology for Individual's CardiOmetabolic risk self-assessmeNt and Self-monitoring (SEMEOTICONS Project, in order to monitor individual's lifestyle by detecting in the breath those molecules related to the noxious habits for cardio-metabolic risk (alcohol intake, smoking, wrong diet. Nonetheless, the modular configuration of the device allows for changing the sensors according to the molecules to be detected, thus fully exploiting the potential of breath analysis.

  20. Salivary Markers and Microbial Flora in Mouth Breathing Late Adolescents

    Directory of Open Access Journals (Sweden)

    Stefano Mummolo

    2018-01-01

    Full Text Available Objective. This is a 6-month observational case-control study that aims to estimate plaque index (PI, salivary flow, buffering capacity of saliva, and specific Streptococcus mutans (S. mutans and Lactobacillus rates in a mouth breathing late adolescents sample, after a professional oral hygiene procedure and home oral hygiene instructions. Subjects and Methods. A sample of 20 mouth breathing late adolescents/young adults (average: 19.2±2.5; range: 18–23 years and a matched control group of nose breathing subjects (average: 18.3±3.2; range 18–23 years were included in the study. All the participants were subjected to a professional oral hygiene procedure and appropriate home oral hygiene instructions (t0. After three months (t1 and six months (t2, the PI, salivary flow, buffering capacity of saliva, and S. mutans and Lactobacilli rates were recorded. Results. The mean buffering capacity of saliva and the salivary flow rate showed no significant difference between the two groups, all over the observational period. For PI, a significantly higher mode (score 1 of PI was observed in the study group at t1 (score 0 = 35% of subjects; score 1 = 60%; score 2 = 5% and t2 (score 1 = 65% of subjects, score 2 = 35%, with respect to control group. Furthermore, mouth breathing subjects show a significant 4 times higher risk to develop S. mutans CFU > 105 (CI lower limit: 0.95; CI upper limit: 9.48; chi-square: 4.28; p=0.03, with respect to the control subjects. Conclusions. Mouth breathing late adolescents show a significantly higher risk to develop S. mutans CFU > 105 and an increased level of PI. Interceptive orthodontic treatments in growing subjects, like palatal expansion, are encouraged to improve the nasal air flow. In older subjects, orthodontic treatments should be performed with removable appliances like clear aligners, in order to allow a better oral hygiene level.

  1. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  2. The experimental modification of sonorous breathing.

    OpenAIRE

    Josephson, S C; Rosen, R C

    1980-01-01

    Loud snoring is a noxious habit and potential personal health risk. We are reporting the first experimental study of simple behavioral techniques for the modification of chronic snoring. Twenty-four volunteers participated in a repeated measures, randomized group design over 2 weeks of intervention and one-month follow-up. Treatment groups included a contingent-awakening and breathing retraining (self-control) condition. Both treatment groups were compared to a no-treatment control. Despite c...

  3. Breathing, Laughing, Sneezing, Coughing: Model and Control of an Anatomically Inspired, Physically-Based Human Torso Simulation

    OpenAIRE

    DiLorenzo, Paul Carmen

    2008-01-01

    Breathing, laughing, sneezing and coughing are all important human behaviors that are generated in the torso. Yet, when these behaviors are animated, the movement of the human torso is often simplified and stylized. Recent work aiming to depict the movement of the torso has focused on pure data-driven approaches such as a skin capture of an actor using a motion capture system. Although this generates impressive results to recreate the captured motion, it does not provide control to an animato...

  4. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  5. Impact of breath holding on cardiovascular respiratory and cerebrovascular health.

    Science.gov (United States)

    Dujic, Zeljko; Breskovic, Toni

    2012-06-01

    Human underwater breath-hold diving is a fascinating example of applied environmental physiology. In combination with swimming, it is one of the most popular forms of summer outdoor physical activities. It is performed by a variety of individuals ranging from elite breath-hold divers, underwater hockey and rugby players, synchronized and sprint swimmers, spear fishermen, sponge harvesters and up to recreational swimmers. Very few data currently exist concerning the influence of regular breath holding on possible health risks such as cerebrovascular, cardiovascular and respiratory diseases. A literature search of the PubMed electronic search engine using keywords 'breath-hold diving' and 'apnoea diving' was performed. This review focuses on recent advances in knowledge regarding possibly harmful physiological changes and/or potential health risks associated with breath-hold diving. Available evidence indicates that deep breath-hold dives can be very dangerous and can cause serious acute health problems such a collapse of the lungs, barotrauma at descent and ascent, pulmonary oedema and alveolar haemorrhage, cardiac arrest, blackouts, nitrogen narcosis, decompression sickness and death. Moreover, even shallow apnoea dives, which are far more frequent, can present a significant health risk. The state of affairs is disturbing as athletes, as well as recreational individuals, practice voluntary apnoea on a regular basis. Long-term health risks of frequent maximal breath holds are at present unknown, but should be addressed in future research. Clearly, further studies are needed to better understand the mechanisms related to the possible development or worsening of different clinical disorders in recreational or competitive breath holding and to determine the potential changes in training/competition regimens in order to prevent these adverse events.

  6. Relationship between musical characteristics and temporal breathing pattern in piano performance

    Directory of Open Access Journals (Sweden)

    Yutaka Sakaguchi

    2016-07-01

    Full Text Available Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon’s exercise, J. S. Bach’s Invention, Mozart’s Sonatas, and Debussy’s Clair de lune, was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. 1 Mean breath interval was shortened for excerpts in faster tempi. 2 Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. 3 Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise, but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. 4 Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. 5 Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  7. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    Science.gov (United States)

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  8. Cortical drive to breathe in amyotrophic lateral sclerosis: a dyspnoea-worsening defence?

    Science.gov (United States)

    Georges, Marjolaine; Morawiec, Elise; Raux, Mathieu; Gonzalez-Bermejo, Jésus; Pradat, Pierre-François; Similowski, Thomas; Morélot-Panzini, Capucine

    2016-06-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing diaphragm weakness that can be partially compensated by inspiratory neck muscle recruitment. This disappears during sleep, which is compatible with a cortical contribution to the drive to breathe. We hypothesised that ALS patients with respiratory failure exhibit respiratory-related cortical activity, relieved by noninvasive ventilation (NIV) and related to dyspnoea.We studied 14 ALS patients with respiratory failure. Electroencephalographic recordings (EEGs) and electromyographic recordings of inspiratory neck muscles were performed during spontaneous breathing and NIV. Dyspnoea was evaluated using the Multidimensional Dyspnea Profile.Eight patients exhibited slow EEG negativities preceding inspiration (pre-inspiratory potentials) during spontaneous breathing. Pre-inspiratory potentials were attenuated during NIV (p=0.04). Patients without pre-inspiratory potentials presented more advanced forms of ALS and more severe respiratory impairment, but less severe dyspnoea. Patients with pre-inspiratory potentials had stronger inspiratory neck muscle activation and more severe dyspnoea during spontaneous breathing.ALS-related diaphragm weakness can engage cortical resources to augment the neural drive to breathe. This might reflect a compensatory mechanism, with the intensity of dyspnoea a negative consequence. Disease progression and the corresponding neural loss could abolish this phenomenon. A putative cognitive cost should be investigated. Copyright ©ERS 2016.

  9. Experience with the 14C-aminopyrine breath test in hepatic cirrhosis and under the influence of diclofenac-sodium (Voltaren/sup R/)

    International Nuclear Information System (INIS)

    Reinicke, C.; Hippius, M.

    1983-01-01

    The 14 C-aminopyrine breath test is a simple procedure for the non-invasive determination of the microsomal function of the liver. After oral administration of 74 kBq 14 C-aminopyrine the 14 CO 2 activity of the expired breath air is determined in hourly intervals. There is a close correlation between its decrease and the elimination of aminopyrine from the plasma. Both the elimination constant of 14 CO 2 and the maximal specific 14 CO 2 activity are useful quantitative parameters of the test. They allow conclusions as to the hepatic demethylation capacity. Both parameters were significantly lower in 15 patients with liver cirrhosis than in 12 control patients. The non-steroidal anti-inflammatory drug diclofenac-sodium did not significantly influence the demethylation of 14 C-aminopyrine in 5 patients with rheumatic diseases and in 2 healthy probands. Further experience with the breath test is necessary, especially with respect to its suitability for prospective investigation. (author)

  10. A systematic review of breath analysis and detection of volatile organic compounds in COPD

    DEFF Research Database (Denmark)

    Christiansen, Anders; Davidsen, Jesper Rømhild; Titlestad, Ingrid

    2016-01-01

    research area is breath analysis, with several published attempts to find exhaled compounds as diagnostic markers. The field is broad and no review of published COPD breath analysis studies exists yet. We have conducted a systematic review examining the state of art and identified 12 suitable papers, which...... in breath sampling technologies, the selection of appropriate control groups, and a lack of sophisticated (and standardized) statistical data analysis methods. No cross-hospital/study comparisons have been published yet. We conclude that future efforts should (also) concentrate on making breath data...... analysis more comparable through standardization of sampling, data processing, and reporting....

  11. Increased respiratory neural drive and work of breathing in exercise-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Faisal, Azmy; Jolley, Caroline J; Swanton, Laura L; Pavitt, Matthew J; Luo, Yuan-Ming; Backer, Vibeke; Polkey, Michael I; Hull, James H

    2018-02-01

    Exercise-induced laryngeal obstruction (EILO), a phenomenon in which the larynx closes inappropriately during physical activity, is a prevalent cause of exertional dyspnea in young individuals. The physiological ventilatory impact of EILO and its relationship to dyspnea are poorly understood. The objective of this study was to evaluate exercise-related changes in laryngeal aperture on ventilation, pulmonary mechanics, and respiratory neural drive. We prospectively evaluated 12 subjects (6 with EILO and 6 healthy age- and gender-matched controls). Subjects underwent baseline spirometry and a symptom-limited incremental exercise test with simultaneous and synchronized recording of endoscopic video and gastric, esophageal, and transdiaphragmatic pressures, diaphragm electromyography, and respiratory airflow. The EILO and control groups had similar peak work rates and minute ventilation (V̇e) (work rate: 227 ± 35 vs. 237 ± 35 W; V̇e: 103 ± 20 vs. 98 ± 23 l/min; P > 0.05). At submaximal work rates (140-240 W), subjects with EILO demonstrated increased work of breathing ( P respiratory neural drive ( P respiratory mechanics and diaphragm electromyography with endoscopic video, we demonstrate, for the first time, increased work of breathing and respiratory neural drive in association with the development of EILO. Future detailed investigations are now needed to understand the role of upper airway closure in causing exertional dyspnea and exercise limitation. NEW & NOTEWORTHY Exercise-induced laryngeal obstruction is a prevalent cause of exertional dyspnea in young individuals; yet, how laryngeal closure affects breathing is unknown. In this study we synchronized endoscopic video with respiratory physiological measurements, thus providing the first detailed commensurate assessment of respiratory mechanics and neural drive in relation to laryngeal closure. Laryngeal closure was associated with increased work of breathing and respiratory neural drive preceded by an

  12. Effect of influenza vaccination on oxidative stress products in breath.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James

    2010-06-01

    Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.

  13. Limonene in exhaled breath is elevated in hepatic encephalopathy

    Science.gov (United States)

    O’Hara, M E; Fernández del Río, R; Holt, A; Pemberton, P; Shah, T; Whitehouse, T; Mayhew, C A

    2016-01-01

    Abstract Breath samples were taken from 31 patients with liver disease and 30 controls in a clinical setting and proton transfer reaction quadrupole mass spectrometry (PTR-Quad-MS) used to measure the concentration of volatile organic compounds (VOCs). All patients had cirrhosis of various etiologies, with some also suffering from hepatocellular cancer (HCC) and/or hepatic encephalopathy (HE). Breath limonene was higher in patients with No-HCC than with HCC, median (lower/upper quartile) 14.2 (7.2/60.1) versus 3.6 (2.0/13.7) and 1.5 (1.1/2.3) nmol mol−1 in controls. This may reflect disease severity, as those with No-HCC had significantly higher UKELD (United Kingdom model for End stage Liver Disease) scores. Patients with HE were categorized as having HE symptoms presently, having a history but no current symptoms and having neither history nor current symptoms. Breath limonene in these groups was median (lower/upper quartile) 46.0 (14.0/103), 4.2 (2.6/6.4) and 7.2 (2.0/19.1) nmol mol−1, respectively. The higher concentration of limonene in those with current symptoms of HE than with a history but no current symptoms cannot be explained by disease severity as their UKELD scores were not significantly different. Longitudinal data from two patients admitted to hospital with HE show a large intra-subject variation in breath limonene, median (range) 18 (10–44) and 42 (32–58) nmol mol−1. PMID:27869108

  14. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  15. Assessment of the (/sup 14/C) aminopyrine breath test in liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizzi, J; Long, R G; Billing, B H; Sherlock, S [Royal Free Hospital, London (UK)

    1978-01-01

    Different methods of performing the (/sup 14/C) aminopyrine breath test have been assessed. A tracer dose of 2 ..mu..Ci without a loading dose and with a single breath collection at two hours was the method selected, since it gave the best discrimination between patients with hepatocellular diseases and normal subjects (5.2 +- 0.2%, mean - SEM). Reduced values occurred in patients with chronic active hepatitis (with and without cirrhosis) (1.5 +- 0.2%), alcoholic cirrhosis (1.7 +- 0.4%) and hepatitis (2.5 +- 0.3%), and late primary biliary cirrhosis suggesting defective microsomal function with respect to demethylation. Normal results were common in early primary biliary cirrhosis. Two weeks of prednisolone therapy caused some improvement in the breath test in nine of ten patients with chronic active hepatitis. It is concluded that the (/sup 14/C) aminopyrine breath test is a simple test for detecting hepatocellular dysfunction, but has no obvious diagnostic advantage over the determination of serum aspartate transaminase and two hour post-prandial bile-acids.

  16. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control.

    Science.gov (United States)

    Malinovschi, Andrei; Pizzimenti, Stefano; Sciascia, Savino; Heffler, Enrico; Badiu, Iuliana; Rolla, Giovanni

    2011-07-01

    Asthma is a chronic respiratory disease, characterised by airways inflammation, obstruction and hyperresponsiveness. Asthma control is the goal of asthma treatment, but many patients have sub-optimal control. Exhaled NO and exhaled breath condensate (EBC) NO metabolites (nitrites and nitrates) measurements are non-invasive tools to assess airways inflammation. Our aim was to investigate the relationships between asthma control and the above-named biomarkers of airways inflammation. Thirty-nine non-smoking asthmatic patients (19 women) aged 50 (21-80) years performed measurements of exhaled NO (FENO), EBC nitrates, nitrites and pH, and answered Asthma Control Questionnaire (ACQ) and Asthma Control Test (ACT)-questionnaire. The ACT and ACQ score were strongly interrelated (ρ = -0.84, p 0.05). EBC nitrates were negatively related to ACT score (ρ = -0.34, p = 0.03) and positively related to ACQ score (ρ = 0.41, p = 0.001) while no relation of EBC nitrites to either ACQ or ACT score was found (p>0.05). EBC nitrates were the only biomarker that was significantly related to asthma control. This suggests that nitrates, but not nitrites or FENO, reflect an aspect of airways inflammation that is closer related to asthma symptoms. Therefore there is a potential role for EBC nitrates in objective assessment of asthma control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Health Activities Project (HAP): Breathing Fitness Module.

    Science.gov (United States)

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing four activities which involve students in learning how to measure their…

  19. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  20. Acoustic rhinometry in mouth breathing patients: a systematic review.

    Science.gov (United States)

    Melo, Ana Carolina Cardoso de; Gomes, Adriana de Oliveira de Camargo; Cavalcanti, Arlene Santos; Silva, Hilton Justino da

    2015-01-01

    When there is a change in the physiological pattern of nasal breathing, mouth breathing may already be present. The diagnosis of mouth breathing is related to nasal patency. One way to access nasal patency is by acoustic rhinometry. To systematically review the effectiveness of acoustic rhinometry for the diagnosis of patients with mouth breathing. Electronic databases LILACS, MEDLINE via PubMed and Bireme, SciELO, Web of Science, Scopus, PsycInfo, CINAHL, and Science Direct, from August to December 2013, were consulted. 11,439 articles were found: 30 from LILACS, 54 from MEDLINE via Bireme, 5558 from MEDLINE via PubMed, 11 from SciELO, 2056 from Web of Science, 1734 from Scopus, 13 from PsycInfo, 1108 from CINAHL, and 875 from Science Direct. Of these, two articles were selected. The heterogeneity in the use of equipment and materials for the assessment of respiratory mode in these studies reveals that there is not yet consensus in the assessment and diagnosis of patients with mouth breathing. According to the articles, acoustic rhinometry has been used for almost twenty years, but controlled studies attesting to the efficacy of measuring the geometry of nasal cavities for complementary diagnosis of respiratory mode are warranted. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. 46 CFR 197.456 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  2. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  3. Free-breathing cine CT for the diagnosis of tracheomalacia in young children

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2013-01-01

    Tracheomalacia is characterized by excessive expiratory collapse of the trachea. To investigate the accuracy of free-breathing cine CT for diagnosis of tracheomalacia in young children with bronchoscopy as reference standard. In a retrospective study (May 2001-July 2008), a patient group (n = 27) of children with bronchoscopic evidence of tracheomalacia, and a control group (n = 320) underwent free-breathing cine CT. The tracheal shape on free-breathing cine CT was classified as round, lunate, elongated or crescentic. Cross-sectional area change of the trachea and age were compared between the groups and the diagnostic performance of free-breathing cine CT for tracheomalacia was evaluated. The patient group showed significantly greater cross-sectional area change of the trachea (57.2% ± 22.2% vs. 10.6% ± 11.2%, P < 0.001) than the control group. If a cross-sectional area change of the trachea of 31.6% was used as a cut-off value for the diagnosis of tracheomalacia, the sensitivity, specificity and accuracy of cine CT were 96.3% (26/27), 97.2% (311/320) and 97.1% (337/347), respectively. If a crescentic shape during the expiratory phase was used, the sensitivity, specificity and accuracy were 51.9% (14/27), 98.8% (316/320) and 95.1% (330/347), respectively. Free-breathing cine CT has potential to provide the diagnosis of tracheomalacia in young children. (orig.)

  4. Follow-up of coeliac disease with the novel one-hour 13C-sorbitol breath test versus the H2-sorbitol breath test.

    Science.gov (United States)

    Tveito, Kari; Hetta, Anne Kristine; Askedal, Mia; Brunborg, Cathrine; Sandvik, Leiv; Løberg, Else Marit; Skar, Viggo

    2011-07-01

    We recently developed a (13)C-sorbitol breath test ((13)C-SBT) as an alternative to the H(2)-sorbitol breath test (H(2)-SBT) for coeliac disease. In this study we compared the diagnostic properties of the H(2)-SBT and the (13)C-SBT in follow-up of coeliac disease. Twenty-seven coeliac patients on a gluten-free diet (GFD) performed the breath tests. All had been tested before treatment in the initial study of the (13)C-SBT, in which 39 untreated coeliac patients, 40 patient controls, and 26 healthy volunteers participated. Five gram sorbitol and 100 mg (13)C-sorbitol were dissolved in 250 ml tap water and given orally. H(2), CH(4) and (13)CO(2) were measured in end-expiratory breath samples every 30 min for 4 h. Increased H(2) concentration ≥20 ppm from basal values was used as cut-off for the H(2)-SBT. Sixty minutes values were used as diagnostic index in the (13)C-SBT. (13)CO(2) levels at 60 min increased in 20/26 treated coeliac patients (77%) after GFD, but were significantly lower than in control groups. Out of 20 patients who had a positive H(2)-SBT before GFD, 12 had a negative H(2)-SBT after GFD. Peak H(2) concentrations were not correlated with (13)C-SBT results. The study confirms the sensitivity of a one-hour (13)C-SBT for small intestinal malabsorption. The (13)C-SBT has superior diagnostic properties compared with the H(2)-SBT in follow-up of coeliac disease.

  5. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  6. Evolution of lung breathing from a lungless primitive vertebrate.

    Science.gov (United States)

    Hoffman, M; Taylor, B E; Harris, M B

    2016-04-01

    Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  8. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  9. A mind you can count on: validating breath counting as a behavioral measure of mindfulness

    Directory of Open Access Journals (Sweden)

    Daniel B Levinson

    2014-10-01

    Full Text Available Mindfulness practice of present moment awareness promises many benefits, but has eluded rigorous behavioral measurement. To date, research has relied on self-reported mindfulness or heterogeneous mindfulness trainings to infer skillful mindfulness practice and its effects. In four independent studies with over 400 total participants, we present the first construct validation of a behavioral measure of mindfulness, breath counting. We found it was reliable, correlated with self-reported mindfulness, differentiated long-term meditators from age-matched controls, and was distinct from sustained attention and working memory measures. In addition, we employed breath counting to test the nomological network of mindfulness. As theorized, we found skill in breath counting associated with more meta-awareness, less mind wandering, better mood, and greater nonattachment (i.e. less attentional capture by distractors formerly paired with reward. We also found in a randomized online training study that 4 weeks of breath counting training improved mindfulness and decreased mind wandering relative to working memory training and no training controls. Together, these findings provide the first evidence for breath counting as a behavioral measure of mindfulness.

  10. The role of arterial chemoreceptors in the breath-by-breath augmentation of inspiratory effort in rabbits during airway occlusion or elastic loading.

    Science.gov (United States)

    Callanan, D; Read, D J

    1974-08-01

    1. The breath-by-breath augmentation of inspiratory effort in the five breaths following airway occlusion or elastic loading was assessed in anaesthetized rabbits from changes of airway pressure, diaphragm e.m.g. and lung volume.2. When the airway was occluded in animals breathing air, arterial O(2) tension fell by 20 mmHg and CO(2) tension rose by 7 mmHg within the time of the first five loaded breaths.3. Inhalation of 100% O(2) or carotid denervation markedly reduced the breath-by-breath progression but had little or no effect on the responses at the first loaded breath.4. These results indicate that the breath-by-breath augmentation of inspiratory effort following addition of a load is mainly due to asphyxial stimulation of the carotid bodies, rather than to the gradual emergence of a powerful load-compensating reflex originating in the chest-wall, as postulated by some workers.5. The small residual progression seen in animals breathing 100% O(2) or following carotid denervation was not eliminated (a) by combining these procedures or (b) by addition of gas to the lungs to prevent the progressive lung deflation which occurred during airway occlusion.6. Bilateral vagotomy, when combined with carotid denervation, abolished the residual breath-by-breath progression of inspiratory effort.

  11. Masticatory Changes in Oral Breath Secondary to Allergic Rhinitis: Integrative Review

    Directory of Open Access Journals (Sweden)

    Bezerra, Luciana Ângelo

    2014-04-01

    Full Text Available Introduction The III Brazilian Consensus on Rhinitis (2012 defines allergic rhinitis as a nasal mucosa inflammation, mediated by immunoglobulin E, after exposure to allergens. The classic signs and symptoms of allergic rhinitis are nasal obstruction, watery rhinorrhea, sneezing, and nasal itching, often reversible either spontaneously or with treatment, and mouth breathing (breathing predominantly through the mouth, regardless of the cause, due to a nasal breathing impairment in some cases. Objective To evaluate the literature on masticatory changes in children with mouth breathing due to allergic rhinitis. Methods We conducted a search of the past 10 years, at Bireme and MEDLINE databases, for articles that covered masticatory changes in children with mouth breathing secondary to allergic rhinitis. Results We found 1,986 articles, including 15 repeated in databases, but only two articles met the inclusion criteria fully. Discussion We found few studies to answer the question raised in this review, and those studies have some methodological limitations. Most articles claimed no have statistically significant differences in masticatory changes in this population. Conclusion A better controlled study (isolating diseases, exposure time, with a larger sample (sample calculation appropriate, would be necessary to examine such changes.

  12. Light-Triggered CO2 Breathing Foam via Nonsurfactant High Internal Phase Emulsion.

    Science.gov (United States)

    Zhang, Shiming; Wang, Dingguan; Pan, Qianhao; Gui, Qinyuan; Liao, Shenglong; Wang, Yapei

    2017-10-04

    Solid materials for CO 2 capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO 2 capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO 2 is breathed-in under dark and breathed-out under light illumination. Such a process is likely to become a relay of natural CO 2 capture by plants that on the contrary breathe out CO 2 at night. Recyclable CO 2 capture at room temperature and release under light irradiation guarantee its convenient and cost-effective regeneration in industry. Furthermore, CO 2 mixed with CH 4 is successfully separated through this reversible breathing in and out system, which offers great promise for CO 2 enrichment and practical methane purification.

  13. Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: analytical cross-sectional study.

    Science.gov (United States)

    Kuroishi, Rita Cristina Sadako; Garcia, Ricardo Basso; Valera, Fabiana Cardoso Pereira; Anselmo-Lima, Wilma Terezinha; Fukuda, Marisa Tomoe Hebihara

    2015-01-01

    Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. Analytical cross-sectional study with control group conducted in a public university hospital. 42 children (mean age = 8.7 years) who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years) matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords), reading comprehension and arithmetic skills. Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006), arithmetic (P = 0.025) and working memory for pseudowords (P = 0.002), but not for numbers (P = 0.76). Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.

  14. Identification of mathematical model of human breathing in system “Artificial lungs – self-contained breathing apparatus”

    Science.gov (United States)

    Onevsky, P. M.; Onevsky, M. P.; Pogonin, V. A.

    2018-03-01

    The structure and mathematical models of the main subsystems of the control system of the “Artificial Lungs” are presented. This structure implements the process of imitation of human external respiration in the system “Artificial lungs - self-contained breathing apparatus”. A presented algorithm for parametric identification of the model is based on spectral operators, which allows using it in real time.

  15. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    Science.gov (United States)

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-04-01

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  17. Dysfunctional breathing phenotype in adults with asthma - incidence and risk factors

    Directory of Open Access Journals (Sweden)

    Agache Ioana

    2012-09-01

    Full Text Available Abstract Background Abnormal breathing patterns may cause characteristic symptoms and impair quality of life. In a cross-sectional survey 29% of adults treated for asthma in primary care had symptoms suggestive of dysfunctional breathing (DB, more likely to be female and younger, with no differences for severity of asthma. No clear risk factors were demonstrated for DB in asthma, nor the impact of asthma medication was evaluated. The objective of this study was to describe the DB phenotype in adults with asthma treated in a specialised asthma centre. Methods Adult patients aged 17–65 with diagnosed asthma were screened for DB using the Nijmegen questionnaire (positive predictive score >23 and confirmed by progressive exercise testing. The following were evaluated as independent risk factors for DB in the multiple regression analysis: female sex; atopy, obesity, active smoker, moderate/severe rhinitis, psychopathology, GERD, arterial hypertension; severe asthma, asthma duration > 5 years, lack of asthma control, fixed airway obstruction, fast lung function decline, frequent exacerbator and brittle asthma phenotypes; lack of ICS, use of LABA or LTRA. Results 91 adults with asthma, mean age 35.04 ±1.19 years, 47(51.65% females were evaluated. 27 (29.67% subjects had a positive screening score on Nijmegen questionnaire and 16(17.58% were confirmed by progressive exercise testing as having DB. Independent risk factors for DB were psychopathology (p = 0.000002, frequent exacerbator asthma phenotype (p = 0.01 and uncontrolled asthma (p Conclusion Dysfunctional breathing is not infrequent in asthma patients and should be evaluated in asthma patients presenting with psychopathology, frequent severe asthma exacerbations or uncontrolled asthma. Asthma medication (ICS, LABA or LTRA had no significant relation with dysfunctional breathing.

  18. BREATHE to Understand©

    Science.gov (United States)

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  19. Role of cerebral blood flow in extreme breath holding.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Hoiland, Ryan L; Willie, Chris K; MacLeod, David B; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko

    2016-01-01

    The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO 2 ) by about 26% (p tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H + washout, and therefore central chemoreceptive drive to breathe, rather than to CDO 2 .

  20. Quantification of volatile organic compounds in exhaled human breath. Acetonitrile as biomarker for passive smoking. Model for isoprene in human breath

    International Nuclear Information System (INIS)

    Prazeller, P.

    2000-03-01

    The topic of this thesis is the quantification of volatile organic compounds in human breath under various circumstances. The composition of exhaled breath reflects metabolic processes in the human body. Breath analysis is a non invasive technique which makes it most interesting especially for medical or toxicological applications. Measurements were done with Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS). This technique combines the advantage of small fragmentation of chemical ionization with highly time resolved mass spectrometry. A big part of this work is about investigations of exposition due to tobacco smoke. After smoking cigarettes the initial increase and time dependence of some compounds in the human breath are monitored . The calculated decrease resulting only from breathing out the compounds is presented and compared to the measured decline in the breath. This allows the distinction whether breathing is the dominant loss of a compound or a different metabolic process remover it more efficiently. Acetonitrile measured in human breath is presented as a biomarker for exposition to tobacco smoke. Especially its use for quantification of passive smoking, the exposition to environmental tobacco smoke (ETS) is shown. The reached accuracy and the fast way of measuring of acetonitrile in human breath using PTR-MS offer a good alternative to common used biomarkers. Numerous publications have described measurements of breath isoprene in humans, and there has been a hope that breath isoprene analyses could be a non-invasive diagnostic tool to assess serum cholesterol levels or cholesterol synthesis rate. However, significant analytical problems in breath isoprene analysis and variability in isoprene levels with age, exercise, diet, etc. have limited the usefulness of these measurements. Here, we have applied proton-transfer-reaction mass spectrometry (PTR-MS) to this problem, allowing on-line detection of breath isoprene. We show that breath isoprene

  1. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  2. C-13-carbohydrate breath tests : Impact of physical activity on the rate-limiting step in lactose utilization

    NARCIS (Netherlands)

    Stellaard, F; Koetse, HA; Elzinga, H; Boverhof, R; Tjoonk, R; Klimp, A; Vegter, D; Liesker, J; Vonk, RJ

    Background: (CO2)-C-13 breath tests can be used to monitor carbohydrate digestion in the small intestine. However, after ingestion of C-13-substrates, (CO2)-C-13 excretion in breath originates from two sources: a digestive/oxidative fraction, derived from the small intestine, and a fermentation

  3. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood

    Directory of Open Access Journals (Sweden)

    Patrick R. Steffen

    2017-08-01

    Full Text Available Heart rate variability biofeedback (HRVB significantly improves heart rate variability (HRV. Breathing at resonance frequency (RF, approximately 6 breaths/min constitutes a key part of HRVB training and is hypothesized to be a pathway through which biofeedback improves HRV. No studies to date, however, have experimentally examined whether RF breathing impacts measures of HRV. The present study addressed this question by comparing three groups: the RF group breathed at their determined RF for 15 min; the RF + 1 group breathed at 1 breath/min higher than their determined RF for 15 min; and the third group sat quietly for 15 min. After this 15-min period, all groups participated in the Paced Auditory Serial Addition Task (PASAT for 8 min, and then sat quietly during a 10-min recovery period. HRV, blood pressure, and mood were measured throughout the experiment. Groups were not significantly different on any of the measures at baseline. After the breathing exercise, the RF group reported higher positive mood than the other two groups and a significantly higher LF/HF HRV ratio relative to the control group, a key goal in HRVB training (p < 0.05. Additionally, the RF group showed lower systolic blood pressure during the PASAT and during the recovery period relative to the control group, with the RF + 1 group not being significantly different from either group (p < 0.05. Overall, RF breathing appears to play an important role in the positive effect HRVB has on measures of HRV.

  4. Advances in chemical sensing technologies for VOCs in breath for security/threat assessment, illicit drug detection, and human trafficking activity.

    Science.gov (United States)

    Giannoukos, S; Agapiou, A; Taylor, S

    2018-01-17

    On-site chemical sensing of compounds associated with security and terrorist attacks is of worldwide interest. Other related bio-monitoring topics include identification of individuals posing a threat from illicit drugs, explosive manufacturing, as well as searching for victims of human trafficking and collapsed buildings. The current status of field analytical technologies is directed towards the detection and identification of vapours and volatile organic compounds (VOCs). Some VOCs are associated with exhaled breath, where research is moving from individual breath testing (volatilome) to cell breath (microbiome) and most recently to crowd breath metabolites (exposome). In this paper, an overview of field-deployable chemical screening technologies (both stand-alone and those with portable characteristics) is given with application to early detection and monitoring of human exposome in security operations. On-site systems employed in exhaled breath analysis, i.e. mass spectrometry (MS), optical spectroscopy and chemical sensors are reviewed. Categories of VOCs of interest include (a) VOCs in human breath associated with exposure to threat compounds, and (b) VOCs characteristic of, and associated with, human body odour (e.g. breath, sweat). The latter are relevant to human trafficking scenarios. New technological approaches in miniaturised detection and screening systems are also presented (e.g. non-scanning digital light processing linear ion trap MS (DLP-LIT-MS), nanoparticles, mid-infrared photo-acoustic spectroscopy and hyphenated technologies). Finally, the outlook for rapid and precise, real-time field detection of threat traces in exhaled breath is revealed and discussed.

  5. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  6. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques

    International Nuclear Information System (INIS)

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Albiin, Nils; Segersvaerd, Ralf

    2012-01-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm 2 ) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 x 10 -3 mm 2 /s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. (orig.)

  7. The glucose breath test: a diagnostic test for small bowel stricture(s) in Crohn's disease.

    Science.gov (United States)

    Mishkin, Daniel; Boston, Francis M; Blank, David; Yalovsky, Morty; Mishkin, Seymour

    2002-03-01

    The aim of this study was to determine whether an indirect noninvasive indicator of proximal bacterial overgrowth, the glucose breath test, was of diagnostic value in inflammatory bowel disease. Twenty four of 71 Crohn's disease patients tested had a positive glucose breath test. No statistical conclusions could be drawn between the Crohn's disease activity index and glucose breath test status. Of patients with radiologic evidence of small bowel stricture(s), 96.0% had a positive glucose breath test, while only one of 46 negative glucose breath test patients had a stricture. The positive and negative predictive values for a positive glucose breath test as an indicator of stricture formation were 96.0% and 97.8%, respectively. This correlation was not altered in Crohn's disease patients with fistulae or status postresection of the terminal ileum. The data in ulcerative colitis were nondiagnostic. In conclusion, the glucose breath test appears to be an accurate noninvasive inexpensive diagnostic test for small bowel stricture(s) and secondary bacterial overgrowth in Crohn's disease.

  8. Carotid chemoreceptors tune breathing via multipath routing: reticular chain and loop operations supported by parallel spike train correlations.

    Science.gov (United States)

    Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Ott, Mackenzie M; Alencar, Pierina A; Shuman, Dale; Horton, Kofi-Kermit; Taylor-Clark, Thomas E; Bolser, Donald C; Lindsey, Bruce G

    2018-02-01

    We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the

  9. Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases

    International Nuclear Information System (INIS)

    Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Frauenfeld, Anian; Weiss, Christel; Simeonova, Anna; Neumaier, Christian; Siebenlist, Kerstin; Attenberger, Ulrike; Heußel, Claus Peter; Schneider, Frank

    2014-01-01

    Stereotactic Ablative RadioTherapy (SABR) of lung tumors/metastases has been shown to be an effective treatment modality with low toxicity. Outcome and toxicity were retrospectively evaluated in a unique single-institution cohort treated with intensity-modulated image-guided breath-hold SABR (igSABR) without external immobilization. The dose–response relationship is analyzed based on Biologically Equivalent Dose (BED). 50 lesions in 43 patients with primary NSCLC (n = 27) or lung-metastases of various primaries (n = 16) were consecutively treated with igSABR with Active-Breathing-Coordinator (ABC®) and repeat-breath-hold cone-beam-CT. After an initial dose-finding/-escalation period, 5x12 Gy for peripheral lesions and single doses of 5 Gy to varying dose levels for central lesions were applied. Overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC) and toxicity were analyzed. The median BED2 was 83 Gy. 12 lesions were treated with a BED2 of <80 Gy, and 38 lesions with a BED2 of >80 Gy. Median follow-up was 15 months. Actuarial 1- and 2-year OS were 67% and 43%; respectively. Cause of death was non-disease-related in 27%. Actuarial 1- and 2-year PFS was 42% and 28%. Progression site was predominantly distant. Actuarial 1- and 2 year LC was 90% and 85%. LC showed a trend for a correlation to BED2 (p = 0.1167). Pneumonitis requiring conservative treatment occurred in 23%. Intensity-modulated breath-hold igSABR results in high LC-rates and low toxicity in this unfavorable patient cohort with inoperable lung tumors or metastases. A BED2 of <80 Gy was associated with reduced local control

  10. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  11. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    Science.gov (United States)

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p chocolate group (104.1 ± 2.9 % of pre-dive values, p chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  12. High-pitch coronary CT angiography in dual-source CT during free breathing vs. breath holding in patients with low heart rates

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, Bernhard, E-mail: bernhard.bischoff@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich (Germany); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich (Germany); Meinel, Felix G. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich (Germany); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich (Germany); Del Prete, Alessandra [Department of Radiology Magrassi-Lanzara, Second University of Naples, Naples (Italy); Reiser, Maximilian F.; Becker, Hans-Christoph [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich (Germany); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich (Germany)

    2013-12-01

    Background: Coronary CT angiography (CCTA) is usually performed during breath holding to reduce motion artifacts caused by respiration. However, some patients are not able to follow the breathing commands adequately due to deafness, hearing impairment, agitation or pulmonary diseases. The aim of this study was to evaluate the potential of high-pitch CCTA in free breathing patients when compared to breath holding patients. Methods: In this study we evaluated 40 patients (20 free breathing and 20 breath holding patients) with a heart rate of 60 bpm or below referred for CCTA who were examined on a 2nd generation dual-source CT system. Image quality of each coronary artery segment was rated using a 4-point grading scale (1: non diagnostic–4: excellent). Results: Mean heart rate during image acquisition was 52 ±5 bpm in both groups. There was no significant difference in mean image quality, slightly favoring image acquisition during breath holding (mean image quality score 3.76 ± 0.32 in breath holding patients vs. 3.61 ± 0.45 in free breathing patients; p = 0.411). Due to a smaller amount of injected contrast medium, there was a trend for signal intensity to be slightly lower in free breathing patients, but this was not statistically significant (435 ± 123 HU vs. 473 ± 117 HU; p = 0.648). Conclusion: In patients with a low heart rate who are not able to hold their breath adequately, CCTA can also be acquired during free breathing without substantial loss of image quality when using a high pitch scan mode in 2nd generation dual-source CT.

  13. Efficacy of a Respiratory Training System on the Regularity of Breathing

    International Nuclear Information System (INIS)

    Shin, Eun Hyuk; Park, Hee Chul; Han, Young Yih; Ju, Sang Gyu; Shin, Jung Suk; Ahn, Yong Chan

    2008-01-01

    In order to enhance the efficiency of respiratory gated 4-dimensional radiation therapy for more regular and stable respiratory period and amplitude, a respiration training system was designed, and its efficacy was evaluated. Materials and Methods: The experiment was designed to measure the difference in respiration regularity following the use of a training system. A total of 11 subjects (9 volunteers and 2 patients) were included in the experiments. Three different breathing signals, including free breathing (free-breathing), guided breathing that followed training software (guided-breathing), and free breathing after the guided-breathing (post guided-breathing), were consecutively recorded in each subject. The peak-to-peak (PTP) period of the breathing signal, standard deviation (SD), peak-amplitude and its SD, area of the one cycle of the breathing wave form, and its root mean square (RMS) were measured and computed. Results: The temporal regularity was significantly improved in guided-breathing since the SD of breathing period reduced (free-breathing 0.568 vs guided-breathing 0.344, p=0.0013). The SD of the breathing period representing the post guided-breathing was also reduced, but the difference was not statistically significant (free-breathing 0.568 vs. guided-breathing 0.512, p=ns). Also the SD of measured amplitude was reduced in guided-breathing (free-breathing 1.317 vs. guided-breathing 1.068, p=0.187), although not significant. This indicated that the tidal volume for each breath was kept more even in guided-breathing compared to free-breathing. There was no change in breathing pattern between free-breathing and guided-breathing. The average area of breathing wave form and its RMS in postguided-breathing, however, was reduced by 7% and 5.9%, respectively. Conclusion: The guided-breathing was more stable and regular than the other forms of breathing data. Therefore, the developed respiratory training system was effective in improving the temporal

  14. Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: analytical cross-sectional study

    Directory of Open Access Journals (Sweden)

    Rita Cristina Sadako Kuroishi

    Full Text Available CONTEXT AND OBJECTIVE: Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. DESIGN AND SETTING: Analytical cross-sectional study with control group conducted in a public university hospital. METHODS: 42 children (mean age = 8.7 years who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords, reading comprehension and arithmetic skills. RESULTS: Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006, arithmetic (P = 0.025 and working memory for pseudowords (P = 0.002, but not for numbers (P = 0.76. CONCLUSION: Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.

  15. SU-E-T-361: Clinical Benefit of Automatic Beam Gating Mixed with Breath Hold in Radiation Therapy of Left Breast

    International Nuclear Information System (INIS)

    Wu, J; Hill, G; Spiegel, J; Ye, J; Mehta, V

    2014-01-01

    Purpose: To investigate the clinical and dosimetric benefits of automatic gating of left breast mixed with breath-hold technique. Methods: Two Active Breathing Control systems, ABC2.0 and ABC3.0, were used during simulation and treatment delivery. The two systems are different such that ABC2.0 is a breath-hold system without beam control capability, while ABC3.0 has capability in both breath-hold and beam gating. At simulation, each patient was scanned twice: one with free breathing (FB) and one with breath hold through ABC. Treatment plan was generated on the CT with ABC. The same plan was also recalculated on the CT with FB. These two plans were compared to assess plan quality. For treatments with ABC2.0, beams with MU > 55 were manually split into multiple subfields. All subfields were identical and shared the total MU. For treatment with ABC3.0, beam splitting was unnecessary. Instead, treatment was delivered in gating mode mixed with breath-hold technique. Treatment delivery efficiency using the two systems was compared. Results: The prescribed dose was 50.4Gy at 1.8Gy/fraction. The maximum heart dose averaged over 10 patients was 46.0±2.5Gy and 24.5±12.2Gy for treatments with FB and with ABC respectively. The corresponding heart V10 was 13.2±3.6% and 1.0±1.6% respectively. The averaged MUs were 99.8±7.5 for LMT, 99.2±9.4 for LLT. For treatment with ABC2.0, normally the original beam was split into 2 subfields. The averaged total time to delivery all beams was 4.3±0.4min for treatments with ABC2.0 and 3.3±0.6min for treatments with ABC3.0 in gating mode. Conclusion: Treatment with ABC tremendously reduced heart dose. Compared to treatments with ABC2.0, gating with ABC3.0 reduced the total treatment time by 23%. Use of ABC3.0 improved the delivery efficiency, and eliminated the possibility of mistreatments. The latter may happen with ABC2.0 where beam is not terminated when breath signal falls outside of the treatment window

  16. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    Directory of Open Access Journals (Sweden)

    Van Sickle David

    2008-03-01

    Full Text Available Abstract Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male. Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86 and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification.

  17. Towards The Design of a Smartphone-Based Biofeedback Breathing Training: Identifying Diaphragmatic Breathing Patterns from a Smartphone’s Microphone

    OpenAIRE

    Shih, Chen-Hsuan Iris; Kowatsch, Tobias; Tinschert, Peter; Barata, Filipe; Nißen, Marcia Katharina

    2016-01-01

    Asthma, diabetes, hypertension, or major depression are non-communicable diseases (NCDs) and impose a major burden on global health. Stress is linked to both the causes and consequences of NCDs and it has been shown that biofeedback-based breathing trainings (BBTs) are effective in coping with stress. Here, diaphragmatic breathing, i.e. deep abdominal breathing, belongs to the most distinguished breathing techniques. However, high costs and low scalability of state-of-the-art BBTs that requir...

  18. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Albiin, Nils [Karolinska University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden); Segersvaerd, Ralf [Karolinska University Hospital, Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm (Sweden)

    2012-10-15

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm{sup 2}) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 x 10{sup -3} mm{sup 2}/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. (orig.)

  19. Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants

    Science.gov (United States)

    Rusin, Craig G.; Hudson, John L.; Lee, Hoshik; Delos, John B.; Guin, Lauren E.; Vergales, Brooke D.; Paget-Brown, Alix; Kattwinkel, John; Lake, Douglas E.; Moorman, J. Randall

    2012-01-01

    In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239–240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge. PMID:22174403

  20. Exhaled breath condensate pH does not discriminate asymptomatic gastroesophageal reflux or the response to lansoprazole treatment in children with poorly controlled asthma.

    Science.gov (United States)

    Fitzpatrick, Anne M; Holbrook, Janet T; Wei, Christine Y; Brown, Meredith S; Wise, Robert A; Teague, W Gerald

    2014-01-01

    Although exhaled breath condensate (EBC) pH has been identified as an "emerging" biomarker of interest for asthma clinical trials, the clinical determinants of EBC pH remain poorly understood. Other studies have associated acid reflux-induced respiratory symptoms, for example, cough, with transient acidification of EBC. We sought to determine the clinical and physiologic correlates of EBC acidification in a highly characterized sample of children with poorly controlled asthma. We hypothesized that (1) children with asymptomatic gastroesophageal reflux determined by 24-hour esophageal pH monitoring would have a lower EBC pH than children without gastroesophageal reflux, (2) treatment with lansoprazole would alter EBC pH in those children, and (3) EBC acidification would be associated with increased asthma symptoms, poorer asthma control and quality of life, and increased formation of breath nitrogen oxides (NOx). A total of 110 children, age range 6 to 17 years, with poor asthma control and esophageal pH data enrolled in the Study of Acid Reflux in Children with Asthma (NCT00442013) were included. Children submitted EBC samples for pH and NOx measurement at randomization and at study weeks 8, 16, and 24. Serial EBC pH measurements failed to distinguish asymptomatic gastroesophageal reflux and was not associated with breath NOx formation. EBC pH also did not discriminate asthma characteristics such as medication and health care utilization, pulmonary function, and asthma control and quality of life both at baseline and across the study period. Despite the relative ease of EBC collection, EBC pH as a biomarker does not provide useful information of children with asthma who were enrolled in asthma clinical trials. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Sports-related lung injury during breath-hold diving

    Directory of Open Access Journals (Sweden)

    Tanja Mijacika

    2016-12-01

    Full Text Available The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise. In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition. According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  2. 21 CFR 868.5240 - Anesthesia breathing circuit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...

  3. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  4. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  5. Optimal ventilatory patterns in periodic breathing.

    Science.gov (United States)

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  6. 46 CFR 197.340 - Breathing gas supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas supply. 197.340 Section 197.340 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A primary breathing gas supply for surface-supplied diving must be sufficient to support the following for the...

  7. Bad Breath

    Science.gov (United States)

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  8. Control of upper airway muscle activity in younger versus older men during sleep onset

    Science.gov (United States)

    Fogel, Robert B; White, David P; Pierce, Robert J; Malhotra, Atul; Edwards, Jill K; Dunai, Judy; Kleverlaan, Darci; Trinder, John

    2003-01-01

    Pharyngeal dilator muscles are clearly important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) are decreased at sleep onset, and that this decrement in muscle activity is greater in the apnoea patient than in healthy controls. We have also previously shown this decrement to be greater in older men when compared with younger ones. In order to explore the mechanisms responsible for this decrement in muscle activity nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure mediated muscle activation. We then investigated the effect of sleep onset (transition from predominantly α to predominantly θ EEG activity) on ventilation, upper airway muscle activation and upper airway resistance (UAR) in middle-aged and younger healthy men. We found that both GGEMG and TPEMG were reduced by the application of nasal CPAP during wakefulness, but that CPAP did not alter the decrement in activity in either muscle seen in the first two breaths following an α to θ transition. However, CPAP prevented both the rise in UAR at sleep onset that occurred on the control night, and the recruitment in GGEMG seen in the third to fifth breaths following the α to θ transition. Further, GGEMG was higher in the middle-aged men than in the younger men during wakefulness and was decreased more in the middle-aged men with the application of nasal CPAP. No differences were seen in TPEMG between the two age groups. These data suggest that the initial sleep onset reduction in upper airway muscle activity is due to loss of a ‘wakefulness’ stimulus, rather than to loss of responsiveness to negative pressure. In addition, it suggests that in older men, higher wakeful muscle activity is due to an anatomically more collapsible upper airway with more negative pressure driven muscle activation. Sleep onset per se does not appear to have a greater

  9. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    Ulusar, U D; Wilson, J D; Murphy, P; Govindan, R B; Preissl, H; Lowery, C L; Eswaran, H

    2011-01-01

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  10. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  12. Oxidative Stress Biomarkers in Exhaled Breath of Workers Exposed to Crystalline Silica Dust by SPME-GC-MS.

    Science.gov (United States)

    Jalali, Mahdi; Zare Sakhvidi, Mohammad Javad; Bahrami, Abdulrahman; Berijani, Nima; Mahjub, Hussein

    2016-01-01

    Silicosis is considered an oxidative stress related disease that can lead to the development of lung cancer. In this study, our purpose was to analysis of volatile organic compounds (VOCs) in the exhaled breath of workers exposed to silica containing dust and compare peak area of these compounds with silicosis patients and healthy volunteers (smokers and nonsmokers) groups. In this cross sectional case-control study, the exhaled breath of 69 subjects including workers exposed to silica (n=20), silicosis patient (n=4), healthy non-smoker (n=20) and healthy smoker (n=25) were analyzed. We collected breath samples using 3-liter Tedlar bags. The VOCs were extracted with solid phase micro-extraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). Personal exposure intensity was measured according to NIOSH 7601 method. Respiratory parameters were measured using spirometry. Seventy percent and 100% of the exposures to crystalline silica dust exceeded from 8 h TWA ACGIH TLVs in case and positive control groups, respectively. A significant negative correlation was found between dust exposure intensity and FEV1/FVC when exposure and positive control groups were studied in a group (r2=-0.601, P<0.001). Totally, forty VOCs were found in all exhaled breath samples. Among the VOCs, the mean of peak area acetaldehyde, hexanal, nonanal, decane, pentad cane, 2-propanol and 3-hydroxy-2-butanone were higher in exhaled breath of the workers exposed to silica and silicosis patient compared to the healthy smoker and nonsmoker controls. In some cases the difference was significant (P<0.05). The analysis of some VOCs in exhaled breath of subjects is appropriate biomarker to determine of exposure to silica.

  13. 46 CFR 197.312 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The maximum...

  14. Analysis of Endogenous Alkanes and Aldehydes in the Exhaled Breath of Workers Exposed to Silica Containing Dust

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2015-03-01

    Full Text Available Background & Objectives : Silica is one of the most air pollutant in workplaces which long-term occupational exposure to silica is associated with an increased risk for respiratory diseases such as silicosis. Silicosis is an oxidative stress related disease and can lead to the development of lung cancer. This study aims to analysis of endogenous alkanes and aldehydes in the exhaled breath of workers exposed to silica containing dusts. Methods: In this study, the exhaled breath of 20 workers exposed to silica containing dust (case group, 20 healthy non-smokers and 25 healthy smokers (control group were analyzed. The breath samples using 3-liter Tedlar bags were collected. The volatile organic compounds (VOCs were extracted with solid phase micro-extraction (SPME and analyzed using gas chromatography-mass spectrometry (GC- MS. Result: Totally, thirty nine VOCs were found in all breath samples (at least once. Aldehydes and alkanes such as acetaldehyde, hexanal, nonanal, decane, pentadecane, 2-methle propane, 3-methyle pentane and octane were detected in the exhaled breath subjects. Among the these compounds, mean peak area of acetaldehyde, hexanal, nonanal, decane and pentadecane were higher in the exhaled breath of an case group than control groups (Pvalue<0.05 . Conclusions : The use of exhaled breath analysis as well as new media in the occupational toxicology and exposure biomarker assessment studies. It seems that acetaldehyde, hexanal, nonanal, decane and pentadecane can be considered as useful breath biomarkers for exposure assessment of silica containing dust. However, additional studies are needed to confirm thes results.

  15. EIT based pulsatile impedance monitoring during spontaneous breathing in cystic fibrosis.

    Science.gov (United States)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Gong, Bo; Müller-Lisse, Ullrich; Moeller, Knut

    2017-06-01

    Evaluating the lung function in patients with obstructive lung disease by electrical impedance tomography (EIT) usually requires breathing maneuvers containing deep inspirations and forced expirations. Since these maneuvers strongly depend on the patient's co-operation and health status, normal tidal breathing was investigated in an attempt to develop continuous maneuver-free measurements. Ventilation related and pulsatile impedance changes were systematically analyzed during normal tidal breathing in 12 cystic fibrosis (CF) patients and 12 lung-healthy controls (HL). Tidal breaths were subdivided into three inspiratory (In1, In2, In3) and three expiratory (Ex1, Ex2, Ex3) sections of the same amplitude of global impedance change. Maximal changes of the ventilation and the pulsatile impedance signal occurring during these sections were determined (▵I V and ▵I P ). Differences in ▵I V and ▵I P among sections were ascertained in relation to the first inspiratory section. In addition, ▵I V /▵I P was calculated for each section. Medians of changes in ▵I V were  <0.05% in all sections for both subject groups. Both groups showed a similar pattern of ▵I P changes during tidal breathing. Changes in ▵I P first decreased during inspiration (In2), then increased towards the end of inspiration (In3) and reached a maximum at the beginning of expiration (Ex1). During the last two sections of expiration (Ex2, Ex3) ▵I P changes decreased. The CF patients showed higher variations in ▵I P changes compared to the controls (CF:  -426.5%, HL:  -158.1%, coefficient of variation). Furthermore, ▵I V /▵I P significantly differed between expiratory sections for the CF patients (Ex1-Ex2, p  <  0.01; Ex1-Ex3, p  <  0.001; Ex2-Ex3, p  <  0.05), but not for the controls. No significant differences in ▵I V /▵I P between inspiratory sections were determined for both groups. Differences in ▵I P changes and in ▵I V /▵I P between

  16. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  17. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  18. Age specific fast breathing in under-five diarrheal children in an urban hospital: Acidosis or pneumonia?

    Science.gov (United States)

    Nuzhat, Sharika; Ahmed, Tahmeed; Kawser, Chowdhury Ali; Khan, Azharul Islam; Islam, S M Rafiqul; Shahrin, Lubaba; Shahunja, K M; Shahid, Abu S M S B; Al Imran, Abdullah; Chisti, Mohammod Jobayer

    2017-01-01

    Children with diarrhea often present with fast breathing due to metabolic acidosis from dehydration. On the other hand, age specific fast breathing is the cornerstone for the diagnosis of pneumonia following classification of pneumonia recommended by the World Health Organization (WHO). Correction of metabolic acidosis by rehydrating the diarrheal children requires time, which delays early initiation of appropriate antimicrobials for pneumonia and thereby increases the risk of deaths. We need to further investigate the simple clinical features other than fast breathing which might help us in earliest diagnosis of pneumonia in children with diarrhea Thus, the objective of our study was to identify other contributing clinical features that may independently help for early diagnosis of pneumonia in diarrheal children who present with age specific fast breathing. This was an unmatched case-control study. Diarrheal children aged 0-59 months, admitted to Dhaka Hospital of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b) during January 2014 to December 2014 having age specific fast breathing (11-59 months ≥40 breaths/min) were studied. The study children with clinical and radiological pneumonia constituted the cases (n = 276) and those without pneumonia constituted the controls (n = 446). Comparison of clinical features and outcomes between the cases and the controls was made. The distribution of acidosis among the cases and the controls was comparable (35% vs. 41%, p = 0.12). The cases had proportionately higher deaths compared to the controls, however, the difference was not statistically significant (3% vs. 1%; p = 0.23). In logistic regression analysis after adjusting for potential confounders, the cases were independently associated with cough (OR = 62.19, 95% CI = 27.79-139.19; ppneumonia. The results underscore the importance of early identification of these simple clinical features that may help to minimize potential delay due to

  19. A Novel, Inexpensive Method to Monitor, Record, and Analyze Breathing Behavior During Normobaric Hypoxia Generated by the Reduced Oxygen Breathing Device.

    Science.gov (United States)

    Temme, Leonard A; St Onge, Paul; Adams, Mark; Still, David L; Statz, Jonathan K; Williams, Steven T

    2017-03-01

    Since hypoxia remains one of the most important physiological hazards the aviation environment poses, military aviators are trained to recognize symptoms of hypoxia in order to implement appropriate safety procedures and countermeasures when hypoxia occurs. A widely used commercial instrument for hypoxia training, demonstration, and research is the Reduced Oxygen Breathing Device (ROBD). Here we describe a novel, inexpensive method to use the ROBD's breathing loop pressure (BLP) to measure respiration rate, a critically important response parameter for hypoxia. The ROBD can be controlled by a computer to export several variables including BLP, via the ROBD's RS232 port. An archived database was reanalyzed to assess the BLP data. New instrumentation added independent measures of respiration and expired oxygen and carbon dioxide; these measures were integrated with the ROBD output. Analysis of the archived data showed that the BLP reflected realistic breathing patterns. The new instrumentation integrated well with the ROBD, and independently supported the potential of the BLP as a valid measure of respiration. The ROBD's BLP data may provide a basis for a reliable, sensitive measure of respiration that is available at no additional cost. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  20. Bad Breath

    Science.gov (United States)

    ... garlic, onions, cheese, orange juice, and soda poor dental hygiene (say: HI-jeen), meaning not brushing and flossing regularly smoking and other tobacco use Poor oral hygiene leads to bad breath because when food particles ...

  1. The role of size in synchronous air breathing of Hoplosternum littorale.

    Science.gov (United States)

    Sloman, Katherine A; Sloman, Richard D; De Boeck, Gudrun; Scott, Graham R; Iftikar, Fathima I; Wood, Chris M; Almeida-Val, Vera M F; Val, Adalberto L

    2009-01-01

    Synchronized air breathing may have evolved as a way of minimizing the predation risk known to be associated with air breathing in fish. Little is known about how the size of individuals affects synchronized air breathing and whether some individuals are required to surface earlier than necessary in support of conspecifics, while others delay air intake. Here, the air-breathing behavior of Hoplosternum littorale held in groups or in isolation was investigated in relation to body mass, oxygen tensions, and a variety of other physiological parameters (plasma lactate, hepatic glycogen, hematocrit, hemoglobin, and size of heart, branchial basket, liver, and air-breathing organ [ABO]). A mass-specific relationship with oxygen tension of first surfacing was seen when fish were held in isolation; smaller individuals surfaced at higher oxygen tensions. However, this relationship was lost when the same individuals were held in social groups of four, where synchronous air breathing was observed. In isolation, 62% of fish first surfaced at an oxygen tension lower than the calculated P(crit) (8.13 kPa), but in the group environment this was reduced to 38% of individuals. Higher oxygen tensions at first surfacing in the group environment were related to higher levels of activity rather than any of the physiological parameters measured. In fish held in isolation but denied access to the water surface for 12 h before behavioral testing, there was no mass-specific relationship with oxygen tension at first surfacing. Larger individuals with a greater capacity to store air in their ABOs may, therefore, remain in hypoxic waters for longer periods than smaller individuals when held in isolation unless prior access to the air is prevented. This study highlights how social interaction can affect air-breathing behaviors and the importance of considering both behavioral and physiological responses of fish to hypoxia to understand the survival mechanisms they employ.

  2. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    Science.gov (United States)

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

  3. The assessment of the breath hold and the free breath methods about the blood flow evaluation by using phase contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Ho [Dept. of Radiology, Konkuk Medical center, Seoul (Korea, Republic of)

    2016-06-15

    Measurement of cardiac blood flow using the magnetic resonance imaging has been limited due to breathing and involuntary movements of the heart. The present study attempted to improve the accuracy of cardiac blood flow testing through phase contrast magnetic resonance imaging by presenting the adequate breathing method and imaging variables by comparing the measurement values of cardiac blood flow. Each was evaluated by comparing the breath hold retrospective 1NEX and non breath hold retrospective 1-3NEX in the ascending aorta and descending aorta. As a result, the average blood flow amount/ velocity of the breath hold retrosepctive 1NEX method in the ascending aorta were 96.17±19.12 ml/sec, 17.04±4.12 cm/sec respectively, which demonstrates a statistically significant difference(p<0.05) with the non-breath hold retrospective method 1NEX of 72.31±13.27 ml and 12.32±3.85. On the other hand, the average 2NEX blood flow and mean flow velocity is 101.90±24.09, 16.84±4.32, 3NEX 103.06±25.49, 16.88±4.19 did not show statistically significant differences(p>0.05).The average blood flow amount/ velocity of the breath hold retrospective 1NEX method in the descending aorta were 76.68±19.72 ml/s, and 22.23±4.8, which did not demonstrate a significant difference in comparison to non-breath hold retrospective method 1-3 NEX. Therefore, the non breath hold retrospective method does not significantly differ in terms of cardiac blood flow in comparison with the breath hold retrospective method in accordance with the increase of NEX, so pediatric patients or patients who are not able to breathe well must have the diagnostic value of their cardiac blood flow tests improved.

  4. SU-F-BRB-03: Quantifying Patient Motion During Deep-Inspiration Breath-Hold Using the ABC System with Simultaneous Surface Photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Y; Rahimi, A; Sawant, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Active breathing control (ABC) has been used to reduce treatment margin due to respiratory organ motion by enforcing temporary breath-holds. However, in practice, even if the ABC device indicates constant lung volume during breath-hold, the patient may still exhibit minor chest motion. Consequently, therapists are given a false sense of security that the patient is immobilized. This study aims at quantifying such motion during ABC breath-holds by monitoring the patient chest motion using a surface photogrammetry system, VisionRT. Methods: A female patient with breast cancer was selected to evaluate chest motion during ABC breath-holds. During the entire course of treatment, the patient’s chest surface was monitored by a surface photogrammetry system, VisionRT. Specifically, a user-defined region-of-interest (ROI) on the chest surface was selected for the system to track at a rate of ∼3Hz. The surface motion was estimated by rigid image registration between the current ROI image captured and a reference image. The translational and rotational displacements computed were saved in a log file. Results: A total of 20 fractions of radiation treatment were monitored by VisionRT. After removing noisy data, we obtained chest motion of 79 breath-hold sessions. Mean chest motion in AP direction during breath-holds is 1.31mm with 0.62mm standard deviation. Of the 79 sessions, the patient exhibited motion ranging from 0–1 mm (30 sessions), 1–2 mm (37 sessions), 2–3 mm (11 sessions) and >3 mm (1 session). Conclusion: Contrary to popular assumptions, the patient is not completely still during ABC breath-hold sessions. In this particular case studied, the patient exhibited chest motion over 2mm in 14 out of 79 breath-holds. Underestimating treatment margin for radiation therapy with ABC could reduce treatment effectiveness due to geometric miss or overdose of critical organs. The senior author receives research funding from NIH, VisionRT, Varian Medical Systems

  5. How to breathe when you are short of breath

    Science.gov (United States)

    ... you: Watch TV Use your computer Read a newspaper How to do Pursed lip Breathing The steps ... of Medicine, Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also ...

  6. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    2017-06-01

    Full Text Available A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG or a control group (CG. The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  7. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults.

    Science.gov (United States)

    Ma, Xiao; Yue, Zi-Qi; Gong, Zhu-Qing; Zhang, Hong; Duan, Nai-Yue; Shi, Yu-Tong; Wei, Gao-Xia; Li, You-Fa

    2017-01-01

    A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG) or a control group (CG). The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  8. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  9. Optimal technique for deep breathing exercises after cardiac surgery.

    Science.gov (United States)

    Westerdahl, E

    2015-06-01

    Cardiac surgery patients often develop a restrictive pulmonary impairment and gas exchange abnormalities in the early postoperative period. Chest physiotherapy is routinely prescribed in order to reduce or prevent these complications. Besides early mobilization, positioning and shoulder girdle exercises, various breathing exercises have been implemented as a major component of postoperative care. A variety of deep breathing maneuvres are recommended to the spontaneously breathing patient to reduce atelectasis and to improve lung function in the early postoperative period. Different breathing exercises are recommended in different parts of the world, and there is no consensus about the most effective breathing technique after cardiac surgery. Arbitrary instructions are given, and recommendations on performance and duration vary between hospitals. Deep breathing exercises are a major part of this therapy, but scientific evidence for the efficacy has been lacking until recently, and there is a lack of trials describing how postoperative breathing exercises actually should be performed. The purpose of this review is to provide a brief overview of postoperative breathing exercises for patients undergoing cardiac surgery via sternotomy, and to discuss and suggest an optimal technique for the performance of deep breathing exercises.

  10. Breath tests: principles, problems, and promise

    International Nuclear Information System (INIS)

    Lo, C.W.; Carter, E.A.; Walker, W.A.

    1982-01-01

    Breath tests rely on the measurement of gases produced in the intestine, absorbed, and expired in the breath. Carbohydrates, such as lactose and sucrose, can be administered in ysiologic doses; if malabsorbed, they will be metabolized to hydrogen by colonic bacteria. Since hydrogen is not produced by human metabolic reactions, a rise in breath hydrogen, as measured by gas chromatography, is evidence of carbohydrate malabsorption. Likewise, a rise in breath hydrogen marks the transit time of nonabsorbable carbohydrates such as lactulose through the small intestine into the colon. Simple end-expiratory interval collection into nonsiliconized vacutainer tubes has made these noninvasive tests quite convenient to perform, but various problems, including changes in stool pH intestinal motility, or metabolic rate, may influence results. Another group of breath tests uses substrates labeled with radioactive or stable isotopes of carbon. Labeled fat substrates such as trioctanoin, tripalmitin, and triolein do not produce the expected rise in labeled breath CO 2 if there is fat malabsorption. Bile acid malabsorption and small intestinal bacterial overgrowth can be measured with labeled cholylglycine or cholyltaurine. Labeled drugs such as aminopyrine, methacetin, and phenacetin can be used as an indication of drug metabolism and liver function. Radioactive substrates have been used to trace metabolic pathways and can be measured by scintillation counters. The availability of nonradioactive stable isotopes has made these ideal for use in children and pregnant women, but the cost of substrates and the mass spectrometers to measure them has so far limited their use to research centers. It is hoped that new techniques of processing and measurement will allow further realization of the exciting potential breath analysis has in a growing list of clinical applications

  11. Modified Qigong Breathing Exercise for Reducing the Sense of Hunger on an Empty Stomach

    Science.gov (United States)

    Voroshilov, Alexander P.; Wang, Zhixin; Marchenko, Elena V.

    2017-01-01

    Background. The aims of this study were to determine whether a modified Qigong breathing exercise can reduce the sense of hunger and identify possible mechanisms. Methods. The results from the test group, which performed the exercise, are compared with the control group, which performed deep breathing. Intestinal pressure measurements, stomach pH monitoring, and participant surveys were used for assessment. Results. Stomach pH was increased by 3 (0.2) and intestinal pressure was reduced by 12 (0.5) mm Hg in the experimental group and did not change significantly in the control group. The study provides strong evidence that the exercise can significantly reduce, or even suppress the sense of hunger on an empty stomach. Conclusion. This breathing exercise provides comfort in different circumstances, such as lack of regular meals, limited volume or caloric diet, and even during temporary complete absence of food in therapeutic fasting. PMID:28497701

  12. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  13. Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice

    Science.gov (United States)

    Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.

    2018-06-01

    We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.

  14. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  15. Breath-to-breath variability of exhaled CO2 as a marker of lung dysmaturity in infancy.

    Science.gov (United States)

    Fouzas, Sotirios; Theodorakopoulos, Ilias; Delgado-Eckert, Edgar; Latzin, Philipp; Frey, Urs

    2017-12-01

    The concept of diffusional screening implies that breath-to-breath variations in CO 2 clearance, when related to the variability of breathing, may contain information on the quality and utilization of the available alveolar surface. We explored the validity of the above hypothesis in a cohort of young infants of comparable postmenstrual age but born at different stages of lung maturity, namely, in term-born infants ( n = 128), preterm-born infants without chronic lung disease of infancy (CLDI; n = 53), and preterm infants with moderate/severe CLDI ( n = 87). Exhaled CO 2 volume (V E,CO2 ) and concentration (F E,CO2 ) were determined by volumetric capnography, whereas their variance was assessed by linear and nonlinear variability metrics. The relationship between relative breath-to-breath change of V E,CO2 (ΔV E,CO2 ) and the corresponding change of tidal volume (ΔV T ) was also analyzed. Nonlinear F E,CO2 variability was lower in CLDI compared with term and non-CLDI preterm group ( P variability was attributed to the variability of V T ( r 2 = 0.749), whereas in term and healthy preterm infants this relationship was weaker ( r 2 = 0.507 and 0.630, respectively). The ΔV E,CO2 - ΔV T slope was less steep in the CLDI group (1.06 ± 0.07) compared with non-CLDI preterm (1.16 ± 0.07; P variability that can be quantified by nonlinear variability metrics and may reflect the degree of lung dysmaturity. In infants with moderate/severe chronic lung disease of infancy (CLDI), the variability of the exhaled CO 2 is mainly driven by the variability of breathing, whereas in term-born and healthy preterm infants this relationship is less strong. The slope of the relative CO 2 -to-volume change is less steep in CLDI infants, suggesting that dysmature lungs are less efficient in eliminating CO 2 under tidal breathing conditions.

  16. sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants

    Directory of Open Access Journals (Sweden)

    Patricia eMilz

    2014-05-01

    Full Text Available We investigated brain functional connectivity comparing no-task resting to breath counting (a meditation exercise but given as task without referring to meditation. Functional connectivity computed as EEG coherence between head-surface data suffers from localization ambiguity, reference dependence, and overestimation due to volume conduction. Lagged coherence between intracortical model sources addresses these criticisms. With this analysis approach, experienced meditators reportedly showed reduced coherence during meditation, meditation-naïve participants have not yet been investigated. 58-channel EEG from 23 healthy, right-handed, meditation-naïve males during resting [3 runs] and breath counting [2 runs] was computed into sLORETA time series of intracortical electrical activity in 19 regions of interest corresponding to the cortex underlying 19 scalp electrode sites, for each of the 8 independent EEG frequency bands covering 1.5-44 Hz. Intracortical lagged coherences and head-surface conventional coherences were computed between the 19 regions/sites. During breath counting compared to resting, paired t-tests corrected for multiple testing revealed 4 significantly lower intracortical lagged coherences, but 4 significantly higher head-surface conventional coherences. Lowered intracortical lagged coherences involved left BA 10 and right BAs 3, 10, 17, 40. In conclusion, intracortical lagged coherence can yield results that are inverted to those of head-surface conventional coherence. The lowered functional connectivity between cognitive control areas and sensory perception areas during meditation-type breath counting compared to resting conceivably reflects the attention to a bodily percept without cognitive reasoning. The reductions in functional connectivity were similar but not as widespread as the reductions reported during meditation in experienced meditators.

  17. Influence of Continuous Table Motion on Patient Breathing Patterns

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Richter, Anne; Herrmann, Christian; Ma Lei; Flentje, Michael; Guckenberger, Matthias

    2010-01-01

    Purpose: To investigate the influence of continuous table motion on patient breathing patterns for compensation of moving targets by a robotic treatment couch. Methods and Materials: Fifteen volunteers were placed on a robotic treatment couch, and the couch was moved on different breathing-correlated and -uncorrelated trajectories. External abdominal breathing motion of the patients was measured using an infrared camera system. The influence of table motion on breathing range and pattern was analyzed. Results: Continuous table motion was tolerated well by all test persons. Volunteers reacted differently to table motion. Four test persons showed no change of breathing range and pattern. Increased irregular breathing was observed in 4 patients; however, irregularity was not correlated with table motion. Only 4 test persons showed an increase in mean breathing amplitude of more than 2mm during motion of the couch. The mean cycle period decreased by more than 1 s for 2 test persons only. No abrupt changes in amplitude or cycle period could be observed. Conclusions: The observed small changes in breathing patterns support the application of motion compensation by a robotic treatment couch.

  18. A sigh of relief or a sigh to relieve: The psychological and physiological relief effect of deep breaths.

    Science.gov (United States)

    Vlemincx, Elke; Van Diest, Ilse; Van den Bergh, Omer

    2016-10-15

    Both animal and human research have revealed important associations between sighs and relief. Previously we argued to conceive of sighs as resetters which temporarily induce relief. The present study aimed to investigate the psychological and physiological relief effect of sighs by instructed deep breaths and spontaneous sighs compared to a control breathing maneuver. Participants completed three blocks of 40 trials during which uncertainty cues were followed by either safety cues followed by a positive picture, or danger cues followed by a negative picture. One block was presented without breathing instructions, two subsequent blocks with breathing instructions. During the presentation of the safety and danger cues, an instruction was given to either 'take a deep breath' or 'postpone the next inhalation for 2 s (breath hold). Continuously, participants rated relief and Frontalis electromyography was recorded. Trait anxiety sensitivity was assessed by the Anxiety Sensitivity Index. Self-reported relief and physiological tension were compared 5s before and after instructed deep breaths and breath holds, and before and after spontaneous deep breaths and breath holds in the respective blocks. Results show that self-reported relief following an instructed deep breath was higher than before. Physiological tension decreased following a spontaneous sigh in high anxiety sensitive persons and following a spontaneous breath hold in low anxiety sensitive persons. These results are the first to show that a deep breath relieves and, in anxiety sensitive persons, reduces physiological tension. These findings support the hypothesis that sighs are psychological and physiological resetters. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Breathing air trailer acceptance test report

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1996-01-01

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0251, Rev.0 and ECNs 613530 and 606113. The equipment was tested according to WHC-SD-WM-ATP-104. The equipment tested is a Breathing Air Supply Trailer purchased as a design and fabrication procurement activity. The ATP was written by the Seller and was performed by the Seller with representatives of the Westinghouse Hanford Company witnessing portions of the test at the Seller's location

  20. A fibre-optic oxygen sensor for monitoring human breathing

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Formenti, Federico; Hahn, Clive E W; Farmery, Andrew D; Obeid, Andy

    2013-01-01

    The development and construction of a tapered-tip fibre-optic fluorescence based oxygen sensor is described. The sensor is suitable for fast and real-time monitoring of human breathing. The sensitivity and response time of the oxygen sensor were evaluated in vitro with a gas pressure chamber system, where oxygen partial pressure was rapidly changed between 5 and 15 kPa, and then in vivo in five healthy adult participants who synchronized their breathing to a metronome set at 10, 20, 30, 40, 50, and 60 breaths min –1 . A Datex Ultima medical gas analyser was used to monitor breathing rate as a comparator. The sensor's response time in vitro was less than 150 ms, which allows accurate continuous measurement of inspired and expired oxygen pressure. Measurements of breathing rate by means of our oxygen sensor and of the Datex Ultima were in strong agreement. The results demonstrate that the device can reliably resolve breathing rates up to 60 breaths min –1 , and that it is a suitable cost-effective alternative for monitoring breathing rates and end-tidal oxygen partial pressure in the clinical setting. The rapid response time of the sensor may allow its use for monitoring rapid breathing rates as occur in children and the newborn. (note)

  1. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial.

    Science.gov (United States)

    Ulrich, Silvia; Hasler, Elisabeth D; Saxer, Stéphanie; Furian, Michael; Müller-Mottet, Séverine; Keusch, Stephan; Bloch, Konrad E

    2017-04-14

    The purpose of the current trial was to test the hypothesis that breathing oxygen-enriched air increases exercise performance of patients with pulmonary arterial or chronic thrombo-embolic pulmonary hypertension (PAH/CTEPH) and to investigate involved mechanisms. Twenty-two patients with PAH/CTEPH, eight women, means ± SD 61 ± 14 years, resting mPAP 35 ± 9mmHg, PaO2 ambient air >7.3 kPa, underwent four bicycle ergospirometries to exhaustion on different days, while breathing oxygen-enriched (FiO2 0.50, hyperoxia) or ambient air (FiO2 0.21, normoxia) using progressively increased or constant load protocols (with 75% maximal work rate under FiO2 0.21), according to a randomized, sham-controlled, single-blind, cross-over design. ECG, pulmonary gas-exchange, arterial blood gases, cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. In ramp exercise, maximal work rate increased from 113 ± 38 W with normoxia to 132 ± 48 W with hyperoxia, mean difference 19.7 (95% CI 10.5-28.9) W, P endurance increased from 571 ± 443 to 1242 ± 514 s, mean difference 671 (95% CI 392-951) s, P < 0.001. At end-exercise with hyperoxia PaO2, CTO, QMTO, and PaCO2 were increased, and ventilatory equivalents for CO2 were reduced while the physiological dead space/tidal volume ratio remained unchanged. In patients with PAH/CTEPH, breathing oxygen-enriched air provides major increases in exercise performance. This is related to an improved arterial oxygenation that promotes oxygen availability in muscles and brain and to a reduction of the excessive ventilatory response to exercise thereby enhancing ventilatory efficiency. Patients with PAH/CTEPH may therefore benefit from oxygen therapy during daily physical activities and training. clinicaltrials.gov Identifier: NCT01748474. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  2. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  3. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Science.gov (United States)

    Donaldsson, Snorri; Falk, Markus; Jonsson, Baldvin; Drevhammar, Thomas

    2015-01-01

    The ability to determine airflow during nasal CPAP (NCPAP) treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing. Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically. The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance. The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  4. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    International Nuclear Information System (INIS)

    Pollock, S; Keall, P; Keall, R

    2015-01-01

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  5. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, S; Keall, P [University of Sydney, Sydney (Australia); Keall, R [Hammond Care Palliative and Supportive Care Service, Sydney, NSW (Australia)

    2015-06-15

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  6. 21 CFR 862.3050 - Breath-alcohol test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862.3050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened...

  7. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study.

    Science.gov (United States)

    Kamath, Ashwin; Urval, Rathnakar P; Shenoy, Ashok K

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase ( p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460.

  8. Clinical Applications of CO2 and H2 Breath Test

    Directory of Open Access Journals (Sweden)

    ZHAO Si-qian;CHEN Bao-jun;LUO Zhi-fu

    2016-08-01

    Full Text Available Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further research, the breath test is expected to be applied in more diseases diagnosis.

  9. Role of cerebral blood flow in extreme breath holding

    Directory of Open Access Journals (Sweden)

    Bain Anthony R.

    2016-01-01

    Full Text Available The role of cerebral blood flow (CBF on a maximal breath-hold (BH in ultra-elite divers was examined. Divers (n = 7 performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg. Arterial blood gases and CBF were measured prior to (baseline, and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2 by about 26% (p < 0.01. Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04. In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa. The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01. These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.

  10. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Fryer, A. A.; Hanna, F.; Ferns, G. A. A.

    2011-01-01

    Roč. 5, č. 2 (2011), 022001 ISSN 1752-7155 Institutional research plan: CEZ:AV0Z40400503 Keywords : exhaled breath * diabetes mellitus * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.541, year: 2011

  11. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    Science.gov (United States)

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  12. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    Science.gov (United States)

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas

  13. In vivo assessment of the mitochondrial response to caloric restriction in obese women by the 2-keto[1-C]isocaproate breath test.

    Science.gov (United States)

    Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves

    2003-04-01

    The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.

  14. Sleep-disordered breathing decreases after opioid withdrawal: results of a prospective controlled trial.

    Science.gov (United States)

    Schwarzer, Andreas; Aichinger-Hinterhofer, Marie; Maier, Christoph; Vollert, Jan; Walther, Jörg Werner

    2015-11-01

    An increased cardiovascular event rate in elderly patients under opioid medications was recently reported. One reason for this increase could be the occurrence of nocturnal apnea and hypoxia, as a consequence of sleep-disordered breathing (SDB). Using a controlled study, we prospectively analyzed SDB using polysomnography in a total of 18 patients before and after opioid withdrawal (opioid withdrawal group [OG]) and 14 patients before and after comprehensive pain management (without any strong-acting opioids) who served as the control group (CG). To analyze the differences, unpaired/paired t tests and Mann-Whitney U tests/Wilcoxon rank tests were used. At baseline, the OG presented more nocturnal apneas/hypopneas than the CG with an apnea-hypopnea index (AHI) of 41.4 ± 27.8 vs 21.8 ± 15.9 (P = 0.018). After treatment, the AHI decreased significantly only in the withdrawal group (OG: 16.7 ± 8.9; CG: 20.1 ± 12.9) (P opioid withdrawal and in none of the patients after withdrawal (P opioid intake; these findings may explain the opioid-associated cardiovascular morbidity. Thus, SDB may be a risk at lower opioid doses than hitherto described, and particular caution should be exercised in patients with comorbidities that might make them vulnerable to the consequences of SDB.

  15. The Breathing Cell: Cyclic Intermembrane Distance Variation in Reverse Electrodialysis

    NARCIS (Netherlands)

    Moreno Domingo, Jordi; Slouwerhof, E.; Vermaas, David; Saakes, M.; Nijmeijer, Dorothea C.

    2016-01-01

    The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater.

  16. The breathing cell : cyclic intermembrane distance variation in reverse electrodialysis

    NARCIS (Netherlands)

    Moreno, J.; Slouwerhof, E.; Vermaas, D.A.; Saakes, M.; Nijmeijer, K.

    2016-01-01

    The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater.

  17. Predictive value of 14CO2 breath tests for clinical use of 13CO2 breath tests

    International Nuclear Information System (INIS)

    Glaubitt, D.M.H.

    1975-01-01

    The knowledge of the efficiency of 14 CO 2 breath tests makes possible the comparison of the efficiency of analogous tests using the stable isotope 13 C. 14 CO 2 exhalation studies render overall information. After parenteral administration of a 14 C labeled substrate, 14 CO 2 breath tests permit insight into the metabolism of the 14 C substrate and the associated intermediary metabolism. If the 14 C substrate is given orally or by intraduodenal instillation, 14 CO 2 breath tests supply information not only about gastrointenstinal absorption and digestion but also about the intermediary metabolism yielding 14 CO 2 , after the administered substrate or its degradation products have been absorbed in the gastrointestinal tract. The fraction of 14 CO 2 arising from absorption, digestion and intermediary metabolism can be estimated only by additional methods. 14 CO 2 breath tests are unable to delineate single metabolic reactions involved in the formation of carbon dioxide. Under these considerations the clinical application of 14 CO 2 breath tests may provide diagnostically useful results, especially in internal medicine and surgery. The tests are suitable for intraindividual assessment of the course of a disease and of therapeutic effects. They may be important in the research of the metabolism of 14 C labeled substrates

  18. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  19. Bad-breath: Perceptions and misconceptions of Nigerian adults.

    Science.gov (United States)

    Nwhator, S O; Isiekwe, G I; Soroye, M O; Agbaje, M O

    2015-01-01

    To provide baseline data about bad-breath perception and misconceptions among Nigerian adults. Multi-center cross-sectional study of individuals aged 18-64 years using examiner-administered questionnaires. Age comparisons were based on the model of emerging adults versus full adults. Data were recoded for statistical analyses and univariate and secondary log-linear statistics applied. Participants had lopsided perceptions about bad-breath. While 730 (90.8%) identified the dentist as the expert on halitosis and 719 (89.4%) knew that bad-breath is not contagious, only 4.4% and 2.5% associated bad-breath with tooth decay and gum disease respectively. There were no significant sex differences but the older adults showed better knowledge in a few instances. Most respondents (747, 92.9%) would tell a spouse about their bad-breath and 683 (85%) would tell a friend. Participants had lop-sided knowledge and perceptions about bad-breath. Most Nigerian adults are their "brothers' keepers" who would tell a spouse or friend about their halitosis so they could seek treatment.

  20. Imposed Work of Breathing for Flow Meters with In-Line versus Flow-Through Technique during Simulated Neonatal Breathing.

    Directory of Open Access Journals (Sweden)

    Snorri Donaldsson

    Full Text Available The ability to determine airflow during nasal CPAP (NCPAP treatment without adding dead space or resistance would be useful when investigating the physiologic effects of different NCPAP systems on breathing. The aim of this study was to investigate the effect on pressure stability of different flow measuring devices at the in-line and flow-through position, using simulated neonatal breathing.Six different flow measure devices were evaluated by recording pressure changes and imposed work of breathing for breaths with 16 and 32 ml tidal volumes. The tests were performed initially with the devices in an in line position and with 5 and 10 L/min using flow through technique, without CPAP. The flow meters were then subsequently tested with an Infant Flow CPAP system at 3, 5 and 8 cm H2O pressure using flow through technique. The quality of the recorded signals was compared graphically.The resistance of the measuring devices generated pressure swings and imposed work of breathing. With bias flow, the resistance also generated CPAP pressure. Three of the devices had low resistance and generated no changes in pressure stability or CPAP pressure. The two devices intended for neonatal use had the highest measured resistance.The importance of pressure stability and increased work of breathing during non-invasive respiratory support are insufficiently studied. Clinical trials using flow-through technique have not focused on pressure stability. Our results indicate that a flow-through technique might be a way forward in obtaining a sufficiently high signal quality without the added effects of rebreathing and increased work of breathing. The results should stimulate further research and the development of equipment for dynamic flow measurements in neonates.

  1. An automated method for breathing frequency determination for rat lung radiobiology in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Coderre, J.A.; Kiger, W.S. III

    2006-01-01

    Whole-body plethysmography was used to the measure the breathing rate in rats as a functional indication of radiation-induced lung damage, either weekly or bi-weekly for a period of 180 days following thorax irradiations in a BNCT radiobiology study. A three-minute digital breathing signal was collected in each measurement. Software has been developed to automatically discriminate against large-amplitude noise due to animal movement. After segmenting the signal into consecutive, overlapping and circular blocks, the mean frequency spectrum of the processed signal was calculated using the Fast Fourier Transform (FFT). The breathing rate was defined as the primary frequency of the spectrum and the standard deviation was estimated using the bootstrap method. The mean standard deviation of all measurements in the data set (n=4269) was 2.4%. The improved accuracy with low standard deviation of the measurements ensures good sensitivity and a low threshold for detection of responding animals; breathing rates more than 20% (∼3 σ) above the control mean were considered responding. (author)

  2. Effect of breathing technique of blowing on the extent of damage to the perineum at the moment of delivery: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Zohre Ahmadi

    2017-01-01

    Full Text Available Introduction: One of the important tasks in managing labor is the protection of perineum. An important variable affecting this outcome is maternal pushing during the second stage of labor. This study was done to investigate the effect of breathing technique on perineal damage extention in laboring Iranian women. Materials and Methods: This randomized clinical trial was performed on 166 nulliparous pregnant women who had reached full-term pregnancy, had low risk pregnancy, and were candidates for vaginal delivery in two following groups: using breathing techniques (case group and valsalva maneuver (control group. In the control group, pushing was done with holding the breath. In the case group, the women were asked to take 2 deep abdominal breaths at the onset of pain, then take another deep breath, and push 4–5 seconds with the open mouth while controlling exhalation. From the crowning stage onward, the women were directed to control their pushing, and do the blowing technique. Results: According to the results, intact perineum was more observed in the case group (P = 0.002. Posterior tears (Grade 1, 2, and 3 was considerably higher in the control group (P = 0.003. Anterior tears (labias and episiotomy were not significantly different in the two groups. Conclusions: It was concluded that breathing technique of blowing can be a good alternative to Valsalva maneuver in order to reduce perineal damage in laboring women.

  3. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish.

    Science.gov (United States)

    Brauner, Colin J; Rombough, Peter J

    2012-12-01

    There are large changes in gill function during development associated with ionoregulation and gas exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoregulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less important in terms of O(2) uptake with expansion of the air-breathing organ, it retains its roles in CO(2) excretion, ion exchange and acid-base balance. The observation that gill morphology and function is strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary implications. In particular, it suggests that the inability of the skin to maintain ion and acid-base balance as protovertebrates increased in size and became more active may have been more important in driving gill development than O(2) insufficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Age specific fast breathing in under-five diarrheal children in an urban hospital: Acidosis or pneumonia?

    Directory of Open Access Journals (Sweden)

    Sharika Nuzhat

    Full Text Available Children with diarrhea often present with fast breathing due to metabolic acidosis from dehydration. On the other hand, age specific fast breathing is the cornerstone for the diagnosis of pneumonia following classification of pneumonia recommended by the World Health Organization (WHO. Correction of metabolic acidosis by rehydrating the diarrheal children requires time, which delays early initiation of appropriate antimicrobials for pneumonia and thereby increases the risk of deaths. We need to further investigate the simple clinical features other than fast breathing which might help us in earliest diagnosis of pneumonia in children with diarrhea Thus, the objective of our study was to identify other contributing clinical features that may independently help for early diagnosis of pneumonia in diarrheal children who present with age specific fast breathing.This was an unmatched case-control study. Diarrheal children aged 0-59 months, admitted to Dhaka Hospital of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b during January 2014 to December 2014 having age specific fast breathing (11-59 months ≥40 breaths/min were studied. The study children with clinical and radiological pneumonia constituted the cases (n = 276 and those without pneumonia constituted the controls (n = 446. Comparison of clinical features and outcomes between the cases and the controls was made.The distribution of acidosis among the cases and the controls was comparable (35% vs. 41%, p = 0.12. The cases had proportionately higher deaths compared to the controls, however, the difference was not statistically significant (3% vs. 1%; p = 0.23. In logistic regression analysis after adjusting for potential confounders, the cases were independently associated with cough (OR = 62.19, 95% CI = 27.79-139.19; p<0.01 and chest wall indrawing (OR = 31.05, 95%CI = 13.43-71.82; p<0.01 and less often had severe acute malnutrition (OR = 0.33, 95%CI = 0

  5. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  6. Blood gases and oxygen saturation response to active cycle of breathing techniques in COPD patients during phase I of cardiac rehabilitation

    International Nuclear Information System (INIS)

    Sheraz, S.; Siddiqi, F.A.

    2015-01-01

    Objective: To determine the effectiveness of active cycle of breathing techniques (ACBTs) on arterial blood gases (ABG), oxygen saturation and other vitals including chest expansion, heart rate, and respiratory rate in COPD patients during phase I of cardiac rehabilitation program after open heart surgery. Methodology: In this experimental study, sample size chosen was 100 patients, randomly divided into experimental (n=50) and control (n=50) groups. Pre-test values of ABG, oxygen saturation, chest expansion, respiratory rate, and heart rate of the participants were taken. Then, conventional physical therapy including spirometry was performed 2 hourly by the control group whereas the experimental group performed ACBTs along with spirometry twice a day for a period of one week. Participants were re-assessed after one week treatment. Results: There was highly significant difference (p<0.01) in pre-test and post-test values of PCO/sub 2/ and oxygen saturation in experimental group as compared to control group. The results of bicarbonate values, base excess and heart rate were statistically significant (p<0.01) in control group and there was no significant difference (p>0.05) in experimental group. The values of pH, chest expansion and respiratory rate were highly significant (p<0.01) in both control as well as experimental group. Conclusion: ACBT was more effective to decrease post CABG complication as compared to conventional chest physical therapy. Some parameters like bicarbonate values, base excess and heart rate did not show improvement with ACBT. (author)

  7. The Use of Breathing Exercises in the Treatment of Chronic, Nonspecific Low Back Pain.

    Science.gov (United States)

    Anderson, Barton E; Bliven, Kellie C Huxel

    2017-09-01

    Clinical Scenario: Research has shown a link between poor core stability and chronic, nonspecific low back pain, with data to suggest that alterations in core muscle activation patterns, breathing patterns, lung function, and diaphragm mechanics may occur. Traditional treatment approaches for chronic, nonspecific low back pain focus on exercise and manual therapy interventions, however it is not clear whether breathing exercises are effective in treating back pain. Focused Clinical Question: In adults with chronic, nonspecific low back pain, are breathing exercises effective in reducing pain, improving respiratory function, and/or health related quality of life? Summary of Key Findings: Following a literature search, 3 studies were identified for inclusion in the review. All reviewed studies were critically appraised at level 2 evidence and reported improvements in either low back pain or quality of life following breathing program intervention. Clinical Bottom Line: Exercise programs were shown to be effective in improving lung function, reducing back pain, and improving quality of life. Breathing program frequencies ranged from daily to 2-3 times per week, with durations ranging from 4 to 8 weeks. Based on these results, athletic trainers and physical therapists caring for patients with chronic, nonspecific low back pain should consider the inclusion of breathing exercises for the treatment of back pain when such treatments align with the clinician's own judgment and clinical expertise and the patient's preferences and values. Strength of Recommendation: Grade B evidence exists to support the use of breathing exercises in the treatment of chronic, nonspecific low back pain.

  8. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  9. Breath-taking jobs: a case–control study of respiratory work disability by occupation in Norway

    Science.gov (United States)

    Fell, AKM; Abrahamsen, R; Henneberger, PK; Svendsen, MV; Andersson, E; Torén, K; Kongerud, J

    2016-01-01

    Background The current knowledge on respiratory work disability is based on studies that used crude categories of exposure. This may lead to a loss of power, and does not provide sufficient information to allow targeted workplace interventions and follow-up of patients with respiratory symptoms. Objectives The aim of this study was to identify occupations and specific exposures associated with respiratory work disability. Methods In 2013, a self-administered questionnaire was mailed to a random sample of the general population, aged 16–50, in Telemark County, Norway. We defined respiratory work disability as a positive response to the survey question: ‘Have you ever had to change or leave your job because it affected your breathing?’ Occupational exposures were assessed using an asthma-specific job-exposure matrix, and comparison of risks was made for cases and a median of 50 controls per case. Results 247 workers had changed their work because of respiratory symptoms, accounting for 1.7% of the respondents ever employed. The ‘breath-taking jobs’ were cooks/chefs: adjusted OR 3.6 (95% CI 1.6 to 8.0); welders: 5.2 (2.0 to 14); gardeners: 4.5 (1.3 to 15); sheet metal workers: 5.4 (2.0 to 14); cleaners: 5.0 (2.2 to 11); hairdressers: 6.4 (2.5 to 17); and agricultural labourers: 7.4 (2.5 to 22). Job changes were also associated with a variety of occupational exposures, with some differences between men and women. Conclusions Self-report and job-exposure matrix data showed similar findings. For the occupations and exposures associated with job change, preventive measures should be implemented. PMID:27365181

  10. IVABRADINE AND QUALITY OF BIOFEEDBACK IN THE LOOP OF PACED BREATHING UNDER THE CONTROL OF HEART RATE VARIABILITY PARAMETERS IN HEALTHY VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2013-06-01

    Full Text Available On 15 healthy volunteers aged from 18 to 22 years the effect of ivabradine on the quality of biofeedback in the loop of paced breathing under the control of heart rate variability parameters were estimated. It was found that ivabradine contributes to an earlier onset and more significant optimization of regulatory systems in systematic sessions of biofeedback that allows to expand the indications for its clinical use.

  11. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone, under a specifically controlled condition fast (acetone measurement can be used for screening abnormal metabolic status including diabetes, for point-of-care monitoring status of ketone bodies which have the signature smell of breath acetone, and for breath acetone related clinical studies requiring a large number of tests.

  12. Automated 13CO2 analyzing system for the 13C breath test

    International Nuclear Information System (INIS)

    Suehiro, Makiko; Kuroda, Akira; Maeda, Masahiro; Hinaga, Kou; Watanabe, Hiroyuki.

    1987-01-01

    An automated 13 CO 2 analyzing system for the 13 C breath test was designed, built and evaluated. The system, which was designed to be controlled by a micro-computer, includes CO 2 purification, 13 CO 2 abundance measurement, data processing and data filing. This article gives the description of the whole system with flow charts. This system has proved to work well and it has become feasible to dispose of 5 to 6 CO 2 samples per hour. With such a system, the 13 C breath test will be carried out much more easily and will obtain much greater popularity. (author)

  13. Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods

    International Nuclear Information System (INIS)

    Wang Xin; Zhong Renming; Bai Sen; Xu Qingfeng; Zhao Yaqin; Wang Jin; Jiang Xiaoqin; Shen Yali; Xu Feng; Wei Yuquan

    2011-01-01

    Purpose: To study the inter- and intrafraction tumor reproducibility with active breath control (ABC) utilizing cone-beam computed tomography (CBCT), and compare validity of registration with two different regions of interest (ROI). Methods and materials: Thirty-one lung tumors in 19 patients received conventional or stereotactic body radiotherapy with ABC. During each treatment, patients had three CBCT scanned before and after online position correction and after treatment. These CBCT images were aligned to the planning CT using the gray scale registration of tumor and bony registration of the thorax, and tumor position uncertainties were then determined. Results: The interfraction systematic and random translation errors in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions were 3.6, 4.8, and 2.9 mm; 2.5, 4.5, and 3.5 mm, respectively, with gray scale alignment; 1.9, 4.3, 2.0 mm and 2.5, 4.4, 2.9 mm, respectively, with bony alignment. The interfraction systematic and random rotation errors with gray scale and bony alignment groups ranged from 1.4 o to 3.0 o and 0.8 o to 2.3 o , respectively. The intrafraction systematic and random errors with gray scale registration in LR, SI, AP directions were 0.9, 2.0, 1.8 mm and 1.5, 1.7, 2.9 mm, respectively, for translation; 1.5 o , 0.9 o , 1.0 o and 1.2 o , 2.2 o , 1.8 o , respectively, for rotation. The translational errors in SI direction with bony alignment were significantly larger than that of gray scale (p < 0.05). Conclusions: With CBCT guided online correction the interfraction positioning errors can be markedly reduced. The intrafraction errors were not diminished by the use of ABC. Rotation errors were not very remarkable both inter- and intrafraction. Gray scale alignment of tumor may provide a better registration in SI direction.

  14. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  15. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  16. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  17. Attractor structure discriminates sleep states: recurrence plot analysis applied to infant breathing patterns.

    Science.gov (United States)

    Terrill, Philip Ian; Wilson, Stephen James; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2010-05-01

    Breathing patterns are characteristically different between infant active sleep (AS) and quiet sleep (QS), and statistical quantifications of interbreath interval (IBI) data have previously been used to discriminate between infant sleep states. It has also been identified that breathing patterns are governed by a nonlinear controller. This study aims to investigate whether nonlinear quantifications of infant IBI data are characteristically different between AS and QS, and whether they may be used to discriminate between these infant sleep states. Polysomnograms were obtained from 24 healthy infants at six months of age. Periods of AS and QS were identified, and IBI data extracted. Recurrence quantification analysis (RQA) was applied to each period, and recurrence calculated for a fixed radius in the range of 0-8 in steps of 0.02, and embedding dimensions of 4, 6, 8, and 16. When a threshold classifier was trained, the RQA variable recurrence was able to correctly classify 94.3% of periods in a test dataset. It was concluded that RQA of IBI data is able to accurately discriminate between infant sleep states. This is a promising step toward development of a minimal-channel automatic sleep state classification system.

  18. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  19. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  20. An expiratory assist during spontaneous breathing can compensate for endotracheal tube resistance.

    Science.gov (United States)

    Uchiyama, Akinori; Chang, Cheng; Suzuki, Shinya; Mashimo, Takashi; Fujino, Yuji

    2009-08-01

    Although inspiratory assist of spontaneous breathing in intubated patients is common, expiratory assist functions have rarely been reported. Effective expiratory support (ES) could be used to compensate for endotracheal tube (ETT) resistance during spontaneous breathing. In this study, we examined the performance of a new system designed to provide both inspiratory support (IS) and ES during spontaneous breathing with the goal of reducing the effective resistance of the ETT. The ES system consisted of a ventilator demand valve and a computer-controlled piston cylinder, which aspirated gas from the respiratory circuit during the expiratory phase. The movement of the piston was synchronized with spontaneous breathing. We compared the pressures at the tip of the ETT and in the breathing circuit during spontaneous breathing through an ETT of internal diameter (ID) 5 mm with that of an ETT with ID 8 mm in nine healthy adult male volunteers. The ventilatory mode was set to maintain a continuous airway pressure of 0 cm H(2)O. Three ventilator settings (no support, IS only, and IS plus ES) were compared using ID 5 mm ETT. We monitored pressure in the breathing circuit (P(aw)), ETT tip pressure (P(tip)), and respiratory flow. The P(tip) of the ID 5 mm ETT showed a large negative deflection during inspiration and a positive deflection during expiration without support. IS alone did not improve the respiratory pattern through the small ETT. However, IS plus ES resulted in negative P(aw) during expiration in addition to positive deflection of P(aw) during inspiration, making the pressure characteristics of P(tip) similar to those of ID 8 mm ETT. Moreover, IS plus ES produced a respiratory pattern through the ID 5 mm ETT that was similar to that through the ID 8 mm ETT. In this study of healthy volunteers, IS plus ES compensated for the airway resistance imposed by a ID 5.0 mm ETT to create pressure changes at the tip of the ETT similar to those of an ID 8.0 mm ETT.

  1. Clinical Introduction of a Novel Liquid Fiducial Marker for Breathing Adapted Radiotherapy of Non-Small Cell Lung Cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman

    delivery, e.g. breathing related tumour motion and anatomical changes during treatment. To ensure dose delivery to the target, a safety margin is added to the tumour. A large treatment volume, however, can be problematic due to the proximity of vital anatomical structures in the chest region, e...... for the tumour position in lung cancer patients. Furthermore, we evaluated the potential benefit of a breathing adaptation technique, where patients hold their breath during treatment delivery. We found that this technique reduced both tumour motion and doses to risk organs. Finally, we investigated...... the potential of measuring radiation doses from an activated liquid silver marker, via photon-nuclear reactions in-situ, using positron emission-tomography and proved a clear correlation between delivered radiation dose and measured induced activity....

  2. Integration of breathing in radiotherapy: contribution of the image deformable registration

    International Nuclear Information System (INIS)

    Boldea, Vlad

    2006-01-01

    As taking organ movements and deformations into account in radiotherapy for the treatment of lung cancer is a challenge as it allows the delivered dose to be increased while better sparing surrounding sane tissues, this research thesis addresses non-rigid (or deformable) registration iconic methods applied to thorax X ray computed tomography (X-ray CT) 3D acquisitions. The objective is to extract the information regarding lung and tumour movement and deformation. The author thus reports the development of deformable registration framework with several methods of regularisation of vector fields. Three main studies have been performed and are reported. In the first one, deformable registration allowed the breathe blockage reproducibility to be controlled. Experiments performed on ten patients showed that this blockage is efficient (displacement less than 5 mm), except for three of them with functional anomalies. In a second study, 4D X-ray CT acquisitions (3D X-ray CT images acquired at different moments of the normal breathing cycle) have been analysed to extract and follow thorax movements and deformations in order to take them into account in free breathing and to perform 4D dynamic dosimetric studies. A first 4D X-ray CT image model has been developed from 3D X-ray CT images acquired in breathe blockage at the end of expiration and at the end on inhalation [fr

  3. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    Directory of Open Access Journals (Sweden)

    Yongli Li

    2017-05-01

    Full Text Available The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2 of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air. No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent.

  4. Breath-Holding Spells

    Science.gov (United States)

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  5. A randomised controlled trial of three or one breathing technique training sessions for breathlessness in people with malignant lung disease.

    Science.gov (United States)

    Johnson, Miriam J; Kanaan, Mona; Richardson, Gerry; Nabb, Samantha; Torgerson, David; English, Anne; Barton, Rachael; Booth, Sara

    2015-09-07

    About 90 % of patients with intra-thoracic malignancy experience breathlessness. Breathing training is helpful, but it is unknown whether repeated sessions are needed. The present study aims to test whether three sessions are better than one for breathlessness in this population. This is a multi-centre randomised controlled non-blinded parallel arm trial. Participants were allocated to three sessions or single (1:2 ratio) using central computer-generated block randomisation by an independent Trials Unit and stratified for centre. The setting was respiratory, oncology or palliative care clinics at eight UK centres. Inclusion criteria were people with intrathoracic cancer and refractory breathlessness, expected prognosis ≥3 months, and no prior experience of breathing training. The trial intervention was a complex breathlessness intervention (breathing training, anxiety management, relaxation, pacing, and prioritisation) delivered over three hour-long sessions at weekly intervals, or during a single hour-long session. The main primary outcome was worst breathlessness over the previous 24 hours ('worst'), by numerical rating scale (0 = none; 10 = worst imaginable). Our primary analysis was area under the curve (AUC) 'worst' from baseline to 4 weeks. All analyses were by intention to treat. Between April 2011 and October 2013, 156 consenting participants were randomised (52 three; 104 single). Overall, the 'worst' score reduced from 6.81 (SD, 1.89) to 5.84 (2.39). Primary analysis [n = 124 (79 %)], showed no between-arm difference in the AUC: three sessions 22.86 (7.12) vs single session 22.58 (7.10); P value = 0.83); mean difference 0.2, 95 % CIs (-2.31 to 2.97). Complete case analysis showed a non-significant reduction in QALYs with three sessions (mean difference -0.006, 95 % CIs -0.018 to 0.006). Sensitivity analyses found similar results. The probability of the single session being cost-effective (threshold value of £20,000 per QALY) was over 80 %. There was no

  6. Modification of electrical pain threshold by voluntary breathing-controlled electrical stimulation (BreEStim in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Shengai Li

    Full Text Available BACKGROUND: Pain has a distinct sensory and affective (i.e., unpleasantness component. BreEStim, during which electrical stimulation is delivered during voluntary breathing, has been shown to selectively reduce the affective component of post-amputation phantom pain. The objective was to examine whether BreEStim increases pain threshold such that subjects could have improved tolerance of sensation of painful stimuli. METHODS: Eleven pain-free healthy subjects (7 males, 4 females participated in the study. All subjects received BreEStim (100 stimuli and conventional electrical stimulation (EStim, 100 stimuli to two acupuncture points (Neiguan and Weiguan of the dominant hand in a random order. The two different treatments were provided at least three days apart. Painful, but tolerable electrical stimuli were delivered randomly during EStim, but were triggered by effortful inhalation during BreEStim. Measurements of tactile sensation threshold, electrical sensation and electrical pain thresholds, thermal (cold sensation, warm sensation, cold pain and heat pain thresholds were recorded from the thenar eminence of both hands. These measurements were taken pre-intervention and 10-min post-intervention. RESULTS: There was no difference in the pre-intervention baseline measurement of all thresholds between BreEStim and EStim. The electrical pain threshold significantly increased after BreEStim (27.5±6.7% for the dominant hand and 28.5±10.8% for the non-dominant hand, respectively. The electrical pain threshold significantly decreased after EStim (9.1±2.8% for the dominant hand and 10.2±4.6% for the non-dominant hand, respectively (F[1, 10] = 30.992, p = .00024. There was no statistically significant change in other thresholds after BreEStim and EStim. The intensity of electrical stimuli was progressively increased, but no difference was found between BreEStim and EStim. CONCLUSION: Voluntary breathing controlled electrical stimulation

  7. Effects of metronome breathing on the assessment of autonomic control using heart rate variability

    NARCIS (Netherlands)

    Haaksma, J; Brouwer, J; vandenBerg, MP; Dijk, WA; Dassen, WRM; Crijns, HJGM; Mulder, Lambertus; Mulder, Gysbertus

    1996-01-01

    Analysis of Heart Rate Variability is a non-invasive quantitative tool to study the influence of the autonomic nervous system on the heart. Rapid variations in heart rate, related to breathing are primarily mediated by the vagal limb of the autonomic nervous system. The resulting variations in heart

  8. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  9. Sleep-disordered breathing and mortality: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Naresh M Punjabi

    2009-08-01

    Full Text Available Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older.We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea-hypopnea index (AHI based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women died. Compared to those without sleep-disordered breathing (AHI: or=30.0 events/h sleep-disordered breathing were 0.93 (95% CI: 0.80-1.08, 1.17 (95% CI: 0.97-1.42, and 1.46 (95% CI: 1.14-1.86, respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40-70 y (hazard ratio: 2.09; 95% CI: 1.31-3.33. Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease-related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality.Sleep-disordered breathing is associated with all-cause mortality and specifically that due to coronary artery disease, particularly in men aged 40-70 y with severe sleep-disordered breathing. Please see later in the article for the Editors' Summary.

  10. Increased Prevalence of Sleep-Disordered Breathing in Adults

    Science.gov (United States)

    Peppard, Paul E.; Young, Terry; Barnet, Jodi H.; Palta, Mari; Hagen, Erika W.; Hla, Khin Mae

    2013-01-01

    Sleep-disordered breathing is a common disorder with a range of harmful sequelae. Obesity is a strong causal factor for sleep-disordered breathing, and because of the ongoing obesity epidemic, previous estimates of sleep-disordered breathing prevalence require updating. We estimated the prevalence of sleep-disordered breathing in the United States for the periods of 1988–1994 and 2007–2010 using data from the Wisconsin Sleep Cohort Study, an ongoing community-based study that was established in 1988 with participants randomly selected from an employed population of Wisconsin adults. A total of 1,520 participants who were 30–70 years of age had baseline polysomnography studies to assess the presence of sleep-disordered breathing. Participants were invited for repeat studies at 4-year intervals. The prevalence of sleep-disordered breathing was modeled as a function of age, sex, and body mass index, and estimates were extrapolated to US body mass index distributions estimated using data from the National Health and Nutrition Examination Survey. The current prevalence estimates of moderate to severe sleep-disordered breathing (apnea-hypopnea index, measured as events/hour, ≥15) are 10% (95% confidence interval (CI): 7, 12) among 30–49-year-old men; 17% (95% CI: 15, 21) among 50–70-year-old men; 3% (95% CI: 2, 4) among 30–49-year-old women; and 9% (95% CI: 7, 11) among 50–70 year-old women. These estimated prevalence rates represent substantial increases over the last 2 decades (relative increases of between 14% and 55% depending on the subgroup). PMID:23589584

  11. CT evaluation of patient deep inspiration self-breath-holding: How precisely can patients reproduce the tumor position in the absence of respiratory monitoring devices?

    International Nuclear Information System (INIS)

    Onishi, Hiroshi; Kuriyama, Kengo; Komiyama, Takafumi; Tanaka, Shiho; Ueki, Junko; Sano, Naoki; Araki, Tsutomu; Ikenaga, Satoshi; Tateda, Yoshihito; Aikawa, Yoshihito

    2003-01-01

    The aim of the present study was to evaluate the reproducibility of tumor position under patient deep inspiration self-breath-holding in the absence of respiratory monitoring devices, as well as to compare the reproducibility of deep inspiration self-breath-holding on the verbal command of a radiation technologist (Passive mode) with that initiated by patients' own estimation (Active mode). Twenty patients with lung cancer were shown how the tumor and diaphragm move during the respiration cycle. Patients were instructed to hold their breath during deep inspiration and reproduce identical tumor position as well as possible either by the Active mode or by the Passive mode. After patients had practiced self-breath-holding during deep inspiration, a set of three CT scans was obtained for each of the two modes of self-breath-holding (6 CT scans total) to obtain randomly timed images of 2 mm thickness in the vicinity of the tumor. The first three scans were performed during breath-hold using the Active mode, and next three scans were using the Passive mode. Maximum difference in tumor position for the three CT scans was then calculated along three axes: cranial-caudal (C-C); anterior-posterior (A-P); and right-left (R-L). In the 20 patients who underwent analysis of self-breath-holding, mean maximum difference in tumor position obtained under breath-hold using the Active and the Passive modes were: 2.2 and 3.1 mm along the C-C axis; 1.4 and 2.4 mm along the A-P axis; and 1.3 and 2.2 mm along the R-L axis, respectively. These differences in all axes were significantly smaller (p<0.05) for the Active mode than for the Passive mode. Most tumors displayed maximal respiratory movement along the C-C axis, and minimal movement along the R-L axis, but tumors located in the upper lung displayed maximal movement along the A-P axis. Significant correlation (p<0.05) was observed between differences along three axes in either mode of breath-hold. In conclusion, the reproducibility of

  12. Dysfunctional breathing: a review of the literature and proposal for classification

    Directory of Open Access Journals (Sweden)

    Richard Boulding

    2016-09-01

    Full Text Available Dysfunctional breathing is a term describing breathing disorders where chronic changes in breathing pattern result in dyspnoea and other symptoms in the absence or in excess of the magnitude of physiological respiratory or cardiac disease. We reviewed the literature and propose a classification system for the common dysfunctional breathing patterns described. The literature was searched using the terms: dysfunctional breathing, hyperventilation, Nijmegen questionnaire and thoraco-abdominal asynchrony. We have summarised the presentation, assessment and treatment of dysfunctional breathing, and propose that the following system be used for classification. 1 Hyperventilation syndrome: associated with symptoms both related to respiratory alkalosis and independent of hypocapnia. 2 Periodic deep sighing: frequent sighing with an irregular breathing pattern. 3 Thoracic dominant breathing: can often manifest in somatic disease, if occurring without disease it may be considered dysfunctional and results in dyspnoea. 4 Forced abdominal expiration: these patients utilise inappropriate and excessive abdominal muscle contraction to aid expiration. 5 Thoraco-abdominal asynchrony: where there is delay between rib cage and abdominal contraction resulting in ineffective breathing mechanics. This review highlights the common abnormalities, current diagnostic methods and therapeutic implications in dysfunctional breathing. Future work should aim to further investigate the prevalence, clinical associations and treatment of these presentations.

  13. The effects of breath alcohol concentration on postural control.

    Science.gov (United States)

    Fiorentino, Dary D

    2018-05-19

    Two of the 3 standardized field sobriety tests that U.S. law enforcement uses at roadside checks have a postural equilibrium component to them. Those tests have been validated to detect impairment caused by blood alcohol concentrations (BACs) of 0.08 g/dL or above. Many medical and traffic safety associations support a lower limit, and one state, Utah, has passed a law to lower the limit to 0.05 g/dL. Many studies have examined the effects of alcohol on postural control (of which postural equilibrium is a component), with a consensus emerging that impairment is usually found at BACs greater than 0.06 g/dL. Most of these studies, however, had a relatively small number of subjects, usually between 10 and 30. The current study collected data from a much larger sample. The objective of this study was to provide additional evidence that posture control is negatively affected at BACs greater than 0.06 g/dL or breath alcohol concentrations (BrACs) of 0.06 g/210 L. This was a between-subjects study, with BrAC group as the independent variable (5 levels: 0.00, 0.04, 0.06, 0.08, and 0.10 g/210 L); 4 measures of postural control as the dependent variables; and age, height, and weight as the covariates. Posture control was measured with a force-sensing platform connected to a computer. The feet's center of pressure (CoP) on the platform was recorded and the corresponding movement of the body in the anterior-posterior and lateral planes was derived. Participants (N = 96) were randomly assigned to one of the BrAC groups. Positive BrAC groups were compared to the zero BrAC group. Data were examined with hierarchical multiple regression. Adjusted for age, height, and weight, the main effect of lateral CoP with eyes open was not statistically significant. There was a statistically significant main effect of alcohol on anterior-posterior CoP excursion with eyes open and with eyes closed and lateral CoP excursion with eyes closed. For all 3 of those variables, only BrACs of 0

  14. Can audio coached 4D CT emulate free breathing during the treatment course?

    International Nuclear Information System (INIS)

    Persson, Gitte F.; Nygaard, Ditte E.; Olsen, Mikael; Juhler-Noettrup, Trine; Pedersen, Anders N.; Specht, Lena; Korreman, Stine S.

    2008-01-01

    Background. The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. Methods. Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. Results. For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. Conclusion. These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for

  15. Can audio coached 4D CT emulate free breathing during the treatment course?

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gitte F.; Nygaard, Ditte E.; Olsen, Mikael; Juhler-Noettrup, Trine; Pedersen, Anders N.; Specht, Lena; Korreman, Stine S. (Dept. of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark))

    2008-08-15

    Background. The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. Methods. Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. Results. For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. Conclusion. These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for

  16. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, L; Quirk, S; Smith, WL [The University of Calgary, Calgary, AB (Canada); Tom Baker Cancer Centre, Calgary, AB (Canada); Yeung, R; Phan, T [The University of Calgary, Calgary, AB (Canada); Hudson, A [Tom Baker Cancer Centre, Calgary, AB (Canada)

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  17. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther; Prado, Celia; Periago, Juan F.; Grimalt, Joan O.

    2010-01-01

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m -3 in the swimming pool studies and between 97 and 460 ng m -3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  18. 21 CFR 868.2375 - Breathing frequency monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing frequency monitor. 868.2375 Section 868.2375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2375 Breathing frequency monitor. (a...

  19. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  20. Breath-taking jobs: a case-control study of respiratory work disability by occupation in Norway.

    Science.gov (United States)

    Fell, A K; Abrahamsen, R; Henneberger, P K; Svendsen, M V; Andersson, E; Torén, K; Kongerud, J

    2016-09-01

    The current knowledge on respiratory work disability is based on studies that used crude categories of exposure. This may lead to a loss of power, and does not provide sufficient information to allow targeted workplace interventions and follow-up of patients with respiratory symptoms. The aim of this study was to identify occupations and specific exposures associated with respiratory work disability. In 2013, a self-administered questionnaire was mailed to a random sample of the general population, aged 16-50, in Telemark County, Norway. We defined respiratory work disability as a positive response to the survey question: 'Have you ever had to change or leave your job because it affected your breathing?' Occupational exposures were assessed using an asthma-specific job-exposure matrix, and comparison of risks was made for cases and a median of 50 controls per case. 247 workers had changed their work because of respiratory symptoms, accounting for 1.7% of the respondents ever employed. The 'breath-taking jobs' were cooks/chefs: adjusted OR 3.6 (95% CI 1.6 to 8.0); welders: 5.2 (2.0 to 14); gardeners: 4.5 (1.3 to 15); sheet metal workers: 5.4 (2.0 to 14); cleaners: 5.0 (2.2 to 11); hairdressers: 6.4 (2.5 to 17); and agricultural labourers: 7.4 (2.5 to 22). Job changes were also associated with a variety of occupational exposures, with some differences between men and women. Self-report and job-exposure matrix data showed similar findings. For the occupations and exposures associated with job change, preventive measures should be implemented. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Active control of combustion instabilities in low NO{sub x} gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, B.T.; Neumeier, Y. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    This 3-year research program was initiated in September, 1995, to investigate active control of detrimental combustion instabilities in low NO{sub x} gas turbines (LNGT), which burn natural gas in a lean premixed mode to reduce NO{sub x} emissions. The program will investigate the mechanisms that drive these instabilities. Furthermore, it will study active control systems (ACS) that can effectively prevent the onset of such instabilities and/or reduce their amplitudes to acceptable levels. An understanding of the driving mechanisms will not only guide the development of effective ACS for LNGT but may also lead to combustor design changes (i.e., passive control) that will fully or partially resolve the problem. Initial attempts to stabilize combustors (i.e., chemical rockets) by ACS were reported more than 40 years ago, but were unsuccessful due to lack of adequate sensors, electronics, and actuators for performing the needed control actions. Progress made in recent years in sensor and actuator technology, electronics, and control theory has rekindled interest in developing ACS for unstable combustors. While initial efforts in this area, which focused on active control of instabilities in air breathing combustors, have demonstrated the considerable potential of active control, they have also indicated that more effective observers, controllers, and actuators are needed for practical applications. Considerable progress has been made in the observer and actuator areas by the principal investigators of this program during the past 2 years under an AFOSR program. The developed observer is based upon wavelets theory, and can identify the amplitudes, frequencies, and phases of the five most dominant combustor modes in (virtually) real time. The developed actuator is a fuel injector that uses a novel magneto-strictive material to modulate the fuel flow rate into the combustor.

  2. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Time course of EEG slow-wave activity in pre-school children with sleep disordered breathing: a possible mechanism for daytime deficits?

    Science.gov (United States)

    Biggs, Sarah N; Walter, Lisa M; Nisbet, Lauren C; Jackman, Angela R; Anderson, Vicki; Nixon, Gillian M; Davey, Margot J; Trinder, John; Hoffmann, Robert; Armitage, Roseanne; Horne, Rosemary S C

    2012-09-01

    Daytime deficits in children with sleep disordered breathing (SDB) are theorized to result from hypoxic insult to the developing brain or fragmented sleep. Yet, these do not explain why deficits occur in primary snorers (PS). The time course of slow wave EEG activity (SWA), a proxy of homeostatic regulation and cortical maturation, may provide insight. Clinical and control subjects (N=175: mean age 4.3±0.9 y: 61% male) participated in overnight polysomnography (PSG). Standard sleep scoring and power spectral analyses were conducted on EEG (C4/A1; 0.5-sleep stages and respiratory parameters. Repeated-measures ANCOVA evaluated group differences in the time course of SWA. Four groups were classified: controls (OAHI ≤ 1 event/h; no clinical history); PS (OAHI ≤ 1 event/h; clinical history); mild OSA (OAHI=1-5 events/h); and moderate to severe OSA (MS OSA: OAHI>5 events/h). Group differences were found in the percentage of time spent in NREM Stages 1 and 4 (psleep pressure but impaired restorative sleep function in pre-school children with SDB, providing new insights into the possible mechanism for daytime deficits observed in all severities of SDB. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls

    Science.gov (United States)

    Fogel, Robert B; Trinder, John; White, David P; Malhotra, Atul; Raneri, Jill; Schory, Karen; Kleverlaan, Darci; Pierce, Robert J

    2005-01-01

    Pharyngeal dilator muscles are important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that during wakefulness, the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) is greater in patients with OSA compared with controls. Further, EMG activity decreases at sleep onset, and the decrement is greater in apnoea patients than in healthy controls. In addition, it is known that the prevalence of OSA is greater in middle-aged compared with younger men. Thus, we had two goals in this study. First we compared upper airway muscle activity between young and middle-aged healthy men compared with men with OSA. We also explored the mechanisms responsible for the decrement in muscle activity at sleep onset in these groups. We investigated muscle activity, ventilation , and upper airway resistance (UAR) during wakefulness and sleep onset (transition from α to θ EEG activity) in all three groups. Measurements were obtained during basal breathing (BB) and nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure-mediated muscle activation). We found that during wakefulness there was a gradation of GGEMG and UAR (younger < older < OSA) and that muscle activity was reduced by the application of nasal CPAP (to a greater degree in the OSA patients). Although CPAP eliminated differences in UAR during wakefulness and sleep, GGEMG remained greater in the OSA patients. During sleep onset, a greater initial fall in GGEMG was seen in the OSA patients followed by subsequent muscle recruitment in the third to fifth breaths following the α to θ transition. On the CPAP night, and GGEMG still fell further in the OSA patients compared with control subjects. CPAP prevented the rise in UAR at sleep onset along with the associated recruitment in GGEMG. Differences in TPEMG among the groups were not significant. These data suggest that the middle-aged men had upper airway function midway between that of

  5. Nonhuman primate breath volatile organic compounds associate with developmental programming and cardio-metabolic status.

    Science.gov (United States)

    Bishop, Andrew C; Libardoni, Mark; Choudary, Ahsan; Misra, Biswapriya Biswavas; Lange, Kenneth; Bernal, John; Nijland, Mark; Li, Cun; Olivier, Michael; Nathanielsz, Peter W; Cox, Laura A

    2018-03-29

    Rodent and nonhuman primate (NHP) studies indicate that developmental programming by reduced perinatal nutrition negatively impacts life course cardio-metabolic health. We have developed a baboon model in which we feed control mothers (CON) ad libitum while nutrient restricted mothers are fed 70% of ad libitum global feed in pregnancy and lactation. Offspring of nutrient restricted mothers are intrauterine growth restricted (IUGR) at term. By 3.5 years IUGR baboons showed signs of insulin resistance, indicating a pre-diabetic phenotype, in contrast to healthy CON offspring. We hypothesized that a novel breath analysis approach would provide markers of the altered cardio-metabolic state in a non-invasive manner. Here we assess whether exhaled breath volatile organic compounds (VOCs) collected from this unique cohort of juvenile baboons with documented cardio-metabolic dysfunction resulting from in utero programming can be detected from their breath signatures. Breath was collected from male and female CON and IUGR baboons at 4.8±0.2 years (human equivalent ~13 years). Breath VOCs were quantified using a two-dimensional gas chromatography mass spectrometer (2D GC-MS). Two-way ANOVA, on 76 biologically relevant VOCs identified 27 VOCs (p<0.05) with altered abundances between groups (sex, birthweight, and sex x birthweight). The 27 VOCs included 2-pentanone, 2-octanone, 2,5,5 trimethyl-1-hexene and 2,2-dimethyl-undecane, which have not previously been associated with cardio-metabolic disease. Unsupervised principal component analysis of these VOCs could discriminate the four defined clusters defining males, females, CON and IUGR. This study, which is the first to assess quantifiable breath signatures associated with cardio-metabolic programing for any model of IUGR, demonstrates the translational value of this unique model to identify metabolites of programmed cardio-metabolic dysfunction in breath signatures. Future studies are required to validate the

  6. An examination of variations in the cepstral spectral index of dysphonia across a single breath group in connected speech.

    Science.gov (United States)

    Watts, Christopher R; Awan, Shaheen N

    2015-01-01

    The purpose of this study was to use spectral and cepstral analyses of speech to investigate whether underlying physiological changes in voice result in changes in acoustic estimates of dysphonia severity in continuous speech contexts within a single breath group. The effect of dysphonia on acoustic estimates of dysphonia severity, frequency, relative intensity, and vocalization time across initial and terminal segments of a single breath group using a common clinical stimulus was investigated. Prospective quasi-experimental controlled design. Digitized recordings of the Consensus Auditory-Perceptual Evaluation of Voice sentence "We were away a year ago" were obtained from 20 treatment-seeking dysphonic individuals (females, mean age = 39 years) and 20 normal controls (females, mean age = 39 years). Each recorded sample was separated into the first four syllables ("We were away … ") and second four syllables ("…a year ago.") of the breath group. Cepstral and spectral measures, intensity measures, and temporal analyses were obtained and used in calculations of the Cepstral Spectral Index of Dysphonia (CSID, an acoustic estimate of dysphonia severity), fundamental frequency (F0), vocalization time, and relative vocal intensity (dB SLP). Statistical analyses were applied to calculations of change (delta [Δ]) in these measures from one breath group segment to the next. Results revealed a significant effect of group on measures of CSID and F0, but not relative intensity or vocalization time. Dysphonic speakers exhibited a significant increase in the CSID from the first to second breath group segment and limited variation in F0 compared with controls. These results may support the hypothesis that voice impairment increases in severity toward the termination of a breath group even within a short temporal frame (i.e., 2 seconds or less of connected speech), and that this portion of the breath group may be an important determinant of perceptual impressions. Further

  7. Small intestinal malabsorption in chronic alcoholism: a retrospective study of alcoholic patients by the ¹⁴C-D-xylose breath test.

    Science.gov (United States)

    Hope, Håvar; Skar, Viggo; Sandstad, Olav; Husebye, Einar; Medhus, Asle W

    2012-04-01

    The ¹⁴C-D-xylose breath test was used at Ullevål University Hospital in the period from 1986 TO 1995 for malabsorption testing. The objective of this retrospective study was to reveal whether patients with chronic alcoholism may have intestinal malabsorption. The consecutive ¹⁴C-D-xylose breath test database was reviewed and patients with the diagnosis of chronic alcoholism were identified. ¹⁴C-D-xylose breath test results of the alcoholic patients were compared with the results of untreated celiac patients and patient and healthy controls. In the ¹⁴C-D-xylose breath test, ¹⁴C-D-xylose was dissolved in water and given orally after overnight fast. Breath samples were taken at 30-min intervals for 210 min, and ¹⁴CO₂ : ¹²CO₂ ratios were calculated for each time point, presenting a time curve for ¹⁴C-D-xylose absorption. Urine was collected after 210 min and the fraction of the total d-xylose passed was calculated (U%). ¹⁴CO₂ in breath and ¹⁴C-D-xylose in urine were analyzed using liquid scintillation. Both breath and urine analysis revealed a pattern of malabsorption in alcoholics comparable with untreated celiac patients, with significantly reduced absorption of d-xylose compared with patient and healthy controls. Alcoholic patients have a significantly reduced ¹⁴C-D-xylose absorption, comparable with untreated celiac patients. This indicates a reduced intestinal function in chronic alcoholism.

  8. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    Science.gov (United States)

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. Copyright © 2015 the American Physiological Society.

  9. Sleep-induced periodic breathing and apnea: a theoretical study.

    Science.gov (United States)

    Khoo, M C; Gottschalk, A; Pack, A I

    1991-05-01

    To elucidate the mechanisms that lead to sleep-disordered breathing, we have developed a mathematical model that allows for dynamic interactions among the chemical control of respiration, changes in sleep-waking state, and changes in upper airway patency. The increase in steady-state arterial PCO2 accompanying sleep is shown to be inversely related to the ventilatory response to CO2. Chemical control of respiration becomes less stable during the light stage of sleep, despite a reduction in chemoresponsiveness, due to a concomitant increase in "plant gain" (i.e., responsiveness of blood gases to ventilatory changes). The withdrawal of the "wakefulness drive" during sleep onset represents a strong perturbation to respiratory control: higher magnitudes and rates of withdrawal of this drive favor instability. These results may account for the higher incidence of periodic breathing observed during light sleep and sleep onset. Periodic ventilation can also result from repetitive alternations between sleep onset and arousal. The potential for instability is further compounded if the possibility of upper airway occlusion is also included. In systems with high controller gains, instability is mediated primarily through chemoreflex overcompensation. However, in systems with depressed chemoresponsiveness, rapid sleep onset and large blood gas fluctuations trigger repetitive episodes of arousal and hyperpnea alternating with apneas that may or may not be obstructive. Between these extremes, more complex patterns can arise from the interaction between chemoreflex-mediated oscillations of shorter-cycle-duration (approximately 36 s) and longer-wavelength (approximately 60-80 s) state-driven oscillations.

  10. Sleep-Disordered Breathing in Neuromuscular Disease: Diagnostic and Therapeutic Challenges.

    Science.gov (United States)

    Aboussouan, Loutfi S; Mireles-Cabodevila, Eduardo

    2017-10-01

    Normal sleep-related rapid eye movement sleep atonia, reduced lung volumes, reduced chemosensitivity, and impaired airway dilator activity become significant vulnerabilities in the setting of neuromuscular disease. In that context, the compounding effects of respiratory muscle weakness and disease-specific features that promote upper airway collapse or cause dilated cardiomyopathy contribute to various sleep-disordered breathing events. The reduction in lung volumes with neuromuscular disease is further compromised by sleep and the supine position, exaggerating the tendency for upper airway collapse and desaturation with sleep-disordered breathing events. The most commonly identified events are diaphragmatic/pseudo-central, due to a decrease in the rib cage contribution to the tidal volume during phasic rapid eye movement sleep. Obstructive and central sleep apneas are also common. Noninvasive ventilation can improve survival and quality of sleep but should be used with caution in the context of dilated cardiomyopathy or significant bulbar symptoms. Noninvasive ventilation can also trigger sleep-disordered breathing events, including ineffective triggering, autotriggering, central sleep apnea, and glottic closure, which compromise the potential benefits of the intervention by increasing arousals, reducing adherence, and impairing sleep architecture. Polysomnography plays an important diagnostic and therapeutic role by correctly categorizing sleep-disordered events, identifying sleep-disordered breathing triggered by noninvasive ventilation, and improving noninvasive ventilation settings. Optimal management may require dedicated hypoventilation protocols and a technical staff well versed in the identification and troubleshooting of respiratory events. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Voluntary Breath-hold Technique for Reducing Heart Dose in Left Breast Radiotherapy

    Science.gov (United States)

    Bartlett, Frederick R.; Colgan, Ruth M.; Donovan, Ellen M.; Carr, Karen; Landeg, Steven; Clements, Nicola; McNair, Helen A.; Locke, Imogen; Evans, Philip M.; Haviland, Joanne S.; Yarnold, John R.; Kirby, Anna M.

    2014-01-01

    Breath-holding techniques reduce the amount of radiation received by cardiac structures during tangential-field left breast radiotherapy. With these techniques, patients hold their breath while radiotherapy is delivered, pushing the heart down and away from the radiotherapy field. Despite clear dosimetric benefits, these techniques are not yet in widespread use. One reason for this is that commercially available solutions require specialist equipment, necessitating not only significant capital investment, but often also incurring ongoing costs such as a need for daily disposable mouthpieces. The voluntary breath-hold technique described here does not require any additional specialist equipment. All breath-holding techniques require a surrogate to monitor breath-hold consistency and whether breath-hold is maintained. Voluntary breath-hold uses the distance moved by the anterior and lateral reference marks (tattoos) away from the treatment room lasers in breath-hold to monitor consistency at CT-planning and treatment setup. Light fields are then used to monitor breath-hold consistency prior to and during radiotherapy delivery. PMID:25046661

  12. Chest physiotherapy with positive expiratory pressure breathing after abdominal and thoracic surgery: a systematic review.

    Science.gov (United States)

    Orman, J; Westerdahl, E

    2010-03-01

    A variety of chest physiotherapy techniques are used following abdominal and thoracic surgery to prevent or reduce post-operative complications. Breathing techniques with a positive expiratory pressure (PEP) are used to increase airway pressure and improve pulmonary function. No systematic review of the effects of PEP in surgery patients has been performed previously. The purpose of this systematic review was to determine the effect of PEP breathing after an open upper abdominal or thoracic surgery. A literature search of randomised-controlled trials (RCT) was performed in five databases. The trials included were systematically reviewed by two independent observers and critically assessed for methodological quality. We selected six RCT evaluating the PEP technique performed with a mechanical device in spontaneously breathing adult patients after abdominal or thoracic surgery via thoracotomy. The methodological quality score varied between 4 and 6 on the Physiotherapy Evidence Database score. The studies were published between 1979 and 1993. Only one of the included trials showed any positive effects of PEP compared to other breathing techniques. Today, there is scarce scientific evidence that PEP treatment is better than other physiotherapy breathing techniques in patients undergoing abdominal or thoracic surgery. There is a lack of studies investigating the effect of PEP over placebo or no physiotherapy treatment.

  13. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  14. SU-E-T-151: Breathing Synchronized Delivery (BSD) Planning for RapicArc Treatment

    International Nuclear Information System (INIS)

    Lu, W; Chen, M; Jiang, S

    2015-01-01

    Purpose: To propose a workflow for breathing synchronized delivery (BSD) planning for RapicArc treatment. Methods: The workflow includes three stages: screening/simulation, planning, and delivery. In the screening/simulation stage, a 4D CT with the corresponding breathing pattern is acquired for each of the selected patients, who are able to follow their own breathing pattern. In the planning stage, one breathing phase is chosen as the reference, and contours are delineated on the reference image. Deformation maps to other phases are performed along with contour propagation. Based on the control points of the initial 3D plan for the reference phase and the respiration trace, the correlation with respiration phases, the leaf sequence and gantry angles is determined. The beamlet matrices are calculated with the corresponding breathing phase and deformed to the reference phase. Using the 4D dose evaluation tool and the original 3D plan DVHs criteria, the leaf sequence is further optimized to meet the planning objectives and the machine constraints. In the delivery stage, the patients are instructed to follow the programmed breathing patterns of their own, and all other parts are the same as the conventional Rapid-Arc delivery. Results: Our plan analysis is based on comparison of the 3D plan with a static target (SD), 3D plan with motion delivery (MD), and the BSD plan. Cyclic motion of range 0 cm to 3 cm was simulated for phantoms and lung CT. The gain of the BSD plan over MD is significant and concordant for both simulation and lung 4DCT, indicating the benefits of 4D planning. Conclusion: Our study shows that the BSD plan can approach the SD plan quality. However, such BSD scheme relies on the patient being able to follow the same breathing curve that is used in the planning stage during radiation delivery. Funded by Varian Medical Systems

  15. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract.

    Science.gov (United States)

    Huda, Rafiq; Pollema-Mays, Sarah L; Chang, Zheng; Alheid, George F; McCrimmon, Donald R; Martina, Marco

    2012-10-01

    Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .

  16. Sleep Disordered Breathing in Early Childhood: Quality of Life for Children and Families

    Science.gov (United States)

    Jackman, Angela R.; Biggs, Sarah N.; Walter, Lisa M.; Embuldeniya, Upeka S.; Davey, Margot J.; Nixon, Gillian M.; Anderson, Vicki; Trinder, John; Horne, Rosemary S. C.

    2013-01-01

    Objectives: To characterize health-related quality of life (QOL) in preschool children with sleep disordered breathing (SDB) and their families compared with nonsnoring control patients in the community. It was hypothesized that children with SDB and their families would have poorer QOL than control children, that a relationship would be found between SDB severity and QOL, and that even children with mild SDB and their families would have reduced QOL. Participants and Methods: A clinical sample of preschool children (3-5 y) with SDB diagnosed by gold standard polysomnography (primary snoring, PS = 56, mild obstructive sleep apnea, OSA = 35, moderate/severe OSA = 24) and control children recruited from the community (n = 38) were studied. Parents completed health-related QOL and parenting stress questionnaires. Results: Children and families in the PS and mild OSA groups had consistently poorer QOL than control children (both P Biggs SN; Walter LM; Embuldeniya US; Davey MJ; Nixon GM; Anderson V; Trinder J; Horne RSC. Sleep disordered breathing in early childhood: quality of life for children and families. SLEEP 2013;36(11):1639-1646. PMID:24179296

  17. Breath acetone monitoring by portable Si:WO3 gas sensors

    International Nuclear Information System (INIS)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2012-01-01

    Highlights: ► Portable sensors were developed and tested for monitoring acetone in the human breath. ► Acetone concentrations down to 20 ppb were measured with short response times ( 3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  18. Remote monitoring of breathing dynamics using infrared thermography.

    Science.gov (United States)

    Pereira, Carina Barbosa; Yu, Xinchi; Czaplik, Michael; Rossaint, Rolf; Blazek, Vladimir; Leonhardt, Steffen

    2015-11-01

    An atypical or irregular respiratory frequency is considered to be one of the earliest markers of physiological distress. In addition, monitoring of this vital parameter plays a major role in diagnosis of respiratory disorders, as well as in early detection of sudden infant death syndrome. Nevertheless, the current measurement modalities require attachment of sensors to the patient's body, leading to discomfort and stress. The current paper presents a new robust algorithm to remotely monitor breathing rate (BR) by using thermal imaging. This approach permits to detect and to track the region of interest (nose) as well as to estimate BR. In order to study the performance of the algorithm, and its robustness against motion and breathing disorders, three different thermal recordings of 11 healthy volunteers were acquired (sequence 1: normal breathing; sequence 2: normal breathing plus arbitrary head movements; and sequence 3: sequence of specific breathing patterns). Thoracic effort (piezoplethysmography) served as "gold standard" for validation of our results. An excellent agreement between estimated BR and ground truth was achieved. Whereas the mean correlation for sequence 1-3 were 0.968, 0.940 and 0.974, the mean absolute BR errors reached 0.33, 0.55 and 0.96 bpm (breaths per minute), respectively. In brief, this work demonstrates that infrared thermography is a promising, clinically relevant alternative for the currently available measuring modalities due to its performance and diverse remarkable advantages.

  19. Breath-hold time during cold water immersion: effects of habituation with psychological training.

    Science.gov (United States)

    Barwood, Martin J; Datta, Avijit K; Thelwell, Richard C; Tipton, Michael J

    2007-11-01

    The loss of the conscious control of respiration on whole body cold water immersion (CWI) can result in the aspiration of water and drowning. Repeated CWI reduces the respiratory drive evoked by CWI and should prolong breath-hold time on CWI (BHmax(CWI)). Psychological skills training (PST) can also increase BHmax(CWI) by improving the ability of individuals to consciously suppress the drive to breathe. This study tested the hypothesis that combining PST and repeated CWI would extend BHmax(CWI) beyond that seen following only repeated CWI. There were 20 male subjects who completed two 2.5-min, head-out breath-hold CWI (BH1 and BH2) in water at 12 degrees C. Following BH1, subjects were matched on BHmax(CWI) and allocated to a habituation (HAB) group or a habituation plus PST group (H+PST). Between BH1 and BH2 both experimental groups undertook five 2.5-min CWI on separate days, during which they breathed freely. The H+PST also received psychological training to help tolerate cold and suppress the drive to breathe on immersion to extend BHmax(CWI). During BH1, mean BHmax(CWI) (+/- SD) in the HAB group was 22.00 (10.33) s and 22.38 (10.65) s in the H+PST. After the five free-breathing CWI, both groups had a longer BHmax(CWI) in BH2. The HAB group improved by 14.13 (20.21) s, an increase of 73%. H+PST improved by 26.86 (24.70) s, a 120% increase. No significant differences were identified between the groups. Habituation significantly increases BHmax on CWI, the addition of PST did not result in statistically significant improvements in BHmax(CWI), but may have practical significance.

  20. Effectiveness of perfluorochemical emulsions and carbogen breathing with fractionated irradiation

    International Nuclear Information System (INIS)

    Moulder, J.E.; Fish, B.L.

    1987-01-01

    Oxygen-carrying perfluorochemical emulsions have been shown to enhance the response of experimental tumors to large single doses of radiation. Clinically, however, perfluorochemical emulsions will be used with only some fractions of multiple fraction radiation courses. To test the efficacy of a perfluorochemical emulsion (Fluosol-DA 20%, supplied by Alpha Therapeutic Co) under these conditions, BA1112 rat sarcomas were treated with three fractions/week of 6.25 Gy/fraction. Once a week, animals were given Fluosol-DA at 15 ml/kg, and allowed to breathe 95% O/sub 2/:5% CO/sub 2/ (carbogen) for 30 min prior to and during irradiation. The tumor regression rate during treatment was significantly greater in the Fluosol arm than in the control arm. Preliminary data analysis shows a 50% tumor control dose of 86.0 Gy (95% cl:78.0 - 94.3 Gy) in the control arm compared to 69.1 Gy (95% cl:58.3 - 77.3 Gy) in the Fluosol arm. The dose modification factor for intermittent Fluosol and carbogen breathing is 1.26 (95% cl:1.08 - 1.50). In the same fractionated schedule 0.4 mg/kg misonidazole, given once per week, gave a sensitizer enhancement ratio of 1.15 (95% cl:1.03 - 1.33)

  1. A simple, remote, video based breathing monitor.

    Science.gov (United States)

    Regev, Nir; Wulich, Dov

    2017-07-01

    Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.

  2. Changes in cytochrome P4501A activity during development in common tern chicks fed polychlorinated biphenyls, as measured by the caffeine breath test

    Energy Technology Data Exchange (ETDEWEB)

    Feyk, L.A.; Giesy, J.P.; Bosveld, A.T.C.; Van den Berg, M.

    2000-03-01

    Cytochrome P4501A (CYPIA) activity is often used as a biomarker of exposure of wildlife to polyhalogenated diaromatic hydrocarbons and is usually measured ex vivo in liver tissue. A caffeine breath test (CBT) with radiolabeled substrate ({sup 14}C-caffeine) was used to measure in vivo CYP1A activity twice during development in 14 common tern (Sterna hirundo) chicks treated with polyhalogenated diaromatic hydrocarbons. Tern hatchlings were fed fish spiked with 3,3{prime}, 4,4{prime},5-pentachlorobiphenyl (PCB 126) and 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB 153) such that the diet contained an average of 23, 99, or 561 pg of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents per gram of fish for 21 d. Sixteen additional common tern chicks were similarly dosed with polyhalogenated diaromatic hydrocarbons but were not subjected to the CBT procedure. In weeks 1 and 2, caffeine N-demethylation and ethoxyresorufin-O-deethylation activity on day 21 were elevated in birds that received the greatest PCB dose. There was less constitutive and greater induction of ethoxyresorufin-O-deethylation activity than caffeine N-demethylation. The {sup 14}C-CBT was less invasive than the ethoxyresorufin-O-deethylase assay. Only one morphological parameter differed significantly between CBT subjects and no-CBT subjects fed the same level of PCBs. Bursa weight was significantly less in control CBT subjects than in control no-CBT subjects, but bursa weights did not differ among CBT and no-CBT birds from the two PCB treatment groups. No alterations of survival or growth occurred in CBT subjects compared with no-CBT subjects.

  3. Analysis of human exhaled breath in a population of young volunteers

    Directory of Open Access Journals (Sweden)

    Zarić Božidarka

    2014-01-01

    Full Text Available Analysis of volatile organic compounds (VOCs in human breath can provide information about the current physiological state of an individual, such as clinical conditions and exposure to exogenous pollutants. The blood-borne VOCs present in exhaled breath offer the possibility of exploring physiological and pathological processes in a noninvasive way. However, the field of exhaled breath analysis is still in its infancy. We undertook this study in order to define interindividual variation and common compounds in breath VOCs of 48 young human volunteers. Alveolar breath samples were analyzed by automated thermal desorption, gas chromatography with flame ionization detector (FID and electron capture detector (ECD using SUPELCO standards with 66 compounds. Predominant compounds in the alveolar breath of analyzed subjects are ethylbenzene, 1-ethyl-4-methylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene (over 50% of the subjects. Isopropyl alcohol, propylene, acetone, ethanol were found as well. We detected substituted compounds in exhaled breath. [Projekat Ministarstva nauke Republike Srbije, br. 172001

  4. Breathing multichimera states in nonlocally coupled phase oscillators

    Science.gov (United States)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  5. Parental attitude, depression, anxiety in mothers, family functioning and breath-holding spells: A case control study.

    Science.gov (United States)

    Eliacik, Kayi; Bolat, Nurullah; Kanik, Ali; Sargin, Enis; Selkie, Ellen; Korkmaz, Nurhan; Baydan, Figen; Akar, Ebru; Sarioglu, Berrak

    2016-05-01

    This study aimed to identify differences in the antenatal stressful life events, parenting style, family functioning, depression and anxiety of mothers who have children with breath-holding spells (BHS) compared with controls. This case control study divided 66 children into a group of children with BHS and a control group, with the children's ages ranging between 6 months and 5 years of age. This study explored underlying anxiety and depression in mothers as well as functioning of their families. Socio-demographical data and stressful life events that the mother experienced during pregnancy were analysed. In order to evaluate the effects of family structure, depression and anxiety in mothers on BHS in children, the Family Assessment Device, and both the Parental Attitude Research Instrument and the Beck Depression Inventory as well as the State-Trait Anxiety Inventory were used to assess both groups. Exposure to stressful life events during pregnancy (P overprotective maternal characteristics (P = 0.027) and most of the family functioning subscales were found to be significantly different between BHS and control groups. The association of anxiety, depression, prenatal stressful events and poor family functioning in mothers who have children with BHS is significantly higher than controls. An evaluation of these problems may be beneficial in the management of BHS. © 2016 The Authors. Journal of Paediatrics and Child Health © 2016 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  6. The effects of breathing techniques training on the duration of labor and anxiety levels of pregnant women.

    Science.gov (United States)

    Cicek, Sevil; Basar, Fatma

    2017-11-01

    To assess the effects of breathing techniques training on anxiety levels of pregnant women and the duration of labor. The study utilizes a randomized controlled trial design. The pregnant women were divided into control (n = 35) or experimental group (n = 35) randomly. The experimental group received breathing techniques training in the latent phase and these techniques were applied in the following phases accordingly. The anxiety levels of pregnant women were evaluated three times in total. The duration of labor was considered as the duration of the first stage of labor and the duration of the second stage of labor. There were significant differences between the two groups regarding the mean State Anxiety Inventory (SAI) and the mean duration of labor. This study concludes that breathing techniques are an effective method in the reduction of anxiety and influence the duration of delivery during labor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Practical recommendations for breathing-adapted radiotherapy; Bonnes pratiques pour la radiotherapie asservie a la respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simon, L.; Giraud, P.; Rosenwald, J.C. [Institut Curie, Dept. d' Oncologie-radiotherapie, 75 - Paris (France); Dumas, J.L.; Lorchel, F. [CHU de Besancon, Hopital Jean-Minjoz, Service Radiotherapie, 25 - Besancon (France); Marre, D. [Institut Claudius-Regaud, Dept. des Radiations, 31 - Toulouse (France); Dupont, S. [Hopital Europeen Georges-Pompidou, Service d' Oncoradiotherapie, 75 - Paris (France); Varmenot, N. [Centre Henri-Becquerel, UnitE de Physique Medicale, 76 - Rouen (France); Ginestet, C. [Centre Leon-Berard, Dept. de Radiotherapie, 69 - Lyon (France); Caron, J. [Institut Bergonie, Dept. de Radiotherapie, 33 - Bordeaux (France); Marchesi, V. [Centre Alexis-Vautrin, Dept. de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Ferreira, I. [Institut Gustave-Roussy, Dept. d' Oncologie Radiotherapie, 94 - Villejuif (France); Garcia, R. [Institut Sainte-Catherine, Service de Radiotherapie, 84 - Avignon (France)

    2007-06-15

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  8. Can resistive breathing injure the lung? Implications for COPD exacerbations

    Directory of Open Access Journals (Sweden)

    Vassilakopoulos T

    2016-09-01

    Full Text Available Theodoros Vassilakopoulos, Dimitrios Toumpanakis Pulmonary and Critical Care Medicine, Medical School, National and Kapodistrian University of Athens, Greece Abstract: In obstructive lung diseases, airway inflammation leads to bronchospasm and thus resistive breathing, especially during exacerbations. This commentary discusses experimental evidence that resistive breathing per se (the mechanical stimulus in the absence of underlying airway inflammation leads to lung injury and inflammation (mechanotransduction. The potential implications of resistive breathing-induced mechanotrasduction in COPD exacerbations are presented along with the available clinical evidence. Keywords: resistive breathing, COPD, mechanotransduction, bronchoconstriction, inflammation

  9. Can audio coached 4D CT emulate free breathing during the treatment course?

    DEFF Research Database (Denmark)

    Persson, Gitte F; Nygaard, Ditte E; Olsen, Mikael

    2008-01-01

    BACKGROUND: The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable...... breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. METHODS: Thirteen volunteers completed respiratory audio coaching on 3 days within...... a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing...

  10. Optimization of imaging before pulmonary vein isolation by radiofrequency ablation: breath-held ungated versus ECG/breath-gated MRA

    Energy Technology Data Exchange (ETDEWEB)

    Allgayer, C.; Haller, S.; Bremerich, J. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Zellweger, M.J.; Sticherling, C.; Buser, P.T. [University Hospital Basel, Department of Cardiology, Basel (Switzerland); Weber, O. [University Hospital Basel, Department of Medical Physics, Basel (Switzerland)

    2008-12-15

    Isolation of the pulmonary veins has emerged as a new therapy for atrial fibrillation. Pre-procedural magnetic resonance (MR) imaging enhances safety and efficacy; moreover, it reduces radiation exposure of the patients and interventional team. The purpose of this study was to optimize the MR protocol with respect to image quality and acquisition time. In 31 patients (23-73 years), the anatomy of the pulmonary veins, left atrium and oesophagus was assessed on a 1.5-Tesla scanner with four different sequences: (1) ungated two-dimensional true fast imaging with steady precession (2D-TrueFISP), (2) ECG/breath-gated 3D-TrueFISP, (3) ungated breath-held contrast-enhanced three-dimensional turbo fast low-angle shot (CE-3D-tFLASH), and (4) ECG/breath-gated CE-3D-TrueFISP. Image quality was scored from 1 (structure not visible) to 5 (excellent visibility), and the acquisition time was monitored. The pulmonary veins and left atrium were best visualized with CE-3D-tFLASH (scores 4.50 {+-} 0.52 and 4.59 {+-} 0.43) and ECG/breath-gated CE-3D-TrueFISP (4.47 {+-} 0.49 and 4.63 {+-} 0.39). Conspicuity of the oesophagus was optimal with CE-3D-TrueFISP and 2D-TrueFISP (4.59 {+-} 0.35 and 4.19 {+-} 0.46) but poor with CE-3D-tFLASH (1.03 {+-} 0.13) (p < 0.05). Acquisition times were shorter for 2D-TrueFISP (44 {+-} 1 s) and CE-3D-tFLASH (345 {+-} 113 s) compared with ECG/breath-gated 3D-TrueFISP (634 {+-} 197 s) and ECG/breath-gated CE-3D-TrueFISP (636 {+-} 230 s) (p < 0.05). In conclusion, an MR imaging protocol comprising CE-3D-tFLASH and 2D-TrueFISP allows assessment of the pulmonary veins, left atrium and oesophagus in less than 7 min and can be recommended for pre-procedural imaging before electric isolation of pulmonary veins. (orig.)

  11. Breath acetone monitoring by portable Si:WO3 gas sensors

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  12. Breath-by-breath analysis of expiratory gas concentration in chickens.

    Science.gov (United States)

    Itabisashi, T

    1981-01-01

    Expiratory oxygen and carbon-dioxide concentration were analysed breath by breath in order to examine their wave forms in adult awake hens restrained in various postural positions, including supine, prone and sitting positions. Expired gas was collected at the nostril in almost all the hens. In the sitting position free from vocalization, feeding, drinking, panting, and restlessness, hens showed various forms of stable pattern of oxygen-gas curves. These forms were classified into three types, or the ascending, flat and descending types, with respect to the plateau inclination. The waves of carbon-dioxide were not always a mirror image of those of oxygen. The rate of occurrence of each type varied with the hen's postural position. The wave form was altered with the experimental body-rotation of the hen. When placed between the deflections of stable pattern, the episodes of wave deformation resembling that seen at the time of uneven pulmonary ventilation in mammals could frequently be observed in any hen's posture examined. Cardiogenic oscillation appeared on the plateau of expired-gas curves.

  13. Comparison of the 1-gram [14C]xylose, 10-gram lactulose-H2, and 80-gram glucose-H2 breath tests in patients with small intestine bacterial overgrowth

    International Nuclear Information System (INIS)

    King, C.E.; Toskes, P.P.

    1986-01-01

    The sensitivity of three breath tests (1-g [ 14 C]xylose, 10-g lactulose-H 2 , and 80-g glucose-H 2 ) was studied in 20 subjects with culture-documented small intestine bacterial overgrowth. Elevated breath 14 CO2 levels were seen within 30 min of [ 14 C]xylose administration in 19 of 20 subjects with bacterial overgrowth and 0 of 10 controls. In contrast, H 2 breath tests demonstrated uninterpretable tests (absence of H 2 -generating bacteria) in 2 of 20 subjects with bacterial overgrowth and 1 of 10 controls and nondiagnostic increases in H 2 production in 3 of 18 glucose-H 2 and 7 of 18 lactulose-H 2 breath tests in subjects with bacterial overgrowth. These findings demonstrate continued excellent reliability of the 1-g [ 14 C]xylose breath test as a diagnostic test for bacterial overgrowth, indicate inadequate sensitivity of H 2 breath tests in detecting bacterial overgrowth, and suggest the need for evaluation of a 13 CO 2 breath test having the same characteristics as the [ 14 C]xylose test (avidly absorbed substrate having minimal contact with the colonic flora) for nonradioactive breath detection of bacterial overgrowth in children and reproductive-age women

  14. Study of ethane level in exhaled breath in patients with age-related macular degeneration: preliminary study.

    Science.gov (United States)

    Cagini, C; Giordanelli, A; Fiore, T; Giardinieri, R; Malici, B; De Medio, G E; Pelli, M A; De Bellis, F; Capodicasa, E

    2011-01-01

    A variety of factors have been implicated in the pathogenesis of age-related macular degeneration (ARMD), and oxidative stress plays an important role in the onset and progression of the disease. Breath ethane is now considered a specific and non-invasive test for determining and monitoring the trend of lipid peroxidation and free radical-induced damage in vivo. This test provides an index of the patients' overall oxidative stress level. We evaluated the breath ethane concentration in exhaled air in patients with advanced ARMD. In this study, we enrolled 13 patients with advanced ARMD and a control group, and a breath analysis was carried out by gas chromatography. The mean ethane level in the ARMD patients was 0.82 ± 0.93 nmol/l (range: 0.01-2.7 nmol/l) and the mean ethane value in the control group was 0.12 ± 0.02 nmol/l (range: 0.08-0.16 nmol/l). The difference between the values of the 2 groups was statistically significant (p ethane levels are higher in most patients with ARMD. The breath ethane test could thus be a useful method for evaluating the level of oxidative stress in patients with ARMD. To our knowledge, there are no data on this type of analysis applied to ARMD. Copyright © 2011 S. Karger AG, Basel.

  15. Chronic adaptations of lung function in breath-hold diving fishermen

    Directory of Open Access Journals (Sweden)

    Cristiane Diniz

    2014-04-01

    Full Text Available Objectives: The aim of this study was to verify and analyze the existence of chronic adaptations of lung function in freediving fishermen whose occupation is artisanal fishing. Material and Methods: This was a cross-sectional study involving 11 breath-hold diving fishermen and 10 non-breath-hold diving fishermen (control from the village of Bitupitá in the municipality of Barroquinha (Ceará - Brazil. Anthropometric measurements, chest and abdominal circumferences as well as spirometric and respiratory muscle strength tests were conducted according to the specifications of the American Thoracic Society/European Respiratory Society (ATS/ERS. In order to compare the measured values versus the predicted values, Student t test was used in the case of parametric test and Wilcoxon test in the case of nonparametric test. To compare the inter-group means Student t test was used for parametric test and Mann-Whitney test for the nonparametric one. The level of significance was set at α = 5%. Results: The forced vital capacity (FVC (4.9±0.6 l vs. 4.3±0.4 l and forced expiratory volume in 1 s (FEV1 (4.0±0.5 l vs. 3.6±0.3 l were, respectively, higher in the group of divers compared to the control group (p ≤ 0.05. Furthermore, in the group of free divers, the measured FVC, FEV1 and FEV1/FVC ratios were significantly greater than the predicted ones. No differences were found between the measured respiratory pressures. Conclusions: These results indicate that breath-hold diving seems to produce chronic adaptations of the respiratory system, resulting in elevated lung volumes with no airway obstruction.

  16. Subjective breathing impairment in unilateral vocal fold paralysis.

    Science.gov (United States)

    Brunner, Elke; Friedrich, Gerhard; Kiesler, Karl; Chibidziura-Priesching, Jutta; Gugatschka, Markus

    2011-01-01

    Dysphonia is considered a major symptom of unilateral vocal fold paralysis (UVFP). Besides this, many patients complain of further symptoms such as dysphagia and dyspnea, which might not be expected to such an extent. The aim of this survey was to elucidate these symptoms in a cohort of patients with UVFP. Sixty-three patients (22 men, 41 women) suffering from UVFP were interviewed. Therefore we developed a questionnaire dealing with each of the three symptom categories: voice production, swallowing and breathing. All of the surveyed patients reported voice impairment, almost 60% complained of swallowing problems after the onset of paralysis. Seventy-five percent reported a subjectively impaired breathing sensation, not just phonatory dyspnea but during everyday physical activity as well. Our study revealed a certain discrepancy between objectively assessed laryngoscopic findings and subjective symptoms. A majority of patients suffered from an impairment in each of the three laryngeal functions (dysphonia, dysphagia and dyspnea). The latter two differ from the classic approach to this condition but must be considered as well in clinical diagnostics and therapy. Copyright © 2010 S. Karger AG, Basel.

  17. Fast-starting for a breath: Air breathing in Hoplosternum littorale

    DEFF Research Database (Denmark)

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.

    by the fall of a prey item on the water surface, and in tapping motions of goldfish, a behaviour that was interpreted to be food-related. Little is known about C-starts being used outside the context of escaping or feeding. Here, we test the hypothesis that air-breathing fish may use C-starts when gulping air...

  18. IMPLICATIONS OF MOUTH BREATHING AND ATYPICAL SWALLOWING IN BODY POSTURE

    Directory of Open Access Journals (Sweden)

    Veronique Sousa

    2017-07-01

    Conclusion: Statistically significant associations were established between the breathing pattern and the horizontal alignment of acromions, as well as the horizontal and vertical alignment of the head; between the pattern of breathing and swallowing with occlusal relationship anteroposterior and occlusal relationship vertical and also between breathing pattern and swallowing with digital sucking habits and pacifier use.

  19. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  20. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  1. Assessment of Sleep and Breathing in Adults with Prader-Willi Syndrome: A Case Control Series

    Science.gov (United States)

    Yee, Brendon J.; Buchanan, Peter R.; Mahadev, Sri; Banerjee, Dev; Liu, Peter Y.; Phillips, Craig; Loughnan, Georgina; Steinbeck, Kate; Grunstein, Ronald R.

    2007-01-01

    Objectives: Prader-Willi syndrome (PWS) is a genetic disorder (linked to chromosome 15q11-13) characterized by hypotonia and developmental delay, hyperphagia and obesity, hypersomnia and abnormal sleep, and behavioral problems. Such patients may also be at increased risk of obstructive sleep apnea (OSA), although whether this risk is explained by known risk factors has not previously been directly tested. Our aim was to compare sleep and breathing in an older group of patients with Prader-Willi syndrome with a control group—matched on the basis of age, sex, and body mass index (BMI)—in order to determine which specific features are not explained by these known confounders. Methods: Consecutive patients with PWS attending the PWS clinic at Royal Prince Alfred Hospital Sydney, Australia, were recruited. Age-, sex-, and BMI-matched controls were selected from the Sleep Investigation Unit at Royal Prince Alfred Hospital, and polysomnography-derived sleep and other parameters were compared across the groups. Results: Nineteen subjects with PWS (14 males) were included in the study. Eighteen (95 %) had a total respiratory disturbance index (TRDI) of greater than 5 events per hour, with 4 (21%) having severe obstructive sleep apnea (TRDI ≥ 30 events/hour) and 9 (47%) having evidence of obesity hypoventilation syndrome. Patients with PWS, as compared with the control group, had evidence of more nocturnal hypoxemia, with lower oxyhemoglobin saturations and percentages of sleep time at less than 80% oxyhemoglobin saturation (all p values Prader-Willi syndrome: a case control series. J Clin Sleep Med 2007;3(7):713–718. PMID:18198805

  2. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.

  3. Elevated carbon monoxide in the exhaled breath of mice during a systemic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Alan G Barbour

    Full Text Available Blood is the specimen of choice for most laboratory tests for diagnosis and disease monitoring. Sampling exhaled breath is a noninvasive alternative to phlebotomy and has the potential for real-time monitoring at the bedside. Improved instrumentation has advanced breath analysis for several gaseous compounds from humans. However, application to small animal models of diseases and physiology has been limited. To extend breath analysis to mice, we crafted a means for collecting nose-only breath samples from groups and individual animals who were awake. Samples were subjected to gas chromatography and mass spectrometry procedures developed for highly sensitive analysis of trace volatile organic compounds (VOCs in the atmosphere. We evaluated the system with experimental systemic infections of severe combined immunodeficiency Mus musculus with the bacterium Borrelia hermsii. Infected mice developed bacterial densities of ∼10(7 per ml of blood by day 4 or 5 and in comparison to uninfected controls had hepatosplenomegaly and elevations of both inflammatory and anti-inflammatory cytokines. While 12 samples from individual infected mice on days 4 and 5 and 6 samples from uninfected mice did not significantly differ for 72 different VOCs, carbon monoxide (CO was elevated in samples from infected mice, with a mean (95% confidence limits effect size of 4.2 (2.8-5.6, when differences in CO2 in the breath were taken into account. Normalized CO values declined to the uninfected range after one day of treatment with the antibiotic ceftriaxone. Strongly correlated with CO in the breath were levels of heme oxygenase-1 protein in serum and HMOX1 transcripts in whole blood. These results (i provide further evidence of the informativeness of CO concentration in the exhaled breath during systemic infection and inflammation, and (ii encourage evaluation of this noninvasive analytic approach in other various other rodent models of infection and for utility in

  4. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    Science.gov (United States)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  5. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  6. Sleep-disordered breathing and mortality: a prospective cohort study.

    OpenAIRE

    Naresh M Punjabi; Brian S Caffo; James L Goodwin; Daniel J Gottlieb; Anne B Newman; George T O'Connor; David M Rapoport; Susan Redline; Helaine E Resnick; John A Robbins; Eyal Shahar; Mark L Unruh; Jonathan M Samet

    2009-01-01

    Editors' Summary Background About 1 in 10 women and 1 in 4 men have a chronic condition called sleep-disordered breathing although most are unaware of their problem. Sleep-disordered breathing, which is commonest in middle-aged and elderly people, is characterized by numerous, brief (10 second or so) interruptions of breathing during sleep. These interruptions, which usually occur when relaxation of the upper airway muscles decreases airflow, lower the level of oxygen in the blood and, as a r...

  7. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching

    International Nuclear Information System (INIS)

    Neicu, Toni; Berbeco, Ross; Wolfgang, John; Jiang, Steve B

    2006-01-01

    Recently, at Massachusetts General Hospital (MGH) we proposed a new treatment technique called synchronized moving aperture radiation therapy (SMART) to account for tumour motion during radiotherapy. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator with the tumour motion induced by respiration. The two key requirements for being able to successfully use SMART in clinical practice are the precise and fast detection of tumour position during the simulation/treatment and the good reproducibility of the tumour motion pattern. To fulfil the first requirement, an integrated radiotherapy imaging system is currently being developed at MGH. The results of a previous study show that breath coaching techniques are required to make SMART an efficient technique in general. In this study, we investigate volunteer and patient respiratory coaching using a commercial respiratory gating system as a respiration coaching tool. Five healthy volunteers, observed during six sessions, and 33 lung cancer patients, observed during one session when undergoing 4D CT scans, were investigated with audio and visual promptings, with free breathing as a control. For all five volunteers, breath coaching was well tolerated and the intra- and inter-session reproducibility of the breathing pattern was greatly improved. Out of 33 patients, six exhibited a regular breathing pattern and needed no coaching, four could not be coached at all due to the patient's medical condition or had difficulty following the instructions, 13 could only be coached with audio instructions and 10 could follow the instructions of and benefit from audio-video coaching. We found that, for all volunteers and for those patients who could be properly coached, breath coaching improves the duty cycle of SMART treatment. However, about half of the patients could not follow both audio and video instructions simultaneously, suggesting that the current coaching

  8. Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching

    Energy Technology Data Exchange (ETDEWEB)

    Neicu, Toni; Berbeco, Ross; Wolfgang, John; Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2006-02-07

    Recently, at Massachusetts General Hospital (MGH) we proposed a new treatment technique called synchronized moving aperture radiation therapy (SMART) to account for tumour motion during radiotherapy. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator with the tumour motion induced by respiration. The two key requirements for being able to successfully use SMART in clinical practice are the precise and fast detection of tumour position during the simulation/treatment and the good reproducibility of the tumour motion pattern. To fulfil the first requirement, an integrated radiotherapy imaging system is currently being developed at MGH. The results of a previous study show that breath coaching techniques are required to make SMART an efficient technique in general. In this study, we investigate volunteer and patient respiratory coaching using a commercial respiratory gating system as a respiration coaching tool. Five healthy volunteers, observed during six sessions, and 33 lung cancer patients, observed during one session when undergoing 4D CT scans, were investigated with audio and visual promptings, with free breathing as a control. For all five volunteers, breath coaching was well tolerated and the intra- and inter-session reproducibility of the breathing pattern was greatly improved. Out of 33 patients, six exhibited a regular breathing pattern and needed no coaching, four could not be coached at all due to the patient's medical condition or had difficulty following the instructions, 13 could only be coached with audio instructions and 10 could follow the instructions of and benefit from audio-video coaching. We found that, for all volunteers and for those patients who could be properly coached, breath coaching improves the duty cycle of SMART treatment. However, about half of the patients could not follow both audio and video instructions simultaneously, suggesting that the current coaching

  9. Experimental study on L-[1-13C] phenylalanine breath test for quantitative assessment of liver function with animal

    International Nuclear Information System (INIS)

    Yan Weili; Fudan Univ., Shanghai; Lin Xiangtong; Sun Dayu; Jiang Yibin; Sun Xu; Rong Lan; Liang Qi

    2006-01-01

    Objective: Using a small animal breath test model we designed and L-[1- 13 C] phenylalanine breath test ( 13 C-PheBT) of rats, the authors investigated its feasibility and validity and determined effective parameter of the test. Methods: Twenty male Sprague-Dawley (SD) weighting 280-290 g rats randomized into two groups acute hepatitis rats (n=10) and control rats (n=10). Hepatitis was induced by carbon tetrachloride (CCl 4 ) olive oil administration through intragastric gavage. PheBT was assisted by small mechanical ventilator improved and air samples were collected discontinuously, 20 mg/kg body weight L-[1- 13 C] phenylalanine ( 13 C-Phe) was administered intravenously. Twenty-nine breath samples were taken before and different intervals within sixty minutes after administration. 13 Cenrichment was measured by isotope ratio mass spectrometer. Results: All time phase curves of 13 C enrichment in rat breath reached a peak almost at 2 min after the intravenous administration of 13 C-Phe. The PheBT parameters, 13 C excretion rate constant (PheBT-K), of CCl 4 hepatitis rats were significantly lower than that of normal control rats [(2.45 ± 0.25) x 10 -2 min -1 vs (2.98 ± 0.19) x 10 -2 min -1 , t = 5.40, P 13 C fast phase disposition constant did not statistically differ between the two groups (t=0.58, P>0.05). PheBT-K had significant negative cor-relation with serum ALT, AKP, TBA and total bilirum TBIL (the correlation coefficient r is -0.74, -0.73, -0.82 and -0.67 respectively, P 0.05). Conclusions: It was indicated that the small animal breath test model we designed was a virtual tool to use in experimental study on breath test and PheBT-K was a sensitive index. (authors)

  10. An open-loop controlled active lung simulator for preterm infants.

    Science.gov (United States)

    Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio

    2011-01-01

    We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Real-time continuous visual biofeedback in the treatment of speech breathing disorders following childhood traumatic brain injury: report of one case.

    Science.gov (United States)

    Murdoch, B E; Pitt, G; Theodoros, D G; Ward, E C

    1999-01-01

    The efficacy of traditional and physiological biofeedback methods for modifying abnormal speech breathing patterns was investigated in a child with persistent dysarthria following severe traumatic brain injury (TBI). An A-B-A-B single-subject experimental research design was utilized to provide the subject with two exclusive periods of therapy for speech breathing, based on traditional therapy techniques and physiological biofeedback methods, respectively. Traditional therapy techniques included establishing optimal posture for speech breathing, explanation of the movement of the respiratory muscles, and a hierarchy of non-speech and speech tasks focusing on establishing an appropriate level of sub-glottal air pressure, and improving the subject's control of inhalation and exhalation. The biofeedback phase of therapy utilized variable inductance plethysmography (or Respitrace) to provide real-time, continuous visual biofeedback of ribcage circumference during breathing. As in traditional therapy, a hierarchy of non-speech and speech tasks were devised to improve the subject's control of his respiratory pattern. Throughout the project, the subject's respiratory support for speech was assessed both instrumentally and perceptually. Instrumental assessment included kinematic and spirometric measures, and perceptual assessment included the Frenchay Dysarthria Assessment, Assessment of Intelligibility of Dysarthric Speech, and analysis of a speech sample. The results of the study demonstrated that real-time continuous visual biofeedback techniques for modifying speech breathing patterns were not only effective, but superior to the traditional therapy techniques for modifying abnormal speech breathing patterns in a child with persistent dysarthria following severe TBI. These results show that physiological biofeedback techniques are potentially useful clinical tools for the remediation of speech breathing impairment in the paediatric dysarthric population.

  12. Assessment of reproducibility and stability of different breath-hold maneuvres by dynamic MRI: comparison between healthy adults and patients with pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian [German Cancer Research Center Heidelberg, Department of Radiology, Heidelberg (Germany); Eberhard-Karls-University Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); Ley, Sebastian; Zaporozhan, Julia; Puderbach, Michael; Eichinger, Monika; Zuna, Ivan; Kauczor, Hans-Ulrich [German Cancer Research Center Heidelberg, Department of Radiology, Heidelberg (Germany); Schoebinger, Max; Meinzer, Hans-Peter [German Cancer Research Center Heidelberg, Department of Medical and Biological Informatics, Heidelberg (Germany); Gruenig, Ekkehard [University of Heidelberg, Department of Internal Medicine III, Heidelberg (Germany)

    2006-01-01

    To assess the stability and reproducibility of different breath-hold levels in healthy volunteers and patients using dynamic MRI (dMRI). In ten healthy volunteers and ten patients with pulmonary hypertension (PH) and normal lung function craniocaudal intrathoracic distances (CCD) were measured during inspiratory and expiratory breath-hold (15 s) (in healthy volunteers additionally at a self-chosen mid-inspiratory breath-hold) using dMRI (trueFISP, three images/s). To evaluate stability and intraobserver reproducibility of the different breath-hold levels, CCDs, time-distance curves, confidence intervals (CIs), Mann-Witney U test and regression equations were calculated. In healthy volunteers there was a substantial decrease of the CCD during the inspiratory breath-hold in contrast to the expiratory breath-hold. The CI at inspiration was 2.84{+-}1.28 in the right and 2.1{+-}0.68 in the left hemithorax. At expiration the CI was 2.54{+-}1.18 and 2.8{+-}1.48. Patients were significantly less able to hold their breath at inspiration than controls (P<0.05). In patients CI was 4.53{+-}4.06 and 3.46{+-}2.21 at inspiration and 4.45{+-}4.23 and 4.76{+-}3.73 at expiration. Intraobserver variability showed no significant differences either in patients or in healthy subjects. Reproducibility was significantly lower at a self-chosen breath-hold level of the healthy volunteers. DMRI is able to differentiate stability and reproducibility of different breath-hold levels. Expiratory breath-hold proved to be more stable than inspiratory breath-hold in healthy volunteers and patients. (orig.)

  13. 21 CFR 868.5260 - Breathing circuit bacterial filter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing circuit bacterial filter. 868.5260 Section 868.5260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... filter. (a) Identification. A breathing circuit bacterial filter is a device that is intended to remove...

  14. Effects of Depth of Propofol and Sevoflurane Anesthesia on Upper Airway Collapsibility, Respiratory Genioglossus Activation, and Breathing in Healthy Volunteers

    DEFF Research Database (Denmark)

    Simons, Jeroen C P; Pierce, Eric; Diaz-Gil, Daniel

    2016-01-01

    . Measurements included bispectral index, genioglossus electromyography, ventilation, hypopharyngeal pressure, upper airway closing pressure, and change in end-expiratory lung volume during mask pressure drops. RESULTS: A total of 393 attempted breaths during occlusion maneuvers were analyzed. Upper airway......BACKGROUND: Volatile anesthetics and propofol impair upper airway stability and possibly respiratory upper airway dilator muscle activity. The magnitudes of these effects have not been compared at equivalent anesthetic doses. We hypothesized that upper airway closing pressure is less negative...... closing pressure was significantly less negative at deep versus shallow anesthesia (-10.8 ± 4.5 vs. -11.3 ± 4.4 cm H2O, respectively [mean ± SD]) and correlated with the bispectral index (P airway at deep anesthesia. Respiratory genioglossus activity during airway...

  15. Apparatus and method for monitoring breath acetone and diabetic diagnostics

    Science.gov (United States)

    Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM

    2008-08-26

    An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.

  16. 14C-urea breath test in the detection of Helicobacter pylori infection

    International Nuclear Information System (INIS)

    Artiko, V.M.; Obradovic, V.B.; Petrovic, N.S.; Davidovic, B.M.; Grujic-Adanja, G.S.; Nastic-Miric, D.R.; Milosavljevic, T.N.

    2001-01-01

    Helicobacter pylori infection is supposed to be one of the major causes of digestive and other diseases. Among a lot of invasive and non-invasive methods for its detection, none is ideal. The aim is an assessment of the Helicobacter pylori infection in the stomach using breath test and comparison to other diagnostic methods, as well as following up the effects of therapy. In 17 patients with digestive discomfort, breath test, rapid urease test and histology were performed, while in 47 patients with proven HP infection the effect of therapy was followed up using breath test and clinical findings. Breath test was performed after per oral administration of the capsule of 14 C urea (37 kBq). Findings of the breath and urease tests were in accordance in 14/17 patients (83%) while breath test and histology in 16/17 patients (94%). During follow-up of the therapeutic effects, breath test and clinical findings were in accordance in 43/47 patients (98%). Breath test can be useful in diagnosis but is a method of choice in following up the patients after therapy for H. pylori infection, because it is non-invasive, fast and precise. (author)

  17. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  18. Regulación de la respiración: organización morfofuncional de su sistema de control Regulation of breathing: morphological and functional organization of its control system

    Directory of Open Access Journals (Sweden)

    Lizet García Cabrera

    2011-04-01

    Full Text Available La función principal y reguladora del sistema respiratorio es mantener las presiones normales de oxígeno y dióxido de carbono, así como la concentración de iones H+ o hidrogeniones, lo cual se consigue adecuando la ventilación pulmonar a las necesidades metabólicas orgánicas de consumo y producción de ambos gases, respectivamente. A pesar de las amplias variaciones en los requerimientos de captación de oxígeno y eliminación de dióxido de carbono, las presiones arteriales de ambos elementos se mantienen dentro de márgenes muy estrechos por una compleja regulación de la ventilación de los pulmones mediante determinados sistemas de control. Por tratarse de un tema muy complicado y disponerse ahora de nuevos conocimientos al respecto, se decidió describir en este breve artículo la organización morfofuncional general de los elementos que integran el sistema de control de la función respiratoria humana normal.The regulating main function of the breathing system is to maintain the normal oxygen and carbon dioxide pressures, as well as the H+ or hydrogen ions concentration, which is achieving adapting the lung ventilation to the organic metabolic needs of consumption and production of both gases, respectively. In spite of the wide variations in the requirements of oxygen intake and of carbon dioxide elimination, the arterial pressures of both elements remain within very narrow margins due to a complex regulation of the lungs ventilation by means of certain control systems. As it is a very complicated topic and as there are now new knowledge on this respect, it was decided to describe in this brief work the general morphological and functional organization of the elements that form the control system of the normal human breathing function.

  19. Sleep disordered breathing in spinal cord injury: A systematic review.

    Science.gov (United States)

    Chiodo, Anthony E; Sitrin, Robert G; Bauman, Kristy A

    2016-07-01

    Spinal cord injury commonly results in neuromuscular weakness that impacts respiratory function. This would be expected to be associated with an increased likelihood of sleep-disordered breathing. (1) Understand the incidence and prevalence of sleep disordered breathing in spinal cord injury. (2) Understand the relationship between injury and patient characteristics and the incidence of sleep disordered breathing in spinal cord injury. (3) Distinguish between obstructive sleep apnea and central sleep apnea incidence in spinal cord injury. (4) Clarify the relationship between sleep disordered breathing and stroke, myocardial infarction, metabolic dysfunction, injuries, autonomic dysreflexia and spasticity incidence in persons with spinal cord injury. (5) Understand treatment tolerance and outcome in persons with spinal cord injury and sleep disordered breathing. Extensive database search including PubMed, Cochrane Library, CINAHL and Web of Science. Given the current literature limitations, sleep disordered breathing as currently defined is high in patients with spinal cord injury, approaching 60% in motor complete persons with tetraplegia. Central apnea is more common in patients with tetraplegia than in patients with paraplegia. Early formal sleep study in patients with acute complete tetraplegia is recommended. In patients with incomplete tetraplegia and with paraplegia, the incidence of sleep-disordered breathing is significantly higher than the general population. With the lack of correlation between symptoms and SDB, formal study would be reasonable. There is insufficient evidence in the literature on the impact of treatment on morbidity, mortality and quality of life outcomes.

  20. Methodological aspects of breath hydrogen (H2) analysis. Evaluation of a H2 monitor and interpretation of the breath H2 test

    DEFF Research Database (Denmark)

    Rumessen, J J; Kokholm, G; Gudmand-Høyer, E

    1987-01-01

    The reliability of end-expiratory hydrogen (H2) breath tests were assessed and the significance of some important pitfalls were studied, using a compact, rapid H2-monitor with electrochemical cells. The H2 response was shown to be linear and stable. The reproducibility of the breath collection...... were studied in 10 healthy adults during a 4-month period and they showed very marked inter- and intra-individual variability (16% above 40 p.p.m.). Initial peaks (early, short-lived H2 rises unrelated to carbohydrate malabsorption) were identified in 25% of the breath tests (in 4% above 20 p.......p.m). It is concluded that the technique used for interval sampling of end-expiratory breath samples for H2 concentration gives reliable results. The biological significance of H2 concentration increments can only be evaluated if the limitations of the technical procedures and the individual ability to produce H2...

  1. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  2. Hydrodynamic sensory threshold in harbour seals (Phoca vitulina) for artificial flatfish breathing currents.

    Science.gov (United States)

    Niesterok, Benedikt; Dehnhardt, Guido; Hanke, Wolf

    2017-07-01

    Harbour seals have the ability to detect benthic fish such as flatfish using the water currents these fish emit through their gills (breathing currents). We investigated the sensory threshold in harbour seals for this specific hydrodynamic stimulus under conditions which are realistic for seals hunting in the wild. We used an experimental platform where an artificial breathing current was emitted through one of eight different nozzles. Two seals were trained to search for the active nozzle. Each experimental session consisted of eight test trials of a particular stimulus intensity and 16 supra-threshold trials of high stimulus intensity. Test trials were conducted with the animals blindfolded. To determine the threshold, a series of breathing currents differing in intensity was used. For each intensity, three sessions were run. The threshold in terms of maximum water velocity within the breathing current was 4.2 cm s -1 for one seal and 3.7 cm s -1 for the other. We measured background flow velocities from 1.8 to 3.4 cm s -1 Typical swimming speeds for both animals were around 0.5 m s -1 Swimming speed differed between successful and unsuccessful trials. It appears that swimming speed is restricted for the successful detection of a breathing current close to the threshold. Our study is the first to assess a sensory threshold of the vibrissal system for a moving harbour seal under near-natural conditions. Furthermore, this threshold was defined for a natural type of stimulus differing from classical dipole stimuli which have been widely used in threshold determination so far. © 2017. Published by The Company of Biologists Ltd.

  3. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.

    Science.gov (United States)

    Brauner, C J; Matey, V; Wilson, J M; Bernier, N J; Val, A L

    2004-04-01

    The transition from aquatic to aerial respiration is associated with dramatic physiological changes in relation to gas exchange, ion regulation, acid-base balance and nitrogenous waste excretion. Arapaima gigas is one of the most obligate extant air-breathing fishes, representing a remarkable model system to investigate (1) how the transition from aquatic to aerial respiration affects gill design and (2) the relocation of physiological processes from the gills to the kidney during the evolution of air-breathing. Arapaima gigas undergoes a transition from water- to air-breathing during development, resulting in striking changes in gill morphology. In small fish (10 g), the gills are qualitatively similar in appearance to another closely related water-breathing fish (Osteoglossum bicirrhosum); however, as fish grow (100-1000 g), the inter-lamellar spaces become filled with cells, including mitochondria-rich (MR) cells, leaving only column-shaped filaments. At this stage, there is a high density of MR cells and strong immunolocalization of Na(+)/K(+)-ATPase along the outer cell layer of the gill filament. Despite the greatly reduced overall gill surface area, which is typical of obligate air-breathing fish, the gills may remain an important site for ionoregulation and acid-base regulation. The kidney is greatly enlarged in A. gigas relative to that in O. bicirrhosum and may comprise a significant pathway for nitrogenous waste excretion. Quantification of the physiological role of the gill and the kidney in A. gigas during development and in adults will yield important insights into developmental physiology and the evolution of air-breathing.

  4. Comparison of two single-breath-held 3-D acquisitions with multi-breath-held 2-D cine steady-state free precession MRI acquisition in children with single ventricles

    Energy Technology Data Exchange (ETDEWEB)

    Atweh, Lamya A.; Dodd, Nicholas A.; Krishnamurthy, Ramkumar; Chu, Zili D. [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Pednekar, Amol [Philips Healthcare, Houston, TX (United States); Krishnamurthy, Rajesh [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Baylor College of Medicine, Department of Radiology, Houston, TX (United States); Baylor College of Medicine, Department of Pediatrics, Houston, TX (United States)

    2016-05-15

    Breath-held two-dimensional balanced steady-state free precession cine acquisition (2-D breath-held SSFP), accelerated with parallel imaging, is the method of choice for evaluating ventricular function due to its superior blood-to-myocardial contrast, edge definition and high intrinsic signal-to-noise ratio throughout the cardiac cycle. The purpose of this study is to qualitatively and quantitatively compare the two different single-breath-hold 3-D cine SSFP acquisitions using 1) multidirectional sensitivity encoding (SENSE) acceleration factors (3-D multiple SENSE SSFP), and 2) k-t broad-use linear acceleration speed-up technique (3-D k-t SSFP) with the conventional 2-D breath-held SSFP in non-sedated asymptomatic volunteers and children with single ventricle congenital heart disease. Our prospective study was performed on 30 non-sedated subjects (9 healthy volunteers and 21 functional single ventricle patients), ages 12.5 +/- 2.8 years. Two-dimensional breath-held SSFP with SENSE acceleration factor of 2, eight-fold accelerated 3-D k-t SSFP, and 3-D multiple SENSE SSFP with total parallel imaging factor of 4 were performed to evaluate ventricular volumes and mass in the short-axis orientation. Image quality scores (blood myocardial contrast, edge definition and interslice alignment) and volumetric analysis (end systolic volume, end diastolic volume and ejection fraction) were performed on the data sets by experienced users. Paired t-test was performed to compare each of the 3-D k-t SSFP and 3-D multiple SENSE SSFP clinical scores against 2-D breath-held SSFP. Bland-Altman analysis was performed on left ventricle (LV) and single ventricle volumetry. Interobserver and intraobserver variability in volumetric measurements were determined using intraclass coefficients. The clinical scores were highest for the 2-D breath-held SSFP images. Between the two 3-D sequences, 3-D multiple SENSE SSFP performed better than 3-D k-t SSFP. Bland-Altman analysis for volumes

  5. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    International Nuclear Information System (INIS)

    Pollock, Sean; Keall, Paul; Keall, Robyn

    2015-01-01

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  6. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Sean, E-mail: sean.pollock@sydney.edu.au; Keall, Paul [Radiation Physics Laboratory, University of Sydney, Sydney 2050 (Australia); Keall, Robyn [Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065 (Australia)

    2015-09-15

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  7. Breath hydrogen analysis in patients with ileoanal pouch anastomosis

    DEFF Research Database (Denmark)

    Bruun, E; Meyer, J N; Rumessen, J J

    1995-01-01

    The possible influence on functional outcomes of hydrogen production in the ileoanal pouch after restorative proctocolectomy was investigated by means of lactulose H2 breath tests. Eight of 15 patients had significant increases in breath hydrogen after 10 g lactulose. One patient declined...... to participate in further investigations, the remaining seven responders had no evidence of small bowel bacterial overgrowth after glucose H2 breath tests. The ability to produce hydrogen by anaerobic fermentation of lactulose in the pouch was unrelated to the age of the patients or of the pouch. Seven of eight...... responders had successive breath tests after ingestion of lactulose 20 g and wheat starch 100 g. Five of seven had significant increases after lactulose but none after wheat starch. The overall function of the pouch continence, spontaneity of defecation, and 24 hour stool frequency was significantly better...

  8. A Pilot Study on the Effects of Slow Paced Breathing on Current Food Craving.

    Science.gov (United States)

    Meule, Adrian; Kübler, Andrea

    2017-03-01

    Heart rate variability biofeedback (HRV-BF) involves slow paced breathing (approximately six breaths per minute), thereby maximizing low-frequent heart rate oscillations and baroreflex gain. Mounting evidence suggests that HRV-BF promotes symptom reductions in a variety of physical and mental disorders. It may also positively affect eating behavior by reducing food cravings. The aim of the current study was to investigate if slow paced breathing can be useful for attenuating momentary food craving. Female students performed paced breathing either at six breaths per minute (n = 32) or at nine breaths per minute (n = 33) while watching their favorite food on the computer screen. Current food craving decreased during a first resting period, increased during paced breathing, and decreased during a second resting period in both conditions. Although current hunger increased in both conditions during paced breathing as well, it remained elevated after the second resting period in the nine breaths condition only. Thus, breathing rate did not influence specific food craving, but slow paced breathing appeared to have a delayed influence on state hunger. Future avenues are suggested for the study of HRV-BF in the context of eating behavior.

  9. Natural Vibration of a Beam with a Breathing Oblique Crack

    Directory of Open Access Journals (Sweden)

    Yijiang Ma

    2017-01-01

    Full Text Available An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing behaviour of the oblique crack is objectively simulated. The finite element method (FEM analysis software ABAQUS is used to calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system, allowing the natural frequency of the beam with the breathing oblique crack to be calculated. Compared with the natural frequencies of the breathing oblique cracked beam obtained using the ABAQUS FEM method, the proposed analytical method exhibits a high computational accuracy, with a maximum error of only 4.65%.

  10. Calming Children When Drawing Blood Using Breath-based Biofeedback

    OpenAIRE

    Sonne, T.; Merritt, T.; Marshall, P. E.; Lomholt, J.; Müller, J.; Grønbæk, K.

    2017-01-01

    Blood sampling is a common and necessary procedure in the treatment and diagnosis of a variety of diseases. However, it often results in painful and stressful experiences for children. Designed together with domain experts, ChillFish is a breath-controlled biofeedback game technology with bespoke airflow sensor that aims to calm children during blood sampling procedures. An experimental pilot study was conducted in which 20 children aged 6-11 were assigned to one of two conditions involving e...

  11. Breathing Air Purification for Hyperbaric Purposes, Part II

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-03-01

    Full Text Available Determining the efficiency of breathing air purification for hyperbaric purposes with the use of filtration systems is of a crucial importance. However, when the Polish Navy took samples of breathing air from their own filtration plant for quality purposes, these were found to not meet the required standard. The identification of this problem imposed the need to undertake actions aimed at the elimination of the identified disruptions in the process of breathing air production, with the objective of assuring its proper quality. This study presents the results of the initial tests on the air supply sources utilised by the Polish Navy, which were carried out for the purpose of setting a proper direction of future works and implementing corrective measures in order to optimise the breathing air production process. The obtained test results will be used in a subsequent publication devoted to the assessment of the level of efficiency of air purification with the use of a multifaceted approach consisting in the utilisation of various types of air supply sources and different configurations of purification systems.

  12. BREATHING EXERCISE RELAXATION INCREASE PHSYCOLOGICAL RESPONSE PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Yuni Sufyanti Arief

    2017-07-01

    Full Text Available Introduction: Being hospitalize will be made the children become stress. Hospitalization response of the child particularly is afraid sense regard to painfull procedure and increase to attack the invasive procedure. The aimed of this study was to describe the influence of breathing exercise relaxation technique regarded to phsycological receiving responses in the preeliminary school chidren while they were receiving invasive procedure. Method: A quasy experimental purposive sampling design was used in this study. There were 20 respondents who met to the inclusion criteria. The independent variable was the breathing exercise relaxation technique and the dependent variable was phsycological receiving responses. Data for phsylogical response were collected by using observation form then analyzed by using Wilcoxon Signed Rank Test and Mann Whitney U Test with significance level α≤0.05. Result :  The result showed that breathing exercise relaxation technique had significance influence to phsycological response (p=0.000. Discussion: It,s can be concluded that breathing exercise relaxation technique has an effect to increase pshycological response in preeliminary school children who received invasive procedure.

  13. SU-F-T-415: Differences in Lung Sparing in Deep Inspiration Breath-Hold and Free Breathing Breast Plans Calculated in Pinnacle and Monaco

    Energy Technology Data Exchange (ETDEWEB)

    Saenz, D; Stathakis, S [University of Texas Health Science Center San Antonio, San Antonio, TX (United States)

    2016-06-15

    Purpose: Deep inspiration breath-hold (DIBH) is used for left-sided breast radiotherapy to spare the heart and lung. The magnitude of sparing has been shown to be significant. Monte Carlo, furthermore, has the potential to calculate most accurately the dose in the heterogeneous lung medium at the interface with the lung wall. The lung dose was investigated in Monaco to determine the level of sparing relative to that calculated in Pinnacle{sup 3}. Methods: Five patients undergoing DIBH radiotherapy on an Elekta Versa HD linear accelerator in conjunction with the Catalyst C-RAD surface imaging system were planned using Phillips Pinnacle{sup 3}. Free breathing plans were also created to clinically assure a benefit. Both plans were re-calculated in Monaco to determine if there were any significant differences. The mean heart dose, mean left lung, and mean total lung dose were compared in addition to the V20 for left and both lungs. Dose was calculated as dose to medium as well as dose to water with a statistical precision of 0.7%. Results: Mean lung dose was significantly different (p < 0.003) between the two calculations for both DIBH (11.6% higher in Monaco) and free breathing (14.2% higher in Monaco). V20 was also higher in Monaco (p < 0.05) for DIBH (5.7% higher) and free breathing (4.9% higher). The mean heart dose was not significantly different between the dose calculations for either DIBH or free breathing. Results were no more than 0.1% different when calculated as dose to water. Conclusion: The use of Monte Carlo can provide insight on the lung dose for both free breathing and DIBH techniques for whole breast irradiation. While the sparing (dose reductions with DIBH as compared to free breathing) is equivalent for either planning system, the lung doses themselves are higher when calculated with Monaco.

  14. Air-Breathing Launch Vehicle Technology Being Developed

    Science.gov (United States)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  15. Spontaneous breathing test in the prediction of extubation failure in the pediatric population.

    Science.gov (United States)

    Nascimento, Milena Siciliano; Rebello, Celso Moura; Vale, Luciana Assis Pires Andrade; Santos, Érica; Prado, Cristiane do

    2017-01-01

    To assess whether the spontaneous breathing test can predict the extubation failure in pediatric population. A prospective and observational study that evaluated data of inpatients at the Pediatric Intensive Care Unit between May 2011 and August 2013, receiving mechanical ventilation for at least 24 hours followed by extubation. The patients were classified in two groups: Test Group, with patients extubated after spontaneous breathing test, and Control Group, with patients extubated without spontaneous breathing test. A total of 95 children were enrolled in the study, 71 in the Test Group and 24 in the Control Group. A direct comparison was made between the two groups regarding sex, age, mechanical ventilation time, indication to start mechanical ventilation and respiratory parameters before extubation in the Control Group, and before the spontaneous breathing test in the Test Group. There was no difference between the parameters evaluated. According to the analysis of probability of extubation failure between the two groups, the likelihood of extubation failure in the Control Group was 1,412 higher than in the Test Group, nevertheless, this range did not reach significance (p=0.706). This model was considered well-adjusted according to the Hosmer-Lemeshow test (p=0.758). The spontaneous breathing test was not able to predict the extubation failure in pediatric population. Avaliar se o teste de respiração espontânea pode ser utilizado para predizer falha da extubação na população pediátrica. Estudo prospectivo, observacional, no qual foram avaliados todos os pacientes internados no Centro de Terapia Intensiva Pediátrica, no período de maio de 2011 a agosto de 2013, que utilizaram ventilação mecânica por mais de 24 horas e que foram extubados. Os pacientes foram classificados em dois grupos: Grupo Teste, que incluiu os pacientes extubados depois do teste de respiração espontânea; e Grupo Controle, pacientes foram sem teste de respiração espont

  16. Assessment of reproducibility and stability of different breath-hold maneuvres by dynamic MRI: comparison between healthy adults and patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Plathow, Christian; Ley, Sebastian; Zaporozhan, Julia; Puderbach, Michael; Eichinger, Monika; Zuna, Ivan; Kauczor, Hans-Ulrich; Schoebinger, Max; Meinzer, Hans-Peter; Gruenig, Ekkehard

    2006-01-01

    To assess the stability and reproducibility of different breath-hold levels in healthy volunteers and patients using dynamic MRI (dMRI). In ten healthy volunteers and ten patients with pulmonary hypertension (PH) and normal lung function craniocaudal intrathoracic distances (CCD) were measured during inspiratory and expiratory breath-hold (15 s) (in healthy volunteers additionally at a self-chosen mid-inspiratory breath-hold) using dMRI (trueFISP, three images/s). To evaluate stability and intraobserver reproducibility of the different breath-hold levels, CCDs, time-distance curves, confidence intervals (CIs), Mann-Witney U test and regression equations were calculated. In healthy volunteers there was a substantial decrease of the CCD during the inspiratory breath-hold in contrast to the expiratory breath-hold. The CI at inspiration was 2.84±1.28 in the right and 2.1±0.68 in the left hemithorax. At expiration the CI was 2.54±1.18 and 2.8±1.48. Patients were significantly less able to hold their breath at inspiration than controls (P<0.05). In patients CI was 4.53±4.06 and 3.46±2.21 at inspiration and 4.45±4.23 and 4.76±3.73 at expiration. Intraobserver variability showed no significant differences either in patients or in healthy subjects. Reproducibility was significantly lower at a self-chosen breath-hold level of the healthy volunteers. DMRI is able to differentiate stability and reproducibility of different breath-hold levels. Expiratory breath-hold proved to be more stable than inspiratory breath-hold in healthy volunteers and patients. (orig.)

  17. Combined sensing platform for advanced diagnostics in exhaled mouse breath

    Science.gov (United States)

    Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris

    2013-03-01

    Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas

  18. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish, Pterygoplichthys anisitsi.

    Science.gov (United States)

    da Cruz, André Luis; da Silva, Hugo Ribeiro; Lundstedt, Lícia Maria; Schwantes, Arno Rudi; Moraes, Gilberto; Klein, Wilfried; Fernandes, Marisa Narciso

    2013-04-01

    Hypoxic water and episodic air exposure are potentially life-threatening conditions that fish in tropical regions can face during the dry season. This study investigated the air-breathing behavior, oxygen consumption, and respiratory responses of the air-breathing (AB) armored catfish Pterygoplichthys anisitsi. The hematological parameters and oxygen-binding characteristics of whole blood and stripped hemoglobin and the intermediate metabolism of selected tissue in normoxia, different hypoxic conditions, and after air exposure were also examined. In normoxia, this species exhibited high activity at night and AB behavior (2-5 AB h(-1)). The exposure to acute severe hypoxia elicited the AB behavior (4 AB h(-1)) during the day. Under progressive hypoxia without access to the water surface, the fish were oxyregulators with a critical O2 tension, calculated as the inspired water O2 pressure, as 47 ± 2 mmHg. At water O2 tensions lower than 40 mmHg, the fish exhibited continuous apnea behavior. The blood exhibited high capacity for transporting O2, having a cathodic hemoglobin component with a high Hb-O2 affinity. Under severe hypoxia, the fish used anaerobic metabolism to maintain metabolic rate. Air exposure revealed physiological and biochemical traits similar to those observed under normoxic conditions.

  19. Breath tests and irritable bowel syndrome.

    Science.gov (United States)

    Rana, Satya Vati; Malik, Aastha

    2014-06-28

    Breath tests are non-invasive tests and can detect H₂ and CH₄ gases which are produced by bacterial fermentation of unabsorbed intestinal carbohydrate and are excreted in the breath. These tests are used in the diagnosis of carbohydrate malabsorption, small intestinal bacterial overgrowth, and for measuring the orocecal transit time. Malabsorption of carbohydrates is a key trigger of irritable bowel syndrome (IBS)-type symptoms such as diarrhea and/or constipation, bloating, excess flatulence, headaches and lack of energy. Abdominal bloating is a common nonspecific symptom which can negatively impact quality of life. It may reflect dietary imbalance, such as excess fiber intake, or may be a manifestation of IBS. However, bloating may also represent small intestinal bacterial overgrowth. Patients with persistent symptoms of abdominal bloating and distension despite dietary interventions should be referred for H₂ breath testing to determine the presence or absence of bacterial overgrowth. If bacterial overgrowth is identified, patients are typically treated with antibiotics. Evaluation of IBS generally includes testing of other disorders that cause similar symptoms. Carbohydrate malabsorption (lactose, fructose, sorbitol) can cause abdominal fullness, bloating, nausea, abdominal pain, flatulence, and diarrhea, which are similar to the symptoms of IBS. However, it is unclear if these digestive disorders contribute to or cause the symptoms of IBS. Research studies show that a proper diagnosis and effective dietary intervention significantly reduces the severity and frequency of gastrointestinal symptoms in IBS. Thus, diagnosis of malabsorption of these carbohydrates in IBS using a breath test is very important to guide the clinician in the proper treatment of IBS patients.

  20. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    International Nuclear Information System (INIS)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M.; Wagstaff, Anne W.; Smeltzer, Matthew P.; Krafft, Axel J.; Hankins, Jane S.

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  1. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Wagstaff, Anne W. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Rhodes College, Memphis, TN (United States); University of Alabama at Birmingham School of Medicine, Birmingham, AL (United States); Smeltzer, Matthew P. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); University of Memphis, Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, Memphis, TN (United States); Krafft, Axel J. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); University Hospital Center Freiburg, Department of Radiology, Freiburg (Germany); Hankins, Jane S. [St. Jude Children' s Research Hospital, Department of Hematology, Memphis, TN (United States)

    2017-01-15

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  2. Medication effects on sleep and breathing.

    Science.gov (United States)

    Seda, Gilbert; Tsai, Sheila; Lee-Chiong, Teofilo

    2014-09-01

    Sleep respiration is regulated by circadian, endocrine, mechanical and chemical factors, and characterized by diminished ventilatory drive and changes in Pao2 and Paco2 thresholds. Hypoxemia and hypercapnia are more pronounced during rapid eye movement. Breathing is influenced by sleep stage and airway muscle tone. Patient factors include medical comorbidities and body habitus. Medications partially improve obstructive sleep apnea and stabilize periodic breathing at altitude. Potential adverse consequences of medications include precipitation or worsening of disorders. Risk factors for adverse medication effects include aging, medical disorders, and use of multiple medications that affect respiration. Published by Elsevier Inc.

  3. Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis.

    Science.gov (United States)

    Broza, Yoav Y; Har-Shai, Lior; Jeries, Raneen; Cancilla, John C; Glass-Marmor, Lea; Lejbkowicz, Izabella; Torrecilla, José S; Yao, Xuelin; Feng, Xinliang; Narita, Akimitsu; Müllen, Klaus; Miller, Ariel; Haick, Hossam

    2017-11-15

    Multiple sclerosis (MS) is the most common chronic neurological disease affecting young adults. MS diagnosis is based on clinical characteristics and confirmed by examination of the cerebrospinal fluids (CSF) or by magnetic resonance imaging (MRI) of the brain or spinal cord or both. However, neither of the current diagnostic procedures are adequate as a routine tool to determine disease state. Thus, diagnostic biomarkers are needed. In the current study, a novel approach that could meet these expectations is presented. The approach is based on noninvasive analysis of volatile organic compounds (VOCs) in breath. Exhaled breath was collected from 204 participants, 146 MS and 58 healthy control individuals. Analysis was performed by gas-chromatography mass-spectrometry (GC-MS) and nanomaterial-based sensor array. Predictive models were derived from the sensors, using artificial neural networks (ANNs). GC-MS analysis revealed significant differences in VOC abundance between MS patients and controls. Sensor data analysis on training sets was able to discriminate in binary comparisons between MS patients and controls with accuracies up to 90%. Blinded sets showed 95% positive predictive value (PPV) between MS-remission and control, 100% sensitivity with 100% negative predictive value (NPV) between MS not-treated (NT) and control, and 86% NPV between relapse and control. Possible links between VOC biomarkers and the MS pathogenesis were established. Preliminary results suggest the applicability of a new nanotechnology-based method for MS diagnostics.

  4. Clinical Efficacy of Piracetam on Breath Holding Spells in Children

    Directory of Open Access Journals (Sweden)

    F. Ashrafzadeh

    2004-07-01

    Full Text Available Breath holding spells (BHS is a type of syncope in children , most commonly encontered in the early years of life. Although these athacks don't damage the brain , if these are frequent or prolonged cause , parents frighten , so physician should intervent. In this study we evaluated clinical efficacy of piracetam on B.H.S of children in Mashhad Ghaem Hospital during 2001-2002.In this double blind placebo control study , piracetam or placebo on a randomized basis was administered to children with 40 mg/kg/day in 2 divided doses for 2 months. From the 41 children that were enrolled , 21 cases received piracetam and 20 cases received placebo. Parents denoted the numbers of spells two months before and two months after taking drug. Control of breath holding spells were observed in 90.5% of patients in the group taking piracetam as compared with 40% in the group taking placebo (P = 0.002. Of the all patients 10 cases had iron deficiency anemia so they had taken elemental Fe too. The side effects were the same in these two groups. The results of this study indicated that piracetam was efficient for the treatment of children with B.H.S without greater incidence adverse effects than placebo.

  5. Closed and open breathing circuit function in healthy volunteers during exercise at Mount Everest base camp (5300 m)

    NARCIS (Netherlands)

    McMorrow, R. C. N.; Windsor, J. S.; Hart, N. D.; Richards, P.; Rodway, G. W.; Ahuja, V. Y.; O'Dwyer, M. J.; Mythen, M. G.; Grocott, M. P. W.; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Ince, C.; Jonas, M.; van der Kaaij, J.; Khosravi, M.; Kolfschoten, N.; Levett, D.; Luery, H.; Luks, A.; Martin, D.; McMorrow, R.; Meale, P.; Mitchell, K.; Montgomery, H.; Morgan, G.; Morgan, J.

    2012-01-01

    We present a randomised, controlled, crossover trial of the Caudwell Xtreme Everest (CXE) closed circuit breathing system vs an open circuit and ambient air control in six healthy, hypoxic volunteers at rest and exercise at Everest Base Camp, at 5300 m. Compared with control, arterial oxygen

  6. Symptoms of Sleep Disordered Breathing and Risk of Cancer

    DEFF Research Database (Denmark)

    Christensen, Anne Sofie; Clark, Alice; Salo, Paula

    2013-01-01

    Sleep disordered breathing (SDB) has been associated with oxidative stress, inflammation, and altered hormonal levels, all of which could affect the risk of cancer. The aim of the study is to examine if symptoms of SDB including snoring, breathing cessations, and daytime sleepiness affect...

  7. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    Science.gov (United States)

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  8. Ventilatory and Cardiovascular Regulation in the Air-Breathing Fish Pangasianodon Hypophthalmus

    DEFF Research Database (Denmark)

    Thomsen, Mikkel; Wang, Tobias; Bayley, Mark

    The air-breathing fish Pangasianodon hypophthalmus is abundant in the Mekong river system where it is also intensively cultured. In contrast to most other air-breathing fishes it has well developed gills as well as a highly traberculated swim bladder with a large surface area used for air-breathing...... systems provide information on when gill ventilation is insufficient for oxygen uptake and hence initiate air-breathing. Here we investigate the ventilatory and cardiovascular responses to changes in either in the external media or internally in the blood in resting fish. We found ventilation in P....... Its native waters have been shown to be periodically strongly hypoxic and hypercarbic, forcing P. hypophthalmus to switch from exclusively branchial ventilation to air-breathing to maintain its aerobic metabolism. This ability to switch respiratory media demands that the oxygen- and CO¬2 sensory...

  9. Implementation of single-breath-hold cone beam CT guided hypofraction radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Zhong, Renming; Lu, You; Wang, Jin; Zhou, Lin; Xu, Feng; Liu, Li; Zhou, Jidan; Jiang, Xiaoqin; Chen, Nianyong; Bai, Sen

    2014-01-01

    To analyze the feasibility of active breath control (ABC), the lung tumor reproducibility and the rationale for single-breath-hold cone beam CT (CBCT)-guided hypofraction radiotherapy. Single-breath-hold CBCT images were acquired using ABC in a cohort of 83 lung cancer patients (95 tumors) treated with hypofraction radiotherapy. For all alignments between the reference CT and CBCT images (including the pre-correction, post-correction and post-treatment CBCT images), the tumor reproducibility was evaluated via online manual alignment of the tumors, and the vertebral bone uncertainties were evaluated via offline manual alignment of the vertebral bones. The difference between the tumor reproducibility and the vertebral bone uncertainty represents the change in the tumor position relative to the vertebral bone. The relative tumor positions along the coronal, sagittal and transverse axes were measured based on the reference CT image. The correlations between the vertebral bone uncertainty, the relative tumor position, the total treatment time and the tumor reproducibility were evaluated using the Pearson correlations. Pre-correction, the systematic/random errors of tumor reproducibility were 4.5/2.6 (medial-lateral, ML), 5.1/4.8 (cranial-caudal, CC) and 4.0/3.6 mm (anterior-posterior, AP). These errors were significantly decreased to within 3 mm, both post-correction and post-treatment. The corresponding PTV margins were 4.7 (ML), 7.4 (CC) and 5.4 (AP) mm. The changes in the tumor position relative to the vertebral bone displayed systematic/random errors of 2.2/2.0 (ML), 4.1/4.4 (CC) and 3.1/3.3 (AP) mm. The uncertainty of the vertebral bone significantly correlated to the reproducibility of the tumor position (P < 0.05), except in the CC direction post-treatment. However, no significant correlation was detected between the relative tumor position, the total treatment time and the tumor reproducibility (P > 0.05). Using ABC for single-breath-hold CBCT guidance is an

  10. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    Directory of Open Access Journals (Sweden)

    Yong-Jian Ma

    2016-01-01

    Full Text Available This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0±5.9 d rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0±4.0 d, and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0±2.9 d were statistically similar (all p>0.05 to and linearly correlated (r=0.96, p<0.01 with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0±2.7 d; RIB10, 33.0±1.3 d; and RIB20, 27.0±0.8 d. The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models.

  11. Air-breathing fishes in aquaculture. What can we learn from physiology?

    Science.gov (United States)

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues. © 2014 The Fisheries Society of the British Isles.

  12. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.

    Science.gov (United States)

    Zhang, Runkun; Huang, Wanting; Li, Gongke; Hu, Yufei

    2017-03-21

    The development of noninvasive methods for real-time in vivo analysis is of great significant, which provides powerful tools for medical research and clinical diagnosis. In the present work, we described a new strategy based on cataluminescence (CTL) for real-time in vivo clinical breath analysis. To illustrate such strategy, a homemade real-time CTL monitoring system characterized by coupling an online sampling device with a CTL sensor for sevoflurane (SVF) was designed, and a real-time in vivo method for the monitoring of SVF in exhaled breath was proposed. The accuracy of the method was evaluated by analyzing the real exhaled breath samples, and the results were compared with those obtained by GC/MS. The measured data obtained by the two methods were in good agreement. Subsequently, the method was applied to real-time monitoring of SVF in exhaled breath from rat models of the control group to investigate elimination pharmacokinetics. In order to further probe the potential of the method for clinical application, the elimination pharmacokinetics of SVF from rat models of control group, liver fibrosis group alcohol liver group, and nonalcoholic fatty liver group were monitored by the method. The raw data of pharmacokinetics of different groups were normalized and subsequently subjected to linear discriminant analysis (LDA). These data were transformed to canonical scores which were visualized as well-clustered with the classification accuracy of 100%, and the overall accuracy of leave-one-out cross-validation procedure is 88%, thereby indicating the utility of the potential of the method for liver disease diagnosis. Our strategy undoubtedly opens up a new door for real-time clinical analysis in a pain-free and noninvasive way and also guides a promising development direction for CTL.

  13. Detection of bronchial breathing caused by pneumonia.

    Science.gov (United States)

    Gross, V; Fachinger, P; Penzel, Th; Koehler, U; von Wichert, P; Vogelmeier, C

    2002-06-01

    The classic auscultation with stethoscope is the established clinical method for the detection of lung diseases. The interpretation of the sounds depends on the experience of the investigating physician. Therefore, a new computer-based method has been developed to classify breath sounds from digital lung sound recordings. Lung sounds of 11 patients with one-sided pneumonia and bronchial breathing were recorded on both the pneumonia side and on contralateral healthy side simultaneously using two microphones. The spectral power for the 300-600 Hz frequency band was computed for four respiratory cycles and normalized. For each breath, the ratio R between the time-segments (duration = 0.1 s) with the highest inspiratory and highest expiratory flow was calculated and averaged. We found significant differences in R between the pneumonia side (R = 1.4 +/- 1.3) and the healthy side (R = 0.5 +/- 0.5; p = 0.003 Wilcoxon-test) of lung. In 218 healthy volunteers we found R = 0.3 +/- 0.2 as a reference-value. The differences of ratio R (delta R) between the pneumonia side and the healthy side (delta R = 1.0 +/- 0.9) were significantly higher compared to follow-up studies after recovery (delta R = 0.0 +/- 0.1, p = 0.005 Wilcoxon-test). The computer based detection of bronchial breathing can be considered useful as part of a quantitative monitoring of patients at risk to develop pneumonia.

  14. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method......The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...

  15. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    Directory of Open Access Journals (Sweden)

    Paolo Domenici

    2014-12-01

    Full Text Available Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1 which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger.

  16. Breathing difficulty - lying down

    Science.gov (United States)

    ... other conditions that lead to it) Panic disorder Sleep apnea Snoring Home Care Your health care provider may recommend self-care measures. For example, weight loss may be suggested if you are obese. When to Contact a Medical Professional If you have any unexplained difficulty in breathing ...

  17. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung

    Directory of Open Access Journals (Sweden)

    Laing Richard

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa infections are associated with progressive life threatening decline of lung function in cystic fibrosis sufferers. Growth of Ps. aeruginosa releases a "grape-like" odour that has been identified as the microbial volatile organic compound 2-aminoacetophenone (2-AA. Methods We investigated 2-AA for its specificity to Ps. aeruginosa and its suitability as a potential breath biomarker of colonisation or infection by Solid Phase Micro Extraction and Gas Chromatography-Mass Spectrometry (GC/MS. Results Cultures of 20 clinical strains of Ps. aeruginosa but not other respiratory pathogens had high concentrations of 2-AA in the head space of in vitro cultures when analysed by GC/MS. 2-AA was stable for 6 hours in deactivated glass sampling bulbs but was not stable in Tedlar® bags. Optimisation of GC/MS allowed detection levels of 2-AA to low pico mol/mol range in breath. The 2-AA was detected in a significantly higher proportion of subjects colonised with Ps. aeruginosa 15/16 (93.7% than both the healthy controls 5/17 (29% (p Ps. aeruginosa 4/13(30.7% (p Ps. aeruginosa in sputum and/or BALF was 93.8% (95% CI, 67-99 and 69.2% (95% CI, 38-89 respectively. The peak integration values for 2-AA analysis in the breath samples were significantly higher in Ps. aeruginosa colonised subjects (median 242, range 0-1243 than the healthy controls (median 0, range 0-161; p Ps. aeruginosa (median 0, range 0-287; p Conclusions Our results report 2-AA as a promising breath biomarker for the detection of Ps. aeruginosa infections in the cystic fibrosis lung.

  18. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    Science.gov (United States)

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  19. Electromyographic evaluation of the upper lip according to the breathing mode: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Aldrieli Regina Ambrosio

    2009-12-01

    Full Text Available The present study aimed at analyzing and comparing longitudinally the EMG (electromyographic activity of the superior orbicularis oris muscle according to the breathing mode. The sample, 38 adolescents with Angle Class II Division 1 malocclusion with predominantly nose (PNB or mouth (PMB breathing, was evaluated at two different periods, with a two-year interval between them. For that purpose, a 16channel electromyography machine was employed, which was properly calibrated in a PC equipped with an analogue-digital converter, with utilization of surface, passive and bipolar electrodes. The RMS data (root mean square were collected at rest and in 12 movements and normalized according to time and amplitude, by the peak value of EMG, in order to allow comparisons between subjects and between periods. Comparison of the muscle function of PNB and PMB subjects at period 1 (P1, period 2 (P2 and the variation between periods (Δ did not reveal statistically significant differences between groups (p < 0.05. However, longitudinal evaluation of the muscle function in PNB and PMB subjects demonstrated different evolutions in the percentage of required EMG for accomplishment of the movements investigated. It was possible to conclude that there are differences in the percentage of electric activity of the upper lip with the growth of the subjects according to the breathing mode.

  20. The breathtaking truth about breath alcohol readings of zero

    NARCIS (Netherlands)

    Verster, Joris C; Mackus, Marlou; van de Loo, Aurora Jae; Garssen, Johan; Scholey, Andrew

    INTRODUCTION: It has been postulated that the hangover state starts when breath alcohol concentration is zero. METHODS: Data from 2 studies that assessed ethanol in breath, blood and urine were compared. RESULTS: The data revealed that ethanol may still be present in the blood and urine during the

  1. How Important Is a Reproducible Breath Hold for Deep Inspiration Breath Hold Breast Radiation Therapy?

    International Nuclear Information System (INIS)

    Wiant, David; Wentworth, Stacy; Liu, Han; Sintay, Benjamin

    2015-01-01

    Purpose: Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but it does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. Methods and Materials: Twenty-five patients who underwent free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: FB, DIBH, FB-DIBH (the DIBH plans were copied to the FB images and recalculated, and image registration was based on breast tissue), and P-DIBH (a partial BH with the heart shifted midway between the FB and DIBH positions). The FB-DIBH plans give a “worst-case” scenario for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Kolmogorov-Smirnov tests were used to compare the dose metrics. Results: The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB-DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (P≥.10). The mean heart dose differed between FB-DIBH and FB by <2 Gy for all cases, and the maximum heart dose differed by <2 Gy for 21 cases. The P-DIBH plans showed significantly lower mean heart dose than FB (P<.01). The mean heart doses for the P-DIBH plans were < FB for 22 cases, the maximum dose was < FB for 18 cases. Conclusions: A DIBH plan delivered to a FB patient setup with surface imaging will yield dosimetry similar to that of a plan created and delivered FB. A DIBH plan delivered with even a partial BH can give reduced heart dose compared with FB techniques.

  2. How Important Is a Reproducible Breath Hold for Deep Inspiration Breath Hold Breast Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, David, E-mail: David.wiant@conehealth.com; Wentworth, Stacy; Liu, Han; Sintay, Benjamin

    2015-11-15

    Purpose: Deep inspiration breath hold (DIBH) for left-sided breast cancer has been shown to reduce heart dose. Surface imaging helps to ensure accurate breast positioning, but it does not guarantee a reproducible breath hold (BH) at DIBH treatments. We examine the effects of variable BH positions for DIBH treatments. Methods and Materials: Twenty-five patients who underwent free breathing (FB) and DIBH scans were reviewed. Four plans were created for each patient: FB, DIBH, FB-DIBH (the DIBH plans were copied to the FB images and recalculated, and image registration was based on breast tissue), and P-DIBH (a partial BH with the heart shifted midway between the FB and DIBH positions). The FB-DIBH plans give a “worst-case” scenario for surface imaging DIBH, where the breast is aligned by surface imaging but the patient is not holding their breath. Kolmogorov-Smirnov tests were used to compare the dose metrics. Results: The DIBH plans gave lower heart dose and comparable breast coverage versus FB in all cases. The FB-DIBH plans showed no significant difference versus FB plans for breast coverage, mean heart dose, or maximum heart dose (P≥.10). The mean heart dose differed between FB-DIBH and FB by <2 Gy for all cases, and the maximum heart dose differed by <2 Gy for 21 cases. The P-DIBH plans showed significantly lower mean heart dose than FB (P<.01). The mean heart doses for the P-DIBH plans were

  3. Influence of the viscoelastic properties of the respiratory system on the energetically optimum breathing frequency.

    Science.gov (United States)

    Bates, J H; Milic-Emili, J

    1993-01-01

    We hypothesized that the viscoelastic properties of the respiratory system should have significant implications for the energetically optimal frequency of breathing, in view of the fact that these properties cause marked dependencies of overall system resistance and elastance on frequency. To test our hypothesis we simulated two models of canine and human respiratory system mechanics during sinusoidal breathing and calculated the inspiratory work (WI) and pressure-time integral (PTI) per minute under both resting and exercise conditions. The two models were a two-compartment viscoelastic model and a single-compartment model. Requiring minute alveolar ventilation to be fixed, we found that both models predicted almost identical optimum breathing frequencies. The calculated PTI was very insensitive to increases in breathing frequency above the optimal frequencies, while WI was found to increase slowly with frequency above its optimum. In contrast, both WI and PTI increased sharply as frequency decreased below their respective optima. A sensitivity analysis showed that the model predictions were very insensitive to the elastance and resistance values chosen to characterize tissue viscoelasticity. We conclude that the WI criterion for choosing the frequency of breathing is compatible with observations in nature, whereas the optimal frequency predictions of the PTI are rather too high. Both criteria allow for a fairly wide margin of choice in frequency above the optimum values without incurring excessive additional energy expenditure. Furthermore, contrary to our expectations, the viscoelastic properties of the respiratory system tissues do not pose a noticeable problem to the respiratory controller in terms of energy expenditure.

  4. Breath-hold gadolinium-enhanced MRA : clinical application

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kang, Ji Hee; Kim, Won Hong; Lim, Myung Kwan; Cho, Young Kook; Cho, Soon Gu; Suh, Chang Hae

    1998-01-01

    The purpose of this study is to compare breath-hold gadolinium enhanced MR angiography (MRA) with digital subtraction angiography. Ten patients underwent angiography and breath-hold gadolinium enhanced MRA; the latter performed at 1.5T with 3D FSPGR after a bolus injection of gadopentetate dimeglumine (0.4m mol/kg). Seven of ten pathologic conditions (70%) evaluated by both techniques had a similar appearance. The conditions examined were as follows: the artery feeding renal cell carcinoma(n=2); renal artery stenosis (n=2); pulmonary AVM(n=2); abdominal aortic aneurysm (n=1); atheromatous plaque in the lower abdominal aorta (n=1); an enlarged bronchial artery (n=1); and an aberrant renal artery (n=1). For evaluating an anatomic relationship, a reconstructed 3D image obtained by MRA is more advantageous. Breath hold contrast enhanced MRA is a potentially useful noninvasive screening method for detecting vascular abnormality of the aorta and its branches. (author). 13 refs., 1 tab., 4 figs

  5. Breath-hold gadolinium-enhanced MRA : clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kang, Ji Hee; Kim, Won Hong; Lim, Myung Kwan; Cho, Young Kook; Cho, Soon Gu; Suh, Chang Hae [Inha University Hospital, Inchon (Korea, Republic of)

    1998-05-01

    The purpose of this study is to compare breath-hold gadolinium enhanced MR angiography (MRA) with digital subtraction angiography. Ten patients underwent angiography and breath-hold gadolinium enhanced MRA; the latter performed at 1.5T with 3D FSPGR after a bolus injection of gadopentetate dimeglumine (0.4m mol/kg). Seven of ten pathologic conditions (70%) evaluated by both techniques had a similar appearance. The conditions examined were as follows: the artery feeding renal cell carcinoma(n=2); renal artery stenosis (n=2); pulmonary AVM(n=2); abdominal aortic aneurysm (n=1); atheromatous plaque in the lower abdominal aorta (n=1); an enlarged bronchial artery (n=1); and an aberrant renal artery (n=1). For evaluating an anatomic relationship, a reconstructed 3D image obtained by MRA is more advantageous. Breath hold contrast enhanced MRA is a potentially useful noninvasive screening method for detecting vascular abnormality of the aorta and its branches. (author). 13 refs., 1 tab., 4 figs.

  6. Universe out of a breathing bubble

    International Nuclear Information System (INIS)

    Guendelman, Eduardo I.; Sakai, Nobuyuki

    2008-01-01

    We consider the model of a false-vacuum bubble with a thin wall where the surface energy density is composed of two different components, 'domain-wall' type and 'dust' type, with opposite signs. We find stably oscillating solutions, which we call 'breathing bubbles'. By decay to a lower mass state, such a breathing bubble could become either (i) a child universe or ii) a bubble that 'eats up' the original universe, depending on the sign of the surface energy of the domain-wall component. We also discuss the effect of the finite-thickness corrections to the thin-wall approximation and possible origins of the energy contents of our model

  7. Pressure breathing in fighter aircraft for G accelerations and loss of cabin pressurization at altitude--a brief review.

    Science.gov (United States)

    Lauritzsen, Lars P; Pfitzner, John

    2003-04-01

    The purpose of this brief review is to outline the past and present use of pressure breathing, not by patients but by fighter pilots. Of the historical and recent references quoted, most are from aviation-medicine journals that are not often readily available to anesthesiologists. Pressure breathing at moderate levels of airway pressure gave World War II fighter pilots a tactical altitude advantage. With today's fast and highly maneuverable jet fighters, very much higher airway pressures of the order of 8.0 kPa (identical with 60 mmHg) are used. They are used in conjunction with a counterpressure thoracic vest and an anti-G suit for the abdomen and lower body. Pressurization is activated automatically in response to +Gz accelerations, and to a potentially catastrophic loss of cabin pressurization at altitude. During +Gz accelerations, pressure breathing has been shown to maintain cerebral perfusion by raising the systemic arterial pressure, so increasing the level of G-tolerance that is afforded by the use of anti-G suits and seat tilt-back angles alone. This leaves the pilot less reliant on rigorous, and potentially distracting, straining maneuvers. With loss of cabin pressurization at altitude, pressure breathing of 100% oxygen at high airway pressures enables the pilot's alveolar PO(2) to be maintained at a safe level during emergency descent. Introduced in military aviation, pressure breathing for G-tolerance and pressure breathing for altitude presented as concepts that may be of general physiological interest to many anesthesiologists.

  8. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

    Science.gov (United States)

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G

    2015-06-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.

  9. Health, social and economical consequences of sleep-disordered breathing

    DEFF Research Database (Denmark)

    Jennum, Poul; Kjellberg, Jakob

    2011-01-01

    The objective direct and indirect costs of sleep-disordered breathing (snoring, sleep apnoea (SA) and obesity hypoventilation syndrome (OHS)) and the treatment are incompletely described.......The objective direct and indirect costs of sleep-disordered breathing (snoring, sleep apnoea (SA) and obesity hypoventilation syndrome (OHS)) and the treatment are incompletely described....

  10. Association between breastfeeding and breathing pattern in children: a sectional study

    Directory of Open Access Journals (Sweden)

    Teresinha S.P. Lopes

    2014-07-01

    Full Text Available OBJECTIVE: to determine the prevalence of mouth breathing and to associate the history of breastfeeding with breathing patterns in children. METHODS: this was an observational study with 252 children of both genders, aged 30 to 48 months, who participated in a dental care program for mothers and newborns. As an instrument of data collection, a semi-structured questionnaire was administered to the children's mothers assessing the form and duration of breastfeeding and the oral habits of non-nutritive sucking. To determine the breathing patterns that the children had developed, medical history and clinical examination were used. Statistical analysis was conducted to examine the effects of exposure on the primary outcome (mouth breathing, and the prevalence ratio was calculated with a 95% confidence interval. RESULTS: of the total sample, 43.1% of the children were mouth breathers, 48.4% had been breastfed exclusively until six months of age or more, and 27.4% had non-nutritive sucking habits. Statistically significant associations were found for bottle-feeding (p < 0.001 and oral habits of non-nutritive sucking (p = 0.009, with an increased likelihood of children exhibiting a predominantly oral breathing pattern. A statistically significant association was also observed between a longer duration of exclusive breastfeeding and a nasal breathing pattern presented by children. CONCLUSION: an increased duration of exclusive breastfeeding lowers the chances of children exhibiting a predominantly oral breathing pattern.

  11. TH-CD-202-09: Free-Breathing Proton MRI Functional Lung Avoidance Maps to Guide Radiation Therapy

    International Nuclear Information System (INIS)

    Capaldi, D; Sheikh, K; Parraga, G; Hoover, D; Yaremko, B; Palma, D

    2016-01-01

    Purpose: Pulmonary functional MRI using inhaled gas contrast agents was previously investigated as a way to identify well-functioning lung in patients with NSCLC who are clinical candidates for radiotherapy. Hyperpolarized noble-gas ( 3 He and 129 Xe) MRI has also been optimized to measure functional lung information, but for a number of reasons, the clinical translation of this approach to guide radiotherapy planning has been limited. As an alternative, free-breathing pulmonary 1H MRI using clinically available MRI systems and pulse sequences provides a non-contrast-enhanced method to generate both ventilation and perfusion maps. Free-breathing 1 H MRI exploits non-rigid registration and Fourier decomposition of MRI signal intensity differences (Bauman et al., MRM, 2009) that may be generated during normal tidal breathing. Here, our objective was to generate free-breathing 1 H MRI ventilation and lung function avoidance maps in patients with NSCLC as a way to guide radiation therapy planning. Methods: Stage IIIA/IIIB NSCLC patients (n=8, 68±9yr) provided written informed consent to a randomized controlled clinical trial ( https://clinicaltrials.gov/ct2/show/NCT02002052 ) that aimed to compare outcomes related to image-guided versus conventional radiation therapy planning. Hyperpolarized 3 He/ 129 Xe and dynamic free tidal-breathing 1 H MRI were acquired as previously described (Capaldi et al., Acad Radiol, 2015). Non-rigid registration was performed using the modality-independent-neighbourhood-descriptor (MIND) deformable approach (Heinrich et al., Med Image Anal, 2012). Ventilation-defect-percent ( 3 He:VDP He , 129 Xe:VDP Xe , Free-breathing- 1 H:VDP FB ) and the corresponding ventilation maps were compared using Pearson correlation coefficients (r) and the Dice similarity coefficient (DSC). Results: VDP FB was significantly related to VDP He (r=.71; p=.04) and VDP Xe (r=.80; p=.01) and there were also strong spatial relationships (DSC He /DSC Xe =89±3%/77±11

  12. With age a lower individual breathing reserve is associated with a higher maximal heart rate.

    Science.gov (United States)

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2018-01-01

    Maximal heart rate (HRmax) is linearly declining with increasing age. Regular exercise training is supposed to partly prevent this decline, whereas sex and habitual physical activity do not. High exercise capacity is associated with a high cardiac output (HR x stroke volume) and high ventilatory requirements. Due to the close cardiorespiratory coupling, we hypothesized that the individual ventilatory response to maximal exercise might be associated with the age-related HRmax. Retrospective analyses have been conducted on the results of 129 consecutively performed routine cardiopulmonary exercise tests. The study sample comprised healthy subjects of both sexes of a broad range of age (20-86 years). Maximal values of power output, minute ventilation, oxygen uptake and heart rate were assessed by the use of incremental cycle spiroergometry. Linear multivariate regression analysis revealed that in addition to age the individual breathing reserve at maximal exercise was independently predictive for HRmax. A lower breathing reserve due to a high ventilatory demand and/or a low ventilatory capacity, which is more pronounced at a higher age, was associated with higher HRmax. Age explained the observed variance in HRmax by 72% and was improved to 83% when the variable "breathing reserve" was entered. The presented findings indicate an independent association between the breathing reserve at maximal exercise and maximal heart rate, i.e. a low individual breathing reserve is associated with a higher age-related HRmax. A deeper understanding of this association has to be investigated in a more physiological scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    International Nuclear Information System (INIS)

    Suga, K.; Yasuhiko, K.; Iwanaga, H.; Tokuda, O.; Matsunaga, N.

    2009-01-01

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  14. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K.; Yasuhiko, K. (Dept. of Radiology, St. Hill Hospital, Ube, Yamaguchi (Japan)); Iwanaga, H.; Tokuda, O.; Matsunaga, N. (Dept. of Radiology, Yamaguchi Univ. School of Medicine, Ube, Yamaguchi (Japan))

    2009-01-15

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  15. Functional mechanism of lung mosaic CT attenuation: assessment with deep-inspiration breath-hold perfusion SPECT-CT fusion imaging and non-breath-hold Technegas SPECT.

    Science.gov (United States)

    Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N

    2009-01-01

    The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial

  16. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  17. White Grape Juice Elicits a Lower Breath Hydrogen Response Compared with Apple Juice in Healthy Human Subjects: A Randomized Controlled Trial.

    Science.gov (United States)

    Erickson, Jennifer; Wang, Qi; Slavin, Joanne

    2017-06-01

    Diets low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS) are used to manage symptoms in individuals with irritable bowel syndrome. Although effective at reducing symptoms, the diet can be complex and restrictive. In addition, there are still large gaps in the literature and many foods with unclear effects in the gastrointestinal (GI) tract, like fruit juice. Although many fruits are allowable on a low-FODMAP diet, consumption of all fruit juice is generally cautioned due to the large fructose load contained in juice, regardless of the glucose concentration. Very little research exists regarding the importance of limiting fructose load during a low-FODMAP diet; therefore, individuals following a low-FODMAP diet may be unnecessarily restricting their diets. To determine whether there is a difference in GI tolerance between juice from a high-FODMAP fruit (apple juice) and juice from a low-FODMAP fruit (white grape juice) in healthy human subjects. The goal is to provide insight into the role of juice in a low-FODMAP diet. A double-blind, randomized, controlled crossover study was conducted with 40 healthy adults. Fasted subjects consumed 12 oz of either apple juice or white grape juice. Breath hydrogen measures were taken at baseline, 1, 2, and 3 hours. Subjective GI tolerance surveys were completed at the same time intervals and at 12 and 24 hours. Breath hydrogen and GI symptoms were assessed with area under the curve analysis. Significance was determined with a two-sided t test with a P value juice resulted in a greater mean breath hydrogen area under the curve at 23.3 ppm/hour (95% CI 13.0 to 33.6) compared with white grape juice at 5.8 ppm/hour (95% CI -4.6 to 16.1) (Pjuices were well tolerated and neither produced any severe symptoms in healthy adults. White grape juice consumption resulted in only a small rise in breath hydrogen, which may suggest excluding foods only because of the high fructose load could be

  18. Enhanced conflict monitoring via a short-duration, video-assisted deep breathing in healthy young adults: an event-related potential approach through the Go/NoGo paradigm

    Directory of Open Access Journals (Sweden)

    Kok Suen Cheng

    2017-10-01

    Full Text Available Objectives Practitioners of mindfulness are reported to have greater cognitive control especially in conflict monitoring, response inhibition and sustained attention. However, due to the various existing methods in each mindfulness practices and also, the high commitment factor, a barrier still exists for an individual to pick up the practices. Therefore, the effect of short duration deep breathing on the cognitive control is investigated here. Methods Short duration guided deep breathing videos consisting of 5, 7 and 9 min respectively were created and used on subjects training. The effect on cognitive control was assessed using a Go/NoGo task along with event-related potential (ERP measurements at Fz, Cz, and Pz. Results From the study, the significant outcome showed at the follow-up session in which participants engaged for 5 min deep breathing group showed a profound NoGo N2 amplitude increment as compared to the control group, indicating an enhanced conflict monitoring ability. An inverse relationship between the NoGo N2 amplitude and the breathing duration is observed as well at the follow-up session. Conclusion These results indicated the possibility of performing short duration deep breathing guided by a video to achieve an enhanced conflict monitoring as an alternative to other mindfulness practices and 5 min is found to be the optimum practice duration. Significant This study is the first to establish a relationship between deep breathing and conflict monitoring through ERP. The study population of young adults taken from the same environment reduces the variance in ERP results due to age and environment. Limitation A larger sample size would provide a greater statistical power. A longer duration of deep breathing should be investigated to further clarify the relationship between the practice duration and the NoGo N2 amplitude. The result can be split by gender and analyzed separately due to the different brain structure of males

  19. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    International Nuclear Information System (INIS)

    McDonald, C.W.

    1963-11-01

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  20. Self contained compressed air breathing apparatus to facilitate personnel decontamination

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C W [Radiological and Safety Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-11-15

    This report describes the modification of a Self Contained Compressed Air Breathing Apparatus to provide extended respiratory protection to grossly contaminated personnel during a decontamination period which may exceed the duration of the Breathing Apparatus air supply. (author)

  1. Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection

    Directory of Open Access Journals (Sweden)

    Shih-Hong Li

    2017-01-01

    Full Text Available In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect the degree of airway obstruction. The auscultation approach is the most common way to diagnose wheezing sounds, but it subjectively depends on the experience of the physician. Several previous studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically. However, there is still a lack of suitable monitoring systems for real-time wheeze detection in daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed to continuously extract and analyze the features of breathing sounds to provide the objectively quantitative information of breathing sounds to professional physicians. Here, normalized spectral integration (NSI was also designed and applied in wheeze detection. The proposed algorithm required only short-term data of breathing sounds and lower computational complexity to perform real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which contains relatively low computing power and memory. From the experimental results, the proposed system could provide good performance on wheeze detection exactly and might be a useful assisting tool for analysis of breathing sounds in clinical diagnosis.

  2. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  3. Understanding the rhythm of breathing: so near yet so far

    OpenAIRE

    Feldman, Jack L.; Del Negro, Christopher A.; Gray, Paul A.

    2012-01-01

    Understanding the mechanisms leading from DNA to molecules to neurons to networks to behavior is a major goal for neuroscience, but largely out of reach for many fundamental and interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to rapidly and slowly changing conditions, and how particular dysf...

  4. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath

    Science.gov (United States)

    Patterson, Claire S.; McMillan, Lesley C.; Longbottom, Christopher; Gibson, Graham M.; Padgett, Miles J.; Skeldon, Kenneth D.

    2007-05-01

    We report on a maintenance-free, ward-portable, tunable diode laser spectroscopy system for the ultra-sensitive detection of ethane gas. Ethane is produced when cellular lipids are oxidized by free radicals. As a breath biomarker, ethane offers a unique measure of such oxidative stress. The ability to measure real-time breath ethane fluctuations will open up new areas in non-invasive healthcare. Instrumentation for such a purpose must be highly sensitive and specific to the target gas. Our technology has a sensitivity of 70 parts per trillion and a 1 s sampling rate. Based on a cryogenically cooled lead-salt laser, the instrument has a thermally managed closed-loop refrigeration system, eliminating the need for liquid coolants. Custom LabVIEW software allows automatic control by a laptop PC. We have field tested the instrument to ensure that target performance is sustained in a range of environments. We outline the novel applications underway with the instrument based on an in vivo clinical assessment of oxidative stress.

  5. A Study on How to Breathe Properly When Practicing Tai Chi Chuan

    Science.gov (United States)

    Yang, Hanchun

    2011-01-01

    When practicing Tai Chi Chuan, proper breath plays an important role in shaping Tai Chi Chuan's style and its fitness value. The paper aims to analyse the postures of Tai Chi Chuan and its breath characteristics. The paper also presents some new insights on how to co-ordinate breath with postures by case studies.

  6. Validation of a simplified carbon-14-urea breath test for routine use for detecting Helicobacter pylori noninvasively

    International Nuclear Information System (INIS)

    Henze, E.; Malfertheiner, P.; Clausen, M.; Burkhardt, H.; Adam, W.E.

    1990-01-01

    A carbon-14 ( 14 C) urea breath test for detecting Helicobacter pylori with multiple breath sampling was developed. Carbon-14-urea (110 kBq) administered orally to 18 normal subjects and to 82 patients with Helicobacter infection. The exhaled 14 C-labeled CO 2 was trapped at 10-min intervals for 90 min. The total 14 C activity exhaled over 90 min was integrated and expressed in %activity of the total dose given. In normals, a mean of 0.59% +/- 0.24% was measured, resulting in an upper limit of normal of 1.07%. In 82 patients, a sensitivity of 90.2%, a specificity of 83.8%, and a positive predictive value of 90.2% was found. The single probes at intervals of 40-60 min correlated best with the integrated result, with r ranging from 0.986 to 0.990. The test's diagnostic accuracy did not change at all when reevaluated with the 40-, 50-, or 60-min sample data alone. Thus, the 14 C-urea breath test can be applied routinely as a noninvasive, low-cost and one-sample test with high diagnostic accuracy in detecting Helicobacter pylori colonization

  7. Radiotherapy of lung cancer: the inspiration breath hold with a spirometric monitoring

    International Nuclear Information System (INIS)

    Garcia, R.; Oozeer, R.; Le Thanh, H.; Chastel, D.; Doyen, J.C.; Chauvet, B.; Reboul, F.

    2002-01-01

    A CT acquisition during a free breathing examination generates images of poor quality. It creates an uncertainty on the reconstructed gross tumour volume and dose distribution. The aim of this study is to test the feasibility of a breath hold method applied in all preparation and treatment days. Five patients received a thoracic radiotherapy with the benefit of this procedure. The breathing of the patient was measured with a spirometer. The patient was coached to reproduce a constant level of breath-hold in a deep inspiration. Video glasses helped the patients to fix the breath-hold at the reference level. The patients followed the coaching during preparation and treatment, without any difficulty. The better quality of the CT reconstructed images resulted in an easier contouring. No movements of the gross tumour volume lead to a better coverage. The deep breath hold decreased the volume of irradiated lung. This method improves the reproducibility of the thoracic irradiation. The decrease of irradiated lung volume offers prospects in dose escalation and intensity modulation radiotherapy. (authors)

  8. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    Science.gov (United States)

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  9. Design and Validation of a Breathing Detection System for Scuba Divers

    Directory of Open Access Journals (Sweden)

    Corentin Altepe

    2017-06-01

    Full Text Available Drowning is the major cause of death in self-contained underwater breathing apparatus (SCUBA diving. This study proposes an embedded system with a live and light-weight algorithm which detects the breathing of divers through the analysis of the intermediate pressure (IP signal of the SCUBA regulator. A system composed mainly of two pressure sensors and a low-power microcontroller was designed and programmed to record the pressure sensors signals and provide alarms in absence of breathing. An algorithm was developed to analyze the signals and identify inhalation events of the diver. A waterproof case was built to accommodate the system and was tested up to a depth of 25 m in a pressure chamber. To validate the system in the real environment, a series of dives with two different types of workload requiring different ranges of breathing frequencies were planned. Eight professional SCUBA divers volunteered to dive with the system to collect their IP data in order to participate to validation trials. The subjects underwent two dives, each of 52 min on average and a maximum depth of 7 m. The algorithm was optimized for the collected dataset and proved a sensitivity of inhalation detection of 97.5% and a total number of 275 false positives (FP over a total recording time of 13.9 h. The detection algorithm presents a maximum delay of 5.2 s and requires only 800 bytes of random-access memory (RAM. The results were compared against the analysis of video records of the dives by two blinded observers and proved a sensitivity of 97.6% on the data set. The design includes a buzzer to provide audible alarms to accompanying dive buddies which will be triggered in case of degraded health conditions such as near drowning (absence of breathing, hyperventilation (breathing frequency too high and skip-breathing (breathing frequency too low measured by the improper breathing frequency. The system also measures the IP at rest before the dive and indicates with

  10. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  11. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  12. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU-Patients

    Directory of Open Access Journals (Sweden)

    Pouline M. P. van Oort

    2017-02-01

    Full Text Available The diagnosis of hospital-acquired pneumonia remains challenging. We hypothesized that analysis of volatile organic compounds (VOCs in exhaled breath could be used to diagnose pneumonia or the presence of pathogens in the respiratory tract in intubated and mechanically-ventilated intensive care unit patients. In this prospective, single-centre, cross-sectional cohort study breath from mechanically ventilated patients was analysed using gas chromatography-mass spectrometry. Potentially relevant VOCs were selected with a p-value < 0.05 and an area under the receiver operating characteristics curve (AUROC above 0.7. These VOCs were used for principal component analysis and partial least square discriminant analysis (PLS-DA. AUROC was used as a measure of accuracy. Ninety-three patients were included in the study. Twelve of 145 identified VOCs were significantly altered in patients with pneumonia compared to controls. In colonized patients, 52 VOCs were significantly different. Partial least square discriminant analysis classified patients with modest accuracy (AUROC: 0.73 (95% confidence interval (CI: 0.57–0.88 after leave-one-out cross-validation. For determining the colonization status of patients, the model had an AUROC of 0.69 (95% CI: 0.57–0.82 after leave-one-out cross-validation. To conclude, exhaled breath analysis can be used to discriminate pneumonia from controls with a modest to good accuracy. Furthermore breath profiling could be used to predict the presence and absence of pathogens in the respiratory tract. These findings need to be validated externally.

  13. Audiovisual biofeedback breathing guidance for lung cancer patients receiving radiotherapy: a multi-institutional phase II randomised clinical trial.

    Science.gov (United States)

    Pollock, Sean; O'Brien, Ricky; Makhija, Kuldeep; Hegi-Johnson, Fiona; Ludbrook, Jane; Rezo, Angela; Tse, Regina; Eade, Thomas; Yeghiaian-Alvandi, Roland; Gebski, Val; Keall, Paul J

    2015-07-18

    There is a clear link between irregular breathing and errors in medical imaging and radiation treatment. The audiovisual biofeedback system is an advanced form of respiratory guidance that has previously demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be investigated in an upcoming multi-institutional, randomised, and stratified clinical trial recruiting a total of 75 lung cancer patients undergoing radiation therapy. To comprehensively perform a clinical evaluation of the audiovisual biofeedback system, a multi-institutional study will be performed. Our methodological framework will be based on the widely used Technology Acceptance Model, which gives qualitative scales for two specific variables, perceived usefulness and perceived ease of use, which are fundamental determinants for user acceptance. A total of 75 lung cancer patients will be recruited across seven radiation oncology departments across Australia. Patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control arm. 2:1 randomisation is appropriate as within the interventional arm there is a screening procedure where only patients whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging and treatment procedures. Patients within the intervention arm whose free breathing is more regular than audiovisual biofeedback in the screen procedure will remain in the intervention arm of the study but their imaging and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to assess their experience with audiovisual biofeedback. The objectives of this

  14. Audiovisual biofeedback breathing guidance for lung cancer patients receiving radiotherapy: a multi-institutional phase II randomised clinical trial

    International Nuclear Information System (INIS)

    Pollock, Sean; O’Brien, Ricky; Makhija, Kuldeep; Hegi-Johnson, Fiona; Ludbrook, Jane; Rezo, Angela; Tse, Regina; Eade, Thomas; Yeghiaian-Alvandi, Roland; Gebski, Val; Keall, Paul J

    2015-01-01

    There is a clear link between irregular breathing and errors in medical imaging and radiation treatment. The audiovisual biofeedback system is an advanced form of respiratory guidance that has previously demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be investigated in an upcoming multi-institutional, randomised, and stratified clinical trial recruiting a total of 75 lung cancer patients undergoing radiation therapy. To comprehensively perform a clinical evaluation of the audiovisual biofeedback system, a multi-institutional study will be performed. Our methodological framework will be based on the widely used Technology Acceptance Model, which gives qualitative scales for two specific variables, perceived usefulness and perceived ease of use, which are fundamental determinants for user acceptance. A total of 75 lung cancer patients will be recruited across seven radiation oncology departments across Australia. Patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control arm. 2:1 randomisation is appropriate as within the interventional arm there is a screening procedure where only patients whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging and treatment procedures. Patients within the intervention arm whose free breathing is more regular than audiovisual biofeedback in the screen procedure will remain in the intervention arm of the study but their imaging and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to assess their experience with audiovisual biofeedback. The objectives of this

  15. The impact of breathing on HRV measurements: implications for the longitudinal follow-up of athletes.

    Science.gov (United States)

    Saboul, Damien; Pialoux, Vincent; Hautier, Christophe

    2013-01-01

    The purpose of the present work was to compare daily variations of heart rate variability (HRV) parameters between controlled breathing (CB) and spontaneous breathing (SB) sessions during a longitudinal follow-up of athletes. HRV measurements were performed daily on 10 healthy male runners for 21 consecutive days. The signals were recorded during two successive randomised 5-minutes sessions. One session was performed in CB and the other in SB. The results showed significant differences between the two respiration methods in the temporal, nonlinear and frequency domains. However, significant correlations were observed between CB and SB (higher than 0.70 for RMSSD and SD1), demonstrating that during a longitudinal follow-up, these markers provide the same HRV variations regardless of breathing pattern. By contrast, independent day-to-day variations were observed with HF and LF/HF frequency markers, indicating no significant relationship between SB and CB data over time. Therefore, we consider that SB and CB may be used for HRV longitudinal follow-ups only for temporal and nonlinear markers. Indeed, the same daily increases and decreases were observed whatever the breathing method employed. Conversely, frequency markers did not provide the same variations between SB and CB and we propose that these indicators are not reliable enough to be used for day-to-day HRV monitoring.

  16. Does postprandial itopride intake affect the rate of gastric emptying? A crossover study using the continuous real time 13C breath test (BreathID system).

    Science.gov (United States)

    Nonaka, Takashi; Kessoku, Takaomi; Ogawa, Yuji; Yanagisawa, Shogo; Shiba, Tadahiko; Sahaguchi, Takashi; Atsukawa, Kazuhiro; Takahashi, Hisao; Sekino, Yusuke; Iida, Hiroshi; Hosono, Kunihiro; Endo, Hiroki; Sakamoto, Yasunari; Koide, Tomoko; Takahashi, Hirokazu; Tokoro, Chikako; Abe, Yasunobu; Maeda, Shin; Nakajima, Atsushi; Inamori, Masahiko

    2011-01-01

    The aim of this study was to determine whether oral Itopride hydrochloride (itopride) intake might have any effect on the rate of gastric emptying, using a novel non-invasive technique for measuring the rate of gastric emptying, namely, the continuous real time 13C breath test (BreathID system: Exalenz Bioscience Ltd., Israel). Eight healthy male volunteers participated in this randomized, two-way crossover study. The subjects fasted overnight and were randomly assigned to receive 50mg itopride following a test meal (200 kcal per 200mL, containing 100mg 13C acetate), or the test meal alone. Under both conditions, gastric emptying was monitored for 4 hours after administration of the test meal by the 13C-acetic acid breath test performed continually using the BreathID system. Using Oridion Research Software (beta version), the time required for emptying of 50% of the labeled meal (T 1/2), the analog to the scintigraphy lag time for 10% emptying of the labeled meal (T lag), the gastric emptying coefficient (GEC), and the regression-estimated constants (beta and kappa) were calculated. The parameters measured under the two conditions were compared using the Wilcoxon's signed-rank test. No significant differences in the calculated parameters, namely, the T 1/2, T lag, GEC, beta or kappa, were observed between the two test conditions, namely, administration of a test meal+itopride and administration of the test meal alone. The present study revealed that postprandial itopride intake had no significant influence on the rate of gastric emptying. Recently, several studies have shown that itopride may be effective in the treatment of patients with functional dyspepsia. Our results suggest that the efficacy of itopride in patients with functional dyspepsia may be based on its effect of improving functions other than the rate of gastric emptying, such as the activities at neuronal sites, brain-gut correlation, visceral hypersensitivity, gastric accommodation and distension

  17. Epidemiology of sleep apnoea/hypopnoea syndrome and sleep-disordered breathing

    DEFF Research Database (Denmark)

    Jennum, P; Riha, R L

    2009-01-01

    Epidemiological studies have revealed a high prevalence of sleep-disordered breathing in the community (up to 20%). A subset of these patients has concurrent symptoms of excessive daytime sleepiness attributable to their nocturnal breathing disorder and is classified as having obstructive sleep a...

  18. Response of Hepatoma 9618a and Normal Liver to Host Carbogen and Carbon Monoxide Breathing

    Directory of Open Access Journals (Sweden)

    Simon P. Robinson

    1999-12-01

    Full Text Available The effects of hyperoxia (induced by host carbogen 95% oxygen/5% carbon dioxide breathing. and hypoxia (induced by host carbon monoxide CO at 660 ppm. breathing were compared by using noninvasive magnetic resonance (MR methods to gain simultaneous information on blood flow/oxygenation and the bioenergetic status of rat Morris H9618a hepatomas. Both carbogen and CO breathing induced a 1.5- to 2-fold increase in signal intensity in blood oxygenation level dependent (BOLD MR images. This was due to a decrease in deoxyhemoglobin (deoxyHb, which acts as an endogenous contrast agent, caused either by formation of oxyhemoglobin in the case of carbogen breathing, or carboxyhemoglobin with CO breathing. The results were confirmed by observation of similar changes in deoxyHb in arterial blood samples examined ex vivo after carbogen or CO breathing. There was no change in nucleoside triphosphates (NTP/PI in either tumor or liver after CO breathing, whereas NTP/Pl increased twofold in the hepatoma (but not in the liver after carbogen breathing. No changes in tumor intracellular pH were seen after either treatment, whereas extracellular pH became more alkaline after CO breathing and more acid after carbogen breathing, respectively. This tumor type and the liver are unaffected by CO breathing at 660 ppm, which implies an adequate oxygen supply.

  19. Evaluation of changes in sleep breathing patterns after primary palatoplasty in cleft children

    Directory of Open Access Journals (Sweden)

    Justice E. Reilly

    2014-09-01

    Full Text Available Introduction: There is a need to more clearly understand the characteristics of breathing patterns in children with cleft palate inthe first year of life, as there is little data available to guide current practice. Pierre Robin patients are known to have a higher incidence, however we hypothesised sleep breathing disturbance is not confined to this sub-group of cleft patient. Methods: We conducted a prospective observational study of sleep disordered breathing patterns in a cohort of infants with oronasal clefts (cleft palate with or without cleft lip to describe the spectrum of sleep breathing patterns both pre and post palate repair. Sleep breathing studies were performed pre- and post-operatively in sequential infants referred to a regional cleft lip andpalate unit. Results of sleep breathing studies were analysed according to American Academy of Sleep Medicine scoring guidelines and correlated with clinical history and details of peri-operative respiratory compromise. The degree of sleep disordered breathingwas characterised using desaturation indices (number of desaturations from baseline SpO2 of >=4%, per hour. Results: Thirty-nine infants were included in this study, twenty-five female and fourteen male. Twelve had isolated Cleft Palate aspart of an associated syndrome. Patients were categorised into Isolated Cleft Palate, Isolated Cleft Palate in the context of Pierre Robin Sequence, and those with Cleft Lip and Palate. All groups demonstrated some degree of sleep breathing abnormality. Not unsurprisingly the eight infants with Pierre Robin Sequence had a significantly higher desaturation index before surgicalintervention (p=0.043, and were more likely to require a pre-operative airway intervention (p=0.009. Palate repair in this group did not alter the relative distribution of patients in each severity category of sleep disorder breathing. Surgical repair ofthe secondary palate in the remaining children was associated with some

  20. Thoron-in-breath monitoring at CRNL

    International Nuclear Information System (INIS)

    Peterman, B.F.

    1985-04-01

    This report contains a description of the thoron-in-breath monitor (TIBM) developed at CRNL. This monitor can be used to estimate the amount of thorium (Th-232 and/or Th-228) in humans. Thoron-in-breath monitoring is based on the fact that thoron (Rn-220) is a decay product of thorium, and hence deposited thorium produces thoron in vivo, a fraction of which will be exhaled. Experiences with the TIBM indicate that the monitoring is easy to perform and the results in terms of contaminated vs uncontaminated subjects can be easily interpreted. Work on relationships between thoron exhaled and deposited thorium and hence between thoron exhaled and dose, is continuing