WorldWideScience

Sample records for active breathing control

  1. The use of active breathing control (ABC) to reduce margin for breathing motion

    International Nuclear Information System (INIS)

    Wong, John W.; Sharpe, Michael B.; Jaffray, David A.; Kini, Vijay R.; Robertson, John M.; Stromberg, Jannifer S.; Martinez, Alavro A.

    1999-01-01

    Purpose: For tumors in the thorax and abdomen, reducing the treatment margin for organ motion due to breathing reduces the volume of normal tissues that will be irradiated. A higher dose can be delivered to the target, provided that the risk of marginal misses is not increased. To ensure safe margin reduction, we investigated the feasibility of using active breathing control (ABC) to temporarily immobilize the patient's breathing. Treatment planning and delivery can then be performed at identical ABC conditions with minimal margin for breathing motion. Methods and Materials: An ABC apparatus is constructed consisting of 2 pairs of flow monitor and scissor valve, 1 each to control the inspiration and expiration paths to the patient. The patient breathes through a mouth-piece connected to the ABC apparatus. The respiratory signal is processed continuously, using a personal computer that displays the changing lung volume in real-time. After the patient's breathing pattern becomes stable, the operator activates ABC at a preselected phase in the breathing cycle. Both valves are then closed to immobilize breathing motion. Breathing motion of 12 patients were held with ABC to examine their acceptance of the procedure. The feasibility of applying ABC for treatment was tested in 5 patients by acquiring volumetric scans with a spiral computed tomography (CT) scanner during active breath-hold. Two patients had Hodgkin's disease, 2 had metastatic liver cancer, and 1 had lung cancer. Two intrafraction ABC scans were acquired at the same respiratory phase near the end of normal or deep inspiration. An additional ABC scan near the end of normal expiration was acquired for 2 patients. The ABC scans were also repeated 1 week later for a Hodgkin's patient. In 1 liver patient, ABC scans were acquired at 7 different phases of the breathing cycle to facilitate examination of the liver motion associated with ventilation. Contours of the lungs and livers were outlined when applicable

  2. WE-DE-209-02: Active Breathing Control

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D. [Stronach Regional Cancer Centre (Canada)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  3. WE-DE-209-02: Active Breathing Control

    International Nuclear Information System (INIS)

    Comsa, D.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  4. Advantage of using deep inspiration breath hold with active breathing control and image-guided radiation therapy for patients treated with lung cancers

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Madhusudhansresty; Sha, Rajib Lochan; Raut, Birendra Kumar; Poornima; Subash; Mallikarjun; Anil; Krishnam Raju, A.; Vidya; Sudarshan, G.; Mahadev, Shankar; Narayana Murthy, P.

    2008-01-01

    To evaluate the impact of moderate deep inspiration breath hold (mDIBH) using an active breathing control (ABC) apparatus on heart, spinal cord, liver and contra lateral lung doses and its volumes compared with free breathing (FB) with lung cancer irradiation

  5. Short-term displacement and reproducibility of the breast and nodal targets under active breathing control

    NARCIS (Netherlands)

    Moran, Jean M.; Balter, James M.; Ben-David, Merav A.; Marsh, Robin B.; van Herk, Marcel; Pierce, Lori J.

    2007-01-01

    PURPOSE: The short-term displacement and reproducibility of the breast or chest wall, and the internal mammary (IM), infraclavicular (ICV), and supraclavicular (SCV) nodal regions have been assessed as a function of breath-hold state using an active breathing control (ABC) device for patients

  6. Patient's breath controls comfort devices

    Science.gov (United States)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  7. SU-E-T-326: The Oxygen Saturation (SO2) and Breath-Holding Time Variation Applied Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Yin, Y [Shandong Cancer Hospital, Jinan, Shandong (China)

    2014-06-01

    Purpose: To study the oxygen saturation (SO2) and breath-holding time variation applied active breathing control (ABC) in radiotherapy of tumor. Methods: 24 volunteers were involved in our trials, and they all did breath-holding motion assisted by ELEKTA Active Breathing Coordinator 2.0 for 10 times respectively. And the patient monitor was used to observe the oxygen saturation (SO2) variation. The variation of SO2, and length of breath-holding time and the time for recovering to the initial value of SO2 were recorded and analyzed. Results: (1) The volunteers were divided into two groups according to the SO2 variation in breath-holding: A group, 14 cases whose SO2 reduction were more than 2% (initial value was 97% to 99%, while termination value was 91% to 96%); B group, 10 cases were less than 2% in breath-holding without inhaling oxygen. (2) The interfraction breath holding time varied from 8 to 20s for A group compared to the first breath-holding time, and for B group varied from 4 to 14s. (3) The breathing holding time of B group prolonged mean 8s, compared to A group. (4) The time for restoring to the initial value of SO2 was from 10s to 30s. And the breath-holding time shortened obviously for patients whose SO2 did not recover to normal. Conclusion: It is very obvious that the SO2 reduction in breath-holding associated with ABC for partial people. It is necessary to check the SO2 variation in breath training, and enough time should be given to recover SO2.

  8. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Brock, Kristy K.; Kazanjian, Sahira; Fitch, Dwight; McGinn, Cornelius J.; Lawrence, Theodore S.; Haken, Randall K. ten; Balter, James

    2001-01-01

    Purpose: To evaluate the intrafraction and interfraction reproducibility of liver immobilization using active breathing control (ABC). Methods and Materials: Patients with unresectable intrahepatic tumors who could comfortably hold their breath for at least 20 s were treated with focal liver radiation using ABC for liver immobilization. Fluoroscopy was used to measure any potential motion during ABC breath holds. Preceding each radiotherapy fraction, with the patient setup in the nominal treatment position using ABC, orthogonal radiographs were taken using room-mounted diagnostic X-ray tubes and a digital imager. The radiographs were compared to reference images using a 2D alignment tool. The treatment table was moved to produce acceptable setup, and repeat orthogonal verification images were obtained. The positions of the diaphragm and the liver (assessed by localization of implanted radiopaque intra-arterial microcoils) relative to the skeleton were subsequently analyzed. The intrafraction reproducibility (from repeat radiographs obtained within the time period of one fraction before treatment) and interfraction reproducibility (from comparisons of the first radiograph for each treatment with a reference radiograph) of the diaphragm and the hepatic microcoil positions relative to the skeleton with repeat breath holds using ABC were then measured. Caudal-cranial (CC), anterior-posterior (AP), and medial-lateral (ML) reproducibility of the hepatic microcoils relative to the skeleton were also determined from three-dimensional alignment of repeat CT scans obtained in the treatment position. Results: A total of 262 fractions of radiation were delivered using ABC breath holds in 8 patients. No motion of the diaphragm or hepatic microcoils was observed on fluoroscopy during ABC breath holds. From analyses of 158 sets of positioning radiographs, the average intrafraction CC reproducibility (σ) of the diaphragm and hepatic microcoil position relative to the skeleton

  9. Initial experience with active breathing control of liver motion during ventilation

    International Nuclear Information System (INIS)

    Robertson, John M.; Sharpe, Michael B.; Jaffray, David A.; Wong, John W.

    1997-01-01

    Purpose: Recent evidence has shown that some patients with hepatic tumors can be safely irradiated to a dose well over twice the whole liver tolerance dose if portions of normal liver are spared. Correction during treatment planning for the ventilatory motion of the liver can add a large volume of normal liver to the planning target volume. Any reduction in ventilatory motion has the potential to allow a higher dose of radiation to be given safely. Active Breathing Control (ABC) can be used to temporarily stop the airflow to a patient, thus immobilizing the liver, at any part of a patient's ventilatory cycle. ABC during helical CT scanning can be used to study the full three dimensional motion of the liver and other abdominal organs during ventilation. Ultimately, if the use of ABC is found to be clinically feasible, tolerable for patients, and, most importantly, reproducible over time, then ABC may be used during radiation treatment. Materials and Methods: An ABC apparatus was constructed using a flow monitor and scissor valves on both the inhalation and exhalation paths to the patient. The patient breathed through either a mouthpiece or facemask during the procedure. The ventilatory cycle was displayed in real time. When a stable breathing pattern was observed, the ABC was activated at a specific lung volume, closing both scissors valves, and preventing ventilation. The length of time for comfortable activation of the ABC machine for the individual patient was determined during a teaching and practice period prior to CT scanning. Helical CT scans (slice thickness 0.5 cm) to assess the potential benefit of immobilizing breathing were obtained for normal breathing, end-inspiration and end-expiration. The reproducibility of ABC over time was assessed by repeating the end-inspiration scan both immediately and one week later. The contours of the liver and kidneys were entered for each study. Results: Five patients have undergone ABC study of the abdomen. End

  10. Frameless stereotactic radiosurgery of a solitary liver metastasis using active breathing control and stereotactic ultrasound

    International Nuclear Information System (INIS)

    Boda-Heggemann, J.; Walter, C.; Mai, S.; Dobler, B.; Wenz, F.; Lohr, F.; Dinter, D.

    2006-01-01

    Background and purpose: radiosurgery of liver metastases is effective but a technical challenge due to respiration-induced movement. The authors report on the initial experience of the combination of active breathing control (ABC registered ) with stereotactic ultrasound (B-mode acquisition and targeting [BAT registered ]) for frameless radiosurgery. Patient and methods: a patient with a solitary, inoperable liver metastasis from cholangiocellular carcinoma is presented. ABC registered was used for tumor/liver immobilization. Tumor/liver position was controlled and corrected using ultrasound (BAT registered ). The tumor was irradiated with a single dose of 24 Gy. Results: using ABC registered , the motion of the tumor was significantly reduced and the overall positioning error was registered allowed a rapid localization of the lesion during breath hold which could be performed without difficulties for 20 s. Overall treatment time was acceptable (30 min). Conclusion: frameless stereotactic radiotherapy with the combination of ABC registered and BAT registered allows the delivery of high single doses to targets accessible to ultrasound with high precision comparable to a frame-based approach. (orig.)

  11. Active Breathing Control for Hodgkin's Disease in Childhood and Adolescence: Feasibility, Advantages, and Limits

    International Nuclear Information System (INIS)

    Claude, Line; Malet, Claude Phys.; Pommier, Pascal; Thiesse, Philippe; Chabaud, Sylvie; Carrie, Christian

    2007-01-01

    Purpose: The challenge in early Hodgkin's disease (HD) in children is to maintain good survival rates while sparing organs at risk. This study assesses the feasibility of active breathing control (ABC) in children, and compares normal tissue irradiation with and without ABC. Methods and Materials: Between May 2003 and June 2004, seven children with HD with mediastinal involvement, median age 15, were treated by chemotherapy and involved-field radiation therapy. A free-breathing computed tomography simulation scan and one additional scan during deep inspiration using ABC were performed. A comparison between planning treatment with clinical target volume including supraclavicular regions, mediastinum, and hila was performed, both in free breathing and using ABC. Results: For a prescription of 36 Gy, pulmonary dose-volume histograms revealed a mean reduction in lung volume irradiated at more than 20 Gy (V20) and 30 Gy (V30) of 25% and 26%, respectively, using ABC (p = 0.016). The mean volume of heart irradiated at 30 Gy or more decreased from 15% to 12% (nonsignificant). The mean dose delivered to breasts in girls was small in both situations (less than 2 Gy) and stable with or without ABC. Considering axillary irradiation, the mean dose delivered to breasts remained low (<9 Gy), without significant difference using ABC or not. The mean radiation dose delivered to thyroid was stable using ABC or not. Conclusions: Using ABC is feasible in childhood. The use of ABC decreases normal lung tissue irradiation. Concerning heart irradiation, a minimal gain is also shown. No significant change has been demonstrated concerning breast and thyroid irradiation

  12. Relationships between hippocampal activity and breathing patterns

    DEFF Research Database (Denmark)

    Harper, R M; Poe, G R; Rector, D M

    1998-01-01

    Single cell discharge, EEG activity, and optical changes accompanying alterations in breathing patterns, as well as the knowledge that respiratory musculature is heavily involved in movement and other behavioral acts, implicate hippocampal regions in some aspects of breathing control. The control...... is unlikely to reside in oscillatory breathing movements, because such patterns emerge in preparations retaining only the medulla (and perhaps only the spinal cord). However, momentary changes in breathing patterns induced by affect, startle, whole-body movement changes, or compensatory ventilatory changes...... of hippocampal contributions to breathing control should be viewed in the context that significant interactions exist between blood pressure changes and ventilation, and that modest breathing challenges, such as exposure to hypercapnia or to increased resistive loads, bring into action a vast array of brain...

  13. Accuracy of daily image guidance for hypofractionated liver radiotherapy with active breathing control

    International Nuclear Information System (INIS)

    Dawson, Laura A.; Eccles, Cynthia; Bissonnette, Jean-Pierre; Brock, Kristy K.

    2005-01-01

    Purpose: A six-fraction, high-precision radiotherapy protocol for unresectable liver cancer has been developed in which active breathing control (ABC) is used to immobilize the liver and daily megavoltage (MV) imaging and repositioning is used to decrease geometric uncertainties. We report the accuracy of setup in the first 20 patients consecutively treated using this approach. Methods and materials: After setup using conventional skin marks and lasers, orthogonal MV images were acquired with the liver immobilized using ABC. The images were aligned to reference digitally reconstructed radiographs using the diaphragm for craniocaudal (CC) alignment and the vertebral bodies for anterior-posterior (AP) and mediolateral (ML) alignment. Adjustments were made for positioning errors >3 mm. Verification imaging was repeated after repositioning to assess for residual positioning error. Offline image matching was conducted to determine the setup accuracy using this approach compared with the initial setup error before repositioning. Real-time beam's-eye-view MV movies containing an air-diaphragm interface were also evaluated. Results: A total of 405 images were evaluated from 20 patients. Repositioning occurred in 109 of 120 fractions because of offsets >3 mm. Three to eight beam angles, with up to four segments per field, were used for each isocenter. Breath holds of up to 27 s were used for imaging and treatment. The average time from the initial verification image to the last treatment beam was 21 min. Image guidance and repositioning reduced the population random setup errors (σ) from 6.5 mm (CC), 4.2 mm (ML), and 4.7 mm (AP) to 2.5 mm (CC), 2.8 mm (ML), and 2.9 mm (AP). The average individual random setup errors (σ) were reduced from 4.5 mm (CC), 3.2 mm (AP), and 2.5 mm (ML) to 2.2 mm (CC), 2.0 mm (AP), and 2.0 mm (ML). The standard deviation of the distribution of systematic deviations (Σ) was also reduced from 5.1 mm (CC), 3.4 mm (ML), and 3.1 mm (AP) to 1.4 mm (CC

  14. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2010-02-01

    Full Text Available Abstract Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT guided hypofractionated radiotherapy with active breathing control (ABC for patients with non-small cell lung cancer (NSCLC or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR, superior-inferior (SI, anterior-posterior (AP directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20% grade1-2 acute pneumonitis, 3 (15% grade1 acute esophagitis, 2 (10% grade1 late pneumonitis and 1 (5% grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used.

  15. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Science.gov (United States)

    2010-01-01

    Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used. PMID:20187962

  16. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    International Nuclear Information System (INIS)

    Shen, Yali; Zhang, Hong; Wang, Jin; Zhong, Renming; Jiang, Xiaoqing; Xu, Qinfeng; Wang, Xin; Bai, Sen; Xu, Feng

    2010-01-01

    To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used

  17. [Death by erotic asphyxiation (breath control play)].

    Science.gov (United States)

    Madea, Burkhard; Hagemeier, Lars

    2013-01-01

    Most cases of sexual asphyxia are due to autoerotic activity. Asphyxia due to oronasal occlusion is mostly seen in very old or very young victims. Oronasal occlusion is also used in sadomasochistic sexual practices like "breath control play" or "erotic asphyxiation". If life saving time limitations of oronasal occlusion are not observed, conviction for homicide caused by negligence is possible.

  18. ACTIVE CYCLE BREATHING TECHNIQUES IN HEART FAILURE ...

    African Journals Online (AJOL)

    RICHY

    Pulmonary Function Responses to Active Cycle. Breathing ... Key Words: Heart Failure, Active Cycle of Breathing ... cough, fatigue, reduced respiratory muscle mass, and. [5] ... an amount of exercise which is said to lower disease. [9].

  19. Thoracic radiotherapy and breath control: current prospects

    International Nuclear Information System (INIS)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R.

    2002-01-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  20. Magnitude of shift of tumor position as a function of moderated deep inspiration breath-hold: An analysis of pooled data of lung patients with active breath control in image-guided radiotherapy

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the reproducibility and magnitude of shift of tumor position by using active breathing control and iView-GT for patients with lung cancer with moderate deep-inspiration breath-hold (mDIBH technique. Eight patients with 10 lung tumors were studied. CT scans were performed in the breath-holding phase. Moderate deep-inspiration breath-hold under spirometer-based monitoring system was used. Few important bony anatomic details were delineated by the radiation oncologist. To evaluate the interbreath-hold reproducibility of the tumor position, we compared the digital reconstruction radiographs (DRRs from planning system with the DRRs from the iView-GT in the machine room. We measured the shift in x, y, and z directions. The reproducibility was defined as the difference between the bony landmarks from the DRR of the planning system and those from the DRR of the iView-GT. The maximum shift of the tumor position was 3.2 mm, 3.0 mm, and 2.9 mm in the longitudinal, lateral, and vertical directions. In conclusion, the moderated deep-inspiration breath-hold method using a spirometer is feasible, with relatively good reproducibility of the tumor position for image-guided radiotherapy in lung cancers.

  1. Periaqueductal Gray Control of Breathing

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert; Homma,; Onimaru, H; Fukuchi, Y

    2010-01-01

    Change of the basic respiratory rhythm (eupnea) is a pre-requisite for survival. For example, sudden escape from danger needs rapid shallow breathing, strenuous exercise requires tachypnea for sufficient supply of oxygen and a strong anxiety reaction necessitates gasping. Also for vocalization (and

  2. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Gong, G; Guo, Y; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  3. SU-F-P-14: Oxygen Inhalation Should Be the Conventional Approach in the Treatment of Thoracic and Abdominal Cancer by Radiotherapy with Active Breathing Control (ABC)

    International Nuclear Information System (INIS)

    Gong, G; Guo, Y; Yin, Y

    2016-01-01

    Purpose: To investigate the feasibility and potential benefit of oxygen inhalation (OI) during radiotherapy applying an active breathing control (ABC) device, by analyzing the blood oxygen saturation (SpO2) and the instantaneous heart rate (IHR) variation in breath holding with OI and oxygen non-inhalation (ONI). Methods: The 27 healthy volunteers (16 males, 11 females) who were involved in this trial were all required to hold their breath for 10 times, non-inhaling and inhaling oxygen successively. The breath-holding time (BHT), rest time (RT), SpO2 and IHR under different oxygen status were recorded and compared. Results: The volunteers were divided into two groups according to SpO2 variations in breath-holding: group A (12 cases), with less than2% decline of SpO2; group B (15 cases), with a decline that surpassed 2%, and which could reach 3–6%. The BHT of group A, without inhaling oxygen, was significantly longer than that of group B (mean 33.77s Vs 30.51s, p<0.05); and was extended by 26.6% and 27.85%, after inhaling oxygen, in groups A and B, respectively. The SpO2 decreased in all volunteers during RT with ONI, to an extent that could reach up to 6%. The IHR of all volunteers showed the fast-slow-fast variation rule, and the oxygen had little effect. More than 70% of the volunteers stated that oxygen made them feel more comfortable and were more cooperative when ABC was used. Conclusion: The SpO2 declines during breath holding and RT could not be ignored while applying ABC, oxygen inhalation should become a conventional method with lengthening BHT and shortening RT, which yielded the benefit of improving the stability and reproducibility.

  4. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  5. The study of target delineation and target movement of whole breast assisted by active breathing control in intensity modulated radiotherapy after breast conservative surgery

    International Nuclear Information System (INIS)

    Li Jianbing; Yu Jinming; Ma Zhifang; Lu Jie; Sun Tao; Guo Shoufang; Wang Jingguo

    2009-01-01

    Objective: To explore the influence of different delineators and different delineating time on target determination of the whole breast and to explore intrafraction and interfraction target displacements of the breast on moderate deep inspiration breathing hold (mDIBH) assisted by active breathing control (ABC) alter breast conservative surgery. Methods: Twenty patients received primary CT-simulation assisted by ABC to get five sets of CT image on the three breathing condition which included one set from free breath (FB), two sets from mDIBH and two sets from deep expiration breathing control (DEBH). After radiotherapy with ten to fifteen fractions, the repeat CT-simulation was carried out to get the same five sets of CT image as the primary CT- simulation. The whole breast target were delineated at different time by the same delineator and delineated respectively by five delineators on the first set of CT images got with mDIBH from the primary CT-simulation, and to compare the influence of delineator and delineating time on the whole breast target. The total silver clips in the cavity were marked respectively on the two sets of CT images got with mDIBH from the primary CT-simulation, and to compare the intrafraction displacement of geometric body structured by the total of silver clips. The two ribs near the isocentric plane of the breast target were delineated respectively on two sets of the mDIBH CT image from the primary CT-simulation and on one set of the mDIBH CT image from the repeat CT-simulation, and comparing the movement of the point of interest (POI) of the ribs delineated to get the value of intrafraction and interfraction thoracic expansion. Results: There was not statistically significant between the four volumes of whole breast targets delineated by the same delineator at different time, but with statistics significant between the volumes of whole breast target delineated by the different delineators ( F=19.681, P=0.000). There was not statistically

  6. The impact of respiratory motion and active breathing control on the displacement of target area in patients with gastric cancer treated with post-operative radiotherapy

    International Nuclear Information System (INIS)

    Yu Xiaoli; Zhang Zhen; Gu Weilie; Hu Weigang; Zhu Ji; Cai Gang; Li Guichao; He Shaoqin

    2010-01-01

    Objective: To assess the impact of respiratory motion on the displacement of target area and to analyze the discrimination between free breathing and active breathing control (ABC) in patients with gastric cancer treated with post-operative radiotherapy. Methods: From January 2005 to November 2006, 22 patients with post-operatively confirmed gastric cancer were enrolled in this study. All diseases were T 3 / N +, staging II - IV. Patients were CT scanned and treated by radiation with the use of ABC. Image J software was used in image processing, motion measurement and data analysis. Surgical clips were implanted as fiducial marks in the tumor bed and lymphatic drainage area. The motion range of each clip was measured in the resultant-projection image. Motions of the clips in superior-inferior (S-I), right-left (R-L) and anterior-posterior (A-P) directions were determined from fluoroscopy movies obtained in the treatment position. Results: The motion ranges in S-I, R-L and A-P directions were 11.1 mam, 1.9 mm and 2.5 mm (F = 85.15, P = 0. 000) under free breathing, with 2.2 mm, 1.1 mm and 1.7 nun under ABC (F = 17.64, P = 0. 000), and the reduction of motion ranges was significant in both S-I and A-P directions (t = 4.36, P = 0. 000;t = 3.73,P = 0.000). When compared with under free-breathing, the motion ranges under ABC were kept unchanged in the same breathing phase of the same treatment fraction, while significant increased in different breathing phase in all three directions (t = - 4.36, P = 0. 000; t = - 3.52, P = 0.000; t =-3.79, P = 0. 000), with a numerical value of 3.7 mm, 1.6 mm and 2.8 mm, respectively (F = 19.46, P = 0. 000) . With ABC between different treatment fractions , the maximum displacements were 2.7 mm, 1.7 mm and 2.5 mm for the centre of the clip cluster (F =4.07,P =0. 019), and were 4.6 mm, 3.1 mm and 4.2 mm for the clips (F =5.17 ,P =0.007). The motion ranges were significant increased in all the three directions (t = - 4.09, P=0.000 ; t =-4

  7. MRI-based volumetric assessment of cardiac anatomy and dose reduction via active breathing control during irradiation for left-sided breast cancer

    International Nuclear Information System (INIS)

    Krauss, Daniel J.; Kestin, Larry L.; Raff, Gilbert; Yan Di; Wong, John; Gentry, Ralph; Letts, Nicola; Vargas, Carlos E.; Martinez, Alvaro A.; Vicini, Frank A.

    2005-01-01

    Purpose: Heart dose-volume analysis using computed tomography (CT) is limited because of motion artifact and poor delineation between myocardium and ventricular space. We used dedicated cardiac magnetic resonance imaging (MRI) to quantify exclusion of left ventricular (LV) myocardium via active breathing control (ABC) during left breast irradiation and to determine the correlation between irradiated whole heart and LV volumes. Methods and materials: Fifteen patients who completed adjuvant irradiation for early-stage left breast cancer participated. Treatment consisted of 45 Gy to the entire breast using ABC followed by a 16-Gy electron boost to the lumpectomy cavity. Patients underwent planning CT scans in free breathing (FB) and moderate deep inspiration breath hold (mDIBH). Electrocardiogram-gated cardiac MRI was performed in the treatment position using α-cradle immobilization. MRI scans were acquired in late diastole (LD), mid-diastole (MD), and systole (S) for both FB and mDIBH. After image fusion with the patients' radiation therapy planning CT scan, MRI LV volumes were defined for the three examined phases of the cardiac cycle, and comparative dose-volume analysis was performed. Results: Cardiac volume definition was found to differ significantly because of combinations of respiratory and intrinsic heart motion. The fraction of LV myocardium receiving 50% (22.5 Gy) of the prescribed whole breast dose (V 22.5 ) was reduced by 85.3%, 91.8%, and 94.6% via ABC for LD, MD, and S, respectively. Linear regression revealed strong correlation between MRI-defined whole heart and LV V 22.5 reduction via ABC, suggesting that LV myocardium accounts for up to approximately 50% of the excluded heart volume through this technique. Significant but weaker correlations were noted between CT-defined whole heart and LV V 22.5 reductions with marked variability in the measurements of patients with larger amounts of heart in the treatment field. Conclusions: Cardiac MRI

  8. The management of tumor motions in the stereotactic irradiation to lung cancer under the use of Abches to control active breathing

    Energy Technology Data Exchange (ETDEWEB)

    Tarohda, Tohru I.; Ishiguro, Mitsuru; Hasegawa, Kouhei; Kohda, Yukihiko; Onishi, Hiroaki; Aoki, Tetsuya; Takanaka, Tsuyoshi [Department of Radiology, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Department of Neurosurgery, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Naruwa Clinic, 1-16-6 Naruwa, Kanazawa 920-0818 (Japan); Department of Radiation Therapy, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641 (Japan)

    2011-07-15

    Purpose: Breathing control is crucial to ensuring the accuracy of stereotactic irradiation for lung cancer. This study monitored respiration in patients with inoperable nonsmall-cell lung cancer using a respiration-monitoring apparatus, Abches, and investigated the reproducibility of tumor position in these patients. Methods: Subjects comprised 32 patients with nonsmall-cell lung cancer who were administered stereotactic radiotherapy under breath-holding conditions monitored by Abches. Computed tomography (CT) was performed under breath-holding conditions using Abches (Abches scan) for treatment planning. A free-breathing scan was performed to determine the range of tumor motions in a given position. After the free-breathing scan, Abches scan was repeated and the tumor position thus defined was taken as the intrafraction tumor position. Abches scan was also performed just before treatment, and the tumor position thus defined was taken as the interfraction tumor position. To calculate the errors, tumor positions were compared based on Abches scan for the initial treatment plan. The error in tumor position was measured using the BrainSCAN treatment-planning device, then compared for each lung lobe. Results: Displacements in tumor position were calculated in three dimensions (i.e., superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) dimensions) and recorded as absolute values. For the whole lung, average intrafraction tumor displacement was 1.1 mm (L-R), 1.9 mm (A-P), and 2.0 mm (S-I); the average interfraction tumor displacement was 1.1 mm (L-R), 2.1 mm (A-P), and 2.0 mm (S-I); and the average free-breathing tumor displacement was 2.3 mm (L-R), 3.5 mm (A-P), and 7.9 mm (S-I). The difference between using Abches and free breathing could be reduced from approximately 20 mm at the maximum to approximately 3 mm in the S-I direction for both intrafraction and interfraction positions in the lower lobe. In addition, maximum intrafraction tumor

  9. Health Activities Project (HAP): Breathing Fitness Module.

    Science.gov (United States)

    Buller, Dave; And Others

    Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing four activities which involve students in learning how to measure their…

  10. Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods

    International Nuclear Information System (INIS)

    Wang Xin; Zhong Renming; Bai Sen; Xu Qingfeng; Zhao Yaqin; Wang Jin; Jiang Xiaoqin; Shen Yali; Xu Feng; Wei Yuquan

    2011-01-01

    Purpose: To study the inter- and intrafraction tumor reproducibility with active breath control (ABC) utilizing cone-beam computed tomography (CBCT), and compare validity of registration with two different regions of interest (ROI). Methods and materials: Thirty-one lung tumors in 19 patients received conventional or stereotactic body radiotherapy with ABC. During each treatment, patients had three CBCT scanned before and after online position correction and after treatment. These CBCT images were aligned to the planning CT using the gray scale registration of tumor and bony registration of the thorax, and tumor position uncertainties were then determined. Results: The interfraction systematic and random translation errors in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions were 3.6, 4.8, and 2.9 mm; 2.5, 4.5, and 3.5 mm, respectively, with gray scale alignment; 1.9, 4.3, 2.0 mm and 2.5, 4.4, 2.9 mm, respectively, with bony alignment. The interfraction systematic and random rotation errors with gray scale and bony alignment groups ranged from 1.4 o to 3.0 o and 0.8 o to 2.3 o , respectively. The intrafraction systematic and random errors with gray scale registration in LR, SI, AP directions were 0.9, 2.0, 1.8 mm and 1.5, 1.7, 2.9 mm, respectively, for translation; 1.5 o , 0.9 o , 1.0 o and 1.2 o , 2.2 o , 1.8 o , respectively, for rotation. The translational errors in SI direction with bony alignment were significantly larger than that of gray scale (p < 0.05). Conclusions: With CBCT guided online correction the interfraction positioning errors can be markedly reduced. The intrafraction errors were not diminished by the use of ABC. Rotation errors were not very remarkable both inter- and intrafraction. Gray scale alignment of tumor may provide a better registration in SI direction.

  11. Voluntary breath holding affects spontaneous brain activity measured by magnetoencephalography

    NARCIS (Netherlands)

    Schellart, N. A.; Reits, D.

    1999-01-01

    Spontaneous brain activity was measured by multichannel magnetoencephalography (MEG) during voluntary breath holds. Significant changes in the activity are limited to the alpha rhythm: 0.25 Hz frequency increase and narrowing of the peak. The area of alpha activity shifts slightly toward (fronto-)

  12. Thoracic radiotherapy and breath control: current prospects; Radiotherapie thoracique et controle de la respiration: perspectives actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, F.; Mineur, L.; Paoli, J.B.; Bodez, V.; Oozeer, R.; Garcia, R. [Institut Sainte-Catherine, 84 - Avignon (France)

    2002-11-01

    Three-dimensional conformal radiotherapy (3D CRT) is adversely affected by setup error and organ motion. In thoracic 3D CRT, breathing accounts for most of intra-fraction movements, thus impairing treatment quality. Breath control clearly exhibits dosimetric improvement compared to free breathing, leading to various techniques for gated treatments. We review benefits of different breath control methods -i.e. breath-holding or beam gating, with spirometric, isometric or X-ray respiration sensor- and argument the choice of expiration versus inspiration, with consideration to dosimetric concerns. All steps of 3D-CRT can be improved with breath control. Contouring of organs at risk (OAR) and target are easier and more accurate on breath controlled CT-scans. Inter- and intra-fraction target immobilisation allows smaller margins with better coverage. Lung outcome predictors (NTCP, Mean Dose, LV20, LV30) are improved with breath-control. In addition, inspiration breath control facilitates beam arrangement since it widens the distance between OAR and target, and leaves less lung normal tissue within the high dose region. Last, lung density, as of CT scan, is more accurate, improving dosimetry. Our institutions choice is to use spirometry driven, patient controlled high-inspiration breath-hold; this technique gives excellent immobilization results, with high reproducibility, yet it is easy to implement and costs little extra treatment time. Breath control, whatever technique is employed, proves superior to free breathing treatment when using 3D-CRT. Breath control should then be used whenever possible, and is probably mandatory for IMRT. (authors)

  13. An Acute Bout of a Controlled Breathing Frequency Lowers Sympathetic Neural Outflow but not Blood Pressure in Healthy Normotensive Subjects

    Science.gov (United States)

    MCCLAIN, SHANNON L.; BROOKS, ALEXA M.; JARVIS, SARA S.

    2017-01-01

    Controlled or paced breathing is often used as a stress reduction technique but the impact on blood pressure (BP) and sympathetic outflow have not been consistently reported. The purpose of this study was to determine whether a controlled breathing (12 breaths/min, CB) rate would be similar to an individual’s spontaneous breathing (SB) rate. Secondly, would a CB rate of 12 breaths/min alter heart rate (HR), BP, and indices of muscle sympathetic nerve activity (MSNA). Twenty-one subjects (10 women, 11 men) performed two trials: SB, where the subject chose a comfortable breathing rate; and CB, where the subject breathed at a pace of 12 breaths/min. Each trial was 6 min during which respiratory waveforms, HR, BP (systolic, SBP; diastolic, DBP), and MSNA were recorded. During CB, the 6 min average breathing frequency (14±4 vs 12±1 breaths/min, P<0.05 for SB and CB, respectively), MSNA burst frequency (18±12 vs 14±10 bursts/min, P<0.01) and MSNA burst incidence (28±19 vs 21± 6 bursts/100 heart beats, P<0.01) were significantly lower than during SB. HR (66±9 vs 67±9 beats/min, P<0.05) was higher during CB. SBP (120±13 vs 121±15 mmHg, P=0.741), DBP (56±8 vs 57±9 mmHg, P=0.768), and MSNA total activity (166±94 vs 145±102 a.u./min, P=0.145) were not different between the breathing conditions. In conclusion, an acute reduction in breathing frequency such as that observed during CB elicited a decrease in indices of MSNA (burst frequency and incidence) with no change in BP. PMID:28344733

  14. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.

    Science.gov (United States)

    Baertsch, Nathan Andrew; Baertsch, Hans Christopher; Ramirez, Jan Marino

    2018-02-26

    The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.

  15. Characterising infant inter-breath interval patterns during active and quiet sleep using recurrence plot analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M

    2009-01-01

    Breathing patterns are characteristically different between active and quiet sleep states in infants. It has been previously identified that breathing dynamics are governed by a non-linear controller which implies the need for a nonlinear analytical tool. Further, it has been shown that quantified nonlinear variables are different between adult sleep states. This study aims to determine whether a nonlinear analytical tool known as recurrence plot analysis can characterize breath intervals of active and quiet sleep states in infants. Overnight polysomnograms were obtained from 32 healthy infants. The 6 longest periods each of active and quiet sleep were identified and a software routine extracted inter-breath interval data for recurrence plot analysis. Determinism (DET), laminarity (LAM) and radius (RAD) values were calculated for an embedding dimension of 4, 6, 8 and 16, and fixed recurrence of 0.5, 1, 2, 3.5 and 5%. Recurrence plots exhibited characteristically different patterns for active and quiet sleep. Active sleep periods typically had higher values of RAD, DET and LAM than for quiet sleep, and this trend was invariant to a specific choice of embedding dimension or fixed recurrence. These differences may provide a basis for automated sleep state classification, and the quantitative investigation of pathological breathing patterns.

  16. Efficacy of device-guided breathing for hypertension in blinded, randomized, active-controlled trials : a meta-analysis of individual patient data

    NARCIS (Netherlands)

    Landman, Gijs W. D.; van Hateren, Kornelis J. J.; van Dijk, Peter R.; Logtenberg, Susan J. J.; Houweling, Sebastiaan T.; Groenier, Klaas H.; Bilo, Henk J. G.; Kleefstra, Nanne

    IMPORTANCE: Device-guided breathing (DGB) is recommended by the American Heart Association for its blood pressure-lowering effects. Most previous studies that showed beneficial effects on blood pressure had low methodological quality and only investigated short-term blood pressure effects.

  17. SU-E-T-426: Feasibility of Stereotactic Body Radiation Therapy (SBRT) Treatment of Pancreatic Cancer Using Volumetric Modulated Arc Therapy (VMAT) with Active Breathing Control (ABC)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Jackson, J; Davies, G; Herman, J; Forbang, R Teboh [John Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: SBRT shows excellent tumor control and toxicity rates for patients with locally advanced pancreatic cancer (PCA). Herein, we evaluate the feasibility of using VMAT with ABC for PCA SBRT. Methods: Nine PCA patients previously treated via SBRT utilizing 11-beam step-and-shoot IMRT technique in our center were retrospectively identified, among whom eight patients received 3300cGy in 5 fractions while one received 3000cGy in 5 fractions. A VMAT plan was generated on each patient’s planning CT in Pinnacle v9.8 on Elekta Synergy following the same PCA SBRT clinical protocol. Three partial arcs (182°–300°, 300°-60°, and 60°-180°) with 2°/4° control-point spacing were used. The dosimetric difference between the VMAT and the original IMRT plans was analyzed. IMRT QA was performed for the VMAT plans using MapCheck2 in MapPHAN and the total delivery time was recorded. To mimic the treatment situation with ABC, where patients hold their breath for 20–30 seconds, the delivery was intentionally interrupted every 20–30 seconds. For each plan, the QA was performed with and without beam interruption. Gamma analysis (2%/2mm) was used to compare the planned and measured doses. Results: All VMAT plans with 2mm dose grid passed the clinic protocol with similar PTV coverage and OARs sparing, where PTV V-RxDose was 92.7±2.1% (VMAT) vs. 92.1±2.6% (IMRT), and proximal stomach V15Gy was 3.60±2.69 cc (VMAT) vs. 4.80±3.13 cc (IMRT). The mean total MU and delivery time of the VMAT plans were 2453.8±531.1 MU and 282.1±56.0 seconds. The gamma passing rates of absolute dose were 94.9±3.4% and 94.5±4.0% for delivery without and with interruption respectively, suggesting the dosimetry of VMAT delivery with ABC for SBRT won’t be compromised. Conclusion: This study suggests that PCA SBRT using VMAT with ABC is a feasible technique without compromising plan dosimetry. The combination of VMAT with ABC will potentially reduce the SBRT treatment time.

  18. Effect of upper costal and costo-diaphragmatic breathing types on electromyographic activity of respiratory muscles.

    Science.gov (United States)

    Celhay, Isabel; Cordova, Rosa; Miralles, Rodolfo; Meza, Francisco; Erices, Pia; Barrientos, Camilo; Valenzuela, Saúl

    2015-04-01

    To compare electromyographic (EMG) activity in young-adult subjects with different breathing types. This study included 50 healthy male subjects with complete natural dentition, and no history of orofacial pain or craniomandibular-cervical-spinal disorders. Subjects were classified into two groups: upper costal breathing type, and costo-diaphragmatic breathing. Bipolar surface electrodes were located on sternocleidomastoid, diaphragm, external intercostal, and latissimus dorsi muscles. Electromyographic activity was recorded during the following tasks: (1) normal quiet breathing; (2) speaking the word 'Mississippi'; (3) swallowing saliva; and (4) forced deep breathing. Sternocleidomastoid and latissimus dorsi EMG activity was not significantly different between breathing types, whereas diaphragm and external intercostal EMG activity was significantly higher in the upper costal than costo-diaphragmatic breathing type in all tasks (P<0·05; Wilcoxon signed rank-sum test). Diaphragm and external intercostal EMG activity suggests that there could be differences in motor unit recruitment strategies depending on the breathing type.

  19. Comparative study of the displacement of the selected clips in the cavity measured by orthogonal kilovoltage X-ray film in conditions of free breath and active breathing control for patients treated by external-beam partial breast irradiation

    International Nuclear Information System (INIS)

    Li Jianbin; Han Lei; Zhang Yingjie; Xu Min; Fan Tingyong; Shao Qing; Gong Guanzhong

    2010-01-01

    Objective: To compare the displacements of the clips in the cavity measured with orthogonal kilovoltage (KV) X-my plain film in conditions of moderate deep inspiration breathing hold (mDIBH) and free breath (FB), and compare the margins from clinical target volume (CTV) to planning target volume (PTV) based on the displacements. Methods: Before radiotherapy, 2 and 5 sets of orthogonal KV plain film were respectively collected in mDIBH and FB group, then the automatic registration of the reconstructed KV plain film and DRR derived from the planning CT images was finished. In conditions of mDIBH and FB, the displacements of the selected clip at the same location in the different directions and of the different selected clips in the same direction were compared. The margins in three dimensional directions were calculated and compared in conditions of mDIBH and FB. Results: In FB hold group, the difference of displacement in left-right (LR), cranial-caudal (CC) and anterior-posterior (AP) directions were statistically significant between the clips at the cranial and caudal border of the cavity (9.7 mm and 10.6 nun (Z = -2.12, P =0.037) ,7.3 mm and 8.3 mm (Z = -2.31 ,P=0.041) ,15.5 mm and 16.1 nun (Z = -2.32,P = 0.041)), but not statistically significant for the clips at the bottom and lateral P=0.814),15.7 mm and 16.5 mm (Z=-0.26, P=0.856)). The corresponding differences in the different directions were statistically significant (5.0 mm and 7.8 mm(Z = -2.31, P =0.036), 5.0 mm and 9. 3 nun (Z= -2.21, P=0.021), 7.8 mm and 9.3 mm (Z= -2.11, P=0.041)). In FB group, the differences of the displacements of the four selected clips were statistically significant in CC and AP directions (7.3 mm and 8.4 mm (Z= -2.45, P=0.021), 15.5 mm and 16.5 mm (Z= -2.41, P= 0.043)), but not in LF direction (10.6 nun and 10.6 mm (Z= -0.24, P=0.815)). In mDIBH group, the displacements in LF direction were statistically significant (4.4 mm and 5.4 mm (Z = -2.31, P = O. 031)), but not in CC and

  20. Activity calibration in breath test for diagnosis of Helicobacter pylori

    International Nuclear Information System (INIS)

    Wasilewka-Radwanska, M.; Pysklak, S.; Gilewicz-Wolter, J.; Kuc, T.; Jung, A.; Niziol, J.; Kopanski, J.; Micherdzinski, J.; Cienciala, A.

    1996-01-01

    Some technical and measurement problems of the breath test for diagnosis of Helicobacter pylori are briefly discussed. Calibrated results obtained for population of 108 cases indicate difference between HP+ (infected with Helicobacter pylori) and HP- (non infected with Helicobacter pylori) in exhaled 14 C activity not less than 3.9 kBq while the lower limit for HP+ cases was set at 6.8 kBq at the detection limit: 0.9 Bq/mmol of CO 2 . It was estimated that in exhalation way up to 29% of the taken activity was removed in HP+ cases during first 35 minutes. Radiation hazard for the patient system is negligibly small - dose equipment not exceeds 0.29% of the natural (environmental) yearly exposure. (author)

  1. An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish.

    Science.gov (United States)

    Perry, Steve; Kumai, Y; Porteus, C S; Tzaneva, V; Kwong, R W M

    2016-02-01

    Three gases comprising nitric oxide, carbon monoxide and hydrogen sulphide, collectively are termed gasotransmitters. The gasotransmitters control several physiological functions in fish by acting as intracellular signaling molecules. Hydrogen sulphide, first implicated in vasomotor control in fish, plays a critical role in oxygen chemoreception owing to its production and downstream effects within the oxygen chemosensory cells, the neuroepithelial cells. Indeed, there is emerging evidence that hydrogen sulphide may contribute to oxygen sensing in both fish and mammals by promoting membrane depolarization of the chemosensory cells. Unlike hydrogen sulphide which stimulates breathing in zebrafish, carbon monoxide inhibits ventilation in goldfish and zebrafish whereas nitric oxide stimulates breathing in zebrafish larvae while inhibiting breathing in adults. Gasotransmitters also modulate ionic uptake in zebrafish. Though nothing is known about the role of CO, reduced activities of branchial Na(+)/K(+)-ATPase and H(+)-ATPase activities in the presence of NO donors suggest an inhibitory role of NO in fish osmoregulation. Hydrogen sulphide inhibits Na(+) uptake in zebrafish larvae and contributes to lowering Na(+) uptake capacity in fish acclimated to Na(+)-enriched water whereas it stimulates Ca(2+) uptake in larvae exposed to Ca(2+)-poor water.

  2. Deep breathing exercises with positive expiratory pressure in patients with multiple sclerosis - a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Wittrin, Anna; Kånåhols, Margareta; Gunnarsson, Martin; Nilsagård, Ylva

    2016-11-01

    Breathing exercises with positive expiratory pressure are often recommended to patients with advanced neurological deficits, but the potential benefit in multiple sclerosis (MS) patients with mild and moderate symptoms has not yet been investigated in randomized controlled trials. To study the effects of 2 months of home-based breathing exercises for patients with mild to moderate MS on respiratory muscle strength, lung function, and subjective breathing and health status outcomes. Forty-eight patients with MS according to the revised McDonald criteria were enrolled in a randomized controlled trial. Patients performing breathing exercises (n = 23) were compared with a control group (n = 25) performing no breathing exercises. The breathing exercises were performed with a positive expiratory pressure device (10-15 cmH 2 O) and consisted of 30 slow deep breaths performed twice a day for 2 months. Respiratory muscle strength (maximal inspiratory and expiratory pressure at the mouth), spirometry, oxygenation, thoracic excursion, subjective perceptions of breathing and self-reported health status were evaluated before and after the intervention period. Following the intervention, there was a significant difference between the breathing group and the control group regarding the relative change in lung function, favoring the breathing group (vital capacity: P < 0.043; forced vital capacity: P < 0.025). There were no other significant differences between the groups. Breathing exercises may be beneficial in patients with mild to moderate stages of MS. However, the clinical significance needs to be clarified, and it remains to be seen whether a sustainable effect in delaying the development of respiratory dysfunction in MS can be obtained. © 2015 The Authors. The Clinical Respiratory Journal published by John Wiley & Sons Ltd.

  3. Sensorimotor control of breathing in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Burns, David P; Roy, Arijit; Lucking, Eric F; McDonald, Fiona B; Gray, Sam; Wilson, Richard J; Edge, Deirdre; O'Halloran, Ken D

    2017-11-01

    Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO 2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO 2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and

  4. Breath pacing system and method for pacing the respiratory activity of a subject

    NARCIS (Netherlands)

    2016-01-01

    To provide a breath pacing system and a corresponding method for pacing the respiratory activity of a subject that provide the possibility to adapt the output signal to the respiration characteristics of the subject automatically and effectively a breath pacing system (10) for pacing the respiratory

  5. 13C mixed triglyceride breath test: a noninvasive method to assess lipase activity in children.

    Science.gov (United States)

    van Dijk-van Aalst, K; Van Den Driessche, M; van Der Schoor, S; Schiffelers, S; van't Westeinde, T; Ghoos, Y; Veereman-Wauters, G

    2001-05-01

    Results from the 13C mixed triglyceride (MTG) breath test correlate with duodenal lipase activity in adults. This noninvasive test is a potential screening and diagnostic tool for children with fat malabsorption. The aim of this study was to adapt the methodology of the MTG breath test to study test meals and sampling methods and to define normal values for healthy children of all age groups; premature and full-term infants have similar pancreatic lipase deficiencies. After parental consent was obtained, 12 premature infants ( 2 kg), 12 full-term infants (1-6 months old), 20 children (3-10 years old), and 20 teenagers (11-17 years old) were tested. All children were thriving well, had no gastrointestinal or respiratory problems, and had not received any medication that contained natural 13C. For the premature and full-term infants, a formula was prepared that had a low and stable natural 13C content mixed with 100 mg 13C-labeled MTG (1,3-distearyl, 2-[13C-carboxyl] octanoyl glycerol) and 1 g polyethylene-glycol 3350. The best accepted test meal for children over 3 years old was a slice of white bread with 5 g butter and 15 g chocolate paste, mixed with 250 mg 13C-labeled MTG, and a glass of 100 mL whole-fat milk. Children over 3 years old were able to blow through a straw in a vacutainer for collecting the breath samples. In children under 3 years old, expired air was collected by aspirating breath via a nasal prong. Carbon dioxide production was calculated according to weight, age, and sex. For healthy pediatric control participants, the mean values for cumulative excretion of 13CO2 as a percentage of the administered dose after 6 hours were 23.9 +/- 5.2% in premature infants, 31.9 +/- 7.7% in full-term infants, 32.5 +/- 5.3% in children, and 28.0 +/- 5.4% in teenagers. The mean value for healthy adults is 35.6% with a lower reference limit of 22.8%. Age-specific test meals and breath-sampling techniques for the MTG breath test were defined. The mean values for

  6. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  7. The effects of breath alcohol concentration on postural control.

    Science.gov (United States)

    Fiorentino, Dary D

    2018-05-19

    Two of the 3 standardized field sobriety tests that U.S. law enforcement uses at roadside checks have a postural equilibrium component to them. Those tests have been validated to detect impairment caused by blood alcohol concentrations (BACs) of 0.08 g/dL or above. Many medical and traffic safety associations support a lower limit, and one state, Utah, has passed a law to lower the limit to 0.05 g/dL. Many studies have examined the effects of alcohol on postural control (of which postural equilibrium is a component), with a consensus emerging that impairment is usually found at BACs greater than 0.06 g/dL. Most of these studies, however, had a relatively small number of subjects, usually between 10 and 30. The current study collected data from a much larger sample. The objective of this study was to provide additional evidence that posture control is negatively affected at BACs greater than 0.06 g/dL or breath alcohol concentrations (BrACs) of 0.06 g/210 L. This was a between-subjects study, with BrAC group as the independent variable (5 levels: 0.00, 0.04, 0.06, 0.08, and 0.10 g/210 L); 4 measures of postural control as the dependent variables; and age, height, and weight as the covariates. Posture control was measured with a force-sensing platform connected to a computer. The feet's center of pressure (CoP) on the platform was recorded and the corresponding movement of the body in the anterior-posterior and lateral planes was derived. Participants (N = 96) were randomly assigned to one of the BrAC groups. Positive BrAC groups were compared to the zero BrAC group. Data were examined with hierarchical multiple regression. Adjusted for age, height, and weight, the main effect of lateral CoP with eyes open was not statistically significant. There was a statistically significant main effect of alcohol on anterior-posterior CoP excursion with eyes open and with eyes closed and lateral CoP excursion with eyes closed. For all 3 of those variables, only BrACs of 0

  8. [New theory of holistic integrative physiology and medicine. I: New insight of mechanism of control and regulation of breathing].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    The modern systemic physiology, based on limit-understand functional classification, has significant limitation and one-sidedness. Human being is organic; we should approach the mechanism of control and regulation of breathing integrating all the systems. We use new theory of holistic integrative physiology and medicine to explain the mechanism of control and regulation of breathing. Except the mean level information, the up-down "W" waveform information of arterial blood gas (ABG) is core signal to control and regulate breathing. In order to do so, we must integrate all systems together. New theory will help to explain some unanswered questions in physiology and medicine, for example: fetal does not breathing; how first breath generate; how respiratory rhythm and frequency generate, etc. Breathing is the sign of life. Mechanism of control and regulation of breathing has to integrate respiration, circulation, nerves, metabolism, exercise, sleep and digestion, absorption and elimination and etc altogether.

  9. Differences in tidal breathing between infants with chronic lung diseases and healthy controls

    Directory of Open Access Journals (Sweden)

    Wilitzki S

    2005-09-01

    Full Text Available Abstract Background The diagnostic value of tidal breathing (TB measurements in infants is controversially discussed. The aim of this study was to investigate to what extent the breathing pattern of sleeping infants with chronic lung diseases (CLD differ from healthy controls with the same postconceptional age and to assess the predictive value of TB parameters. Methods In the age of 36–42 postconceptional weeks TB measurements were performed in 48 healthy newborns (median age and weight 7d, 3100 g and 48 infants with CLD (80d, 2465 g using the deadspace-free flow-through technique. Once the infants had adapted to the mask and were sleeping quietly and breathing regularly, 20–60 breathing cycles were evaluated. Beside the shape of the tidal breathing flow-volume loop (TBFVL 18 TB parameters were analyzed using ANOVA with Bonferroni correction. Receiver-operator characteristic (ROC curves were calculated to investigate the discriminative ability of TB parameters. Results The incidence of concave expiratory limbs in CLD infants was 31% and significantly higher compared to controls (2% (p Conclusion The breathing pattern of CLD infants differs significantly from that of healthy controls. Concave TBFVL and an increased RR measured during quiet sleep and under standardized conditions may indicate diminished respiratory functions in CLD infants whereas most of the commonly used TB parameters are poorly predictive.

  10. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    International Nuclear Information System (INIS)

    Gifford, K.

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  11. WE-DE-209-05: Self-Held Breath Control with Respiratory Monitoring and Feedback Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, K. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  12. Completion report : Effect of Comprehensive Yogic Breathing program on type 2 diabetes: A randomized control trial

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2014-01-01

    Full Text Available Background: Yoga has been shown to be benefi cial in diabetes in many studies, though randomized control trials are few. The aim of this randomized control trial was to see the effect of Sudarshan Kriya and related practices (comprehensive yogic breathing program on quality of life, glycemic control, and cardiac autonomic functions in diabetes. Diabetes mellitus is a risk factor for sudden cardiac death. Cardiac autonomic neuropathy has been implicated in the causation of sudden cardiac death. Therefore, a maneuver to prevent progression of cardiac autonomic neuropathy holds signifi cance. Materials and Methods: A total of 120 patients of diabetes on oral medication and diet and exercise advice were randomized into two groups: (1 Continued to receive standard treatment for diabetes. (2 Patients administered comprehensive yogic breathing program and monitored to regularly practice yoga in addition to standard treatment of diabetes. At 6 months, quality of life and postprandial plasma glucose signifi cantly improved in the group practicing yoga compared to baseline, but there was no significant improvement in the fasting plasma glucose and glycated hemoglobin. Results: On per protocol analysis, sympathetic cardiac autonomic functions signifi cantly improved from baseline in the group practicing comprehensive yogic breathing. Conclusion: This randomized control trial points towards the beneficial effect of yogic breathing program in preventing progression of cardiac neuropathy. This has important implications as cardiac autonomic neuropathy has been considered as one of the factors for sudden cardiac deaths.Keywords: comprehensive yogic breathing program, diabetes mellitus, cardiac autonomic function

  13. The effects of metronome breathing on the variability of autonomic activity measurements.

    Science.gov (United States)

    Driscoll, D; Dicicco, G

    2000-01-01

    Many chiropractors hypothesize that spinal manipulation affects the autonomic nervous system (ANS). However, the ANS responses to chiropractic manipulative therapy are not well documented, and more research is needed to support this hypothesis. This study represents a step toward the development of a reliable method by which to document that chiropractic manipulative therapy does affect the ANS by exploring the use of paced breathing as a way to reduce the inherent variability in ANS measurements. To examine the hypothesis that the variability of ANS measurements would be reduced if breathing were paced to a metronome at 12 breaths/min. The study was performed at Parker College Research Institute. Eight normotensive subjects were recruited from the student body and staff. Respiration frequency was measured through a strain gauge. A 3-lead electrocardiogram (ECG) was used to register the electric activity of the heart, and arterial tonometry monitors were used to record the left and right radial artery blood pressures. Signals were recorded on an IBM-compatible computer with a sampling frequency of 100 Hz. Normal breathing was used for the first 3 recordings, and breathing was paced to a metronome for the final 3 recordings at 12 breaths/min. Fourier analysis was performed on the beat-by-beat fluctuations of the ECG-determined R-R interval and systolic arterial pressure (SBP). Low-frequency fluctuations (LF; 0.04-0.15 Hz) reflected sympathetic activity, whereas high-frequency fluctuations (HF; 0.15-0.4 Hz) represented parasympathetic activity. Sympathovagal indices were determined from the ratio of the two bandwidths (LF/HF). The coefficient of variation (CV%) for autonomic parameters was calculated ([average/SD] x 100%) to compare breathing normally and breathing to a metronome with respect to variability. One-way analysis of variance was used to detect differences. A value of P Metronome breathing did not produce any significant changes in blood pressure for the

  14. Deep breathing exercises performed 2 months following cardiac surgery: a randomized controlled trial.

    Science.gov (United States)

    Westerdahl, Elisabeth; Urell, Charlotte; Jonsson, Marcus; Bryngelsson, Ing-Liss; Hedenström, Hans; Emtner, Margareta

    2014-01-01

    Postoperative breathing exercises are recommended to cardiac surgery patients. Instructions concerning how long patients should continue exercises after discharge vary, and the significance of treatment needs to be determined. Our aim was to assess the effects of home-based deep breathing exercises performed with a positive expiratory pressure device for 2 months following cardiac surgery. The study design was a prospective, single-blinded, parallel-group, randomized trial. Patients performing breathing exercises 2 months after cardiac surgery (n = 159) were compared with a control group (n = 154) performing no breathing exercises after discharge. The intervention consisted of 30 slow deep breaths performed with a positive expiratory pressure device (10-15 cm H2O), 5 times a day, during the first 2 months after surgery. The outcomes were lung function measurements, oxygen saturation, thoracic excursion mobility, subjective perception of breathing and pain, patient-perceived quality of recovery (40-Item Quality of Recovery score), health-related quality of life (36-Item Short Form Health Survey), and self-reported respiratory tract infection/pneumonia and antibiotic treatment. Two months postoperatively, the patients had significantly reduced lung function, with a mean decrease in forced expiratory volume in 1 second to 93 ± 12% (P< .001) of preoperative values. Oxygenation had returned to preoperative values, and 5 of 8 aspects in the 36-Item Short Form Health Survey were improved compared with preoperative values (P< .01). There were no significant differences between the groups in any of the measured outcomes. No significant differences in lung function, subjective perceptions, or quality of life were found between patients performing home-based deep breathing exercises and control patients 2 months after cardiac surgery.

  15. Breathing Difficulties

    Science.gov (United States)

    ... symptoms. Symptoms associated with weak respiratory muscles: Air “hunger” (gasping, labored breathing) with an without activity Fatigue ... Start your own fundraising event & help create a world without ALS Start an Event Site Map | Press ...

  16. Improved oxygenation during standing performance of deep breathing exercises with positive expiratory pressure after cardiac surgery: A randomized controlled trial.

    Science.gov (United States)

    Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth

    2015-09-01

    Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.

  17. Daily activities and breathing parameters for use in respiratory tract dosimetry

    International Nuclear Information System (INIS)

    Roy, M.; Courtay, C.

    1991-01-01

    Dosimetry of inhaled substances is based on the air volumes breathed every day by people under exposure to gases and aerosols. In order to assess modern standards for average inspired air volumes according to age and gender, information was recorded on daily activities and breathing rates both indoors and outdoors, of specific categories of the population. Economic surveys recently published provided time budgets and activities of adults, teenagers and children. The data were matched with published data on physical activities and breathing parameters in order to calculate the daily inspired volumes of air. The results were given for adults (age > 17 years), neonates, and children 1, 5, 10 and 15 years old. The values obtained are close to those published by the Internal Commission for Radiological Protection and the reports of the United Nations Scientific Committee on the Effects of Atomic Radiation. (author)

  18. Double blind randomised controlled trial of two different breathing techniques in the management of asthma.

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic-Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-08-01

    Previous studies have shown that breathing techniques reduce short acting beta(2) agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non-specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non-specific upper body exercises.

  19. Double blind randomised controlled trial of two different breathing techniques in the management of asthma

    Science.gov (United States)

    Slader, C A; Reddel, H K; Spencer, L M; Belousova, E G; Armour, C L; Bosnic‐Anticevich, S Z; Thien, F C K; Jenkins, C R

    2006-01-01

    Background Previous studies have shown that breathing techniques reduce short acting β2 agonist use and improve quality of life (QoL) in asthma. The primary aim of this double blind study was to compare the effects of breathing exercises focusing on shallow nasal breathing with those of non‐specific upper body exercises on asthma symptoms, QoL, other measures of disease control, and inhaled corticosteroid (ICS) dose. This study also assessed the effect of peak flow monitoring on outcomes in patients using breathing techniques. Methods After a 2 week run in period, 57 subjects were randomised to one of two breathing techniques learned from instructional videos. During the following 30 weeks subjects practised their exercises twice daily and as needed for relief of symptoms. After week 16, two successive ICS downtitration steps were attempted. The primary outcome variables were QoL score and daily symptom score at week 12. Results Overall there were no clinically important differences between the groups in primary or secondary outcomes at weeks 12 or 28. The QoL score remained unchanged (0.7 at baseline v 0.5 at week 28, p = 0.11 both groups combined), as did lung function and airway responsiveness. However, across both groups, reliever use decreased by 86% (p0.10 between groups). Peak flow monitoring did not have a detrimental effect on asthma outcomes. Conclusion Breathing techniques may be useful in the management of patients with mild asthma symptoms who use a reliever frequently, but there is no evidence to favour shallow nasal breathing over non‐specific upper body exercises. PMID:16517572

  20. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  1. 'Breath figure' PLGA films as implant coatings for controlled drug release

    Science.gov (United States)

    Ponnusamy, Thiruselvam

    The breath figure method is a versatile and facile approach of generating ordered micro and nanoporous structures in polymeric materials. When a polymer solution (dissolved in a high vapor pressure organic solvent) is evaporated out in the presence of a moist air stream, the evaporative cooling effect causes the condensation and nucleation of water droplets onto the polymer solution surface. This leads to the formation of an imprinted porous structure upon removal of the residual solvent and water. The facile removal of the water droplet template leaving its structural imprint is a specifically appealing aspect of the breath figure film technology. The first part of the dissertation work involves the fabrication of drug loaded breath figure thin films and its utilization as a controlled drug release carrier and biomaterial scaffold. In a single fabrication step, single layer/multilayer porous thin films were designed and developed by combining the breath figure process and a modified spin or dip coating technique. Using biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG), drug loaded films were fabricated onto FDA approved medical devices (the Glaucoma drainage device and the Surgical hernia mesh). The porosity of the films is in the range of 2-4 microm as characterized by scanning electron microscope. The drug coated medical implants were characterized for their surface and bulk morphology, the degradation rate of the film, drug release rate and cell cytotoxicity. The results suggest that the use of breath figure morphologies in biodegradable polymer films adds an additional level of control to drug release. In comparison to non-porous films, the breath figure films showed an increased degradation and enhanced drug release. Furthermore, the porous nature of the film was investigated as a biomaterial scaffold to construct three dimensional in vitro tissue model systems. The breath figure film with interconnected

  2. Physiological coherence in healthy volunteers during laboratory-induced stress and controlled breathing.

    Science.gov (United States)

    Mejía-Mejía, Elisa; Torres, Robinson; Restrepo, Diana

    2018-06-01

    Physiological coherence has been related with a general sense of well-being and improvements in health and physical, social, and cognitive performance. The aim of this study was to evaluate the relationship between acute stress, controlled breathing, and physiological coherence, and the degree of body systems synchronization during a coherence-generation exercise. Thirty-four university employees were evaluated during a 20-min test consisting of four stages of 5-min duration each, during which basal measurements were obtained (Stage 1), acute stress was induced using validated mental stressors (Stroop test and mental arithmetic task, during Stage 2 and 3, respectively), and coherence states were generated using a controlled breathing technique (Stage 4). Physiological coherence and cardiorespiratory synchronization were assessed during each stage from heart rate variability, pulse transit time, and respiration. Coherence measurements derived from the three analyzed variables increased during controlled respiration. Moreover, signals synchronized during the controlled breathing stage, implying a cardiorespiratory synchronization was achieved by most participants. Hence, physiological coherence and cardiopulmonary synchronization, which could lead to improvements in health and better life quality, can be achieved using slow, controlled breathing exercises. Meanwhile, coherence measured during basal state and stressful situations did not show relevant differences using heart rate variability and pulse transit time. More studies are needed to evaluate the ability of coherence ratio to reflect acute stress. © 2017 Society for Psychophysiological Research.

  3. The effects of Pilates breathing trainings on trunk muscle activation in healthy female subjects: a prospective study.

    Science.gov (United States)

    Kim, Sung-Tae; Lee, Joon-Hee

    2017-02-01

    [Purpose] To investigate the effects of Pilates breathing on trunk muscle activation. [Subjects and Methods] Twenty-eight healthy female adults were selected for this study. Participants' trunk muscle activations were measured while they performed curl-ups, chest-head lifts, and lifting tasks. Pilates breathing trainings were performed for 60 minutes per each session, 3 times per week for 2 weeks. Post-training muscle activations were measured by the same methods used for the pre-training muscle activations. [Results] All trunk muscles measured in this study had increased activities after Pilates breathing trainings. All activities of the transversus abdominis/internal abdominal oblique, and multifidus significantly increased. [Conclusion] Pilates breathing increased activities of the trunk stabilizer muscles. Activation of the trunk muscle indicates that practicing Pilates breathing while performing lifting tasks will reduce the risk of trunk injuries.

  4. Computer tomography guided lung biopsy using interactive breath-hold control

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Krag-Andersen, Shella; Naqibullah, Matiullah

    2017-01-01

    Background: Interactive breath-hold control (IBC) may improve the accuracy and decrease the complication rate of computed tomography (CT)-guided lung biopsy, but this presumption has not been proven in a randomized study. Methods: Patients admitted for CT-guided lung biopsy were randomized...

  5. Participation of locus coeruleus in breathing control in female rats.

    Science.gov (United States)

    de Carvalho, Débora; Patrone, Luis Gustavo A; Marques, Danuzia A; Vicente, Mariane C; Szawka, Raphael E; Anselmo-Franci, Janete A; Bícego, Kênia C; Gargaglioni, Luciane H

    2017-11-01

    Several evidences indicate that the locus coeruleus (LC) is involved in central chemoreception responding to CO 2 /pH and displaying a high percentage of chemosensitive neurons (>80%). However, there are no studies about the LC-mediated hypercapnic ventilation performed in females. Therefore, we assessed the role of noradrenergic LC neurons in non-ovariectomized (NOVX), ovariectomized (OVX) and estradiol (E2)-treated ovariectomized (OVX+E2) rats in respiratory response to hypercapnia, using a 6-hydroxydopamine (6-OHDA) - lesion model. A reduction in the number of tyrosine hydroxylase (TH) immunoreactive neurons (51-90% in 3 animals of NOVX group, 20-42% of lesion in 5 animals of NOVX females, 61.3% for OVX and 62.6% for OVX+E2 group) was observed seven days after microinjection of 6-OHDA in the LC. The chemical lesion of the LC resulted in decreased respiratory frequency under normocapnic conditions in OVX and OVX+E2 group. Hypercapnia increased ventilation in all groups as consequence of increases in respiratory frequency (fR) and tidal volume (V T ). Nevertheless, the hypercapnic ventilatory response was significantly decreased in 6-OHDA-NOVX>50% rats compared with SHAM-NOVX group and with females that had 20-42% of LC lesion. In OVX and OVX+E2 lesioned groups, no difference in CO 2 ventilatory response was observed when compared to SHAM-OVX and SHAM-OVX+E2 groups, respectively. Neither basal body temperature (Tb) nor Tb reduction in response to hypercapnia were affected by E2 treatment, ovariectomy or LC lesion. Thus, our data show that LC noradrenergic neurons seem to exert an excitatory role on the hypercapnic ventilatory response in female rats, as evidenced by the results in NOVX animals with LC lesioned more than 50%; however, this modulation is not observed in OVX and OVX+E2 rats. In addition, LC noradrenergic neurons of OVX females seem to provide a tonic excitatory drive to maintain breathing frequency in normocapnia, and this response may not to be

  6. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  7. The impact of dysfunctional breathing on the assessment of asthma control

    DEFF Research Database (Denmark)

    Veidal, Sandra; Jeppegaard, Maria; Sverrild, Asger

    2017-01-01

    asthma control compared to asthmatics without DB (Median (range) ACQ score: 2.40 (0.20-4.60) vs 1.20 (0.00-4.40); p asthma control was independent of airway hyperresponsiveness or airway inflammation in patients with DB. CONCLUSION......BACKGROUND AND OBJECTIVE: Dysfunctional breathing (DB) is a respiratory disorder, which involves a pattern of breathing too deeply, too superficially and/or too rapidly. In asthma patients, DB may lead to an overestimation of the severity of asthma symptoms, and hence potentially to overtreatment....... However, it is not known to which degree DB may affect estimates of asthma control, in a specialist clinical setting. METHODS: The MAPOut-study examined all patients referred consecutively over a 12-months period for specialist assessment of asthma at the Respiratory Outpatient Clinic at Bispebjerg...

  8. Acute effects on cardiovascular oscillations during controlled slow yogic breathing

    Directory of Open Access Journals (Sweden)

    Om Lata Bhagat

    2017-01-01

    Interpretation & conclusions: Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as mechanical coupling, baroreflex and central cardiovascular control.

  9. Effects of breathing exercises on lung capacity and muscle activities of elderly smokers

    Science.gov (United States)

    Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon

    2016-01-01

    [Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength. PMID:27390394

  10. Effects of breathing exercises on lung capacity and muscle activities of elderly smokers.

    Science.gov (United States)

    Jun, Hyun-Ju; Kim, Ki-Jong; Nam, Ki-Won; Kim, Chang-Heon

    2016-06-01

    [Purpose] Elderly smokers have a reduced chest diameter due to weakening of the respiratory muscles, and this results in decreased ventilation, leading to a vicious circle. Therefore, the present study investigated the effects of an intervention program to enhance the pulmonary function and muscle activity of elderly smokers. [Subjects and Methods] Participants were randomly assigned to one of two experimental groups or a control (CG) group. The experimental groups performed exercises three times per week for six weeks, whereas the CG performed no exercises. One of the experimental groups performed a Feedback Breathing Exercise (FBE) for 15 minutes, and the other repeated three sets of Balloon-Blowing Exercises (BBE) with sufficient rest of more than one minute between sets. [Results] In the experimental groups, FVC, FEV1/FVC, PEF and muscle activity of the rectus abdominis significantly improved after four weeks, but no significant differences were observed in FEV1 or VC after six weeks. [Conclusion] The results show that FBE and BBE improved the pulmonary functions of elderly smokers, demonstrating the potential benefits of the development of various training methods using balloons, and group programs, including recreational factors, for increasing respiratory muscles strength.

  11. Altered Nocturnal Cardiovascular Control in Children With Sleep-Disordered Breathing.

    Science.gov (United States)

    El-Hamad, Fatima; Immanuel, Sarah; Liu, Xiao; Pamula, Yvonne; Kontos, Anna; Martin, James; Kennedy, Declan; Kohler, Mark; Porta, Alberto; Baumert, Mathias

    2017-10-01

    To assess cardiovascular control during sleep in children with sleep-disordered breathing (SDB) and the effect of adenotonsillectomy in comparison to healthy nonsnoring children. Cardiorespiratory signals obtained from overnight polysomnographic recordings of 28 children with SDB and 34 healthy nonsnoring children were analyzed. We employed an autoregressive closed-loop model with heart period (RR) and pulse transit time (PTT) as outputs and respiration as an external input to obtain estimates of respiratory gain and baroreflex gain. Mean and variability of PTT were increased in children with SDB across all stages of sleep. Low frequency power of RR and PTT were attenuated during non-rapid eye movement (REM) sleep. Baroreflex sensitivity was reduced in children with SDB in stage 2 sleep, while respiratory gain was increased in slow wave sleep. After adenotonsillectomy, these indices normalized in the SDB group attaining values comparable to those of healthy children. In children with mild-to-moderate SDB, vasomotor activity is increased and baroreflex sensitivity decreased during quiet, event-free non-REM sleep. Adenotonsillectomy appears to reverse this effect. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. The effect of deep and slow breathing on pain perception, autonomic activity, and mood processing--an experimental study.

    Science.gov (United States)

    Busch, Volker; Magerl, Walter; Kern, Uwe; Haas, Joachim; Hajak, Göran; Eichhammer, Peter

    2012-02-01

    Deep and slow breathing (DSB) techniques, as a component of various relaxation techniques, have been reported as complementary approaches in the treatment of chronic pain syndromes, but the relevance of relaxation for alleviating pain during a breathing intervention was not evaluated so far. In order to disentangle the effects of relaxation and respiration, we investigated two different DSB techniques at the same respiration rates and depths on pain perception, autonomic activity, and mood in 16 healthy subjects. In the attentive DSB intervention, subjects were asked to breathe guided by a respiratory feedback task requiring a high degree of concentration and constant attention. In the relaxing DSB intervention, the subjects relaxed during the breathing training. The skin conductance levels, indicating sympathetic tone, were measured during the breathing maneuvers. Thermal detection and pain thresholds for cold and hot stimuli and profile of mood states were examined before and after the breathing sessions. The mean detection and pain thresholds showed a significant increase resulting from the relaxing DSB, whereas no significant changes of these thresholds were found associated with the attentive DSB. The mean skin conductance levels indicating sympathetic activity decreased significantly during the relaxing DSB intervention but not during the attentive DSB. Both breathing interventions showed similar reductions in negative feelings (tension, anger, and depression). Our results suggest that the way of breathing decisively influences autonomic and pain processing, thereby identifying DSB in concert with relaxation as the essential feature in the modulation of sympathetic arousal and pain perception. Wiley Periodicals, Inc.

  13. Breathing rates and daily activities: parameters of exposure to inhaled substances

    International Nuclear Information System (INIS)

    Roy, M.; Malarbet, J.L.; Courtay, C.

    1993-01-01

    The intake of inhaled toxic substances is based upon the air volumes breathed every day by people under exposure to gases and aerosols. On the occasion of the revision of the respiratory tract model by the International Commission on Radiological Protection (ICRP), modern standards have been assessed for average inspired air volumes according to age and sex. Recent data of breathing rates as a function of physical activity have been recorded, and economical surveys recently published by the National Institute of Statistics and Economical studies (INSEE) provided time budgets and activities of specific categories of the population. The results were calculated for adults and children, 3 months, 1, 5, 10 and 15 years old. These values are slightly different from those formerly published by ICRP and the United Nations scientific committee on the effects of atomic radiation (UNSCEAR). (author). 27 refs., 6 tabs

  14. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    Science.gov (United States)

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  15. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients

    DEFF Research Database (Denmark)

    Schmidt, L E; Olsen, A K; Stentoft, K

    2001-01-01

    BACKGROUND: Interindividual variation in the pharmacokinetics of the immunosuppressive agents cyclosporine (INN, ciclosporin) and tacrolimus may result from differences in the activity of cytochrome P4503A (CYP3A). The erythromycin breath test is an in vivo assay of hepatic CYP3A activity......, but the method has never been directly validated. The aim of the study was to investigate whether an early postoperative erythromycin breath test correlated with the hepatic CYP3A protein level and catalytic activity in liver transplant recipients. METHODS: In 18 liver transplant recipients, the erythromycin...... breath test was performed within 2 hours after transplantation. A graft biopsy was obtained during surgery and analyzed for the CYP3A protein level by Western blotting and for CYP3A activity with erythromycin demethylation and testosterone 6beta- hydroxylation assays. RESULTS: The erythromycin breath...

  16. Controlled-frequency breath swimming improves swimming performance and running economy.

    Science.gov (United States)

    Lavin, K M; Guenette, J A; Smoliga, J M; Zavorsky, G S

    2015-02-01

    Respiratory muscle fatigue can negatively impact athletic performance, but swimming has beneficial effects on the respiratory system and may reduce susceptibility to fatigue. Limiting breath frequency during swimming further stresses the respiratory system through hypercapnia and mechanical loading and may lead to appreciable improvements in respiratory muscle strength. This study assessed the effects of controlled-frequency breath (CFB) swimming on pulmonary function. Eighteen subjects (10 men), average (standard deviation) age 25 (6) years, body mass index 24.4 (3.7) kg/m(2), underwent baseline testing to assess pulmonary function, running economy, aerobic capacity, and swimming performance. Subjects were then randomized to either CFB or stroke-matched (SM) condition. Subjects completed 12 training sessions, in which CFB subjects took two breaths per length and SM subjects took seven. Post-training, maximum expiratory pressure improved by 11% (15) for all 18 subjects (P swimming may improve muscular oxygen utilization during terrestrial exercise in novice swimmers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effects of Mat Pilates training and habitual physical activity on thoracoabdominal expansion during quiet and vital capacity breathing in healthy women.

    Science.gov (United States)

    Campos, Jeniffer L; Vancini, Rodrigo L; Zanoni, Graziely R; Barbosa DE Lira, Claudio A; Santos Andrade, Marilia; Sarro, Karine J

    2017-10-27

    Pilates is a body/mind method that requires different types of exercise (balance, endurance, strength, and flexibility) and attention to muscle control, posture, and breathing. The aim of the present study was to investigate the effects of 12 weeks of Mat Pilates training and habitual physical activity on thoracoabdominal motion of healthy and physically active women. Thirty-five women without experience in Pilates exercise, aged between 18 and 35 years, participated in the study (habitual physical activity group, n=14; and Mat Pilates group, n=21). Three- dimensional kinematic analysis was used to evaluate total and separate thoracoabdominal compartments' expansion (superior and inferior thorax and abdomen), contribution of each compartment to total thoracoabdominal expansion, and coordination between thoracoabdominal compartments. After 12 weeks of Mat Pilates training, thoracoabdominal expansion during quiet breathing was improved by increasing the expansion of abdomen by about 33% (P=0.01). Moreover, expansion of superior (P=0.04) and inferior thorax (P=0.02) and abdomen (P=0.01) was also improved in Pilates (35%, 33% and 37%, respectively) compared to the habitual physical activity group, after the experimental protocol. Finally, the habitual physical activity group presented a decrease of 13% in the expansion of abdomen (P = 0.002). The results suggest the capability of Mat Pilates in improving the action of respiratory and abdominal muscles during breathing and, thus, its benefits to breathing mechanics.

  18. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    Science.gov (United States)

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The effects of progressive muscular relaxation and breathing control technique on blood pressure during pregnancy

    Directory of Open Access Journals (Sweden)

    Mahboobeh Aalami

    2016-01-01

    Full Text Available Background: Hypertensive disorders in pregnancy are the main cause of maternal and fetal mortality; however, they have no definite effective treatment. The researchers aimed to study the effects of progressive muscular relaxation and breathing control technique on blood pressure (BP during pregnancy. Materials and Methods: This three-group clinical trial was conducted in Mashhad health centers and governmental hospitals. Sixty pregnant (after 20 weeks of gestational age women with systolic BP ≥ 135 mmHg or diastolic BP ≥ 85 mmHg were assigned to three groups. Progressive muscular relaxation and breathing control exercises were administered to the two experimental groups once a week in person and in the rest of the days by instructions given on a CD for 4 weeks. BP was checked before and after the interventions. BP was measured before and after 15 min subjects' waiting without any especial intervention in the control group. Results: After 4 weeks of intervention, the systolic (by a mean of 131.3 to 117.2, P = 0.001 and by a mean of 131.05 to 120.5, P = 0.004, respectively and diastolic (by a mean of 79.2 to 72.3, P = 0.001 and by a mean of 80.1 to 76.5, P = 0.047, respectively BPs were significantly decreased in progressive muscular relaxation and breathing control groups, but they were not statistically significant in the control group. Conclusions: The interventions were effective on decreasing systolic and diastolic BP to normal range after 4 weeks in both the groups. The effects of both the interventions were more obvious on systolic BP compared to diastolic BP.

  20. Beta-adrenergic control of plasma glucose and free fatty acid levels in the air-breathing African catfish Clarias gariepinus Burchell 1822

    NARCIS (Netherlands)

    van Heeswijk, JCF; Vianen, GJ; van den Thillart, GEEJM; Zaagsma, J

    In several water-breathing fish species, P-adrenergic receptor stimulation by noradrenaline leads to a decrease in plasma free fatty acid (FFA) levels, as opposed to an increase in air-breathing mammals. We hypothesised that this change in adrenergic control is related to the mode of breathing.

  1. The impact of dysfunctional breathing on the assessment of asthma control.

    Science.gov (United States)

    Veidal, Sandra; Jeppegaard, Maria; Sverrild, Asger; Backer, Vibeke; Porsbjerg, Celeste

    2017-02-01

    Dysfunctional breathing (DB) is a respiratory disorder, which involves a pattern of breathing too deeply, too superficially and/or too rapidly. In asthma patients, DB may lead to an overestimation of the severity of asthma symptoms, and hence potentially to overtreatment. However, it is not known to which degree DB may affect estimates of asthma control, in a specialist clinical setting. The MAPOut-study examined all patients referred consecutively over a 12-months period for specialist assessment of asthma at the Respiratory Outpatient Clinic at Bispebjerg Hospital in Copenhagen. All patients were examined with the Nijmegen questionnaire with a DB defined as a score ≥23 and the ACQ questionnaire. Linear regression analysis of predictors of ACQ score was performed. Asthma was defined as asthma symptoms and a positive asthma test. Of the 256 patients referred to the lung clinic, data on both the Nijmegen questionnaire and ACQ score was obtained in 127 patients, who were included in the present analysis. Median (range) age: 30 (15-63) years, and 76 (59.8%) were females. DB was found in 31 (24.4%). Asthmatic patients with co-existing DB had a poorer asthma control compared to asthmatics without DB (Median (range) ACQ score: 2.40 (0.20-4.60) vs 1.20 (0.00-4.40); p < 0.001.). A regression analysis showed that the effect of DB on asthma control was independent of airway hyperresponsiveness or airway inflammation in patients with DB. Dysfunctional breathing is common among asthma patients in a specialist setting, and results in a clinically significant underestimation of asthma control, which may potentially lead to overtreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Concise Neural Nonaffine Control of Air-Breathing Hypersonic Vehicles Subject to Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Xiangwei Bu

    2017-01-01

    Full Text Available In this paper, a novel simplified neural control strategy is proposed for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV directly using nonaffine models instead of affine ones. For the velocity dynamics, an adaptive neural controller is devised based on a minimal-learning parameter (MLP technique for the sake of decreasing computational loads. The altitude dynamics is rewritten as a pure feedback nonaffine formulation, for which a novel concise neural control approach is achieved without backstepping. The special contributions are that the control architecture is concise and the computational cost is low. Moreover, the exploited controller possesses good practicability since there is no need for affine models. The semiglobally uniformly ultimate boundedness of all the closed-loop system signals is guaranteed via Lyapunov stability theory. Finally, simulation results are presented to validate the effectiveness of the investigated control methodology in the presence of parametric uncertainties.

  3. Analysis of breath volatile organic compounds in children with chronic liver disease compared to healthy controls.

    Science.gov (United States)

    Eng, Katharine; Alkhouri, Naim; Cikach, Frank; Patel, Nishaben; Yan, Chen; Grove, David; Lopez, Rocio; Rome, Ellen; Dweik, Raed A

    2015-04-20

    Breath testing is increasingly being used as a non-invasive diagnostic tool for disease states across medicine. The purpose of this study was to compare the levels of volatile organic compounds (VOCs) as measured by mass spectrometry in healthy children and children with chronic liver disease (CLD). Patients between the ages of 6 and 21 were recruited for the study. Control subjects were recruited from a general pediatric population during well-child visits, while patients with CLD were recruited from pediatric gastroenterology clinic visits. The diagnosis of CLD was confirmed by clinical, laboratory, and/or histologic data. A single exhaled breath was collected and analyzed by means of selected-ion flow-tube mass spectrometry per protocol. A total of 104 patients were included in the study (49 with CLD and 55 healthy controls). Of the patients with CLD, 20 had advanced liver fibrosis (F3-F4). In the CLD cohort, levels of exhaled 1-decene, 1-heptene, 1-octene and 3 methylhexane were found to be significantly higher when compared to the control population (p CLD patients when compared to controls (p CLD was excellent (AUROC = 0.97). Our study demonstrates that children with CLD have a unique pattern of exhaled VOCs. Utilization of a combination of these VOCs represents a promising non-invasive diagnostic tool and may provide further insight into the pathophysiologic processes and pathways leading to pediatric liver disease. Further analysis of these compounds in external cohorts are needed to validate our findings.

  4. Robust Adaptive Flight Control Design of Air-breathing Hypersonic Vehicles

    Science.gov (United States)

    2016-12-07

    advantages over rocket - based systems for space access vehicles. The major advantage of using air-breathing engine is that the extra oxidizer is not...sideslip angle (β) is calculated as Vt = p u2 + v2 +w2, α= t an−1 ( wu ), β= si n−1 ( vVt ) The rotational dynamic equations of AHV are given as Ṗ = c1QR...inverse controller for hypersonic vehicle. In 2010 International Conference on Information, Networking and Automation (ICINA), volume 2, pages V2 –240

  5. pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Directory of Open Access Journals (Sweden)

    Thamires Marques de Lima

    2013-12-01

    Full Text Available OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study. RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively. Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers.

  6. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  7. Improved State Feedback H∞ Control for Flexible Air-Breathing Hypersonic Vehicles on LMI Approach

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2017-01-01

    Full Text Available Focusing on a nonlinear longitudinal dynamical model for Air-breathing Hypersonic Flight Vehicles (AHFV, a linearized model on a nominal trim condition is proposed. To stabilize the flight of an AHFV in the presence of external disturbances and actuator uncertainties, a state feedback H∞ control is designed. With bounds on the uncertainties, a feedback stabilization problem is converted to an optimal control problem and the cost function is minimized by solving a set of linear matrix inequalities. Since uncertainties in the design of AHFV are inevitable, to make a comparison, a general H∞ robust controller is constructed by only considering the disturbances firstly. Then the results are extended by incorporating the actual existing uncertainties as well as the external disturbances in the AHFV system. Numerical simulation shows that the controller, which takes both disturbances and uncertainties into account, can effectively stabilize the AHFV system.

  8. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  9. Adaptive Neural Back-Stepping Control with Constrains for a Flexible Air-Breathing Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Pengfei Wang

    2015-01-01

    Full Text Available The design of an adaptive neural back-stepping control for a flexible air-breathing hypersonic vehicle (AHV in the presence of input constraint and aerodynamic uncertainty is discussed. Based on functional decomposition, the dynamics can be decomposed into the velocity subsystem and the altitude subsystem. To guarantee the exploited controller’s robustness with respect to parametric uncertainties, neural network (NN is applied to approximate the lumped uncertainty of each subsystem of AHV model. The exceptional contribution is that novel auxiliary systems are introduced to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the actuators are saturated. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties, and varying disturbances.

  10. Sliding mode disturbance observer-enhanced adaptive control for the air-breathing hypersonic flight vehicle

    Science.gov (United States)

    An, Hao; Wang, Changhong; Fidan, Baris

    2017-10-01

    This paper presents a backstepping procedure to design an adaptive controller for the air-breathing hypersonic flight vehicle (AHFV) subject to external disturbances and actuator saturations. In each step, a sliding mode exact disturbance observer (SMEDO) is exploited to exactly estimate the lumped disturbance in finite time. Specific dynamics are introduced to handle the possible actuator saturations. Based on SMEDO and introduced dynamics, an adaptive control law is designed, along with the consideration on ;explosion of complexity; in backstepping design. The developed controller is equipped with fast disturbance rejection and great capability to accommodate the saturated actuators, which also lead to a wider application scope. A simulation study is provided to show the effectiveness and superiority of the proposed controller.

  11. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  12. [Likeness between respiratory responses on CO2 in conditions of natural breathing and voluntary-controlled mechanical ventilation].

    Science.gov (United States)

    Pogodin, M A; Granstrem, M P; Dimitrienko, A I

    2007-04-01

    We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.

  13. Effects of Controlled Breathing, With or Without Aromatherapy, in the Treatment of Postoperative Nausea.

    Science.gov (United States)

    Cronin, Sherill Nones; Odom-Forren, Jan; Roberts, Holli; Thomas, Melissa; Williams, Sandy; Wright, Margaret Imelda

    2015-10-01

    The purpose of this study was to compare the effectiveness of controlled breathing (CB), with and without aromatherapy (isopropyl alcohol [IPA]), in the treatment of postoperative nausea (PON) in adult females undergoing elective outpatient laparoscopic procedures. A prospective randomized two-group quasi-experimental design was used. A convenience sample was used. Patients were consented and assigned to either a control (CB) or treatment (IPA) group. Symptomatic patients rated nausea severity before and at 2 and 5 minutes after receiving either CB or CB with IPA. Complete data for one episode of nausea were obtained on 82 patients (41 in each group). Results showed that although nausea severity decreased significantly over time, there was no significant difference in PON treatment effectiveness between the two groups, nor was there a difference in requests for rescue medications. Patients who experience PON should be encouraged to take slow deep breaths as an initial response to symptoms. This approach has no side effects or costs and could also aid the patient to self-manage symptoms after discharge. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  14. Simultaneous Analysis of Sensor Data for Breath Control in Respiratory Air

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-04-01

    Full Text Available There is a broad field of applications of breath monitoring in human health care, medical applications and alcohol control. In this report, an innovative mobile sensor system for breath control in respiratory air called AGaMon will be introduced. The sensor system is able to recognize a multitude of different gases like ethanol (which is the leading component of alcoholic drinks, H2S (which is the leading component for halitosis, H2 (which is the leading component for dyspepsia and food intolerance, NO (which is the leading component for asthma or acetone (which is the leading component for diabetes, thus ,covering almost all significant aspects. An innovative calibration and evaluation procedure called SimPlus was developed which is able to evaluate the sensor data simultaneously. That means, SimPlus is able to identify the samples simultaneously; for example, whether the measured sample is ethanol or another substance under consideration. Furthermore, SimPlus is able to determine the concentration of the identified sample. This will be demonstrated in this report for the application of ethanol, H2, acetone and the binary mixture ethanol-H2. It has been shown that SimPlus could identify the investigated gases and volatile organic compounds (VOCs very well and that the relative analysis errors were smaller than 10% in all considered applications.

  15. Activity of Lower Limb Muscles During Squat With and Without Abdominal Drawing-in and Pilates Breathing.

    Science.gov (United States)

    Barbosa, Alexandre C; Martins, Fábio M; Silva, Angélica F; Coelho, Ana C; Intelangelo, Leonardo; Vieira, Edgar R

    2017-11-01

    Barbosa, AC, Martins, FM, Silva, AF, Coelho, AC, Intelangelo, L, and Vieira, ER. Activity of lower limb muscles during squat with and without abdominal drawing-in and Pilates breathing. J Strength Cond Res 31(11): 3018-3023, 2017-The purpose of this study was to assess the effects of abdominal drawing-in and Pilates breathing on the activity of lower limb muscles during squats. Adults (n = 13, 22 ± 3 years old) with some Pilates experience performed three 60° squats under each of the following conditions in a random order: (I) normal breathing, (II) drawing-in maneuver with normal breathing, and (III) drawing-in maneuver with Pilates breathing. Peak-normalized surface electromyography of the rectus femoris, biceps femoris, gastrocnemius medialis, and tibialis anterior during the knee flexion and extension phases of squat exercises was analyzed. There were significant differences among the conditions during the knee flexion phase for the rectus femoris (p = 0.001), biceps femoris (p = 0.038), and tibialis anterior (p = 0.001), with increasing activation from conditions I to III. For the gastrocnemius medialis, there were significant differences among the conditions during the knee extension phase (p = 0.023), with increased activity under condition I. The rectus and biceps femoris activity was higher during the extension vs. flexion phase under conditions I and II. The tibialis anterior activity was higher during the flexion compared with the extension phase under all conditions, and the medial gastrocnemius activity was higher during the extension phase under condition I. Doing squats with abdominal drawing-in and Pilates breathing resulted in increased rectus, biceps femoris, and tibialis anterior activity during the flexion phase, increasing movement stability during squat exercises.

  16. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control.

    Science.gov (United States)

    Malinovschi, Andrei; Pizzimenti, Stefano; Sciascia, Savino; Heffler, Enrico; Badiu, Iuliana; Rolla, Giovanni

    2011-07-01

    Asthma is a chronic respiratory disease, characterised by airways inflammation, obstruction and hyperresponsiveness. Asthma control is the goal of asthma treatment, but many patients have sub-optimal control. Exhaled NO and exhaled breath condensate (EBC) NO metabolites (nitrites and nitrates) measurements are non-invasive tools to assess airways inflammation. Our aim was to investigate the relationships between asthma control and the above-named biomarkers of airways inflammation. Thirty-nine non-smoking asthmatic patients (19 women) aged 50 (21-80) years performed measurements of exhaled NO (FENO), EBC nitrates, nitrites and pH, and answered Asthma Control Questionnaire (ACQ) and Asthma Control Test (ACT)-questionnaire. The ACT and ACQ score were strongly interrelated (ρ = -0.84, p 0.05). EBC nitrates were negatively related to ACT score (ρ = -0.34, p = 0.03) and positively related to ACQ score (ρ = 0.41, p = 0.001) while no relation of EBC nitrites to either ACQ or ACT score was found (p>0.05). EBC nitrates were the only biomarker that was significantly related to asthma control. This suggests that nitrates, but not nitrites or FENO, reflect an aspect of airways inflammation that is closer related to asthma symptoms. Therefore there is a potential role for EBC nitrates in objective assessment of asthma control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Controlled breathing with or without peppermint aromatherapy for postoperative nausea and/or vomiting symptom relief: a randomized controlled trial.

    Science.gov (United States)

    Sites, Debra S; Johnson, Nancy T; Miller, Jacqueline A; Torbush, Pauline H; Hardin, Janis S; Knowles, Susan S; Nance, Jennifer; Fox, Tara H; Tart, Rebecca Creech

    2014-02-01

    With little scientific evidence to support use of aromatherapy for postoperative nausea and/or vomiting (PONV) symptoms, this study evaluated controlled breathing with peppermint aromatherapy (AR) and controlled breathing alone (CB) for PONV relief. A single blind randomized control trial design was used. On initial PONV complaint, symptomatic subjects received either CB (n = 16) or AR (n = 26) intervention based on randomization at enrollment. A second treatment was repeated at 5 minutes if indicated. Final assessment occurred 10 minutes post initial treatment. Rescue medication was offered for persistent symptoms. Among eligible subjects, PONV incidence was 21.4% (42/196). Gender was the only risk factor contributing to PONV symptoms (P = .0024). Though not statistically significant, CB was more efficacious than AR, 62.5% versus 57.7%, respectively. CB can be initiated without delay as an alternative to prescribed antiemetics. Data also support use of peppermint AR in conjunction with CB for PONV relief. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  18. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy

    International Nuclear Information System (INIS)

    Eccles, Cynthia; Brock, Kristy K.; Bissonnette, Jean-Pierre; Hawkins, Maria; Dawson, Laura A.

    2006-01-01

    Purpose: To measure the intrabreath-hold liver motion and the intrafraction and interfraction reproducibility of liver position relative to vertebral bodies using an active breathing coordinator (ABC) in patients with unresectable liver cancer treated with hypofractionated stereotactic body radiation therapy (SBRT). Methods: Tolerability of ABC and organ motion during ABC was assessed using kV fluoroscopy in 34 patients. For patients treated with ABC, repeat breath-hold CT scans in the ABC breath-hold position were acquired at simulation to estimate the volumetric intrafraction reproducibility of the liver relative to the vertebral bodies. In addition, preceding each radiation therapy fraction, with the liver immobilized using ABC, repeat anteroposterior (AP) megavoltage verification images were obtained. Off-line alignments were completed to determine intrafraction reproducibility (from repeat images obtained before one treatment) and interfraction reproducibility (from comparisons of the final image for each fraction with the AP) of diaphragm position relative to vertebral bodies. For each image set, the vertebral bodies were aligned, and the resultant craniocaudal (CC) offset in diaphragm position was measured. Liver position during ABC was also evaluated from kV fluoroscopy acquired at the time of simulation, kV fluoroscopy at the time of treatment, and from MV beam's-eye view movie loops acquired during treatment. Results: Twenty-one of 34 patients were screened to be suitable for ABC. The average free breathing range of these patients was 13 mm (range, 5-1 mm). Fluoroscopy revealed that the average maximal diaphragm motion during ABC breath-hold was 1.4 mm (range, 0-3.4 mm). The MV treatment movie loops confirmed diaphragm stability during treatment. For a measure of intrafraction reproducibility, an analysis of 36 repeat ABC computed tomography (CT) scans in 14 patients was conducted. The average mean difference in the liver surface position was -0.9 mm, -0

  19. Robust adaptive multivariable higher-order sliding mode flight control for air-breathing hypersonic vehicle with actuator failures

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-10-01

    Full Text Available This article proposes an adaptive multivariable higher-order sliding mode control for the longitudinal model of an air-breathing vehicle under system uncertainties and actuator failures. Firstly, a fast finite-time control law is designed for a chain of integrators. Secondly, based on the input/output feedback linearization technique, the system uncertainty and external disturbances are modeled as additive certainty and the actuator failures are modeled as multiplicative uncertainty. By using the proposed fast finite-time control law, a robust multivariable higher-order sliding mode control is designed for the air-breathing hypersonic vehicle with actuator failures. Finally, adaptive laws are proposed for the adaptation of the parameters in the robust multivariable higher-order sliding mode control. Thus, the bounds of the uncertainties are not needed in the control system design. Simulation results show the effectiveness of the proposed robust adaptive multivariable higher-order sliding mode control.

  20. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  1. Wellness through a comprehensive Yogic breathing program – A controlled pilot trial

    Directory of Open Access Journals (Sweden)

    Norlander Torsten

    2007-12-01

    Full Text Available Abstract Background Increasing rates of psychosocial disturbances give rise to increased risks and vulnerability for a wide variety of stress-related chronic pain and other illnesses. Relaxation exercises aim at reducing stress and thereby help prevent these unwanted outcomes. One of the widely used relaxation practices is yoga and yogic breathing exercises. One specific form of these exercises is Sudarshan Kriya and related practices (SK&P which are understood to have favourable effects on the mind-body system. The goal of this pilot study was to design a protocol that can investigate whether SK&P can lead to increased feeling of wellness in healthy volunteers. Methods Participants were recruited in a small university city in Sweden and were instructed in a 6-day intensive program of SK&P which they practiced daily for six weeks. The control group was instructed to relax in an armchair each day during the same period. Subjects included a total of 103 adults, 55 in the intervention (SK&P group and 48 in the control group. Various instruments were administered before and after the intervention. Hospital Anxiety Depression Scale measured the degree of anxiety and depression, Life Orientation Test measured dispositional optimism, Stress and Energy Test measured individual's energy and stress experiences. Experienced Deviation from Normal State measured the experience of altered state of consciousness. Results There were no safety issues. Compliance was high (only 1 dropout in the SK&P group, and 5 in the control group. Outcome measures appeared to be appropriate for assessing the differences between the groups. Subjective reports generally correlated with the findings from the instruments. The data suggest that participants in the SK&P group, but not the control group, lowered their degree of anxiety, depression and stress, and also increased their degree of optimism (ANOVA; p Conclusion These data indicate that the experimental protocol that is

  2. Perspective: Crowd-based breath analysis: assessing behavior, activity, exposures, and emotional response of people in groups

    Science.gov (United States)

    A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breat...

  3. The role of CO2 and central chemoreception in the control of breathing in the fetus and the neonate

    Science.gov (United States)

    Darnall, Robert A.

    2010-01-01

    Central chemoreception is active early in development and likely drives fetal breathing movements, which are influenced by a combination of behavioral state and powerful inhibition. In the premature human infant and newborn rat ventilation increases in response to CO2; in the rat the sensitivity of the response increases steadily after ~P12. The premature human infant is more vulnerable to instability than the newborn rat and exhibits periodic breathing that is augmented by hypoxia and eliminated by breathing oxygen or CO2 or the administration of respiratory stimulants. The sites of central chemoreception active in the fetus are not known, but may involve the parafacial respiratory group which may be a precursor to the adult RTN. The fetal and neonatal rat brainstem spinal-cord preparations promise to provide important information about central chemoreception in the developing rodent and will increase our understanding of important clinical problems, including The Sudden Infant Death Syndrome, Congenital Central Hypoventilation Syndrome, and periodic breathing and apnea of prematurity. PMID:20399912

  4. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  5. Sleep-disordered breathing decreases after opioid withdrawal: results of a prospective controlled trial.

    Science.gov (United States)

    Schwarzer, Andreas; Aichinger-Hinterhofer, Marie; Maier, Christoph; Vollert, Jan; Walther, Jörg Werner

    2015-11-01

    An increased cardiovascular event rate in elderly patients under opioid medications was recently reported. One reason for this increase could be the occurrence of nocturnal apnea and hypoxia, as a consequence of sleep-disordered breathing (SDB). Using a controlled study, we prospectively analyzed SDB using polysomnography in a total of 18 patients before and after opioid withdrawal (opioid withdrawal group [OG]) and 14 patients before and after comprehensive pain management (without any strong-acting opioids) who served as the control group (CG). To analyze the differences, unpaired/paired t tests and Mann-Whitney U tests/Wilcoxon rank tests were used. At baseline, the OG presented more nocturnal apneas/hypopneas than the CG with an apnea-hypopnea index (AHI) of 41.4 ± 27.8 vs 21.8 ± 15.9 (P = 0.018). After treatment, the AHI decreased significantly only in the withdrawal group (OG: 16.7 ± 8.9; CG: 20.1 ± 12.9) (P opioid withdrawal and in none of the patients after withdrawal (P opioid intake; these findings may explain the opioid-associated cardiovascular morbidity. Thus, SDB may be a risk at lower opioid doses than hitherto described, and particular caution should be exercised in patients with comorbidities that might make them vulnerable to the consequences of SDB.

  6. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  7. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Assessment of Sleep and Breathing in Adults with Prader-Willi Syndrome: A Case Control Series

    Science.gov (United States)

    Yee, Brendon J.; Buchanan, Peter R.; Mahadev, Sri; Banerjee, Dev; Liu, Peter Y.; Phillips, Craig; Loughnan, Georgina; Steinbeck, Kate; Grunstein, Ronald R.

    2007-01-01

    Objectives: Prader-Willi syndrome (PWS) is a genetic disorder (linked to chromosome 15q11-13) characterized by hypotonia and developmental delay, hyperphagia and obesity, hypersomnia and abnormal sleep, and behavioral problems. Such patients may also be at increased risk of obstructive sleep apnea (OSA), although whether this risk is explained by known risk factors has not previously been directly tested. Our aim was to compare sleep and breathing in an older group of patients with Prader-Willi syndrome with a control group—matched on the basis of age, sex, and body mass index (BMI)—in order to determine which specific features are not explained by these known confounders. Methods: Consecutive patients with PWS attending the PWS clinic at Royal Prince Alfred Hospital Sydney, Australia, were recruited. Age-, sex-, and BMI-matched controls were selected from the Sleep Investigation Unit at Royal Prince Alfred Hospital, and polysomnography-derived sleep and other parameters were compared across the groups. Results: Nineteen subjects with PWS (14 males) were included in the study. Eighteen (95 %) had a total respiratory disturbance index (TRDI) of greater than 5 events per hour, with 4 (21%) having severe obstructive sleep apnea (TRDI ≥ 30 events/hour) and 9 (47%) having evidence of obesity hypoventilation syndrome. Patients with PWS, as compared with the control group, had evidence of more nocturnal hypoxemia, with lower oxyhemoglobin saturations and percentages of sleep time at less than 80% oxyhemoglobin saturation (all p values Prader-Willi syndrome: a case control series. J Clin Sleep Med 2007;3(7):713–718. PMID:18198805

  9. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  10. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  11. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    International Nuclear Information System (INIS)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu

    1999-01-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3±0.2 l/min in controls vs 1.0±0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0±0.2 l/min in controls vs 0.9±0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5±0.2 l/min in controls vs 1.1±0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6±8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5±4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8±9.4% vs +5.9±11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly physiologic conditions

  12. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu [Saiseikai Wakakusa Hospital, Yakohama (Japan)

    1999-07-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3{+-}0.2 l/min in controls vs 1.0{+-}0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0{+-}0.2 l/min in controls vs 0.9{+-}0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5{+-}0.2 l/min in controls vs 1.1{+-}0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6{+-}8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5{+-}4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8{+-}9.4% vs +5.9{+-}11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly

  13. Control of breathing in African lungfish (Protopterus dolloi): A comparison of aquatic and cocooned (terrestrialized) animals

    DEFF Research Database (Denmark)

    Perry, S.F.; Euverman, R.; Wang, Tobias

    2008-01-01

    in terrestrialized fish consisted of multiple bouts of inspiration and expiration in rapid succession, the mean frequency of pulmonary breathing events was unaltered in the terrestrialized fish (16.7 ± 1.4 h-1 versus 20.1 ± 4.9 h-1 in the aquatic and terrestrialized fish, respectively). Hypoxia ( 20 mmHg) increased...... the frequency of breathing events by 16 and 23 h-1 in the aquatic and terrestrialized fish, respectively. Hyperoxia ( 550 mmHg) decreased breathing event frequency by 10 and 15 h-1 in the aquatic and terrestrialized animals. Aquatic hypercapnia ( 37.5 mmHg) increased pulmonary breathing frequency (from 15......African lungfish, Protopterus dolloi exhibited constant rates of O2 consumption before (0.95 ± 0.07 mmol kg-1 h-1), during (1.21 ± 0.32 mmol kg-1 h-1) and after (1.14 ± 0.14 mmol kg-1 h-1) extended periods (1-2 months) of terrestrialization while cocooned. Although a breathing event...

  14. Breathing, Laughing, Sneezing, Coughing: Model and Control of an Anatomically Inspired, Physically-Based Human Torso Simulation

    OpenAIRE

    DiLorenzo, Paul Carmen

    2008-01-01

    Breathing, laughing, sneezing and coughing are all important human behaviors that are generated in the torso. Yet, when these behaviors are animated, the movement of the human torso is often simplified and stylized. Recent work aiming to depict the movement of the torso has focused on pure data-driven approaches such as a skin capture of an actor using a motion capture system. Although this generates impressive results to recreate the captured motion, it does not provide control to an animato...

  15. Heart rate autonomic regulation system at rest and during paced breathing among patients with CRPS as compared to age-matched healthy controls.

    Science.gov (United States)

    Bartur, Gadi; Vatine, Jean-Jacques; Raphaely-Beer, Noa; Peleg, Sara; Katz-Leurer, Michal

    2014-09-01

    The objective of this study is to assess the autonomic nerve heart rate regulation system at rest and its immediate response to paced breathing among patients with complex regional pain syndrome (CRPS) as compared with age-matched healthy controls. Quasiexperimental. Outpatient clinic. Ten patients with CRPS and 10 age- and sex-matched controls. Participants underwent Holter ECG (NorthEast Monitoring, Inc., Maynard, MA, USA) recording during rest and biofeedback-paced breathing session. Heart rate variability (HRV), time, and frequency measures were assessed. HRV and time domain values were significantly lower at rest among patients with CRPS as compared with controls. A significant association was noted between pain rank and HRV frequency measures at rest and during paced breathing; although both groups reduced breathing rate significantly during paced breathing, HRV time domain parameters increased only among the control group. The increased heart rate and decreased HRV at rest in patients with CRPS suggest a general autonomic imbalance. The inability of the patients to increase HRV time domain values during paced breathing may suggest that these patients have sustained stress response with minimal changeability in response to slow-paced breathing stimuli. Wiley Periodicals, Inc.

  16. Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry.

    Science.gov (United States)

    Bregy, Lukas; Sinues, Pablo Martinez-Lozano; Nudnova, Maryia M; Zenobi, Renato

    2014-06-01

    On-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications. If an API-MS instrument exists in a laboratory, the cost to implement this technology is only around [Formula: see text]500, far less than the investment for a specialized mass spectrometric system designed for volatile organic compounds (VOCs) analysis. In this proof-of-principle study we were able to measure mass spectra of exhaled human breath and found these to be comparable to spectra obtained with other electrospray-based methods. We detected over 100 VOCs, including relevant metabolites like fatty acids, with molecular weights extending up to 340 Da. In addition, we were able to monitor the time-dependent evolution of the peaks and show the enhancement of the metabolism after a meal. We conclude that this approach may complement current methods to analyze breath or other types of vapors, offering an affordable option to upgrade any pre-existing API-MS to a real-time breath analyzer.

  17. Study on the feasibility of intensity-modulated treatments with breath control; Estudio sobre la viabilidad de tratamientos de intensidad modulada con control respiratorio

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparicio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrrilla, J.; Minambres Moro, A.

    2011-07-01

    The present work is to study the feasibility of IMRT treatments, both static and dynamic, with breath control offered by BrainLAB gating system and to quantify how the shadows of the measured dose profiles in case of respiratory motion are distorted for the case of NO movement.

  18. Effects of metronome breathing on the assessment of autonomic control using heart rate variability

    NARCIS (Netherlands)

    Haaksma, J; Brouwer, J; vandenBerg, MP; Dijk, WA; Dassen, WRM; Crijns, HJGM; Mulder, Lambertus; Mulder, Gysbertus

    1996-01-01

    Analysis of Heart Rate Variability is a non-invasive quantitative tool to study the influence of the autonomic nervous system on the heart. Rapid variations in heart rate, related to breathing are primarily mediated by the vagal limb of the autonomic nervous system. The resulting variations in heart

  19. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Španěl, Patrik; Fryer, A. A.; Hanna, F.; Ferns, G. A. A.

    2011-01-01

    Roč. 5, č. 2 (2011), 022001 ISSN 1752-7155 Institutional research plan: CEZ:AV0Z40400503 Keywords : exhaled breath * diabetes mellitus * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.541, year: 2011

  20. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    Science.gov (United States)

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  1. Deep breathing exercises with positive expiratory pressure at a higher rate improve oxygenation in the early period after cardiac surgery--a randomised controlled trial.

    Science.gov (United States)

    Urell, Charlotte; Emtner, Margareta; Hedenström, Hans; Tenling, Arne; Breidenskog, Marie; Westerdahl, Elisabeth

    2011-07-01

    In addition to early mobilisation, a variety of breathing exercises are used to prevent postoperative pulmonary complications after cardiac surgery. The optimal duration of the treatment is not well evaluated. The aim of this study was to determine the effect of 30 versus 10 deep breaths hourly, while awake, with positive expiratory pressure on oxygenation and pulmonary function the first days after cardiac surgery. A total of 181 patients, undergoing cardiac surgery, were randomised into a treatment group, performing 30 deep breaths hourly the first postoperative days, or into a control group performing 10 deep breaths hourly. The main outcome measurement arterial blood gases and the secondary outcome pulmonary function, evaluated with spirometry, were determined on the second postoperative day. Preoperatively, both study groups were similar in terms of age, SpO(2), forced expiratory volume in 1s and New York Heart Association classification. On the second postoperative day, arterial oxygen tension (PaO(2)) was 8.9 ± 1.7 kPa in the treatment group and 8.1 ± 1.4 kPa in the control group (p = 0.004). Arterial oxygen saturation (SaO(2)) was 92.7 ± 3.7% in the treatment group and 91.1 ± 3.8% in the control group (p = 0.016). There were no differences in measured lung function between the groups or in compliance to the breathing exercises. Compliance was 65% of possible breathing sessions. A significantly increased oxygenation was found in patients performing 30 deep breaths the first two postoperative days compared with control patients performing 10 deep breaths hourly. These results support the implementation of a higher rate of deep breathing exercises in the initial phase after cardiac surgery. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  2. Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Spilak, Michal

    2014-01-01

    Inhaled air quality at a reduced supply of clean air was studied by controlling the airflow interaction at the breathing zone of a person using lobed jets as part of personalized ventilation (PV). Experiments were performed in a full-scale test room at 23°C (73.4°F) with a breathing thermal manikin...... seated at a workstation, with realistic free-convection flow around the body and a normal breathing cycle. The air in the room was mixed with tracer gas R134a. Clean air was supplied isothermally from three nozzles with circular, four-leafed clover, and six-edged star openings of 0.025 m (0.08 ft...... over the interaction between the inserted jets and the free convection flow was efficient. Over 80% clean PV air was measured in inhalation. The worst performing nozzle was the four-leafed clover: its best performance yielded 23% clean air inhalation, at the shortest distance and the highest velocity...

  3. Double-blind, placebo-controlled trial on the effect of piracetam on breath-holding spells.

    Science.gov (United States)

    Sawires, Happy; Botrous, Osama

    2012-07-01

    Breath-holding spells (BHS) are apparently frightening events occurring in otherwise healthy children.The aim of this study was to evaluate the efficacy of piracetam in the treatment of breath-holding spells. Forty patients with BHS (who were classified into two groups)were involved in a double-blinded placebo-controlled prospective study. Piracetam was given to group A while group B received placebo. Patients were followed monthly for a total period of 4 months. The numbers of attacks/month before and monthly after treatment were documented, and the overall number of attacks/month after treatment was calculated in both groups. The median number of attacks/month before treatment in the two groups was 5.5 and 5,respectively, while after the first month of treatment, it was 2 and 5, respectively. The median overall number of attacks/month after treatment in both groups was 1 and 5, respectively.There was a significant decline of number of attacks after piracetam treatment compared to placebo (p valuepiracetam throughout the study period. In conclusion, piracetam is a safe and effective drug for the treatment of breath-holding spells in children.

  4. Treating hypertension with a device that slows and regularises breathing: a randomised, double-blind controlled study.

    Science.gov (United States)

    Schein, M H; Gavish, B; Herz, M; Rosner-Kahana, D; Naveh, P; Knishkowy, B; Zlotnikov, E; Ben-Zvi, N; Melmed, R N

    2001-04-01

    To examine the efficacy of a new device, which slows and regularises breathing, as a non-pharmacological treatment of hypertension and thus to evaluate the contribution of breathing modulation in the blood pressure (BP) reduction. Randomised, double-blind controlled study, carried out in three urban family practice clinics in Israel. Sixty-five male and female hypertensives, either receiving antihypertensive drug therapy or unmedicated. Four patients dropped out at the beginning of the study. Self treatment at home, 10 minutes daily for 8 consecutive weeks, using either the device (n = 32), which guides the user towards slow and regular breathing using musical sound patterns, or a Walkman, with which patients listened to quiet music (n = 29). Medication was unchanged 2 months prior to and during the study period. Systolic BP, diastolic BP and mean arterial pressure (MAP) changes from baseline. BP reduction in the device group was significantly greater than a predetermined 'clinically meaningful threshold' of 10.0, 5.0 and 6.7 mm Hg for the systolic BP, diastolic BP and MAP respectively (P = 0.035, P = 0.0002 and P = 0.001). Treatment with the device reduced systolic BP, diastolic BP and MAP by 15.2, 10.0 and 11.7 mm Hg respectively, as compared to 11.3, 5.6 and 7.5 mm Hg (P = 0.14, P = 0.008, P = 0.03) with the Walkman. Six months after treatment had stopped, diastolic BP reduction in the device group remained greater than the 'threshold' (P < 0.02) and also greater than in the walkman group (P = 0.001). The device was found to be efficacious in reducing high BP during 2 months of self-treatment by patients at home. Breathing pattern modification appears to be an important component in this reduction.

  5. Breathing circuit compliance and accuracy of displayed tidal volume during pressure-controlled ventilation of infants: A quality improvement project.

    Science.gov (United States)

    Glenski, Todd A; Diehl, Carrie; Clopton, Rachel G; Friesen, Robert H

    2017-09-01

    Anesthesia machines have evolved to deliver desired tidal volumes more accurately by measuring breathing circuit compliance during a preuse self-test and then incorporating the compliance value when calculating expired tidal volume. The initial compliance value is utilized in tidal volume calculation regardless of whether the actual compliance of the breathing circuit changes during a case, as happens when corrugated circuit tubing is manually expanded after the preuse self-test but before patient use. We noticed that the anesthesia machine preuse self-test was usually performed on nonexpanded pediatric circuit tubing, and then the breathing circuit was subsequently expanded for clinical use. We aimed to demonstrate that performing the preuse self-test in that manner could lead to incorrectly displayed tidal volume on the anesthesia machine monitor. The goal of this quality improvement project was to change the usual practice and improve the accuracy of displayed tidal volume in infants undergoing general anesthesia. There were four stages of the project: (i) gathering baseline data about the performance of the preuse self-test and using infant and adult test lungs to measure discrepancies of displayed tidal volumes when breathing circuit compliance was changed after the initial preuse self-test; (ii) gathering clinical data during pressure-controlled ventilation comparing anesthesia machine displayed tidal volume with actual spirometry tidal volume in patients less than 10 kg before (machine preuse self-test performed while the breathing circuit was nonexpanded) and after an intervention (machine preuse self-test performed after the breathing circuit was fully expanded); (iii) performing department-wide education to help implement practice change; (iv) gathering postintervention data to determine the prevalence of proper machine preuse self-test. At constant pressure-controlled ventilation through fully expanded circuit tubing, displayed tidal volume was 83

  6. Evaluation of the Electromagnetic Power Absorption in Humans Exposed to Plane Waves: The Effect of Breathing Activity

    Directory of Open Access Journals (Sweden)

    Marta Cavagnaro

    2013-01-01

    Full Text Available The safety aspects of the exposure of people to uniform plane waves in the frequency range from 900 MHz to 5 GHz are analyzed. Starting from a human body model available in the literature, representing a man in resting state, two new anatomical models are considered, representing different phases of the respiratory activity: tidal breath and deep breath. These models have been used to evaluate the whole body Specific Absorption Rate (SAR and the 10-g averaged and 1-g averaged SAR. The analysis is performed using a parallel implementation of the finite difference time domain method. A uniform plane wave, with vertical polarization, is used as an incident field since this is the canonical exposure situation used in safety guidelines. Results show that if the incident electromagnetic field is compliant with the reference levels promulgated by the International Commission on Non-Ionizing Radiation Protection and by IEEE, the computed SAR values are lower than the corresponding basic restrictions, as expected. On the other side, when the Federal Communications Commission reference levels are considered, 1-g SAR values exceeding the basic restrictions for exposure at 4 GHz and above are obtained. Furthermore, results show that the whole body SAR values increase passing from the resting state model to the deep breath model, for all the considered frequencies.

  7. Swimming in air-breathing fishes.

    Science.gov (United States)

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise. © 2014 The Fisheries Society of the British Isles.

  8. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  9. Bad Breath

    Science.gov (United States)

    ... garlic, onions, cheese, orange juice, and soda poor dental hygiene (say: HI-jeen), meaning not brushing and flossing regularly smoking and other tobacco use Poor oral hygiene leads to bad breath because when food particles ...

  10. Bad Breath

    Science.gov (United States)

    ... cabbage. And of course smoking causes its own bad smell. Some diseases and medicines can cause a specific breath odor. Having good dental habits, like brushing and flossing regularly, help fight bad ...

  11. Synthesis of ¹³C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity.

    Science.gov (United States)

    Mitome, Hidemichi; Sugiyama, Erika; Sato, Hitoshi; Akira, Kazuki

    2014-01-01

    (13)C-Labeled lidocaine, 2-di[1-(13)C]ethylamino-N-(2,6-dimethylphenyl)acetamide (1), was synthesized from [1-(13)C]acetic acid in six steps, as a probe for a breath test to evaluate in vivo cytochrome P450 activity. The measurement of (13)CO2 in breath was successfully performed following oral administration of (13)C-lidocaine 1 to mice.

  12. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Breathe In, Breathe Out

    Centers for Disease Control (CDC) Podcasts

    2007-11-01

    This podcast promotes healthy lifestyle messages through original music.  Created: 11/1/2007 by National Diabetes Education Program (NDEP), a joint program of the Centers for Disease Control and Prevention and the National Institutes of Health.   Date Released: 11/30/2007.

  14. Dose-dependent social-cognitive effects of intranasal oxytocin delivered with novel Breath Powered device in adults with autism spectrum disorder: a randomized placebo-controlled double-blind crossover trial

    OpenAIRE

    Quintana, D S; Westlye, L T; Hope, S; N?rland, T; Elvs?shagen, T; D?rum, E; Rustan, ?; Valstad, M; Rezvaya, L; Lishaugen, H; Stens?nes, E; Yaqub, S; Smerud, K T; Mahmoud, R A; Djupesland, P G

    2017-01-01

    The neuropeptide oxytocin has shown promise as a treatment for symptoms of autism spectrum disorders (ASD). However, clinical research progress has been hampered by a poor understanding of oxytocin?s dose?response and sub-optimal intranasal delivery methods. We examined two doses of oxytocin delivered using a novel Breath Powered intranasal delivery device designed to improve direct nose-to-brain activity in a double-blind, crossover, randomized, placebo-controlled trial. In a randomized sequ...

  15. A randomised controlled trial of three or one breathing technique training sessions for breathlessness in people with malignant lung disease.

    Science.gov (United States)

    Johnson, Miriam J; Kanaan, Mona; Richardson, Gerry; Nabb, Samantha; Torgerson, David; English, Anne; Barton, Rachael; Booth, Sara

    2015-09-07

    About 90 % of patients with intra-thoracic malignancy experience breathlessness. Breathing training is helpful, but it is unknown whether repeated sessions are needed. The present study aims to test whether three sessions are better than one for breathlessness in this population. This is a multi-centre randomised controlled non-blinded parallel arm trial. Participants were allocated to three sessions or single (1:2 ratio) using central computer-generated block randomisation by an independent Trials Unit and stratified for centre. The setting was respiratory, oncology or palliative care clinics at eight UK centres. Inclusion criteria were people with intrathoracic cancer and refractory breathlessness, expected prognosis ≥3 months, and no prior experience of breathing training. The trial intervention was a complex breathlessness intervention (breathing training, anxiety management, relaxation, pacing, and prioritisation) delivered over three hour-long sessions at weekly intervals, or during a single hour-long session. The main primary outcome was worst breathlessness over the previous 24 hours ('worst'), by numerical rating scale (0 = none; 10 = worst imaginable). Our primary analysis was area under the curve (AUC) 'worst' from baseline to 4 weeks. All analyses were by intention to treat. Between April 2011 and October 2013, 156 consenting participants were randomised (52 three; 104 single). Overall, the 'worst' score reduced from 6.81 (SD, 1.89) to 5.84 (2.39). Primary analysis [n = 124 (79 %)], showed no between-arm difference in the AUC: three sessions 22.86 (7.12) vs single session 22.58 (7.10); P value = 0.83); mean difference 0.2, 95 % CIs (-2.31 to 2.97). Complete case analysis showed a non-significant reduction in QALYs with three sessions (mean difference -0.006, 95 % CIs -0.018 to 0.006). Sensitivity analyses found similar results. The probability of the single session being cost-effective (threshold value of £20,000 per QALY) was over 80 %. There was no

  16. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    International Nuclear Information System (INIS)

    Shanmugam, Senthilkumar

    2014-01-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  17. SU-E-J-211: Design and Study of In-House Software Based Respiratory Motion Monitoring, Controlling and Breath-Hold Device for Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Senthilkumar [Madurai Medical College ' Govt. Rajaji Hospital, Madurai (India)

    2014-06-01

    Purpose: The purpose of this present work was to fabricate an in-house software based respiratory monitoring, controlling and breath-hold device using computer software programme which guides the patient to have uniform breath hold in response to request during the gated radiotherapy. Methods: The respiratory controlling device consists of a computer, inhouse software, video goggles, a highly sensitive sensor for measurement of distance, mounting systems, a camera, a respiratory signal device, a speaker and a visual indicator. The computer is used to display the respiratory movements of the patient with digital as well as analogue respiration indicators during the respiration cycle, to control, breath-hold and analyze the respiratory movement using indigenously developed software. Results: Studies were conducted with anthropomophic phantoms by simulating the respiratory motion on phantoms and recording the respective movements using the respiratory monitoring device. The results show good agreement between the simulated and measured movements. Further studies were conducted for 60 cancer patients with several types of cancers in the thoracic region. The respiratory movement cycles for each fraction of radiotherapy treatment were recorded and compared. Alarm indications are provided in the system to indicate when the patient breathing movement exceeds the threshold level. This will help the patient to maintain uniform breath hold during the radiotherapy treatment. Our preliminary clinical test results indicate that our device is highly reliable and able to maintain the uniform respiratory motion and breathe hold during the entire course of gated radiotherapy treatment. Conclusion: An indigenous respiratory monitoring device to guide the patient to have uniform breath hold device was fabricated. The alarm feature and the visual waveform indicator in the system guide the patient to have normal respiration. The signal from the device can be connected to the radiation

  18. Medical Issues: Breathing

    Science.gov (United States)

    ... Information Packets Equipment Pool Living With SMA Medical Issues Palliative Breathing Orthopedics Nutrition Equipment Daily Life At ... curesma.org > support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common ...

  19. Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension.

    Science.gov (United States)

    Li, Changjun; Chang, Qinghua; Zhang, Jia; Chai, Wenshu

    2018-05-01

    This study is to investigate the effects of slow breathing on heart rate variability (HRV) and arterial baroreflex sensitivity in essential hypertension.We studied 60 patients with essential hypertension and 60 healthy controls. All subjects underwent controlled breathing at 8 and 16 breaths per minute. Electrocardiogram, respiratory, and blood pressure signals were recorded simultaneously. We studied effects of slow breathing on heart rate, blood pressure and respiratory peak, high-frequency (HF) power, low-frequency (LF) power, and LF/HF ratio of HRV with traditional and corrected spectral analysis. Besides, we tested whether slow breathing was capable of modifying baroreflex sensitivity in hypertensive subjects.Slow breathing, compared with 16 breaths per minute, decreased the heart rate and blood pressure (all P hypertensive subjects. Slow breathing increased baroreflex sensitivity in hypertensive subjects (from 59.48 ± 6.39 to 78.93 ± 5.04 ms/mm Hg, P hypertension. Besides, slow breathing increased baroreflex sensitivity in hypertensive subjects. These demonstrate slow breathing is indeed capable of shifting sympatho-vagal balance toward vagal activities and increasing baroreflex sensitivity, suggesting a safe, therapeutic approach for essential hypertension.

  20. Effects of Depth of Propofol and Sevoflurane Anesthesia on Upper Airway Collapsibility, Respiratory Genioglossus Activation, and Breathing in Healthy Volunteers

    DEFF Research Database (Denmark)

    Simons, Jeroen C P; Pierce, Eric; Diaz-Gil, Daniel

    2016-01-01

    . Measurements included bispectral index, genioglossus electromyography, ventilation, hypopharyngeal pressure, upper airway closing pressure, and change in end-expiratory lung volume during mask pressure drops. RESULTS: A total of 393 attempted breaths during occlusion maneuvers were analyzed. Upper airway......BACKGROUND: Volatile anesthetics and propofol impair upper airway stability and possibly respiratory upper airway dilator muscle activity. The magnitudes of these effects have not been compared at equivalent anesthetic doses. We hypothesized that upper airway closing pressure is less negative...... closing pressure was significantly less negative at deep versus shallow anesthesia (-10.8 ± 4.5 vs. -11.3 ± 4.4 cm H2O, respectively [mean ± SD]) and correlated with the bispectral index (P airway at deep anesthesia. Respiratory genioglossus activity during airway...

  1. Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design.

    Science.gov (United States)

    Bu, Xiangwei; He, Guangjun; Wang, Ke

    2018-04-01

    This study considers the design of a new back-stepping control approach for air-breathing hypersonic vehicle (AHV) non-affine models via neural approximation. The AHV's non-affine dynamics is decomposed into velocity subsystem and altitude subsystem to be controlled separately, and robust adaptive tracking control laws are developed using improved back-stepping designs. Neural networks are applied to estimate the unknown non-affine dynamics, which guarantees the addressed controllers with satisfactory robustness against uncertainties. In comparison with the existing control methodologies, the special contributions are that the non-affine issue is handled by constructing two low-pass filters based on model transformations, and virtual controllers are treated as intermediate variables such that they aren't needed for back-stepping designs any more. Lyapunov techniques are employed to show the uniformly ultimately boundedness of all closed-loop signals. Finally, simulation results are presented to verify the tracking performance and superiorities of the investigated control strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. The non-invasive 13C-methionine breath test detects hepatic mitochondrial dysfunction as a marker of disease activity in non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Banasch M

    2012-06-01

    Full Text Available Abstract Introduction Mitochondrial dysfunction plays a central role in the general pathogenesis of non-alcoholic fatty liver disease (NAFLD, increasing the risk of developing steatosis and subsequent hepatocellular inflammation. We aimed to assess hepatic mitochondrial function by a non-invasive 13C-methionine breath test (MeBT in patients with histologically proven NAFLD. Methods 118 NAFLD-patients and 18 healthy controls were examined by MeBT. Liver biopsy specimens were evaluated according to the NASH scoring system. Results Higher grades of NASH activity and fibrosis were independently associated with a significant decrease in cumulative 13C-exhalation (expressed as cPDR(%. cPDR1.5h was markedly declined in patients with NASH and NASH cirrhosis compared to patients with simple steatosis or borderline diagnosis (cPDR1.5h: 3.24 ± 1.12% and 1.32 ± 0.94% vs. 6.36 ± 0.56% and 4.80 ± 0.88% respectively; p 13C-exhalation further declined in the presence of advanced fibrosis which was correlated with NASH activity (r = 0.36. The area under the ROC curve (AUROC for NASH diagnosis was estimated to be 0.87 in the total cohort and 0.83 in patients with no or mild fibrosis (F0-1. Conclusion The 13C-methionine breath test indicates mitochondrial dysfunction in non-alcoholic fatty liver disease and predicts higher stages of disease activity. It may, therefore, be a valuable diagnostic addition for longitudinal monitoring of hepatic (mitochondrial function in non-alcoholic fatty liver disease.

  3. The Breathe Easier through Weight Loss Lifestyle (BE WELL Intervention: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Buist A

    2010-03-01

    Full Text Available Abstract Background Obesity and asthma have reached epidemic proportions in the US. Their concurrent rise over the last 30 years suggests that they may be connected. Numerous observational studies support a temporally-correct, dose-response relationship between body mass index (BMI and incident asthma. Weight loss, either induced by surgery or caloric restriction, has been reported to improve asthma symptoms and lung function. Due to methodological shortcomings of previous studies, however, well-controlled trials are needed to investigate the efficacy of weight loss strategies to improve asthma control in obese individuals. Methods/Design BE WELL is a 2-arm parallel randomized clinical trial (RCT of the efficacy of an evidence-based, comprehensive, behavioral weight loss intervention, focusing on diet, physical activity, and behavioral therapy, as adjunct therapy to usual care in the management of asthma in obese adults. Trial participants (n = 324 are patients aged 18 to 70 years who have suboptimally controlled, persistent asthma, BMI between 30.0 and 44.9 kg/m2, and who do not have serious comorbidities (e.g., diabetes, heart disease, stroke. The 12-month weight loss intervention to be studied is based on the principles of the highly successful Diabetes Prevention Program lifestyle intervention. Intervention participants will attend 13 weekly group sessions over a four-month period, followed by two monthly individual sessions, and will then receive individualized counseling primarily by phone, at least bi-monthly, for the remainder of the intervention. Follow-up assessment will occur at six and 12 months. The primary outcome variable is the overall score on the Juniper Asthma Control Questionnaire measured at 12 months. Secondary outcomes include lung function, asthma-specific and general quality of life, asthma medication use, asthma-related and total health care utilization. Potential mediators (e.g., weight loss and change in physical

  4. Parental attitude, depression, anxiety in mothers, family functioning and breath-holding spells: A case control study.

    Science.gov (United States)

    Eliacik, Kayi; Bolat, Nurullah; Kanik, Ali; Sargin, Enis; Selkie, Ellen; Korkmaz, Nurhan; Baydan, Figen; Akar, Ebru; Sarioglu, Berrak

    2016-05-01

    This study aimed to identify differences in the antenatal stressful life events, parenting style, family functioning, depression and anxiety of mothers who have children with breath-holding spells (BHS) compared with controls. This case control study divided 66 children into a group of children with BHS and a control group, with the children's ages ranging between 6 months and 5 years of age. This study explored underlying anxiety and depression in mothers as well as functioning of their families. Socio-demographical data and stressful life events that the mother experienced during pregnancy were analysed. In order to evaluate the effects of family structure, depression and anxiety in mothers on BHS in children, the Family Assessment Device, and both the Parental Attitude Research Instrument and the Beck Depression Inventory as well as the State-Trait Anxiety Inventory were used to assess both groups. Exposure to stressful life events during pregnancy (P overprotective maternal characteristics (P = 0.027) and most of the family functioning subscales were found to be significantly different between BHS and control groups. The association of anxiety, depression, prenatal stressful events and poor family functioning in mothers who have children with BHS is significantly higher than controls. An evaluation of these problems may be beneficial in the management of BHS. © 2016 The Authors. Journal of Paediatrics and Child Health © 2016 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  6. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  7. Blood gases and oxygen saturation response to active cycle of breathing techniques in COPD patients during phase I of cardiac rehabilitation

    International Nuclear Information System (INIS)

    Sheraz, S.; Siddiqi, F.A.

    2015-01-01

    Objective: To determine the effectiveness of active cycle of breathing techniques (ACBTs) on arterial blood gases (ABG), oxygen saturation and other vitals including chest expansion, heart rate, and respiratory rate in COPD patients during phase I of cardiac rehabilitation program after open heart surgery. Methodology: In this experimental study, sample size chosen was 100 patients, randomly divided into experimental (n=50) and control (n=50) groups. Pre-test values of ABG, oxygen saturation, chest expansion, respiratory rate, and heart rate of the participants were taken. Then, conventional physical therapy including spirometry was performed 2 hourly by the control group whereas the experimental group performed ACBTs along with spirometry twice a day for a period of one week. Participants were re-assessed after one week treatment. Results: There was highly significant difference (p<0.01) in pre-test and post-test values of PCO/sub 2/ and oxygen saturation in experimental group as compared to control group. The results of bicarbonate values, base excess and heart rate were statistically significant (p<0.01) in control group and there was no significant difference (p>0.05) in experimental group. The values of pH, chest expansion and respiratory rate were highly significant (p<0.01) in both control as well as experimental group. Conclusion: ACBT was more effective to decrease post CABG complication as compared to conventional chest physical therapy. Some parameters like bicarbonate values, base excess and heart rate did not show improvement with ACBT. (author)

  8. Breath-taking jobs: a case-control study of respiratory work disability by occupation in Norway.

    Science.gov (United States)

    Fell, A K; Abrahamsen, R; Henneberger, P K; Svendsen, M V; Andersson, E; Torén, K; Kongerud, J

    2016-09-01

    The current knowledge on respiratory work disability is based on studies that used crude categories of exposure. This may lead to a loss of power, and does not provide sufficient information to allow targeted workplace interventions and follow-up of patients with respiratory symptoms. The aim of this study was to identify occupations and specific exposures associated with respiratory work disability. In 2013, a self-administered questionnaire was mailed to a random sample of the general population, aged 16-50, in Telemark County, Norway. We defined respiratory work disability as a positive response to the survey question: 'Have you ever had to change or leave your job because it affected your breathing?' Occupational exposures were assessed using an asthma-specific job-exposure matrix, and comparison of risks was made for cases and a median of 50 controls per case. 247 workers had changed their work because of respiratory symptoms, accounting for 1.7% of the respondents ever employed. The 'breath-taking jobs' were cooks/chefs: adjusted OR 3.6 (95% CI 1.6 to 8.0); welders: 5.2 (2.0 to 14); gardeners: 4.5 (1.3 to 15); sheet metal workers: 5.4 (2.0 to 14); cleaners: 5.0 (2.2 to 11); hairdressers: 6.4 (2.5 to 17); and agricultural labourers: 7.4 (2.5 to 22). Job changes were also associated with a variety of occupational exposures, with some differences between men and women. Self-report and job-exposure matrix data showed similar findings. For the occupations and exposures associated with job change, preventive measures should be implemented. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Breath-taking jobs: a case–control study of respiratory work disability by occupation in Norway

    Science.gov (United States)

    Fell, AKM; Abrahamsen, R; Henneberger, PK; Svendsen, MV; Andersson, E; Torén, K; Kongerud, J

    2016-01-01

    Background The current knowledge on respiratory work disability is based on studies that used crude categories of exposure. This may lead to a loss of power, and does not provide sufficient information to allow targeted workplace interventions and follow-up of patients with respiratory symptoms. Objectives The aim of this study was to identify occupations and specific exposures associated with respiratory work disability. Methods In 2013, a self-administered questionnaire was mailed to a random sample of the general population, aged 16–50, in Telemark County, Norway. We defined respiratory work disability as a positive response to the survey question: ‘Have you ever had to change or leave your job because it affected your breathing?’ Occupational exposures were assessed using an asthma-specific job-exposure matrix, and comparison of risks was made for cases and a median of 50 controls per case. Results 247 workers had changed their work because of respiratory symptoms, accounting for 1.7% of the respondents ever employed. The ‘breath-taking jobs’ were cooks/chefs: adjusted OR 3.6 (95% CI 1.6 to 8.0); welders: 5.2 (2.0 to 14); gardeners: 4.5 (1.3 to 15); sheet metal workers: 5.4 (2.0 to 14); cleaners: 5.0 (2.2 to 11); hairdressers: 6.4 (2.5 to 17); and agricultural labourers: 7.4 (2.5 to 22). Job changes were also associated with a variety of occupational exposures, with some differences between men and women. Conclusions Self-report and job-exposure matrix data showed similar findings. For the occupations and exposures associated with job change, preventive measures should be implemented. PMID:27365181

  10. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial.

    Science.gov (United States)

    Ulrich, Silvia; Hasler, Elisabeth D; Saxer, Stéphanie; Furian, Michael; Müller-Mottet, Séverine; Keusch, Stephan; Bloch, Konrad E

    2017-04-14

    The purpose of the current trial was to test the hypothesis that breathing oxygen-enriched air increases exercise performance of patients with pulmonary arterial or chronic thrombo-embolic pulmonary hypertension (PAH/CTEPH) and to investigate involved mechanisms. Twenty-two patients with PAH/CTEPH, eight women, means ± SD 61 ± 14 years, resting mPAP 35 ± 9mmHg, PaO2 ambient air >7.3 kPa, underwent four bicycle ergospirometries to exhaustion on different days, while breathing oxygen-enriched (FiO2 0.50, hyperoxia) or ambient air (FiO2 0.21, normoxia) using progressively increased or constant load protocols (with 75% maximal work rate under FiO2 0.21), according to a randomized, sham-controlled, single-blind, cross-over design. ECG, pulmonary gas-exchange, arterial blood gases, cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. In ramp exercise, maximal work rate increased from 113 ± 38 W with normoxia to 132 ± 48 W with hyperoxia, mean difference 19.7 (95% CI 10.5-28.9) W, P endurance increased from 571 ± 443 to 1242 ± 514 s, mean difference 671 (95% CI 392-951) s, P < 0.001. At end-exercise with hyperoxia PaO2, CTO, QMTO, and PaCO2 were increased, and ventilatory equivalents for CO2 were reduced while the physiological dead space/tidal volume ratio remained unchanged. In patients with PAH/CTEPH, breathing oxygen-enriched air provides major increases in exercise performance. This is related to an improved arterial oxygenation that promotes oxygen availability in muscles and brain and to a reduction of the excessive ventilatory response to exercise thereby enhancing ventilatory efficiency. Patients with PAH/CTEPH may therefore benefit from oxygen therapy during daily physical activities and training. clinicaltrials.gov Identifier: NCT01748474. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  11. Morbidity prior to a diagnosis of sleep-disordered breathing: a controlled national study.

    Science.gov (United States)

    Jennum, Poul; Ibsen, Rikke; Kjellberg, Jakob

    2013-02-01

    Sleep-disordered breathing (SDB) causes burden to the sufferer, the healthcare system, and society. Most studies have focused on cardiovascular diseases (CVDs) after a diagnosis of obstructive sleep apnea (OSA) or obesity hypoventilation syndrome (OHS); however, the overall morbidity prior to an SDB diagnosis has not been evaluated. The aim of this study was to identify morbidity prior to a SDB diagnosis to identify patients at risk for having/developing SDB. Using data from the Danish National Patient Registry (1998-2006), we identified all patients nationwide given a diagnosis of OSA (19,438) or OHS (755) in all hospitals and clinics. For each patient, we randomly selected 4 citizens matched for age, sex, and socioeconomic status from the Danish Civil Registration System Statistics. Patients with OSA or OHS presented with increased morbidity at least 3 years prior to their SDB diagnosis. The most common contacts with the health system (odds ratio [OR]/confidence interval [CI]) for OSA/OHS were due to musculoskeletal system (1.36[1.29-1.42]/1.35[1.05-1.74]); CVD (1.38[1.30-1.46]/1.80[1.38-2.34]); endocrine, nutritional, and metabolic diseases (1.62[1.50-1.76]/4.10[2.90-5.78]); diseases of the nervous system (1.62[1.0-1.76]/3.54[2.56-4.88]); respiratory system (1.84[1.73-1.96]/2.83[2.07-3.89]); skin and subcutaneous tissue (1.18[1.07-1.30]/2.12[1.33-3.38]); gastrointestinal (1.17[1.10-1.24]/NS); infections (1.20[1.08-1.33]/NS); genitourinary system (1.21[1.13-1.30]/NS); and ear, nose, and throat (1.44[1.32-1.56]/NS). Patients with SDB show significant morbidities several years prior to a diagnosis of OSA or OHS. OSA should be considered in all medical specialties as an important comorbidity. In our study, evidence points to particular emphasis for considering this diagnosis in endocrinology and metabolic specialties.

  12. C-13-carbohydrate breath tests : Impact of physical activity on the rate-limiting step in lactose utilization

    NARCIS (Netherlands)

    Stellaard, F; Koetse, HA; Elzinga, H; Boverhof, R; Tjoonk, R; Klimp, A; Vegter, D; Liesker, J; Vonk, RJ

    Background: (CO2)-C-13 breath tests can be used to monitor carbohydrate digestion in the small intestine. However, after ingestion of C-13-substrates, (CO2)-C-13 excretion in breath originates from two sources: a digestive/oxidative fraction, derived from the small intestine, and a fermentation

  13. Mobile Sensor System AGaMon for Breath Control: Numerical Signal Analysis of Ternary Gas Mixtures and First Field Tests

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-01-01

    Full Text Available An innovative mobile sensor system for breath control in the exhaled air is introduced. In this paper, the application of alcohol control in the exhaled air is considered. This sensor system operates semiconducting gas sensor elements with respect to the application in a thermo-cyclic operation mode. This operation mode leads to so-called conductance-over-time-profiles (CTPs, which are fingerprints of the gas mixture under consideration and can be used for substance identification and concentration determination. Especially for the alcohol control in the exhaled air, ethanol is the leading gas component to be investigated. But, there are also other interfering gas components in the exhaled air, like H2 and acetone, which may influence the measurement results. Therefore, a ternary ethanol-H2-acetone gas mixture was investigated. The establishing of the mathematical calibration model and the data analysis was performed with a newly developed innovative calibration and evaluation procedure called ProSens 3.0. The analysis of ternary ethanol-H2-acetone gas samples with ProSens 3.0 shows a very good substance identification performance and a very good concentration determination of the leading ethanol component. The relative analysis errors for the leading component ethanol were in all considered samples less than 9 %. First field test performed with the sensor system AGaMon shows very promising results.

  14. Anti-Windup Control for an Air-Breathing Hypersonic Vehicle Model

    National Research Council Canada - National Science Library

    Groves, Kevin P; Serrani, Andrea; Yurkovich, Stephen; Bolender, Michael A; Doman, David B

    2005-01-01

    .... Anti-windup control allows the input constraints to be considered explicitly in the design of linear controllers to track a reference trajectory for the vehicle velocity, altitude, and angle of attack...

  15. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  16. Modification of electrical pain threshold by voluntary breathing-controlled electrical stimulation (BreEStim in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Shengai Li

    Full Text Available BACKGROUND: Pain has a distinct sensory and affective (i.e., unpleasantness component. BreEStim, during which electrical stimulation is delivered during voluntary breathing, has been shown to selectively reduce the affective component of post-amputation phantom pain. The objective was to examine whether BreEStim increases pain threshold such that subjects could have improved tolerance of sensation of painful stimuli. METHODS: Eleven pain-free healthy subjects (7 males, 4 females participated in the study. All subjects received BreEStim (100 stimuli and conventional electrical stimulation (EStim, 100 stimuli to two acupuncture points (Neiguan and Weiguan of the dominant hand in a random order. The two different treatments were provided at least three days apart. Painful, but tolerable electrical stimuli were delivered randomly during EStim, but were triggered by effortful inhalation during BreEStim. Measurements of tactile sensation threshold, electrical sensation and electrical pain thresholds, thermal (cold sensation, warm sensation, cold pain and heat pain thresholds were recorded from the thenar eminence of both hands. These measurements were taken pre-intervention and 10-min post-intervention. RESULTS: There was no difference in the pre-intervention baseline measurement of all thresholds between BreEStim and EStim. The electrical pain threshold significantly increased after BreEStim (27.5±6.7% for the dominant hand and 28.5±10.8% for the non-dominant hand, respectively. The electrical pain threshold significantly decreased after EStim (9.1±2.8% for the dominant hand and 10.2±4.6% for the non-dominant hand, respectively (F[1, 10] = 30.992, p = .00024. There was no statistically significant change in other thresholds after BreEStim and EStim. The intensity of electrical stimuli was progressively increased, but no difference was found between BreEStim and EStim. CONCLUSION: Voluntary breathing controlled electrical stimulation

  17. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability.

    Science.gov (United States)

    Bloomfield, D M; Magnano, A; Bigger, J T; Rivadeneira, H; Parides, M; Steinman, R C

    2001-03-01

    R-R interval variability (RR variability) is increasingly being used as an index of autonomic activity. High-frequency (HF) power reflects vagal modulation of the sinus node. Since vagal modulation occurs at the respiratory frequency, some investigators have suggested that HF power cannot be interpreted unless the breathing rate is controlled. We hypothesized that HF power during spontaneous breathing would not differ significantly from HF power during metronome-guided breathing. We measured HF power during spontaneous breathing in 20 healthy subjects and 19 patients with heart disease. Each subject's spontaneous breathing rate was determined, and the calculation of HF power was repeated with a metronome set to his or her average spontaneous breathing rate. There was no significant difference between the logarithm of HF power measured during spontaneous and metronome-guided breathing [4.88 +/- 0.29 vs. 5.29 +/- 0.30 ln(ms(2)), P = 0.32] in the group as a whole and when patients and healthy subjects were examined separately. We did observe a small (9.9%) decrease in HF power with increasing metronome-guided breathing rates (from 9 to 20 breaths/min). These data indicate that HF power during spontaneous and metronome-guided breathing differs at most by very small amounts. This variability is several logarithmic units less than the wide discrepancies observed between healthy subjects and cardiac patients with a heterogeneous group of cardiovascular disorders. In addition, HF power is relatively constant across the range of typical breathing rates. These data indicate that there is no need to control breathing rate to interpret HF power when RR variability (and specifically HF power) is used to identify high-risk cardiac patients.

  18. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  19. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    Science.gov (United States)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  20. Time course of EEG slow-wave activity in pre-school children with sleep disordered breathing: a possible mechanism for daytime deficits?

    Science.gov (United States)

    Biggs, Sarah N; Walter, Lisa M; Nisbet, Lauren C; Jackman, Angela R; Anderson, Vicki; Nixon, Gillian M; Davey, Margot J; Trinder, John; Hoffmann, Robert; Armitage, Roseanne; Horne, Rosemary S C

    2012-09-01

    Daytime deficits in children with sleep disordered breathing (SDB) are theorized to result from hypoxic insult to the developing brain or fragmented sleep. Yet, these do not explain why deficits occur in primary snorers (PS). The time course of slow wave EEG activity (SWA), a proxy of homeostatic regulation and cortical maturation, may provide insight. Clinical and control subjects (N=175: mean age 4.3±0.9 y: 61% male) participated in overnight polysomnography (PSG). Standard sleep scoring and power spectral analyses were conducted on EEG (C4/A1; 0.5-sleep stages and respiratory parameters. Repeated-measures ANCOVA evaluated group differences in the time course of SWA. Four groups were classified: controls (OAHI ≤ 1 event/h; no clinical history); PS (OAHI ≤ 1 event/h; clinical history); mild OSA (OAHI=1-5 events/h); and moderate to severe OSA (MS OSA: OAHI>5 events/h). Group differences were found in the percentage of time spent in NREM Stages 1 and 4 (psleep pressure but impaired restorative sleep function in pre-school children with SDB, providing new insights into the possible mechanism for daytime deficits observed in all severities of SDB. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Changes in cytochrome P4501A activity during development in common tern chicks fed polychlorinated biphenyls, as measured by the caffeine breath test

    Energy Technology Data Exchange (ETDEWEB)

    Feyk, L.A.; Giesy, J.P.; Bosveld, A.T.C.; Van den Berg, M.

    2000-03-01

    Cytochrome P4501A (CYPIA) activity is often used as a biomarker of exposure of wildlife to polyhalogenated diaromatic hydrocarbons and is usually measured ex vivo in liver tissue. A caffeine breath test (CBT) with radiolabeled substrate ({sup 14}C-caffeine) was used to measure in vivo CYP1A activity twice during development in 14 common tern (Sterna hirundo) chicks treated with polyhalogenated diaromatic hydrocarbons. Tern hatchlings were fed fish spiked with 3,3{prime}, 4,4{prime},5-pentachlorobiphenyl (PCB 126) and 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB 153) such that the diet contained an average of 23, 99, or 561 pg of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents per gram of fish for 21 d. Sixteen additional common tern chicks were similarly dosed with polyhalogenated diaromatic hydrocarbons but were not subjected to the CBT procedure. In weeks 1 and 2, caffeine N-demethylation and ethoxyresorufin-O-deethylation activity on day 21 were elevated in birds that received the greatest PCB dose. There was less constitutive and greater induction of ethoxyresorufin-O-deethylation activity than caffeine N-demethylation. The {sup 14}C-CBT was less invasive than the ethoxyresorufin-O-deethylase assay. Only one morphological parameter differed significantly between CBT subjects and no-CBT subjects fed the same level of PCBs. Bursa weight was significantly less in control CBT subjects than in control no-CBT subjects, but bursa weights did not differ among CBT and no-CBT birds from the two PCB treatment groups. No alterations of survival or growth occurred in CBT subjects compared with no-CBT subjects.

  2. Evaluation of sympathetic activity by 123I-metaiodobenzylguanidine myocardial scintigraphy in dilated cardiomyopathy patients with sleep breathing disorder

    International Nuclear Information System (INIS)

    Nanjo, Shuji; Fujimoto, Shinichiro; Yamashiro, Yoshihiro

    2009-01-01

    Because increased sympathetic nervous activity (SNA) in patients with dilated cardiomyopathy (DCM) associated with sleep breathing disorder (SBD) is known to deteriorate the prognosis of cardiac failure, 123 I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy was used as the investigative tool in the present study. The study group comprised 53 patients (47 men, 6 women; mean age 56±3 years) with chronic stable DCM. Patients were divided into SBD(+) or SBD(-) group according to 24-h pulse oximetry results. SBD(+) was defined when the 3% oxygen desaturation index was more than 15/h during sleep. In total, 32 patients were SBD(-) and 21 were SBD(+). In both groups, pulse oximetry were performed during sleep and awakening pulse rate, and measurement of the blood levels of catecholamines and B-type natriuretic peptide was performed. MIBG myocardial scintigraphy and echocardiography were performed at the same time. No significant difference was found between the 2 groups in catecholamine levels or left ventricular ejection fraction. However, MIBG had a significantly increased washout rate and a significantly decreased delayed heart to mediastinum ratio in the SBD(+) group compared with the SBD(-) group. SNA is increased in DCM patients when associated with SBD. MIBG myocardial scintigraphy may be a sensitive method of detecting increased SNA. (author)

  3. Analysis of Exhaled Breath for Disease Detection

    Science.gov (United States)

    Amann, Anton; Miekisch, Wolfram; Schubert, Jochen; Buszewski, Bogusław; Ligor, Tomasz; Jezierski, Tadeusz; Pleil, Joachim; Risby, Terence

    2014-06-01

    Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.

  4. A rapid non invasive L-DOPA-¹³C breath test for optimally suppressing extracerebral AADC enzyme activity - toward individualizing carbidopa therapy in Parkinson’s disease.

    Science.gov (United States)

    Modak, Anil; Durso, Raymon; Josephs, Ephraim; Rosen, David

    2012-01-01

    Peripheral carbidopa (CD) levels directly impact on central dopamine (DA) production in Parkinson disease (PD) through extracerebral inhibition of dopa decarboxylase (AADC) resulting in an increase in levodopa (LD) bioavailability. Recent data suggests that higher CD doses than those presently used in PD treatment may result in improved clinical response. Optimizing CD doses in individual patients may, therefore, result in ideal individualized treatment. A single center, randomized, double-blind study was carried out recruiting 5 Parkinson’s disease (PD) patients already on LD/CD and 1 treatment näve PD patient using stable isotope labeled LD-1-¹³C as a substrate for a noninvasive breath test to evaluate individual AADC enzyme activity. Each patient was studied five times, receiving 200 mg LD-¹³C at each visit along with one of five randomized CD doses (0, 25, 50, 100 and 200 mg). The metabolite ¹³CO₂ in breath was measured for evaluating AADC enzyme activity and plasma metabolite levels for LD-¹³C and homovanillic acid (HVA) were measured for 4 hours. HVA in plasma and ¹³CO₂ in breath are metabolic products of LD. We found a significant positive correlation of ¹³CO₂ DOB AUC0-240 with serum HVA AUC0-240 following the oral dose of LD-1-¹³C for all 5 doses of CD (r² = 0.9378). With increasing inhibition of AADC enzyme activity with CD, we observed an increase in the plasma concentration of LD.We found an inverse correlation of the 13CO2 DOB AUC with serum LD-¹³C AUC. Our studies indicate the optimal dose of CD for maximal suppression of AADC enzyme activity can be determined for each individual from ¹³CO₂ generation in breath. The LD-breath test can be a useful noninvasive diagnostic tool for evaluation of AADC enzyme activity using the biomarker ¹³CO₂ in breath, a first step in personalizing CD doses for PD patients.

  5. IVABRADINE AND QUALITY OF BIOFEEDBACK IN THE LOOP OF PACED BREATHING UNDER THE CONTROL OF HEART RATE VARIABILITY PARAMETERS IN HEALTHY VOLUNTEERS

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2013-06-01

    Full Text Available On 15 healthy volunteers aged from 18 to 22 years the effect of ivabradine on the quality of biofeedback in the loop of paced breathing under the control of heart rate variability parameters were estimated. It was found that ivabradine contributes to an earlier onset and more significant optimization of regulatory systems in systematic sessions of biofeedback that allows to expand the indications for its clinical use.

  6. Mapleson's Breathing Systems.

    Science.gov (United States)

    Kaul, Tej K; Mittal, Geeta

    2013-09-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  7. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  8. Fractionated breath condensate sampling: H2O2 concentrations of the alveolar fraction may be related to asthma control in children

    Directory of Open Access Journals (Sweden)

    Trischler Jordis

    2012-02-01

    Full Text Available Abstract Background Asthma is a chronic inflammatory disease of the airways but recent studies have shown that alveoli are also subject to pathophysiological changes. This study was undertaken to compare hydrogen peroxide (H2O2 concentrations in different parts of the lung using a new technique of fractioned breath condensate sampling. Methods In 52 children (9-17 years, 32 asthmatic patients, 20 controls measurements of exhaled nitric oxide (FENO, lung function, H2O2 in exhaled breath condensate (EBC and the asthma control test (ACT were performed. Exhaled breath condensate was collected in two different fractions, representing mainly either the airways or the alveoli. H2O2 was analysed in the airway and alveolar fractions and compared to clinical parameters. Results The exhaled H2O2 concentration was significantly higher in the airway fraction than in the alveolar fraction comparing each single pair (p = 0.003, 0.032 and 0.040 for the whole study group, the asthmatic group and the control group, respectively. Asthma control, measured by the asthma control test (ACT, correlated significantly with the H2O2 concentrations in the alveolar fraction (r = 0.606, p = 0.004 but not with those in the airway fraction in the group of children above 12 years. FENO values and lung function parameters did not correlate to the H2O2 concentrations of each fraction. Conclusion The new technique of fractionated H2O2 measurement may differentiate H2O2 concentrations in different parts of the lung in asthmatic and control children. H2O2 concentrations of the alveolar fraction may be related to the asthma control test in children.

  9. SPECT Analysis of Cardiac Perfusion Changes After Whole-Breast/Chest Wall Radiation Therapy With or Without Active Breathing Coordinator: Results of a Randomized Phase 3 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Zellars, Richard, E-mail: zellari@jhmi.edu [Johns Hopkins Medical Institution, Baltimore, Maryland (United States); Bravo, Paco E. [University of Washington Medical Center, Seattle, Washington (United States); Tryggestad, Erik [Mayo Clinic, Rochester, Minnesota (United States); Hopfer, Kari [Hahnemann University, Philadelphia, Pennsylvania (United States); Myers, Lee; Tahari, Abdel; Asrari, Fariba; Ziessman, Harvey [Johns Hopkins Medical Institution, Baltimore, Maryland (United States); Garrett-Mayer, Elizabeth [Medical University of South Carolina, Charleston, South Carolina (United States)

    2014-03-15

    Purpose: Cardiac muscle perfusion, as determined by single-photon emission computed tomography (SPECT), decreases after breast and/or chest wall (BCW) irradiation. The active breathing coordinator (ABC) enables radiation delivery when the BCW is farther from the heart, thereby decreasing cardiac exposure. We hypothesized that ABC would prevent radiation-induced cardiac toxicity and conducted a randomized controlled trial evaluating myocardial perfusion changes after radiation for left-sided breast cancer with or without ABC. Methods and Materials: Stages I to III left breast cancer patients requiring adjuvant radiation therapy (XRT) were randomized to ABC or No-ABC. Myocardial perfusion was evaluated by SPECT scans (before and 6 months after BCW radiation) using 2 methods: (1) fully automated quantitative polar mapping; and (2) semiquantitative visual assessment. The left ventricle was divided into 20 segments for the polar map and 17 segments for the visual method. Segments were grouped by anatomical rings (apical, mid, basal) or by coronary artery distribution. For the visual method, 2 nuclear medicine physicians, blinded to treatment groups, scored each segment's perfusion. Scores were analyzed with nonparametric tests and linear regression. Results: Between 2006 and 2010, 57 patients were enrolled and 43 were available for analysis. The cohorts were well matched. The apical and left anterior descending coronary artery segments had significant decreases in perfusion on SPECT scans in both ABC and No-ABC cohorts. In unadjusted and adjusted analyses, controlling for pretreatment perfusion score, age, and chemotherapy, ABC was not significantly associated with prevention of perfusion deficits. Conclusions: In this randomized controlled trial, ABC does not appear to prevent radiation-induced cardiac perfusion deficits.

  10. SPECT Analysis of Cardiac Perfusion Changes After Whole-Breast/Chest Wall Radiation Therapy With or Without Active Breathing Coordinator: Results of a Randomized Phase 3 Trial

    International Nuclear Information System (INIS)

    Zellars, Richard; Bravo, Paco E.; Tryggestad, Erik; Hopfer, Kari; Myers, Lee; Tahari, Abdel; Asrari, Fariba; Ziessman, Harvey; Garrett-Mayer, Elizabeth

    2014-01-01

    Purpose: Cardiac muscle perfusion, as determined by single-photon emission computed tomography (SPECT), decreases after breast and/or chest wall (BCW) irradiation. The active breathing coordinator (ABC) enables radiation delivery when the BCW is farther from the heart, thereby decreasing cardiac exposure. We hypothesized that ABC would prevent radiation-induced cardiac toxicity and conducted a randomized controlled trial evaluating myocardial perfusion changes after radiation for left-sided breast cancer with or without ABC. Methods and Materials: Stages I to III left breast cancer patients requiring adjuvant radiation therapy (XRT) were randomized to ABC or No-ABC. Myocardial perfusion was evaluated by SPECT scans (before and 6 months after BCW radiation) using 2 methods: (1) fully automated quantitative polar mapping; and (2) semiquantitative visual assessment. The left ventricle was divided into 20 segments for the polar map and 17 segments for the visual method. Segments were grouped by anatomical rings (apical, mid, basal) or by coronary artery distribution. For the visual method, 2 nuclear medicine physicians, blinded to treatment groups, scored each segment's perfusion. Scores were analyzed with nonparametric tests and linear regression. Results: Between 2006 and 2010, 57 patients were enrolled and 43 were available for analysis. The cohorts were well matched. The apical and left anterior descending coronary artery segments had significant decreases in perfusion on SPECT scans in both ABC and No-ABC cohorts. In unadjusted and adjusted analyses, controlling for pretreatment perfusion score, age, and chemotherapy, ABC was not significantly associated with prevention of perfusion deficits. Conclusions: In this randomized controlled trial, ABC does not appear to prevent radiation-induced cardiac perfusion deficits

  11. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    Science.gov (United States)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  12. Effects of high-frequency yoga breathing called kapalabhati compared with breath awareness on the degree of optical illusion perceived.

    Science.gov (United States)

    Telles, Shirley; Maharana, Kanchan; Balrana, Budhi; Balkrishna, Acharya

    2011-06-01

    Prior research has shown that methods of meditation, breath control, and different kinds of yoga breathing affect attention and visual perception, including decreasing the size of certain optical illusions. Evaluating relationships sheds light on the perceptual and cognitive changes induced by yoga and related methods, and the locus of the effects. In the present study, the degree of optical illusion was assessed using Müller-Lyer stimuli before and immediately after two different kinds of practice, a high frequency yoga breathing called kapalabhati, and breath awareness. A nonyoga, control session tested for practice effects. Thirty participants (with group M age = 26.9 yr., SD = 5.7) practiced the two techniques for 18 min. on two separate days. The control group had 15 nonyoga practitioners assessed before and after 18 min. in which they did not perform any specific activity but were seated and relaxed. After both kapalabhati and breath awareness there was a significant decrease in the degree of optical illusion. The possibility that this was due to a practice or repetition effect was ruled out when 15 nonyoga practitioners showed no change in the degree of illusion when retested after 18 min. The changes were interpreted as due to changes in perception related to the way the stimuli were judged.

  13. Airflow Characteristics at the Breathing Zone of a Seated Person

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Bolashikov, Zhecho Dimitrov; Nagano, Hideaki

    2011-01-01

    A method for active control over the interaction between the free convection flow around occupant‘s body and locally applied airflow from front on the velocity field at the breathing zone of a seated person was studied. A workplace equipped with personalised ventilation (PV) generating flow from......) was installed below the table board, above the thighs of the manikin, and was used to exhaust the air of the free convection flow coming from the lower body parts of the manikin. The velocity field at the breathing zone was measured with Particle Image Velocimetry consisting of a dual cavity laser and two CCD...

  14. Exhaled breath condensate pH does not discriminate asymptomatic gastroesophageal reflux or the response to lansoprazole treatment in children with poorly controlled asthma.

    Science.gov (United States)

    Fitzpatrick, Anne M; Holbrook, Janet T; Wei, Christine Y; Brown, Meredith S; Wise, Robert A; Teague, W Gerald

    2014-01-01

    Although exhaled breath condensate (EBC) pH has been identified as an "emerging" biomarker of interest for asthma clinical trials, the clinical determinants of EBC pH remain poorly understood. Other studies have associated acid reflux-induced respiratory symptoms, for example, cough, with transient acidification of EBC. We sought to determine the clinical and physiologic correlates of EBC acidification in a highly characterized sample of children with poorly controlled asthma. We hypothesized that (1) children with asymptomatic gastroesophageal reflux determined by 24-hour esophageal pH monitoring would have a lower EBC pH than children without gastroesophageal reflux, (2) treatment with lansoprazole would alter EBC pH in those children, and (3) EBC acidification would be associated with increased asthma symptoms, poorer asthma control and quality of life, and increased formation of breath nitrogen oxides (NOx). A total of 110 children, age range 6 to 17 years, with poor asthma control and esophageal pH data enrolled in the Study of Acid Reflux in Children with Asthma (NCT00442013) were included. Children submitted EBC samples for pH and NOx measurement at randomization and at study weeks 8, 16, and 24. Serial EBC pH measurements failed to distinguish asymptomatic gastroesophageal reflux and was not associated with breath NOx formation. EBC pH also did not discriminate asthma characteristics such as medication and health care utilization, pulmonary function, and asthma control and quality of life both at baseline and across the study period. Despite the relative ease of EBC collection, EBC pH as a biomarker does not provide useful information of children with asthma who were enrolled in asthma clinical trials. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  16. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study.

    Science.gov (United States)

    Kamath, Ashwin; Urval, Rathnakar P; Shenoy, Ashok K

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase ( p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460.

  17. What Causes Bad Breath?

    Science.gov (United States)

    ... Videos for Educators Search English Español What Causes Bad Breath? KidsHealth / For Teens / What Causes Bad Breath? Print en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  18. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  19. White Grape Juice Elicits a Lower Breath Hydrogen Response Compared with Apple Juice in Healthy Human Subjects: A Randomized Controlled Trial.

    Science.gov (United States)

    Erickson, Jennifer; Wang, Qi; Slavin, Joanne

    2017-06-01

    Diets low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS) are used to manage symptoms in individuals with irritable bowel syndrome. Although effective at reducing symptoms, the diet can be complex and restrictive. In addition, there are still large gaps in the literature and many foods with unclear effects in the gastrointestinal (GI) tract, like fruit juice. Although many fruits are allowable on a low-FODMAP diet, consumption of all fruit juice is generally cautioned due to the large fructose load contained in juice, regardless of the glucose concentration. Very little research exists regarding the importance of limiting fructose load during a low-FODMAP diet; therefore, individuals following a low-FODMAP diet may be unnecessarily restricting their diets. To determine whether there is a difference in GI tolerance between juice from a high-FODMAP fruit (apple juice) and juice from a low-FODMAP fruit (white grape juice) in healthy human subjects. The goal is to provide insight into the role of juice in a low-FODMAP diet. A double-blind, randomized, controlled crossover study was conducted with 40 healthy adults. Fasted subjects consumed 12 oz of either apple juice or white grape juice. Breath hydrogen measures were taken at baseline, 1, 2, and 3 hours. Subjective GI tolerance surveys were completed at the same time intervals and at 12 and 24 hours. Breath hydrogen and GI symptoms were assessed with area under the curve analysis. Significance was determined with a two-sided t test with a P value juice resulted in a greater mean breath hydrogen area under the curve at 23.3 ppm/hour (95% CI 13.0 to 33.6) compared with white grape juice at 5.8 ppm/hour (95% CI -4.6 to 16.1) (Pjuices were well tolerated and neither produced any severe symptoms in healthy adults. White grape juice consumption resulted in only a small rise in breath hydrogen, which may suggest excluding foods only because of the high fructose load could be

  20. Does the addition of deep breathing exercises to physiotherapy-directed early mobilisation alter patient outcomes following high-risk open upper abdominal surgery? Cluster randomised controlled trial.

    Science.gov (United States)

    Silva, Y R; Li, S K; Rickard, M J F X

    2013-09-01

    To investigate whether the inclusion of deep breathing exercises in physiotherapy-directed early mobilisation confers any additional benefit in reducing postoperative pulmonary complications (PPCs) when patients are treated once daily after elective open upper abdominal surgery. This study also compared postoperative outcomes following early and delayed mobilisation. Cluster randomised controlled trial. Single-centre study in a teaching hospital. Eighty-six high-risk patients undergoing elective open upper abdominal surgery. Three groups: early mobilisation (Group A), early mobilisation plus breathing exercises (Group B), and delayed mobilisation (mobilised from third postoperative day) plus breathing exercises (Group C). PPCs and postoperative outcomes [number of days until discharge from physiotherapy, physiotherapy input and length of stay (LOS)]. There was no significant difference in PPCs between Groups A and B. The LOS for Group A {mean 10.7 [standard deviation (SD) 5.0] days} was significantly shorter than the LOS for Groups B [mean 16.7 (SD 9.7) days] and C [mean 15.2 (SD 9.8) days; P=0.036]. The greatest difference was between Groups A and B (mean difference -5.93, 95% confidence interval -10.22 to -1.65; P=0.008). Group C had fewer smokers (26%) and patients with chronic obstructive pulmonary disease (0%) compared with Group B (53% and 14%, respectively). This may have led to fewer PPCs in Group C, but the difference was not significant. Despite Group C having fewer PPCs and less physiotherapy input, the number of days until discharge from physiotherapy and LOS were similar to Group B. The addition of deep breathing exercises to physiotherapy-directed early mobilisation did not further reduce PPCs compared with mobility alone. PPCs can be reduced with once-daily physiotherapy if the patients are mobilised to a moderate level of exertion. Delayed mobilisation tended to increase physiotherapy input and the number of days until discharge from physiotherapy

  1. An Ultrasonic Contactless Sensor for Breathing Monitoring

    Directory of Open Access Journals (Sweden)

    Philippe Arlotto

    2014-08-01

    Full Text Available The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569.

  2. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    Science.gov (United States)

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  3. The cerebral cost of breathing: an FMRI case-study in congenital central hypoventilation syndrome.

    Directory of Open Access Journals (Sweden)

    Mike Sharman

    Full Text Available Certain motor activities--like walking or breathing--present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks--including various frontal lobe areas--subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the "resting state" pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS, a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB, mechanical ventilation (MV restored the default mode network (DMN associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the

  4. Breath acetone to monitor life style interventions in field conditions: an exploratory study.

    Science.gov (United States)

    Samudrala, Devasena; Lammers, Gerwen; Mandon, Julien; Blanchet, Lionel; Schreuder, Tim H A; Hopman, Maria T; Harren, Frans J M; Tappy, Luc; Cristescu, Simona M

    2014-04-01

    To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions. Copyright © 2014 The Obesity Society.

  5. Temperatura do ar exalado, um novo biomarcador no controle da asma: um estudo piloto Exhaled breath temperature, a new biomarker in asthma control: a pilot study

    Directory of Open Access Journals (Sweden)

    Raul Emrich Melo

    2010-12-01

    Full Text Available OBJETIVO: Avaliar se a temperatura do ar exalado (TAE, medida por um método não invasivo, é efetiva no monitoramento de pacientes com asma não controlada. MÉTODOS: Estudo piloto com nove pacientes (sete mulheres e dois homens; média de idade: 39 anos com diagnóstico de asma por pelo menos um ano e sem uso de tratamento de manutenção por pelo menos três meses antes do início do estudo. Na primeira visita, os pacientes foram submetidos à espirometria e à medida da TAE. Todos os pacientes foram orientados a iniciar tratamento com budesonida/formoterol (200/6 µg inalatório a cada 12 h por seis semanas. Além disso, os pacientes com asma grave (VEF1 OBJECTIVE: To evaluate whether the exhaled breath temperature (EBT, measured by a noninvasive method, is an effective means of monitoring patients with uncontrolled asthma. METHODS: A pilot study comprising nine patients (seven women and two men; mean age: 39 years diagnosed with asthma at least one year prior to the beginning of the study and not having been under maintenance therapy for the last three months. In the first visit, the patients underwent spirometry and measurement of EBT. The patients were then instructed to use inhaled budesonide/formoterol (200/6 µg every 12 h for six weeks. In addition, the patients with severe asthma (FEV1 < 60% of predicted were instructed to use oral prednisolone (40 mg/day for five days. After six weeks, the patients underwent the same tests. RESULTS: All of the patients reported an improvement in the symptoms of asthma, as confirmed by a statistically significant increase in FEV1 from the first to the second visit (mean, 56.1% vs. 88.7% of predicted; p < 0.05. Five patients used oral prednisolone for the first five days of the treatment period. Six patients used additional doses of inhaled budesonide/formoterol (mean duration, 2.5 weeks. The EBT decreased significantly from the first to the second visit (mean EBT: 35.1ºC vs. 34.1ºC; p < 0

  6. Optical control of antibacterial activity

    Science.gov (United States)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  7. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    OpenAIRE

    Arden-Close, E; Yardley, L; Kirby, S; Thomas, M; Bruton, A

    2017-01-01

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retr...

  8. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad; Zacharapoulos, Nicholas; Pepelea, Mark; Klahr, Paul; Yu, Cedric X.

    2005-01-01

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CT scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging

  9. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  10. Effect of oxygenation on breath-by-breath response of the genioglossus muscle during occlusion.

    Science.gov (United States)

    Gauda, E B; Carroll, J L; McColley, S; Smith, P L

    1991-10-01

    We investigated the effect of different levels of O2 tension (hypoxia, normoxia, and hyperoxia) on the breath-by-breath onset and peak electromyographic (EMG) activity of the genioglossus (GG) muscle during a five-breath end-expiratory tracheal occlusion of 20- to 30-s duration. GG and diaphragmatic (DIA) EMG activity were measured with needle electrodes in eight anesthetized tracheotomized adult cats. In response to occlusion, the increase in the number of animals with GG EMG activity was different during hypoxia, normoxia, and hyperoxia (P = 0.003, Friedman). During hypoxia, eight of eight of the animals had GG EMG activity by the third occluded effort. In contrast, during normoxia, only four of eight and, during hyperoxia, only three of eight animals had GG EMG activity throughout the entire five-breath occlusion. Similarly, at release of the occlusion, more animals had persistent GG EMG activity on the postocclusion breaths during hypoxia than during normoxia or hyperoxia. Breath-by-breath augmentation of peak amplitude of the GG and DIA EMGs on each occluded effort was accentuated during hypoxia (P less than 0.01) and abolished during hyperoxia (P = 0.10). These results suggest that hypoxemia is a major determinant of the rapidity of onset, magnitude, and sustained activity of upper airway muscles during airway occlusion.

  11. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  12. Breathing and Singing: Objective Characterization of Breathing Patterns in Classical Singers.

    Science.gov (United States)

    Salomoni, Sauro; van den Hoorn, Wolbert; Hodges, Paul

    2016-01-01

    Singing involves distinct respiratory kinematics (i.e. movements of rib cage and abdomen) to quiet breathing because of different demands on the respiratory system. Professional classical singers often advocate for the advantages of an active control of the abdomen on singing performance. This is presumed to prevent shortening of the diaphragm, elevate the rib cage, and thus promote efficient generation of subglottal pressure during phonation. However, few studies have investigated these patterns quantitatively and inter-subject variability has hindered the identification of stereotypical patterns of respiratory kinematics. Here, seven professional classical singers and four untrained individuals were assessed during quiet breathing, and when singing both a standard song and a piece of choice. Several parameters were extracted from respiratory kinematics and airflow, and principal component analysis was used to identify typical patterns of respiratory kinematics. No group differences were observed during quiet breathing. During singing, both groups adapted to rhythmical constraints with decreased time of inspiration and increased peak airflow. In contrast to untrained individuals, classical singers used greater percentage of abdominal contribution to lung volume during singing and greater asynchrony between movements of rib cage and abdomen. Classical singers substantially altered the coordination of rib cage and abdomen during singing from that used for quiet breathing. Despite variations between participants, principal component analysis revealed consistent pre-phonatory inward movements of the abdominal wall during singing. This contrasted with untrained individuals, who demonstrated synchronous respiratory movements during all tasks. The inward abdominal movements observed in classical singers elevates intra-abdominal pressure and may increase the length and the pressure-generating capacity of rib cage expiratory muscles for potential improvements in voice

  13. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    Science.gov (United States)

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression.

    Science.gov (United States)

    Pontier, J-M; Lambrechts, K

    2014-06-01

    We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.

  15. Cardiorespiratory interactions during resistive load breathing.

    Science.gov (United States)

    Calabrese, P; Perrault, H; Dinh, T P; Eberhard, A; Benchetrit, G

    2000-12-01

    The addition to the respiratory system of a resistive load results in breathing pattern changes and in negative intrathoracic pressure increases. The aim of this study was to use resistive load breathing as a stimulus to the cardiorespiratory interaction and to examine the extent of the changes in heart rate variability (HRV) and respiratory sinus arrhythmia (RSA) in relation to the breathing pattern changes. HRV and RSA were studied in seven healthy subjects where four resistive loads were applied in a random order during the breath and 8-min recording made in each condition. The HRV spectral power components were computed from the R-R interval sequences, and the RSA amplitude and phase were computed from the sinusoid fitting the instantaneous heart rate within each breath. Adding resistive loads resulted in 1) increasing respiratory period, 2) unchanging heart rate, and 3) increasing HRV and changing RSA characteristics. HRV and RSA characteristics are linearly correlated to the respiratory period. These modifications appear to be linked to load-induced changes in the respiratory period in each individual, because HRV and RSA characteristics are similar at a respiratory period obtained either by loading or by imposed frequency breathing. The present results are discussed with regard to the importance of the breathing cycle duration in these cardiorespiratory interactions, suggesting that these interactions may depend on the time necessary for activation and dissipation of neurotransmitters involved in RSA.

  16. Breath biomarkers in toxicology.

    Science.gov (United States)

    Pleil, Joachim D

    2016-11-01

    Exhaled breath has joined blood and urine as a valuable resource for sampling and analyzing biomarkers in human media for assessing exposure, uptake metabolism, and elimination of toxic chemicals. This article focuses current use of exhaled gas, aerosols, and vapor in human breath, the methods for collection, and ultimately the use of the resulting data. Some advantages of breath are the noninvasive and self-administered nature of collection, the essentially inexhaustible supply, and that breath sampling does not produce potentially infectious waste such as needles, wipes, bandages, and glassware. In contrast to blood and urine, breath samples can be collected on demand in rapid succession and so allow toxicokinetic observations of uptake and elimination in any time frame. Furthermore, new technologies now allow capturing condensed breath vapor directly, or just the aerosol fraction alone, to gain access to inorganic species, lung pH, proteins and protein fragments, cellular DNA, and whole microorganisms from the pulmonary microbiome. Future applications are discussed, especially the use of isotopically labeled probes, non-targeted (discovery) analysis, cellular level toxicity testing, and ultimately assessing "crowd breath" of groups of people and the relation to dose of airborne and other environmental chemicals at the population level.

  17. SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Zheng, Y; Albani, D; Colussi, V; Dorth, J; Sohn, J [Case Western University, Cleveland, OH (United States)

    2016-06-15

    Purpose: To reduce internal target volume (ITV), respiratory management is a must in imaging and treatment for lung, liver, and breast cancers. We investigated the dosimetric accuracy of VMAT treatment delivery with a Response™ gating system linked to linear accelerator. Methods: The Response™ gating module designed to directly control radiation beam by breath-holding with a ABC system (Elekta AB, Stockholm, Sweden) was tested for VMAT treatments. Seven VMAT plans including three conventional and four stereotactic body radiotherapy (SBRT) cases were evaluated. Each plan was composed of two or four arcs of 6MV radiation beam with prescribed dose ranged from 1.8 to 9 Gy per fraction. Each plan was delivered continuously without gating and delivered with multiple interruptions by the ResponseTM gating module with a 20 or 30 second breath-holding period. MapCheck2 and Gafchromic EBT3 films sandwiched in MapPHAN were used to measure the delivered dose with and without gating. Films were scanned on a flatbed color scanner, and red channel was extracted for film dosimetry. Gamma analysis was performed to analyze the dosimetrical accuracy of the radiation delivery with gating. Results: The measured doses with gating remarkably agree with the planned dose distributions in the results of gamma index passing rate (within 20% isodose; >98% for 3%/3mm and >92% for 2%/2mm in MapCheck2, and >91% for 3%/3mm criteria in EBT3 film except one case which was for large target and highly modulated). No significant difference (student t-test: p-value < 0.0005) was shown between the doses delivered with and without gating. There was no indication of radiation gap or overlapping during deliver interruption in film dosimetry. Conclusion: The Response™ gating system can be safely used during VMAT treatment. The accurate performance of the gating system linked to ABC can contribute to ITV reduction for SBRT using VMAT.

  18. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  19. Optogenetic control of epileptiform activity

    DEFF Research Database (Denmark)

    Tønnesen, Jan; Sørensen, Andreas T; Deisseroth, Karl

    2009-01-01

    such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under...... that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.......The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether...

  20. Mapleson′s breathing systems

    Directory of Open Access Journals (Sweden)

    Tej K Kaul

    2013-01-01

    Full Text Available Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages.

  1. Active control of the noise

    International Nuclear Information System (INIS)

    Rodriguez V, Luis Alfonso; Lopez Q, Jose German

    2001-01-01

    The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for

  2. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  3. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.

  4. Shortness of Breath

    Science.gov (United States)

    ... filled with air (called pneumotho- rax), it will hinder expansion of the lung, resulting in shortness of ... of Chest Physi- cians. Shortness of Breath: Patient Education. http: / / www. onebreath. org/ document. doc? id= 113. ...

  5. Breath-Holding Spells

    Science.gov (United States)

    ... reviewed: October 2016 More on this topic for: Parents Is It Normal for Children to Hold Their Breath? Taming Tempers Disciplining Your Child Disciplining Your Toddler Temper Tantrums Separation Anxiety View more About Us Contact Us Partners ...

  6. Inflammatory bowel disease and patterns of volatile organic compounds in the exhaled breath of children: A case-control study using Ion Molecule Reaction-Mass Spectrometry.

    Science.gov (United States)

    Monasta, Lorenzo; Pierobon, Chiara; Princivalle, Andrea; Martelossi, Stefano; Marcuzzi, Annalisa; Pasini, Francesco; Perbellini, Luigi

    2017-01-01

    Inflammatory bowel diseases (IBD) profoundly affect quality of life and have been gradually increasing in incidence, prevalence and severity in many areas of the world, and in children in particular. Patients with suspected IBD require careful history and clinical examination, while definitive diagnosis relies on endoscopic and histological findings. The aim of the present study was to investigate whether the alveolar air of pediatric patients with IBD presents a specific volatile organic compounds' (VOCs) pattern when compared to controls. Patients 10-17 years of age, were divided into four groups: Crohn's disease (CD), ulcerative colitis (UC), controls with gastrointestinal symptomatology, and surgical controls with no evidence of gastrointestinal problems. Alveolar breath was analyzed by ion molecule reaction mass spectrometry. Four models were built starting from 81 molecules plus the age of subjects as independent variables, adopting a penalizing LASSO logistic regression approach: 1) IBDs vs. controls, finally based on 18 VOCs plus age (sensitivity = 95%, specificity = 69%, AUC = 0.925); 2) CD vs. UC, finally based on 13 VOCs plus age (sensitivity = 94%, specificity = 76%, AUC = 0.934); 3) IBDs vs. gastroenterological controls, finally based on 15 VOCs plus age (sensitivity = 94%, specificity = 65%, AUC = 0.918); 4) IBDs vs. controls, built starting from the 21 directly or indirectly calibrated molecules only, and finally based on 12 VOCs plus age (sensitivity = 94%, specificity = 71%, AUC = 0.888). The molecules identified by the models were carefully studied in relation to the concerned outcomes. This study, with the creation of models based on VOCs profiles, precise instrumentation and advanced statistical methods, can contribute to the development of new non-invasive, fast and relatively inexpensive diagnostic tools, with high sensitivity and specificity. It also represents a crucial step towards gaining further insights on the etiology of IBD through the

  7. Effects of auto-servo ventilation on patients with sleep-disordered breathing, stable systolic heart failure and concomitant diastolic dysfunction: subanalysis of a randomized controlled trial.

    Science.gov (United States)

    Birner, Christoph; Series, Frederic; Lewis, Keir; Benjamin, Amit; Wunderlich, Silke; Escourrou, Pierre; Zeman, Florian; Luigart, Ruth; Pfeifer, Michael; Arzt, Michael

    2014-01-01

    Systolic heart failure (HF) is frequently accompanied by diastolic dysfunction and sleep-disordered breathing (SDB). The objective of this subset analysis was to determine effect sizes of auto-servo ventilation (ASV and biphasic positive airway pressure ASV) on echocardiographic measures of diastolic function in patients with systolic HF and SDB. Thirty-two patients with stable systolic HF, concomitant diastolic dysfunction [age 66 ± 9 years old, left ventricular (LV) ejection fraction: 30 ± 7% and New York Heart Association class II: 72%] and SDB (apnea-hypopnea index, AHI: 48 ± 19/h; 53% had predominantly obstructive sleep apnea) receiving either ASV (n = 19) or optimal medical treatment (control, n = 13) were analyzed in a randomized controlled clinical trial. Polysomnographic and echocardiographic measurements were obtained at baseline and after 12 weeks. AHI significantly improved in the ASV group compared to the control group (-39 ± 18 vs. -0.2 ± 13.2/h, p control visit, diastolic function assessed by the isovolumetric relaxation time (-10.3 ± 26.1 vs. 9.3 ± 49.1, p = 0.48) and deceleration time (-43.9 ± 88.8 vs. 12.4 ± 68.8, p = 0.40) tended to improve after ASV treatment, but did not reach statistical significance. Likewise, the proportion of patients whose diastolic dysfunction improved was nonsignificantly higher in the ASV than in the control group, respectively (37 vs. 15%, p = 0.25). ASV treatment efficiently abolishes SDB in patients with stable systolic HF and concomitant diastolic dysfunction, and was associated with a statistically nonsignificant improvement in measures of diastolic dysfunction. Thus, these data provide estimates of effect size and justify the evaluation of the effects of ASV on diastolic function in larger randomized controlled trials. Copyright © 2013 S. Karger AG, Basel.

  8. Breath in the technoscientific imaginary

    OpenAIRE

    Rose, Arthur

    2016-01-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentr...

  9. Key Brainstem Structures Activated during Hypoxic Exposure in One-day-old Mice Highlight Characteristics for Modeling Breathing Network in Premature Infants

    Science.gov (United States)

    Joubert, Fanny; Loiseau, Camille; Perrin-Terrin, Anne-Sophie; Cayetanot, Florence; Frugière, Alain; Voituron, Nicolas; Bodineau, Laurence

    2016-01-01

    We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral, and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas ~45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labeled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by (i) the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, (ii) the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modeling the breathing network of premature infants. PMID:28018238

  10. Key brainstem structures activated during hypoxic exposure in one-day-old mice highlight characteristics for modelling breathing network in premature infants

    Directory of Open Access Journals (Sweden)

    Fanny JOUBERT

    2016-12-01

    Full Text Available We mapped and characterized changes in the activity of brainstem cell groups under hypoxia in one-day-old newborn mice, an animal model in which the central nervous system at birth is particularly immature. The classical biphasic respiratory response characterized by transient hyperventilation, followed by severe ventilation decline, was associated with increased c-FOS immunoreactivity in brainstem cell groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla, retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or no activated catecholaminergic cells activated in the medulla oblongata, whereas approximately 45% of the c-FOS-positive cells in the dorsal subcoeruleus were co-labelled. Approximately 30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas only a small portion were labelled for serotonin in the raphe magnus nucleus. None of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labelled for PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old mice is characterized by i the activation of catecholaminergic cells of the dorsal subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence previously reported in the fetus but not in newborns, ii the weak activation of catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved in hypoxic hyperventilation, and iii the absence of PHOX2B-positive cells activated in the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could highlight characteristics for modelling the breathing network of premature infants.

  11. The Cerebral Cost of Breathing: An fMRI Case-Study in Congenital Central Hypoventilation Syndrome

    Science.gov (United States)

    Sharman, Mike; Gallea, Cécile; Lehongre, Katia; Galanaud, Damien; Nicolas, Nathalie; Similowski, Thomas; Cohen, Laurent; Straus, Christian; Naccache, Lionel

    2014-01-01

    Certain motor activities - like walking or breathing - present the interesting property of proceeding either automatically or under voluntary control. In the case of breathing, brainstem structures located in the medulla are in charge of the automatic mode, whereas cortico-subcortical brain networks - including various frontal lobe areas - subtend the voluntary mode. We speculated that the involvement of cortical activity during voluntary breathing could impact both on the “resting state” pattern of cortical-subcortical connectivity, and on the recruitment of executive functions mediated by the frontal lobe. In order to test this prediction we explored a patient suffering from central congenital hypoventilation syndrome (CCHS), a very rare developmental condition secondary to brainstem dysfunction. Typically, CCHS patients demonstrate efficient cortically-controlled breathing while awake, but require mechanically-assisted ventilation during sleep to overcome the inability of brainstem structures to mediate automatic breathing. We used simultaneous EEG-fMRI recordings to compare patterns of brain activity between these two types of ventilation during wakefulness. As compared with spontaneous breathing (SB), mechanical ventilation (MV) restored the default mode network (DMN) associated with self-consciousness, mind-wandering, creativity and introspection in healthy subjects. SB on the other hand resulted in a specific increase of functional connectivity between brainstem and frontal lobe. Behaviorally, the patient was more efficient in cognitive tasks requiring executive control during MV than during SB, in agreement with her subjective reports in everyday life. Taken together our results provide insight into the cognitive and neural costs of spontaneous breathing in one CCHS patient, and suggest that MV during waking periods may free up frontal lobe resources, and make them available for cognitive recruitment. More generally, this study reveals how the active

  12. Nitric oxide rectifies acid-base disturbance and modifies thyroid hormone activity during net confinement of air-breathing fish (Anabas testudineus Bloch).

    Science.gov (United States)

    Peter, Valsa S

    2013-01-15

    Nitric oxide (NO), a short-lived freely diffusible radical gas that acts as an important biological signal, regulates an impressive spectrum of physiological functions in vertebrates including fishes. The action of NO, however, on thyroid hormone status and its role in the integration of acid-base, osmotic and metabolic balances during stress are not yet delineated in fish. Sodium nitroprusside (SNP), a NO donor, was employed in the present study to investigate the role of NO in the stressed air-breathing fish Anabas testudineus. Short-term SNP treatment (1 mM; 30 min) interacted negatively with thyroid axis, as evident in the fall of plasma thyroxine in both stressed and non-stressed fish. In contrast, the cortisol responsiveness to NO was negligible. SNP challenge produced systemic alkalosis, hypocapnia and hyperglycemia in non-stressed fish. Remarkable acid-base compensation was found in fish kept for 60 min net confinement where a rise in blood pH and HCO(3) content occurred with a reduction in PCO(2) content. SNP challenge in these fish, on the contrary, produced a rise in oxygen load together with hypocapnia but without an effect on HCO(3) content, indicating a modulator role of NO in respiratory gas transport during stress response. SNP treatment reduced Na(+), K(+) ATPase activity in the gill, intestine and liver of both stressed and non-stressed fish, and this suggests that stress state has little effect on the NO-driven osmotic competence of these organs. On the other hand, a modulatory effect of NO was found in the kidney which showed a differential response to SNP, emphasizing a key role of NO in kidney ion transport and its sensitivity to stressful condition. H(+)-ATPase activity, an index of H(+) secretion, downregulated in all the organs of both non-stressed and stressed fish except in the gill of non-stressed fish and this supports a role for NO in promoting alkalosis. The data indicate that, (1) NO interacts antagonistically with T(4), (2) modifies

  13. Variations in CT determination of target volume with active breath co-ordinate in radiotherapy for post-operative gastric cancer.

    Science.gov (United States)

    Li, Gui-Chao; Zhang, Zhen; Ma, Xue-Jun; Yu, Xiao-Li; Hu, Wei-Gang; Wang, Jia-Zhou; Li, Qi-Wen; Liang, Li-Ping; Shen, Li-Jun; Zhang, Hui; Fan, Ming

    2016-01-01

    To investigate interobserver and inter-CT variations in using the active breath co-ordinate technique in the determination of clinical tumour volume (CTV) and normal organs in post-operative gastric cancer radiotherapy. Ten gastric cancer patients were enrolled in our study, and four radiation oncologists independently determined the CTVs and organs at risk based on the CT simulation data. To determine interobserver and inter-CT variation, we evaluated the maximum dimensions, derived volume and distance between the centres of mass (CMs) of the CTVs. We assessed the reliability in CTV determination among the observers by conformity index (CI). The average volumes ± standard deviation (cm(3)) of the CTV, liver, left kidney and right kidney were 674 ± 138 (range, 332-969), 1000 ± 138 (range, 714-1320), 149 ± 13 (range, 104-183) and 141 ± 21 (range, 110-186) cm(3), respectively. The average inter-CT distances between the CMs of the CTV, liver, left kidney and right kidney were 0.40, 0.56, 0.65 and 0.6 cm, respectively; the interobserver values were 0.98, 0.53, 0.16 and 0.15 cm, respectively. In the volume size of CTV for post-operative gastric cancer, there were significant variations among multiple observers, whereas there was no variation between different CTs. The slices in which variations more likely occur were the slices of the lower verge of the hilum of the spleen and porta hepatis, then the paraoesophageal lymph nodes region and abdominal aorta, and the inferior vena cava, and the variation in the craniocaudal orientation from the interobserver was more predominant than that from inter-CT. First, this is the first study to evaluate the interobserver and inter-CT variations in the determination of the CTV and normal organs in gastric cancer with the use of the active breath co-ordinate technique. Second, we analysed the region where variations most likely occur. Third, we investigated the influence of interobserver variation on

  14. Postoperative inspiratory muscle training in addition to breathing exercises and early mobilization improves oxygenation in high-risk patients after lung cancer surgery: a randomized controlled trial.

    Science.gov (United States)

    Brocki, Barbara Cristina; Andreasen, Jan Jesper; Langer, Daniel; Souza, Domingos Savio R; Westerdahl, Elisabeth

    2016-05-01

    The aim was to investigate whether 2 weeks of inspiratory muscle training (IMT) could preserve respiratory muscle strength in high-risk patients referred for pulmonary resection on the suspicion of or confirmed lung cancer. Secondarily, we investigated the effect of the intervention on the incidence of postoperative pulmonary complications. The study was a single-centre, parallel-group, randomized trial with assessor blinding and intention-to-treat analysis. The intervention group (IG, n = 34) underwent 2 weeks of postoperative IMT twice daily with 2 × 30 breaths on a target intensity of 30% of maximal inspiratory pressure, in addition to standard postoperative physiotherapy. Standard physiotherapy in the control group (CG, n = 34) consisted of breathing exercises, coughing techniques and early mobilization. We measured respiratory muscle strength (maximal inspiratory/expiratory pressure, MIP/MEP), functional performance (6-min walk test), spirometry and peripheral oxygen saturation (SpO2), assessed the day before surgery and again 3-5 days and 2 weeks postoperatively. Postoperative pulmonary complications were evaluated 2 weeks after surgery. The mean age was 70 ± 8 years and 57.5% were males. Thoracotomy was performed in 48.5% (n = 33) of cases. No effect of the intervention was found regarding MIP, MEP, lung volumes or functional performance at any time point. The overall incidence of pneumonia was 13% (n = 9), with no significant difference between groups [IG 6% (n = 2), CG 21% (n = 7), P = 0.14]. An improved SpO2 was found in the IG on the third and fourth postoperative days (Day 3: IG 93.8 ± 3.4 vs CG 91.9 ± 4.1%, P = 0.058; Day 4: IG 93.5 ± 3.5 vs CG 91 ± 3.9%, P = 0.02). We found no association between surgical procedure (thoracotomy versus thoracoscopy) and respiratory muscle strength, which was recovered in both groups 2 weeks after surgery. Two weeks of additional postoperative IMT, compared with standard physiotherapy alone, did not preserve

  15. Imposed Work of Breathing and Breathing Comfort of Nonintubated Volunteers Breathing with Three Portable Ventilators and a Critical Care Ventilator

    National Research Council Canada - National Science Library

    Austin, Paul

    2001-01-01

    .... The purpose of this study was to assess the imposed inspiratory work of breathing and breathing comfort of nonintubated healthy volunteers breathing spontaneously through three portable ventilators...

  16. Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Long, Frederick R.; Adler, Brent H. [Children' s Radiological Institute, Children' s Hospital, Columbus, OH (United States); Williams, Roger S. [Christiana Hospitals, Department of Radiology, Newark, DE (United States); Castile, Robert G. [Children' s Hospital, Section of Pulmonary Medicine, Department of Pediatrics, Columbus, OH (United States)

    2005-11-01

    Respiratory motion and low lung volumes limit the quality of HRCT examinations in infants and young children. To assess the effects of respiratory motion and lung inflation on the ability to diagnose airway abnormalities and air trapping (AT) using HRCT in infants with cystic fibrosis (CF). HRCT images of the lungs were obtained at four anatomical levels in 16 sedated children (age 2.4{+-}1.1 years, mean{+-}SD) with CF using controlled ventilation at full lung inflation (CVCT-I), at resting end exhalation (CVCT-E), and during quiet breathing (CT-B). Two blinded reviewers independently and then by consensus scored all images for the presence or absence of bronchiectasis (BE), bronchial wall thickening (BWT), and AT. Of the 64 images evaluated, BE was identified in 19 (30%) of the CVCT-I images compared to 6 (9%) of the CVCT-E images (P=0.006) and 4 (6%) of the CT-B images (P=0.044). AT was seen in 29 (45%) of the CVCT-E images compared to 14 (22%) of the CVCT-I images (P=0.012) and 12 (19%) of the CT-B images (P=0.012). There were no significant differences in the detection of BWT among the three methods. Summary: In infants with CF, fully inflating the lung improved the ability to diagnose early BE, and obtaining motion-free images at end exhalation enhanced the detection of AT. (orig.)

  17. Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress.

    Science.gov (United States)

    Paital, Biswaranjan

    2014-01-01

    Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

  18. Cerebral metabolism and vascular reactivity during breath-hold and hypoxic challenge in freedivers and healthy controls

    DEFF Research Database (Denmark)

    Vestergaard, Mark B.; Larsson, Henrik B.W.

    2017-01-01

    blood flow (CBF) and metabolic rate of oxygen (CMRO2), and magnetic resonance spectroscopy was used to measure the cerebral lactate, glutamate+glutamine, N-acetylaspartate and phosphocreatine+creatine concentrations in the occipital lobe. Fifteen freedivers and seventeen non-diver controls participated...

  19. Advances in chemical sensing technologies for VOCs in breath for security/threat assessment, illicit drug detection, and human trafficking activity.

    Science.gov (United States)

    Giannoukos, S; Agapiou, A; Taylor, S

    2018-01-17

    On-site chemical sensing of compounds associated with security and terrorist attacks is of worldwide interest. Other related bio-monitoring topics include identification of individuals posing a threat from illicit drugs, explosive manufacturing, as well as searching for victims of human trafficking and collapsed buildings. The current status of field analytical technologies is directed towards the detection and identification of vapours and volatile organic compounds (VOCs). Some VOCs are associated with exhaled breath, where research is moving from individual breath testing (volatilome) to cell breath (microbiome) and most recently to crowd breath metabolites (exposome). In this paper, an overview of field-deployable chemical screening technologies (both stand-alone and those with portable characteristics) is given with application to early detection and monitoring of human exposome in security operations. On-site systems employed in exhaled breath analysis, i.e. mass spectrometry (MS), optical spectroscopy and chemical sensors are reviewed. Categories of VOCs of interest include (a) VOCs in human breath associated with exposure to threat compounds, and (b) VOCs characteristic of, and associated with, human body odour (e.g. breath, sweat). The latter are relevant to human trafficking scenarios. New technological approaches in miniaturised detection and screening systems are also presented (e.g. non-scanning digital light processing linear ion trap MS (DLP-LIT-MS), nanoparticles, mid-infrared photo-acoustic spectroscopy and hyphenated technologies). Finally, the outlook for rapid and precise, real-time field detection of threat traces in exhaled breath is revealed and discussed.

  20. Pesquisa activa de pacientes con síntomas respiratorios en el Policlínico Municipal Active screening in patients with breathing symptoms in the Municipal Polyclinic

    Directory of Open Access Journals (Sweden)

    Isabel M Pérez Pérez

    Full Text Available Se realizó una investigación descriptiva y transversal que consistió en una pesquisa activa en 710 pacientes con síntomas respiratorios, pertenecientes al área de salud "Municipal" de Santiago de Cuba durante el año 2006. Se constituyó un equipo multidisciplinario de la Unidad Municipal de Higiene y Epidemiología y del área de salud, el cual trabajó en 210 viviendas seleccionadas por tener antecedentes de tuberculosis. Los principales factores de riesgo identificados para contraer la enfermedad fueron: el hábito de fumar, la edad mayor de 65 años y el alcoholismo, además de las condiciones socioeconómicas desfavorables y el hacinamiento. Setenta personas (9,8 % tenían síntomas respiratorios de más de 14 días y una fue diagnosticada con la afección. Los resultados del área de salud en la vigilancia especializada, previa a la investigación, fueron deficientes. De los pesquisados, 24 % estaban infectados por Micobacterium tuberculosis, según los resultados de la prueba de tuberculina, y de ellos, 9 % fueron hiperérgicos.A descriptive and cross-sectional investigation was carried out which consisted of an active screening in 710 patients with breathing symptoms, belonging to the "Municipal" health area of Santiago de Cuba during the year 2006. A multidisciplinary team of the Municipal Unit of Hygiene and Epidemiology and of the health area was constituted, which worked in 210 houses selected because they had a history of tuberculosis. The main risk factors identified to develop the disease were: the smoking habit, more than 65 years old and alcoholism, besides the unfavorable socioeconomic conditions and overcrowding. Seventy people (9,8% had breathing symptoms of more than 14 days and one was diagnosed with the disorder. The results of the health area in the specialized surveillance, previous to the investigation, were poor. Of the screened patients, 24% were infected by Micobacterium tuberculosis, according to the results of

  1. Effects of age and physical activity on the autonomic control of heart rate in healthy men

    Directory of Open Access Journals (Sweden)

    R.C. Melo

    2005-09-01

    Full Text Available The effects of the aging process and an active life-style on the autonomic control of heart rate (HR were investigated in nine young sedentary (YS, 23 ± 2.4 years, 16 young active (YA, 22 ± 2.1 years, 8 older sedentary (OS, 63 ± 2.4 years and 8 older active (OA, 61 ± 1.1 years healthy men. Electrocardiogram was continuously recorded for 15 min at rest and for 4 min in the deep breathing test, with a breath rate of 5 to 6 cycles/min in the supine position. Resting HR and RR intervals were analyzed by time (RMSSD index and frequency domain methods. The power spectral components are reported in normalized units (nu at low (LF and high (HF frequency, and as the LF/HF ratio. The deep breathing test was analyzed by the respiratory sinus arrhythmia indices: expiration/inspiration ratio (E/I and inspiration-expiration difference (deltaIE. The active groups had lower HR and higher RMSSD index than the sedentary groups (life-style condition: sedentary vs active, P < 0.05. The older groups showed lower HFnu, higher LFnu and higher LF/HF ratio than the young groups (aging effect: young vs older, P < 0.05. The OS group had a lower E/I ratio (1.16 and deltaIE (9.7 bpm than the other groups studied (YS: 1.38, 22.4 bpm; YA: 1.40, 21.3 bpm; OA: 1.38, 18.5 bpm. The interaction between aging and life-style effects had a P < 0.05. These results suggest that aging reduces HR variability. However, regular physical activity positively affects vagal activity on the heart and consequently attenuates the effects of aging in the autonomic control of HR.

  2. Optimization of sampling parameters for standardized exhaled breath sampling.

    Science.gov (United States)

    Doran, Sophie; Romano, Andrea; Hanna, George B

    2017-09-05

    The lack of standardization of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several devices have been developed to control sampling parameters and to concentrate volatile organic compounds (VOCs) onto thermal desorption (TD) tubes and subsequently transport those tubes for laboratory analysis. We conducted three experiments to investigate (i) the fraction of breath sampled (whole vs. lower expiratory exhaled breath); (ii) breath sample volume (125, 250, 500 and 1000ml) and (iii) breath sample flow rate (400, 200, 100 and 50 ml/min). The target VOCs were acetone and potential volatile biomarkers for oesophago-gastric cancer belonging to the aldehyde, fatty acids and phenol chemical classes. We also examined the collection execution time and the impact of environmental contamination. The experiments showed that the use of exhaled breath-sampling devices requires the selection of optimum sampling parameters. The increase in sample volume has improved the levels of VOCs detected. However, the influence of the fraction of exhaled breath and the flow rate depends on the target VOCs measured. The concentration of potential volatile biomarkers for oesophago-gastric cancer was not significantly different between the whole and lower airway exhaled breath. While the recovery of phenols and acetone from TD tubes was lower when breath sampling was performed at a higher flow rate, other VOCs were not affected. A dedicated 'clean air supply' overcomes the contamination from ambient air, but the breath collection device itself can be a source of contaminants. In clinical studies using VOCs to diagnose gastro-oesophageal cancer, the optimum parameters are 500mls sample volume

  3. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    Science.gov (United States)

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  4. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Breathing, feeding, and neuroprotection

    National Research Council Canada - National Science Library

    Homma, Ikuo; Shioda, S

    2006-01-01

    ... of knowledge of brain functions and morphology. Akiyoshi Hosoyamada, M.D., Ph.D. President Showa University, Tokyo 142-8555, Japan December 2005Preface Brain research is on the march, with several advanced technical developments and new findings uncovered almost daily. Within the brain-research fields, we focus on breathing, neuroprotection, an...

  6. Breathing Like a Fish

    Science.gov (United States)

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  7. Breathing difficulty - lying down

    Science.gov (United States)

    ... other conditions that lead to it) Panic disorder Sleep apnea Snoring Home Care Your health care provider may recommend self-care measures. For example, weight loss may be suggested if you are obese. When to Contact a Medical Professional If you have any unexplained difficulty in breathing ...

  8. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  9. The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model.

    Science.gov (United States)

    Cardona, Pere-Joan; Prats, Clara

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB). In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs), which favor enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM) (known as "TBPATCH") using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favor the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (BAM) (large or small in the lower and upper lobes respectively), which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analyzed play some role, the small BAM is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB.

  10. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  11. Associations of sedentary time and moderate-vigorous physical activity with sleep-disordered breathing and polysomnographic sleep in community-dwelling adults.

    Science.gov (United States)

    Kline, Christopher E; Krafty, Robert T; Mulukutla, Suresh; Hall, Martica H

    2017-05-01

    The purpose of this study was to evaluate the relationship between daytime activity (sedentary time, moderate- to vigorous-intensity physical activity [MVPA]) and indices of polysomnographically (PSG) assessed sleep, including sleep-disordered breathing (SDB). One hundred and thirty-six adults (65% female, 59.8 ± 9.1 years, body mass index [BMI] 30.3 ± 6.9 kg m -2 ) provided daily estimates of time spent in light-, moderate-, and vigorous-intensity activity for 6-14 days (mean 9.9 ± 1.8 days) prior to laboratory PSG. Daily sedentary time was calculated as the amount of time spent awake and not in light-, moderate-, or vigorous-intensity activity; time spent in moderate- and vigorous-intensity activity were combined for MVPA. Indices of PSG sleep included timing (sleep midpoint), duration (total sleep time), continuity (sleep efficiency), depth (% slow-wave sleep), and SDB (apnea-hypopnea index [AHI]). Using median splits of sedentary time and MVPA, analyses of covariance examined their relationship with sleep following adjustment for age, sex, race, employment, education, BMI, existing cardiovascular disease, depression history, and mean daily wake time. Binary logistic regression examined the odds of having at least mild-severity SDB (AHI ≥ 5) according to sedentary time, MVPA, and their combination. Adults with above-median sedentary time (i.e., >841.9 min/day) had significantly greater AHI (P = .04) and lower odds of mild SDB (P = .03) compared to adults with low sedentary time; adults with high MVPA (>30.5 min/day) had significantly lower AHI compared to adults with low MVPA (P = .04). When examined in the same model, adults with high sedentary time and low MVPA had significantly higher AHI (P < .01) and higher odds of having mild SDB (P = .03) than all the other groups. No other sleep measures were related to sedentary time, MVPA, or their combination. Sedentary time and MVPA were associated with SDB. Whether reducing sedentary

  12. Breathing pattern and head posture: changes in craniocervical angles.

    Science.gov (United States)

    Sabatucci, A; Raffaeli, F; Mastrovincenzo, M; Luchetta, A; Giannone, A; Ciavarella, D

    2015-04-01

    The aim of this study was to observe the influence of oral breathing on head posture and to establish possible postural changes observing the variation of craniocervical angles NSL/OPT and NSL/CVT between oral breathing subjects and physiological breathing subjects. A cross-sectional study was conducted. The sample included 115 subject, 56 boys and 59 girls, 5-22-year-old. Among these, 80 were classified as oral breathers and 35 as physiological breathers. The diagnosis of oral breathing was carried out thanks to characteristic signs and symptoms evaluated on clinical examination, the analysis of characteristic X-ray images, ENT examination with active anterior rhinomanometric (AAR) test. The structural and postural analysis was carried out, calculating the craniofacial angles NSL/OPT and NSL/CVT. Both NSL/OPT and NSL/CVT appear to be significantly greater to those observed in physiological breathing patients. This means that patients who tend to breathe through the mouth rather than exclusively through the nose show a reduction of cervical lordosis and a proinclination of the head. Our study confirms that the oral breathing modifies head position. The significant increase of the craniocervical angles NSL/OPT and NSL/CVT in patients with this altered breathing pattern suggests an elevation of the head and a greater extension of the head compared with the cervical spine. So, to correct the breathing pattern early, either during childhood or during adolescence, can lead to a progressive normalization of craniofacial morphology and head posture.

  13. Study of the correlations between fractional exhaled nitric oxide in exhaled breath and atopic status, blood eosinophils, FCER2 mutation, and asthma control in Vietnamese children

    Directory of Open Access Journals (Sweden)

    Nguyen-Thi-Bich H

    2016-09-01

    Full Text Available Hanh Nguyen-Thi-Bich,1 Huong Duong-Thi-Ly,2 Vu Thi Thom,2 Nhung Pham-Thi-Hong,2 Long Doan Dinh,2 Huong Le-Thi-Minh,1 Timothy John Craig,3 Sy Duong-Quy3,4 1Department of Immunology, Allergology, and Rheumatology, National Hospital of Pediatrics, Hanoi, Vietnam; 2School of Medicine and Pharmacy, Vietnam National University Hanoi, Vietnam; 3Department of Medicine, Penn State University, Hershey, PA, USA; 4Department of Respiratory Diseases, Lam Dong Medical College, Dalat, Vietnam Introduction: Fractional exhaled nitric oxide (FENO is a biomarker of airway inflammation in asthma. The measurement of FENO is utilized to assist in the diagnosis and treatment of children with asthma, especially for those treated with inhaled corticosteroids. Objectives: The aims of this study were to evaluate the correlations between FENO and atopic status, blood eosinophil levels, FCER2 mutation, and asthma control in Vietnamese children. Subjects and methods: This was a prospective and descriptive study approved by the local Ethical Board. All children with uncontrolled asthma, seen in the National Hospital of Pediatrics (Hanoi, Vietnam, were included. Exhaled breath FENO, blood eosinophils, skin prick test, total IgE, asthma control test (ACT, and FCER2 gene polymorphism were performed at inclusion. They were followed up at 3 months to evaluate clinical status, FENO levels, and ACT. Results: Forty-two children with uncontrolled asthma with a mean age of 10±3 years (6–16 years were included. The male/female ratio was 2.5/1. The mean FENO levels were 26±25 ppb. FENO was significantly higher in patients with a positive skin prick test for respiratory allergens (P<0.05. FENO was significantly correlated with blood eosinophil levels (r=0.5217; P=0.0004. Five of the 32 subjects (15.6% had a mutation of FCER2 gene (rs28364072 SNP. In this group, the levels of FENO were highest (37±10 ppb; P<0.05. The levels of FENO were significantly decreased after 3 months of

  14. Effect of device-guided breathing exercises on blood pressure in hypertensive patients with type 2 diabetes mellitus : A randomized controlled trial

    NARCIS (Netherlands)

    Logtenberg, Susan J.; Kleefstra, Nanne; Houweling, Sebastlaan T.; Groenier, Klaas H.; Bilo, Henk J.

    Objective In patients with type 2 diabetes mellitus (DM2), it is hard to reach treatment objectives for blood pressure (BP) with classical treatment options. Recently, reducing breathing frequency has been advocated as a method to reduce BP. We examined if an electronic device such as Resperate, by

  15. Sudarshan kriya yoga: Breathing for health

    Directory of Open Access Journals (Sweden)

    Sameer A Zope

    2013-01-01

    Full Text Available Breathing techniques are regularly recommended for relaxation, stress management, control of psychophysiological states, and to improve organ function. Yogic breathing, defined as a manipulation of breath movement, has been shown to positively affect immune function, autonomic nervous system imbalances, and psychological or stress-related disorders. The aim of this study was to assess and provide a comprehensive review of the physiological mechanisms, the mind-body connection, and the benefits of Sudarshan Kriya Yoga (SKY in a wide range of clinical conditions. Various online databases searched were Medline, Psychinfo, EMBASE, and Google Scholar. All the results were carefully screened and articles on SKY were selected. The references from these articles were checked to find any other potentially relevant articles. SKY, a unique yogic breathing practice, involves several types of cyclical breathing patterns, ranging from slow and calming to rapid and stimulating. There is mounting evidence to suggest that SKY can be a beneficial, low-risk, low-cost adjunct to the treatment of stress, anxiety, post-traumatic stress disorder, depression, stress-related medical illnesses, substance abuse, and rehabilitation of criminal offenders.

  16. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    In this paper active controllers and recursive backstepping controllers are designed for a third order chaotic system. The performances of these controllers in the control of the dynamics of the chaotic system are investigated numerically and are found to be effective. Comparison of their transient performances show that the ...

  17. Developing Internal Controls through Activities

    Science.gov (United States)

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  18. Learn More Breathe Better

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    Chronic obstructive pulmonary disease (COPD) is a serious lung disease that makes breathing very difficult and can affect your quality of life. Learn the causes of COPD and what you can do to prevent it.  Created: 11/16/2011 by National Center for Chronic Disease Prevention and Health Promotion, Division of Adult and Community Health (NCCDPHP, DACH).   Date Released: 11/16/2011.

  19. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    Science.gov (United States)

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. © 2014. Published by The Company of Biologists Ltd.

  20. 14C-urea breath test for the detection of Helicobacter pylori

    NARCIS (Netherlands)

    Veldhuyzen van Zanten, S. J.; Tytgat, K. M.; Hollingsworth, J.; Jalali, S.; Rshid, F. A.; Bowen, B. M.; Goldie, J.; Goodacre, R. L.; Riddell, R. H.; Hunt, R. H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14C-urea breath test which uses 5 microCi 14C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared

  1. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  2. A novel nonpharmacological intervention – breathing-controlled electrical stimulation for neuropathic pain management after spinal cord injury – a preliminary study

    Directory of Open Access Journals (Sweden)

    Li S

    2016-11-01

    Full Text Available Shengai Li,1,2 Matthew Davis,1 Joel E Frontera,1 Sheng Li1,2 1Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, 2TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA Objective: The objective of this study was to examine the effectiveness of a novel nonpharmacological intervention – breathing-controlled electrical stimulation (BreEStim – for neuropathic pain management in spinal cord injury (SCI patients. Subjects and methods: There were two experiments: 1 to compare the effectiveness between BreEStim and conventional electrical stimulation (EStim in Experiment (Exp 1 and 2 to examine the dose–response effect of BreEStim in Exp 2. In Exp 1, 13 SCI subjects (6 males and 7 females, history of SCI: 58.2 months, from 7 to 150 months, impairments ranging from C4 AIS B to L1 AIS B received both BreEStim and EStim in a randomized order with at least 3 days apart. A total of 120 electrical stimuli to the median nerve transcutaneously were triggered by voluntary inhalation during BreEStim or were randomly delivered during EStim. In Exp 2, a subset of 7 subjects received BreEStim120 and 240 stimuli randomly on two different days with 7 days apart (BreEStim120 vs BreEStim240. The primary outcome variable was the visual analog scale (VAS score. Results: In Exp 1, both BreEStim and EStim showed significant analgesic effects. Reduction in VAS score was significantly greater after BreEStim (2.6±0.3 than after EStim (0.8±0.3 (P<0.001. The duration of analgesic effect was significantly longer after BreEStim (14.2±6 hours than after EStim (1.9±1 hours (P=0.04. In Exp 2, BreEStim120 and BreEStim240 had similar degree and duration of analgesic effects. Conclusion: The findings from this preliminary study suggest that BreEStim is an effective alternative nonpharmacological treatment for chronic neuropathic pain in patients suffering from SCI. Keywords

  3. Regulación de la respiración: organización morfofuncional de su sistema de control Regulation of breathing: morphological and functional organization of its control system

    Directory of Open Access Journals (Sweden)

    Lizet García Cabrera

    2011-04-01

    Full Text Available La función principal y reguladora del sistema respiratorio es mantener las presiones normales de oxígeno y dióxido de carbono, así como la concentración de iones H+ o hidrogeniones, lo cual se consigue adecuando la ventilación pulmonar a las necesidades metabólicas orgánicas de consumo y producción de ambos gases, respectivamente. A pesar de las amplias variaciones en los requerimientos de captación de oxígeno y eliminación de dióxido de carbono, las presiones arteriales de ambos elementos se mantienen dentro de márgenes muy estrechos por una compleja regulación de la ventilación de los pulmones mediante determinados sistemas de control. Por tratarse de un tema muy complicado y disponerse ahora de nuevos conocimientos al respecto, se decidió describir en este breve artículo la organización morfofuncional general de los elementos que integran el sistema de control de la función respiratoria humana normal.The regulating main function of the breathing system is to maintain the normal oxygen and carbon dioxide pressures, as well as the H+ or hydrogen ions concentration, which is achieving adapting the lung ventilation to the organic metabolic needs of consumption and production of both gases, respectively. In spite of the wide variations in the requirements of oxygen intake and of carbon dioxide elimination, the arterial pressures of both elements remain within very narrow margins due to a complex regulation of the lungs ventilation by means of certain control systems. As it is a very complicated topic and as there are now new knowledge on this respect, it was decided to describe in this brief work the general morphological and functional organization of the elements that form the control system of the normal human breathing function.

  4. Dose-dependent social-cognitive effects of intranasal oxytocin delivered with novel Breath Powered device in adults with autism spectrum disorder: a randomized placebo-controlled double-blind crossover trial.

    Science.gov (United States)

    Quintana, D S; Westlye, L T; Hope, S; Nærland, T; Elvsåshagen, T; Dørum, E; Rustan, Ø; Valstad, M; Rezvaya, L; Lishaugen, H; Stensønes, E; Yaqub, S; Smerud, K T; Mahmoud, R A; Djupesland, P G; Andreassen, O A

    2017-05-23

    The neuropeptide oxytocin has shown promise as a treatment for symptoms of autism spectrum disorders (ASD). However, clinical research progress has been hampered by a poor understanding of oxytocin's dose-response and sub-optimal intranasal delivery methods. We examined two doses of oxytocin delivered using a novel Breath Powered intranasal delivery device designed to improve direct nose-to-brain activity in a double-blind, crossover, randomized, placebo-controlled trial. In a randomized sequence of single-dose sessions, 17 male adults with ASD received 8 international units (IU) oxytocin, 24IU oxytocin or placebo followed by four social-cognitive tasks. We observed an omnibus main effect of treatment on the primary outcome measure of overt emotion salience as measured by emotional ratings of faces (η 2 =0.18). Compared to placebo, 8IU treatment increased overt emotion salience (P=0.02, d=0.63). There was no statistically significant increase after 24IU treatment (P=0.12, d=0.4). The effects after 8IU oxytocin were observed despite no significant increase in peripheral blood plasma oxytocin concentrations. We found no significant effects for reading the mind in the eyes task performance or secondary outcome social-cognitive tasks (emotional dot probe and face-morphing). To our knowledge, this is the first trial to assess the dose-dependent effects of a single oxytocin administration in autism, with results indicating that a low dose of oxytocin can significantly modulate overt emotion salience despite minimal systemic exposure.

  5. The indoor air we breathe.

    Science.gov (United States)

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions.

  6. Sensing the effects of mouth breathing by using 3-tesla MRI

    Science.gov (United States)

    Park, Chan-A.; Kang, Chang-Ki

    2017-06-01

    We investigated the effects of mouth breathing and typical nasal breathing on brain function by using blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). The study had two parts: the first test was a simple contrast between mouth and nasal breathing, and the second test involved combined breathing modes, e.g., mouth inspiration and nasal expiration. Eleven healthy participants performed the combined breathing task while undergoing 3T fMRI. In the group-level analysis, contrast images acquired by using an individual participantlevel analysis were processed using the one-sample t test. We also conducted a region-of-interest analysis comparing signal intensity changes between the breathing modes; the region was selected using an automated anatomical labeling map. The results demonstrated that the BOLD signal in the hippocampus and brainstem was significantly decreased in mouth breathing relative to nasal breathing. On the other hand, both the precentral and postcentral gyri showed activation that was more significant in mouth breathing compared to nasal breathing. This study suggests that the BOLD activity patterns between mouth and nasal breathing may be induced differently, especially in the hippocampus, which could provide clues to explain the effects on brain cognitive function due to mouth breathing.

  7. A mechanical breathing simulator for respirator test

    International Nuclear Information System (INIS)

    Murata, Mikio; Ikezawa, Yoshio; Yoshida, Yoshikazu

    1976-01-01

    A mechanical breathing simulator has been developed to produce the human respiration for use in respirator test. The respirations were produced through the strokes of piston controlled by a rockerarm with adjustable fulcrum. The respiration rate was governed by motor-speed control, independent of the tidal volume achieved by adjustment of the piston stroke. By the breather, the simulated respirations for work rate 0, 208, 415, 622 and 830 kg-m/min could be produced through the typical dummy head. (auth.)

  8. The experimental modification of sonorous breathing.

    OpenAIRE

    Josephson, S C; Rosen, R C

    1980-01-01

    Loud snoring is a noxious habit and potential personal health risk. We are reporting the first experimental study of simple behavioral techniques for the modification of chronic snoring. Twenty-four volunteers participated in a repeated measures, randomized group design over 2 weeks of intervention and one-month follow-up. Treatment groups included a contingent-awakening and breathing retraining (self-control) condition. Both treatment groups were compared to a no-treatment control. Despite c...

  9. Prevalence of active trachoma two years after control activities ...

    African Journals Online (AJOL)

    The prevalence of TF/TI showed significant reduction (p-value <0.001) in all five districts and overall in the two regions. Conclusion: Trachoma control activities over a two-year period in two regions in Ghana had led to significant reduction in the prevalence of active disease. Integrated surveillance and active monitoring will ...

  10. UNDERWATER STROKE KINEMATICS DURING BREATHING AND BREATH-HOLDING FRONT CRAWL SWIMMING

    Directory of Open Access Journals (Sweden)

    Nickos Vezos

    2007-03-01

    Full Text Available The aim of the present study was to determine the effects of breathing on the three - dimensional underwater stroke kinematics of front crawl swimming. Ten female competitive freestyle swimmers participated in the study. Each subject swam a number of front crawl trials of 25 m at a constant speed under breathing and breath-holding conditions. The underwater motion of each subject's right arm was filmed using two S-VHS cameras, operating at 60 Hz, which were positioned behind two underwater viewing windows. The spatial coordinates of selected points were calculated using the DLT procedure with 30 control points and after the digital filtering of the raw data with a cut-off frequency of 6 Hz, the hand's linear displacements and velocities were calculated. The results revealed that breathing caused significantly increases in the stroke duration (t9 = 2.764; p < 0.05, the backward hand displacement relative to the water (t9 = 2.471; p<0.05 and the lateral displacement of the hand in the X - axis during the downsweep (t9 = 2.638; p < 0.05. On the contrary, the peak backward hand velocity during the insweep (t9 = 2.368; p < 0.05 and the displacement of the hand during the push phase (t9 = -2.297; p < 0.05 were greatly reduced when breathing was involved. From the above, it was concluded that breathing action in front crawl swimming caused significant modifications in both the basic stroke parameters and the overall motor pattern were, possibly due to body roll during breathing

  11. Active Control Of Structure-Borne Noise

    Science.gov (United States)

    Elliott, S. J.

    1994-11-01

    The successful practical application of active noise control requires an understanding of both its acoustic limitations and the limitations of the electrical control strategy used. This paper is concerned with the active control of sound in enclosures. First, a review is presented of the fundamental physical limitations of using loudspeakers to achieve either global or local control. Both approaches are seen to have a high frequency limit, due to either the acoustic modal overlap, or the spatial correlation function of the pressure field. These physical performance limits could, in principle, be achieved with either a feedback or a feedforward control strategy. These strategies are reviewed and the use of adaptive digital filters is discussed for both approaches. The application of adaptive feedforward control in the control of engine and road noise in cars is described. Finally, an indirect approach to the active control of sound is discussed, in which the vibration is suppressed in the structural paths connecting the source of vibration to the enclosure. Two specific examples of this strategy are described, using an active automotive engine mount and the incorporation of actuators into helicopter struts to control gear-meshing tones. In both cases good passive design can minimize the complexity of the active controller.

  12. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    International Nuclear Information System (INIS)

    Mistry, Nilesh N.; Diwanji, Tejan; Shi, Xiutao; Pokharel, Sabin; Feigenberg, Steven; Scharf, Steven M.; D'Souza, Warren D.

    2013-01-01

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R 2 of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic resonance

  13. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Diwanji, Tejan; Shi, Xiutao [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Pokharel, Sabin [Morgan State University, Baltimore, Maryland (United States); Feigenberg, Steven [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Scharf, Steven M. [Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  14. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  15. Practical recommendations for breathing-adapted radiotherapy

    International Nuclear Information System (INIS)

    Simon, L.; Giraud, P.; Rosenwald, J.C.; Dumas, J.L.; Lorchel, F.; Marre, D.; Dupont, S.; Varmenot, N.; Ginestet, C.; Caron, J.; Marchesi, V.; Ferreira, I.; Garcia, R.

    2007-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath-hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active techniques, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily holds his/her breath. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. This work summarizes the different experiences of the centers of the STIC 2003 project. It describes the different techniques, gives an overview of the literature and proposes a practice based on our experience. (authors)

  16. Thermal stress mitigation by Active Thermal Control

    DEFF Research Database (Denmark)

    Soldati, Alessandro; Dossena, Fabrizio; Pietrini, Giorgio

    2017-01-01

    This work proposes an Active Thermal Control (ATC) of power switches. Leveraging on the fact that thermal stress has wide impact on the system reliability, controlling thermal transients is supposed to lengthen the lifetime of electronic conversion systems. Indeed in some environments...... results of control schemes are presented, together with evaluation of the proposed loss models. Experimental proof of the ability of the proposed control to reduce thermal swing and related stress on the device is presented, too....

  17. Activities of the control services; Activites des services du controle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper summarizes the control activities of the technical service of electric power and big dams: annual examinations, administrative instructions (draining, floods, granting renewal), decennial examinations etc. (J.S.)

  18. Sleep-disordered breathing in epilepsy: epidemiology, mechanisms, and treatment.

    Science.gov (United States)

    Sivathamboo, Shobi; Perucca, Piero; Velakoulis, Dennis; Jones, Nigel C; Goldin, Jeremy; Kwan, Patrick; O'Brien, Terence J

    2018-04-01

    Epilepsy is a group of neurological conditions in which there is a pathological and enduring predisposition to generate recurrent seizures. Evidence over the last few decades suggests that epilepsy may be associated with increased sleep-disordered breathing, which may contribute towards sleep fragmentation, daytime somnolence, reduced seizure control, and cardiovascular-related morbidity and mortality. Chronic sleep-disordered breathing can result in loss of gray matter and cause deficits to memory and global cognitive function. Sleep-disordered breathing is a novel and independent predictor of sudden cardiac death and, as such, may be involved in the mechanisms leading to sudden unexpected death in epilepsy. Despite this, the long-term consequences of sleep-disordered breathing in epilepsy remain unknown, and there are no guidelines for screening or treating this population. There is currently insufficient evidence to indicate continuous positive airway pressure (CPAP) for the primary or secondary prevention of cardiovascular disease, and recent evidence has failed to show any reduction of fatal or nonfatal cardiovascular endpoints. Treatment of sleep-disordered breathing may potentially improve seizure control, daytime somnolence, and neurocognitive outcomes, but few studies have examined this relationship. In this review, we examine sleep-disordered breathing in epilepsy, and discuss the potential effect of epilepsy treatments. We consider the role of CPAP and other interventions for sleep-disordered breathing and discuss their implications for epilepsy management.

  19. BREATHE to Understand©

    Science.gov (United States)

    Swisa, Maxine

    2015-01-01

    BREATHE is an acronym for Breathe, Reflect, Empathize, Accept, Thank, Hearten, Engage. The addition of Understand allows for a holistic approach to living a healthy and balanced life both inside and outside the classroom. This paper took form as a result of my personal, spiritual journey, as well as my teaching practice. I noticed that the…

  20. Breath in the technoscientific imaginary.

    Science.gov (United States)

    Rose, Arthur

    2016-12-01

    Breath has a realist function in most artistic media. It serves to remind the reader, the viewer or the spectator of the exigencies of the body. In science fiction (SF) literature and films, breath is often a plot device for human encounters with otherness, either with alien peoples, who may not breathe oxygen, or environments, where there may not be oxygen to breathe. But while there is a technoscientific quality to breath in SF, especially in its attention to physiological systems, concentrating on the technoscientific threatens to occlude other, more affective aspects raised by the literature. In order to supplement the tendency to read SF as a succession of technoscientific accounts of bodily experience, this paper recalls how SF texts draw attention to the affective, non-scientific qualities of breath, both as a metonym for life and as a metaphor for anticipation. Through an engagement with diverse examples from SF literature and films, this article considers the tension between technoscientific and affective responses to breath in order to demonstrate breath's co-determinacy in SF's blending of scientific and artistic discourses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. DSP Control of Line Hybrid Active Filter

    DEFF Research Database (Denmark)

    Dan, Stan George; Benjamin, Doniga Daniel; Magureanu, R.

    2005-01-01

    Active Power Filters have been intensively explored in the past decade. Hybrid active filters inherit the efficiency of passive filters and the improved performance of active filters, and thus constitute a viable improved approach for harmonic compensation. In this paper a parallel hybrid filter...... is studied for current harmonic compensation. The hybrid filter is formed by a single tuned Le filter and a small-rated power active filter, which are directly connected in series without any matching transformer. Thus the required rating of the active filter is much smaller than a conventional standalone...... active filter. Simulation and experimental results obtained in laboratory confirmed the validity and effectiveness of the control....

  2. Manually controlled neutron-activation system

    International Nuclear Information System (INIS)

    Johns, R.A.; Carothers, G.A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates

  3. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    Science.gov (United States)

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  4. FMWC Radar for Breath Detection

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    We report on the experimental demonstration of an FMCW radar operating in the 25.7 - 26.6 GHz range with a repetition rate of 500 sweeps per second. The radar is able to track the breathing rate of an adult human from a distance of 1 meter. The experiments have utilized a 50 second recording window...... to accurately track the breathing rate. The radar utilizes a saw tooth modulation format and a low latency receiver. A breath tracking radar is useful both in medical scenarios, diagnosing disorders such as sleep apnea, and for home use where the user can monitor its health. Breathing is a central part of every...... radar chip which, through the use of a simple modulation scheme, is able to measure the breathing rate of an adult human from a distance. A high frequency output makes sure that the radar cannot penetrate solid obstacles which is a wanted feature in private homes where people therefore cannot measure...

  5. Breath of hospitality.

    Science.gov (United States)

    Škof, Lenart

    2016-12-01

    In this paper we outline the possibilities of an ethic of care based on our self-affection and subjectivity in the ethical spaces between-two. In this we first refer to three Irigarayan concepts - breath, silence and listening from the third phase of her philosophy, and discuss them within the methodological framework of an ethics of intersubjectivity and interiority. Together with attentiveness, we analyse them as four categories of our ethical becoming. Furthermore, we argue that self-affection is based on our inchoate receptivity for the needs of the other(s) and is thus dialectical in its character. In this we critically confront some epistemological views of our ethical becoming. We wind up this paper with a proposal for an ethics towards two autonomous subjects, based on care and our shared ethical becoming - both as signs of our deepest hospitality towards the other.

  6. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  7. SU-E-J-172: A Quantitative Assessment of Lung Tumor Motion Using 4DCT Imaging Under Conditions of Controlled Breathing in the Management of Non-Small Cell Lung Cancer (NSCLC) Using Stereotactic Body Radiation Therapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Mohatt, D; Gomez, J; Singh, A; Malhotra, H [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2014-06-01

    Purpose: To study breathing related tumor motion amplitudes by lung lobe location under controlled breathing conditions used in Stereotactic Body Radiation Therapy (SBRT) for NSCLC. Methods: Sixty-five NSCLC SBRT patients since 2009 were investigated. Patients were categorized based on tumor anatomic location (RUL-17, RML-7, RLL-18, LUL-14, LLL-9). A 16-slice CT scanner [GE RT16 Pro] along with Varian Realtime Position Management (RPM) software was used to acquire the 4DCT data set using 1.25 mm slice width. Images were binned in 10 phases, T00 being at maximum inspiration ' T50 at maximum expiration phase. Tumor volume was segmented in T50 using the CT-lung window and its displacement were measured from phase to phase in all three axes; superiorinferior, anterior-posterior ' medial-lateral at the centroid level of the tumor. Results: The median tumor movement in each lobe was as follows: RUL= 3.8±2.0 mm (mean ITV: 9.5 cm{sup 3}), RML= 4.7±2.8 mm (mean ITV: 9.2 cm{sup 3}), RLL=6.6±2.6 mm (mean ITV: 12.3 cm{sup 3}), LUL=3.8±2.4 mm (mean ITV: 18.5 cm{sup 3}), ' LLL=4.7±2.5 mm (mean ITV: 11.9 cm{sup 3}). The median respiratory cycle for all patients was found to be 3.81 ± 1.08 seconds [minimum 2.50 seconds, maximum 7.07 seconds]. The tumor mobility incorporating breathing cycle was RUL = 0.95±0.49 mm/s, RML = 1.35±0.62 mm/s, RLL = 1.83±0.71 mm/s, LUL = 0.98 ±0.50 mm/s, and LLL = 1.15 ±0.53 mm/s. Conclusion: Our results show that tumor displacement is location dependent. The range of motion and mobility increases as the location of the tumor nears the diaphragm. Under abdominal compression, the magnitude of tumor motion is reduced by as much as a factor of 2 in comparison to reported tumor magnitudes under conventional free breathing conditions. This study demonstrates the utility of abdominal compression in reducing the tumor motion leading to reduced ITV and planning tumor volumes (PTV)

  8. Modeling and control of active twist aircraft

    Science.gov (United States)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  9. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  10. Breathing air trailer acceptance test report

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1996-01-01

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0251, Rev.0 and ECNs 613530 and 606113. The equipment was tested according to WHC-SD-WM-ATP-104. The equipment tested is a Breathing Air Supply Trailer purchased as a design and fabrication procurement activity. The ATP was written by the Seller and was performed by the Seller with representatives of the Westinghouse Hanford Company witnessing portions of the test at the Seller's location

  11. Control of nucleus accumbens activity with neurofeedback.

    Science.gov (United States)

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  13. THE CONTROL AND EVALUATION OF PROMOTIONAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Felicia Sabou

    2012-01-01

    Full Text Available The paper focused on importance and benefits of control and evaluation of marketing activities. The control of efficiency review the assessment of the resources for marketing activity, checking also the efficiency of the human resources, advertising, promotion activities and distribution activities. In the analyse of human resources the most important ratio are: the average of costumers visits on a day, the number of custom order received from 100 visits, the number of new customers from a period, the number of lost customers from a period, the marketing human expenditures from all the sales.The strategic control is made to check if the objectives and the company strategy are adapted to the marketing environment.

  14. Off-line breath acetone analysis in critical illness.

    Science.gov (United States)

    Sturney, S C; Storer, M K; Shaw, G M; Shaw, D E; Epton, M J

    2013-09-01

    Analysis of breath acetone could be useful in the Intensive Care Unit (ICU) setting to monitor evidence of starvation and metabolic stress. The aims of this study were to examine the relationship between acetone concentrations in breath and blood in critical illness, to explore any changes in breath acetone concentration over time and correlate these with clinical features. Consecutive patients, ventilated on controlled modes in a mixed ICU, with stress hyperglycaemia requiring insulin therapy and/or new pulmonary infiltrates on chest radiograph were recruited. Once daily, triplicate end-tidal breath samples were collected and analysed off-line by selected ion flow tube mass spectrometry (SIFT-MS). Thirty-two patients were recruited (20 males), median age 61.5 years (range 26-85 years). The median breath acetone concentration of all samples was 853 ppb (range 162-11 375 ppb) collected over a median of 3 days (range 1-8). There was a trend towards a reduction in breath acetone concentration over time. Relationships were seen between breath acetone and arterial acetone (rs = 0.64, p acetone concentration over time corresponded to changes in arterial acetone concentration. Some patients remained ketotic despite insulin therapy and normal arterial glucose concentrations. This is the first study to look at breath acetone concentration in ICU patients for up to 8 days. Breath acetone concentration may be used as a surrogate for arterial acetone concentration, which may in future have a role in the modulation of insulin and feeding in critical illness.

  15. How to breathe when you are short of breath

    Science.gov (United States)

    ... you: Watch TV Use your computer Read a newspaper How to do Pursed lip Breathing The steps ... of Medicine, Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also ...

  16. Breath acetone concentration; biological variability and the influence of diet

    International Nuclear Information System (INIS)

    Španěl, Patrik; Dryahina, Kseniya; Rejšková, Alžběta; Chippendale, Thomas W E; Smith, David

    2011-01-01

    Previous measurements of acetone concentrations in the exhaled breath of healthy individuals and the small amount of comparable data for individuals suffering from diabetes are briefly reviewed as a prelude to the presentation of new data on the sporadic and wide variations of breath acetone that occur in ostensibly healthy individuals. Data are also presented which show that following a ketogenic diet taken by eight healthy individuals their breath acetone concentrations increased up to five times over the subsequent 6 h. Similarly, the breath acetone increased six and nine times when a low carbohydrate diet was taken by two volunteers and remained high for the several days for which the diet was continued. These new data, together with the previous data, clearly indicate that diet and natural intra-individual biological and diurnal variability result in wide variations in breath acetone concentration. This places an uncertainty in the use of breath acetone alone to monitor blood glucose and glycaemic control, except and unless the individual acts as their own control and is cognizant of the need for dietary control. (note)

  17. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  18. Active Vibration Control of Hydrodynamic Journal Bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.

  19. Sex differences in sleep disordered breathing in adults.

    Science.gov (United States)

    Lozo, Tijana; Komnenov, Dragana; Badr, M Safwan; Mateika, Jason H

    2017-11-01

    The prevalence of sleep disordered breathing is greater in men compared to women. This disparity could be due to sex differences in the diagnosis and presentation of sleep apnea, and the pathophysiological mechanisms that instigate this disorder. Women tend to report more non-typical symptoms of sleep apnea compared to men, and the presentation of apneic events are more prevalent in rapid compared to non-rapid eye movement sleep. In addition, there is evidence of sex differences in upper airway structure and mechanics and in neural mechanisms that impact on the control of breathing. The purpose of this review is to summarize the literature that addresses sex differences in sleep-disordered breathing, and to discuss the influence that upper airway mechanics, chemoreflex properties, and sex hormones have in modulating breathing during sleep in men and women. Published by Elsevier B.V.

  20. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  1. Chapter 13 - Active Rectifiers and Their Control

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Abdelhakim, Ahmed

    2018-01-01

    This chapter investigates the control design of active rectifiers and their applications in power electronics-based power system. The harmonic emission and measures are firstly addressed as a basis of evaluating the active rectifier's effectiveness. Furthermore, the importance of new coming...... standards is highlighted. Application-oriented design of active rectifiers as a main reason behind evolvement of different topologies is discussed. Then, the main principle in designing different control schemes in single-phase and three-phase rectifiers is investigated, analyzed, and experimentally...... verified. The influence of nonideal operating conditions with possible solutions is addressed. Finally, future prospective of active rectifiers as a one of the key enabler of carbon-free power system is summarized....

  2. Jacket Substructure Fatigue Mitigation through Active Control

    DEFF Research Database (Denmark)

    Hanis, Tomas; Natarajan, Anand

    2014-01-01

    to the fatigue design loads on the braces of the jacket. Since large wind turbines of 10MW rating have low rotor speeds (p), the modal frequencies of the sub structures approach 3p at low wind speeds, which leads to a modal coupling and resonance. Therefore an active control system is developed which provides...... sufficient structural damping and consequently a fatigue reduction at the substructure. The resulting reduction in fatigue design loads on the jacket structure based on the active control system is presented....

  3. Blue breath holding is benign.

    OpenAIRE

    Stephenson, J B

    1991-01-01

    In their recent publication in this journal, Southall et al described typical cyanotic breath holding spells, both in otherwise healthy children and in those with brainstem lesions and other malformations. Their suggestions regarding possible autonomic disturbances may require further study, but they have adduced no scientific evidence to contradict the accepted view that in the intact child blue breath holding spells are benign. Those families in which an infant suffers an 'apparently life t...

  4. Active versus passive screening for entrance control

    International Nuclear Information System (INIS)

    McCormick, N.J.

    1976-01-01

    The benefits of different entrance control actions are quantitatively assessed by defining a relative improvement index for the screening activity. Three classes of entrance control measures are investigated: the use of a purely active screening measure (such as a portal monitor), the use of a purely passive screening measure (such as personality typing), and the combined use of active and passive measures. Active entrance control measures have been studied previously [McCormick and Erdmann, Nucl. Mat. Manag. 4, (1975)] where it was determined that the relative improvement index is approximately related to the nondetection probability factor r for the protective system by (1-r + r ln r). It is shown here that the relative improvement index for a purely passive screening system also can be approximately expressed in a convenient manner. Because the probability is very small that a sabotage or diversion action would be attempted, the result for passive screening, multiplied by r, may be combined with the factor (1-r + r ln r) to give the relative improvement index for a combined, active-and-passive entrance control system. Results from simple example calculations indicate that passive screening of nuclear plant personnel or applicants for such positions is orders-of-magnitude less effective than portal monitors or reasonable improvements in them. 5 tables

  5. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  6. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  7. The effect of mouth breathing on chewing efficiency.

    Science.gov (United States)

    Nagaiwa, Miho; Gunjigake, Kaori; Yamaguchi, Kazunori

    2016-03-01

    To examine the effect of mouth breathing on chewing efficiency by evaluating masticatory variables. Ten adult nasal breathers with normal occlusion and no temporomandibular dysfunction were selected. Subjects were instructed to bite the chewing gum on the habitual side. While breathing through the mouth and nose, the glucide elution from the chewing gum, number of chewing strokes, duration of chewing, and electromyography (EMG) activity of the masseter muscle were evaluated as variables of masticatory efficiency. The durations required for the chewing of 30, 60, 90, 120, 180, and 250 strokes were significantly (P chewing stroke between nose and mouth breathings. The glucide elution rates for 1- and 3-minute chewing were significantly (P chewing between nose and mouth breathings. While chewing for 1, 3, and 5 minutes, the chewing stroke and EMG activity of the masseter muscle were significantly (P chewing to obtain higher masticatory efficiency when breathing through the mouth. Therefore, mouth breathing will decrease the masticatory efficiency if the duration of chewing is restricted in everyday life.

  8. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain - results of a randomized controlled trial.

    Science.gov (United States)

    Thiart, Hanne; Lehr, Dirk; Ebert, David Daniel; Berking, Matthias; Riper, Heleen

    2015-03-01

    The primary purpose of this randomized controlled trial (RCT) was to evaluate the efficacy of a guided internet-based recovery training for employees who suffer from both work-related strain and sleep problems (GET.ON Recovery). The recovery training consisted of six lessons, employing well-established methods from cognitive behavioral therapy for insomnia (CBT-I) such as sleep restriction, stimulus control, and hygiene interventions as well as techniques targeted at reducing rumination and promoting recreational activities. In a two-arm RCT (N=128), the effects of GET.ON Recovery were compared to a waitlist-control condition (WLC) on the basis of intention-to-treat analyses. German teachers with clinical insomnia complaints (Insomnia Severity Index ≥15) and work-related rumination (Irritation Scale, cognitive irritation subscale ≥15) were included. The primary outcome measure was insomnia severity. Analyses of covariance (ANCOVA) revealed that, compared to the WLC, insomnia severity of the intervention group decreased significantly stronger (F=74.11, Ptraining significantly reduces sleep problems and fosters mental detachment from work and recreational behavior among adult stressed employees at post-test and 6-months follow up. Given the low threshold access this training could reach out to a large group of stressed employees when results are replicated in other studies.

  9. Actively controlled shaft seals for aerospace applications

    Science.gov (United States)

    Salant, Richard F.

    1995-07-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  10. Patients' experiences of breathing retraining for asthma: a qualitative process analysis of participants in the intervention arms of the BREATHE trial.

    Science.gov (United States)

    Arden-Close, Emily; Yardley, Lucy; Kirby, Sarah; Thomas, Mike; Bruton, Anne

    2017-10-05

    Poor symptom control and impaired quality of life are common in adults with asthma, and breathing retraining exercises may be an effective method of self-management. This study aimed to explore the experiences of participants in the intervention arms of the BREATHE trial, which investigated the effectiveness of breathing retraining as a mode of asthma management. Sixteen people with asthma (11 women, 8 per group) who had taken part in the intervention arms of the BREATHE trial (breathing retraining delivered by digital versatile disc (DVD) or face-to-face sessions with a respiratory physiotherapist) took part in semi-structured telephone interviews about their experiences. Interviews were analysed using thematic analysis. Breathing retraining was perceived positively as a method of asthma management. Motivations for taking part included being asked, to enhance progress in research, to feel better/reduce symptoms, and to reduce medication. Participants were positive about the physiotherapist, liked having the materials tailored, found meetings motivational, and liked the DVD and booklet. The impact of breathing retraining following regular practice included increased awareness of breathing and development of new habits. Benefits of breathing retraining included increased control over breathing, reduced need for medication, feeling more relaxed, and improved health and quality of life. Problems included finding time to practice the exercises, and difficulty mastering techniques. Breathing retraining was acceptable and valued by almost all participants, and many reported improved wellbeing. Face to face physiotherapy was well received. However, some participants in the DVD group mentioned being unable to master techniques. PATIENTS RECEPTIVE TO BREATHING RETRAINING: Patients with asthma taught how to change their unconscious breathing patterns generally like non-pharmacological interventions. Researchers in the UK, led by Mike Thomas from the University of Southampton

  11. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    Science.gov (United States)

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  12. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  13. Quality control of the activity meter

    International Nuclear Information System (INIS)

    Rodrigues, Marlon da Silva Brandão; Sá, Lídia Vasconcelos de

    2017-01-01

    Objective: To carry out a comparative analysis of national and international standards regarding the quality control of the activity meter used in Nuclear Medicine Services in Brazil. Material and methods: Quality control protocols from the International Atomic Energy Agency (IAEA), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC) were pointed out and compared with requirements from both regulatory Brazilian agencies, National Surveillance Agency (ANVISA) and National Nuclear Energy Commission (CNEN). Results: The daily routine tests recommended by the regulatory agencies do not have significant differences; in contrast the tests with higher periodicities like (accuracy, linearity and precision) have differences discrepant. Conclusion: In view of the comparative analysis carried out, it is suggested that the national recommendations for the quality control tests of the activity meter should be checked and evaluated, with emphasis on the semiannual and annual periodicity tests. (author)

  14. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  15. Improving Accuracy of Processing Through Active Control

    Directory of Open Access Journals (Sweden)

    N. N. Barbashov

    2016-01-01

    Full Text Available An important task of modern mathematical statistics with its methods based on the theory of probability is a scientific estimate of measurement results. There are certain costs under control, and under ineffective control when a customer has got defective products these costs are significantly higher because of parts recall.When machining the parts, under the influence of errors a range scatter of part dimensions is offset towards the tolerance limit. To improve a processing accuracy and avoid defective products involves reducing components of error in machining, i.e. to improve the accuracy of machine and tool, tool life, rigidity of the system, accuracy of the adjustment. In a given time it is also necessary to adapt machine.To improve an accuracy and a machining rate there, currently  become extensively popular various the in-process gaging devices and controlled machining that uses adaptive control systems for the process monitoring. Improving the accuracy in this case is compensation of a majority of technological errors. The in-cycle measuring sensors (sensors of active control allow processing accuracy improvement by one or two quality and provide a capability for simultaneous operation of several machines.Efficient use of in-cycle measuring sensors requires development of methods to control the accuracy through providing the appropriate adjustments. Methods based on the moving average, appear to be the most promising for accuracy control since they include data on the change in some last measured values of the parameter under control.

  16. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  17. Control of upper airway muscle activity in younger versus older men during sleep onset

    Science.gov (United States)

    Fogel, Robert B; White, David P; Pierce, Robert J; Malhotra, Atul; Edwards, Jill K; Dunai, Judy; Kleverlaan, Darci; Trinder, John

    2003-01-01

    Pharyngeal dilator muscles are clearly important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) are decreased at sleep onset, and that this decrement in muscle activity is greater in the apnoea patient than in healthy controls. We have also previously shown this decrement to be greater in older men when compared with younger ones. In order to explore the mechanisms responsible for this decrement in muscle activity nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure mediated muscle activation. We then investigated the effect of sleep onset (transition from predominantly α to predominantly θ EEG activity) on ventilation, upper airway muscle activation and upper airway resistance (UAR) in middle-aged and younger healthy men. We found that both GGEMG and TPEMG were reduced by the application of nasal CPAP during wakefulness, but that CPAP did not alter the decrement in activity in either muscle seen in the first two breaths following an α to θ transition. However, CPAP prevented both the rise in UAR at sleep onset that occurred on the control night, and the recruitment in GGEMG seen in the third to fifth breaths following the α to θ transition. Further, GGEMG was higher in the middle-aged men than in the younger men during wakefulness and was decreased more in the middle-aged men with the application of nasal CPAP. No differences were seen in TPEMG between the two age groups. These data suggest that the initial sleep onset reduction in upper airway muscle activity is due to loss of a ‘wakefulness’ stimulus, rather than to loss of responsiveness to negative pressure. In addition, it suggests that in older men, higher wakeful muscle activity is due to an anatomically more collapsible upper airway with more negative pressure driven muscle activation. Sleep onset per se does not appear to have a greater

  18. Atividade eletromiográfica dos músculos temporal anterior e masseter em crianças respiradoras bucais e em respiradoras nasais Electrical Activity of the Anterior Temporal and Masseter Muscles in Mouth and Nasal Breathing Children

    Directory of Open Access Journals (Sweden)

    Aline Ferla

    2008-08-01

    Full Text Available A respiração bucal tem sido estudada por causar sérios efeitos no desenvolvimento do sistema estomatognático. OBJETIVO: Estudar, através da análise eletromiográfica, o padrão de atividade elétrica dos músculos temporal anterior e masseter em crianças com respiração bucal, comparando-os com o de crianças com respiração nasal. MATERIAL E MÉTODO: Foram estudados dois grupos de crianças: 17 respiradoras bucais (RB e 12 respiradoras nasais (RN. As crianças foram submetidas à avaliação eletromiográfica bilateral dos músculos supracitados nas situações de máxima intercuspidação e mastigação habitual. Utilizou-se o eletromiógrafo Myosystem Br-1, com 12 canais de aquisição, amplificação com ganho total de 5938, taxa de aquisição de 4000Hz e filtro passa-faixa de 20-1000Hz. O sinal foi processado em RMS, mensurado em µV e analisado e expresso em %, normalizado. Os dados foram tratados estatisticamente através do Teste t (Student. RESULTADOS: Observou-se que o nível de atividade elétrica do grupo RB foi inferior para todos os músculos e estatisticamente significante somente para o temporal esquerdo; os respiradores bucais apresentaram predomínio de atividade elétrica no lado direito e no músculo temporal durante a mastigação habitual. CONCLUSÃO: A respiração bucal interferiu na atividade elétrica dos músculos estudados nas situações funcionais de máxima intercuspidação e mastigação habitual.Mouth breathing has been associated with severe impact on the development of the stomatognathic system. AIM: This paper aims to analyze the electromyographical findings and patterns of electrical activity of the anterior temporal and masseter muscles in mouth and nasal breathing children. MATERIAL AND METHOD: The patients were divided into two groups: mouth breathers (n=17 and nasal breathers (n=12. The children underwent bilateral electromyographic examination of the anterior temporal and masseter muscles at

  19. Impact of breath holding on cardiovascular respiratory and cerebrovascular health.

    Science.gov (United States)

    Dujic, Zeljko; Breskovic, Toni

    2012-06-01

    Human underwater breath-hold diving is a fascinating example of applied environmental physiology. In combination with swimming, it is one of the most popular forms of summer outdoor physical activities. It is performed by a variety of individuals ranging from elite breath-hold divers, underwater hockey and rugby players, synchronized and sprint swimmers, spear fishermen, sponge harvesters and up to recreational swimmers. Very few data currently exist concerning the influence of regular breath holding on possible health risks such as cerebrovascular, cardiovascular and respiratory diseases. A literature search of the PubMed electronic search engine using keywords 'breath-hold diving' and 'apnoea diving' was performed. This review focuses on recent advances in knowledge regarding possibly harmful physiological changes and/or potential health risks associated with breath-hold diving. Available evidence indicates that deep breath-hold dives can be very dangerous and can cause serious acute health problems such a collapse of the lungs, barotrauma at descent and ascent, pulmonary oedema and alveolar haemorrhage, cardiac arrest, blackouts, nitrogen narcosis, decompression sickness and death. Moreover, even shallow apnoea dives, which are far more frequent, can present a significant health risk. The state of affairs is disturbing as athletes, as well as recreational individuals, practice voluntary apnoea on a regular basis. Long-term health risks of frequent maximal breath holds are at present unknown, but should be addressed in future research. Clearly, further studies are needed to better understand the mechanisms related to the possible development or worsening of different clinical disorders in recreational or competitive breath holding and to determine the potential changes in training/competition regimens in order to prevent these adverse events.

  20. Coherent active polarization control without loss

    Science.gov (United States)

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2017-11-01

    We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  1. Coherent active polarization control without loss

    Directory of Open Access Journals (Sweden)

    Yuqian Ye

    2017-11-01

    Full Text Available We propose a lossless active polarization control mechanism utilizing an anisotropic dielectric medium with two coherent inputs. Using scattering matrix analysis, we derive analytically the required optical properties of the anisotropic medium that can behave as a switchable polarizing beam splitter. We also show that such a designed anisotropic medium can produce linearly polarized light at any azimuthal direction through coherent control of two inputs with a specific polarization state. Furthermore, we present a straightforward design-on-demand procedure of a subwavelength-thick metastructure that can possess the desired optical anisotropy at a flexible working wavelength. Our lossless coherent polarization control technique may lead to fast, broadband and integrated polarization control elements for applications in imaging, spectroscopy, and telecommunication.

  2. Control Systems Cyber Security Standards Support Activities

    Energy Technology Data Exchange (ETDEWEB)

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  3. How Termite Mounds Breath?

    Science.gov (United States)

    Saxena, Saurabh; Yaghoobian, Neda

    2017-11-01

    Fungus-cultivating termites of the subfamily Macrotermitinae that are extensively found throughout sub-Saharan Africa and south East Asia are one species of termites that collectively build massive, uninhabited, complex structures. These structures, which are much larger than the size of an individual termite, effectively use natural wind and solar energies and the energy embodied in colony's metabolic activity to maintain the necessary condition for termite survival. These mounds enclose a subterranean nest, where the termite live and cultivate fungus, as well as a complex network of tunnels consisting of a large, vertically oriented central chimney, surface conduits, and lateral connectives that connect the chimney and the surface conduits. In this study, we use computational modeling to explore the combined interaction of geometry, heterogeneous thermal mass, and porosity with the external turbulent wind and solar radiation to investigate the physical principles and fundamental aero-thermodynamics underlying the controlled and stable climate of termite mounds. Exploitation of natural resources of wind and solar energies in these natural systems for the purpose of ventilation will lead to new lessons for improving human habitats conditions.

  4. Influence of Very High Breathing Resistance on Exercise Tolerance, Part 1 - Dry Exercise

    Science.gov (United States)

    2016-01-01

    endurance times. 15. SUBJECT TERMS control of breathing, ventilation, CO2, carbon dioxide, hypercapnia, CO2 retention , dyspnea, exercise, performance...to be near his exercise capacity , until the subject could no longer continue. Subjects were asked to give scores of Relative Perceived Exertion (RPE...span gas (5% CO2 and 16% O2 in nitrogen). The pressure transducer outputs were compared to a water manometer. Data analysis Breath by breath

  5. BWR startup and shutdown activity transport control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, A.J., E-mail: jgiannelli@finetech.com, E-mail: ajarvis@finetech.com [Finetech, Inc., Parsippany, New Jersey (United States)

    2010-07-01

    This paper summarizes BWR industry experience on good practices for controlling the transport of corrosion product activity during shutdowns, particularly refueling outages, and for startup chemistry control to minimize IGSCC (intergranular stress corrosion cracking). For shutdown, overall goals are to minimize adverse impacts of crud bursts and the time required to remove activated corrosion products from the reactor coolant during the shutdown process prior to refueling, and to assist plants in predicting and controlling radiation exposure during outages. For startup, the overall goals are to highlight conditions during early heatup and startup when sources of reactor coolant oxidants are high, when there is a greater likelihood for chemical excursions associated with refueling outage work activities, and when hydrogen injection is not available to mitigate IGSCC due to system design limitations. BWR water chemistry has changed significantly in recent years with the adoption of hydrogen water chemistry, zinc addition and noble metal chemical applications. These processes have, in some instances, resulted in significant activity increases during shutdown evolutions, which together with reduced time for cleanup because of shorter outages, has consequently increased outage radiation exposure. A review several recent outages shows that adverse effects from these conditions can be minimized, leading to the set of good practice recommendations for shutdown chemistry control. Most plants lose the majority of their hydrogen availability hours during early startup because feedwater hydrogen injection systems were not originally designed to inject hydrogen below 20% power. Hydrogen availability has improved through modifications to inject hydrogen at lower power levels, some near 5%. However, data indicate that IGSCC is accelerated during early startup, when dissolved oxygen and hydrogen peroxide levels are high and reactor coolant temperatures are in the 300 to 400 {sup o

  6. The Ins and Outs of Breath Holding: Simple Demonstrations of Complex Respiratory Physiology

    Science.gov (United States)

    Skow, Rachel J.; Day, Trevor A.; Fuller, Jonathan E.; Bruce, Christina D.; Steinback, Craig D.

    2015-01-01

    The physiology of breath holding is complex, and voluntary breath-hold duration is affected by many factors, including practice, psychology, respiratory chemoreflexes, and lung stretch. In this activity, we outline a number of simple laboratory activities or classroom demonstrations that illustrate the complexity of the integrative physiology…

  7. Vasopressin V1a receptors are present in the carotid body and contribute to the control of breathing in male Sprague-Dawley rats.

    Science.gov (United States)

    Żera, Tymoteusz; Przybylski, Jacek; Grygorowicz, Tomasz; Kasarełło, Kaja; Podobińska, Martyna; Mirowska-Guzel, Dagmara; Cudnoch-Jędrzejewska, Agnieszka

    2018-04-01

    Vasopressin (AVP) maintains body homeostasis by regulating water balance, cardiovascular system and stress response. AVP inhibits breathing through central vasopressin 1a receptors (V1aRs). Chemoreceptors within carotid bodies (CBs) detect chemical and hormonal signals in the bloodstream and provide sensory input to respiratory and cardiovascular centers of the brainstem. In the study we investigated if CBs contain V1aRs and how the receptors are involved in the regulation of ventilation by AVP. We first immunostained CBs for V1aRs and tyrosine hydroxylase, a marker of chemoreceptor type I (glomus) cells. In urethane-anesthetized adult Sprague-Dawley male rats, we then measured hemodynamic and respiratory responses to systemic (intravenous) or local (carotid artery) administration of AVP prior and after systemic blockade of V1aRs. Immunostaining of CBs showed colocalization of V1aRs and tyrosine hydroxylase within glomus cells. Systemic administration of AVP increased mean arterial blood pressure (MABP) and decreased respiratory rate (RR) and minute ventilation (MV). Local administration of AVP increased MV and RR without significant changes in MABP or heart rate. Pretreatment with V1aR antagonist abolished responses to local and intravenous AVP administration. Our findings show that chemosensory cells within CBs express V1aRs and that local stimulation of the CB with AVP increases ventilation, which is contrary to systemic effects of AVP manifested by decreased ventilation. The responses are mediated by V1aRs, as blockade of the receptors prevents changes in ventilation. We hypothesize that excitatory effects of AVP within the CB provide a counterbalancing mechanism for the inhibitory effects of systemically acting AVP on the respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Afternoon serum-melatonin in sleep disordered breathing.

    Science.gov (United States)

    Ulfberg, J; Micic, S; Strøm, J

    1998-08-01

    To study afternoon serum-melatonin values in patients with sleep disordered breathing. Melatonin has a strong circadian rhythm with high values during the night-time and low values in the afternoon. Sleep disordered breathing may change the circadian rhythm of melatonin which may have diagnostic implications. The Sleep Laboratory, The Department of Internal Medicine, Avesta Hospital, Sweden, and the Department of Anaesthesiology, Glostrup University Hospital, Copenhagen, Denmark. We examined 60 consecutive patients admitted for sleep disordered breathing and 10 healthy non snoring controls. The patients underwent a sleep apnoea screening test having a specificity of 100% for the obstructive sleep apnoea syndrome (OSAS) using a combination of static charge sensitive bed and oximetry. Obstructive sleep apnoea syndrome was found in 49 patients, eight patients had borderline sleep disordered breathing (BSDB) and three patients were excluded due to interfering disease. Patients and controls had an afternoon determination of serum-melatonin. The Epworth Sleepiness Scale was used to score day-time sleepiness. In comparison with normal controls patients suffering from OSAS had significantly higher serum-melatonin levels in the afternoon. However, as a diagnostic test for OSAS in patients with sleep disordered breathing serum-melatonin showed a low sensitivity but a high specificity. The results indicate that breathing disorders during sleep in general affect pineal function. Sleep disordered breathing seems to disturb pineal function. Determination of afternoon serum-melatonin alone or together with a scoring of daytime sleepiness does not identify OSAS-patients in a heterogeneous population of patients complaining of heavy snoring and excessive daytime sleepiness.

  9. The effect of CO2 on ventilation and breath-holding during exercise and while breathing through an added resistance.

    Science.gov (United States)

    Clark, T J; Godfrey, S

    1969-05-01

    1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.

  10. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    that the basic modes of a wind turbine blade can be effectively addressed by an in-blade ‘active strut’ actuator mechanism. The importance of accounting for background mode flexibility is demonstrated. Also, it is shown that it is generally possible to address multiple beam modes with multiple controllers, given...... in the targeted modes and the observed spill-over to other modes is very limited and generally stabilizing. It is shown that physical controller positioning for reduced background noise is important to the calibration. By simulation of the rotor response to both simple initial conditions and a stochastic wind......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...

  11. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  12. WE-DE-209-00: Practical Implementation of Deep Inspiration Breath Hold Techniques for Breast Radiation Therapy

    International Nuclear Information System (INIS)

    2016-01-01

    Breast radiation therapy is associated with some risk of lung toxicity as well as cardiac toxicity for left-sided cases. Radiation doses to the lung and heart can be reduced by using the deep inspiration breath hold (DIBH) technique, in which the patient is simulated and treated during the deep inspiration phase of the breathing cycle. During DIBH, the heart is usually displaced posteriorly, inferiorly, and to the right, effectively expanding the distance between the heart and the breast/chest wall. As a result, the distance between the medial treatment field border and heart/lung is increased. Also, in a majority of DIBH patients, the air drawn into the thoracic cavity increases the total lung volume. The DIBH was discussed by an AAPM Task Group 10 years ago in the AAPM TG 76 report. However, DIBH is still not the standard of care in many clinics, which may be partially due to challenges associated with its implementation. Therefore, this seccion will focus primarily on how to clinically implement four different DIBH techniques: (1) Active Breathing Control, (2) Spirometric Motion Management, (3) 3D Surface Image-Guided, and (4) Self-held Breath Control with Respiratory Monitoring and Feedback Guidance. Learning Objectives: Describe the physical displacement of the heart and the change in lung volume during DIBH and discuss dosimetric consequences of those changes. Provide an overview of the technical aspects. Describe work flow for patient simulation and treatment. Give an overview of commissioning and routine. Provide practical tips for clinical implementation.

  13. Active control of combustion instabilities in low NO{sub x} gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, B.T.; Neumeier, Y. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    This 3-year research program was initiated in September, 1995, to investigate active control of detrimental combustion instabilities in low NO{sub x} gas turbines (LNGT), which burn natural gas in a lean premixed mode to reduce NO{sub x} emissions. The program will investigate the mechanisms that drive these instabilities. Furthermore, it will study active control systems (ACS) that can effectively prevent the onset of such instabilities and/or reduce their amplitudes to acceptable levels. An understanding of the driving mechanisms will not only guide the development of effective ACS for LNGT but may also lead to combustor design changes (i.e., passive control) that will fully or partially resolve the problem. Initial attempts to stabilize combustors (i.e., chemical rockets) by ACS were reported more than 40 years ago, but were unsuccessful due to lack of adequate sensors, electronics, and actuators for performing the needed control actions. Progress made in recent years in sensor and actuator technology, electronics, and control theory has rekindled interest in developing ACS for unstable combustors. While initial efforts in this area, which focused on active control of instabilities in air breathing combustors, have demonstrated the considerable potential of active control, they have also indicated that more effective observers, controllers, and actuators are needed for practical applications. Considerable progress has been made in the observer and actuator areas by the principal investigators of this program during the past 2 years under an AFOSR program. The developed observer is based upon wavelets theory, and can identify the amplitudes, frequencies, and phases of the five most dominant combustor modes in (virtually) real time. The developed actuator is a fuel injector that uses a novel magneto-strictive material to modulate the fuel flow rate into the combustor.

  14. Controller modification applied for active fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad

    2014-01-01

    This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... with the result that the detection and isolation time can be long. In this paper it will be shown, that this problem can be handled by using a modification of the feedback controller. By applying the YJBK-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....

  15. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  16. 14C-urea breath test for the detection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Veldhuyzen van Zanten, S.J.; Tytgat, K.M.; Hollingsworth, J.; Jalali, S.; Rshid, F.A.; Bowen, B.M.; Goldie, J.; Goodacre, R.L.; Riddell, R.H.; Hunt, R.H.

    1990-01-01

    The high urease activity of Helicobacter pylori can be used to detect this bacterium by noninvasive breath tests. We have developed a 14 C-urea breath test which uses 5 microCi 14 C with 50 mg nonradioactive urea. Breath samples are collected at baseline and every 30 min for 2 h. Our study compared the outcome of the breath test to the results of histology and culture of endoscopically obtained gastric biopsies in 84 patients. The breath test discriminated well between the 50 positive patients and the 34 patients negative for Helicobacter pylori: the calculated sensitivity was 100%, specificity 88%, positive predictive value 93%, and negative predictive value 100%. Treatment with bismuth subsalicylate and/or ampicillin resulted in lower counts of exhaled 14 CO 2 which correlated with histological improvement in gastritis. The 14 C-urea breath test is a better gold standard for the detection of Helicobacter pylori than histology and/or culture

  17. A systematic review of breath analysis and detection of volatile organic compounds in COPD

    DEFF Research Database (Denmark)

    Christiansen, Anders; Davidsen, Jesper Rømhild; Titlestad, Ingrid

    2016-01-01

    research area is breath analysis, with several published attempts to find exhaled compounds as diagnostic markers. The field is broad and no review of published COPD breath analysis studies exists yet. We have conducted a systematic review examining the state of art and identified 12 suitable papers, which...... in breath sampling technologies, the selection of appropriate control groups, and a lack of sophisticated (and standardized) statistical data analysis methods. No cross-hospital/study comparisons have been published yet. We conclude that future efforts should (also) concentrate on making breath data...... analysis more comparable through standardization of sampling, data processing, and reporting....

  18. Low dose intranasal oxytocin delivered with Breath Powered device dampens amygdala response to emotional stimuli: A peripheral effect-controlled within-subjects randomized dose-response fMRI trial.

    Science.gov (United States)

    Quintana, Daniel S; Westlye, Lars T; Alnæs, Dag; Rustan, Øyvind G; Kaufmann, Tobias; Smerud, Knut T; Mahmoud, Ramy A; Djupesland, Per G; Andreassen, Ole A

    2016-07-01

    It is unclear if and how exogenous oxytocin (OT) reaches the brain to improve social behavior and cognition and what is the optimal dose for OT response. To better understand the delivery routes of intranasal OT administration to the brain and the dose-response, we compared amygdala response to facial stimuli by means of functional magnetic resonance imaging (fMRI) in four treatment conditions, including two different doses of intranasal OT using a novel Breath Powered device, intravenous (IV) OT, which provided similar concentrations of blood plasma OT, and placebo. We adopted a randomized, double-blind, double-dummy, crossover design, with 16 healthy male adults administering a single-dose of these four treatments. We observed a treatment effect on right amygdala activation during the processing of angry and happy face stimuli, with pairwise comparisons revealing reduced activation after the 8IU low dose intranasal treatment compared to placebo. These data suggest the dampening of amygdala activity in response to emotional stimuli occurs via direct intranasal delivery pathways rather than across the blood-brain barrier via systemically circulating OT. This trial is registered at the U.S. National Institutes of Health clinical trial registry (www.clinicaltrials.gov; NCT01983514) and as EudraCT no. 2013-001608-12. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Robust Active Damping Control of LCL Filtered Grid Connected Converter Based Active Disturbance Rejection Control

    DEFF Research Database (Denmark)

    Abdeldjabar, Benrabah; Xu, Dianguo; Wang, Xiongfei

    2016-01-01

    This paper deals with the problem of LCL filter resonance in grid connected inverter control. The system equations are reformulated to allow the application of the active disturbance rejection control (ADRC). The resonance, assumed unknown, is treated as a disturbance, then estimated and mitigated...

  20. Measuring breath acetone for monitoring fat loss: Review.

    Science.gov (United States)

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  1. Oral breathing and speech disorders in children

    Directory of Open Access Journals (Sweden)

    Silvia F. Hitos

    2013-07-01

    Conclusion: Mouth breathing can affect speech development, socialization, and school performance. Early detection of mouth breathing is essential to prevent and minimize its negative effects on the overall development of individuals.

  2. Cardiorespiratory and autonomic interactions during snoring related resistive breathing.

    Science.gov (United States)

    Mateika, J H; Mitru, G

    2001-03-15

    We hypothesized that blood pressure (BP) is less during snoring as compared to periods of non-snoring in non-apneic individuals. Furthermore, we hypothesized that this reduction may be accompanied by a simultaneous decrease in sympathetic (SNSA) and parasympathetic (PNSA) nervous system activity and an increase in heart rate (HR). N/A. N/A. N/A. The variables mentioned above in addition to breathing frequency were measured in 9 subjects during NREM sleep. In addition, the lowest systolic (SBP) and diastolic blood pressure (DBP) during inspiration and the highest SBP and DBP during expiration was determined breath-by-breath from segments selected from each NREM cycle. Heart rate variability was used as a marker of autonomic nervous system activity. Our results showed that BP during snoring decreased compared to non-snoring and the breath-by-breath BP analysis suggested that this difference may have been mediated by changes in intrathoracic pressure. In conjunction with the decrease in BP, SNSA decreased and HR increased however PNSA remained constant. Thus, a decrease in PNSA was likely not the primary mechanism responsible for the HR response. We conclude that BP responses and SNSA during snoring are similar to that reported previously in non-snoring individuals. However, the causal mechanisms maybe different and manifested in other measures such as HR. Thus, nocturnal cardiovascular and autonomic function maybe uniquely different in non-apneic snoring individuals.

  3. Volatile sulphur compounds in morning breath of human volunteers.

    NARCIS (Netherlands)

    Snel, J.; Burgering, M.; Smit, B.; Noordman, W.; Tangerman, A.; Winkel, E.G.; Kleerebezem, M.

    2011-01-01

    OBJECTIVE: morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  4. Volatile sulphur compounds in morning breath of human volunteers

    NARCIS (Netherlands)

    Snel, Johannes; Burgering, Maurits; Smit, Bart; Noordman, Wouter; Tangerman, Albert; Winkel, Edwin G.; Kleerebezem, Michiel

    Objective: Morning breath contains elevated concentrations of volatile sulphur components (VSCs). Therefore, morning breath is recognised as a surrogate target for interventions on breath quality. Nevertheless, factors influencing morning breath are poorly understood. Our aim was to evaluate

  5. Increased respiratory neural drive and work of breathing in exercise-induced laryngeal obstruction.

    Science.gov (United States)

    Walsted, Emil S; Faisal, Azmy; Jolley, Caroline J; Swanton, Laura L; Pavitt, Matthew J; Luo, Yuan-Ming; Backer, Vibeke; Polkey, Michael I; Hull, James H

    2018-02-01

    Exercise-induced laryngeal obstruction (EILO), a phenomenon in which the larynx closes inappropriately during physical activity, is a prevalent cause of exertional dyspnea in young individuals. The physiological ventilatory impact of EILO and its relationship to dyspnea are poorly understood. The objective of this study was to evaluate exercise-related changes in laryngeal aperture on ventilation, pulmonary mechanics, and respiratory neural drive. We prospectively evaluated 12 subjects (6 with EILO and 6 healthy age- and gender-matched controls). Subjects underwent baseline spirometry and a symptom-limited incremental exercise test with simultaneous and synchronized recording of endoscopic video and gastric, esophageal, and transdiaphragmatic pressures, diaphragm electromyography, and respiratory airflow. The EILO and control groups had similar peak work rates and minute ventilation (V̇e) (work rate: 227 ± 35 vs. 237 ± 35 W; V̇e: 103 ± 20 vs. 98 ± 23 l/min; P > 0.05). At submaximal work rates (140-240 W), subjects with EILO demonstrated increased work of breathing ( P respiratory neural drive ( P respiratory mechanics and diaphragm electromyography with endoscopic video, we demonstrate, for the first time, increased work of breathing and respiratory neural drive in association with the development of EILO. Future detailed investigations are now needed to understand the role of upper airway closure in causing exertional dyspnea and exercise limitation. NEW & NOTEWORTHY Exercise-induced laryngeal obstruction is a prevalent cause of exertional dyspnea in young individuals; yet, how laryngeal closure affects breathing is unknown. In this study we synchronized endoscopic video with respiratory physiological measurements, thus providing the first detailed commensurate assessment of respiratory mechanics and neural drive in relation to laryngeal closure. Laryngeal closure was associated with increased work of breathing and respiratory neural drive preceded by an

  6. Active Control of Long Bridges Using Flaps

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap...... is the streamlined part of the edge of the girder. Additional aerodynamic derivatives are shown for the flaps and it is shown how methods already developed can be used to estimate the flutter wind velocity for a bridge section with flaps. As an example, the flutter wind velocity is calculated for different flap...... configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  7. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  8. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  9. Effect of influenza vaccination on oxidative stress products in breath.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Danaher, Patrick J; Devadiga, Anantrai; Legendre, David A; Nail, Kim L; Schmitt, Peter; Wai, James

    2010-06-01

    Viral infections cause increased oxidative stress, so a breath test for oxidative stress biomarkers (alkanes and alkane derivatives) might provide a new tool for early diagnosis. We studied 33 normal healthy human subjects receiving scheduled treatment with live attenuated influenza vaccine (LAIV). Each subject was his or her own control, since they were studied on day 0 prior to vaccination, and then on days 2, 7 and 14 following vaccination. Breath volatile organic compounds (VOCs) were collected with a breath collection apparatus, then analyzed by automated thermal desorption with gas chromatography and mass spectroscopy. A Monte Carlo simulation technique identified non-random VOC biomarkers of infection based on their C-statistic values (area under curve of receiver operating characteristic). Treatment with LAIV was followed by non-random changes in the abundance of breath VOCs. 2, 8-Dimethyl-undecane and other alkane derivatives were observed on all days. Conservative multivariate models identified vaccinated subjects on day 2 (C-statistic = 0.82, sensitivity = 63.6% and specificity = 88.5%); day 7 (C-statistic = 0.94, sensitivity = 88.5% and specificity = 92.3%); and day 14 (C-statistic = 0.95, sensitivity = 92.3% and specificity = 92.3%). The altered breath VOCs were not detected in live attenuated influenza vaccine, excluding artifactual contamination. LAIV vaccination in healthy humans elicited a prompt and sustained increase in breath biomarkers of oxidative stress. A breath test for these VOCs could potentially identify humans who are acutely infected with influenza, but who have not yet developed clinical symptoms or signs of disease.

  10. Active control of multiple resistive wall modes

    International Nuclear Information System (INIS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Partin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, S.; Zanca, P.

    2005-01-01

    Active magnetic feedback suppression of resistive wall modes is of common interest for several fusion concepts relying on close conducting walls for stabilization of ideal magnetohydrodynamic (MHD) modes. In the advanced tokamak without plasma rotation the kink mode is not completely stabilized, but rather converted into an unstable resistive wall mode (RWM) with a growth time comparable to the wall magnetic flux penetration time. The reversed field pinch (RFP) is similar to the advanced tokamak in the sense that it uses a conducting wall for kink mode stabilization. Also both configurations are susceptible to resonant field error amplification of marginally stable modes. However, the RFP has a different RWM spectrum and, in general, a range of modes is unstable. Hence, the requirement for simultaneous feedback stabilization of multiple independent RWMs arises for the RFP configuration. Recent experiments on RWM feedback stabilization, performed in the RFP device EXTRAP T2R [1], are presented. The experimental results obtained are the first demonstration of simultaneous feedback control of multiple independent RWMs [2]. Using an array of active magnetic coils, a reproducible suppression of several RWMs is achieved for the duration of the discharge, 3-5 wall times, through feedback action. An array with 64 active saddle coils at 4 poloidal times 16 toroidal positions is used. The important issues of side band generation by the active coil array and the accompanying coupling of different unstable modes through the feedback action are addressed in this study. Open loop control experiments have been carried out to quantitatively study resonant field error amplification. (Author)

  11. Relationships between breath ratios, spirituality and health ...

    African Journals Online (AJOL)

    The aim of this retrospective, quantitative study was to investigate relationships between breath ratios, spirituality perceptions and health perceptions, with special reference to breath ratios that best predict optimal health and spirituality. Significant negative correlations were found between breath ratios and spirituality ...

  12. THE INFLUENCE OF BIOFEEDBACK SESSIONS IN CLOSED LOOP OF HEART RATE VARIABILITY AND PACED BREATHING ON SYSTOLIC BLOOD PRESSURE CONTROL DURING STANDARD DRUG THERAPY IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    S. A. S. Belal

    2015-06-01

    Full Text Available Changes of systolic blood pressure (SBP in biofeedback (BFB sessions with closed loop of paced breathing (PB and heart rate variability (HRV during standard drug therapy of arterial hypertension (AH was studied. 275 patients with 1-3 degree of AH (143 men and 132 women, mean age 58,55 ± 7,99 years was divided into two comparable groups: 1 - BFB (139 patients in investigated PB loop, 2 - control group (136 patients with BFB without PB. In both groups was performed 10 sessions of BFB. Changes of SBP depending on the stage and degree of AH, gender and age was assessed. BP was measured by the method of Korotkov’s with monometer Microlife BP AG1-20 in same conditions. Data were processed by parametric and nonparametric statistics. It is proved that the use of biofeedback in the loop of PB and HRV significantly (p < 0.01 exceeds in efficiency an isolated drug therapy in control of SBP at any stage and degree of AH in patients of both sexes in all age groups. Extent of the effect increases with the stage and degree of the disease and not related to the sex and age of the patient. Findings allow to recommend this technique in clinical practice.

  13. Breathing thermal manikin for indoor environment assessment: Important characteristics and requirements

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2003-01-01

    Recently breathing thermal manikins have been developed and used for indoor environment measurement, evaluation and optimization as well as validation of Computational Fluid Dynamics (CFD) predictions of airflow around a human body. Advances in the assessment of occupants¿ thermal comfort...... and shape of body segments, control mode, breathing simulation, etc. are discussed and specified in this paper....

  14. In vivo assessment of the mitochondrial response to caloric restriction in obese women by the 2-keto[1-C]isocaproate breath test.

    Science.gov (United States)

    Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves

    2003-04-01

    The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.

  15. Internal control activities in small Turkish companies

    Directory of Open Access Journals (Sweden)

    Ismail Bilgi

    2017-01-01

    Full Text Available The purpose of this paper is to present major outcomes from an empirical study concerning internal control activities in small Turkish companies, as to propose the improvement guidelines. Methods of analysis and synthesis, descriptive statistics, and statistical comparison were used. The collected data was processed with the help of the SPSS software. Тhe study is limited to organizations based in the European part of Turkey. Most of them operate in areas around large cities, such as Istanbul, Edirne, Kırklareli, and Tekirdağ. They employ on average 19-20 people and have a turnover of about TRY 3 million (≈€715,000, https://sdw.ecb.europa.eu on average. The survey concentrates mainly on small family businesses, which have been present on the market for more than ten years, with managers of good education and other characteristics that presuppose availability of internal control systems. The research results were used to compile main points of a SWOT analysis, as a part of the broader effort to help modernizing the internal control system in Turkish small businesses.

  16. Acoustic rhinometry in mouth breathing patients: a systematic review.

    Science.gov (United States)

    Melo, Ana Carolina Cardoso de; Gomes, Adriana de Oliveira de Camargo; Cavalcanti, Arlene Santos; Silva, Hilton Justino da

    2015-01-01

    When there is a change in the physiological pattern of nasal breathing, mouth breathing may already be present. The diagnosis of mouth breathing is related to nasal patency. One way to access nasal patency is by acoustic rhinometry. To systematically review the effectiveness of acoustic rhinometry for the diagnosis of patients with mouth breathing. Electronic databases LILACS, MEDLINE via PubMed and Bireme, SciELO, Web of Science, Scopus, PsycInfo, CINAHL, and Science Direct, from August to December 2013, were consulted. 11,439 articles were found: 30 from LILACS, 54 from MEDLINE via Bireme, 5558 from MEDLINE via PubMed, 11 from SciELO, 2056 from Web of Science, 1734 from Scopus, 13 from PsycInfo, 1108 from CINAHL, and 875 from Science Direct. Of these, two articles were selected. The heterogeneity in the use of equipment and materials for the assessment of respiratory mode in these studies reveals that there is not yet consensus in the assessment and diagnosis of patients with mouth breathing. According to the articles, acoustic rhinometry has been used for almost twenty years, but controlled studies attesting to the efficacy of measuring the geometry of nasal cavities for complementary diagnosis of respiratory mode are warranted. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Theme and variations: amphibious air-breathing intertidal fishes.

    Science.gov (United States)

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies. © 2013 The Fisheries Society of the British Isles.

  18. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    Science.gov (United States)

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  19. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing

    Directory of Open Access Journals (Sweden)

    Áron Kőszeghy

    2018-04-01

    Full Text Available The orbitofrontal cortex (OFC has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  20. A simple test of one minute heart rate variability during deep breathing for evaluation of sympathovagal imbalance in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Fareedabanu, A.B.

    2011-01-01

    Heart rate variability (HRV) refers to the magnitude of the fluctuation in the number of heart beats per minute in conjunction with respiration. HRV with deep breathing (HRVdb) has recently become a popular non-invasive research tool in cardiology. This study was carried out to determine and compare the HRV in patients with Type 2 DM with those of Non diabetic controls. Methods: Sixty diabetic patients attending out patient department in Karnataka Institute of Diabetology, Bangalore and 60 age-matched controls were enrolled. HRV was performed on all the subjects and the results obtained were compared between the groups. The One minute HRV was analysed during deep breathing and defined as the difference in beats/minute between the shortest and the longest heart rate interval measured by lead II electrocardiographic recording during six cycles of deep breathing. Results: Statistically significant decrease in mean minimal heart rate and 1 minute HRV (16.30 +- 6.42 vs 29.33 +- 8.39) was observed during deep breathing among Type 2 Diabetic patients on comparison with that of healthy controls. There was no significant difference in mean maximal heart rate between the groups. Conclusion: Significant decrease in HRV in Type 2 DM patients is suggestive of reduced parasympathetic activity or an imbalance between sympathetic and parasympathetic neural activity in them. Hence HRVdb provides a sensitive screening measure for parasympathetic dysfunction in many autonomic disorders. (author)

  1. Tracking, Analysis and Sonification of Movement and Breathing for Supporting Physical Activity in Chronic Pain Using The Go-with-the-flow Framework

    Directory of Open Access Journals (Sweden)

    Aneesha Singh

    2015-10-01

    Our studies show that a self-defined SES calibrated to individual psychological needs helps to increase awareness, motivation, performance and relaxation in physical activity and can support people to gain confidence in activity and transfer gains to their everyday lives. This approach could be useful in other chronic conditions where progress in physical activity rehabilitation and self-management is undermined by anxiety about physical vulnerability.

  2. /sup 14/C-D-galactose breath test for evaluation of liver function in patients with chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Caspary, W F; Schaffer, J

    1978-01-01

    D-galactose metabolism and demethylation of aminopyrine by healthy controls and patients with chronic active hepatitis (CAH) and cirrhosis (Ci), were assessed by a breath analysis technique measuring /sup 14/CO2 exhalation after oral ingestion of /sup 14/C-D-galactose or /sup 14/C-aminopyrine. Patients with CAH and Ci exhibited decreased /sup 14/CO2-exhalation rates following /sup 14/-D-galactose or /sup 14/C-aminopyrine. D-galactose oxidation capacity of the liver can be assessed by a breath analysis technique in analogy to the demethylating function for aminopyrine. The ordinary oral D-galactose tolerance test seems, however, superior in comparison to the /sup 14/C-D-galactose tolerance test, in discriminating between healthy controls and patients with chronic liver disease.

  3. FeNO measured at fixed exhalation flow rate during controlled tidal breathing in children from the age of 2 yr

    DEFF Research Database (Denmark)

    Buchvald, F; Bisgaard, H

    2001-01-01

    it with NO in mixed exhaled air collected in a bag (FeNO [mixed]). Sixty-seven children were studied: 16 school children and 51 children aged 2-5 yr; 14 of the young children were healthy, 22 had asthma treated with regular inhaled budesonide, and 15 had mild episodic wheeze treated with inhaled terbutaline...... dose of budesonide was tapered in nine young children with asthma. FeNO(controlled) is feasible in young children from age 2 and shows better agreement with FeNO(SBOL) than FeNO(mixed). FeNO(controlled) covaries with asthma disease severity and steroid dose. FeNO(controlled) is therefore suggested...... as necessary. FeNO (controlled) showed good agreement with FeNO(SBOL) (factor difference 0.7-1.4), whereas FeNO(mixed) showed poor agreement with FeNO(SBOL) (factor difference 0.51-5.37). FeNO(controlled) (mean [95% confidence interval]) was 6 ppb (4-8 ppb) in young children with asthma, 5 ppb (3-7 ppb...

  4. Evolution of lung breathing from a lungless primitive vertebrate.

    Science.gov (United States)

    Hoffman, M; Taylor, B E; Harris, M B

    2016-04-01

    Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Breathing Cell: Cyclic Intermembrane Distance Variation in Reverse Electrodialysis

    NARCIS (Netherlands)

    Moreno Domingo, Jordi; Slouwerhof, E.; Vermaas, David; Saakes, M.; Nijmeijer, Dorothea C.

    2016-01-01

    The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater.

  6. The breathing cell : cyclic intermembrane distance variation in reverse electrodialysis

    NARCIS (Netherlands)

    Moreno, J.; Slouwerhof, E.; Vermaas, D.A.; Saakes, M.; Nijmeijer, K.

    2016-01-01

    The breathing cell is a new concept design that operates a reverse electrodialysis stack by varying in time the intermembrane distance. Reverse electrodialysis is used to harvest salinity gradient energy; a rather unknown renewable energy source from controlled mixing of river water and seawater.

  7. Dysfunctional breathing phenotype in adults with asthma - incidence and risk factors

    Directory of Open Access Journals (Sweden)

    Agache Ioana

    2012-09-01

    Full Text Available Abstract Background Abnormal breathing patterns may cause characteristic symptoms and impair quality of life. In a cross-sectional survey 29% of adults treated for asthma in primary care had symptoms suggestive of dysfunctional breathing (DB, more likely to be female and younger, with no differences for severity of asthma. No clear risk factors were demonstrated for DB in asthma, nor the impact of asthma medication was evaluated. The objective of this study was to describe the DB phenotype in adults with asthma treated in a specialised asthma centre. Methods Adult patients aged 17–65 with diagnosed asthma were screened for DB using the Nijmegen questionnaire (positive predictive score >23 and confirmed by progressive exercise testing. The following were evaluated as independent risk factors for DB in the multiple regression analysis: female sex; atopy, obesity, active smoker, moderate/severe rhinitis, psychopathology, GERD, arterial hypertension; severe asthma, asthma duration > 5 years, lack of asthma control, fixed airway obstruction, fast lung function decline, frequent exacerbator and brittle asthma phenotypes; lack of ICS, use of LABA or LTRA. Results 91 adults with asthma, mean age 35.04 ±1.19 years, 47(51.65% females were evaluated. 27 (29.67% subjects had a positive screening score on Nijmegen questionnaire and 16(17.58% were confirmed by progressive exercise testing as having DB. Independent risk factors for DB were psychopathology (p = 0.000002, frequent exacerbator asthma phenotype (p = 0.01 and uncontrolled asthma (p Conclusion Dysfunctional breathing is not infrequent in asthma patients and should be evaluated in asthma patients presenting with psychopathology, frequent severe asthma exacerbations or uncontrolled asthma. Asthma medication (ICS, LABA or LTRA had no significant relation with dysfunctional breathing.

  8. sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants

    Directory of Open Access Journals (Sweden)

    Patricia eMilz

    2014-05-01

    Full Text Available We investigated brain functional connectivity comparing no-task resting to breath counting (a meditation exercise but given as task without referring to meditation. Functional connectivity computed as EEG coherence between head-surface data suffers from localization ambiguity, reference dependence, and overestimation due to volume conduction. Lagged coherence between intracortical model sources addresses these criticisms. With this analysis approach, experienced meditators reportedly showed reduced coherence during meditation, meditation-naïve participants have not yet been investigated. 58-channel EEG from 23 healthy, right-handed, meditation-naïve males during resting [3 runs] and breath counting [2 runs] was computed into sLORETA time series of intracortical electrical activity in 19 regions of interest corresponding to the cortex underlying 19 scalp electrode sites, for each of the 8 independent EEG frequency bands covering 1.5-44 Hz. Intracortical lagged coherences and head-surface conventional coherences were computed between the 19 regions/sites. During breath counting compared to resting, paired t-tests corrected for multiple testing revealed 4 significantly lower intracortical lagged coherences, but 4 significantly higher head-surface conventional coherences. Lowered intracortical lagged coherences involved left BA 10 and right BAs 3, 10, 17, 40. In conclusion, intracortical lagged coherence can yield results that are inverted to those of head-surface conventional coherence. The lowered functional connectivity between cognitive control areas and sensory perception areas during meditation-type breath counting compared to resting conceivably reflects the attention to a bodily percept without cognitive reasoning. The reductions in functional connectivity were similar but not as widespread as the reductions reported during meditation in experienced meditators.

  9. Sleep Disordered Breathing in Chronic SCI: A Randomized Controlled Trial of Treatment Impact on Cognition, Quality of Life, and Cardiovascular Disease

    Science.gov (United States)

    2016-10-01

    Cognition, Quality of Life, and Cardiovascular Disease PRINCIPAL INVESTIGATOR: Shirin Shafazand, MD, MS CONTRACTING ORGANIZATION: University of Miami...with positive airway pressure (PAP) will improve cognitive impairment, sleep quality, quality of life, and cardiovascular disease (CVD) surrogate...Randomized Controlled Trial of Treatment Impact on Cognition, Quality of Life, and Cardiovascular Disease Shirin Shafazand, MD, MS Nothing listed 12

  10. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain - results of a randomized controlled trial

    NARCIS (Netherlands)

    Thiart, H.; Lehr, D.; Ebert, D.D.; Berking, M.; Riper, H.

    2015-01-01

    Objectives The primary purpose of this randomized controlled trial (RCT) was to evaluate the efficacy of a guided internet-based recovery training for employees who suffer from both work-related strain and sleep problems (GET.ON Recovery). The recovery training consisted of six lessons, employing

  11. To breathe free

    International Nuclear Information System (INIS)

    DeBardeleben, J.

    1991-01-01

    This book was organized by the Center's East European program and supported primarily by a grant from the Rockefeller Brothers' Fund. This book reports on the new political forces that swept Communist regimes from power throughout the region in 1989 and are now struggling to set up post-Communist governments and institutions. Nor need they do so. This volume does not attempt to be a current account of the state of environmental policy and official institutions in Eastern Europe. New institutions are only slowly taking shape. In the meantime, much of the old apparatus remains in place. The new leaders and parties have found it difficult to cover the economic cost or accept the political risk of imposing expensive environmental controls on the large industrial enterprises that are the principal polluters. In Poland and Hungary we see the real threat of a political backlash from workers facing unemployment when such enterprises lose even part of their state budget subsidy, let alone face new charges for pollution control or penalties for its absence. The separate environmental movement that played a prominent part in the overthrow of Communist power has not, moreover, survived as a powerful separate political party anywhere in Eastern Europe. Its chances appeared greatest in East Germany and Czechoslovakia but in neither place has the Green political organization expanded or even maintained its pre-1989 leverage

  12. Sensor Development for Active Flow Control

    Science.gov (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  13. Monitoring and controlling ovarian activity in elephants.

    Science.gov (United States)

    Thitaram, Chatchote; Brown, Janine L

    2018-03-15

    Both Asian (Elephas maximus) and African (Loxodonta africana) elephants are important keystone, umbrella and flagship species. Paradoxically, world population numbers of both species are declining in many of their natural ranges due mainly to poaching, while over population of elephants in some areas is resulting in serious human-elephant conflict, and modifications of natural habitats that impact biodiversity. Understanding mechanisms of reproductive control is vital to effective population management, and for that reason significant advances have been made in endocrine and ultrasonographic monitoring techniques, particularly in studies of elephants ex situ. However, there remains a need to develop new methods to control ovarian activity, both for enhancing and inhibiting reproduction, to maintain population numbers at levels that ensure species survival and their ability to safely cohabitate with humans and other species. We present an overview of reproductive monitoring methods and how they have contributed to our knowledge of elephant reproductive biology, as well as their application for in situ and ex situ conservation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Directory of Open Access Journals (Sweden)

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  15. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  16. Breath 14CO2 after intravenous administration of [14C]aminopyrine in liver diseases

    International Nuclear Information System (INIS)

    Pauwels, S.; Geubel, A.P.; Dive, C.; Beckers, C.

    1982-01-01

    The determination of of 14 CO2 in breath after oral administration of [ 14 C]aminopyrine has been proposed as a quantitative liver function test. In order to shorten the procedure and avoid misinterpretations related to variable rates of intestinal absorption, the [ 14 C]aminopyrine breath test (ABT) was performed after intravenous administration of [ 14 C]aminopyrine in 21 controls and 89 patients with biopsy-proven liver disease. The specific activity of the first hour sample corrected for body weight (SA1) was the most discriminant expression of breath data. The SA1 value, expressed as the percentage of the administered dose, was 0.86 +/- 0.1% (mean +/- SD) in controls and significantly less in patients (0.46 +/- 0.31%). Low values were observed in patients with untreated chronic active hepatitis (0.16 +/- 0.13%), alcoholic cirrhosis (0.2 +/ 0.15%0, and untreated postnecrotic cirrhosis (0.47 +/- 0.17%). In contrast, normal values were obtained in chronic persistent hepatitis (0.86 +/- 0.13%) and 58% of noncirrhotic alcoholic liver diseases (0.83 +/- 0.27%). The results of duplicate studies were reproducible and SA1 correlated with other conventional liver function tests, including 45-min BSP retention. Among these, ABT was the most sensitive screening test for the presence of cirrhosis, especially in alcoholic patients, where it allowed a sharp distinction between cirrhotic and noncirrhotic cases. The results obtained in chronic hepatitis suggested that ABT may provide a reliable index of the activity of the disease. In our hands, intravenous ABT, performed over a 1-hr period, was a fast, sensitive, and discriminant liver function test

  17. SERVE-HF − Was treating a central neurological disturbance of breathing control by a mechanism initially designed to keep open an obstructed airway always doomed to fail?

    Directory of Open Access Journals (Sweden)

    Andrew J Stewart Coats

    2015-01-01

    Full Text Available On May 24th this year at the Heart Failure Association meeting in Seville, Spain I had the pleasure of chairing a special session at which Martin Cowie, chairman of the Steering Committee, presented the results of SERVE-HF, the largest ever trial of treatment of predominant central sleep apnoea (CSA in chronic heart failure (CHF. The final results were not presented at this session, for these were embargoed until presented at the European Society of Cardiology Meeting in London on September 1st, with simultaneous publication of the main results paper in New England Journal of Medicine1. Despite that, it was still a fascinating overfilled session, such was the interest in the heart failure community. What we did hear, however, was that 11 days prior (on May 13 the sponsor of SERVE-HF, Resmed had issued a press release stating “ResMed (NYSE: RMD today announced that SERVE-HF, a multinational, multicenter, randomized controlled Phase IV trial did not meet its primary endpoint. SERVE-HF was designed to assess whether the treatment of moderate to severe predominant central sleep apnea with Adaptive Servo-Ventilation (ASV therapy could reduce mortality and morbidity in patients with symptomatic chronic heart failure in addition to optimized medical care. The study did not show a statistically significant difference between patients randomized to ASV therapy and those in the control group in the primary endpoint of time to all-cause mortality or unplanned hospitalization for worsening heart failure (based on a hazard ratio [HR] = 1.136, 95 percent confidence interval [95% CI] = (0.974, 1.325, p-value = 0.104. A preliminary analysis of the data identified a statistically significant 2.5 percent absolute increased risk of cardiovascular mortality for those patients in the trial who received ASV therapy per year compared to those in the control group. In the study, the cardiovascular mortality rate in the ASV group was 10 percent per year compared to 7

  18. SU-F-BRB-03: Quantifying Patient Motion During Deep-Inspiration Breath-Hold Using the ABC System with Simultaneous Surface Photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Y; Rahimi, A; Sawant, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Active breathing control (ABC) has been used to reduce treatment margin due to respiratory organ motion by enforcing temporary breath-holds. However, in practice, even if the ABC device indicates constant lung volume during breath-hold, the patient may still exhibit minor chest motion. Consequently, therapists are given a false sense of security that the patient is immobilized. This study aims at quantifying such motion during ABC breath-holds by monitoring the patient chest motion using a surface photogrammetry system, VisionRT. Methods: A female patient with breast cancer was selected to evaluate chest motion during ABC breath-holds. During the entire course of treatment, the patient’s chest surface was monitored by a surface photogrammetry system, VisionRT. Specifically, a user-defined region-of-interest (ROI) on the chest surface was selected for the system to track at a rate of ∼3Hz. The surface motion was estimated by rigid image registration between the current ROI image captured and a reference image. The translational and rotational displacements computed were saved in a log file. Results: A total of 20 fractions of radiation treatment were monitored by VisionRT. After removing noisy data, we obtained chest motion of 79 breath-hold sessions. Mean chest motion in AP direction during breath-holds is 1.31mm with 0.62mm standard deviation. Of the 79 sessions, the patient exhibited motion ranging from 0–1 mm (30 sessions), 1–2 mm (37 sessions), 2–3 mm (11 sessions) and >3 mm (1 session). Conclusion: Contrary to popular assumptions, the patient is not completely still during ABC breath-hold sessions. In this particular case studied, the patient exhibited chest motion over 2mm in 14 out of 79 breath-holds. Underestimating treatment margin for radiation therapy with ABC could reduce treatment effectiveness due to geometric miss or overdose of critical organs. The senior author receives research funding from NIH, VisionRT, Varian Medical Systems

  19. Examination of dialysis patients with the aminophenazone breath test

    International Nuclear Information System (INIS)

    Heinrich, H.G.; Adler, D.; Hornak, H.; Wuenschmann, H.J.; Mayer, W.K.

    1989-01-01

    In 12 endstage kidney disease patients (8 without and 4 with liver diseases) the activities of cytochrome P 450 -dependent mixed functional oxidases system (MFO) of the liver were studied by using the 14 C-aminophenazone breath test before and after dialysis. The results showed that uremia seems to have a pressing influence on MFO activity. The activity was only significantly increased after dialysis in the group of patients without liver diseases. The MFO activity was reduced in patients with liver diseases. This is a restriction of the hepatic metabolic demethylation capacity. It is unclear if the 14 C-aminophenazone breath test in dialysis patients is qualified to estimate metabolic capacity of the liver. Differentiation between the influence of uremia and of the liver disease on the alteration of MFO activity cannot be made. (author)

  20. Salivary Markers and Microbial Flora in Mouth Breathing Late Adolescents

    Directory of Open Access Journals (Sweden)

    Stefano Mummolo

    2018-01-01

    Full Text Available Objective. This is a 6-month observational case-control study that aims to estimate plaque index (PI, salivary flow, buffering capacity of saliva, and specific Streptococcus mutans (S. mutans and Lactobacillus rates in a mouth breathing late adolescents sample, after a professional oral hygiene procedure and home oral hygiene instructions. Subjects and Methods. A sample of 20 mouth breathing late adolescents/young adults (average: 19.2±2.5; range: 18–23 years and a matched control group of nose breathing subjects (average: 18.3±3.2; range 18–23 years were included in the study. All the participants were subjected to a professional oral hygiene procedure and appropriate home oral hygiene instructions (t0. After three months (t1 and six months (t2, the PI, salivary flow, buffering capacity of saliva, and S. mutans and Lactobacilli rates were recorded. Results. The mean buffering capacity of saliva and the salivary flow rate showed no significant difference between the two groups, all over the observational period. For PI, a significantly higher mode (score 1 of PI was observed in the study group at t1 (score 0 = 35% of subjects; score 1 = 60%; score 2 = 5% and t2 (score 1 = 65% of subjects, score 2 = 35%, with respect to control group. Furthermore, mouth breathing subjects show a significant 4 times higher risk to develop S. mutans CFU > 105 (CI lower limit: 0.95; CI upper limit: 9.48; chi-square: 4.28; p=0.03, with respect to the control subjects. Conclusions. Mouth breathing late adolescents show a significantly higher risk to develop S. mutans CFU > 105 and an increased level of PI. Interceptive orthodontic treatments in growing subjects, like palatal expansion, are encouraged to improve the nasal air flow. In older subjects, orthodontic treatments should be performed with removable appliances like clear aligners, in order to allow a better oral hygiene level.

  1. Kidney motion during free breathing and breath hold for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Stam, Mette K; Van Vulpen, Marco; Intven, Martijn; Crijns, Sjoerd P M; Lagendijk, Jan J W; Raaymakers, Bas W; Barendrecht, Maurits M; Zonnenberg, Bernard A

    2013-01-01

    Current treatments for renal cell carcinoma have a high complication rate due to the invasiveness of the treatment. With the MRI-linac it may be possible to treat renal tumours non-invasively with high-precision radiotherapy. This is expected to reduce complications. To deliver a static dose distribution, radiation gating will be used. In this study the reproducibility and efficiency of free breathing gating and a breath hold treatment of the kidney was investigated. For 15 patients with a renal lesion the kidney motion during 2 min of free breathing and 10 consecutive expiration breath holds was studied with 2D cine MRI. The variability in kidney expiration position and treatment efficiency for gating windows of 1 to 20 mm was measured for both breathing patterns. Additionally the time trend in free breathing and the variation in expiration breath hold kidney position with baseline shift correction was determined. In 80% of the patients the variation in expiration position during free breathing is smaller than 2 mm. No clinically relevant time trends were detected. The variation in expiration breath hold is for all patients larger than the free breathing expiration variation. Gating on free breathing is, for gating windows of 1 to 5 mm more efficient than breath hold without baseline correction. When applying a baseline correction to the breath hold it increases the treatment efficiency. The kidney position is more reproducible in expiration free breathing than non-guided expiration breath hold. For small gating windows it is also more time efficient. Since free breathing also seems more comfortable for the patients it is the preferred breathing pattern for MRI-Linac treatments of the kidney. (paper)

  2. [Characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia].

    Science.gov (United States)

    Li, Lan; Chen, Qaing; Zhang, Fan; Zhu, Shuang-Gui; Hu, Ci-Lang; Wu, Ai-Min

    2017-12-01

    To investigate the characteristics of tidal breathing pulmonary function in children with tracheobronchomalacia (TBM). In this study, 30 children who were diagnosed with TBM using electronic bronchoscopy were enrolled in the observation group; 30 healthy children were recruited in the normal control group. For individuals in each group, the assessment of tidal breath pulmonary function was performed at diagnosis and 3, 6, 9, and 12 months after diagnosis. There were no significant differences in tidal volume, inspiratory time, expiratory time, and inspiratory to expiratory ratio between the two groups (P>0.05). Compared with the control group, the observation group had a significantly higher respiratory rate and significantly lower ratio of time to peak tidal expiratory flow to total expiratory time (TPTEF/TE) and ratio of volume to peak tidal expiratory flow to total expiratory volume (VPTEF/VE). There was a time-dependent increase in TPTEF/TE and VPTEF/VE for TBM children from the time of initial diagnosis to 12 months after diagnosis. Tidal breathing pulmonary function has characteristic changes in children with TBM. Tidal breathing pulmonary function tends to be recovered with increased age in children with TBM.

  3. A cross-sectional study of breath acetone based on diabetic metabolic disorders.

    Science.gov (United States)

    Li, Wenwen; Liu, Yong; Lu, Xiaoyong; Huang, Yanping; Liu, Yu; Cheng, Shouquan; Duan, Yixiang

    2015-02-26

    Breath acetone is a known biomarker for diabetes mellitus in breath analysis. In this work, a cross-sectional study of breath acetone based on clinical metabolic disorders of type 2 diabetes mellitus (T2DM) was carried out. Breath acetone concentrations of 113 T2DM patients and 56 apparently healthy individuals were measured at a single time point. Concentrations varied from 0.22 to 9.41 ppmv (mean 1.75 ppmv) for T2DM, which were significantly higher than those for normal controls (ranged from 0.32 to 1.96 ppmv, mean 0.72 ppmv, p = 0.008). Observations in our work revealed that breath acetone concentrations elevated to different degrees, along with the abnormality of blood glucose, glycated hemoglobin (HbA1c), triglyceride and cholesterol. Breath acetone showed obviously positive correlations with blood ketone and urine ketone. Possible metabolic relations between breath acetone and diabetic disorders were also discussed. This work aimed at giving an overall assessment of breath acetone from the perspective of clinical parameters for type 2 diabetes.

  4. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  5. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...... with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is dependent...... on wakefulness and sleep. Thus, it is important to be aware of basic mechanisms in the regulation and control of sleep and awake states. Supine position decreases the vital capacity in tetraplegic individuals, and diminished responsiveness to Pa(CO)(2) may further decrease ventilatory reserve. There also may...

  6. Sleep disordered breathing in pregnancy

    Directory of Open Access Journals (Sweden)

    Bilgay Izci Balserak

    2015-12-01

    Sleep disordered breathing (SDB is very common during pregnancy, and is most likely explained by hormonal, physiological and physical changes. Maternal obesity, one of the major risk factors for SDB, together with physiological changes in pregnancy may predispose women to develop SDB. SDB has been associated with poor maternal and fetal outcomes. Thus, early identification, diagnosis and treatment of SDB are important in pregnancy. This article reviews the pregnancy-related changes affecting the severity of SDB, the epidemiology and the risk factors of SDB in pregnancy, the association of SDB with adverse pregnancy outcomes, and screening and management options specific for this population.

  7. Environmental contamination and breathing disease

    International Nuclear Information System (INIS)

    Cardona A, Jose D

    2003-01-01

    The atmospheric contamination is the main component of the environmental contamination and it can be defined as the presence in the atmosphere of an or several substances in enough quantity to produce alterations of the health, it is presented in aerosol form, with its gassy and specific components, altering the quality of the population's life and the degradation of the ecosystems. The main pollutant, as much for the frequency as for the importance of its effects, is the smoke of cigarettes. The paper mentions other types of polluting agents and their effects in the breathing apparatus

  8. Active controllers and the time duration to learn a task

    Science.gov (United States)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  9. Synchronization of Rikitake chaotic attractor using active control

    International Nuclear Information System (INIS)

    Vincent, U.E.

    2005-01-01

    Using synchronization technique based on control theory, we design an active controller which enables the synchronization of two identical Rikitake two-disc dynamo systems. Numerical simulations are used to show the robustness of the active control scheme in synchronizing coupled Rikitake dynamical systems. On the sequential application of the active control, transitions from temporary phase locking (TPL) state to complete synchronization state were found

  10. Low Activity Waste Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  11. The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls

    Science.gov (United States)

    Fogel, Robert B; Trinder, John; White, David P; Malhotra, Atul; Raneri, Jill; Schory, Karen; Kleverlaan, Darci; Pierce, Robert J

    2005-01-01

    Pharyngeal dilator muscles are important in the pathophysiology of obstructive sleep apnoea syndrome (OSA). We have previously shown that during wakefulness, the activity of both the genioglossus (GGEMG) and tensor palatini (TPEMG) is greater in patients with OSA compared with controls. Further, EMG activity decreases at sleep onset, and the decrement is greater in apnoea patients than in healthy controls. In addition, it is known that the prevalence of OSA is greater in middle-aged compared with younger men. Thus, we had two goals in this study. First we compared upper airway muscle activity between young and middle-aged healthy men compared with men with OSA. We also explored the mechanisms responsible for the decrement in muscle activity at sleep onset in these groups. We investigated muscle activity, ventilation , and upper airway resistance (UAR) during wakefulness and sleep onset (transition from α to θ EEG activity) in all three groups. Measurements were obtained during basal breathing (BB) and nasal continuous positive airway pressure (CPAP) was applied to reduce negative pressure-mediated muscle activation). We found that during wakefulness there was a gradation of GGEMG and UAR (younger < older < OSA) and that muscle activity was reduced by the application of nasal CPAP (to a greater degree in the OSA patients). Although CPAP eliminated differences in UAR during wakefulness and sleep, GGEMG remained greater in the OSA patients. During sleep onset, a greater initial fall in GGEMG was seen in the OSA patients followed by subsequent muscle recruitment in the third to fifth breaths following the α to θ transition. On the CPAP night, and GGEMG still fell further in the OSA patients compared with control subjects. CPAP prevented the rise in UAR at sleep onset along with the associated recruitment in GGEMG. Differences in TPEMG among the groups were not significant. These data suggest that the middle-aged men had upper airway function midway between that of

  12. Controlling active cabin suspensions in commercial vehicles

    NARCIS (Netherlands)

    Evers, W.J.E.; Besselink, I.J.M.; Teerhuis, A.P.; Knaap, van der A.C.M.; Nijmeijer, H.

    2009-01-01

    The field of automotive suspensions is changing. Semi-active and active suspensions are starting to become viable options for vehicle designers. Suspension design for commercial vehicles is especially interesting given its potential. An active cabin suspension for a heavy-duty truck is considered,

  13. Active control versus recursive backstepping control of a chaotic ...

    African Journals Online (AJOL)

    ... than for the recursive backstepping controllers. However, the flexibility in the choice of the control laws for recursive backstepping design gives room for further improvement in its performance and enables it to achieve the goals of stabilization and tracking. Journal of the Nigerian Association of Mathematical Physics Vol.

  14. News from the Breath Analysis Summit 2011.

    Science.gov (United States)

    Corradi, Massimo; Mutti, Antonio

    2012-06-01

    This special section highlights some of the important work presented at the Breath Analysis Summit 2011, which was held in Parma (Italy) from 11 to 14 September 2011. The meeting, which was jointly organized by the International Association for Breath Research and the University of Parma, was attended by more than 250 delegates from 33 countries, and offered 34 invited lectures and 64 unsolicited scientific contributions. The summit was organized to provide a forum to scientists, engineers and clinicians to present their latest findings and to meet industry executives and entrepreneurs to discuss key trends, future directions and technologies available for breath analysis. A major focus was on nitric oxide, exhaled breath condensate, electronic nose, mass spectrometry and newer sensor technologies. Medical applications ranged from asthma and other respiratory diseases to gastrointestinal disease, occupational diseases, critical care and cancer. Most people identify breath tests with breathalysers used by police to estimate ethanol concentration in blood. However, breath testing has far more sophisticated applications. Breath analysis is rapidly evolving as a new frontier in medical testing for disease states in the lung and beyond. Every individual has a breath fingerprint-or 'breathprint'-that can provide useful information about his or her state of health. This breathprint comprises the many thousands of molecules that are expelled with each breath we exhale. Breath research in the past few years has uncovered the scientific and molecular basis for such clinical observations. Relying on mass spectrometry, we have been able to identify many such unique substances in exhaled breath, including gases, such as nitric oxide (NO) and carbon monoxide (CO), and a wide array of volatile organic compounds. Exhaled breath also carries aerosolized droplets that can be collected as an exhaled breath condensate that contains endogenously produced non-volatile compounds. Breath

  15. SU-E-T-361: Clinical Benefit of Automatic Beam Gating Mixed with Breath Hold in Radiation Therapy of Left Breast

    International Nuclear Information System (INIS)

    Wu, J; Hill, G; Spiegel, J; Ye, J; Mehta, V

    2014-01-01

    Purpose: To investigate the clinical and dosimetric benefits of automatic gating of left breast mixed with breath-hold technique. Methods: Two Active Breathing Control systems, ABC2.0 and ABC3.0, were used during simulation and treatment delivery. The two systems are different such that ABC2.0 is a breath-hold system without beam control capability, while ABC3.0 has capability in both breath-hold and beam gating. At simulation, each patient was scanned twice: one with free breathing (FB) and one with breath hold through ABC. Treatment plan was generated on the CT with ABC. The same plan was also recalculated on the CT with FB. These two plans were compared to assess plan quality. For treatments with ABC2.0, beams with MU > 55 were manually split into multiple subfields. All subfields were identical and shared the total MU. For treatment with ABC3.0, beam splitting was unnecessary. Instead, treatment was delivered in gating mode mixed with breath-hold technique. Treatment delivery efficiency using the two systems was compared. Results: The prescribed dose was 50.4Gy at 1.8Gy/fraction. The maximum heart dose averaged over 10 patients was 46.0±2.5Gy and 24.5±12.2Gy for treatments with FB and with ABC respectively. The corresponding heart V10 was 13.2±3.6% and 1.0±1.6% respectively. The averaged MUs were 99.8±7.5 for LMT, 99.2±9.4 for LLT. For treatment with ABC2.0, normally the original beam was split into 2 subfields. The averaged total time to delivery all beams was 4.3±0.4min for treatments with ABC2.0 and 3.3±0.6min for treatments with ABC3.0 in gating mode. Conclusion: Treatment with ABC tremendously reduced heart dose. Compared to treatments with ABC2.0, gating with ABC3.0 reduced the total treatment time by 23%. Use of ABC3.0 improved the delivery efficiency, and eliminated the possibility of mistreatments. The latter may happen with ABC2.0 where beam is not terminated when breath signal falls outside of the treatment window

  16. Start-up of intensive anaerobic wastewater methanization processes: impact of hydrodynamic conditions and of control strategy of organic load increase on biofilm formation and activity

    International Nuclear Information System (INIS)

    Cresson, Romain

    2006-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of anaerobic film development and maturation, in order to obtain a better control of their formation and this to decrease the duration of the bioreactor start-up phase. More precisely, the author analysed the impact of hydrodynamic parameters and of load rise strategy on biofilm characteristics (thickness, density, biodiversity) and on its activity (anaerobic breathing, decontamination kinetics) during its development. Thus, after a recall of the anaerobic digestion principle, the author presents processes, methods and techniques used during this research, reports and discusses the obtained results

  17. A sigh of relief or a sigh to relieve: The psychological and physiological relief effect of deep breaths.

    Science.gov (United States)

    Vlemincx, Elke; Van Diest, Ilse; Van den Bergh, Omer

    2016-10-15

    Both animal and human research have revealed important associations between sighs and relief. Previously we argued to conceive of sighs as resetters which temporarily induce relief. The present study aimed to investigate the psychological and physiological relief effect of sighs by instructed deep breaths and spontaneous sighs compared to a control breathing maneuver. Participants completed three blocks of 40 trials during which uncertainty cues were followed by either safety cues followed by a positive picture, or danger cues followed by a negative picture. One block was presented without breathing instructions, two subsequent blocks with breathing instructions. During the presentation of the safety and danger cues, an instruction was given to either 'take a deep breath' or 'postpone the next inhalation for 2 s (breath hold). Continuously, participants rated relief and Frontalis electromyography was recorded. Trait anxiety sensitivity was assessed by the Anxiety Sensitivity Index. Self-reported relief and physiological tension were compared 5s before and after instructed deep breaths and breath holds, and before and after spontaneous deep breaths and breath holds in the respective blocks. Results show that self-reported relief following an instructed deep breath was higher than before. Physiological tension decreased following a spontaneous sigh in high anxiety sensitive persons and following a spontaneous breath hold in low anxiety sensitive persons. These results are the first to show that a deep breath relieves and, in anxiety sensitive persons, reduces physiological tension. These findings support the hypothesis that sighs are psychological and physiological resetters. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Role of cerebral blood flow in extreme breath holding.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Hoiland, Ryan L; Willie, Chris K; MacLeod, David B; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko

    2016-01-01

    The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO 2 ) by about 26% (p tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H + washout, and therefore central chemoreceptive drive to breathe, rather than to CDO 2 .

  19. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    International Nuclear Information System (INIS)

    Pollock, S; Keall, P; Keall, R

    2015-01-01

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  20. Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study

    Directory of Open Access Journals (Sweden)

    Van Sickle David

    2008-03-01

    Full Text Available Abstract Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male. Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86 and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification.

  1. SU-E-J-185: A Systematic Review of Breathing Guidance in Radiation Oncology and Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, S; Keall, P [University of Sydney, Sydney (Australia); Keall, R [Hammond Care Palliative and Supportive Care Service, Sydney, NSW (Australia)

    2015-06-15

    Purpose: The advent of image-guided radiation therapy (IGRT) has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion is the use of breathing guidance systems during imaging and treatment. A review of such research had not yet been performed, it was therefore our aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: Results of online database searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with the PRISMAStatement reporting standard (Preferred Reporting Items for Systematic reviews and Meta-Analyses) utilizing the PICOS approach (Participants, Intervention, Comparison, Outcome, Study design). Participants: Cancer patients, healthy volunteers. Intervention: Biofeedback breathing guidance systems. Comparison: No breathing guidance of the same breathing type. Outcome: Regularity of breathing signal and anatomic/tumor motion, medical image quality, radiation treatment margins and coverage, medical imaging and radiation treatment times. Study design: Quantitative and controlled prospective or retrospective trials. Results: The systematic search yielded a total of 479 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. The vast majority of investigated outcomes were significantly positively impacted by the use of breathing guidance; however, this was dependent upon the nature of the breathing guidance system and study design. In 25/27 studies significant improvements from the use of breathing guidance were observed. Conclusion: The results found here indicate that further clinical studies are warranted which quantify more comprehensively the

  2. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds.

    Science.gov (United States)

    Pleil, J D; Lindstrom, A B

    1997-05-01

    The organic constituents of exhaled human breath are representative of blood-borne concentrations through gas exchange in the blood/breath interface in the lungs. The presence of specific compounds can be an indicator of recent exposure or represent a biological response of the subject. For volatile organic compounds (VOCs), sampling and analysis of breath is preferred to direct measurement from blood samples because breath collection is noninvasive, potentially infectious waste is avoided, and the measurement of gas-phase analytes is much simpler in a gas matrix rather than in a complex biological tissue such as blood. To exploit these advantages, we have developed the "single breath canister" (SBC) technique, a simple direct collection method for individual alveolar breath samples, and adapted conventional gas chromatography-mass spectrometry analytical methods for trace-concentration VOC analysis. The focus of this paper is to describe briefly the techniques for making VOC measurements in breath, to present some specific applications for which these methods are relevant, and to demonstrate how to estimate exposure to example VOCs on the basis of breath elimination. We present data from three different exposure scenarios: (a) vinyl chloride and cis-1,2-dichloroethene from showering with contaminated water from a private well, (b) chloroform and bromodichloromethane from high-intensity swimming in chlorinated pool water, and (c) trichloroethene from a controlled exposure chamber experiment. In all cases, for all subjects, the experiment is the same: preexposure breath measurement, exposure to halogenated VOC, and a postexposure time-dependent series of breath measurements. Data are presented only to demonstrate the use of the method and how to interpret the analytical results.

  3. Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin

    2015-08-01

    Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p < 0.001) and traditional HRV indices SDNN, RMSSD, lnLFP, and lnHFP (p < 0.01 for all). It approached significance for sample entropy (SampEn) and correlation dimension (D2) (p < 0.1 for both), while HRV detrended fluctuation analysis (DFA) measures DFAα1 and DFAα2 were not affected by load condition. Breathing did not affect HR but affected all traditional HRV measures. D2 was not affected by breathing; DFAα1 was moderately affected by breathing; and DFAα2, approximate entropy (ApEn), and SampEn were strongly affected by breathing. DFAα1 was strongly increased, whereas DFAα2, ApEn, and SampEn were decreased by slow breathing. No interaction effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p < 0.05 to <0.01). In conclusion, while light exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.

  4. Relationship between musical characteristics and temporal breathing pattern in piano performance

    Directory of Open Access Journals (Sweden)

    Yutaka Sakaguchi

    2016-07-01

    Full Text Available Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon’s exercise, J. S. Bach’s Invention, Mozart’s Sonatas, and Debussy’s Clair de lune, was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. 1 Mean breath interval was shortened for excerpts in faster tempi. 2 Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. 3 Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise, but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. 4 Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. 5 Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  5. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    Science.gov (United States)

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  6. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  7. Breath-by-breath analysis of cardiorespiratory interaction for quantifying developmental maturity in premature infants

    Science.gov (United States)

    Rusin, Craig G.; Hudson, John L.; Lee, Hoshik; Delos, John B.; Guin, Lauren E.; Vergales, Brooke D.; Paget-Brown, Alix; Kattwinkel, John; Lake, Douglas E.; Moorman, J. Randall

    2012-01-01

    In healthy neonates, connections between the heart and lungs through brain stem chemosensory pathways and the autonomic nervous system result in cardiorespiratory synchronization. This interdependence between cardiac and respiratory dynamics can be difficult to measure because of intermittent signal quality in intensive care settings and variability of heart and breathing rates. We employed a phase-based measure suggested by Schäfer and coworkers (Schäfer C, Rosenblum MG, Kurths J, Abel HH. Nature 392: 239–240, 1998) to obtain a breath-by-breath analysis of cardiorespiratory interaction. This measure of cardiorespiratory interaction does not distinguish between cardiac control of respiration associated with cardioventilatory coupling and respiratory influences on the heart rate associated with respiratory sinus arrhythmia. We calculated, in sliding 4-min windows, the probability density of heartbeats as a function of the concurrent phase of the respiratory cycle. Probability density functions whose Shannon entropy had a interaction. In this way, we analyzed 18 infant-years of data from 1,202 patients in the Neonatal Intensive Care Unit at University of Virginia. We found evidence of interaction in 3.3 patient-years of data (18%). Cardiorespiratory interaction increased several-fold with postnatal development, but, surprisingly, the rate of increase was not affected by gestational age at birth. We find evidence for moderate correspondence between this measure of cardiorespiratory interaction and cardioventilatory coupling and no evidence for respiratory sinus arrhythmia, leading to the need for further investigation of the underlying mechanism. Such continuous measures of physiological interaction may serve to gauge developmental maturity in neonatal intensive care patients and prove useful in decisions about incipient illness and about hospital discharge. PMID:22174403

  8. Carotid chemoreceptors tune breathing via multipath routing: reticular chain and loop operations supported by parallel spike train correlations.

    Science.gov (United States)

    Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Ott, Mackenzie M; Alencar, Pierina A; Shuman, Dale; Horton, Kofi-Kermit; Taylor-Clark, Thomas E; Bolser, Donald C; Lindsey, Bruce G

    2018-02-01

    We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the

  9. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  10. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  11. Nitrate control strategies in an activated sludge wastewater treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenhao; Tao, Erpan; Chen, Xiaoquan; Liu, Dawei [South China University of Technology, Guangzhou (China); Liu, Hongbin [Kyung Hee University, Yongin (Korea, Republic of)

    2014-03-15

    We studied nitrate control strategies in an activated sludge wastewater treatment process (WWTP) based on the activated sludge model. Two control strategies, back propagation for proportional-integral-derivative (BP-PID) and adaptive-network based fuzzy inference systems (ANFIS), are applied in the WWTP. The simulation results show that the simple local constant setpoint control has poor control effects on the nitrate concentration control. However, the ANFIS (4*1) controller, which considers not only the local constant setpoint control of the nitrate concentration, but also three important indices in the effluent--ammonia concentration, total suspended sludge concentration and total nitrogen concentration--demonstrates good control performance. The results also prove that ANFIS (4*1) controller has better control performance than that of the controllers PI, BP-PID and ANFIS (2*1), and that the ANFIS (4*1) controller is effective in improving the effluent quality and maintaining the stability of the effluent quality.

  12. Nonlinear Predictive Sliding Mode Control for Active Suspension System

    Directory of Open Access Journals (Sweden)

    Dazhuang Wang

    2018-01-01

    Full Text Available An active suspension system is important in meeting the requirements of the ride comfort and handling stability for vehicles. In this work, a nonlinear model of active suspension system and a corresponding nonlinear robust predictive sliding mode control are established for the control problem of active suspension. Firstly, a seven-degree-of-freedom active suspension model is established considering the nonlinear effects of springs and dampers; and secondly, the dynamic model is expanded in the time domain, and the corresponding predictive sliding mode control is established. The uncertainties in the controller are approximated by the fuzzy logic system, and the adaptive controller reduces the approximation error to increase the robustness of the control system. Finally, the simulation results show that the ride comfort and handling stability performance of the active suspension system is better than that of the passive suspension system and the Skyhook active suspension. Thus, the system can obviously improve the shock absorption performance of vehicles.

  13. Oral breathing: new early treatment protocol

    Directory of Open Access Journals (Sweden)

    Gloria Denotti

    2014-01-01

    Full Text Available Oral breathing is a respiratory dysfunction that affects approximately 10-15% of child population. It is responsable of local effects and systemic effects, both immediate and long-term. They affect the growth of the subject and his physical health in many ways: pediatric, psycho-behavioral and cognitive. The etiology is multifactorial. It’s important the establishment of a vicious circle involving more areas and it is essential to stop it as soon as possible. In order to correct this anomaly, the pediatric dentist must be able to make a correct diagnosis to treat early the disfunction and to avoid the onset of cascade mechanisms. Who plays a central role is the pediatrician who first and frequently come into contact with little patients. He can identify the anomalies, and therefore collaborate with other specialists, including the dentist. The key aspect that guides us in the diagnosis, and allows us to identify the oral respirator, is the “adenoid facies”. The purpose of the study is to highlight the importance and benefits of an early and multidisciplinary intervention (pediatric, orthopedic-orthodontic-functional. A sample of 20 patients was selected with the following inclusion criteria: mouth breathing, transverse discrepancy > 4 mm, early mixed dentition, central and lateral permenent incisors, overjet increased, lip and nasal incompetence, snoring and/or sleep apnea episodes. The protocol of intervention includes the use of the following devices and procedures: a maxillary rapid expander (to correct the transverse discrepancy, to increase the amplitude of the upper respiratory airway and to reduce nasal resistances tract in association with myo-functional devices (nasal stimulator and oral obturator. They allow the reconstruction of a physiological balance between the perioral musculature and tongue, the acquisition of nasal and lips competence and the reduction of overjet. This protocol speeds up and stabilizes the results. The

  14. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  15. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    Science.gov (United States)

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air.

  16. Seismic active control by a heuristic-based algorithm

    International Nuclear Information System (INIS)

    Tang, Yu.

    1996-01-01

    A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws

  17. Control of Sound Transmission with Active-Passive Tiles

    OpenAIRE

    Goldstein, Andre L.

    2006-01-01

    Nowadays, numerous applications of active sound transmission control require lightweight partitions with high transmission loss over a broad frequency range and simple control strategies. In this work an active-passive sound transmission control approach is investigated that potentially addresses these requirements. The approach involves the use of lightweight stiff panels, or tiles, attached to a radiating base structure through active-passive soft mounts and covering the structure surface. ...

  18. Brain-Activity-Driven Real-Time Music Emotive Control

    OpenAIRE

    Giraldo, Sergio; Ramirez, Rafael

    2013-01-01

    Active music listening has emerged as a study field that aims to enable listeners to interactively control music. Most of active music listening systems aim to control music aspects such as playback, equalization, browsing, and retrieval, but few of them aim to control expressive aspects of music to convey emotions. In this study our aim is to enrich the music listening experience by allowing listeners to control expressive parameters in music performances using their perceived emotional stat...

  19. Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases

    International Nuclear Information System (INIS)

    Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Frauenfeld, Anian; Weiss, Christel; Simeonova, Anna; Neumaier, Christian; Siebenlist, Kerstin; Attenberger, Ulrike; Heußel, Claus Peter; Schneider, Frank

    2014-01-01

    Stereotactic Ablative RadioTherapy (SABR) of lung tumors/metastases has been shown to be an effective treatment modality with low toxicity. Outcome and toxicity were retrospectively evaluated in a unique single-institution cohort treated with intensity-modulated image-guided breath-hold SABR (igSABR) without external immobilization. The dose–response relationship is analyzed based on Biologically Equivalent Dose (BED). 50 lesions in 43 patients with primary NSCLC (n = 27) or lung-metastases of various primaries (n = 16) were consecutively treated with igSABR with Active-Breathing-Coordinator (ABC®) and repeat-breath-hold cone-beam-CT. After an initial dose-finding/-escalation period, 5x12 Gy for peripheral lesions and single doses of 5 Gy to varying dose levels for central lesions were applied. Overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC) and toxicity were analyzed. The median BED2 was 83 Gy. 12 lesions were treated with a BED2 of <80 Gy, and 38 lesions with a BED2 of >80 Gy. Median follow-up was 15 months. Actuarial 1- and 2-year OS were 67% and 43%; respectively. Cause of death was non-disease-related in 27%. Actuarial 1- and 2-year PFS was 42% and 28%. Progression site was predominantly distant. Actuarial 1- and 2 year LC was 90% and 85%. LC showed a trend for a correlation to BED2 (p = 0.1167). Pneumonitis requiring conservative treatment occurred in 23%. Intensity-modulated breath-hold igSABR results in high LC-rates and low toxicity in this unfavorable patient cohort with inoperable lung tumors or metastases. A BED2 of <80 Gy was associated with reduced local control

  20. Breath-hold duration in man and the diving response induced by face immersion.

    Science.gov (United States)

    Sterba, J A; Lundgren, C E

    1988-09-01

    The objective of this study in 5 selected volunteer subjects was to see whether the circulatory diving response which is elicited by breath holding and by cold water on the face would affect the duration of maximal-effort breath holds. Compared to control measurements (breath holding during resting, breathing with 35 degrees C water on the face) breath holding with the face cooled by 20 degrees C water caused a 12% reduction of heart rate, 6% reduction of cardiac output, 33% reduction in [corrected] forearm blood flow, and 9% rise in mean arterial blood pressure, but there was no difference in breath-hold duration (control and experimental both 94 s). There were also no differences in time of appearance of the first involuntary respiratory efforts during breath holding, in alveolar gas exchange, or in breaking-point alveolar O2 and CO2 tensions. When the diving response was magnified by a brief bout of exercise so that there was a 19% [corrected] reduction in heart rate, 23% reduction in cardiac output, and 48% reduction in forearm blood flow, breath-hold duration was still unaffected by face cooling. Compared to intermittent immersions, continuous exposure of the face to cold water abolished the diving response, probably by a cold adaptation of facial thermal receptors. These results with cooling of the face only are consistent with our earlier finding that there was a negative correlation between the duration of a maximal-effort breath hold and the diving response during whole-body submersion in cold water.

  1. Time Breath of Psychological Theories

    DEFF Research Database (Denmark)

    Tateo, Luca; Valsiner, Jaan

    2015-01-01

    Psychology as a self-aspiring, ambitious, developmental science faces the crucial limit of time—both theoretically and practically. The issue of time in constructing psychology’s theories is a major unresolved metatheoretical task. This raises several questions about generalization of knowledge...... of time—or fail to do that? How can they generalize with respect to time? The different conceptions of time often remain implicit, while shaping the concepts used in understanding psychological processes. Any preconception about time in human development will foster the generalizability of theory, as well......: which is the time length of breath of psychological theories? Which is the temporal dimension of psychological processes? In this article we discuss the role of different axiomatic assumptions about time in the construction of psychological theories. How could different theories include a concept...

  2. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    from a relatively large number of subjects tested indicate that an elevated mean breath acetone concentration exists in diabetic patients in general. Although many physiological parameters affect breath acetone, under a specifically controlled condition fast (acetone measurement can be used for screening abnormal metabolic status including diabetes, for point-of-care monitoring status of ketone bodies which have the signature smell of breath acetone, and for breath acetone related clinical studies requiring a large number of tests.

  3. Formal Verification of Effectiveness of Control Activities in Business Processes

    Science.gov (United States)

    Arimoto, Yasuhito; Iida, Shusaku; Futatsugi, Kokichi

    It has been an important issue to deal with risks in business processes for achieving companies' goals. This paper introduces a method for applying a formal method to analysis of risks and control activities in business processes in order to evaluate control activities consistently, exhaustively, and to give us potential to have scientific discussion on the result of the evaluation. We focus on document flows in business activities and control activities and risks related to documents because documents play important roles in business. In our method, document flows including control activities are modeled and it is verified by OTS/CafeOBJ Method that risks about falsification of documents are avoided by control activities in the model. The verification is done by interaction between humans and CafeOBJ system with theorem proving, and it raises potential to discuss the result scientifically because the interaction gives us rigorous reasons why the result is derived from the verification.

  4. Selective Activation and Disengagement of Moral Control.

    Science.gov (United States)

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  5. Controlling and tracking hyperchaotic Roessler system via active backstepping design

    International Nuclear Information System (INIS)

    Zhang Hao; Ma Xikui; Li Ming; Zou Jianlong

    2005-01-01

    This paper presents a novel active backstepping control approach for controlling hyperchaotic Roessler system to a steady state as well as tracking of any desire trajectory to be achieved in a systematic way. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of active control. Numerical results show that the controller is singularity free and the closed-loop system is stable globally. Especially, the main feature of this technique is that it gives the flexibility to construct a control law. Finally, numerical experiments verify the feasibility and effectiveness of the proposed control technique

  6. Association of oral breathing with dental malocclusions and general health in children.

    Science.gov (United States)

    Jiménez, Emilio L; Barrios, Rocío; Calvo, Juan C; de la Rosa, Maria T; Campillo, José S; Bayona, José C; Bravo, Manuel

    2017-06-01

    The aims of this study were to analyze the association of oral breathing with dental malocclusions and aspects of general health such as acute illnesses, oxygen saturation in blood and its possible implication in the process of nutrition. A prevalence analytic study was carried out. Five dentists explored to children between 6 and 12 years and measured their oxygen saturation. Parents completed a questionnaire of 11 items about general health (colds, ear infections, tonsillitis and taking antibiotics) and the food preferences of their children. At the end, children were classified in oral breathing group (prevalence cases) or nasal breathing group (controls). There were statistical differences between cases (452 children) and controls (752 children) in the facial morphometric measurements. Oral breathing children had statistically less percentage of oxygen saturation than controls (92.3±3.3% versus 96.5±2.3%), took less time to have lunch and preferred less consistent and sugary food. Cases had had more prevalence of pathologies in the last year and of taking the antibiotics. This group also had higher prevalence of allergies compared with controls group (POral breathing is significantly associated with specific dental malocclusions and important aspects of general health such as oxygen saturation and the nutrition. On the same line, oral breathing is related to a significantly higher prevalence of allergies and a significantly more likely getting sick and taking medication.

  7. Active damping based on decoupled collocated control

    NARCIS (Netherlands)

    Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.

    2002-01-01

    High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration

  8. Ventilatory muscle endurance training in quadriplegia: effects on breathing pattern.

    Science.gov (United States)

    Loveridge, B; Badour, M; Dubo, H

    1989-10-01

    We examined the effects of ventilatory muscle endurance training on resting breathing pattern in 12 C6-C7 traumatic quadriplegics at least 1 year post-injury. All subjects had complete motor loss below the lesion level. Subjects were randomly assigned to a training (N = 6), or a control group (N = 6). Baseline tests included measurement of resting ventilation and breathing pattern using mercury in rubber strain gauges for 20 minutes in a seated position; maximum inspiratory mouth pressure (MIP) at FRC, and sustainable inspiratory mouth pressure for 10 minutes (SIP); lung volumes, and arterial blood gases (ABG's). The training protocol consisted of breathing through an inspiratory resistor equivalent to 85% SIP for 15 minutes twice daily, 5 days a week for 8 weeks. Both trainers and controls attended the lab every 2 weeks for reassessment of MIP and SIP and the inspiratory resistance was increased in the training group as SIP increased. At the end of 8 weeks, baseline tests were repeated. All subjects had normal ABG's. There was a significant increase in mean MIP and SIP in both the control group (30% +/- 19% and 31% +/- 18% respectively), and in the training group (42% +/- 24% and 78% +/- 49% respectively). Although the absolute values for both MIP and SIP were greater in the training group than in the control group, the differences were not significant. The alterations in resting breathing pattern were also the same in both groups. Mean frequency decreased significantly in the control group (20.2/minute to 16.9/minute) and, while insignificant, the change in frequency in the training group was the same, 19.4/minute to 16.4/minute. Mean tidal volume (Vt) increased 18.2% of baseline Vt in the control group and 17.0% baseline in the trainers, resulting in no change in minute ventilation. As MIP and SIP increased similarly in both groups, the data from the control and trainers was pooled and timing changes re-evaluated pre- and post-study. A significant decrease in

  9. Awareness of breathing: the structure of language descriptors of respiratory sensations.

    Science.gov (United States)

    Petersen, Sibylle; Orth, Bernhard; Ritz, Thomas

    2008-01-01

    Recent research suggests that dyspnea is not a single sensation but a multidimensional construct reflected in different verbal descriptors that can provide useful diagnostic information. In this study superordinated clusters of dyspnea were investigated in combination with a dimensional approach. We examined the use of 20 respiratory symptom descriptors by healthy volunteers who completed a protocol of seven experimental conditions: Quiet breathing, breath holding, paced breathing, climbing stairs, resistive load breathing, voluntary hyperinflation, and voluntary hyperventilation. We analyzed the ratings of these descriptors with multidimensional scaling (MDS) and cluster analysis. While similarities with prior studies were found on a lower fusion level, we were able to demonstrate the usefulness of interpreting higher fusion levels with four clusters related to work of breathing, coordination, suffocation, and struggling for air, merging into two superordinated clusters, effort and air hunger that are compatible with widely accepted primary components of dyspnea. MDS results also suggested that future studies should consider further breathing sensations related to cognitive control of breathing.

  10. Calming Children When Drawing Blood Using Breath-based Biofeedback

    OpenAIRE

    Sonne, T.; Merritt, T.; Marshall, P. E.; Lomholt, J.; Müller, J.; Grønbæk, K.

    2017-01-01

    Blood sampling is a common and necessary procedure in the treatment and diagnosis of a variety of diseases. However, it often results in painful and stressful experiences for children. Designed together with domain experts, ChillFish is a breath-controlled biofeedback game technology with bespoke airflow sensor that aims to calm children during blood sampling procedures. An experimental pilot study was conducted in which 20 children aged 6-11 were assigned to one of two conditions involving e...

  11. Understanding the rhythm of breathing: so near yet so far

    OpenAIRE

    Feldman, Jack L.; Del Negro, Christopher A.; Gray, Paul A.

    2012-01-01

    Understanding the mechanisms leading from DNA to molecules to neurons to networks to behavior is a major goal for neuroscience, but largely out of reach for many fundamental and interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to rapidly and slowly changing conditions, and how particular dysf...

  12. The glucose breath test: a diagnostic test for small bowel stricture(s) in Crohn's disease.

    Science.gov (United States)

    Mishkin, Daniel; Boston, Francis M; Blank, David; Yalovsky, Morty; Mishkin, Seymour

    2002-03-01

    The aim of this study was to determine whether an indirect noninvasive indicator of proximal bacterial overgrowth, the glucose breath test, was of diagnostic value in inflammatory bowel disease. Twenty four of 71 Crohn's disease patients tested had a positive glucose breath test. No statistical conclusions could be drawn between the Crohn's disease activity index and glucose breath test status. Of patients with radiologic evidence of small bowel stricture(s), 96.0% had a positive glucose breath test, while only one of 46 negative glucose breath test patients had a stricture. The positive and negative predictive values for a positive glucose breath test as an indicator of stricture formation were 96.0% and 97.8%, respectively. This correlation was not altered in Crohn's disease patients with fistulae or status postresection of the terminal ileum. The data in ulcerative colitis were nondiagnostic. In conclusion, the glucose breath test appears to be an accurate noninvasive inexpensive diagnostic test for small bowel stricture(s) and secondary bacterial overgrowth in Crohn's disease.

  13. The Use of Breathing Exercises in the Treatment of Chronic, Nonspecific Low Back Pain.

    Science.gov (United States)

    Anderson, Barton E; Bliven, Kellie C Huxel

    2017-09-01

    Clinical Scenario: Research has shown a link between poor core stability and chronic, nonspecific low back pain, with data to suggest that alterations in core muscle activation patterns, breathing patterns, lung function, and diaphragm mechanics may occur. Traditional treatment approaches for chronic, nonspecific low back pain focus on exercise and manual therapy interventions, however it is not clear whether breathing exercises are effective in treating back pain. Focused Clinical Question: In adults with chronic, nonspecific low back pain, are breathing exercises effective in reducing pain, improving respiratory function, and/or health related quality of life? Summary of Key Findings: Following a literature search, 3 studies were identified for inclusion in the review. All reviewed studies were critically appraised at level 2 evidence and reported improvements in either low back pain or quality of life following breathing program intervention. Clinical Bottom Line: Exercise programs were shown to be effective in improving lung function, reducing back pain, and improving quality of life. Breathing program frequencies ranged from daily to 2-3 times per week, with durations ranging from 4 to 8 weeks. Based on these results, athletic trainers and physical therapists caring for patients with chronic, nonspecific low back pain should consider the inclusion of breathing exercises for the treatment of back pain when such treatments align with the clinician's own judgment and clinical expertise and the patient's preferences and values. Strength of Recommendation: Grade B evidence exists to support the use of breathing exercises in the treatment of chronic, nonspecific low back pain.

  14. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    Science.gov (United States)

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  15. Low dose intranasal oxytocin delivered with Breath Powered device dampens amygdala response to emotional stimuli: A peripheral effect-controlled within- subjects randomized dose-response fMRI trial

    OpenAIRE

    Quintana, Daniel; Westlye, Lars Tjelta; Alnæs, Dag; Rustan, Øyvind; Kaufmann, Tobias; Smerud, Knut Terje; Mahmoud, Ramy; Djupesland, Per G.; Andreassen, Ole Andreas

    2016-01-01

    It is unclear if and how exogenous oxytocin (OT) reaches the brain to improve social behavior and cognition and what is the optimal dose for OT response. To better understand the delivery routes of intranasal OT administration to the brain and the dose-response, we compared amygdala response to facial stimuli by means of functional magnetic resonance imaging (fMRI) in four treatment conditions, including two different doses of intranasal OT using a novel Breath Powered device, intravenous (IV...

  16. Optimal ventilatory patterns in periodic breathing.

    Science.gov (United States)

    Ghazanshahi, S D; Khoo, M C

    1993-01-01

    The goal of this study was to determine whether periodic breathing (PB), which is highly prevalent during sleep at high altitudes, imposes physiological penalties on the respiratory system in the absence of any accompanying disease. Using a computer model of respiratory gas exchange, we compared the effects of a variety of PB patterns on the chemical and mechanical costs of breathing to those resulting from regular tidal breathing. Although PB produced considerable fluctuation in arterial blood gas tensions, for the same cycle-averaged ventilation, higher arterial oxygen saturation and lower arterial carbon dioxide levels were achieved. This result can be explained by the fact that the combination of large breaths and apnea in PB leads to a substantial reduction in dead space ventilation. At the same time, the savings in mechanical cost achieved by the respiratory muscles during apnea partially offset the increase during the breathing phase. Consequently, the "pressure cost," a criterion based on mean inspiratory pressure, was elevated only slightly, although the average work rate of breathing increased significantly. We found that, at extreme altitudes, PB patterns with clusters of 2 to 4 large breaths that alternate with apnea produce the highest arterial oxygenation levels and lowest pressure costs. The common occurrence of PB patterns with closely similar features has been reported in sleeping healthy sojourners at extreme altitudes. Taken together, these findings suggest that PB favors a reduction in the oxygen demands of the respiratory muscles and therefore may not be as detrimental as it is generally believed to be.

  17. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  18. Identification of mathematical model of human breathing in system “Artificial lungs – self-contained breathing apparatus”

    Science.gov (United States)

    Onevsky, P. M.; Onevsky, M. P.; Pogonin, V. A.

    2018-03-01

    The structure and mathematical models of the main subsystems of the control system of the “Artificial Lungs” are presented. This structure implements the process of imitation of human external respiration in the system “Artificial lungs - self-contained breathing apparatus”. A presented algorithm for parametric identification of the model is based on spectral operators, which allows using it in real time.

  19. A reduced energy supply strategy in active vibration control

    Science.gov (United States)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  20. A reduced energy supply strategy in active vibration control

    International Nuclear Information System (INIS)

    Ichchou, M N; Loukil, T; Bareille, O; Chamberland, G; Qiu, J

    2011-01-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  1. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    2017-06-01

    Full Text Available A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG or a control group (CG. The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  2. The Effect of Diaphragmatic Breathing on Attention, Negative Affect and Stress in Healthy Adults.

    Science.gov (United States)

    Ma, Xiao; Yue, Zi-Qi; Gong, Zhu-Qing; Zhang, Hong; Duan, Nai-Yue; Shi, Yu-Tong; Wei, Gao-Xia; Li, You-Fa

    2017-01-01

    A growing number of empirical studies have revealed that diaphragmatic breathing may trigger body relaxation responses and benefit both physical and mental health. However, the specific benefits of diaphragmatic breathing on mental health remain largely unknown. The present study aimed to investigate the effect of diaphragmatic breathing on cognition, affect, and cortisol responses to stress. Forty participants were randomly assigned to either a breathing intervention group (BIG) or a control group (CG). The BIG received intensive training for 20 sessions, implemented over 8 weeks, employing a real-time feedback device, and an average respiratory rate of 4 breaths/min, while the CG did not receive this treatment. All participants completed pre- and post-tests of sustained attention and affect. Additionally, pre-test and post-test salivary cortisol concentrations were determined in both groups. The findings suggested that the BIG showed a significant decrease in negative affect after intervention, compared to baseline. In the diaphragmatic breathing condition, there was a significant interaction effect of group by time on sustained attention, whereby the BIG showed significantly increased sustained attention after training, compared to baseline. There was a significant interaction effect of group and time in the diaphragmatic breathing condition on cortisol levels, whereby the BIG had a significantly lower cortisol level after training, while the CG showed no significant change in cortisol levels. In conclusion, diaphragmatic breathing could improve sustained attention, affect, and cortisol levels. This study provided evidence demonstrating the effect of diaphragmatic breathing, a mind-body practice, on mental function, from a health psychology approach, which has important implications for health promotion in healthy individuals.

  3. Humidification performance of humidifying devices for tracheostomized patients with spontaneous breathing: a bench study.

    Science.gov (United States)

    Chikata, Yusuke; Oto, Jun; Onodera, Mutsuo; Nishimura, Masaji

    2013-09-01

    Heat and moisture exchangers (HMEs) are commonly used for humidifying respiratory gases administered to mechanically ventilated patients. While they are also applied to tracheostomized patients with spontaneous breathing, their performance in this role has not yet been clarified. We carried out a bench study to investigate the effects of spontaneous breathing parameters and oxygen flow on the humidification performance of 11 HMEs. We evaluated the humidification provided by 11 HMEs for tracheostomized patients, and also by a system delivering high-flow CPAP, and an oxygen mask with nebulizer heater. Spontaneous breathing was simulated with a mechanical ventilator, lung model, and servo-controlled heated humidifier at tidal volumes of 300, 500, and 700 mL, and breathing frequencies of 10 and 20 breaths/min. Expired gas was warmed to 37°C. The high-flow CPAP system was set to deliver 15, 30, and 45 L/min. With the 8 HMEs that were equipped with ports to deliver oxygen, and with the high-flow CPAP system, measurements were taken when delivering 0 and 3 L/min of dry oxygen. After stabilization we measured the absolute humidity (AH) of inspired gas with a hygrometer. AH differed among HMEs applied to tracheostomized patients with spontaneous breathing. For all the HMEs, as tidal volume increased, AH decreased. At 20 breaths/min, AH was higher than at 10 breaths/min. For all the HMEs, when oxygen was delivered, AH decreased to below 30 mg/L. With an oxygen mask and high-flow CPAP, at all settings, AH exceeded 30 mg/L. None of the HMEs provided adequate humidification when supplemental oxygen was added. In the ICU, caution is required when applying HME to tracheostomized patients with spontaneous breathing, especially when supplemental oxygen is required.

  4. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.

    Science.gov (United States)

    Wang, Zhennan; Wang, Chuji

    2013-09-01

    Since the ancient discovery of the 'sweet odor' in human breath gas, pursuits of the breath analysis-based disease diagnostics have never stopped. Actually, the 'smell' of the breath, as one of three key disease diagnostic techniques, has been used in Eastern-Medicine for more than three thousand years. With advancement of measuring technologies in sensitivity and selectivity, more specific breath gas species have been identified and established as a biomarker of a particular disease. Acetone is one of the breath gases and its concentration in exhaled breath can now be determined with high accuracy using various techniques and methods. With the worldwide prevalence of diabetes that is typically diagnosed through blood testing, human desire to achieve non-blood based diabetic diagnostics and monitoring has never been quenched. Questions, such as is breath acetone a biomarker of diabetes and how is the breath acetone related to the blood glucose (BG) level (the golden criterion currently used in clinic for diabetes diagnostic, monitoring, and management), remain to be answered. A majority of current research efforts in breath acetone measurements and its technology developments focus on addressing the first question. The effort to tackle the second question has begun recently. The earliest breath acetone measurement in clearly defined diabetic patients was reported more than 60 years ago. For more than a half-century, as reviewed in this paper, there have been more than 41 independent studies of breath acetone using various techniques and methods, and more than 3211 human subjects, including 1581 healthy people, 242 Type 1 diabetic patients, 384 Type 2 diabetic patients, 174 unspecified diabetic patients, and 830 non-diabetic patients or healthy subjects who are under various physiological conditions, have been used in the studies. The results of the breath acetone measurements collected in this review support that many conditions might cause changes to breath

  5. Experience with ActiveX control for simple channel access

    International Nuclear Information System (INIS)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-01-01

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls

  6. A novel technique for active vibration control, based on optimal

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  7. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    Science.gov (United States)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A

  8. Cheyne-Stokes respiration: hypoxia plus a deep breath that interrupts hypoxic drive, initiating cyclic breathing.

    Science.gov (United States)

    Guntheroth, Warren G

    2011-11-01

    In the 19th Century, Cheyne and Stokes independently reported cycles of respiration in patients with heart failure, beginning with apnea, followed by a few breaths. However Cheyne-Stokes respiration (C-SR) can also occur in healthy individuals with sleep, and was demonstrated in 1908 with voluntary hyperventilation, followed by apnea that Haldane blamed on hypoxia, subsequently called post-hyperventilation apnea. Additional theories explaining C-SR did not appear until 1954, based on control theory, specifically a feed-back regulator controlling CO(2). This certainly describes control of normal respiration, but to produce an unstable state such as C-SR requires either a very long transit time (3½ min) or an increase of the controller gain (13 times), physiologically improbable. There is general agreement that apnea initiates C-SR but that has not been well explained except for post-hyperventilation apnea, and that explanation is not compatible with a study by Nielsen and Smith in 1951. They plotted the effects of diminished oxygen on ventilation (V) in relation to CO(2) (Fig. 1). They found that the slope of V/CO(2) (gain) increased with hypoxia, but it flattened at a moderate CO(2) level and had nointercept with zero (apnea). It is also incompatible with our published findings in 1975 that showed that apnea did not occur until an extreme level of hypoxia occurred (the PO(2) fell below 10 mmHg), followed shortly by gasping. Much milder hypoxia underlies most cases of C-SR, when hypoxic drive replaces the normal CO(2)-based respiratory drive, in a failsafe role. I hypothesize that the cause of apnea is a brief interruption of hypoxic drive caused by a pulse of oxygen from a stronger than average breath, such as a sigh. The rapidity of onset of apnea in response to a pulse of oxygen, reflects the large pressure gradient for oxygen from air to lung with each breath, in contrast to CO(2). With apnea, there is a gradual fall in oxygen, resulting in a resumption of

  9. Generalized internal model robust control for active front steering intervention

    Science.gov (United States)

    Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

    2015-03-01

    Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

  10. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  11. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    Veatch, B.D.

    1994-01-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  12. CLP activities and control in Ireland

    Directory of Open Access Journals (Sweden)

    Caroline Walsh

    2011-01-01

    Full Text Available The 10th December 2010 marked a new beginning for Regulation (EC no. 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP in Ireland with the start of its operational phase. It was on this date that the administrative and enforcement provisions for CLP were encompassed in the new Chemicals Amendment Act, 2010. In this Act, the Health and Safety Authority, known as the "the Authority" is named as Competent Authority (CA for CLP, along with the Minister for Agriculture, Fisheries and Food, in respect of pesticides and plant protection products and the Beaumont Hospital Board with responsibility for receiving information relating to emergency health response. In practice, the Authority has been de facto CA for CLP since its publication on the 31st December 2008, given its role in existing classification and labelling regimes. This article focuses on the work undertaken by the Authority on CLP at a National, European and International level including its implementation, training, helpdesk, guidance, enforcement and awareness raising activities.

  13. Light-Triggered CO2 Breathing Foam via Nonsurfactant High Internal Phase Emulsion.

    Science.gov (United States)

    Zhang, Shiming; Wang, Dingguan; Pan, Qianhao; Gui, Qinyuan; Liao, Shenglong; Wang, Yapei

    2017-10-04

    Solid materials for CO 2 capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO 2 capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO 2 is breathed-in under dark and breathed-out under light illumination. Such a process is likely to become a relay of natural CO 2 capture by plants that on the contrary breathe out CO 2 at night. Recyclable CO 2 capture at room temperature and release under light irradiation guarantee its convenient and cost-effective regeneration in industry. Furthermore, CO 2 mixed with CH 4 is successfully separated through this reversible breathing in and out system, which offers great promise for CO 2 enrichment and practical methane purification.

  14. 46 CFR 197.456 - Breathing supply hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.456 Section 197.456 Shipping....456 Breathing supply hoses. (a) The diving supervisor shall insure that— (1) Each breathing supply....5 times its maximum working pressure; (2) Each breathing supply hose assembly, prior to being placed...

  15. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  16. Active noise control technique and its application on ships

    Directory of Open Access Journals (Sweden)

    CHEN Kean

    2017-08-01

    Full Text Available Due to the rapid development during past three decades, Active Noise Control(ANC has become a highly complementary noise control approach in comparison with traditional approaches, and has formed a complete system including basic theory, investigation approach, key techniques and system implementation. Meanwhile, substantial progress has been achieved in such fields as the practical application, industrialization development and commercial popularization of ANC, and this developed technique provides a practical and feasible choice for the active control of ship noise. In this review paper, its sound field analysis, system setup and key techniques are summarized, typical examples of ANC-based engineering applications including control of cabin noise and duct noise are briefly described, and a variety of forefronts and problems associated with the applications of ANC in ship noise control, such as active sound absorption, active sound insulation and smart acoustic structure, are subsequently discussed.

  17. Analysis for drugs in saliva and breath

    Science.gov (United States)

    1981-09-25

    Collection devices for saliva and breath that involved non-invasive techniques for sample collection were evaluated. Having subjects simply spit into a specially prepared glass vial was found to be an efficient, inexpensive and simple way to collect ...

  18. Analysis for drug in saliva and breath

    Science.gov (United States)

    1981-09-25

    Collection devices for saliva and breath that involved non-invasive : techniques for sample collection were evaluated. Having subjects simply : spit into a specially prepared glass vial was found to be an efficient, : inexpensive and simple way to co...

  19. Humidifiers: Air Moisture Eases Skin, Breathing Symptoms

    Science.gov (United States)

    ... create deposits inside your humidifier that promote bacterial growth. And, when released into the air, these minerals often appear as white dust on your furniture. You may also breathe in some minerals that ...

  20. Limonene in exhaled breath is elevated in hepatic encephalopathy

    Science.gov (United States)

    O’Hara, M E; Fernández del Río, R; Holt, A; Pemberton, P; Shah, T; Whitehouse, T; Mayhew, C A

    2016-01-01

    Abstract Breath samples were taken from 31 patients with liver disease and 30 controls in a clinical setting and proton transfer reaction quadrupole mass spectrometry (PTR-Quad-MS) used to measure the concentration of volatile organic compounds (VOCs). All patients had cirrhosis of various etiologies, with some also suffering from hepatocellular cancer (HCC) and/or hepatic encephalopathy (HE). Breath limonene was higher in patients with No-HCC than with HCC, median (lower/upper quartile) 14.2 (7.2/60.1) versus 3.6 (2.0/13.7) and 1.5 (1.1/2.3) nmol mol−1 in controls. This may reflect disease severity, as those with No-HCC had significantly higher UKELD (United Kingdom model for End stage Liver Disease) scores. Patients with HE were categorized as having HE symptoms presently, having a history but no current symptoms and having neither history nor current symptoms. Breath limonene in these groups was median (lower/upper quartile) 46.0 (14.0/103), 4.2 (2.6/6.4) and 7.2 (2.0/19.1) nmol mol−1, respectively. The higher concentration of limonene in those with current symptoms of HE than with a history but no current symptoms cannot be explained by disease severity as their UKELD scores were not significantly different. Longitudinal data from two patients admitted to hospital with HE show a large intra-subject variation in breath limonene, median (range) 18 (10–44) and 42 (32–58) nmol mol−1. PMID:27869108

  1. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... and result in different representations of the controllers. The Internal Model Control structure combined with optimal filtering is suggested as an alternative to state space optimal control techniques for designing robust optimal controllers for audio frequency vibration control of resonant structures....

  2. Wireless sensor networks for active vibration control in automobile structures

    International Nuclear Information System (INIS)

    Mieyeville, Fabien; Navarro, David; Du, Wan; Ichchou, Mohamed; Scorletti, Gérard

    2012-01-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)

  3. Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control

    Science.gov (United States)

    Varan, Metin; Akgul, Akif

    2018-04-01

    In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.

  4. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood

    Directory of Open Access Journals (Sweden)

    Patrick R. Steffen

    2017-08-01

    Full Text Available Heart rate variability biofeedback (HRVB significantly improves heart rate variability (HRV. Breathing at resonance frequency (RF, approximately 6 breaths/min constitutes a key part of HRVB training and is hypothesized to be a pathway through which biofeedback improves HRV. No studies to date, however, have experimentally examined whether RF breathing impacts measures of HRV. The present study addressed this question by comparing three groups: the RF group breathed at their determined RF for 15 min; the RF + 1 group breathed at 1 breath/min higher than their determined RF for 15 min; and the third group sat quietly for 15 min. After this 15-min period, all groups participated in the Paced Auditory Serial Addition Task (PASAT for 8 min, and then sat quietly during a 10-min recovery period. HRV, blood pressure, and mood were measured throughout the experiment. Groups were not significantly different on any of the measures at baseline. After the breathing exercise, the RF group reported higher positive mood than the other two groups and a significantly higher LF/HF HRV ratio relative to the control group, a key goal in HRVB training (p < 0.05. Additionally, the RF group showed lower systolic blood pressure during the PASAT and during the recovery period relative to the control group, with the RF + 1 group not being significantly different from either group (p < 0.05. Overall, RF breathing appears to play an important role in the positive effect HRVB has on measures of HRV.

  5. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  6. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  7. Indirect control of a single-phase active power filter

    Directory of Open Access Journals (Sweden)

    Mihai CULEA

    2006-12-01

    Full Text Available The control of shunt active power filters using PWM inverters consists in generating a reference by separating, using different methods, the harmonics to be eliminated. The methods used are time-consuming and need dedicated control and signal processing equipments. To avoid these setbacks a new method is proposed in the paper. The active power filter is a current PWM rectifier with voltage output and with a capacitor on the DC side. The PWM rectifier is controlled so that the sum of its current and the load’s current is a sinusoid. The control block as well as simulation results are presented.

  8. Attractor structure discriminates sleep states: recurrence plot analysis applied to infant breathing patterns.

    Science.gov (United States)

    Terrill, Philip Ian; Wilson, Stephen James; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2010-05-01

    Breathing patterns are characteristically different between infant active sleep (AS) and quiet sleep (QS), and statistical quantifications of interbreath interval (IBI) data have previously been used to discriminate between infant sleep states. It has also been identified that breathing patterns are governed by a nonlinear controller. This study aims to investigate whether nonlinear quantifications of infant IBI data are characteristically different between AS and QS, and whether they may be used to discriminate between these infant sleep states. Polysomnograms were obtained from 24 healthy infants at six months of age. Periods of AS and QS were identified, and IBI data extracted. Recurrence quantification analysis (RQA) was applied to each period, and recurrence calculated for a fixed radius in the range of 0-8 in steps of 0.02, and embedding dimensions of 4, 6, 8, and 16. When a threshold classifier was trained, the RQA variable recurrence was able to correctly classify 94.3% of periods in a test dataset. It was concluded that RQA of IBI data is able to accurately discriminate between infant sleep states. This is a promising step toward development of a minimal-channel automatic sleep state classification system.

  9. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  10. A closed-loop model of the respiratory system: focus on hypercapnia and active expiration.

    Directory of Open Access Journals (Sweden)

    Yaroslav I Molkov

    Full Text Available Breathing is a vital process providing the exchange of gases between the lungs and atmosphere. During quiet breathing, pumping air from the lungs is mostly performed by contraction of the diaphragm during inspiration, and muscle contraction during expiration does not play a significant role in ventilation. In contrast, during intense exercise or severe hypercapnia forced or active expiration occurs in which the abdominal "expiratory" muscles become actively involved in breathing. The mechanisms of this transition remain unknown. To study these mechanisms, we developed a computational model of the closed-loop respiratory system that describes the brainstem respiratory network controlling the pulmonary subsystem representing lung biomechanics and gas (O2 and CO2 exchange and transport. The lung subsystem provides two types of feedback to the neural subsystem: a mechanical one from pulmonary stretch receptors and a chemical one from central chemoreceptors. The neural component of the model simulates the respiratory network that includes several interacting respiratory neuron types within the Bötzinger and pre-Bötzinger complexes, as well as the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG representing the central chemoreception module targeted by chemical feedback. The RTN/pFRG compartment contains an independent neural generator that is activated at an increased CO2 level and controls the abdominal motor output. The lung volume is controlled by two pumps, a major one driven by the diaphragm and an additional one activated by abdominal muscles and involved in active expiration. The model represents the first attempt to model the transition from quiet breathing to breathing with active expiration. The model suggests that the closed-loop respiratory control system switches to active expiration via a quantal acceleration of expiratory activity, when increases in breathing rate and phrenic amplitude no longer provide sufficient

  11. Simulation of disturbance rejection control of half-car active suspension system using active disturbance rejection control with decoupling transformation

    Science.gov (United States)

    Hasbullah, Faried; Faris, Waleed F.

    2017-12-01

    In recent years, Active Disturbance Rejection Control (ADRC) has become a popular control alternative due to its easy applicability and robustness to varying processes. In this article, ADRC with input decoupling transformation (ADRC-IDT) is proposed to improve ride comfort of a vehicle with an active suspension system using half-car model. The ride performance of the ADRC-IDT is evaluated and compared with decentralized ADRC control as well as the passive system. Simulation results show that both ADRC and ADRC-IDT manage to appreciably reduce body accelerations and able to cope well with varying conditions typically encountered in an active suspension system. Also, it is sufficient to control only the body motions with both active controllers to improve ride comfort while maintaining good road holding and small suspension working space.

  12. An open-loop controlled active lung simulator for preterm infants.

    Science.gov (United States)

    Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio

    2011-01-01

    We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. In vivo proton MRS of normal pancreas metabolites during breath-holding and free-breathing

    International Nuclear Information System (INIS)

    Su, T.-H.; Jin, E.-H.; Shen, H.; Zhang, Y.; He, W.

    2012-01-01

    Aim: To characterize normal pancreas metabolites using in vivo proton magnetic resonance spectroscopy ( 1 H MRS) at 3 T under conditions of breath-holding and free-breathing. Materials and methods: The pancreases of 32 healthy volunteers were examined using 1 H MRS during breath-holding and free-breathing acquisitions in a single-voxel point-resolved selective spectroscopy sequence (PRESS) technique using a 3 T MRI system. Resonances were compared between paired spectra of the two breathing modes. Furthermore, correlations between lipid (Lip) content and age, body-mass index (BMI), as well as choline (Cho) peak visibility of the normal pancreas were analysed during breath-holding. Results: Twenty-nine pairs of spectra were successfully obtained showing three major resonances, Lip, Cho, cholesterol and the unsaturated parts of the olefinic region of fatty acids (Chol + Unsat). Breath-hold spectra were generally better, with higher signal-to-noise ratios (SNR; Z=–2.646, p = 0.008) and Cho peak visible status (Z=–2.449, p = 0.014). Correlations were significant between spectra acquired by the two breathing modes, especially for Lip height, Lip area, and the area of other peaks at 1.9–4.1 ppm. However, the Lip resonance was significantly different between the spectra of the two breathing modes (p 1 H MRS of the normal pancreas at 3 T is technically feasible and can characterize several metabolites. 1 H MRS during breath-holding acquisition is superior to that during free-breathing acquisition.

  14. Implementation of single-breath-hold cone beam CT guided hypofraction radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Zhong, Renming; Lu, You; Wang, Jin; Zhou, Lin; Xu, Feng; Liu, Li; Zhou, Jidan; Jiang, Xiaoqin; Chen, Nianyong; Bai, Sen

    2014-01-01

    To analyze the feasibility of active breath control (ABC), the lung tumor reproducibility and the rationale for single-breath-hold cone beam CT (CBCT)-guided hypofraction radiotherapy. Single-breath-hold CBCT images were acquired using ABC in a cohort of 83 lung cancer patients (95 tumors) treated with hypofraction radiotherapy. For all alignments between the reference CT and CBCT images (including the pre-correction, post-correction and post-treatment CBCT images), the tumor reproducibility was evaluated via online manual alignment of the tumors, and the vertebral bone uncertainties were evaluated via offline manual alignment of the vertebral bones. The difference between the tumor reproducibility and the vertebral bone uncertainty represents the change in the tumor position relative to the vertebral bone. The relative tumor positions along the coronal, sagittal and transverse axes were measured based on the reference CT image. The correlations between the vertebral bone uncertainty, the relative tumor position, the total treatment time and the tumor reproducibility were evaluated using the Pearson correlations. Pre-correction, the systematic/random errors of tumor reproducibility were 4.5/2.6 (medial-lateral, ML), 5.1/4.8 (cranial-caudal, CC) and 4.0/3.6 mm (anterior-posterior, AP). These errors were significantly decreased to within 3 mm, both post-correction and post-treatment. The corresponding PTV margins were 4.7 (ML), 7.4 (CC) and 5.4 (AP) mm. The changes in the tumor position relative to the vertebral bone displayed systematic/random errors of 2.2/2.0 (ML), 4.1/4.4 (CC) and 3.1/3.3 (AP) mm. The uncertainty of the vertebral bone significantly correlated to the reproducibility of the tumor position (P < 0.05), except in the CC direction post-treatment. However, no significant correlation was detected between the relative tumor position, the total treatment time and the tumor reproducibility (P > 0.05). Using ABC for single-breath-hold CBCT guidance is an

  15. REP activities of the conference of radiation control program directors

    International Nuclear Information System (INIS)

    Bevill, B.

    1995-01-01

    This talk provides an overview of the activities within the Conference of Radiation Control Program Directors associated with Radiological Emergency Preparedness. Included are summaries of interactions with FEMA, with US DOE, with US FDA, and with US DOT

  16. Incorporating quality control activities in scrum in relation to the ...

    Indian Academy of Sciences (India)

    Muhammad Aamir

    control activities in the scrum philosophy by introducing the concept of test backlog. ... Rapid application development; agile software development; extreme programming; scrum; ..... development team has a good problem solving approach.

  17. Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    John Cortés-Romero

    2013-01-01

    Full Text Available This work proposes an active disturbance rejection approach for the establishment of a sliding mode control strategy in fault-tolerant operations. The core of the proposed active disturbance rejection assistance is a Generalized Proportional Integral (GPI observer which is in charge of the active estimation of lumped nonlinear endogenous and exogenous disturbance inputs related to the creation of local sliding regimes with limited control authority. Possibilities are explored for the GPI observer assisted sliding mode control in fault-tolerant schemes. Convincing improvements are presented with respect to classical sliding mode control strategies. As a collateral advantage, the observer-based control architecture offers the possibility of chattering reduction given that a significant part of the control signal is of the continuous type. The case study considers a classical DC motor control affected by actuator faults, parametric failures, and perturbations. Experimental results and comparisons with other established sliding mode controller design methodologies, which validate the proposed approach, are provided.

  18. Analysis and control of a shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Ottersten, R.; Petersson, Andreas [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1999-09-01

    This report deals with active power filtering of low-frequency current harmonics. The active filter consists of a forced-commutated voltage source inverter with a digital control system. The aim of this master thesis is to investigate the performance of a shunt active power filter, and the parameters influence on the system performance. Three different harmonic identification methods are presented and compared. The shunt active power filter is very well suited for harmonic current reduction, provided that the phase shift due to the digital implementation of the control system is compensated. The performance of the active power filter depends on the switching frequency. When using individual harmonic detection methods the amount of compensation can be fully controlled for each current harmonic.

  19. Piezoelectric pushers for active vibration control of rotating machinery

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  20. Exercise during Short-Term and Long-Term Continuous Exposure to Hypoxia Exacerbates Sleep-Related Periodic Breathing

    Science.gov (United States)

    Tellez, Helio Fernandez; Morrison, Shawnda A.; Neyt, Xavier; Mairesse, Olivier; Piacentini, Maria Francesca; Macdonald-Nethercott, Eoin; Pangerc, Andrej; Dolenc-Groselj, Leja; Eiken, Ola; Pattyn, Nathalie; Mekjavic, Igor B.; Meeusen, Romain

    2016-01-01

    Study Objectives: Exposure to hypoxia elevates chemosensitivity, which can lead to periodic breathing. Exercise impacts gas exchange, altering chemosensitivity; however, interactions between sleep, exercise and chronic hypoxic exposure have not been examined. This study investigated whether exercise exacerbates sleep-related periodic breathing in hypoxia. Methods: Two experimental phases. Short-Term Phase: a laboratory controlled, group-design study in which 16 active, healthy men (age: 25 ± 3 y, height: 1.79 ± 0.06 m, mass: 74 ± 8 kg) were confined to a normobaric hypoxic environment (FIO2 = 0.139 ± 0.003, 4,000 m) for 10 days, after random assignment to a sedentary (control, CON) or cycle-exercise group (EX). Long-Term Phase: conducted at the Concordia Antarctic Research Station (3,800 m equivalent at the Equator) where 14 men (age: 36 ± 9 y, height: 1.77 ± 0.09 m, mass: 75 ± 10 kg) lived for 12–14 months, continuously confined. Participants were stratified post hoc based on self-reported physical activity levels. We quantified apnea-hypopnea index (AHI) and physical activity variables. Results: Short-Term Phase: mean AHI scores were significantly elevated in the EX group compared to CON (Night1 = CON: 39 ± 51, EX: 91 ± 59; Night10 = CON: 32 ± 32, EX: 92 ± 48; P = 0.046). Long-Term Phase: AHI was correlated to mean exercise time (R2 = 0.4857; P = 0.008) and the coefficient of variation in night oxyhemoglobin saturation (SpO2; R2 = 0.3062; P = 0.049). Conclusions: Data indicate that exercise (physical activity) per se affects night SpO2 concentrations and AHI after a minimum of two bouts of moderate-intensity hypoxic exercise, while habitual physical activity in hypobaric hypoxic confinement affects breathing during sleep, up to 13+ months' duration Citation: Tellez HF, Morrison SA, Neyt X, Mairesse O, Piacentini MF, Macdonald-Nethercott E, Pangerc A, Dolenc-Groselj L, Eiken O, Pattyn N, Mekjavic IB, Meeusen R. Exercise during short-term and long

  1. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    Ulusar, U D; Wilson, J D; Murphy, P; Govindan, R B; Preissl, H; Lowery, C L; Eswaran, H

    2011-01-01

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  2. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  3. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  4. New design deforming controlling system of the active stressed lap

    Science.gov (United States)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  5. Quality control of the documentation process in electronic economic activities

    Directory of Open Access Journals (Sweden)

    Krutova A.S.

    2017-06-01

    Full Text Available It is proved that the main tool that will provide adequate information resources e economic activities of social and economic relations are documenting quality control processes as the basis of global information space. Directions problems as formation evaluation information resources in the process of documentation, namely development tools assess the efficiency of the system components – qualitative assessment; development of mathematical modeling tools – quantitative evaluation. A qualitative assessment of electronic documentation of economic activity through exercise performance, efficiency of communication; document management efficiency; effectiveness of flow control operations; relationship management effectiveness. The concept of quality control process documents electronically economic activity to components which include: the level of workflow; forms adequacy of information; consumer quality documents; quality attributes; type of income data; condition monitoring systems; organizational level process documentation; attributes of quality, performance quality consumer; type of management system; type of income data; condition monitoring systems. Grounded components of the control system electronic document subjects of economic activity. Detected components IT-audit management system economic activity: compliance audit; audit of internal control; detailed multilevel analysis; corporate risk assessment methodology. The stages and methods of processing electronic transactions economic activity during condition monitoring of electronic economic activity.

  6. Active and passive control of zinc phthalocyanine photodynamics

    NARCIS (Netherlands)

    Sharma, Divya; Huijser, Jannetje Maria; Savolainen, Janne; Steen, Gerrit Willem; Herek, Jennifer Lynn

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of

  7. Tuningless Load Frequency Control Through Active Engagement of Distributed Resources

    DEFF Research Database (Denmark)

    Prostejovsky, Alexander; Marinelli, Mattia; Rezkalla, Michel M.N.

    2017-01-01

    system dynamics. Second, primary resources are actively involved in frequency restoration by systematic adjustment of their frequency reference setpoints. In contrast to the commonly used Automatic Generation Control (AGC), the proposed Direct Load Frequency Control (DLFC) does not require an integrator...

  8. Comparison of backstepping and modified active control in ...

    Indian Academy of Sciences (India)

    In this article, projective synchronization of double–scroll attractor of an extended Bonöffer–van der Pol oscillator (BVPO) is considered via the backstepping and active control techniques. In each synchronization scheme, a single control function is designed to achieve projective synchronization between two Bonhöffer–van ...

  9. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, Arthur P.; van Overbeek, M.; Gissinger, G.L.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are

  10. Short Horizon Control Strategies for an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard

    1996-01-01

    Three control strategies allowing improved operational flexibility of an alternating type activated sludge process are presented in a unified model based framework. The control handles employed are the addition rate of an external carbon source to denitrification, the cycle length, and the dissol...

  11. Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013.

    Science.gov (United States)

    Tisch, Ulrike; Haick, Hossam

    2014-06-01

    Profiling the body chemistry by means of volatile organic compounds (VOCs) in the breath opens exciting new avenues in medical diagnostics. Gas sensors could provide ideal platforms for realizing portable, hand-held breath testing devices in the near future. This review summarizes the latest developments and applications in the field of chemical sensors for diagnostic breath testing that were presented at the Breath Analysis Summit 2013 in Wallerfangen, Germany. Considerable progress has been made towards clinically applicable breath testing devices, especially by utilizing chemo-sensitive nanomaterials. Examples of several specialized breath testing applications are presented that are either based on stand-alone nanomaterial-based sensors being highly sensitive and specific to individual breath compounds over others, or on combinations of several highly specific sensors, or on experimental nanomaterial-based sensors arrays. Other interesting approaches include the adaption of a commercially available MOx-based sensor array to indirect breath testing applications, using a sample pre-concentration method, and the development of compact integrated GC-sensor systems. The recent trend towards device integration has led to the development of fully integrated prototypes of point-of-care devices. We describe and compare the performance of several prototypes that are based on different sensing technologies and evaluate their potential as low-cost and readily available next-generation medical devices.

  12. Active surge control for variable speed axial compressors.

    Science.gov (United States)

    Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan

    2014-09-01

    This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Breath tests: principles, problems, and promise

    International Nuclear Information System (INIS)

    Lo, C.W.; Carter, E.A.; Walker, W.A.

    1982-01-01

    Breath tests rely on the measurement of gases produced in the intestine, absorbed, and expired in the breath. Carbohydrates, such as lactose and sucrose, can be administered in ysiologic doses; if malabsorbed, they will be metabolized to hydrogen by colonic bacteria. Since hydrogen is not produced by human metabolic reactions, a rise in breath hydrogen, as measured by gas chromatography, is evidence of carbohydrate malabsorption. Likewise, a rise in breath hydrogen marks the transit time of nonabsorbable carbohydrates such as lactulose through the small intestine into the colon. Simple end-expiratory interval collection into nonsiliconized vacutainer tubes has made these noninvasive tests quite convenient to perform, but various problems, including changes in stool pH intestinal motility, or metabolic rate, may influence results. Another group of breath tests uses substrates labeled with radioactive or stable isotopes of carbon. Labeled fat substrates such as trioctanoin, tripalmitin, and triolein do not produce the expected rise in labeled breath CO 2 if there is fat malabsorption. Bile acid malabsorption and small intestinal bacterial overgrowth can be measured with labeled cholylglycine or cholyltaurine. Labeled drugs such as aminopyrine, methacetin, and phenacetin can be used as an indication of drug metabolism and liver function. Radioactive substrates have been used to trace metabolic pathways and can be measured by scintillation counters. The availability of nonradioactive stable isotopes has made these ideal for use in children and pregnant women, but the cost of substrates and the mass spectrometers to measure them has so far limited their use to research centers. It is hoped that new techniques of processing and measurement will allow further realization of the exciting potential breath analysis has in a growing list of clinical applications

  14. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  15. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    International Nuclear Information System (INIS)

    Pollock, Sean; Keall, Paul; Keall, Robyn

    2015-01-01

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  16. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Sean, E-mail: sean.pollock@sydney.edu.au; Keall, Paul [Radiation Physics Laboratory, University of Sydney, Sydney 2050 (Australia); Keall, Robyn [Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065 (Australia)

    2015-09-15

    Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. Conclusions: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the

  17. Does air-breathing meet metabolic demands of the juvenile snakehead, Channa argus, in multiple conditions

    Directory of Open Access Journals (Sweden)

    Yongli Li

    2017-05-01

    Full Text Available The objective of this study was to examine how the respiratory metabolism of the snakehead Channa argus changed when it shifted from breathing water to breathing air, and how increased metabolic demands caused by temperature, feeding, and exhaustive exercise affect its survival in air. The results demonstrated that the oxygen consumption rate (MO2 of the snakehead was lower for aerial respiration than aquatic respiration by 12.1, 24.5 and 20.4% at 20, 25, and 30°C, respectively. Survival time was significantly shortened with increasing temperature and was negatively correlated with the resting MO2 in air (MO2Air. No obvious feeding metabolic response was observed in the snakeheads fed at 1% and 3% body mass levels while breathing air. The maximum MO2Air of the snakehead after exhaustive exercise was significantly higher than the resting MO2Air of the control group. The results suggest that the snakehead could survive out of water by breathing air for varying lengths of time, depending on ambient temperature and metabolic demand. Additionally, some degree of metabolic depression occurs in the snakehead when breathing air. The metabolic demand associated with exercise in the snakehead, but not that associated with feeding, can be supported by its capacity for breathing air to some extent.

  18. Cardio-metabolic Diseases Prevention by Self-monitoring the Breath

    Directory of Open Access Journals (Sweden)

    Danila GERMANESE

    2017-08-01

    Full Text Available As new as very promising technique, breath analysis allows for monitoring the biochemical processes that occur in human body in a non-invasive way. Nevertheless, the high costs for standard analytical instrumentation (i.e., gas chromatograph, mass spectrometer, the need for specialized personnel able to read the results and the lack of protocols to collect breath samples, set limit to the exploitation of breath analysis in clinical practice. Here, we describe the development of a device, named Wize Sniffer, which is portable and entirely based on low cost technology: it uses an array of commercial, semiconductor gas sensors and a widely employed open source controller, an Arduino Mega2560 with Ethernet module. In addition, it is very easy-to-use also for non-specialized personnel and able to analyze in real time the composition of the breath. The Wize Sniffer is composed of three modules: signal measurement module, signal conditioning module and signal processing module. The idea was born in the framework of European SEMEiotic Oriented Technology for Individual's CardiOmetabolic risk self-assessmeNt and Self-monitoring (SEMEOTICONS Project, in order to monitor individual's lifestyle by detecting in the breath those molecules related to the noxious habits for cardio-metabolic risk (alcohol intake, smoking, wrong diet. Nonetheless, the modular configuration of the device allows for changing the sensors according to the molecules to be detected, thus fully exploiting the potential of breath analysis.

  19. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther; Prado, Celia; Periago, Juan F.; Grimalt, Joan O.

    2010-01-01

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m -3 in the swimming pool studies and between 97 and 460 ng m -3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  20. Quality control activities in the environmental radiology laboratory

    International Nuclear Information System (INIS)

    Llaurado, M.; Quesada, D.; Rauret, G.; Tent, J.; Zapata, D.

    2006-01-01

    During the last twenty years many analytical laboratories have implemented quality assurance systems. A quality system implementation requires documentation of all activities (technical and management), evaluation of these activities and its continual improvement. Implementation and adequate management of all the elements a quality system includes are not enough to guarantee quality of the analytical results generated at a time. That is the aim of a group of specific activities labelled as quality control activities. The Laboratori de Radiologia Ambiental (Environmental Radiology Laboratory; LRA) at the University of Barcelona was created in 1984 to carry out part of the quality control assays of the Environmental Radiology Monitoring Programs around some of the Spanish nuclear power plants, which are developed by the Servei Catala d'Activitats Energetiques (SCAR) and the Consejo de Seguridad Nuclear (CSN), organisations responsible for nuclear security and radiological protection. In these kind of laboratories, given the importance of the results they give, quality control activities become an essential aspect. In order to guarantee the quality of its analytical results, the LRA Direction decided to adopt the international standard UNE-EN ISO/IEC 17025 for its internal quality system and to accreditate some of the assays it carries out. In such as system, it is established, the laboratory shall monitor the validity of tests undertaken and data shall be recorded in such a way that trends are detectable. The present work shows the activities carried out in this way by the LRA, which are: Equipment control activities which in the special case of radiochemical techniques include measurement of backgrounds and blanks as well as periodical control of efficiency and resolution. Activities to assure the specifications settled by method validation, which are testing of reference materials and periodical analysis of control samples. Evaluation of the laboratory work quality