WorldWideScience

Sample records for active anti-cancer immunotherapy

  1. The promising alliance of anti-cancer electrochemotherapy with immunotherapy.

    Science.gov (United States)

    Calvet, Christophe Y; Mir, Lluis M

    2016-06-01

    Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects. PMID:26993326

  2. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  3. Geldanamycin and its anti-cancer activities.

    Science.gov (United States)

    Fukuyo, Yayoi; Hunt, Clayton R; Horikoshi, Nobuo

    2010-04-01

    Geldanamycin is a benzoquinone ansamycin antibiotic that manifests anti-cancer activity through the inhibition of HSP90-chaperone function. The HSP90 molecular chaperone is expressed at high levels in a wide variety of human cancers including melanoma, leukemia, and cancers in colon, prostate, lung, and breast. In cancer cells dependent upon mutated and/or over-expressed oncogene proteins, HSP90 is thought to have a critical role in regulating the stability, folding, and activity of HSP90-associated proteins, so-called "client proteins". These client proteins include the growth-stimulating proteins and kinases that support malignant transformation. Recently, oncogenic activating BRAF mutants have been identified in variety of cancers where constitutive activation of the MEK/ERK MAPK signaling pathway is the key for tumorigenesis, and they have been shown to be client proteins for HSP90. Accordingly, HSP90 inhibition can suppress certain cancer-causing client proteins and therefore represents an important therapeutic target. The molecular mechanism underlying the anti-cancer effect of HSP90 inhibition is complicated. Geldanamycin and its derivatives have been shown to induce the depletion of mutationally-activated BRAF through several mechanisms. In this review, we will describe the HSP90-inhibitory mechanism, focusing on recent progress in understanding HSP90 chaperone structure-function relationships, the identification of new HSP90 client proteins and the development of HSP90 inhibitors for clinical applications.

  4. Potential Anti-cancer Activity of Furanodiene

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhen Ba; Yan-ping Zheng; Hui Zhang; Xiu-yan Sun; Dong-hai Lin

    2009-01-01

    Objective: To study the anti-tumor activities of furanodiene (C15H20O), a primary sesquiterpene compound isolated from the essential oil of the rhizome of Curcuma wenyujin YH Chen et C. Ling(Wen Ezhu), in vitro and in vivo.Methods: In vitro MTT assay was used to further study the effects of time and dosage on anti-proliferation of furanodiene against the sensitive Hela, Hep-2,HL-60, U251 cells, based on the cytotoxic effects of furanodiene on 12 human malignant tumor cell lines with the essential oil of Wen Ezhu as control., and the half-inhibitory concentration (IC50) was observed. In vivo uterine cervix (U14) tumor cell was selected and the conventional assay method of anti-tumor activity was employed. Furanodiene liposome was administered intraperitoneally, and tumor-inhibitory rate, thymus and spleen indexes were observed.Results: The inhibitive effects on cell proliferation were shown in all of the twelve cell lines and the cytotoxic effects of furanodiene against Hela, Hep-2, HL-60, U251 cells were observed after 12 h of administration, the effect could last for at least 48 h in a dose dependent manner, and the IC50 values were 0.6, 1.7, 1.8, 7.0 μg/ml, respectively. Furanodiene was also found to show inhibitive effects on the proliferation of uterine cervix (U14) tumor induced in mice. The tumor inhibition rates were 36.09% (40 mg/kg), 41.55% (60 mg/kg), 58.29% (80 mg/kg), respectively.Conclusion: Furanodiene is one of primary anti-cancer active components in the essential oil of Wen Ezhu, and also a very effective agent against uterine cervix cancer, and has protection effect on the immune function.

  5. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil

    2010-09-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  6. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    OpenAIRE

    Eo, Hyun Ji; Park, Jae Ho; Park, Gwang Hun; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was...

  7. Anti-cancer activity of bromelain nanoparticles by oral administration.

    Science.gov (United States)

    Bhatnagar, Priyanka; Patnaik, Soma; Srivastava, Amit K; Mudiam, Mohan K R; Shukla, Yogeshwer; Panda, Amulya K; Pant, Aditya B; Kumar, Pradeep; Gupta, Kailash C

    2014-12-01

    Oral administration of anti-cancer drugs is an effective alternative to improve their efficacy and reduce undesired toxicity. Bromelain (BL) is known as an effective anti-cancer phyto-therapeutic agent, however, its activity is reduced upon oral administration. In addressing the issue, BL was encapsulated in Poly(lactic-co-glycolic acid) (PLGA) to formulate nanoparticles (NPs). Further, the NPs were coated with Eudragit L30D polymer to introduce stability against the gastric acidic conditions. The resultant coated NPs were characterized for BL entrapment, proteolytic activity and mean particle size. The stability and release pattern of NPs were evaluated under simulated gastrointestinal tract (GIT) pH conditions. Cytotoxicity studies carried out in human cell lines of diverse origin have shown significant dose advantage (-7-10 folds) with NPs in reducing the IC50 values compared with free BL. The cellular uptake of NPs in MCF-7, HeLa and Caco-2 cells monolayer was significantly enhanced several folds as compared to free BL. Altered expression of marker proteins associated with apoptosis and cell death (P53, P21, Bcl2, Bax) also confirmed the enhanced anti-carcinogenic potential of formulated NPs. Oral administration of NPs reduced the tumor burden of Ehrlich ascites carcinoma (EAC) in Swiss albino mice and also increased their life-span (160.0 ± 5.8%) when compared with free BL (24 ± 3.2%). The generation of reactive oxygen species, induction of apoptosis and impaired mitochondrial membrane potential in EAC cells treated with NPs confirmed the suitability of Eudragit coated BL-NPs as a promising candidate for oral chemotherapy. PMID:26000370

  8. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    Directory of Open Access Journals (Sweden)

    Xuejing Lin

    2015-05-01

    Full Text Available Costunolide (CE and dehydrocostuslactone (DE are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.

  9. Horner-Wadsworth-Emmons approach to piperlongumine analogues with potent anti-cancer activity.

    Science.gov (United States)

    Han, Li-Chen; Stanley, Paul A; Wood, Paul J; Sharma, Pallavi; Kuruppu, Anchala I; Bradshaw, Tracey D; Moses, John E

    2016-08-21

    Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues. PMID:27443386

  10. Plant derived substances with anti-cancer activity: from folklore to practice

    Directory of Open Access Journals (Sweden)

    Marcelo eFridlender

    2015-10-01

    Full Text Available Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early 19th century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  11. Plant derived substances with anti-cancer activity: from folklore to practice.

    Science.gov (United States)

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  12. Alloimmune activation promotes anti-cancer cytotoxicity after rat liver transplantation.

    Directory of Open Access Journals (Sweden)

    Stéphanie Lacotte

    Full Text Available Liver transplantation for hepatocellular carcinoma (HCC results in a specific condition where the immune response is potentially directed against both allogeneic and cancer antigens. We have investigated the level of anti-cancer immunity during allogeneic immune response. Dark Agouti-to-Lewis and Lewis-to-Lewis rat liver transplantations were performed and the recipients anti-cancer immunity was analysed at the time of alloimmune activation. The occurrence of rejection in the allogeneic recipients was confirmed by a shorter survival (p<0.01, increased liver function tests (p<0.01, the presence of signs of rejection on histology, and a donor-specific ex vivo mixed lymphocyte reaction. At the time of alloimmune activation, blood mononuclear cells of the allogeneic group demonstrated increased anti-cancer cytotoxicity (p<0.005, which was related to an increased natural killer (NK cell frequency (p<0.05 and a higher monocyte/macrophage activation level (p<0.01. Similarly, liver NK cell anti-cancer cytotoxicity (p<0.005, and liver monocyte/macrophage activation levels (p<0.01 were also increased. The alloimmune-associated cytotoxicity was mediated through the NKG2D receptor, whose expression was increased in the rejected graft (p<0.05 and on NK cells and monocyte/macrophages. NKG2D ligands were expressed on rat HCC cells, and its inhibition prevented the alloimmune-associated cytotoxicity. Although waiting for in vivo validation, alloimmune-associated cytotoxicity after rat liver transplantation appears to be linked to increased frequencies and levels of activation of NK cells and monocyte/macrophages, and is at least in part mediated through the NKG2D receptor.

  13. Immunotherapy

    Science.gov (United States)

    ... Help raise $300,000 this month to find cures. Loading... Immunotherapy Immunotherapy SHARE: Print Glossary Immunotherapy, also ... destroy the antigens. In most circumstances, the body's natural immune system seems unable to identify cancer as ...

  14. Systematic repurposing screening in xenograft models identifies approved drugs with novel anti-cancer activity.

    Directory of Open Access Journals (Sweden)

    Jeffrey J Roix

    Full Text Available Approved drugs target approximately 400 different mechanisms of action, of which as few as 60 are currently used as anti-cancer therapies. Given that on average it takes 10-15 years for a new cancer therapeutic to be approved, and the recent success of drug repurposing for agents such as thalidomide, we hypothesized that effective, safe cancer treatments may be found by testing approved drugs in new therapeutic settings. Here, we report in-vivo testing of a broad compound collection in cancer xenograft models. Using 182 compounds that target 125 unique target mechanisms, we identified 3 drugs that displayed reproducible activity in combination with the chemotherapeutic temozolomide. Candidate drugs appear effective at dose equivalents that exceed current prescription levels, suggesting that additional pre-clinical efforts will be needed before these drugs can be tested for efficacy in clinical trials. In total, we suggest drug repurposing is a relatively resource-intensive method that can identify approved medicines with a narrow margin of anti-cancer activity.

  15. Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide.

    Science.gov (United States)

    Oh, Steve; Kim, Byung Ju; Singh, Narendra P; Lai, Henry; Sasaki, Tomikazu

    2009-02-01

    Artemisinin, a natural product isolated from Artemisia annua L., shows a unique anti-cancer activity by an iron dependent mechanism. Artemisinin was covalently conjugated to a transferrin-receptor targeting peptide, HAIYPRH that binds to a cavity on the surface of transferrin receptor. This enables artemisinin to be co-internalized with receptor-bound transferrin. The iron released from transferrin can activate artemisinin to generate toxic radical species to kill cells. The artemisinin-peptide conjugates showed potent anti-cancer activity against Molt-4 leukemia cells with a significantly improved cancer/normal cells selectivity. PMID:18838215

  16. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib

    Directory of Open Access Journals (Sweden)

    Wang Xia

    2009-07-01

    Full Text Available Abstract The proteasome inhibitor and anti-cancer drug bortezomib was tested for in vitro activity against bloodstream forms of Trypanosoma brucei. The concentrations of bortezomib required to reduce the growth rate by 50% and to kill all trypanosomes were 3.3 nM and 10 nM, respectively. In addition, bortezomib was 10 times more toxic to trypanosomes than to human HL-60 cells. Moreover, exposure of trypanosomes to 10 nM bortezomib for 16 h was enough to kill 90% of the parasites following incubation in fresh medium. However, proteasomal peptidase activities of trypanosomes exposed to bortezomib were only inhibited by 10% and 30% indicating that the proteasome is not the main target of the drug. The results suggest that bortezomib may be useful as drug for the treatment of human African trypanosomiasis.

  17. AKTIVITAS ANTI KANKER SENYAWA-SENYAWA KITOOLIGOMER [Anti Cancer Activity of Chitooligomers

    Directory of Open Access Journals (Sweden)

    Dahrul Syah2

    2006-04-01

    Full Text Available The chitin obtained from the crab industries can be used as a source for production of chitooligomers which has an important biological activity. The aims of this research was to evaluate anti cancer activity of the chitooligomers obtained from enzymatic hydrolysis using chitosanase from thermophilic bacterium Bacillus licheniformis MB2 isolated from Tompaso Manado. Media for producing the enzyme contained colloidal chitosan 1% and the enzyme was harvested after seven days of incubation at 550C. The heat stable protein enzyme was coagulated with 80% saturated ammonium sulphate and purificated using hydrophobic interaction chromatography with butyl sepharose gel. Enzyme of 0.005, 0.0085, 0.10 dan 0,17 IU/mg chitosan on soluble chitosan 1% substrate with 85% degree of deacylation were used to produce chitooligomers through incubation for one and three hours. The reaction products were analyzed (and fractionated using HPLC. The effect of this samples on cancer cells was evaluated using K562 cells (chronic myelogenous leukemia and investigated after being treated with MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide. In general, hydrolysates and fractionated chitooligomers showed better anti cancer activity than the 2- Bromo deoxy uridine used as positive control at similiar concentration (17 ?g/ml. Both of hydrolysates and fractionated chitooligomers (trimer to hexamer inhibited proliferation of human K562 cancer cells line in vitro about 20.57% and 15.68% respectively.The apoptosis phenomena was found on K562 cells treated with chitooligomer hydrolysate which can be examined by Hoechts staining fluorescent method. Chitooligomers hydrolysate showed anti metastatic potential, the chitooligomers were found also as potent protease inhibitor.

  18. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    Science.gov (United States)

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  19. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety.

    Science.gov (United States)

    Bingul, Murat; Tan, Owen; Gardner, Christopher R; Sutton, Selina K; Arndt, Greg M; Marshall, Glenn M; Cheung, Belamy B; Kumar, Naresh; Black, David StC

    2016-01-01

    Identification of the novel (E)-N'-((2-chloro-7-methoxyquinolin-3-yl)methylene)-3-(phenylthio)propanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19-26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G₁ cell cycle arrest, as well as upregulation of the p27(kip1) cell cycle regulating protein. PMID:27428941

  20. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety

    Directory of Open Access Journals (Sweden)

    Murat Bingul

    2016-07-01

    Full Text Available Identification of the novel (E-N′-((2-chloro-7-methoxyquinolin-3-ylmethylene-3-(phenylthiopropanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19–26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G1 cell cycle arrest, as well as upregulation of the p27kip1 cell cycle regulating protein.

  1. Synthesis and anti-cancer activity of 1,4-disubstituted imidazo[4,5-c]quinolines.

    Science.gov (United States)

    Thigulla, Yadagiri; Akula, Mahesh; Trivedi, Prakruti; Ghosh, Balaram; Jha, Mukund; Bhattacharya, Anupam

    2016-01-21

    The synthesis and anti-cancer activity evaluation of fused imidazoquinoline compounds is reported in this paper. Yb(OTf)3 has been utilized as a catalyst for the synthesis of 1,4-diaryl substituted imidazo[4,5-c]quinolines via a modified Pictet-Spengler approach. The desired imidazole ring was synthesized from imines using TosMIC (toluenesulfonylmethyl isocyanide) and subsequently functionalized at the C-4 position yielding an imidazoquinoline skeleton. Importantly, the final step was carried out without the aid of any prefunctionalization to obtain the resultant compounds in good yields. The synthesized compounds, when screened for anti-cancer activity, revealed the highest activity with 4-(2-bromophenyl)-1-phenyl-1H-imidazo[4,5-c]quinoline (IC50: 103.3 μM). PMID:26592542

  2. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity.

    Science.gov (United States)

    Petiwala, Sakina M; Johnson, Jeremy J

    2015-10-28

    Recently, rosemary extracts standardized to diterpenes (e.g. carnosic acid and carnosol) have been approved by the European Union (EU) and given a GRAS (Generally Recognized as Safe) status in the United States by the Food and Drug Administration (FDA). Incorporation of rosemary into our food system and through dietary selection (e.g. Mediterranean Diet) has increased the likelihood of exposure to diterpenes in rosemary. In consideration of this, a more thorough understanding of rosemary diterpenes is needed to understand its potential for a positive impact on human health. Three agents in particular have received the most attention that includes carnosic acid, carnosol, and rosmanol with promising results of anti-cancer activity. These studies have provided evidence of diterpenes to modulate deregulated signaling pathways in different solid and blood cancers. Rosemary extracts and the phytochemicals therein appear to be well tolerated in different animal models as evidenced by the extensive studies performed for approval by the EU and the FDA as an antioxidant food preservative. This mini-review reports on the pre-clinical studies performed with carnosic acid, carnosol, and rosmanol describing their mechanism of action in different cancers. PMID:26170168

  3. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity.

    Science.gov (United States)

    Petiwala, Sakina M; Johnson, Jeremy J

    2015-10-28

    Recently, rosemary extracts standardized to diterpenes (e.g. carnosic acid and carnosol) have been approved by the European Union (EU) and given a GRAS (Generally Recognized as Safe) status in the United States by the Food and Drug Administration (FDA). Incorporation of rosemary into our food system and through dietary selection (e.g. Mediterranean Diet) has increased the likelihood of exposure to diterpenes in rosemary. In consideration of this, a more thorough understanding of rosemary diterpenes is needed to understand its potential for a positive impact on human health. Three agents in particular have received the most attention that includes carnosic acid, carnosol, and rosmanol with promising results of anti-cancer activity. These studies have provided evidence of diterpenes to modulate deregulated signaling pathways in different solid and blood cancers. Rosemary extracts and the phytochemicals therein appear to be well tolerated in different animal models as evidenced by the extensive studies performed for approval by the EU and the FDA as an antioxidant food preservative. This mini-review reports on the pre-clinical studies performed with carnosic acid, carnosol, and rosmanol describing their mechanism of action in different cancers.

  4. [Preparation and anti-cancer activity in vitro of curcumin loaded mesoporous silica nanoparticle].

    Science.gov (United States)

    He, Li-li; Gu, Jian

    2015-11-01

    This paper is to prepare curcumin (Cur) loaded mesoporous silica nanoparticle (Cur-MSN), evaluate its release behavior and anti-cancer activity in vitro. Mesoporous silica nanoparticle (MSN) was prepared by polymerization method and Cur-MSN was obtained using solvent evaporation method and impregnation centrifugation method. The preparation method was optimized using entrapment efficiency (EE) and loading efficiency (LE) as indexes. Cur-MSN was characterized with scanning electron microscope and its particle size and zeta potential were determined. Finally, in vitro release behavior in 0.2% SDS solution and its cell-killing effect on HeLa cells were also evaluated. The Cur-MSN prepared with process optimization method was round and uniform and exhibited typical mesoporous characterization. The mean particle size and Zeta potential of Cur-MSN were 75.8 nm and -30.1 mV, respectively. EE and LE of three batches of Cur-MSN were (72.55 ± 2.01)% and (16.21 ± 1.12)%, respectively. In vitro release behavior of Cur-MSN showed a sustained release profile with 83.5% cumulative release within 96 h. The killing effect of Cur-MSN on HeLa cells was dose-dependent with IC50 of 19.40 mg x L(-1), which was similar to that of Cur. PMID:27071254

  5. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    Directory of Open Access Journals (Sweden)

    Maciej Serda

    Full Text Available Thiosemicarbazones (TSCs are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.

  6. Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships.

    Science.gov (United States)

    Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination. PMID:25329549

  7. The chain length of biologically produced (R)-3-hydroxyalkanoic acid affects biological activity and structure of anti-cancer peptides.

    Science.gov (United States)

    Szwej, Emilia; Devocelle, Marc; Kenny, Shane; Guzik, Maciej; O'Connor, Stephen; Nikodinovic-Runic, Jasmina; Radivojevic, Jelena; Maslak, Veselin; Byrne, Annete T; Gallagher, William M; Zulian, Qun Ren; Zinn, Manfred; O'Connor, Kevin E

    2015-06-20

    Conjugation of DP18L peptide with (R)-3-hydroxydecanoic acid, derived from the biopolymer polyhydroxyalkanoate, enhances its anti-cancer activity (O'Connor et al., 2013. Biomaterials 34, 2710-2718). However, it is unknown if other (R)-3-hydroxyalkanoic acids (R3HAs) can enhance peptide activity, if chain length affects enhancement, and what effect R3HAs have on peptide structure. Here we show that the degree of enhancement of peptide (DP18L) anti-cancer activity by R3HAs is carbon chain length dependent. In all but one example the R3HA conjugated peptides were more active against cancer cells than the unconjugated peptides. However, R3HAs with 9 and 10 carbons were most effective at improving DP18L activity. DP18L peptide variant DP17L, missing a hydrophobic amino acid (leucine residue 4) exhibited lower efficacy against MiaPaCa cells. Circular dichroism analysis showed DP17L had a lower alpha helix content and the conjugation of any R3HA ((R)-3-hydroxyhexanoic acid to (R)-3-hydroxydodecanoic acid) to DP17L returned the helix content back to levels of DP18L. However (R)-3-hydroxyhexanoic did not enhance the anti-cancer activity of DP17L and at least 7 carbons were needed in the R3HA to enhance activity of D17L. DP17L needs a longer chain R3HA to achieve the same activity as DP18L conjugated to an R3HA. As a first step to assess the synthetic potential of polyhydroxyalkanoate derived R3HAs, (R)-3-hydroxydecanoic acid was synthetically converted to (±)3-chlorodecanoic acid, which when conjugated to DP18L improved its antiproliferative activity against MiaPaCa cells. PMID:25820126

  8. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Science.gov (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  9. In vitro anti-cancer activity of two ethno-pharmacological healing plants from Guatemala Pluchea odorata and Phlebodium decumanum.

    Science.gov (United States)

    Gridling, Manuela; Stark, Nicole; Madlener, Sibylle; Lackner, Andreas; Popescu, Ruxandra; Benedek, Birgit; Diaz, Rene; Tut, Foster M; Nha Vo, Thanh Phuong; Huber, Daniela; Gollinger, Michaela; Saiko, Philipp; Ozmen, Ali; Mosgoeller, Wilhelm; De Martin, Rainer; Eytner, Ruth; Wagner, Karl-Heinz; Grusch, Michael; Fritzer-Szekeres, Monika; Szekeres, Thomas; Kopp, Brigitte; Frisch, Richard; Krupitza, Georg

    2009-04-01

    Many traditional healing plants successfully passed several hundred years of empirical testing against specific diseases and thereby demonstrating that they are well tolerated in humans. Although quite a few ethno-pharmacological plants are applied against a variety of conditions there are still numerous plants that have not been cross-tested in diseases apart from the traditional applications. Herein we demonstrate the anti-neoplastic potential of two healing plants used by the Maya of the Guatemala/Belize area against severe inflammatory conditions such as neuritis, rheumatism, arthritis, coughs, bruises and tumours. Phlebodium decumanum and Pluchea odorata were collected, dried and freeze dried, and extracted with five solvents of increasing polarity. We tested HL-60 and MCF-7 cells, the inhibition of proliferation and the induction of cell death were investigated as hallmark endpoints to measure the efficiency of anti-cancer drugs. Western blot and FACS analyses elucidated the underlying mechanisms. While extracts of P. decumanum showed only moderate anti-cancer activity and were therefore not further analysed, particularly the dichloromethane extract of P. odorata inhibited the cell cycle in G2-M which correlated with the activation of checkpoint kinase 2, and down-regulation of Cdc25A and cyclin D1 as well as inactivation of Erk1/2. In HL-60 and MCF-7 cells this extract was a very strong inducer of cell death activating caspase-3 followed by PARP signature type cleavage. The initiating death trigger was likely the stabilization of microtubules monitored by the rapid acetylation of alpha-tubulin, which was even more pronounced than that triggered by taxol. The dichloromethane extract of P. odorata contains apolar constituents which inhibit inflammatory responses and exhibit anti-cancer activity. The strong proapoptotic potential warrants further bioassay-guided fractionation to discover and test the active principle(s). PMID:19287970

  10. Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product inCarica papaya L.

    Institute of Scientific and Technical Information of China (English)

    Ze-You Li; Yong Wang; Wen-Tao Shen; Peng Zhou

    2012-01-01

    Objective:To determine the content of benzyl glucosinolate(BG)in the pulp and the seed and investigate the anti-cancer activity of its hydrolysis product inCarica papaya L.Methods:Determination ofBG was performed on an HypersilBDS C18 column at the wavelength of214 nm with0.1% trifluoroacetic acid (TFA)aqueous solution (A) and 0.1%TFA acetonitrile (B)as the mobile phase. In vitro activity test was adopted with cultured human lung cancerH69 cellin vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanate(BITC)againstH69 cell.Results: The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured, while the seed containsBG at every stage. Activity test demonstrated that the a higher concentration ofBITC would have better inhibition rate of cell proliferation onH69 cell, and the IC50 was6.5 μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured. The hydrolysis product ofBG has certain cancer-prevention anti-cancer activities for human.

  11. Could B7-H4 serve as a target to activate anti-cancer immunity?

    Science.gov (United States)

    Wang, Lijuan; Heng, Xueyuan; Lu, Yong; Cai, Zhen; Yi, Qing; Che, Fengyuan

    2016-09-01

    It has been over 13years since the identification of B7-H4, the co-stimulatory molecule of B7 family members. While B7-H4 mRNA is widely distributed protein expression seems to be limited on tissues. Various cytokines and inflammatory mediators induce the expression of B7-H4. However, the specific regulatory mechanisms of B7-H4 remain to be defined. Recently, it has been shown that B7-H4 executes an inhibitory function in the T-cell response via reduced expansion, cell cycle arrest, decreased cytokine secretion and induced apoptosis of activated T-cells. Furthermore, B7-H4 suppresses the function of antigen presenting cells (APCs) and promotes the proliferation and development of regulatory T-cells (Treg). Moreover, a growing body of literature demonstrates that various cancers express B7-H4 and that the expression levels of B7-H4 correlate with cancer size, histological type, pathologic stage, grade, infiltration, lymph node metastasis, cancer progression, recurrence and death. The over-expression of B7-H4 in cancer may be related to an increased resistance to immune responses. The aim of this review is to supply an overview of the advances in the regulation and function of B7-H4. Additionally, many studies have suggested that B7-H4 is a molecular target for therapeutic intervention in cancer and that targeting B7-H4 may have promising potential for improving the efficacy of immunotherapy for cancer patients. PMID:27258187

  12. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships

    OpenAIRE

    Serda, Maciej; Kalinowski, Danuta S.; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Jan G Małecki; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Šimůnek, Tomáš; Richardson, Des R.; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di...

  13. The angular structure of ONC201, a TRAIL pathway-inducing compound, determines its potent anti-cancer activity

    Science.gov (United States)

    Wagner, Jessica; Kline, Christina Leah; Pottorf, Richard S.; Nallaganchu, Bhaskara Rao; Olson, Gary L.; Dicker, David T.; Allen, Joshua E.; El-Deiry, Wafik S.

    2014-01-01

    We previously identified TRAIL-inducing compound 10 (TIC10), also known as NSC350625 or ONC201, from a NCI chemical library screen as a small molecule that has potent anti-tumor efficacy and a benign safety profile in preclinical cancer models. The chemical structure that was originally published by Stahle, et. al. in the patent literature was described as an imidazo[1,2-a]pyrido[4,3-d]pyrimidine derivative. The NCI and others generally accepted this as the correct structure, which was consistent with the mass spectrometry analysis outlined in the publication by Allen et. al. that first reported the molecule's anticancer properties. A recent publication demonstrated that the chemical structure of ONC201 material from the NCI is an angular [3,4-e] isomer of the originally disclosed, linear [4,3-d] structure. Here we confirm by NMR and X-ray structural analysis of the dihydrochloride salt form that the ONC201 material produced by Oncoceutics is the angular [3,4-e] structure and not the linear structure originally depicted in the patent literature and by the NCI. Similarly, in accordance with our biological evaluation, the previously disclosed anti-cancer activity is associated with the angular structure and not the linear isomer. Together these studies confirm that ONC201, produced by Oncoceutics or obtained from the NCI, possesses an angular [3,4-e] structure that represents the highly active anti-cancer compound utilized in prior preclinical studies and now entering clinical trials in advanced cancers. PMID:25587031

  14. Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level

    OpenAIRE

    Flasiński, Michał; Hąc-Wydro, Katarzyna; Wydro, Paweł; Dynarowicz-Łątka, Patrycja

    2014-01-01

    Three structurally related but differing in biological activities single-chained ether phospholipids (PAF (platelet-activating factor) and lyso-PAF) and an anti-cancer drug (edelfosine (ED)) were investigated in Langmuir monolayers imitating natural membranes. The aim of the undertaken experiments was to study the influence of these lipids on monolayers mimicking plasma membranes of cell lines differing in susceptibility to the anti-cancer activity of ED, i.e. promyelocytic leukaemia cells (H...

  15. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  16. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Science.gov (United States)

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  17. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Aeyung Kim

    Full Text Available Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90% compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  18. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Directory of Open Access Journals (Sweden)

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  19. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  20. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  1. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins

    Science.gov (United States)

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A.

    2014-01-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceteddisease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute anew family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of “mechanism-effect” and “effect-mechanism” relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins. PMID:25324469

  2. Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity.

    Science.gov (United States)

    Kaur, Baljinder; Kaur, Rajinder

    2016-09-01

    The arginine deiminase (ADI, E.C 3.5.3.6) - a key enzyme of ADI pathway of Enterococcus faecium GR7 was purified to homogeneity. A sequential purification strategy involving ammonium sulfate fractionation, molecular sieve followed by Sephadex G-100 gel filtration was applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified with a fold of 16.92 and showed a final specific activity of 76.65IU/mg with a 49.17% yield. The dimeric ADI has a molecular mass of about 94,364.929Da, and comprises of hetrodimers of 49.1kDa and 46.5kDa as determined by MALDI-TOF and PAGE analysis. To assess anti-cancerous activity of ADI by MTT assay was carried out against cancer cell lines (MCF-7, Sp2/0-Ag14 and Hep-G2). Purified ADI exhibited the most profound antiproliferative activity against Hep-G2 cells; with half-maximal inhibitory concentration (IC50) of 1.95μg/ml. Purified ADI from E. faecium GR7 was observed to induce apoptosis in the Hep-G2 cells by DNA fragmentation assay. Our findings suggest the possibility of a future use of ADI from E. faecium GR7 as a potential anticancer drug.

  3. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    Science.gov (United States)

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives.

  4. The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity

    OpenAIRE

    More, Vijaykumar

    2014-01-01

    2010 - 2011 The thesis entitled “The design and synthesis of novel N-heterocyclic compounds, and their evaluation of anti-cancer and anti-viral activity" is divided into three chapters. The title of the thesis clearly reflects the importance of nitrogen heterocycles compounds: in fact they are extremely pivotal structural motifs responsible for eliciting various biological activities in natural products and synthetic medicines. This has attracted the medicinal chemists towards the synth...

  5. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke

    OpenAIRE

    Van Kanegan, Michael J.; Dunn, Denise E.; Kaltenbach, Linda S.; Bijal Shah; Dong Ning He; Daniel D. McCoy; Peiying Yang; Jiangnan Peng; Li Shen; Lin Du; Cichewicz, Robert H.; Newman, Robert A; Lo, Donald C.

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-0...

  6. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    Science.gov (United States)

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols. PMID:27434153

  7. Antigen-specific active immunotherapy for ovarian cancer

    NARCIS (Netherlands)

    Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H. M.; Cohlen, B. J.; Melief, Cornelis; Nijman, H. W.

    2010-01-01

    BACKGROUND: Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce a tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: To assess feasibility of antigen-specific ac

  8. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    International Nuclear Information System (INIS)

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Our results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.

  9. Anti cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads.

    Science.gov (United States)

    Paul, Jeno; Gnanam, R; Jayadeepa, R M; Arul, L

    2013-01-01

    Nature is the world's best chemist: Many naturally occurring compounds have very complicated structures that present great challenges to chemists wishing to determine their structures or replicate them. The plant derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. Their high ligand binding affinity to the target introduce the prospect of their use in chemo preventive applications; in addition they are freely available natural compounds that can be safely used to prevent various ailments. Plants became the basis of traditional medicine system throughout the world for thousands of years and continue to provide mankind with new remedies. Here, we present a research study on a medicinal plant, Graviola, a native of North America but rarely grown in India. It has a wide potent anticancerous agents coined as Acetogenins which play a key role towards many varieties of cancer, Acetogenins are potent inhibitors of NADH oxidase of the plasma membranes of cancer cells. Potent leads were taken for the study through literature survey, major types of cancer targets were identified, the natureceuticals and the cancer protein were subjected to docking analysis, further with the help of the dock score and other descriptor properties top ranked molecules were collected, commercial drug was also selected and identified as a Test compound for the study. Later, the phytochemicals were subjected to toxicity analysis. Those screened compounds were then considered for active site analysis and to find the best binding site for the study. R Programming library was used to find the best leads. Phytochemicals such as Anonaine, Friedelin, Isolaureline, Annonamine, Anomurine, Kaempferol, Asimilobine, Quercetin, Xylopine were clustered and the highly clustered compounds such as Annonamine , Kaempferol termed to be a potential lead for the study. Further study on experimental analysis may prove the potentiality of these compounds. In the

  10. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Marilene B

    2011-02-01

    Full Text Available Abstract Curcumin (diferuloylmethane is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis and metastasis. Curcumin has shown anti-proliferative effect in multiple cancers, and is an inhibitor of the transcription factor NF-κB and downstream gene products (including c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF-α, interleukins and MMP-9. In addition, curcumin affects a variety of growth factor receptors and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis. Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer worldwide and treatment protocols include disfiguring surgery, platinum-based chemotherapy and radiation, all of which may result in tremendous patient morbidity. As a result, there is significant interest in developing adjuvant chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo data supporting its therapeutic activity in head and neck cancer as well as some of the challenges concerning its development as an adjuvant chemotherapeutic agent.

  11. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain

    Science.gov (United States)

    Rao, Chennu Maruthi Malya Prasada; Yejella, Rajendra Prasad; Rehman, Rehman Shaik Abdul; Basha, Syed Hussain

    2015-01-01

    Epidermal growth factor receptors (EGFR) are critical for the growth of many tumors and expressed at high levels in about one third of epithelial cancers. Hence, blockade of the binding sites for EGFR has been hypothesized as an effective anti-cancer therapy. Chalcone derivative compounds have been shown to be highly effective anti-cancer agents, however there are still so many novel derivatives possible, one of which might get us the best targeted EGFR inhibitor. In this effort directed towards the discovery of novel, potent anti-tumor agents for the treatment of cancer, in the present study a library of novel chalcone series of compounds has been designed and evaluated for their anti-cancer activity targeting EGFR kinase domain using various computational approaches. Among the twenty five novel designed chalcone series of compounds, all of them have found to be successfully docking inside the active binding domain of EGFR receptor target with a binding energy in a range of -6.10 to -9.25 Kcal/mol with predicted IC50 value range of 33.50 micor molar to 164.66 nano molar respectively. On the other hand, calculated 2DQSAR molecular descriptor properties of the compounds showed promising ADME parameters and found to be well in compliance with Lipinski׳s rule of five. Among all the twenty five compounds tested, compound 21 ((2E)-3-(anthracen-9-yl)-1-phenylprop-2-2n-1- one) was found to be the best lead like molecule with a binding energy of -9.25 kcal/mol with predicted IC50 value of 164.66 nano molar. Conclusively, novel designed compound 21 of the present study have shown promising anti-cancer potential worth considering for further evaluations. PMID:26339147

  12. DNA-Binding, Photocleavage, and Photodynamic Anti-cancer Activities of Pyridyl Corroles.

    Science.gov (United States)

    Liang, Zhen-Hua; Liu, Hai-Yang; Zhou, Rong; Zhang, Zao; Ali, Atif; Han, Bing-Jie; Liu, Yun-Jun; Xiao, Xin-Yan

    2016-08-01

    The DNA-binding, photocleavage, and antitumor activity of three free base pyridyl corroles 1, 2, and 3 have been investigated. The binding affinity toward CT-DNA decreases with increasing number of pentafluorophenyl, whereas the photocleavage activity toward pBR322 DNA becomes more efficient. Singlet oxygen was demonstrated as active species responsible for DNA cleavage. These corroles exhibited high cytotoxicity against three tested cancer cells (Hela, HapG2, and A549) and the cytotoxicity could be further enhanced under irradiation. Intracellular reactive oxygen species level was also monitored using HeLa Cells upon the combined treatment of corroles and light. These corroles could be absorbed by HeLa cells at low concentration. They can induce the decrease of mitochondrial membrane potential and apoptosis of tumor cells under irradiation. PMID:26895317

  13. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity.

    Science.gov (United States)

    Linnewiel-Hermoni, Karin; Khanin, Marina; Danilenko, Michael; Zango, Gabriel; Amosi, Yaara; Levy, Joseph; Sharoni, Yoav

    2015-04-15

    Epidemiological studies have consistently shown that regular consumption of fruits and vegetables is strongly associated with reduced risk of developing chronic diseases, such as cancer. It is now accepted that the actions of any specific phytonutrient alone do not explain the observed health benefits of diets rich in fruits and vegetables as nutrients that were taken alone in clinical trials did not show consistent preventive effects. The considerable cost and complexity of such clinical trials requires prudent selection of combinations of ingredients rather than single compounds. Indeed, synergistic inhibition of prostate and mammary cancer cell growth was evident when using combinations of low concentrations of various carotenoids or carotenoids with retinoic acid and the active metabolite of vitamin-D. In this study we aimed to develop simple and sensitive in vitro methods which provide information on potent combinations suitable for inclusion in clinical studies for cancer prevention. We, thus, used reporter gene assays of the transcriptional activity of the androgen receptor in hormone-dependent prostate cancer cells and of the electrophile/antioxidant response element (EpRE/ARE) transcription system. We found that combinations of several carotenoids (e.g., lycopene, phytoene and phytofluene), or carotenoids and polyphenols (e.g., carnosic acid and curcumin) and/or other compounds (e.g., vitamin E) synergistically inhibit the androgen receptor activity and activate the EpRE/ARE system. The activation of EpRE/ARE was up to four fold higher than the sum of the activities of the single ingredients, a robust hallmark of synergy. Such combinations can further be tested in the more complex in vivo models and human studies.

  14. Synthesis and anti-cancer activity of naturally occurring 2,5-diketopiperazines.

    Science.gov (United States)

    Mollica, Adriano; Costante, Roberto; Fiorito, Serena; Genovese, Salvatore; Stefanucci, Azzurra; Mathieu, Veronique; Kiss, Robert; Epifano, Francesco

    2014-10-01

    Three naturally occurring oxyprenylated diketopiperazines were synthesized and preliminarily tested as growth inhibitory agents in vitro against various cancer cell lines. The compounds were tested on six human cancer cell lines with different sensitivity to proapoptotic stimuli using the MTT colorimetric assay. The data revealed that of the chemicals under study only deoxymicelianamide (11) displayed the highest activity, recording mean IC50 growth inhibitory values ranging from 2 to 23 μM. A comparative study with the non-geranylated saturated derivative of (11) revealed the importance of the presence of the geranyloxy side chain and the exocyclic 2,5-DPK double bond moiety for the observed activity.

  15. Plant derived substances with anti-cancer activity: from folklore to practice

    OpenAIRE

    Marcelo eFridlender; Yoram eKapulnik; Hinanit eKoltai

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early 19th century. This trend led to the discovery of different active compounds that are derived from plants. I...

  16. Plant derived substances with anti-cancer activity: from folklore to practice

    OpenAIRE

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70–95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from pla...

  17. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle.

    Directory of Open Access Journals (Sweden)

    Vivian Chen

    Full Text Available Bezielle is a botanical extract that has selective anti-tumor activity, and has shown a promising efficacy in the early phases of clinical testing. Bezielle inhibits mitochondrial respiration and induces reactive oxygen species (ROS in mitochondria of tumor cells but not in non-transformed cells. The generation of high ROS in tumor cells leads to heavy DNA damage and hyper-activation of PARP, followed by the inhibition of glycolysis. Bezielle therefore belongs to a group of drugs that target tumor cell mitochondria, but its cytotoxicity involves inhibition of both cellular energy producing pathways. We found that the cytotoxic activity of the Bezielle extract in vitro co-purified with a defined fraction containing multiple flavonoids. We have isolated several of these Bezielle flavonoids, and examined their possible roles in the selective anti-tumor cytotoxicity of Bezielle. Our results support the hypothesis that a major Scutellaria flavonoid, scutellarein, possesses many if not all of the biologically relevant properties of the total extract. Like Bezielle, scutellarein induced increasing levels of ROS of mitochondrial origin, progressive DNA damage, protein oxidation, depletion of reduced glutathione and ATP, and suppression of both OXPHOS and glycolysis. Like Bezielle, scutellarein was selectively cytotoxic towards cancer cells. Carthamidin, a flavonone found in Bezielle, also induced DNA damage and oxidative cell death. Two well known plant flavonoids, apigenin and luteolin, had limited and not selective cytotoxicity that did not depend on their pro-oxidant activities. We also provide evidence that the cytotoxicity of scutellarein was increased when other Bezielle flavonoids, not necessarily highly cytotoxic or selective on their own, were present. This indicates that the activity of total Bezielle extract might depend on a combination of several different compounds present within it.

  18. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid.

    Science.gov (United States)

    Sriraman, Shravan Kumar; Salzano, Giusseppina; Sarisozen, Can; Torchilin, Vladimir

    2016-08-01

    Cancer-specific drug delivery represents an attractive approach to prevent undesirable side-effects and increase the accumulation of the drug in the tumor. Surface modification of nanoparticles such as liposomes with targeting moieties specific to the up-regulated receptors on the surface of tumor cells thus represents an effective strategy. Furthermore, since this receptor expression can be heterogeneous, using a dual-combination of targeting moieties may prove advantageous. With this in mind, the anti-cancer activity of PEGylated doxorubicin-loaded liposomes targeted with folic acid (F), transferrin (Tf) or both (F+Tf) was evaluated. The dual-targeted liposomes showed a 7-fold increase in cell association compared to either of the single-ligand targeted ones in human cervical carcinoma (HeLa) cell monolayers. The increased penetration and cell association of the dual-targeted liposomes were also demonstrated using HeLa cell spheroids. The in vitro cytotoxicity of the doxorubicin liposomes (LD) was then evaluated using HeLa and A2780-ADR ovarian carcinoma cell monolayers. In both these cell lines, the (F+Tf) LD showed significantly higher cytotoxic effects than the untargeted, or single-ligand targeted liposomes. In a HeLa xenograft model in nude mice, compared to the untreated group, though the untargeted LD showed 42% tumor growth inhibition, both the (F) LD and (F+Tf) LD showed 75% and 79% tumor growth inhibition respectively. These results thus highlight that though the dual-targeted liposomes represent an effective cytotoxic formulation in the in vitro setting, they were equally effective as the folic acid-targeted liposomes in reducing tumor burden in the more complex in vivo setting in this particular model. PMID:27264717

  19. Anti-cancer activities of pH- or heat-modified pectin

    Directory of Open Access Journals (Sweden)

    Lionel eLeclere

    2013-10-01

    Full Text Available Despite enormous efforts that have been made in the search for novel drugs and treatments, cancer continues to be a major public health problem. Moreover, the emergence of resistance to cancer chemotherapy often prevents complete remission. Researchers have thus turned to natural products mainly from plant origin to circumvent resistance. Pectin and pH- or heat-modified pectin have demonstrated chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The focus of this review is to describe how pectin and modified pectin display these activities and what are the possible underlying mechanisms. The failure of conventional chemotherapy to reduce mortality as well as serious side effects makes natural products, such as pectin-derived products, ideal candidates for exerting synergism in combination with conventional anticancer drugs.

  20. Engineering of polyphenol metabolism in tomatoes to enhance anti-cancer activities

    OpenAIRE

    Bulling, Katharina

    2013-01-01

    Anthocyanins are polyphenolic plant pigments that are responsible for much of the attractive colour displays found in many flowers, fruit and vegetables. Anthocyanins are divided into different classes based on the number of hydroxyl groups on their phenyl B-ring and subsequent side chain modifications. It has been shown in our laboratory that the introduction of the regulatory genes Delila and Rosea1 activates the biosynthetic pathway leading to accumulation of trihydroxylated anthocyanin...

  1. The Anti-Cancer Potency and Mechanism of a Novel Tumor-Activated Fused Toxin, DLM

    Directory of Open Access Journals (Sweden)

    Dejun Sun

    2015-02-01

    Full Text Available Melittin, which acts as a membrane-disrupting lytic peptide, is not only cytotoxic to tumors, but also vital to normal cells. Melittin had low toxicity when coupled with target peptides. Despite significant research development with the fused toxin, a new fused toxin is needed which has a cleavable linker such that the fused toxin can release melittin after protease cleavage on the tumor cell surface. We describe a novel fused toxin, composed of disintegrin, uPA (urokinase-type plasminogen activator-cleavable linker, and melittin. Disintegrin is a single strand peptide (73 aa isolated from Gloydius Ussuriensis venom. The RGD (Arg-Gly-Asp site of disintegrin dominates its interaction with integrins on the surface of the tumor cells. uPA is over-expressed and plays an important role in tumor cell invasiveness and metastatic progression. The DLM (disintegrin-linker-melittin linker is uPA-cleavable, enabling DLM to release melittin. We compared binding activity of our synthesized disintegrin with native disintegrin and report that DLM had less binding activity than the native form. uPA-cleavage was evaluated in vitro and the uPA-cleavable linker released melittin. Treating tumors expressing uPA with DLM enhanced tumor cell killing as well as reduced toxicity to erythrocytes and other non-cancerous normal cells. The mechanism behind DLM tumor cell killing was tested using a DNA ladder assay, fluorescent microscopy, flow cytometry, and transmission electron microscopy. Data revealed tumor cell necrosis as the mechanism of cell death, and the fused DLM toxin with an uPA-cleavable linker enhanced tumor selectivity and killing ability.

  2. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen;

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti...... with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier...

  3. The in Vitro Structure-Related Anti-Cancer Activity of Ginsenosides and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2011-12-01

    Full Text Available Panax ginseng has long been used in Asia as a herbal medicine for the prevention and treatment of various diseases, including cancer. The current study evaluated the cytotoxic potency against a variety of cancer cells by using ginseng ethanol extracts (RSE, protopanaxadiol (PPD-type, protopanaxatriol (PPT-type ginsenosides fractions, and their hydrolysates, which were prepared by stepwise hydrolysis of the sugar moieties of the ginsenosides. The results showed that the cytotoxic potency of the hydrolysates of RSE and total PPD-type or PPT-type ginsenoside fractions was much stronger than the original RSE and ginsenosides; especially the hydrolysate of PPD-type ginsenoside fractions. Subsequently, two derivatives of protopanaxadiol (1, compounds 2 and 3, were synthesized via hydrogenation and dehydration reactions of compound 1. Using those two derivatives and the original ginsenosides, a comparative study on various cancer cell lines was conducted; the results demonstrated that the cytotoxic potency was generally in the descending order of compound 3 > 20(S-dihydroprotopanaxadiol (2 > PPD (1 > 20(S-Rh2 > 20(R-Rh2 ≈ 20(R-Rg3 ≈ 20(S-Rg3. The results clearly indicate the structure-related activities in which the compound with less polar chemical structures possesses higher cytotoxic activity towards cancer cells.

  4. In vitro anti-cancer activity of ethanolic extract of Momordica charantia on cervical and breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    C R Shobha

    2015-01-01

    Full Text Available Objectives: To estimate the total phenol content (TPC of the ethanolic extract of Momordica charantia (EEMC whole fruit and to study the cytotoxic activity of this extract against cell lines representing carcinomas of cervix and breast. Materials and Methods: Cervical and breast carcinoma cell lines (HeLa and MCF-7 were procured from National Center for Cell Sciences, Pune, and cultured in Dulbecco's modified eagle medium (DMEM supplemented with 10% fetal bovine serum (FBS and 1 mM L-glutamine. EEMC was prepared by graded ethanol fractionation method and the TPC determined using Folin–Ciocalteu assay. For cytotoxicity studies, 5000 cells/well in 100 μl DMEM-10% FBS medium were seeded in a 96 well plate; and treated with increasing concentration of EEMC. Efficacy of EEMC was determined by measuring the cell number using sulforhodamine B assay. Percentage inhibition was calculated using dimethyl sulfoxide vehicle control. The IC (50 value was calculated from the plot of inhibition (% in dose- and time-dependent manner using GraphPad PRISM software. Results: The total phenolic content of EEMC decreased with increasing ethanol concentration from 50% to 100%. Cytotoxicity studies identified 50% ethanolic extract as the most active fraction. A time- and dose-dependent increase in the efficacy of 50% ethanolic extract for inhibiting cervical and breast carcinoma cell growth was noticed. The IC (50 dose was 12.31 μg/ml and 0.769 μg/ml for 50% EEMC at 48 h incubation for HeLa and MCF-7 cell lines, respectively. Conclusion: The presence of high total phenolic acid content in 50% ethanolic extract indicates that the anti-cancer activity of Momordica charantia could be due to the secondary metabolites. Based on the IC (50 value we conclude that the 50% EEMC is more potent against breast cancer cell lines. Further studies are required to know the exact cause for the increase in cell inhibition at 48 h incubation than in 72 h.

  5. Immunotherapy of tumor by targeting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HOU; Jianmei; TIAN; Ling; WEI; Yuquan

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.

  6. MicroRNA controlled adenovirus mediates anti-cancer efficacy without affecting endogenous microRNA activity.

    Directory of Open Access Journals (Sweden)

    Ryan Cawood

    Full Text Available MicroRNAs are small non-coding RNA molecules that regulate mRNA translation and stability by binding to complementary sequences usually within the 3' un-translated region (UTR. We have previously shown that the hepatic toxicity caused by wild-type Adenovirus 5 (Ad5WT in mice can be prevented by incorporating 4 binding sites for the liver-specific microRNA, mir122, into the 3' UTR of E1A mRNA. This virus, termed Ad5mir122, is a promising virotherapy candidate and causes no obvious liver pathology. Herein we show that Ad5mir122 maintains wild-type lytic activity in cancer cells not expressing mir122 and assess any effects of possible mir122 depletion in host cells. Repeat administration of 2×10(10 viral particles of Admir122 to HepG2 tumour bearing mice showed significant anti-cancer efficacy. RT-QPCR showed that E1A mRNA was down-regulated 29-fold in liver when compared to Ad5WT. Western blot for E1A confirmed that all protein variants were knocked down. RT-QPCR for mature mir122 in infected livers showed that quantity of mir122 remained unaffected. Genome wide mRNA microarray profiling of infected livers showed that although the transcript level of >3900 different mRNAs changed more than 2-fold following Ad5WT infection, less than 600 were changed by Ad5mir122. These were then filtered to select mRNAs that were only altered by Ad5mir122 and the remaining 21 mRNAs were compared to predicted mir122 targets. No mir122 target mRNAs were affected by Ad5 mir122. These results demonstrate that the exploitation of microRNA regulation to control virus replication does not necessarily affect the level of the microRNA or the endogenous mRNA targets.

  7. Impedimetric DNA-biosensor for the study of anti-cancer action of mitomycin C: comparison between acid and electroreductive activation.

    Science.gov (United States)

    Ensafi, Ali A; Amini, Maryam; Rezaei, Behzad

    2014-09-15

    An electrochemical protocol is described for direct monitoring of anti-cancer properties of MMC. Using electrochemical impedance spectroscopy, a pretreated pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs) and poly(diallyldimethylmmonium chloride), PDDA, decorated with ds-DNA was employed in this study to identify DNA damages induced by MMC. The change in charge transfer resistance after incubation of the DNA-biosensor in MMC solution for a known time was used as indication of DNA damage. It was found that MMC did not interact with DNA. As MMC does not inherently possess any anti-cancer activity, it is, therefore, necessary to activate it by either of two ways: activation in acidic media or electrochemical activation. Incubation of DNA-modified electrode in activated MMC led to alterations in DNA and changes in its electrochemical properties (which forms the theme of the present study). Acid and electroreductive MMC activations were compared and different adducts were subsequently generated, suggesting that the drug can bind to DNA in more than one way. Impedance spectroscopy was used for the first time as a novel technique for detecting DNA-drug adducts. PMID:24747202

  8. Advances in identification and application of tumor antigen inducing anti-cancer responses

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Tumor antigen is one of the important bases of tumor immunotherapy[1]. With the discovery of novel tumor antigens, interest in specific immunotherapy for treatment of malignancies has increased substantially. Nowadays more and more scientists paid close attention to various tumor antigens with their roles or/and applications in anti-cancer immune responses, immune tolerance, tumor markers, tumor immunotherapy and so on. Here we discussed the classification of tumor antigens and summarized the technologies of identification and application of tumor antigens.

  9. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    OpenAIRE

    Shao-Xing Dai; Wen-Xing Li; Fei-Fei Han; Yi-Cheng Guo; Jun-Juan Zheng; Jia-Qian Liu; Qian Wang; Yue-Dong Gao; Gong-Hua Li; Jing-Fei Huang

    2016-01-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed t...

  10. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  11. Coadministration of the FNIII14 Peptide Synergistically Augments the Anti-Cancer Activity of Chemotherapeutic Drugs by Activating Pro-Apoptotic Bim.

    Science.gov (United States)

    Iyoda, Takuya; Nagamine, Yumi; Nakane, Yoshitomi; Tokita, Yuya; Akari, Shougo; Otsuka, Kazuki; Fujita, Motomichi; Itagaki, Keisuke; Takizawa, You-Ichi; Orita, Hiroaki; Owaki, Toshiyuki; Taira, Jyunichi; Hayashi, Ryo; Kodama, Hiroaki; Fukai, Fumio

    2016-01-01

    The acquisition of drug resistance mediated by the interaction of tumor cells with the extracellular matrix (ECM), commonly referred to as cell adhesion-mediated drug resistance (CAM-DR), has been observed not only in hematopoietic tumor cells but also in solid tumor cells. We have previously demonstrated that a 22-mer peptide derived from fibronectin, FNIII14, can inhibit cell adhesion through the inactivation of β1 integrin; when coadministered with cytarabine, FNIII14 completely eradicates acute myelogenous leukemia by suppressing CAM-DR. In this study, we show that our FNIII14 peptide also enhances chemotherapy efficacy in solid tumors. Coadministration of FNIII14 synergistically enhances the cytotoxicity of doxorubicin and aclarubicin in mammary tumor and melanoma cells, respectively. The solid tumor cell chemosensitization induced by FNIII14 is dependent upon the upregulation and activation of the pro-apoptotic protein, Bim. Furthermore, the metastasis of tumor cells derived from ventrally transplanted mammary tumor grafts is suppressed by the coadministration of FNIII14 and doxorubicin. These results suggest that the coadministration of our FNIII14 peptide with chemotherapy could achieve efficient solid tumor eradication by increasing chemosensitivity and decreasing metastasis. The major causes of tumor recurrence are the existence of chemotherapy-resistant primary tumor cells and the establishment of secondary metastatic lesions. As such, coadministering FNIII14 with anti-cancer drugs could provide a promising new approach to improve the prognosis of patients with solid tumors. PMID:27622612

  12. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2 anti-oxidative stress/anti-inflammatory pathways

    Directory of Open Access Journals (Sweden)

    Wu Qing

    2010-10-01

    Full Text Available Abstract This article reviews recent basic and clinical studies of ginseng, particularly the anti-cancer effects and the potential chemopreventive actions by activating the transcriptional factor, nuclear factor (erythroid-derived 2-like 2 (Nrf2 or NFE2L2-mediated anti-oxidative stress or anti-inflammatory pathways. Nrf2 is a novel target for cancer prevention as it regulates the antioxidant responsive element (ARE, a critical regulatory element in the promoter region of genes encoding cellular phase II detoxifying and anti-oxidative stress enzymes. The studies on the chemopreventive effects of ginseng or its components/products showed that Nrf2 could also be a target for ginseng's actions. A number of papers also demonstrated the anti-inflammatory effects of ginseng. Targeting Nrf2 pathway is a novel approach to the investigation of ginseng's cancer chemopreventive actions, including some oxidative stress and inflammatory conditions responsible for the initiation, promotion and progression of carcinogenesis.

  13. Are isothiocyanates potential anti-cancer drugs?

    Institute of Scientific and Technical Information of China (English)

    Xiang WU; Qing-hua ZHOU; Ke XU

    2009-01-01

    Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anticarcinogenic activity because they reduce activation of carcinogens and increase their detoxification. Recent studies show that they exhibit anti-tumor activity by affecting multiple pathways including apoptosis, MAPK signaling, oxidative stress, and cell cycle progression. This review summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

  14. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells.

    Science.gov (United States)

    Duff, Brian; Thangella, Venkat Reddy; Creaven, Bernadette S; Walsh, Maureen; Egan, Denise A

    2012-08-15

    This study determined the cytotoxic, cyto-selective and mutagenic potential of novel quinolinone Schiff base ligands and their corresponding copper(II) complexes in human-derived hepatic carcinoma cells (Hep-G2) and non-malignant human-derived hepatic cells (Chang). Results indicated that complexation of quinolinone Schiff bases with copper served to significantly enhance cytotoxicity. Here, the complex of (7E)-7-(3-ethoxy-2-hydroxybenzylideamino)-4-methylquinolin-2(1H)-one (TV117-FM) exhibited the lowest IC(50) value (17.9 μM) following 96 h continuous exposure, which was comparable to cisplatin (15.0 μM). However, results revealed that TV117-FM lacked cytoselectivity over non-malignant cells. Additionally, the complex was minimally effluxed from cells via Pglycoprotein (P-gp) and was shown to be non-mutagenic in the Standard Ames test. Furthermore, BrdU incorporation assays showed that it was capable of inhibiting DNA synthesis in a concentrationand time-dependent manner. However, inhibition was not as a consequence of DNA intercalation, as illustrated in electrophoretic mobility shift assays. Interestingly, it was shown that the ligand was capable of inhibiting the action of topoisomerase II, but this was lost following complexation. This indicated that the mechanism of action of the novel copper(II) complex was different from that of the parent ligand and suggests that TV117-FM may have a therapeutic role to play in the treatment of hepatocellular carcinoma. Studies are currently underway to elucidate the exact in vitro mechanism of action of this novel, metal-based anti-cancer agent.

  15. [Current Approaches in Cancer Immunotherapy].

    Science.gov (United States)

    Otáhal, P; Trněný, M

    2015-01-01

    Methods of cancer immunotherapy have finally entered clinical medicine after years of preclinical research. Currently, there are several methods, which have proven to be very effective even in cases of incurable cancer. Antitumor monoclonal antibodies are among major therapeutic anti-cancer drugs and have been successfully used for many ears. Novel group of antibodies are immunomodulatory antibodies which can break tumor -specific immune tolerance and induce regression of tumors by nonspecific activation of immune system. Bispecific antibodies represent a novel class of anticancer agents which can induce expansion of T cells in vivo, blinatumomab is an example of such agents and is currently available for the treatment of acute B -cell leukemia. Cellular immunotherapy is also very effective, especially the use of Chimeric receptor modified T-cells for the therapy of B- cell lymphoproliferative diseases. Although it is a very complicated and expensive method, it is highly effective approach which can induce remission even in previously hopeless conditions. The goal of this article is to explain the basic principles of cancer immunotherapy and summarize the newest findings in this field.

  16. Anti-cancer potential of South Asian plants

    OpenAIRE

    Rahman, Mohammad Mijanur; Khan, Md Asaduzzaman

    2013-01-01

    Phyto-chemicals are increasingly being used in the treatment of cancer because of their availability, potential anti-cancer activity with less adverse effects when compared with chemotherapy. The variation of climate and geography in South Asian countries provides a nursing environment for the growth of versatile plant species, that are repeatedly drawing attention of the scientific community. In this review, we have focused on the anti-cancer potential of thirty plants, which are commonly fo...

  17. Anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in human hepatocellular carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Zhi-ming WU; Gang CHEN; Chun DAI; Ying HUANG; Cui-fang ZHENG; Qiong-zhu DONG; Guan WANG; Xiao-wen LI; Xiao-fei ZHANG; Bin LI

    2011-01-01

    Aim: To investigate the anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in hepatocellular carcinoma (HCC) cell lines.Methods: HCC cell lines BEL7402, SMMC-7721, MHCC97L, MHCC97H, and MHCCLM3 were used. HCC ceils were treated with dsP21322 (50 nmol/L), dsControl (50 nmol/L), siP21 (50 nmol/L), or mock transfection. The expression of p21 was detected using quantitative PCR and Western blot. The effects of RNA activation on HCC cells were determined using cell viability assays, apoptosis analyses and clonogenic survival assays. Western blot was also conducted to detect the expression of Bcl-xL, survivin, cleaved caspase-3,cleaved caspase-9 and cleaved PARP.Results: At 72 to 120 h following the transfection, dsP21-322 markedly inhibited the viability of HCC cells and clone formation. At the same times, dsP21-322 caused a significant increase in HCC cell apoptosis, as demonstrated with cytometric analysis. The phenomena were correlated with decreased expression levels of the anti-apoptotic proteins Bcl-xL, surviving, and increased expression of cleaved caspase-3, cleaved caspase-9 and cleaved PARP.Conclusion: RNA-induced activation of p21 gene expression may have significant therapeutic potential for the treatment of hepatocellular carcinoma and other cancers.

  18. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-01-01

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD. PMID:27172999

  19. Anti-Cancer Potential of a Novel SERM Ormeloxifene

    Science.gov (United States)

    Gara, Rishi Kumar; Sundram, Vasudha; Chauhan, Subhash C.; Jaggi, Meena

    2014-01-01

    Ormeloxifene is a non-steroidal Selective Estrogen Receptor Modulator (SERM) that is used as an oral contraceptive. Recent studies have shown its potent anti-cancer activities in breast, head and neck, and chronic myeloid leukemia cells. Several in vivo and clinical studies have reported that ormeloxifene possesses an excellent therapeutic index and has been well-tolerated, without any haematological, biochemical or histopathological toxicity, even with chronic administration. A reasonably long period of time and an enormous financial commitment are required to develop a lead compound into a clinically approved anti-cancer drug. For these reasons and to circumvent these obstacles, ormeloxifene is a promising candidate on a fast track for the development or repurposing established drugs as anti-cancer agents for cancer treatment. The current review summarizes recent findings on ormeloxifene as an anti-cancer agent and future prospects of this clinically safe pharmacophore. PMID:23895678

  20. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum).

    Science.gov (United States)

    Majdalawieh, Amin F; Carr, Ronald I

    2010-04-01

    Although the immunomodulatory effects of many herbs have been extensively studied, research related to possible immunomodulatory effects of various spices is relatively scarce. Here, the potential immunomodulatory effects of black pepper and cardamom are investigated. Our data show that black pepper and cardamom aqueous extracts significantly enhance splenocyte proliferation in a dose-dependent, synergistic fashion. Enzyme-linked immunosorbent assay experiments reveal that black pepper and cardamom significantly enhance and suppress, respectively, T helper (Th)1 cytokine release by splenocytes. Conversely, Th2 cytokine release by splenocytes is significantly suppressed and enhanced by black pepper and cardamom, respectively. Experimental evidence suggests that black pepper and cardamom extracts exert pro-inflammatory and anti-inflammatory roles, respectively. Consistently, nitric oxide production by macrophages is significantly augmented and reduced by black pepper and cardamom, respectively. Remarkably, it is evident that black pepper and cardamom extracts significantly enhance the cytotoxic activity of natural killer cells, indicating their potential anti-cancer effects. Our findings strongly suggest that black pepper and cardamom exert immunomodulatory roles and antitumor activities, and hence they manifest themselves as natural agents that can promote the maintenance of a healthy immune system. We anticipate that black pepper and cardamom constituents can be used as potential therapeutic tools to regulate inflammatory responses and prevent/attenuate carcinogenesis.

  1. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E;

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell...... lines (BT4C, BT4Cn, U87MG, N2a, PC12-E2, CSML0, CSML100, HeLa, L929, Swiss 3T3). Results: VPA induced significant histone deacetylase (HDAC) inhibition in most of the cell lines, but the degree of inhibition was highly cell type-specific. Moreover, cell growth, motility and the degree of Erk1/2...... phosphorylation were inhibited, activated, or unaffected by VPA in a cell type-specific manner. Importantly, no relationship was found between the effects of VPA on HDAC inhibition and changes in the degree of Erk1/2 phosphorylation, cell growth, or motility. In contrast, VPA-induced modulation of the MAPK...

  2. Immunotherapy of Brain Cancer.

    Science.gov (United States)

    Roth, Patrick; Preusser, Matthias; Weller, Michael

    2016-01-01

    The brain has long been considered an immune-privileged site precluding potent immune responses. Nevertheless, because of the failure of conventional anti-cancer treatments to achieve sustained control of intracranial neoplasms, immunotherapy has been considered as a promising strategy for decades. However, several efforts aimed at exploiting the immune system as a therapeutic weapon were largely unsuccessful. The situation only changed with the introduction of the checkpoint inhibitors, which target immune cell receptors that interfere with the activation of immune effector cells. Following the observation of striking effects of drugs that target CTLA-4 or PD-1 against melanoma and other tumor entities, it was recognized that these drugs may also be active against metastatic tumor lesions in the brain. Their therapeutic activity against primary brain tumors is currently being investigated within clinical trials. In parallel, other immunotherapeutics such as peptide vaccines are at an advanced stage of clinical development. Further immunotherapeutic strategies currently under investigation comprise adoptive immune cell transfer as well as inhibitors of metabolic pathways involved in the local immunosuppression frequently found in brain tumors. Thus, the ongoing implementation of immunotherapeutic concepts into clinical routine may represent a powerful addition to the therapeutic arsenal against various brain tumors. PMID:27260656

  3. Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Elisa Robles-Escajeda

    Full Text Available Green barley extract (GB was investigated for possible anti-cancer activity by examining its anti-proliferative and pro-apoptotic properties on human leukemia/lymphoma cell lines. Our results indicate that GB exhibits selective anti-proliferative activity on a panel of leukemia/lymphoma cells in comparison to non-cancerous cells. Specifically, GB disrupted the cell-cycle progression within BJAB cells, as manifested by G2/M phase arrest and DNA fragmentation, and induced apoptosis, as evidenced by phosphatidylserine (PS translocation to the outer cytoplasmic membrane in two B-lineage leukemia/lymphoma cell lines. The pro-apoptotic effect of GB was found to be independent of mitochondrial depolarization, thus implicating extrinsic cell death pathways to exert its cytotoxicity. Indeed, GB elicited an increase of TNF-α production, caspase-8 and caspase-3 activation, and PARP-1 cleavage within pre-B acute lymphoblastic leukemia Nalm-6 cells. Moreover, caspase-8 and caspase-3 activation and PARP-1 cleavage were strongly inhibited/blocked by the addition of the specific caspase inhibitors Z-VAD-FMK and Ac-DEVD-CHO. Furthermore, intracellular signaling analyses determined that GB treatment enhanced constitutive activation of Lck and Src tyrosine kinases in Nalm-6 cells. Taken together, these findings indicate that GB induced preferential anti-proliferative and pro-apoptotic signals within B-lineage leukemia/lymphoma cells, as determined by the following biochemical hallmarks of apoptosis: PS externalization, enhanced release of TNF-α, caspase-8 and caspase-3 activation, PARP-1 cleavage and DNA fragmentation Our observations reveal that GB has potential as an anti-leukemia/lymphoma agent alone or in combination with standard cancer therapies and thus warrants further evaluation in vivo to support these findings.

  4. Synthesis and structure-activity relationship of N-(2-arylethyl) isoquinoline derivatives as anti-cancer agents%N-芳乙基异喹啉衍生物的合成及其抗肿瘤活性研究

    Institute of Scientific and Technical Information of China (English)

    汪燕翔; 赵午莉; 毕重文; 李阳彪; 邵荣光; 宋丹青

    2012-01-01

    A series of novel N-(2-arylethyl) isoquinoline derivatives were designed, synthesized and evaluated for their anti-cancer activities. Among these analogs, compound 9a exhibited the potential anti-cancer activities on HepG2 and HCT116 cells with IC50 values of 2.52 and 1.99 μg·mL-1, respectively. Cell cycle was blocked at S phase of HepG2 cells treated with 9a by flow cytometry detection. Our results provided a basis for the development of a new series of anti-cancer candidates.%本研究采用一种简便的新方法设计合成了一系列全新结构的N-芳乙基异喹啉衍生物,并对其体外抗肿瘤活性进行了评价.其中化合物9a表现出较强的抗肿瘤活性,对人肝癌HepG2和大肠癌HCT116细胞的IC50值分别为2.52和1.99 μg·mL-1.初步作用机制显示,9a可以将HepG2细胞周期阻滞于S期,使细胞增殖受阻,达到抗肿瘤效果.

  5. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV and anti-cancer activities.

    Directory of Open Access Journals (Sweden)

    Ran He

    Full Text Available We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4 are significantly more potent in inhibiting human cytomegalovirus (CMV replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574, lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound.

  6. Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

    Directory of Open Access Journals (Sweden)

    Jayeeta Das

    2016-03-01

    Full Text Available Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA and its poly (lactide- co-glycolide (PLGA nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA + benzo]undefined[a]pyrene (BaP]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA were determined by using transmission electron microscopy (TEM, and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA as a target were analyzed by using conventional circular dichroism (CD and melting temperature (Tm profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA; the ability of NdBA to cross the blood-brain barrier (BBB was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater

  7. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups

    Indian Academy of Sciences (India)

    Afsar Ali; Deepak Bansal; Nagendra K Kaushik; Neha Kaushik; Neha Kaushik; Eun Ha Choi; Rajeev Gupta

    2014-07-01

    Several pyridine-amide compounds appended with phenol/catechol groups are synthesized. These compounds consist of protected or deprotected phenol/catechol groups and offer pyridine, amide, and phenol/catechol functional groups. All compounds have been well-characterized by various spectroscopic methods, elemental analysis, thermal studies, and crystallography. The biological activities of all compounds were investigated while a few compounds significantly decreased the metabolic viability, growth and clonogenicity of T98G cells in dose dependent manner. Accumulation of ROS was observed in T98G cells, which displayed a compromised redox status as evident from increased cellular Caspase 3/7 activity and formation of micronuclei. The in silico pharmacokinetic studies suggest that all compounds have good bioavailability, water solubility and other drug-like parameters. A few compounds were identified as the lead molecules for future investigation due to their: (a) high activity against T98G brain, H-460 lung, and SNU-80 thyroid cancer cells; (b) low cytotoxicity in non-malignant HEK and MRC-5 cells; (c) low toxic risks based on in silico evaluation; (d) good theoretical oral bioavailability according to Lipinski ‘rule of five’ pharmacokinetic parameters; and (e) better drug-likeness and drug-score values.

  8. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs.

    Science.gov (United States)

    Wang, Hao-Meng; Zhang, Li; Liu, Jiang; Yang, Zhao-Liang; Zhao, Hong-Ye; Yang, Yao; Shen, Di; Lu, Kui; Fan, Zhen-Chuan; Yao, Qing-Wei; Zhang, Yong-Min; Teng, Yu-Ou; Peng, Yu

    2015-03-01

    Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 μM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis. PMID:25590864

  9. Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level.

    Science.gov (United States)

    Flasiński, Michał; Hąc-Wydro, Katarzyna; Wydro, Paweł; Dynarowicz-Łątka, Patrycja

    2014-06-01

    Three structurally related but differing in biological activities single-chained ether phospholipids (PAF (platelet-activating factor) and lyso-PAF) and an anti-cancer drug (edelfosine (ED)) were investigated in Langmuir monolayers imitating natural membranes. The aim of the undertaken experiments was to study the influence of these lipids on monolayers mimicking plasma membranes of cell lines differing in susceptibility to the anti-cancer activity of ED, i.e. promyelocytic leukaemia cells (HL-60) and promyeloblastic leukaemia cells (K-562). As these cells differ essentially in the cholesterol/phospholipid ratio and plasmalogen concentration in the membrane, we have carried out systematic investigations in artificial systems of various compositions. The results for model leukaemia cell membrane were compared with data acquired for systems imitating normal leucocytes. Our results show that the level of plasmalogens significantly modulates the influence of the single-chained phospholipids on the investigated systems. The experiments confirmed also that the interactions of ether lipids with a model membrane of HL-60 cells (in biological tests sensitive to ED) have opposite character when compared with K-562, being resistant to ED. Moreover, the values of the parameters characterizing monolayers serving as membrane models (strength of interactions, monolayers fluidity and morphology) proved both sensitivity of these cells to ED and lack of their susceptibility towards PAF. Interestingly, it has been found that lyso-PAF, which is usually described as an inactive precursor of PAF, displays a stronger effect on HL-60 model membranes than ED.

  10. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    Science.gov (United States)

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer. PMID:26621832

  11. A Survey of Marine Natural Compounds and Their Derivatives with Anti-Cancer Activity Reported in 2012

    Directory of Open Access Journals (Sweden)

    Wamtinga Richard Sawadogo

    2015-04-01

    Full Text Available Although considerable effort and progress has been made in the search for new anticancer drugs and treatments in the last several decades, cancer remains a major public health problem and one of the major causes of death worldwide. Many sources, including plants, animals, and minerals, are of interest in cancer research because of the possibility of identifying novel molecular therapeutics. Moreover, structure-activity-relationship (SAR investigations have become a common way to develop naturally derived or semi-synthetic molecular analogues with improved efficacy and decreased toxicity. In 2012, approximately 138 molecules from marine sources, including isolated compounds and their associated analogues, were shown to be promising anticancer drugs. Among these, 62% are novel compounds. In this report, we review the marine compounds identified in 2012 that may serve as novel anticancer drugs.

  12. Functional nanoemulsion-hybrid lipid nanocarriers enhance the bioavailability and anti-cancer activity of lipophilic diferuloylmethane

    Science.gov (United States)

    Sun, Lili; Wan, Kun; Hu, Xueyuan; Zhang, Yonghong; Yan, Zijun; Feng, Jiao; Zhang, Jingqing

    2016-02-01

    The purpose of this study was to assess the enhanced physicochemical characteristics, in vitro release behavior, anti-lung cancer activity, gastrointestinal absorption, in vivo bioavailability and bioequivalence of functional nanoemulsion-hybrid lipid nanocarriers containing diferuloylmethane (DNHLNs). The DNHLNs were first fabricated by loading water-in-oil nanoemulsions into hybrid lipid nanosystems using nanoemulsion-thin film-sonication dispersion technologies. The in situ absorption and in vitro and in vivo kinetic features of DNHLNs were measured using an in situ unidirectional perfusion method, a dynamic dialysis method and a plasma concentration-time profile-based method, respectively. The cytotoxic effects of DNHLNs in lung adenocarcinoma A549 cells were examined using MTT colorimetric analysis. The absorptive constants and permeabilities of DNHLNs in four gastrointestinal sections increased by 1.43-3.23 times and by 3.10-7.76 times that of diferuloylmethane (DIF), respectively. The relative bioavailability of DNHLNs to free DIF was 855.02%. DNHLNs inhibited cancer cell growth in a time- and dose-dependent manner. DNHLNs markedly improved the absorption and bioavailability of DIF after oral administration. DNHLNs had stronger inhibitory effects on the viability of A549 cells than that of free DIF. DNHLNs might be potentially promising nanocarriers for DIF delivery via the oral route to address unmet clinical needs.

  13. Production of Anti-Cancer Agent Using Microbial Biotransformation

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2014-10-01

    Full Text Available Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol. In a 5 L (w/v 3 L jar fermentation, this wild type Streptomyces sp. in the batch system produced 205 mg of piceatannol (i.e., 60% yields from 342 mg of resveratrol in 20 h. Using the product, an in vitro anti-cancer study was performed against a human cancer cell line (HeLa. It showed that the biotransformed piceatannol possessed a significant anticancer activity. This result demonstrates that a biotransformation screening method might be of therapeutic interest with respect to the identification of anti-cancer drugs.

  14. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells

    OpenAIRE

    Zhongyuan Zhang; Kiichiro Teruya; Toshihiro Yoshida; Hiroshi Eto; Sanetaka Shirahata

    2013-01-01

    Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE) from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as ...

  15. Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence

    Directory of Open Access Journals (Sweden)

    Ridnour Lisa A

    2011-09-01

    Full Text Available Abstract Background Anti-Aβ immunotherapy is a promising approach to the prevention and treatment of Alzheimer's disease (AD currently in clinical trials. There is extensive evidence, both in mice and humans that a significant adverse event is the occurrence of microhemorrhages. Also, vasogenic edema was reported in phase 2 of a passive immunization clinical trial. In order to overcome these vascular adverse effects it is critical that we understand the mechanism(s by which they occur. Methods We have examined the matrix metalloproteinase (MMP protein degradation system in two previously published anti-Aβ immunotherapy studies. The first was a passive immunization study in which we examined 22 month old APPSw mice that had received anti-Aβ antibodies for 1, 2 or 3 months. The second is an active vaccination study in which we examined 16 month old APPSw/NOS2-/- mice treated with Aβ vaccination for 4 months. Results There is a significant activation of the MMP2 and MMP9 proteinase degradation systems by anti-Aβ immunotherapy, regardless of whether this is delivered through active vaccination or passive immunization. We have characterized this activation by gene expression, protein expression and zymography assessment of MMP activity. Conclusions Since the MMP2 and MMP9 systems are heavily implicated in the pathophysiology of intracerbral hemorrhage, these data may provide a potential mechanism of microhemorrhage due to immunotherapy. Increased activity of the MMP system, therefore, is likely to be a major factor in increased microhemorrhage occurrence.

  16. Immunotherapy: A useful strategy to help combat multidrug resistance

    OpenAIRE

    Curiel, Tyler J.

    2012-01-01

    Multidrug resistance (MDR) renders cancer cells relatively invulnerable to treatment with many standard cytotoxic anti-cancer agents. Cancer immunotherapy could be an important adjunct other strategies to treat MDR positive cancers, as resistance to immunotherapy generally is unrelated to mechanisms of resistance to cytotoxic agents. Immunotherapy to combat MDR positive tumors could use any of the following strategies: direct immune attack against MDR positive cells, using MDR as an immune ta...

  17. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways.

    Directory of Open Access Journals (Sweden)

    Fang Cheng Wong

    Full Text Available Breast cancer is currently the leading cause of cancer-related deaths among women globally. Notably, medicinal plant extracts may be a potential source for treatments of breast cancer. Vernonia amygdalina (VA is a woody shrub reported to have not only diverse therapeutic effects but also anti-cancer properties. However, current research about the mechanisms of the anti-cancer potential of VA has been limited. This study aimed to investigate the mechanisms of action of VA that underlie its anti-cancer effects in human breast cancer cell lines (MCF-7 and MDA-MB-231 cells. Results from MTT assay revealed that VA inhibits the proliferation of MCF-7 and MDA-MB-231, in a time- and dose-dependent manner. The underlying mechanism of this growth inhibition involved the stimulation of cell-type specific G1/S phase cell cycle arrest in only MCF-7 cells, and not in MDA-MB-231 cells. While the growth arrest was associated with increased levels of p53 and p21, and a concomitant decrease in the levels of cyclin D1 and cyclin E, it was shown that VA causes cell cycle arrest through a p53-independent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Furthermore, this study revealed that VA induces apoptosis in the two cell lines, as indicated by the increase in Annexin V-positive cells and sub-G1 population, and that this VA-induced apoptosis occurred through both extrinsic and intrinsic apoptotic pathways. The apoptosis in MCF-7 cells was also likely to be caspase-dependent and not p53 transcriptional-dependent. Given that approximately 70% of diagnosed breast cancers express ER-α, a crucial finding was that VA inhibits the expression of ER-α and its downstream player, Akt, highlighting the potential clinical significance of VA. Moreover, VA exhibits synergism when combined with doxorubicin, suggesting that it can complement current chemotherapy. Overall, this study demonstrates the potential applications of VA as an anti-cancer drug for breast

  18. Neoadjuvant immunotherapy enhances radiosensitivity through natural killer cell activation.

    Science.gov (United States)

    Chi, Chau-Hwa; Wang, Yu-Shan; Yang, Chieh-Han; Chi, Kwan-Hwa

    2010-02-01

    We investigated whether natural killer (NK) cells in the tumor microenvironment have a radiosensitization effect. The radiosensitization effect of combined CpG and Herceptin((R)) (Genentech, Inc., South San Francisco, CA) (CpG/Herceptin), given before or after radiation, was evaluated by using a murine colon cancer cell line overexpressing human HER2/neu, CT26HER2/neu. In vitro radiosensitization effects were investigated by coculture of CT26HER2/neu with splenocytes, CpG, and Herceptin before applying radiation. Tumor cells, cocultured with CpG-pretreated splenocytes and Herceptin, were more vulnerable to radiation damage. In BALB/c mice injected with CT26HER2/neu, CpG/Herceptin administered before radiotherapy was associated with a better retardation of tumor growth than when administered after radiotherapy. The radiosensitization effect was significantly abrogated by NK-cell depletion, indicating that NK cells play an essential role in it. Further, surviving mice treated with CpG or CpG/Herceptin and reverse transcriptase were resistant to renewed tumor challenge, suggesting the presence of an induced immune response to the tumor. Neoadjuvant immunotherapy with CpG/Herceptin may improve response to radiotherapy of HER2/neu-expressing tumors. PMID:20187795

  19. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role\\'as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic\\'drugs

  20. Optimizing complement-activating antibody-based cancer immunotherapy: a feasible strategy?

    Directory of Open Access Journals (Sweden)

    Maio Michele

    2004-06-01

    Full Text Available Abstract Passive immunotherapy with monoclonal antibodies (mAb targeted to specific tumor-associated antigens is amongst the most rapidly expanding approaches to biological therapy of cancer. However, until now a limited number of therapeutic mAb has demonstrated clinical efficacy in selected neoplasia. Results emerging from basic research point to a deeper characterization of specific biological features of neoplastic cells as crucial to optimize the clinical potential of therapeutic mAb, and to identify cancer patients who represent the best candidates to antibody-based immunotherapy. Focus on the tissue distribution and on the functional role of membrane complement-regulatory proteins such as Protectin (CD59, which under physiologic conditions protects tissues from Complement (C-damage, might help to optimize the efficacy of immunotherapeutic strategies based on C-activating mAb.

  1. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    2013-01-01

    Full Text Available Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as cell cycle modifications in MDA-MB-231 and MCF-7 cells. FE enhanced apoptosis in cancer cells that responded to treatment with three chemotherapeutic drugs with downregulation of the anti-apoptotic proteins Bcl-xL and Mcl-1. The combination treatments led to an obvious decrease in the phosphorylation of ERK and Akt in MDA-MB-231 cells, but increased the phosphorylation of ERK in MCF-7 cells. In addition, we observed that combination treatments enhanced intracellular ROS levels and reduced glutathione (GSH levels in breast cancer cells, suggesting that induction of oxidative stress was an important event in the cell death induced by the combination treatments.

  2. PEGylation in anti-cancer therapy: An overview

    OpenAIRE

    Prajna Mishra; Bismita Nayak; R. K. Dey

    2016-01-01

    Advanced drug delivery systems using poly(ethylene glycol) (PEG) is an important development in anti-cancer therapy. PEGylation has the ability to enhance the retention time of the therapeutics like proteins, enzymes small molecular drugs, liposomes and nanoparticles by protecting them against various degrading mechanisms active inside a tissue or cell, which consequently improves their therapeutic potential. PEGylation effectively alters the pharmacokinetics (PK) of a variety of drugs and dr...

  3. Synthesis, characterization and biological evaluation of anti-cancer indolizine derivatives via inhibiting β-catenin activity and activating p53.

    Science.gov (United States)

    Moon, Seong-Hee; Jung, Youngeun; Kim, Seong Hwan; Kim, Ikyon

    2016-01-01

    Diversity-oriented construction of new indolizine scaffolds was accomplished by utilizing domino Knoevenagel condensation/intramolecular aldol cyclization. Biological evaluation revealed anticancer activity of these compounds through inhibition of β-catenin and activation of p53. PMID:26608553

  4. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds.

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-02-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  5. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    Science.gov (United States)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  6. The application of the fibroblast activation protein α-targeted immunotherapy strategy.

    Science.gov (United States)

    Jiang, Guan-Min; Xu, Wei; Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-05-31

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.

  7. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-01-01

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery. PMID:27229857

  8. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property [v1; ref status: indexed, http://f1000r.es/15s

    Directory of Open Access Journals (Sweden)

    Asfar S Azmi

    2013-06-01

    Full Text Available “Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  9. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    Science.gov (United States)

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy. PMID:27485078

  10. Reengineered tricyclic anti-cancer agents.

    Science.gov (United States)

    Kastrinsky, David B; Sangodkar, Jaya; Zaware, Nilesh; Izadmehr, Sudeh; Dhawan, Neil S; Narla, Goutham; Ohlmeyer, Michael

    2015-10-01

    The phenothiazine and dibenzazepine tricyclics are potent neurotropic drugs with a documented but underutilized anti-cancer side effect. Reengineering these agents (TFP, CPZ, CIP) by replacing the basic amine with a neutral polar functional group (e.g., RTC-1, RTC-2) abrogated their CNS effects as demonstrated by in vitro pharmacological assays and in vivo behavioral models. Further optimization generated several phenothiazines and dibenzazepines with improved anti-cancer potency, exemplified by RTC-5. This new lead demonstrated efficacy against a xenograft model of an EGFR driven cancer without the neurotropic effects exhibited by the parent molecules. Its effects were attributed to concomitant negative regulation of PI3K-AKT and RAS-ERK signaling. PMID:26372073

  11. BRAIN CANCER IMMUNOTHERAPY (REVIEW)

    OpenAIRE

    Yashin К.S.; Medyanik I.А.

    2014-01-01

    The review analyzes Russian and foreign reports concerned with a rapidly developing brain cancer treatment technique — immunotherapy. There has been presented a current view on the basic concept of antitumor immunity, on the problem of immune system interaction with a tumor in general and under the conditions of an immunologically privileged nervous system, shown the theoretical background of efficiency of immunotherapy used against brain cancer (the capability of tumor antigens and activated...

  12. 22种常见抗肿瘤中草药的抗氧化活性研究%Antioxidant Activity of 22 Chinese Herbal Medicines for Anti-cancer

    Institute of Scientific and Technical Information of China (English)

    张新国; 刘英娟; 曹心张; 张春生; 匡彦蓓

    2015-01-01

    Objective:In this study ,22 Chinese herbal medicines for anti -cancer were developed for the study of its an-tioxidant activity .Methods:The antioxidant activities of samples were evaluated by DPPH method;phenols , flavonoids contents and total reducing power were estimated by using the Folin -Ciocalteu reagent , aluminum salt colorimetric method and ferric-reducing antioxidant power assay ( FRAP) .Results:The results confirmed that 90 .09%of the medi-cine had characterized the antioxidant activity with more than 50%, which included eight kinds of plant materials such as Rhizoma Curcumae , Rhizoma Polygoni Cuspidati , Wild Skullcaps , Radix Paeoniae Alba , Fern , Salviamiltiorrhiza , Radix Dipsaci Asperoidis , Curcuma longa demonstrated better antioxidant activity ( activity >90%) .Wild Skullcaps demonstrated the best antioxidant activity with the lowest IC 50 value of 0.05g/L, the highest phenolic and flavonoid con-tents of 5240μg/L and 83210μg/L.Conclusion:Each sample for anti -cancer has a strong antioxidant activity except for the Coix seed and Poria , which confirms natural antioxidant and antitumor effect has a certain correlation , but its mechanism needs further research .In this study , it is possible to find antioxidants and antioxidant -based anticancer drugs develop from broad anti -tumor natural resources providing an experimental basis .%目的:本研究以常见的22种具有抗肿瘤活性的中药材为对象,对其抗氧化活性进行研究。方法:以DPPH自由基清除率为指标,测定各试样的抗氧化活性;通过FRAP法,Folin-Ciocaheu法以及铝盐显色法,比较其总还原力,总酚含量以及黄酮含量。结果:抗氧化活性大于50%的药材占到了90.09%,其中莪术、虎杖、野生黄芩、白芍、凤尾草、丹参、川断、姜黄等8种药材DPPH的清除作用均超过了90%,显示了较强的抗氧化作用,且野生黄芩的IC50最低(IC50=0.05g/L),抗氧化能力

  13. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle T.S. Ying.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The quality of traditional Chinese herbal medicine, which plays a very important role in the health system of China, is determined by the active substances produced by the plants. The type, content, and proportion of these substances may vary depending on ecological factors in areas where the plants are grown. Sinopodophyllum hexandrum (Royle T.S. Ying, an endangered plant species with great medical value, was investigated in eight production locations representative of its natural geographical distribution range in China. The correlation between the contents of the active ingredients extracted from the roots and rhizomes of S. hexandrum and the ecological factors were evaluated step-by-step using a series of computational biology methodologies. The results showed that ecological factors had significant effects on the contents but not on the types of the active ingredients in eight production locations. The primary ecological factors influencing the active substances included the annual average precipitation, July mean temperature, frost-free period, sunshine duration, soil pH, soil organic matter, and rapidly available potassium in the soil. The annual average precipitation was the most important determinant factor and was significantly and negatively correlated with the active ingredient contents (P < 0.001. In contrast, organic matter was the most important limiting factor and was significantly and positively correlated with the active substances. These ecological factors caused 98.13% of the total geographical variation of the active ingredient contents. The climate factors contributed more to the active ingredient contents than did the soil factors. It was concluded that from the view of the contents of the secondary metabolites and ecological factors of each growing location, in Jingyuan, Ningxia Province, and Yongdeng, Gansu Province, conditions were favorable to the production of podophyllotoxin and lignans, whereas in Shangri-La, Yunnan

  14. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy.

    Science.gov (United States)

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun

    2016-01-01

    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  15. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L.

    Science.gov (United States)

    Khlifi, Daycem; Sghaier, Rabiaa Manel; Amouri, Sameh; Laouini, Dhafer; Hamdi, Mokhtar; Bouajila, Jalloul

    2013-05-01

    In this study, biological activities of methanolic extracts from Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. plants, collected in Centre of Tunisia, were investigated. Results showed an important phenolic composition of Artemisia herba-alba (123.95±4.3g GAE/kg of dry mass). The extract of this plant showed, using different antioxidant assays (DPPH, ABTS and AAPH/linoleic acid methods) and an IFN-γ/LPS induced RAW 264.7 murine macrophages' assay, the highest antioxidant (IC50 (DPPH assay) 20.64±0.84mg/L) and anti-inflammatory (72% inhibition at 150mg/L) activities, respectively. Excepting Peganum harmala L. extract, the two other extracts showed a high anticancer activity against several cell lines (human bladder carcinoma RT112, human laryngeal carcinoma Hep2 and human myelogenous leukemia K562), for A. herba-laba IC50=81.59±4.4, 59.05±3.66 and 90.96mg/L respectively, but not on normal peripheral blood mononuclear cells. All these biological activities are well correlated with the phenolic contents of these extracts. These findings demonstrate the remarkable potential of these plants as valuable source of antioxidants with exhibit original and interesting anti-inflammatory and anticancer capacities.

  16. Influence of Ecological Factors on the Production of Active Substances in the Anti-Cancer Plant Sinopodophyllum hexandrum (Royle) T.S. Ying

    OpenAIRE

    Liu, Wei; Liu, Jianjun; Yin, Dongxue; Zhao, Xiaowen

    2015-01-01

    The quality of traditional Chinese herbal medicine, which plays a very important role in the health system of China, is determined by the active substances produced by the plants. The type, content, and proportion of these substances may vary depending on ecological factors in areas where the plants are grown. Sinopodophyllum hexandrum (Royle) T.S. Ying, an endangered plant species with great medical value, was investigated in eight production locations representative of its natural geographi...

  17. Profound activity of the anti-cancer drug bortezomib against Echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    2014-12-01

    Full Text Available A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ, a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

  18. Antioxidant Activities and Anti-Cancer Cell Proliferation Properties of Natsuhaze (Vaccinium oldhamii Miq., Shashanbo (V. bracteatum Thunb. and Blueberry Cultivars

    Directory of Open Access Journals (Sweden)

    Hirotoshi Tsuda

    2013-02-01

    Full Text Available Antioxidants are abundant in blueberries, and while there are many studies concerning the bioactive compound of fruit, it is only recently that the wild Vaccinium species has attracted attention for their diverse and abundant chemical components. The aim of this study was to investigate the bioactive compounds of blueberry cultivars and wild species found in Japan. Among the five extracts of the Vaccinium species, Natsuhaze (Vaccinium oldhamii Miq. was found to be the most effective at inhibiting the growth of HL-60 human leukemia cells in vitro. Although all ethanol extracts showed a growth inhibitory effect on HL-60 cells, the degree of the effects differed among the species. The extract of Natsuhaze induced apoptotic bodies and nucleosomal DNA fragmentation in the HL-60 cells. Of the extracts tested, that of Natsuhaze contained the largest amount of total polyphenols and showed the greatest antioxidant activity, but the anthocyanin content of Natsuhaze was similar to that of rabbiteye blueberry (V. virgatum Ait.. The results showed that total polyphenols contributed to the high antioxidant activity and growth inhibitory effect on HL-60 human leukemia cells of Natsuhaze extract.

  19. Antioxidant Activities and Anti-Cancer Cell Proliferation Properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and Blueberry Cultivars

    Science.gov (United States)

    Tsuda, Hirotoshi; Kunitake, Hisato; Kawasaki-Takaki, Ryoko; Nishiyama, Kazuo; Yamasaki, Masao; Komatsu, Haruki; Yukizaki, Chizuko

    2013-01-01

    Antioxidants are abundant in blueberries, and while there are many studies concerning the bioactive compound of fruit, it is only recently that the wild Vaccinium species has attracted attention for their diverse and abundant chemical components. The aim of this study was to investigate the bioactive compounds of blueberry cultivars and wild species found in Japan. Among the five extracts of the Vaccinium species, Natsuhaze (Vaccinium oldhamii Miq.) was found to be the most effective at inhibiting the growth of HL-60 human leukemia cells in vitro. Although all ethanol extracts showed a growth inhibitory effect on HL-60 cells, the degree of the effects differed among the species. The extract of Natsuhaze induced apoptotic bodies and nucleosomal DNA fragmentation in the HL-60 cells. Of the extracts tested, that of Natsuhaze contained the largest amount of total polyphenols and showed the greatest antioxidant activity, but the anthocyanin content of Natsuhaze was similar to that of rabbiteye blueberry (V. virgatum Ait.). The results showed that total polyphenols contributed to the high antioxidant activity and growth inhibitory effect on HL-60 human leukemia cells of Natsuhaze extract. PMID:27137366

  20. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Science.gov (United States)

    Yang, Hung-Yu; Hsu, Ya-Fen; Chiu, Pei-Ting; Ho, Shiau-Jing; Wang, Chi-Han; Chi, Chih-Chin; Huang, Yu-Han; Lee, Cheng-Feng; Li, Ying-Shiuan; Ou, George; Hsu, Ming-Jen

    2013-01-01

    Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer. PMID:24312323

  1. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    OpenAIRE

    Morash, Michael G.; Douglas, Susan E.; Anna Robotham; Ridley, Christina M.; Gallant, Jeffrey W.; Soanes, Kelly H.

    2011-01-01

    SUMMARY The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of actio...

  2. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    OpenAIRE

    Michael G. Morash; Douglas, Susan E.; Anna Robotham; Ridley, Christina M.; Gallant, Jeffrey W.; Soanes, Kelly H.

    2011-01-01

    SUMMARY The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. ...

  3. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma.

    Science.gov (United States)

    Hu-Lieskovan, Siwen; Mok, Stephen; Homet Moreno, Blanca; Tsoi, Jennifer; Robert, Lidia; Goedert, Lucas; Pinheiro, Elaine M; Koya, Richard C; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2015-03-18

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAF(V600E)-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAF(V600E) mutant metastatic melanoma.

  4. [A case of lung cancer complicated with active non-tuberculous mycobacterium (NTM) infection successfully treated with anti-cancer agents and anti-NTM agents].

    Science.gov (United States)

    Fujita, Yu; Ishii, Satoru; Hirano, Satoshi; Takeda, Yuichiro; Sugiyama, Haruhito; Kobayashi, Nobuyuki

    2011-11-01

    A 55-year-old man with pulmonary Mycobacterium avium complex (MAC) disease was referred to our hospital with dyspnea on exertion and general fatigue. Chest computed tomography (CT) revealed a nodular shadow with pleural indentation in the left S(1+2), left pleural effusion, and a thick-walled cavitary lesion due to pulmonary MAC disease in the right S1. A biopsy specimen of the nodule in the left S(1+2) revealed adenocarcinoma, which various examinations confirmed to be stage IV lung adenocarcinoma (T2aN0M1a) complicated with active pulmonary MAC disease. Anti-non-tuberculous mycobacteriosis (NTM) chemotherapy consisting of rifampicin, ethambutol, clarithromycin and streptomycin was administered to treat the pulmonary MAC disease, and the lung cancer was then treated with 4 courses of carboplatin/pemetrexed. This improved the patient's pulmonary MAC disease, and the lung cancer went into partial remission without severe adverse effects. Although a more detailed analysis of the drug interaction is required, we concluded that a combination of anti-NTM and carboplatin/pemetrexed chemotherapy was safe and effective. PMID:22171491

  5. Eugenia jambolana (Java Plum) Fruit Extract Exhibits Anti-Cancer Activity against Early Stage Human HCT-116 Colon Cancer Cells and Colon Cancer Stem Cells.

    Science.gov (United States)

    Charepalli, Venkata; Reddivari, Lavanya; Vadde, Ramakrishna; Walia, Suresh; Radhakrishnan, Sridhar; Vanamala, Jairam K P

    2016-02-26

    The World Health Organization predicts over a 70% increase in cancer incidents in developing nations over the next decade. Although these nations have limited access to novel therapeutics, they do have access to foods that contain chemopreventive bioactive compounds such as anthocyanins, and as such, consumption of these foods can be encouraged to combat cancer. We and others have previously characterized the anti-colon cancer properties of dietary anthocyanins from different sources. Eugenia jambolana (Java plum) is a tropical medicinal fruit rich in anthocyanins, however, its anti-colon cancer properties are not well characterized. Furthermore, recent evidence suggests that colon cancer stem cells (colon CSCs) promote resistance to chemotherapy, relapse of tumors and contribute to poor prognosis. The objectives of this study were to 1) characterize the anthocyanin profile of Java plum using HPLC-MS; and 2) determine the anti-proliferative (cell counting and MTT) and pro-apoptotic (TUNEL and caspase 3/7 glo assay) properties of Java plum fruit extract (JPE) using HCT-116 colon cancer cell line and colon CSCs (positive for CD 44, CD 133 and ALDH1b1 markers). HPLC-MS analysis showed that JPE contains a variety of anthocyanins including glucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. JPE anthocyanins suppressed (p cancer activity of JPE, and its molecular mechanisms using pre-clinical models of colon cancer.

  6. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole

    Indian Academy of Sciences (India)

    I Rama; R Selvameena

    2015-04-01

    A new bidentate Schiff base ligand (HL1), containing O,N donors was prepared by the reaction of sulfamethoxazole with 5-nitrosalicylaldehyde and characterized by elemental analysis, FT-IR, 1H and 13C NMR. The copper complex of this ligand was synthesised by treating DMF-ethanolic mixture solution of the ligand of two equivalents with one equivalent of copper acetate. The complex was characterized on the basis of UV, FT-IR, molar conductance, EPR, magnetic moment and single crystal X-ray diffraction. Interestingly, the crystal structure of the octahedral complex showed two solvent molecules (DMF) as ligands at their axial positions. The molar conductance data revealed that the complex is a non-electrolyte. The Schiff base and its copper complex have been investigated as anti-bacterial and anti-fungal agents against various microorganisms. The in vitro cytotoxicity tests of the ligand and its copper complex were carried out in two different human tumour cell lines, HCT-116 and MDA – MB - 231. The cytotoxicity studies showed that the complex exhibited higher activity than cisplatin and carboplatin towards MDA – MB – 231.

  7. Anti-Cancer Activity of Solanum nigrum (AESN through Suppression of Mitochondrial Function and Epithelial-Mesenchymal Transition (EMT in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ying-Jang Lai

    2016-04-01

    Full Text Available Chemotherapy is the main approach for treating advanced and recurrent carcinoma, but the clinical performance of chemotherapy is limited by relatively low response rates, drug resistance, and adverse effects that severely affect the quality of life of patients. An association between epithelial-mesenchymal transition (EMT and chemotherapy resistance has been investigated in recent studies. Our recent studies have found that the aqueous extract of Solanum nigrum (AESN is a crucial ingredient in some traditional Chinese medicine formulas for treating various types of cancer patients and exhibits antitumor effects. We evaluated the suppression of EMT in MCF-7 breast cancer cells treated with AESN. The mitochondrial morphology was investigated using Mitotracker Deep-Red FM stain. Our results indicated that AESN markedly inhibited cell viability of MCF-7 breast cancer cells through apoptosis induction and cell cycle arrest mediated by activation of caspase-3 and production of reactive oxygen species. Furthermore, mitochondrial fission was observed in MCF-7 breast cancer cells treated with AESN. In addition to elevation of E-cadherin, downregulations of ZEB1, N-cadherin, and vimentin were found in AESN-treated MCF-7 breast cancer cells. These results suggested that AESN could inhibit EMT of MCF-7 breast cancer cells mediated by attenuation of mitochondrial function. AESN could be potentially beneficial in treating breast cancer cells, and may be of interest for future studies in developing integrative cancer therapy against proliferation, metastasis, and migration of breast cancer cells.

  8. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on LNCaP human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kind Leng Tong

    composition from E. longifolia promotes anti-prostate cancer activities in LNCaP human prostate cancer cells.

  9. ANTI - CANCER DRUGS FROM TRADITIONAL PLANTS OF SITAPUR DISTRICT (UTTAR PRADESH)

    OpenAIRE

    Siddiqui, M. Badruzzaman

    2003-01-01

    The paper deals with some important medicinal plants growing in the Sitapur district of Vttar Pradesh province used as an anti cancer activities. 10 spaceies are reported along with doses and mode of administration. Neither the putative plant remedies evaluated nor any chemical principles identified.

  10. Anti-Cancer Effects of Xanthones from Pericarps of Mangosteen

    Directory of Open Access Journals (Sweden)

    Yoshinori Nozawa

    2008-03-01

    Full Text Available Mangosteen, Garcinia mangostana Linn, is a tree found in South East Asia, and its pericarps have been used as traditional medicine. Phytochemical studies have shown that they contain a variety of secondary metabolites, such as oxygenated and prenylated xanthones. Recent studies revealed that these xanthones exhibited a variety of biological activities containing anti-inflammatory, anti-bacterial, and anti-cancer effects. We previously investigated the anti-proliferative effects of four prenylated xanthones from the pericarps; α-mangostin, β-mangostin, γ-mangostin, and methoxy-β-mangostin in various human cancer cells. These xanthones are different in the number of hydroxyl and methoxy groups. Except for methoxy-β-mangostin, the other three xanthones strongly inhibited cell growth at low concentrations from 5 to 20 μM in human colon cancer DLD-1 cells. Our recent study focused on the mechanism of α-mangostin-induced growth inhibition in DLD-1 cells. It was shown that the anti-proliferative effects of the xanthones were associated with cell-cycle arrest by affecting the expression of cyclins, cdc2, and p27; G1 arrest by α- mangostin and β-mangostin, and S arrest by γ-mangostin. α-Mangostin found to induce apoptosis through the activation of intrinsic pathway following the down-regulation of signaling cascades involving MAP kinases and the serine/threonine kinase Akt. Synergistic effects by the combined treatment of α-mangostin and anti-cancer drug 5-FU was to be noted. α-Mangostin was found to have a cancer preventive effect in rat carcinogenesis bioassay and the extract from pericarps, which contains mainly α-mangostin and γ- mangostin, exhibited an enhancement of NK cell activity in a mouse model. These findings could provide a relevant basis for the development of xanthones as an agent for cancer prevention and the combination therapy with

  11. Development of Combination Therapy with Anti-Cancer Drugs

    NARCIS (Netherlands)

    Leijen, S.

    2013-01-01

    This thesis describes early clinical trials with anti-cancer drugs in combination with commonly applied and registered chemotherapy and single agent studies with compounds that are intended for use in combination with registered or other targeted anti-cancer drugs. Gemcitabine is a prodrug that fi

  12. Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Joris D. Veltman

    2010-01-01

    Full Text Available Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.

  13. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine;

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...... using mouse monoclonal antibodies (mAbs) against mouse uPA or uPAR. These reagents will target uPA and uPAR in both stromal cells and cancer cells, and their therapeutic potential can now be assessed in syngenic mouse cancer models.......Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...

  14. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    Directory of Open Access Journals (Sweden)

    Sergey Dobretsov

    2016-05-01

    Full Text Available Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies.

  15. Regulatory T cells as immunotherapy

    Directory of Open Access Journals (Sweden)

    Benjamin David Singer

    2014-02-01

    Full Text Available Regulatory T cells (Tregs suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes—autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation—may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease.

  16. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents.

    Science.gov (United States)

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan

    2010-04-01

    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  17. Sarcoma Immunotherapy

    International Nuclear Information System (INIS)

    Much of our knowledge regarding cancer immunotherapy has been derived from sarcoma models. However, translation of preclinical findings to bedside success has been limited in this disease, though several intriguing clinical studies hint at the potential efficacy of this treatment modality. The rarity and heterogeneity of tumors of mesenchymal origin continues to be a challenge from a therapeutic standpoint. Nonetheless, sarcomas remain attractive targets for immunotherapy, as they can be characterized by specific epitopes, either from their mesenchymal origins or specific alterations in gene products. To date, standard vaccine trials have proven disappointing, likely due to mechanisms by which tumors equilibrate with and ultimately escape immune surveillance. More sophisticated approaches will likely require multimodal techniques, both by enhancing immunity, but also geared towards overcoming innate mechanisms of immunosuppression that favor tumorigenesis

  18. Mouse Models of Tumor Immunotherapy.

    Science.gov (United States)

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. PMID:26922998

  19. Melanoma immunotherapy.

    Science.gov (United States)

    Sivendran, Shanthi; Glodny, Bradley; Pan, Michael; Merad, Miriam; Saenger, Yvonne

    2010-01-01

    Melanoma immunotherapy has been an area of intense research for decades, and this work is now yielding more tangible results for patients. Work has focused on 4 main areas: cytokine therapy, administration of immune-modulating antibodies, adoptive T-cell therapy, and vaccines. Cytokine therapy is an established treatment for advanced melanoma, and immune-modulating antibodies have recently emerged as an exciting new area of drug development with efficacy now established in a phase III trial. Adoptive T-cell therapy provides the proof of principle that T cells can attack and eliminate tumors. It has been challenging, however, to adapt this treatment for widespread use. Vaccines have generally yielded poor results, but intratumor pathogen-based strategies have shown encouraging results in recent trials, perhaps due to stronger immune stimulation. A review of the field of melanoma immunotherapy is provided here, with emphasis on those agents that have reached clinical testing. Novel strategies to induce the immune system to attack melanomas are reviewed. In the future, it is envisioned that immunotherapy will have further application in combination with cytotoxic and targeted therapies.

  20. Cancer Immunotherapy of Targeting Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Jianmei Hou; Ling Tian; Yuquan Wei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  1. A Journey Under the Sea: The Quest for Marine Anti-Cancer Alkaloids

    Directory of Open Access Journals (Sweden)

    Nadine Darwiche

    2011-11-01

    Full Text Available The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action.

  2. A journey under the sea: the quest for marine anti-cancer alkaloids.

    Science.gov (United States)

    Tohme, Rita; Darwiche, Nadine; Gali-Muhtasib, Hala

    2011-01-01

    The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action. PMID:22113577

  3. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    OpenAIRE

    Sangeetha Ravi Kumar; Masashi Hosokawa; Kazuo Miyashita

    2013-01-01

    Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing ...

  4. In vitro characterization of the human biotransformation of marine derived anti-cancer drugs

    OpenAIRE

    Brandon, E.F.A. (Esther Fleur Annette)

    2004-01-01

    Cancer is the second cause of death in The Netherlands. Although the treatment options over the past few decades have substantially improved, the cure rate for patients with advanced cancer remains low. In addition, hopefully new therapies will induce less severe side effects compared to the present therapies. Overall, new anti cancer drugs are still very much needed to improve treatment outcome of patients. Many active cytotoxic agents originate from natural resources, mainly plants (e.g. pa...

  5. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Abdulrahman Khazim Al-Asmari

    Full Text Available In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90% in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for

  6. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  7. Combinatorial approach to cancer immunotherapy: strength in numbers.

    Science.gov (United States)

    Vilgelm, Anna E; Johnson, Douglas B; Richmond, Ann

    2016-08-01

    Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy. PMID:27256570

  8. Armed therapeutic viruses – a disruptive therapy on the horizon of cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Maxine eBauzon

    2014-02-01

    Full Text Available For the past 150 years cancer immunotherapy has been largely a theoretical hope that recently has begun to show potential as a highly impactful treatment for various cancers. In particular the identification and targeting of immune checkpoints has given rise to exciting data suggesting that this strategy has the potential to activate sustained antitumor immunity. It is likely that this approach, like other anti-cancer strategies before it, will benefit from co-administration with an additional therapeutic and that it is this combination therapy that may generate the greatest clinical outcome for the patient. In this regard, Oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these immune-modulating therapies in a highly targeted and economically advantageous way over current treatment. In this review, we discuss the blockade of immune checkpoints, how oncolytic viruses complement and extend these therapies, and speculate on how this combination will uniquely impact the future of cancer immunotherapy.

  9. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  10. Astemizole: an old anti-histamine as a new promising anti-cancer drug.

    Science.gov (United States)

    García-Quiroz, Janice; Camacho, Javier

    2011-03-01

    Mortality-to-incidence ratio in cancer patients is extremely high, positioning cancer as a major cause of death worldwide. Despite hundreds of clinical trials for anti-cancer drugs that are currently in progress, most clinical trials for novel drug treatments fail to pass Phase I. However, previously developed drugs with novel anti-tumor properties offer a viable and cost-effective alternative to fight cancer. Histamine favors the proliferation of normal and malignant cells. Several anti-histamine drugs, including astemizole, can inhibit tumor cell proliferation. Astemizole has gained enormous interest since it also targets important proteins involved in cancer progression, namely, ether à-go-go 1 (Eag1) and Eag-related gene (Erg) potassium channels. Furthermore, Eag1 is thought to be an important marker and a therapeutic target for several different cancers. Astemizole inhibits Eag1 and Erg channel activity, and in cells expressing the Eag1 channel it decreases tumor cell proliferation in vitro and in vivo. It should be noted that some cardiovascular side effects have been reported for astemizole in a few rare cases. Nevertheless, astemizole stands as a very promising anti-cancer tool because it displays several anti-proliferative mechanisms, may serve as the basis to synthesize new anti-cancer agents, and has been previously administered clinically. In this review we will summarize the main findings relating to histamine and anti-histamines in cancer cell proliferation focusing on astemizole targets (Eag1 and Erg channels), and its anti-cancer effects in vitro and in vivo. We will also describe the side effects of astemizole and discuss proposals to overcome such effects in cancer patients. Finally, we will remark on the relevance of developing novel astemizole-related compounds. PMID:21443504

  11. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    Science.gov (United States)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    microgravitation of an HFB do not need to maintain the same surface forces as in normal Earth gravitation, they can divert more energy sources to growth and differentiation and, perhaps, to biosynthesis of greater quantities of desired medicinal compounds. Because one can adjust the HFB to vary effective gravitation, one can also test the effects of intermediate levels of gravitation on biosynthesis of various products. The potential utility of this methodology for producing drugs was demonstrated in experiments in which sandalwood and Madagascar periwinkle cells were grown in an HFB. The conditions in the HFB were chosen to induce the cells to form into aggregate cultures that produced anti-cancer indole alkaloids in amounts greater than do comparable numbers of cells of the same species cultured according to previously known methodologies. The observations made in these experiments were interpreted as suggesting that the aggregation of the cells might be responsible for the enhancement of production of alkaloids.

  12. Mitochondrial chaperones may be targets for anti-cancer drugs

    Science.gov (United States)

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  13. Expansion and activation of natural killer cells from PBMC for immunotherapy of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Bao-Gang Peng; Li-Jian Liang; Qiang He; Jie-Fu Huang; Ming-De Lu

    2004-01-01

    AIM: To induce efficient expansion of natural killer (NK) cells from peripheral blood mononuclear cells (PBMCs) using a culture of anchorage-dependent Wilms tumor cell lines, and to provide a reliable supply for adoptive immunotherapy of hepatocellular carcinoma.METHODS: Culture expansion of NK cells was achieved using PBMCs cultured with Wilms tumor cells. Cytotoxicity was measured using a standard 51Cr release assay and crystal violet staining technique. The proportions of CD3+, CD4+, CD8+,CD16+, and CD56+ cells were determined by flow cytometry.RESULTS: After PBMCs from healthy donors and hepatocellular carcinoma (HCC) were cultured with irradiated HFWT cells for 10-21 d, CD56+ CD16+ cells shared more than 50% of the cell population, and more than 80% of fresh HFWT cells were killed at an effector/target ratio of 2 over 24 h. NK-enriched lymphocyte population from HCC patients killed HCC-1 and 2 cells with sensitivities comparable to fresh TKB-17RGB cells. HCC cells proliferated 196-fold with the irradiated HFWT cells at 18 d. Stimulation by HFWT cells required intimate cell-cell interaction with PBMC. However, neither the soluble factors released from HFWT cells nor the fixed HFWT cells were effective for NK expansion. The lymphocytes expanded with IL-2 killed fresh HFWT target cells more effectively than the lymphocytes expanded with the 4-cytokine cocktail (IL-1 β, IL-2, IL-4 and IL-6). IL-2 was the sole cytokine required for NK expansion.CONCLUSION: Wilms tumor is sensitive to human NK cells and is highly efficient for selective expansion of NK cells from PBMCs.

  14. [Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis].

    Science.gov (United States)

    Song, Qi; Jiao, Shunchang; Li, Fang

    2016-08-20

    Brain metastasis, a common complication of non-small cell lung cancer (NSCLC) with an incidence rate of 30%-50%, significantly affects the patients' quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approach. The combination of targeted therapy and immunotherapy can greatly benefit patients in clinical work. PMID:27561803

  15. Immunotherapy of Genitourinary Malignancies

    Directory of Open Access Journals (Sweden)

    Teruo Inamoto

    2012-01-01

    Full Text Available Most cancer patients are treated with some combination of surgery, radiation, and chemotherapy. Despite recent advances in local therapy with curative intent, chemotherapeutic treatments for metastatic disease often remain unsatisfying due to severe side effects and incomplete long-term remission. Therefore, the evaluation of novel therapeutic options is of great interest. Conventional, along with newer treatment strategies target the immune system that suppresses genitourinary (GU malignancies. Metastatic renal cell carcinoma and non-muscle-invasive bladder caner represent the most immune-responsive types of all human cancer. This review examines the rationale and emerging evidence supporting the anticancer activity of immunotherapy, against GU malignancies.

  16. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  17. DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene.

    Science.gov (United States)

    Gupta, Rakesh Kumar; Pandey, Rampal; Sharma, Gunjan; Prasad, Ritika; Koch, Biplob; Srikrishna, Saripella; Li, Pei-Zhou; Xu, Qiang; Pandey, Daya Shankar

    2013-04-01

    The synthesis of four novel heteroleptic dipyrrinato complexes [(η(6)-arene)RuCl(2-pcdpm)] (η(6)-arene = C6H6, 1; C10H14, 2) and [(η(5)-C5Me5)MCl(2-pcdpm)] (M = Rh, 3; Ir, 4) containing a new chelating ligand 4-(2-methoxypyridyl)-phenyldipyrromethene (2-pcdpm) have been described. The complexes 1-4 have been fully characterized by various physicochemical techniques, namely, elemental analyses, spectral (ESI-MS, IR, (1)H, (13)C NMR, UV/vis) and electrochemical studies (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). Structures of 3 and 4 have been determined crystallographically. In vitro antiproliferative and cytotoxic activity of these complexes has been evaluated by trypan blue exclusion assay, cell morphology, apoptosis, acridine orange/ethidium bromide (AO/EtBr) fluorescence staining, and DNA fragmentation assay in Dalton lymphoma (DL) cell lines. Interaction of 1-4 with calf thymus DNA (CT DNA) has also been supported by absorption titration and electrochemical studies. Our results suggest that in vitro antitumor activity of 1-4 lies in the order 2 > 1 > 4 > 3. PMID:23477351

  18. Telomere and telomerase as targets for anti-cancer and regeneration therapies

    Institute of Scientific and Technical Information of China (English)

    Yi-hsin HSU; Jing-jer LIN

    2005-01-01

    Telomerase is a ribonucleoprotein that directs the synthesis of telomeric sequence.It is detected in majority of malignant tumors, but not in most normal somatic cells.Because telomerase plays a critical role in cell immortality and tumor formation, it has been one of the targets for anti-cancer and regeneration drug development. In this review, we will discuss therapeutic approaches based mainly on small molecules that have been developed to inhibit telomerase activity, modulate telomerase expression, and telomerase directed gene therapy.

  19. Design, synthesis, and mechanistic studies of Sansalvamide A derivatives as anti-cancer agents

    OpenAIRE

    Alexander, Leslie Diane

    2012-01-01

    Sansalvamide A (SanA) is a cyclic depsipeptide that was isolated from a marine fungus and demonstrates mid- micromolar anti-cancer activity in the NCI 60-cell line panel. Our laboratory has synthesized over 100 peptide derivatives of this molecule, 5 of which were contributed by the author of this dissertation. The design and solution-phase synthesis of these derivatives is described in Chapter 2. The author was also responsible for attaching PEG-biotin and fluorescein tags to lead SanA deriv...

  20. Molecular Biological Study of Anti-cancer Effects of Bee Venom Aqua-acupuncture

    Directory of Open Access Journals (Sweden)

    Park Chan-Yol

    2000-07-01

    Full Text Available To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability and apoptosis were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, and activity of caspase-3 protease activity assay. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [3H]thymidine release assay, and flow cytometric analysis of sub G1 fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and Bcl-XL were down-regulated whereas Bax was up-regulated by bee venom treatment.

  1. 以VEGF及VEGFR2为靶位的抗肿瘤血管生成主动免疫治疗的研究进展%Research Progress of Active Immunotherapies against Tumor Angiogenisis Targeting on VEGF and VEGFR2

    Institute of Scientific and Technical Information of China (English)

    王伟; 殷小涛; 田仁礼; 阎瑾琦; 高江平; 于继云

    2013-01-01

    Tumor cells stimulate angiogenesis to meet increasing nutrient and oxygen demands. Therefore, the dependence of growing tumors on new blood vessel formation has made anti-angiogenesis become one of the most appealing strategy in cancer research and therapeutics of clinical oncology. Among all of the factors stimulating angiogenesis, vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (also called fetal liver kinse-1 [Flk-1] in mice, kinase-containing domain receptor [KDR] in humans) are critically important to the angiogenesis associated with tumor growth, metastasis and relapse. In addition, active anti-tumor immunotherapy has provided a novel strategy through interrupting tumor-mediated immune escape and suppression. By combining the two strategies, active anti-angiogenic immunotherapy might offer the possibility to more robustly inhibit tumor angiogenesis. This combination application of immunotherapy and anti-angiogenic treatment might represent a promising avenue for future research. This review summarized latest researches of active immunotherapy targeting tumor angiogenesis through interrupting the signal passway of VEGF/VEGFR2. This paper discussed three different types of vaccines utilized as anti-cancer therapeutics-cell vaccines, protein/peptide vaccines and gene/DNA vaccines-with a specific focus on angiogenesis suppression. And future research directions for this field are also outlined.%肿瘤细胞通过刺激新生血管生成来满足对营养及供氧的不断增长的需求,因此,肿瘤组织生长对于新生血管形成的依赖性使得抗血肿瘤管生成已经成为肿瘤学基础研究与临床治疗领域中最吸引人的策略之一.在众多的促血管生成因子中,血管内皮生长因子(VEGF)及其受体VEGFR2(鼠和人中也分别称为Flk-1和KDR)对于与肿瘤生长、转移及复发相关的血管生成是至关重要的.此外,通过打破肿瘤组织自身介导的免疫耐受与逃避,主动免疫治疗已

  2. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa.

    Science.gov (United States)

    Liu, Xiaoxiao; Liu, Yong; Hao, Jiejie; Zhao, Xiaoliang; Lang, Yinzhi; Fan, Fei; Cai, Chao; Li, Guoyun; Zhang, Lijuan; Yu, Guangli

    2016-01-01

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF), increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and downregulated the matrix metalloproteinases (MMPs) level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study. PMID:27187337

  3. Synthesis and in vitro anti-cancer evaluation of luteinizing hormone-releasing hormone-conjugated peptide.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Huang, Wenlong; Qian, Hai

    2015-11-01

    Luteinizing hormone-releasing hormone (LHRH) is a decapeptide hormone released from the hypothalamus and shows high affinity binding to the LHRH receptors. It is reported that several cancer cells also express LHRH receptors such as breast, ovarian, prostatic, bladder and others. In this study, we linked B1, an anti-cancer peptide, to LHRH and its analogs to improve the activity against cancer cells with LHRH receptor. Biological evaluation revealed that TB1, the peptide contains triptorelin sequence, present favorable anti-cancer activity as well as plasma stability. Further investigations disclosed that TB1 trigger apoptosis by activating the mitochondria-cytochrome c-caspase apoptotic pathway, it also exhibited the anti-migratory effect on cancer cells. PMID:26058357

  4. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS from Sea Cucumber Cucumaria frondosa

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Liu

    2016-05-01

    Full Text Available The low-molecular-weight fucosylated chondroitin sulfate (LFCS was prepared from native fucosylated chondroitin sulfate (FCS, which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF, increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and downregulated the matrix metalloproteinases (MMPs level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  5. Logical design of an anti-cancer agent targeting the plant homeodomain in Pygopus2.

    Science.gov (United States)

    Ali, Ferdausi; Yamaguchi, Keiichi; Fukuoka, Mayuko; Elhelaly, Abdelazim Elsayed; Kuwata, Kazuo

    2016-09-01

    Pygopus2 (Pygo2) is a component of the Wnt signaling pathway, which is required for β-catenin mediated transcription. Plant homeodomain (PHD) finger in Pygo2 intercalates the methylated histone 3 (H3K4me) tail and HD1 domain of BCL9 that binds to β-catenin. Thus, PHD finger may be a potential target for the logical design of an anti-cancer drug. Here, we found that Spiro[2H-naphthol[1,2-b]pyran-2,4'-piperidine]-1'ethanol,3,4-dihydro-4-hydroxy-α-(6-methyl-1H-indol-3-yl)) termed JBC117 interacts with D339, A348, R356, V376 and A378 in PHD corresponding to the binding sites with H3K4me and/or HD1, and has strong anti-cancer effects. For colon (HCT116) and lung (A549) cancer cell lines, IC50 values were 2.6 ± 0.16 and 3.3 ± 0.14 μM, respectively, while 33.80 ± 0.15 μM for the normal human fibroblast cells. JBC117 potently antagonized the cellular effects of β-catenin-dependent activity and also inhibited the migration and invasion of cancer cells. In vivo studies showed that the survival time of mice was significantly prolonged by the subcutaneous injection of JBC117 (10 mg/kg/day). In conclusion, JBC117 is a novel anti-cancer lead compound targeting the PHD finger of Pygo2 and has a therapeutic effect against colon and lung cancer.

  6. Activation of endothelium by immunotherapy with interleukin-2 in patients with malignant disorders.

    Science.gov (United States)

    Locker, G J; Kapiotis, S; Veitl, M; Mader, R M; Stoiser, B; Kofler, J; Sieder, A E; Rainer, H; Steger, G G; Mannhalter, C; Wagner, O F

    1999-06-01

    Treatment with intravenous recombinant human interleukin-2 (rh IL-2) is frequently accompanied by the capillary leak syndrome and disturbances of the coagulation system. Although the exact mechanisms are still not fully understood, the involvement of the endothelium is proven. This investigation aimed to elucidate more precisely the role of the endothelium in the generation of IL-2-based side-effects. In nine tumour patients receiving intravenous rh IL-2, parameters characterizing endothelial cell activation as well as activation of the coagulation system were evaluated. A significant increase of the circulating endothelial leucocyte adhesion molecule-1 (cELAM-1) and the vasoconstrictor peptide endothelin-1 (ET-1) was observed (P<0.05), indicating activation of endothelial cells. The simultaneous increase of tissue-plasminogen activator and plasminogen activator inhibitor type-1 during therapy (P<0.05) corroborated this observation. A decrease in platelet count parallelled by an increase of fibrin degradation products, the prolongation of partial thromboplastin time, and the decrease of fibrinogen (P<0.05) suggested the development of disseminated intravascular coagulation (DIC), induced by activated endothelium and intensified by transient hepatic failure. We concluded that activation of the endothelium mediated by IL-2 was accompanied by a loss of endothelial integrity and capillary leak. The activated endothelium can trigger DIC via activation of the coagulation cascade. The increased ET-1 might act as an endogenous counter-regulator of the disadvantageous haemodynamic side-effects induced by IL-2.

  7. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  8. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  9. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  10. Immunotherapy for tuberculosis: future prospects

    Directory of Open Access Journals (Sweden)

    Abate G

    2016-04-01

    Full Text Available Getahun Abate,1 Daniel F Hoft1,2 1Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, 2Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA Abstract: Tuberculosis (TB is still a major global health problem. A third of the world's population is infected with Mycobacterium tuberculosis. Only ~10% of infected individuals develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of TB require at least 6 months of treatment with multiple drugs. The management of latent TB infection and TB has become more challenging because of the spread of multidrug-resistant and extremely drug-resistant TB. Intensified efforts to find new TB drugs and immunotherapies are needed. Immunotherapies could modulate the immune system in patients with latent TB infection or active disease, enabling better control of M. tuberculosis replication. This review describes several types of potential immunotherapies with a focus on those which have been tested in humans. Keywords: tuberculosis, HDT, immunotherapy, treatment

  11. Classification of current anticancer immunotherapies

    Science.gov (United States)

    Vacchelli, Erika; Pedro, José-Manuel Bravo-San; Buqué, Aitziber; Senovilla, Laura; Baracco, Elisa Elena; Bloy, Norma; Castoldi, Francesca; Abastado, Jean-Pierre; Agostinis, Patrizia; Apte, Ron N.; Aranda, Fernando; Ayyoub, Maha; Beckhove, Philipp; Blay, Jean-Yves; Bracci, Laura; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Estaban; Cerundolo, Vincenzo; Clayton, Aled; Colombo, Mario P.; Coussens, Lisa; Dhodapkar, Madhav V.; Eggermont, Alexander M.; Fearon, Douglas T.; Fridman, Wolf H.; Fučíková, Jitka; Gabrilovich, Dmitry I.; Galon, Jérôme; Garg, Abhishek; Ghiringhelli, François; Giaccone, Giuseppe; Gilboa, Eli; Gnjatic, Sacha; Hoos, Axel; Hosmalin, Anne; Jäger, Dirk; Kalinski, Pawel; Kärre, Klas; Kepp, Oliver; Kiessling, Rolf; Kirkwood, John M.; Klein, Eva; Knuth, Alexander; Lewis, Claire E.; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Mach, Jean-Pierre; Mattei, Fabrizio; Mavilio, Domenico; Melero, Ignacio; Melief, Cornelis J.; Mittendorf, Elizabeth A.; Moretta, Lorenzo; Odunsi, Adekunke; Okada, Hideho; Palucka, Anna Karolina; Peter, Marcus E.; Pienta, Kenneth J.; Porgador, Angel; Prendergast, George C.; Rabinovich, Gabriel A.; Restifo, Nicholas P.; Rizvi, Naiyer; Sautès-Fridman, Catherine; Schreiber, Hans; Seliger, Barbara; Shiku, Hiroshi; Silva-Santos, Bruno; Smyth, Mark J.; Speiser, Daniel E.; Spisek, Radek; Srivastava, Pramod K.; Talmadge, James E.; Tartour, Eric; Van Der Burg, Sjoerd H.; Van Den Eynde, Benoît J.; Vile, Richard; Wagner, Hermann; Weber, Jeffrey S.; Whiteside, Theresa L.; Wolchok, Jedd D.; Zitvogel, Laurence; Zou, Weiping

    2014-01-01

    During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into “passive” and “active” based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches. PMID:25537519

  12. Natural killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Cariad eChester

    2015-12-01

    Full Text Available There is compelling clinical and experimental evidence to suggest natural killer (NK cells play a critical role in the recognition and eradication of tumors. Efforts at using NK cells as antitumor agents began over two decades ago, but recent advances in elucidating NK cell biology have accelerated the development of NK cell-targeting therapeutics. NK cell activation and the triggering of effector functions is governed by a complex set of activating and inhibitory receptors. In the early phases of cancer immune surveillance, NK cells directly identify and lyse cancer cells. Nascent transformed cells elicit NK cell activation and are eliminated. However, as tumors progress, cancerous cells develop immunosuppressive mechanisms that circumvent NK cell-mediated killing, allowing for tumor escape and proliferation. Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells’ tumorlytic capacities. Here, we review tumor-NK cell interactions, discuss the mechanisms by which NK cells generate an antitumor immune response, and discuss NK cell-based therapeutic strategies targeting activating, inhibitory, and costimulatory receptors.

  13. Liquid Chromatography - Triple Quadrupole Mass Spectrometry : The gold standard for quantitative bioanalysis of anti-cancer agents

    OpenAIRE

    Vainchtein, L.D.

    2008-01-01

    To understand the pharmacologic mechanisms of action, efficacy and toxicity of any anti-cancer drug it is important to know how the compound is transformed in the body: either into active metabolites or inactive and toxic (degradation) products. This information may lead to the success or failure of a drug in arresting cancer cell growth, and facilitates the design of more effective drugs. To quantify the drug and to follow its absorption, distribution, metabolism, and elimination (ADME) in b...

  14. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa

    OpenAIRE

    Xiaoxiao Liu; Yong Liu; Jiejie Hao; Xiaoliang Zhao; Yinzhi Lang; Fei Fan; Chao Cai; Guoyun Li; Lijuan Zhang; Guangli Yu

    2016-01-01

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of ca...

  15. Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model.

    Science.gov (United States)

    Mayzlish-Gati, Einav; Laufer, Dana; Grivas, Christopher F; Shaknof, Julia; Sananes, Amiram; Bier, Ariel; Ben-Harosh, Shani; Belausov, Eduard; Johnson, Michael D; Artuso, Emma; Levi, Oshrat; Genin, Ola; Prandi, Cristina; Khalaila, Isam; Pines, Mark; Yarden, Ronit I; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Strigolactones (SLs) are a novel class of plant hormones. Previously, we found that analogs of SLs induce growth arrest and apoptosis in breast cancer cell lines. These compounds also inhibited the growth of breast cancer stem cell enriched-mammospheres with increased potency. Furthermore, strigolactone analogs inhibited growth and survival of colon, lung, prostate, melanoma, osteosarcoma and leukemia cancer cell lines. To further examine the anti-cancer activity of SLs in vivo, we have examined their effects on growth and viability of MDA-MB-231 tumor xenografts model either alone or in combination with paclitaxel. We show that strigolactone act as new anti-cancer agents in inhibition of breast cancer in xenograft model. In addition we show that SLs affect the integrity of the microtubule network and therefore may inhibit the migratory phenotype of the highly invasive breast cancer cell lines that were examined. PMID:26192476

  16. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Han

    2014-01-01

    Full Text Available Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC 50 value of 36.2 μg/ml. MEKS at 25 μg/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose polymerase (PARP. Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer.

  17. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  18. Recent progress in allergen immunotherapy.

    Science.gov (United States)

    Nouri-Aria, Kayhan T

    2008-03-01

    The efficacy of allergen immunotherapy for the treatment of allergic rhinoconjunctivitis with or without seasonal bronchial asthma and anaphylaxis caused by the sting of the hymenoptera class of insects has been clearly demonstrated in numerous well-designed, placebo-controlled trials. Immunotherapy whether by subcutaneous injection of allergen extract or by oral/sublingual routes modifies peripheral and mucosal TH2 responses in favour of TH1 responses and augments IL-10 synthesis by TRegs both locally and by peripheral T cells. Recent researches into the cellular and molecular basis of allergic reactions have advanced our understanding of the mechanisms involved in allergic diseases. They have also helped the development of innovative approaches that are likely to further improve the control of allergic responses in the future. Novel approaches to immunotherapy that are currently being explored include the use of peptide-based allergen preparations, which do not bind IgE and therefore do not activate mast cells, but reduce both Th1 and Th2-cytokine synthesis, while increasing levels of IL-10. Alternative strategies include the use of adjuvants, such as nucleotide immunostimulatory sequences derived from bacteria CpG or monophosphoryl lipid A that potentiate Th1 responses. Blocking the effects of IgE using anti-IgE such as omalizumab, a recombinant humanized monoclonal antibody that selectively binds to IgE, has been shown to be a useful strategy in the treatment of allergic asthma and rhinitis. The combination of anti-IgE-monoclonal antibody omalizumab with allergen immunotherapy has proved beneficial for the treatment of allergic diseases, offering improved efficacy, limited adverse effects, and potential immune-modifying effects. This combination may also accelerate the rapidity by which immunotherapy induces TReg cells. If allergic diseases are due to a lack of allergen-specific TReg cells, then effective therapies should target the induction and the

  19. Triterpenoids of Marine Origin as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Yong-Xin Li

    2013-07-01

    Full Text Available Triterpenoids are the most abundant secondary metabolites present in marine organisms, such as marine sponges, sea cucumbers, marine algae and marine-derived fungi. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells, as well as anticancer efficacy in preclinical animal models. In this review efforts have been taken to review the structural features and the potential use of triterpenoids of marine origin to be used in the pharmaceutical industry as potential anti-cancer drug leads.

  20. Selective anti-cancer agents as anti-aging drugs

    OpenAIRE

    Blagosklonny, Mikhail V.

    2013-01-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are inv...

  1. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase.

    Science.gov (United States)

    Merlot, Angelica M; Shafie, Nurul H; Yu, Yu; Richardson, Vera; Jansson, Patric J; Sahni, Sumit; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Richardson, Des R

    2016-06-01

    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment. PMID:27059255

  2. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase.

    Science.gov (United States)

    Merlot, Angelica M; Shafie, Nurul H; Yu, Yu; Richardson, Vera; Jansson, Patric J; Sahni, Sumit; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Richardson, Des R

    2016-06-01

    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.

  3. Cancer immunotherapy targeting neoantigens.

    Science.gov (United States)

    Lu, Yong-Chen; Robbins, Paul F

    2016-02-01

    Neoantigens are antigens encoded by tumor-specific mutated genes. Studies in the past few years have suggested a key role for neoantigens in cancer immunotherapy. Here we review the discoveries of neoantigens in the past two decades and the current advances in neoantigen identification. We also discuss the potential benefits and obstacles to the development of effective cancer immunotherapies targeting neoantigens.

  4. Immunotherapy for bladder cancer

    Directory of Open Access Journals (Sweden)

    Fuge O

    2015-05-01

    Full Text Available Oliver Fuge,1 Nikhil Vasdev,1 Paula Allchorne,2 James SA Green2 1Department of Urology, Lister Hospital, Stevenage, UK; 2Department of Urology, Bartshealth NHS Trust, Whipps Cross Rd, London, UK Abstract: It is nearly 40 years since Bacillus Calmette–Guérin (BCG was first used as an immunotherapy to treat superficial bladder cancer. Despite its limitations, to date it has not been surpassed by any other treatment. As a better understanding of its mechanism of action and the clinical response to it have evolved, some of the questions around optimal dosing and treatment protocols have been answered. However, its potential for toxicity and failure to produce the desired clinical effect in a significant cohort of patients presents an ongoing challenge to clinicians and researchers alike. This review summarizes the evidence behind the established mechanism of action of BCG in bladder cancer, highlighting the extensive array of immune molecules that have been implicated in its action. The clinical aspects of BCG are discussed, including its role in reducing recurrence and progression, the optimal treatment regime, toxicity and, in light of new evidence, whether or not there is a superior BCG strain. The problems of toxicity and non-responders to BCG have led to development of new techniques aimed at addressing these pitfalls. The progress made in the laboratory has led to the identification of novel targets for the development of new immunotherapies. This includes the potential augmentation of BCG with various immune factors through to techniques avoiding the use of BCG altogether; for example, using interferon-activated mononuclear cells, BCG cell wall, or BCG cell wall skeleton. The potential role of gene, virus, or photodynamic therapy as an alternative to BCG is also reviewed. Recent interest in the immune check point system has led to the development of monoclonal antibodies against proteins involved in this pathway. Early findings suggest

  5. Adoptive immunotherapy of human pancreatic cancer with lymphokine-activated killer cells and interleukin-2 in a nude mouse model

    International Nuclear Information System (INIS)

    A pancreatic cancer cell line was grown in orthotopic and heterotopic positions in young Swiss/NIH nude mice, which were tested with adoptive immunotherapy. Mice were injected with 1 x 10(7) human cancer cells in the subcutaneous tissue and duodenal lobe of the pancreas. The mice were randomly divided into four groups: group IA (LAK + IL-2) (N = 25) received 2 X 10(7) human lymphokine-activated killer (LAK) cells from normal donors by tail vein injection followed by 10,000 units of human recombinant interleukin-2 (IL-2) given intraperitoneally every 12 hours for 28 days; group IB (IL-2) (N = 27) was given the same dose of IL-2 alone; group IC (RPMI-1640) (N = 18) received a placebo consisting of 1 ml of RPMI-1640 intraperitoneally every 12 hours; and group ID (LAK) (N = 14) received 2 X 10(7) LAK cells but no IL-2. Toxicity was significantly higher in group IB, with a mortality rate of 45.5% (10/22 animals) versus a 0% mortality (0/25) in group IA. None of the group IA or IB animals died of pancreatic cancer during the experiment. The animals that did not receive IL-2 died before 28 days in 14.2% of group IC and in 16.7% of group ID. The area under the growth curve of subcutaneous tumors during the course of treatment and the pancreatic tumor weight at the end of treatment were compared in each group. Subcutaneous tumors had a reduced rate of growth in group IA animals compared to all the other treatments. Pancreatic tumor growth was slowed in group IA. The animals treated with IL-2 alone (group IB) showed some slowing of tumor growth that was intermediate between group IA, group IC, and group ID. A similar experiment was done with irradiated (375 rad) mice. Nine nude mice with tumors were treated with LAK + IL-2 (group IIA), eight received IL-2 alone (group IIB), and seven received placebo (group IIC)

  6. Heat shock proteins and immunotherapy

    Institute of Scientific and Technical Information of China (English)

    XinZHAO; XueMeiXU; GuoxingSONG

    2005-01-01

    Being one of the most abundant intracellular proteins,heat shock proteins(HSPs) have many housekeeping functions which are crucial for the survival of organisms.In addition,some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity.They could activate CD8+ and CD4+ lymphocytes,induce innate immune response including natural killer(NK) cell activation and cytokine secretion,and induce maturation of dendritic cells(DCs).These characteristics have been used for immunotherapy of various types of cancers and infectious disenses.This review focuses on the main HSP families——HSP70 and 90 families.The mechanism of HSPs’ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details.At the end of this review,authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.

  7. Immunotherapy for bladder cancer.

    Science.gov (United States)

    Fuge, Oliver; Vasdev, Nikhil; Allchorne, Paula; Green, James Sa

    2015-01-01

    It is nearly 40 years since Bacillus Calmette-Guérin (BCG) was first used as an immunotherapy to treat superficial bladder cancer. Despite its limitations, to date it has not been surpassed by any other treatment. As a better understanding of its mechanism of action and the clinical response to it have evolved, some of the questions around optimal dosing and treatment protocols have been answered. However, its potential for toxicity and failure to produce the desired clinical effect in a significant cohort of patients presents an ongoing challenge to clinicians and researchers alike. This review summarizes the evidence behind the established mechanism of action of BCG in bladder cancer, highlighting the extensive array of immune molecules that have been implicated in its action. The clinical aspects of BCG are discussed, including its role in reducing recurrence and progression, the optimal treatment regime, toxicity and, in light of new evidence, whether or not there is a superior BCG strain. The problems of toxicity and non-responders to BCG have led to development of new techniques aimed at addressing these pitfalls. The progress made in the laboratory has led to the identification of novel targets for the development of new immunotherapies. This includes the potential augmentation of BCG with various immune factors through to techniques avoiding the use of BCG altogether; for example, using interferon-activated mononuclear cells, BCG cell wall, or BCG cell wall skeleton. The potential role of gene, virus, or photodynamic therapy as an alternative to BCG is also reviewed. Recent interest in the immune check point system has led to the development of monoclonal antibodies against proteins involved in this pathway. Early findings suggest benefit in metastatic disease, although the role in superficial bladder cancer remains unclear. PMID:26000263

  8. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum.

    Science.gov (United States)

    Shao, Yanyan; Qiao, Liansheng; Wu, Lingfang; Sun, Xuefei; Zhu, Dan; Yang, Guanghui; Zhang, Xiaoxue; Mao, Xin; Chen, Wenjing; Liang, Wenyi; Zhang, Yanling; Zhang, Lanzhen

    2016-05-21

    Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5) and (3β,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3β,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds.

  9. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum.

    Science.gov (United States)

    Shao, Yanyan; Qiao, Liansheng; Wu, Lingfang; Sun, Xuefei; Zhu, Dan; Yang, Guanghui; Zhang, Xiaoxue; Mao, Xin; Chen, Wenjing; Liang, Wenyi; Zhang, Yanling; Zhang, Lanzhen

    2016-01-01

    Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5) and (3β,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3β,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds

  10. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Yanyan Shao

    2016-05-01

    Full Text Available Ganoderma triterpenes (GTs are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1, 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2, 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3, ganotropic acid (4, 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5 and (3β,7α-dihydroxy-lanosta-8,24-dien- 11-one (6. (4E,8E-N-d-2′-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7, and stigmasta-7,22-dien-3β,5α,6α-triol (8 were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN. In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE and gene ontology (GO enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5 and cyclin-dependent kinase-2 (CDK2, respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel

  11. Nannocystin A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties.

    Science.gov (United States)

    Krastel, Philipp; Roggo, Silvio; Schirle, Markus; Ross, Nathan T; Perruccio, Francesca; Aspesi, Peter; Aust, Thomas; Buntin, Kathrin; Estoppey, David; Liechty, Brigitta; Mapa, Felipa; Memmert, Klaus; Miller, Howard; Pan, Xuewen; Riedl, Ralph; Thibaut, Christian; Thomas, Jason; Wagner, Trixie; Weber, Eric; Xie, Xiaobing; Schmitt, Esther K; Hoepfner, Dominic

    2015-08-24

    Cultivation of myxobacteria of the Nannocystis genus led to the isolation and structure elucidation of a class of novel cyclic lactone inhibitors of elongation factor 1. Whole genome sequence analysis and annotation enabled identification of the putative biosynthetic cluster and synthesis process. In biological assays the compounds displayed anti-fungal and cytotoxic activity. Combined genetic and proteomic approaches identified the eukaryotic translation elongation factor 1α (EF-1α) as the primary target for this compound class. Nannocystin A (1) displayed differential activity across various cancer cell lines and EEF1A1 expression levels appear to be the main differentiating factor. Biochemical and genetic evidence support an overlapping binding site of 1 with the anti-cancer compound didemnin B on EF-1α. This myxobacterial chemotype thus offers an interesting starting point for further investigations of the potential of therapeutics targeting elongation factor 1. PMID:26179970

  12. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  13. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2.

    Science.gov (United States)

    Xu, Yi; Yang, Xiaoyu; Zhao, Pinjing; Yang, Zhongyu; Yan, Changhui; Guo, Bin; Qian, Steven Y

    2016-07-01

    Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived byproduct (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5-1.0μM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational

  14. 一种黄酮衍生物的合成及其体外抗癌活性%Synthesis of a flavone derivative and evaluation of its in vitro anti-cancer activity

    Institute of Scientific and Technical Information of China (English)

    范攀越; 王江; 黄远; 张幸博

    2013-01-01

    以柚皮素为原料,通过对其结构进行修饰,合成了黄酮衍生物5-羟基-2-(4羟基苯基)-7-(2-吗啉基乙氧基)-4H-苯骈吡喃-4-酮;利用核磁共振、元素分析及质谱确认了产物的结构,利用MTT法测定了其对人肝癌细胞(HepG2)、7721以及QSG7701正常肝细胞株的抑制率.结果表明,同槲皮素相对照,合成的黄酮衍生物对肝癌细胞具有良好的抑制活性.%A flavone derivative, 5-hydroxyl-2-(4-hydroxyphenyl)-7-(2-morpholinoethoxy)-4H-chroxmen-4-one, was synthesized with naringenin as the raw material. The structure of as-synthesized product was characterized by nuclear magnetic resonance spectroscopy, elemental analysis and mass spectrometry. Moreover, the inhibition ratio of the synthesized product for human liver cells (HepG2) and SMMO7721 human hepatoma cell line as well as normal human fetal liver (QSG-7701) was tested with MTT method. Results show that as-synthesized compound has good inhibitory activity against the cells of liver canner.

  15. Cancer immunotherapy in children

    Science.gov (United States)

    More often than not, cancer immunotherapies that work in adults are used in modified ways in children. Seldom are new therapies developed just for children, primarily because of the small number of pediatric patients relative to the adult cancer patient

  16. Immunotherapy for Cervical Cancer

    Science.gov (United States)

    In an early phase NCI clinical trial, two patients with metastatic cervical cancer had a complete disappearance of their tumors after receiving treatment with a form of immunotherapy called adoptive cell transfer.

  17. Method Established for Evaluation of Anti-Cancer Stem Cell Drug Activity in vitro%抗肿瘤干细胞药物体外活性评价方法

    Institute of Scientific and Technical Information of China (English)

    陈晨; 王珊珊; 郭万军; 王骏; 袁守军

    2013-01-01

    Objective To establish an simple in vitro anticancer drug activity evaluation method against cancer stem cells by creating a model based on breast cancer MCF-7 cell line-derived cancer stem cells and salino-mycin sodium exposure. Methods The MCF-7 cell growth and sphere-forming ability of stem cells in a serum-free DMEM/F12 medium were observed. The CD44 VCD24 " cell marker ratio of MCF-7 cells cultured at different conditions was detected through flow cytometry. We implanted serum-free cultured and enriched MCF-7 stem cells of different numbers subcutaneously in the flank of Nu/Nu nude mice, observed and checked the ability of tumorige-nicity, and evaluated the inhibitive effect of salinomycin sodium on suspended sphere-like cancer stem cells with the CCK-8 method. Results MCF-7 cells cultured in serum-free medium grew more slowly and formed suspended spheres. MCF-7 cells cultured in RPMI1640 contained (12. 8 ±0.6)% CD44+/CD24- cell marker while the ratio in serum-free medium was(97. 1 ±2. 4)%. In the subcutaneous transplantation mouse model, about 100 MCF-7 stem cells cultured and enriched in serum-free medium led to a solid tumor formation. Salinomycin sodium was more toxic against MCF-7 stem cells cultured in serum-free medium. Conclusion CD44+ /CD24- cells possess breast cancer stem cell properties. The environment of ultra-low adhesion plates and serum-free medium can promote and maintain the formation of sphere-like cancer stem cells. CCK-8 method is a well-established activity evaluation method for targeting to cancer stem cell drugs in vitro.%目的 以乳腺癌MCF-7细胞和盐霉素钠为例,建立体外抗癌干细胞药物活性评价的简单方法.方法 无血清、含有生长因子的DMEM/F12培养基培养MCF-7细胞,观察细胞的生长及体外干细胞球形成能力;流式细胞仪检测CD44+/CD24-细胞含量;将无血清培养的、富集的MCF-7干细胞以不同的数量接种到Nu/Nu裸鼠皮下,观察并检验致瘤能力;CCK-8

  18. Association Between hTERT rs2736100 Polymorphism and Sensitivity to Anti-cancer Agents

    Directory of Open Access Journals (Sweden)

    Julie eKim

    2013-08-01

    Full Text Available Background: The rs2736100 single nucleotide polymorphism (SNP is located in the intron 2 of human telomerase reverse transcriptase (hTERT gene. Recent genome-wide association studies (GWAS have consistently supported the strong association between this SNP and risk for multiple cancers. Given the important role of the hTERT gene and this SNP in cancer biology, we hypothesize that rs2736100 may also confer susceptibility to anti-cancer drug sensitivity. In this study we aim to investigate the correlation between the rs2736100 genotype and the responsiveness to anti-cancer agents in the NCI-60 cancer cell panel. Methods and Materials: The hTERT rs2736100 was genotyped in the NCI-60 cancer cell lines. The relative telomere length of each cell line was quantified using real-time PCR. The genotype was then correlated with publically available drug sensitivity data of two agents with telomerase-inhibition activity: Geldanamycin (HSP90 inhibitor and RHPS4/BRACO19 (G-quadruplex stabilizer as well as additional 110 commonly used agents with established mechanism of action. The association between rs2736100 and mutation status of TP53 gene was also tested.Results: The C allele of the SNP was significantly correlated with increased sensitivity to RHPS4/BRACO19 with an additive effect (r=-0.35, p=0.009 but not with Geldanamycin. The same allele was also significantly associated with sensitivity to antimitotic agents compared to other agents (p=0.003. The highest correlation was observed between the SNP and paclitaxel (r=-0.36, p=0.005. The telomere length was neither associated with rs2736100 nor with sensitivity to anti-cancer agents. The C allele of rs2736100 was significantly associated with increased mutation rate in TP53 gene (p=0.004.Conclusion: Our data suggested that the cancer risk allele of hTERT rs2736100 polymorphism may also affect the cancer cell response to both TERT inhibitor and anti-mitotic agents, which might be attributed to the elevated

  19. Synthesis of structurally diverse benzosuberene analogues and their biological evaluation as anti-cancer agents.

    Science.gov (United States)

    Tanpure, Rajendra P; George, Clinton S; Strecker, Tracy E; Devkota, Laxman; Tidmore, Justin K; Lin, Chen-Ming; Herdman, Christine A; Macdonough, Matthew T; Sriram, Madhavi; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2013-12-15

    Diversely functionalized, fused aryl-alkyl ring systems hold a prominent position as well-established molecular frameworks for a variety of anti-cancer agents. The benzosuberene (6,7 fused, also referred to as dihydro-5H-benzo[7]annulene and benzocycloheptene) ring system has emerged as a valuable molecular core component for the development of inhibitors of tubulin assembly, which function as antiproliferative anti-cancer agents and, in certain cases, as vascular disrupting agents (VDAs). Both a phenolic-based analogue (known as KGP18, compound 39) and its corresponding amine-based congener (referred to as KGP156, compound 45), which demonstrate strong inhibition of tubulin assembly (low micromolar range) and potent cytotoxicity (picomolar range for KGP18 and nanomolar range for KGP156) are noteworthy examples of such benzosuberene-based compounds. In order to extend the structure-activity relationship (SAR) knowledge base related to benzosuberene anti-cancer agents, a series of eleven analogues (including KGP18) were prepared in which the methoxylation pattern on the pendant aryl ring as well as functional group incorporation on the fused aryl ring were varied. The synthetic approach to these compounds featured a sequential Wittig olefination, reduction, Eaton's reagent-mediated cyclization strategy to achieve the core benzosuberone intermediate, and represented a higher-yielding synthesis of KGP18 (which we prepared previously through a ring-expansion strategy). Incorporation of a fluorine or chlorine atom at the 1-position of the fused aryl ring or replacement of one of the methoxy groups with hydrogen (on the pendant aryl ring of KGP18) led to benzosuberene analogues that were both strongly inhibitory against tubulin assembly (IC50 approximately 1.0 μM) and strongly cytotoxic against selected human cancer cell lines (for example, GI50=5.47 nM against NCI-H460 cells with fluoro-benzosuberene analogue 37). A water-soluble phosphate prodrug salt of KGP18

  20. Ginseng Extract Enhances Anti-cancer Effect of Cytarabine on Human Acute Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Yiju Hou

    2015-02-01

    Full Text Available Ginseng as a traditional medicine is well known to exhibit various pharmacological effects. Ginsenoside Rg3 is the active ingredient extracted from ginseng. The pharmacological modulatory effects of Rg3 on multidrug resistant cancer cells are reported in the present study. Cytarabine is a chemotherapeutic agent for the treatment of acute leukemia. However, this compound has serious side effects at high doses, for example hematopoiesis depression. In this study, using hl60 human leukemia cells, we investigated the possible synergistic anti-cancer effects between ginseng extract Rg3 and cytarabine on acute myeloid leukemia cells. Results of this study demonstrate that Rg3 can enhance the anti-proliferation effect of cytarabine on hl60 cells and may decrease the dosage of cytarabine needed for acute myeloid leukemia treatment.

  1. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    Science.gov (United States)

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  2. Development of cancer immunotherapy

    International Nuclear Information System (INIS)

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy

  3. Development of cancer immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeon Sook; Chung, H. Y.; Yi, S. Y.; Kim, K. W.; Kim, B. K.; Chung, I. S.; Park, J. Y

    1999-04-01

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy.

  4. Cancer Immunotherapy: A Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-04-01

    Full Text Available BACKGROUND: The goals of treating patients with cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. Therefore, stimulating immune reactions to tumors can be an attractive therapeutic and prevention strategy. CONTENT: During immune surveillance, the host provides defense against foreign antigens, while ensuring it limits activation against self antigens. By targeting surface antigens expressed on tumor cells, monoclonal antibodies have demonstrated efficacy as cancer therapeutics. Recent successful antibody-based strategies have focused on enhancing antitumor immune responses by targeting immune cells, irrespective of tumor antigens. The use of antibodies to block pathways inhibiting the endogenous immune response to cancer, known as checkpoint blockade therapy, has stirred up a great deal of excitement among scientists, physicians, and patients alike. Clinical trials evaluating the safety and efficacy of antibodies that block the T cell inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4 and programmed cell death 1 (PD-1 have reported success in treating subsets of patients. Adoptive cell transfer (ACT is a highly personalized cancer therapy that involve administration to the cancer-bearing host of immune cells with direct anticancer activity. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment. SUMMARY: For cancer treatment, 2011 marked the beginning of a new era. The underlying basis of cancer immunotherapy is to activate a patient’s own T cells so that they can kill their tumors. Reports of amazing recoveries abound, where patients remain cancer-free many years after receiving the therapy. The idea of harnessing immune cells to fight cancer is

  5. The future of sublingual immunotherapy.

    Science.gov (United States)

    Marcucci, F; Duse, M; Frati, F; Incorvaia, C; Marseglia, G L; La Rosa, M

    2009-01-01

    Sublingual immunotherapy (SLIT) is currently the most prescribed form of allergen immunotherapy in many European countries. Its use has been accepted in the international consensus publications, and recently also the scepticism of USA scientists is attenuated. Still, this treatment may be improved, and the possible developments consist of modification of the materials, use of adjuvants and use of recombinant allergens. Moreover, new applications of SLIT, such as food allergy, seem promising. Concerning materials, the future form of SLIT is likely to be represented by tablets, which were already tested for efficacy and safety with grass pollen extracts, and are likely to increase the convenience for the patient by the use of no-updosing schedule. Adjuvants fitting with the characteristics of SLIT seem to be CpG oligodeoxynucleotides (CpG), able to interact with the Toll-like receptor 9 (TLR9) whose activation induces a Th1-like pattern of cytokine release, combination of 1,25-dihydroxyvitamin D3 plus dexamethasone (VitD3-Dex), and Lactobacillus plantarum. The approach with recombinant allergens, named component-resolved diagnosis, offers the possibility to tailor immunotherapy, which was found to be effective in two randomized trials of subcutaneous SIT (16-17), while studies with SLIT are not yet available. Regarding food allergy, an important controlled study demonstrated that SLIT with hazelnut is able to increase patients tolerance over possible reactions from inadvertent assumption of the culprit food, and warrants for further trials with other foods. PMID:19944008

  6. Immunotherapy of Colorectal Cancer.

    Science.gov (United States)

    Jäger, Dirk; Halama, Niels; Zörnig, Inka; Klug, Paula; Krauss, Jürgen; Haag, Georg-Martin

    2016-01-01

    It is known that the immune response, reflected by high T cell infiltrates in primary tumors and metastases, influences the clinical course of colorectal cancer (CRC). Therefore, immunotherapy concepts have been adapted from other tumor entities, which typically rely on the activation of T cells in the tumor microenvironment (e.g. blockade of the immune checkpoint molecules PD-1 and CTLA-4). However, most of the strategies using the approved checkpoint inhibitors and/or combination strategies have more or less failed to produce impressive results in early phase trials in CRC. Therefore, a number of novel targets for checkpoint inhibition are currently in early phase clinical testing (TIM-3, Lag-3, OX40, GITR, 4-1BB, CD40, CD70). A simple activation of infiltrating T cells will not, however, lead to a meaningful anti-tumor response without modulating the environmental factors in CRC. Thus, it is absolutely necessary to improve our understanding of the complex regulation of the tumor microenvironment in CRC to design individual combination treatments leading to effective immune control. PMID:27259331

  7. Designing anti-cancer drugs and directing anti-cancer therapy

    OpenAIRE

    Velasquez, Elinor; Soto-Andrade, Jorge; Bongalon, Ben

    2014-01-01

    A prototype for a web application was designed and implemented as a guide to be used by clinicians when designing the best drug therapy for a specific cancer patient, given biological data derived from the patients tumor tissue biopsy. A representation of the patients metabolic pathways is displayed as a graph in the application, with nodes as substrates and products and edges as enzymes. The top metabolically active sub- paths in the pathway, ranked using an algorithm based on both the patie...

  8. Pathological Mobilization and Activities of Dendritic Cells in Tumor-Bearing Hosts: Challenges and Opportunities for Immunotherapy of Cancer

    Science.gov (United States)

    Tesone, Amelia J.; Svoronos, Nikolaos; Allegrezza, Michael J.; Conejo-Garcia, Jose R.

    2013-01-01

    A common characteristic of solid tumors is the pathological recruitment of immunosuppressive myeloid cells, which in certain tumors includes dendritic cells (DCs). DCs are of particular interest in the field of cancer immunotherapy because they induce potent and highly specific anti-tumor immune responses, particularly in the early phase of tumorigenesis. However, as tumors progress, these cells can be transformed into regulatory cells that contribute to an immunosuppressive microenvironment favoring tumor growth. Therefore, controlling DC phenotype has the potential to elicit effective anti-tumor responses while simultaneously weakening the tumor’s ability to protect itself from immune attack. This review focuses on the dual nature of DCs in the tumor microenvironment, the regulation of DC phenotype, and the prospect of modifying DCs in situ as a novel immunotherapeutic approach. PMID:24339824

  9. Immunotherapy for Drug Abuse

    Science.gov (United States)

    Shen, Xiaoyun; Kosten, Thomas R.

    2013-01-01

    Substance use disorders continue to be major medical and social problems worldwide. Current medications for substance use disorders have many limitations such as cost, availability, medication compliance, dependence, diversion of some to illicit use and relapse to addiction after discontinuing their use. Immunotherapies using either passive monoclonal antibodies or active vaccines have distinctly different mechanisms and therapeutic utility from small molecule approaches to treatment. They have great potential to help the patient achieve and sustain abstinence and have fewer of the above limitations. This review covers the cocaine vaccine development in detail and provides an overview of directions for developing anti-addiction vaccines against the abuse of other substances. The notable success of the first placebo-controlled clinical trial of a cocaine vaccine, TA-CD, has led to an ongoing multi-site, Phase IIb clinical trial in 300 subjects. The results from these trials are encouarging further development of the cocaine vacine as one of the first anti-addiction vaccines to go forward to the U.S. Food and Drug Administration for review and approval for human use. PMID:22229313

  10. A microfluidic approach towards hybridoma generation for cancer immunotherapy.

    Science.gov (United States)

    Lu, Yen-Ta; Pendharkar, Gaurav Prashant; Lu, Chung-Huan; Chang, Chia-Ming; Liu, Cheng-Hsien

    2015-11-17

    Dendritic cells/tumor fusions have shown to elicit anti-cancer immunity in different cancer types. However, the application of these vaccines for human cancer immunotherapy are limited by the instable quality and insufficient quanity of fusion cells. We present a cell electrofusion chip fabricated using soft lithography technique, which combines the rapid and precise cell pairing microstructures and the high yield electrofusion micro-electrodes to improve the cell fusion. The design uses hydrodynamic trapping in combination with positive dielectrophoretic force (pDEP) to achieve cell fusion. The chip consists of total 960 pairs of trapping channels, which are capable of pairing and fusing both homogeneous and heterogeneous types of cells. The fused cells can be easily taken out of the chip that makes this device a distinguishable from other designs. We observe pairing efficiency of 68% with fusion efficiency of 64%. PMID:26462149

  11. Strategic development on generic anti-cancer drugs Bevacizumab and Erlotinib Hydrochloride for Harbin Pharmaceutical Group

    Institute of Scientific and Technical Information of China (English)

    Cheung Fat Ping

    2011-01-01

    @@ With improved economy, changing life styles, aging population and health care reform, China had a very potential anti-cancer drug market.The patents of popular anti-cancer drugs Avastin and Tarceva would expire in few years.Generic versions of Avastin and Tarceva were Bevacizumab and Erlotinib Hydrochloride respectively.Harbin Pharmaceutical Group was proposed to develop strategically both generic medicines to enter the high-end anti-cancer drug market for targeted cancer therapies.The vital to success of developing the generic drugs were discussed.

  12. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:26626257

  13. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  14. Pexa-Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic.

    Science.gov (United States)

    Breitbach, Caroline J; Parato, Kelley; Burke, James; Hwang, Tae-Ho; Bell, John C; Kirn, David H

    2015-08-01

    Oncolytic immunotherapies (OI) selectively infect, amplify within and destroy cancer cells, thereby representing a novel class of anti-cancer therapy. In addition to this primary mechanism-of-action (MOA), OI based on vaccinia have been shown to selectively target tumor-associated vasculature, triggering an acute reduction in tumor perfusion. This review focuses on a third complementary MOA for this product class: the induction of active immunotherapy. While the active immunotherapy approach has been validated by recent product approvals, the field is still faced with significant challenges. Tumors have evolved diverse mechanisms to hide from immune-mediated destruction. Here we hypothesize that oncolytic immunotherapy replication within tumors may tip the immune balance to allow for the effective induction and execution of adaptive anti-tumor immunity, resulting in long-term tumor control following OI clearance. This immune activation against the cancer can be augmented through OI 'arming' for the expression of immunostimulatory transgene products from the virus genome. With the first vaccinia OI (Pexa-Vec, thymidine kinase-inactivated vaccinia expressing Granulocyte-colony stimulating factor [GM-CSF]) now in advanced-stage clinical trials, it has become more important than ever to understand the complimentary MOA that contributes to tumor destruction and control in patients. PMID:25900822

  15. Immunotherapy for Gastroesophageal Cancer

    Directory of Open Access Journals (Sweden)

    Emily F. Goode

    2016-09-01

    Full Text Available Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell lung cancer and urothelial cancers. In this review, we assess the early evidence for efficacy of immunotherapy in patients with gastroesophageal cancer in addition to considering biomarkers associated with response to these treatments. Early results of Anti- Programmed Cell Death Protein-1 (anti-PD-1, anti-PD-L1 and anti-Cytotoxic T-lymphocyte assosciated protein-4 (anti-CTLA4 trials are examined, and we conclude with a discussion on the future direction for immunotherapy for gastroesophageal cancer patients.

  16. Immunotherapy for Gastroesophageal Cancer

    Science.gov (United States)

    Goode, Emily F.; Smyth, Elizabeth C.

    2016-01-01

    Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell lung cancer and urothelial cancers. In this review, we assess the early evidence for efficacy of immunotherapy in patients with gastroesophageal cancer in addition to considering biomarkers associated with response to these treatments. Early results of Anti- Programmed Cell Death Protein-1 (anti-PD-1), anti-PD-L1 and anti-Cytotoxic T-lymphocyte assosciated protein-4 (anti-CTLA4) trials are examined, and we conclude with a discussion on the future direction for immunotherapy for gastroesophageal cancer patients. PMID:27669318

  17. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    Min Li; Lujun Song; Xinyu Qin

    2010-12-01

    Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell–cell and cell–extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.

  18. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

    Energy Technology Data Exchange (ETDEWEB)

    Milacic, Marija; Haw, Robin, E-mail: robin.haw@oicr.on.ca; Rothfels, Karen; Wu, Guanming [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada); Croft, David; Hermjakob, Henning [European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD (United Kingdom); D’Eustachio, Peter [Department of Biochemistry, NYU School of Medicine, New York, NY 10016 (United States); Stein, Lincoln [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada)

    2012-11-08

    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.

  19. Anti-CD40-mediated cancer immunotherapy

    DEFF Research Database (Denmark)

    Hassan, Sufia Butt; Sørensen, Jesper Freddie; Olsen, Barbara Nicola;

    2014-01-01

    activation and thus enhancement of immune responses. Treatment with anti-CD40 monoclonal antibodies has been exploited in several cancer immunotherapy studies in mice and led to the development of anti-CD40 antibodies for clinical use. Here, Dacetuzumab and Lucatumumab are in the most advanced stage...... with other cancer immunotherapies, in particular interleukin (IL)-2. An in-depth analysis of this immunotherapy is provided elsewhere. In the present review, we provide an update of the most recent clinical trials with anti-CD40 antibodies. We present and discuss recent and ongoing clinical trials...... in this field, including clinical studies which combine anti-CD40 treatment with other cancer-treatments, such as Rituximab and Tremelimumab....

  20. Immunotherapy of childhood Sarcomas

    Directory of Open Access Journals (Sweden)

    Stephen S Roberts

    2015-08-01

    Full Text Available Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing’s family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and Liposomal-muramyl  tripeptide phosphatidyl-ethanolamine (L-MTP have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody based and cell based therapies into an overall treatment strategy of sarcoma will be discussed.

  1. Immunotherapy of Childhood Sarcomas.

    Science.gov (United States)

    Roberts, Stephen S; Chou, Alexander J; Cheung, Nai-Kong V

    2015-01-01

    Pediatric sarcomas are a heterogeneous group of malignant tumors of bone and soft tissue origin. Although more than 100 different histologic subtypes have been described, the majority of pediatric cases belong to the Ewing's family of tumors, rhabdomyosarcoma and osteosarcoma. Most patients that present with localized stage are curable with surgery and/or chemotherapy; however, those with metastatic disease at diagnosis or those who experience a relapse continue to have a very poor prognosis. New therapies for these patients are urgently needed. Immunotherapy is an established treatment modality for both liquid and solid tumors, and in pediatrics, most notably for neuroblastoma and osteosarcoma. In the past, immunomodulatory agents such as interferon, interleukin-2, and liposomal-muramyl tripeptide phosphatidyl-ethanolamine have been tried, with some activity seen in subsets of patients; additionally, various cancer vaccines have been studied with possible benefit. Monoclonal antibody therapies against tumor antigens such as disialoganglioside GD2 or immune checkpoint targets such as CTLA-4 and PD-1 are being actively explored in pediatric sarcomas. Building on the success of adoptive T cell therapy for EBV-related lymphoma, strategies to redirect T cells using chimeric antigen receptors and bispecific antibodies are rapidly evolving with potential for the treatment of sarcomas. This review will focus on recent preclinical and clinical developments in targeted agents for pediatric sarcomas with emphasis on the immunobiology of immune checkpoints, immunoediting, tumor microenvironment, antibody engineering, cell engineering, and tumor vaccines. The future integration of antibody-based and cell-based therapies into an overall treatment strategy of sarcoma will be discussed. PMID:26301204

  2. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    OpenAIRE

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-01-01

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti...

  3. Human synthetic lethal inference as potential anti-cancer target gene detection

    OpenAIRE

    Solé Ricard V; Munteanu Andreea; Conde-Pueyo Nuria; Rodríguez-Caso Carlos

    2009-01-01

    Abstract Background Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since exi...

  4. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology

    OpenAIRE

    Thomas Hart; Shihab Dider; Weiwei Han; Hua Xu; Zhongming Zhao; Lei Xie

    2016-01-01

    Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification ...

  5. Rapid complete response of metastatic melanoma in a patient undergoing ipilimumab immunotherapy in the setting of active ulcerative colitis.

    Science.gov (United States)

    Bostwick, A Doran; Salama, April K; Hanks, Brent A

    2015-01-01

    While blockade of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) T cell regulatory receptor has become a commonly utilized strategy in the management of advanced melanoma, many questions remain regarding the use of this agent in patient populations with autoimmune disease. We present a case involving the treatment of a patient with stage IV melanoma and ulcerative colitis (UC) with anti-CTLA-4 antibody immunotherapy. Upon initial treatment, the patient developed grade III colitis requiring tumor necrosis factor-alpha (TNF-α) blocking antibody therapy, however re-treatment with anti-CTLA-4 antibody following a total colectomy resulted in a rapid complete response accompanied by the development of a tracheobronchitis, a previously described extra-intestinal manifestation of UC. This case contributes to the evolving literature on the use of checkpoint inhibitors in patients also suffering from autoimmune disease, supports future clinical trials investigating the use of these agents in patients with autoimmune diseases, and suggests that an understanding of the specific molecular pathways involved in a patient's autoimmune pathology may provide insight into the development of more effective novel combinatorial immunotherapeutic strategies. PMID:25992290

  6. Mechanisms of immunotherapy to aeroallergens.

    Science.gov (United States)

    Shamji, M H; Durham, S R

    2011-09-01

    Allergen immunotherapy is allergen-specific, allergen dose- and time-dependent and is associated with long-term clinical and immunological tolerance that persists for years after discontinuation. Successful immunotherapy is accompanied by the suppression of numbers of T-helper 2 (Th2) effector cells, eosinophils, basophils, c-kit+mast cells and neutrophils infiltration in target organs, induction of IL-10 and/or TGF-β+Treg cells and increases in 'protective' non-inflammatory blocking antibodies, particularly IgG4 and IgA2 subclasses with inhibitory activity. These events are accompanied by a reduction and/or a redirection of underlying antigen-specific Th2-type T cell-driven hypersensitivity to the allergen(s) used for therapy. This suppression occurs within weeks or months as a consequence of the appearance of a population of regulatory T cells that exert their effects by mechanisms involving cell-cell contact, but also by the release of cytokines such as IL-10 (increases IgG4) and TGF-β (increases specific IgA). The more delayed-in-time appearance of antigen-specific T-helper 1 responses and alternative mechanisms such as Th2 cell anergy and/or apoptosis may also be involved. The mechanisms of sublingual immunotherapy are similar to those following a subcutaneous administration of allergen, whereas it is likely that additional events following antigen presentation in the sublingual mucosa and regional lymph nodes are involved. These insights have resulted in novel approaches and portend future biomarkers that may be surrogate or predictive of the clinical response to treatment. PMID:21762223

  7. Listeria monocytogenes as a vector for anti-cancer therapies.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    The intracellular pathogen Listeria monocytogenes represents a promising therapeutic vector for the delivery of DNA, RNA or protein to cancer cells or to prime immune responses against tumour-specific antigens. A number of biological properties make L. monocytogenes a promising platform for development as a vector for either gene therapy or as an anti-cancer vaccine vector. L. monocytogenes is particularly efficient in mediating internalization into host cells. Once inside cells, the bacterium produces specific virulence factors which lyse the vaculolar membrane and allow escape into the cytoplasm. Once in the cytosol, L. monocytogenes is capable of actin-based motility and cell-to-cell spread without an extracellular phase. The cytoplasmic location of L. monocytogenes is significant as this potentiates entry of antigens into the MHC Class I antigen processing pathway leading to priming of specific CD8(+) T cell responses. The cytoplasmic location is also beneficial for the delivery of DNA (bactofection) by L. monocytogenes whilst cell-to-cell spread may facilitate access of the vector to cells throughout the tumour. Several preclinical studies have demonstrated the ability of L. monocytogenes for intracellular gene or protein delivery in vitro and in vivo, and this vector has also displayed safety and efficacy in clinical trial. Here, we review the features of the L. monocytogenes host-pathogen interaction that make this bacterium such an attractive candidate with which to induce appropriate therapeutic responses. We focus primarily upon work that has led to attenuation of the pathogen, demonstrated DNA, RNA or protein delivery to tumour cells as well as research that shows the efficacy of L. monocytogenes as a vector for tumour-specific vaccine delivery.

  8. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp

    2015-05-15

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.

  9. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Hammad Shafiq

    2015-12-01

    Full Text Available Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  10. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy.

    Science.gov (United States)

    Yang, Guozi; Kong, Qingyu; Wang, Guanjun; Jin, Haofan; Zhou, Lei; Yu, Dehai; Niu, Chao; Han, Wei; Li, Wei; Cui, Jiuwei

    2014-12-01

    Recent evidence indicates that limited availability and cytotoxicity have restricted the development of natural killer (NK) cells in adoptive cellular immunotherapy (ACI). While it has been reported that low-dose ionizing radiation (LDIR) could enhance the immune response in animal studies, the influence of LDIR at the cellular level has been less well defined. In this study, the authors aim to investigate the direct effects of LDIR on NK cells and the potential mechanism, and explore the application of activation and expansion of NK cells by LDIR in ACI. The authors found that expansion and cytotoxicity of NK cells were markedly augmented by LDIR. The levels of IFN-γ and TNF-α in the supernatants of cultured NK cells were significantly increased after LDIR. Additionally, the effect of the P38 inhibitor (SB203580) significantly decreased the expanded NK cell cytotoxicity, cytokine levels, and expression levels of FasL and perforin. These findings indicate that LDIR induces a direct expansion and activation of NK cells through possibly the P38-MAPK pathway, which provides a potential mechanism for stimulation of NK cells by LDIR and a novel but simplified approach for ACI.

  11. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  12. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jianquan; Zeng, Fang, E-mail: mcfzeng@scut.edu.cn; Xu, Jiangsheng; Wu, Shuizhu, E-mail: shzhwu@scut.edu.cn [South China University of Technology, College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-09-15

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of {approx}100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  13. Comparative Proteomic Analysis of Anti-Cancer Mechanism by Periplocin Treatment in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zejun Lu

    2014-03-01

    Full Text Available Background: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined. Methods: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS. Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING. Results: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN, Rho GDP-dissociation inhibitor 1 (ARHGDIA, eukaryotic translation initiation factor 5A-1 (EIF5A and Profilin-1(PFN1, and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8,10 kDa heat shock protein (HSPE1, and Cofilin-1(CFL-1 were identified. Among them, GTP-binding nuclear protein Ran (RAN and Rho GDP-dissociation inhibitor 1 (ARHGDIA were the most significantly changed (over tenfold. The proteasome subunit beta type-6 (PSMB6, ATP synthase ecto-α-subunit (ATP5A1, Aldehyde dehydrogenase 1 (ALDH1 and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis. Conclusion: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of

  14. Sublingual allergen immunotherapy

    DEFF Research Database (Denmark)

    Calderón, M A; Simons, F E R; Malling, Hans-Jørgen;

    2012-01-01

    To cite this article: Calderón MA, Simons FER, Malling H-J, Lockey RF, Moingeon P, Demoly P. Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile. Allergy 2012; 67: 302-311. ABSTRACT: Allergen immunotherapy reorients inappropriate immune responses in......-presenting cells (mostly Langerhans and myeloid dendritic cells) exhibit a tolerogenic phenotype, despite constant exposure to danger signals from food and microbes. This reduces the induction of pro-inflammatory immune responses leading to systemic allergic reactions. Oral tissues contain relatively few mast...... cells and eosinophils (mostly located in submucosal areas) and, in comparison with subcutaneous tissue, are less likely to give rise to anaphylactic reactions. SLIT-associated immune responses include the induction of circulating, allergen-specific Th1 and regulatory CD4+ T cells, leading to clinical...

  15. Immunotherapy for tularemia.

    Science.gov (United States)

    Skyberg, Jerod A

    2013-11-15

    Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (> 30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.

  16. Cancer immunotherapy with surgery

    Directory of Open Access Journals (Sweden)

    Orita,Kunzo

    1977-08-01

    Full Text Available With the recent advances in the immunological surveillance system, an understanding of the role of host immunity has become essential to the management of carcinogenesis, tumor proliferation, recurrence and metastasis. Although it is important to continue chemical and surgical treatment of cancer, support of the anti-tumor immune system of the host should also be considered. Long term remission has been reported in leukemia by treating with BCG after chemotherapy whereas surgical treatment is usually more effective in preventing cancer recurrence in digestive organ cancer. The first step is extirpating the tumor as thoroughly as possible and the second step is chemo-immunotherapy. Cancer immunity, however weak, constitutes the basis for other treatments in selectively attacking cancer cells remaining after surgery, chemotherapy or irradiation. Immunotherapy should thus not replace chemotherapy or radiotherapy, but these methods should be employed in combination to attain more favorable results.

  17. Immunotherapy for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Weihua Wang; Liangfeng Fan; De'en Xu; Zhongmin Wen; Rong Yu; Quanhong Ma

    2012-01-01

    Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) plaques consisted primarily of aggregated Aβ proteins and neurofibrillary tangles formed by hyperphosphorylated tau protein.Both Aβ and hyperphosphorylated tau are toxic both in vivo and in vitro.Immunotherapy targeting Aβ seems to provide a promising approach to reduce the toxic species in the brain.However,there is little evidence from clinical trials so far indicating the efficacy of Aβ immunotherapy in cognitive improvement.Immunization with tau peptides or anti-tau antibodies could remove the tau aggregates and improve the cognitive function in preclinical study,which provides a novel strategy of AD therapy.In this article,we will summarize the immunotherapeutic strategies targeting either Aβ or tau.

  18. Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection.

    Science.gov (United States)

    Mie, Keiichiro; Shimada, Terumasa; Akiyoshi, Hideo; Hayashi, Akiyoshi; Ohashi, Fumihito

    2016-09-01

    We evaluated changes in peripheral blood lymphocyte (PBL) count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells (T-LAK) in combination with surgery. Fifteen tumor-bearing dogs treated with T-LAK therapy combined with palliative resection of tumors were enrolled in the present study. T-LAK were generated from autologous peripheral blood mononuclear cells (PBMC) by culture with recombinant human interleukin -2 (rhIL-2) and solid phase anti-canine cluster of differentiation (CD)3 antibody. T-LAK were administrated intravenously at 2-4-week intervals. After the first administration of T-LAK, counts of PBL and T lymphocyte subsets (CD3(+), CD4(+) and CD8(+) cells) increased and the CD4/CD8 ratio decreased, with significant increases in CD8(+) cells (P<0.05). In 8 tumor-bearing dogs that were administered sequential T-LAK, available data on changes in PBL and T lymphocyte phenotypes until the fifth administration were also analyzed. In tumor-bearing dogs administered 5 rounds of T-LAK, CD8(+) cell counts were maintained high until the fifth administration of T-LAK. Moreover, the CD4/CD8 ratio remained low until the fifth administration of T-LAK. These results indicate that T-LAK therapy combined with surgery may increase peripheral blood T lymphocytes, particularly CD8(+) cells, in tumor-bearing dogs. PMID:27436446

  19. Immunotherapy for Gastroesophageal Cancer

    OpenAIRE

    Emily F. Goode; Smyth, Elizabeth C.

    2016-01-01

    Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell...

  20. Allergen-specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Moote William

    2011-11-01

    Full Text Available Abstract Allergen-specific immunotherapy is a potentially disease-modifying therapy that is effective for the treatment of allergic rhinitis/conjunctivitis, allergic asthma and stinging insect hypersensitivity. However, despite its proven efficacy in these conditions, it is frequently underutilized in Canada. The decision to proceed with allergen-specific immunotherapy should be made on a case-by-case basis, taking into account individual patient factors such as the degree to which symptoms can be reduced by avoidance measures and pharmacological therapy, the amount and type of medication required to control symptoms, the adverse effects of pharmacological treatment, and patient preferences. Since this form of therapy carries the risk of anaphylactic reactions, it should only be prescribed by physicians who are adequately trained in the treatment of allergy. Furthermore, injections must be given under medical supervision in clinics that are equipped to manage anaphylaxis. In this article, the authors review the indications and contraindications, patient selection criteria, and the administration, safety and efficacy of allergen-specific immunotherapy.

  1. Current progress in immunotherapy for pancreatic cancer.

    Science.gov (United States)

    Foley, Kelly; Kim, Victoria; Jaffee, Elizabeth; Zheng, Lei

    2016-10-10

    Pancreatic cancer remains one of the most lethal cancers with few treatment options. Immune-based strategies to treat pancreatic cancer, such as immune checkpoint inhibitors, therapeutic vaccines, and combination immunotherapies, are showing promise where other approaches have failed. Immune checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, are effective as single agents in immune sensitive cancers like melanoma, but lack efficacy in immune insensitive cancers including pancreatic cancer. However, these inhibitors are showing clinical activity, even in traditionally non-immunogenic cancers, when combined with other interventions, including chemotherapy, radiation therapy, and therapeutic vaccines. Therapeutic vaccines given together with immune modulating agents are of particular interest because vaccines are the most efficient way to induce effective anti-tumor T cell responses, which is required for immunotherapies to be effective. In pancreatic cancer, early studies suggest that vaccines can induce T cells that have the potential to recognize and kill pancreatic cancer cells, but the tumor microenvironment inhibits effective T cell trafficking and function. While progress has been made in the development of immunotherapies for pancreatic cancer over the last several years, additional trials are needed to better understand the signals within the tumor microenvironment that are formidable barriers to T cell infiltration and function. Additionally, as more pancreatic specific antigens are identified, immunotherapies will continue to be refined to provide the most significant clinical benefit.

  2. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; WANG Mei; ZHANG ShuPing; SHAO SiChang; SUN XiaoYu; YAO SiDe; WANG ShiLong

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+ and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+ can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4- with a rate constant of 1.76×109 dm3·mol-1·s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  3. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Sangeetha Ravi Kumar

    2013-12-01

    Full Text Available Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing influence via different molecules and pathways including the Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45, and several other molecules that are involved in either cell cycle arrest, apoptosis, or metastasis. Thus, in addition to decreasing the frequency of occurrence and growth of tumours, fucoxanthin has a cytotoxic effect on cancer cells. Some studies show that this effect is selective, i.e., fucoxanthin has the capability to target cancer cells only, leaving normal physiological cells unaffected/less affected. Hence, fucoxanthin and its metabolites show great promise as chemotherapeutic agents in cancer.

  4. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+· and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+· can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4-. with a rate constant of 1.76×109 dm3·mol-1.s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  5. The Study on Acute and Subacute Toxicity and Sarcoma-180 Anti-cancer Effects of Vermilionum

    Directory of Open Access Journals (Sweden)

    Ki-Rok Kwon

    2003-12-01

    Full Text Available Background & Methods : In order to measure the acute and subacute toxicity of Vermilionum and it's anti-cancer effects, Sarcoma-180 abdominal cancer cells were injected intravenously. The following results were obtained after measuring the survival rate, toxicity of the NK cells, and IL-2 productivity. Results : 1. It was impossible to measure LD50 value in the acute toxicity test and no toxic effects were witnessed in the clinical observation. 2. No significant differences were shown in the weight changes between the experiment groups and the control group in the acute toxicity test. 3. No peculiar toxic effects were shown in the subacute toxicity test and the weight changes were insignificant between the experiment groups and the control group. 4. In measuring the survival rate after inducing abdominal cancer by Sarcoma-180, the experiment groups showed increased of 9,52% compared to the control group. 5. In measuring the activity of NK cells, no significant changes were shown between the experiment groups and the control group. 6. In measuring the productivity of IL-2, significant reduction was shown in the experiment groups compared to the normal group, but no significance was witnessed compared to the control group.

  6. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823.

    Science.gov (United States)

    Zheng, Yunquan; Xin, Yanwen; Shi, Xianai; Guo, Yanghao

    2010-11-01

    The Monascus pigment, rubropunctatin, was extracted and purified from red mold rice (RMR) and its cytotoxic activities against human gastric adenocarcinoma BGC-823 cells were studied both in vitro and in vivo. Rubropunctatin inhibited the proliferation of BGC-823 cells with an inhibitory concentration (IC₅₀) of 12.57 μM, while it exhibited no significant toxicity to normal gastric epithelial cell GES-1 at the same concentration. Treatment of BGC-823 cells with rubropunctatin resulted in a dose- and time-dependent apoptosis, as validated by the increase in the percentage of cells in sub-G1 phase and phosphotidylserine externalization. The in vivo experimental data demonstrated that rubropunctatin could offer similar therapeutic benefits in comparison with the same dose of taxol. After five times of intravenous injection, tumor weight in BGC-823-bearing nude mice reduced 23.5% at the dose of 8 mg/kg and 37.7% at the dose of 32 mg/kg, respectively. The expressions of 30 genes related to induction of apoptosis were found up-regulated significantly. The two most expressed genes were tumor necrosis factor (TNF) and DNA-damage inducible transcript 3. TNF was considered as a major mediator of apoptosis induced by rubropunctatin. This is the first report describing the anti-proliferative effect of rubropunctatin and its apoptosis mechanism on BGC-823 cells. Rubropunctatin has potential to be developed as a new natural anti-cancer agent. PMID:20730532

  7. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition.

    Science.gov (United States)

    Wilson, Catherine; Nicholes, Katrina; Bustos, Daisy; Lin, Eva; Song, Qinghua; Stephan, Jean-Philippe; Kirkpatrick, Donald S; Settleman, Jeff

    2014-09-15

    Epithelial to mesenchymal transition (EMT) is a key process in embryonic development and has been associated with cancer metastasis and drug resistance. For example, in EGFR mutated non-small cell lung cancers (NSCLC), EMT has been associated with acquired resistance to the EGFR inhibitor erlotinib. Moreover, "EGFR-addicted" cancer cell lines induced to undergo EMT become erlotinib-resistant in vitro. To identify potential therapeutic vulnerabilities specifically within these mesenchymal, erlotinib-resistant cells, we performed a small molecule screen of ~200 established anti-cancer agents using the EGFR mutant NSCLC HCC827 cell line and a corresponding mesenchymal derivative line. The mesenchymal cells were more resistant to most tested agents; however, a small number of agents showed selective growth inhibitory activity against the mesenchymal cells, with the most potent being the Abl/Src inhibitor, dasatinib. Analysis of the tyrosine phospho-proteome revealed several Src/FAK pathway kinases that were differentially phosphorylated in the mesenchymal cells, and RNAi depletion of the core Src/FAK pathway components in these mesenchymal cells caused apoptosis. These findings reveal a novel role for Src/FAK pathway kinases in drug resistance and identify dasatinib as a potential therapeutic for treatment of erlotinib resistance associated with EMT. PMID:25193862

  8. Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Directory of Open Access Journals (Sweden)

    Wun-Jae Kim

    2011-11-01

    Full Text Available Pectenotoxin-2 (PTX-2, which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-receptor 1/receptor 2 (DR4/DR5; and (iii mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades.

  9. Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates: Carriers for anti-cancer drugs.

    Science.gov (United States)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming; Xiao, Yinghong; Zhou, Ninglin

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. PMID:26838897

  10. The anti-cancer property of proteins extracted from Gynura procumbens (Lour. Merr.

    Directory of Open Access Journals (Sweden)

    Chaw-Sen Hew

    Full Text Available Gynura procumbens (Lour. Merr. belongs to the Asteraceae Family. The plant is a well-known traditional herb in South East Asia and it is widely used to treat inflammation, kidney discomfort, high cholesterol level, diabetic, cancer and high blood pressure. Our earlier study showed the presence of valuable plant defense proteins, such as peroxidase, thaumatin-like proteins and miraculin in the leaf of G. procumbens. However, the effects of these defense proteins on cancers have never been determined previously. In the present study, we investigated the bioactivity of gel filtration fractionated proteins of G. procumbens leaf extract. The active protein fraction, SN-F11/12, was found to inhibit the growth of a breast cancer cell line, MDA-MB-231, at an EC50 value of 3.8 µg/mL. The mRNA expressions of proliferation markers, Ki67 and PCNA, were reduced significantly in the MDA-MB-23 cells treated with SN-F11/12. The expression of invasion marker, CCL2, was also found reduced in the treated MDA-MB-231 cells. All these findings highlight the anti-cancer property of SN-F11/12, therefore, the proteins in this fraction can be a potential chemotherapeutic agent for breast cancer treatment.

  11. Cancer immunotherapy and immune-related response assessment: The role of radiologists in the new arena of cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki, E-mail: Mizuki_Nishino@DFCI.HARVARD.EDU [Department of Radiology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 (United States); Tirumani, Sree H.; Ramaiya, Nikhil H. [Department of Radiology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 (United States); Hodi, F. Stephen [Department of Medical Oncology and Department of Medicine, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, 450 Brookline Ave., Boston, MA 02215 (United States)

    2015-07-15

    Highlights: • The successful clinical application of cancer immunotherapy has opened a new arena for the treatment of advanced cancers. • Cancer immunotherapy is associated with a variety of important radiographic features in the assessments of tumor response and immune-related adverse events. • The state-of-the art knowledge of immunotherapy and the related radiologic manifestations are essential for radiologists. - Abstract: The recent advances in the clinical application of anti-cancer immunotherapeutic agents have opened a new arena for the treatment of advanced cancers. Cancer immunotherapy is associated with a variety of important radiographic features in the assessments of tumor response and immune-related adverse events, which calls for radiologists’ awareness and in-depth knowledge on the topic. This article will provide the state-of-the art review and perspectives of cancer immunotherapy, including its molecular mechanisms, the strategies for immune-related response assessment on imaging and their pitfalls, and the emerging knowledge of radiologic manifestations of immune-related adverse events. The cutting edge clinical and radiologic investigations are presented to provide future directions.

  12. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate.

    Directory of Open Access Journals (Sweden)

    Xiaohua Song

    Full Text Available Ingenol-3-angelate (I3A is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A's effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP's C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin's lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.

  13. Nanovectors for anti-cancer drug delivery in the treatment of advanced pancreatic adenocarcinoma

    Science.gov (United States)

    Hsueh, Chung-Tzu; Selim, Julie H; Tsai, James Y; Hsueh, Chung-Tsen

    2016-01-01

    Liposome, albumin and polymer polyethylene glycol are nanovector formulations successfully developed for anti-cancer drug delivery. There are significant differences in pharmacokinetics, efficacy and toxicity between pre- and post-nanovector modification. The alteration in clinical pharmacology is instrumental for the future development of nanovector-based anticancer therapeutics. We have reviewed the results of clinical studies and translational research in nanovector-based anti-cancer therapeutics in advanced pancreatic adenocarcinoma, including nanoparticle albumin-bound paclitaxel and nanoliposomal irinotecan. Furthermore, we have appraised the ongoing studies incorporating novel agents with nanomedicines in the treatment of pancreatic adenocarcinoma. PMID:27610018

  14. An Approach to Breast Cancer Immunotherapy: The Apoptotic Activity of Recombinant Anti-Interleukin-6 Monoclonal Antibodies in Intact Tumour Microenvironment of Breast Carcinoma.

    Science.gov (United States)

    Abou-Shousha, S; Moaaz, M; Sheta, M; Motawea, M A

    2016-06-01

    Current work is one of our comprehensive preclinical studies, a new approach to breast cancer (BC) immunotherapy through induction of tumour cell apoptosis. Tumour growth is not just a result of uncontrolled cell proliferation but also of reduced apoptosis. High levels of interleukin-6 (IL-6) are associated with metastatic BC and correlated with poor survival as it promotes growth of tumour-initiating cells during early tumorigenesis protecting these cells from apoptosis. Therefore, this study aims at investigating the potential of anti-IL-6 monoclonal antibodies to suppress IL-6 proliferative/anti-apoptotic activities in intact tumour microenvironment of BC. Fresh sterile tumour and normal breast tissue specimens were taken from 50 female Egyptian patients with BC undergoing radical mastectomy. A unique tissue culture system designed to provide cells of each intact tumour/normal tissue sample with its proper microenvironment either supplemented or not with anti-IL-6 monoclonal antibodies. To evaluate the apoptotic activity of anti-IL-6 as a novel candidate for BC treatment strategy, we compared its effects with those obtained using tumour necrosis-related apoptosis-inducing ligand TRAIL as an established apoptotic agent. Our results revealed that levels of either anti-IL-6- or TRAIL-induced apoptosis in the tumour or normal tissue cultures were significantly higher than those in their corresponding untreated ones (P Recombinant anti-IL-6 monoclonal antibodies could represent a novel effective element of immunotherapeutic treatment strategy for BC. The selectivity and anti-apoptotic potential of anti-IL-6 is highly hopeful in IL-6- abundant BC tumour microenvironment. PMID:26971879

  15. Phytochemical, Antioxidant and Anti-Cancer Properties of Euphorbia tirucalli Methanolic and Aqueous Extracts.

    Science.gov (United States)

    Munro, Benjamin; Vuong, Quan V; Chalmers, Anita C; Goldsmith, Chloe D; Bowyer, Michael C; Scarlett, Christopher J

    2015-01-01

    Euphorbia tirucalli is a succulent shrub or small tree that is native to the African continent, however, it is widely cultivated across the globe due to its use in traditional medicines to treat ailments, ranging from scorpion stings to HIV. Recent studies have identified compounds present in the latex of the plant, including a range of bi- and triterpenoids that exhibit bioactivity, including anticancer activity. This study aimed to optimize water extraction conditions for high-yield total phenolic content recovery, to prepare methanol and aqueous extracts from the aerial sections of the plant, and to test the phytochemical, antioxidant, and anti-cancer properties of these extracts. Water extraction of total phenolic compounds (TPC) was optimized across a range of parameters including temperature, extraction time, and plant mass-to-solvent ratio. The water extract of the E. tirucalli powder was found to contain TPC of 34.01 mg GAE (gallic acid equivalents)/g, which was approximately half that of the methanol extract (77.33 mg GAE/g). The results of antioxidant assays showed a uniform trend, with the methanol extract's antioxidant reducing activity exceeding that of water extracts, typically by a factor of 2:1. Regression analysis of the antioxidant assays showed the strongest correlation between extract TPC and antioxidant activity for the ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. The methanol extract also showed greater growth inhibition capacity towards the MiaPaCa-2 pancreatic cancer cell line. These data suggest that further investigations are required to confirm the source of activity within the E. tirucalli leaf and stems for potential use in the nutraceutical and pharmaceutical industries. PMID:26783950

  16. Phytochemical, Antioxidant and Anti-Cancer Properties of Euphorbia tirucalli Methanolic and Aqueous Extracts

    Directory of Open Access Journals (Sweden)

    Benjamin Munro

    2015-10-01

    Full Text Available Euphorbia tirucalli is a succulent shrub or small tree that is native to the African continent, however, it is widely cultivated across the globe due to its use in traditional medicines to treat ailments, ranging from scorpion stings to HIV. Recent studies have identified compounds present in the latex of the plant, including a range of bi- and triterpenoids that exhibit bioactivity, including anticancer activity. This study aimed to optimize water extraction conditions for high-yield total phenolic content recovery, to prepare methanol and aqueous extracts from the aerial sections of the plant, and to test the phytochemical, antioxidant, and anti-cancer properties of these extracts. Water extraction of total phenolic compounds (TPC was optimized across a range of parameters including temperature, extraction time, and plant mass-to-solvent ratio. The water extract of the E. tirucalli powder was found to contain TPC of 34.01 mg GAE (gallic acid equivalents/g, which was approximately half that of the methanol extract (77.33 mg GAE/g. The results of antioxidant assays showed a uniform trend, with the methanol extract’s antioxidant reducing activity exceeding that of water extracts, typically by a factor of 2:1. Regression analysis of the antioxidant assays showed the strongest correlation between extract TPC and antioxidant activity for the ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid and DPPH (2,2-diphenyl-1-picrylhydrazyl methods. The methanol extract also showed greater growth inhibition capacity towards the MiaPaCa-2 pancreatic cancer cell line. These data suggest that further investigations are required to confirm the source of activity within the E. tirucalli leaf and stems for potential use in the nutraceutical and pharmaceutical industries.

  17. The anti-cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells In vitro.

    Science.gov (United States)

    Brown, Amy C; Reitzenstein, Jonathan E; Liu, Jessie; Jadus, Martin R

    2005-09-01

    Hawaiians tend to have lower incidence rates of colorectal cancer and it was hypothesized that this may be due to ethnic differences in diet, specifically, their consumption of poi, a starchy paste made from the taro (Colocasia esulenta L.) plant corm. Soluble extracts of poi were incubated at 100 mg/mL in vitro for antiproliferative activity against the rat YYT colon cancer cell line. (3)H-thymidine incorporation studies were conducted to demonstrate that the poi inhibited the proliferation of these cancer cells in a dose-dependent manner. The greatest suppression of YYT colon cancer growth occurred when 25% concentration was used. When poi was incubated with the YYT cells after 2 days, the YYT cells underwent apoptotic changes as evidenced by a positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) stain. Poi enhanced the proliferation of normal mouse splenocyte control cells, suggesting that poi is not simply toxic to all cells but even has a positive immunostimulatory role. By flow cytometry, T cells (CD4+ and CD8+) were predominantly activated by the poi. Although numerous factors can contribute to the risk of colon cancer, perhaps poi consumption may contribute to the lower colon cancer rates among Hawaiians by two distinct mechanisms. First, by inducing apoptosis within colon cancer cells; second, by non-specifically activating lymphocytes, which in turn can lyse cancerous cells. Our results suggest for the first time that poi may have novel tumor specific anti-cancer activities and future research is suggested with animal studies and human clinical trials.

  18. New directions in immunotherapy.

    Science.gov (United States)

    Cox, Linda; Compalati, Enrico; Kundig, Thomas; Larche, Mark

    2013-04-01

    Allergen immunotherapy (AIT) is effective in reducing the clinical symptoms associated with allergic rhinitis, asthma and venom-induced anaphylaxis. Subcutaneous (SCIT) and sublingual immunotherapy (SLIT) with unmodified allergen extracts are the most widely prescribed AIT regimens. The efficacy of these 2 routes appears comparable, but the safety profile with SLIT is more favorable allowing for home administration and requiring less patient time. However, both require that the treatment is taken regularly over several years, e.g., monthly in a supervised medical setting with SCIT and daily at home with SLIT. Despite the difference in treatment settings, poor adherence has been reported with both routes. Emerging evidence suggests that AIT may be effective in other allergic conditions such as atopic dermatitis, venom sting-induced large local reactions, and food allergy. Research with oral immunotherapy (OIT) for food allergies suggest that many patients can be desensitized during treatment, but questions remain about whether this can produce long term tolerance. Further studies are needed to identify appropriate patients and treatment regimens with these conditions. Efforts to develop safer and more effective AIT for inhalant allergies have led to investigations with modified allergens and alternate routes. Intralymphatic (ILIT) has been shown to produce long-lasting clinical benefits after three injections comparable to a 3-year course of SCIT. Epicutaneous (EPIT) has demonstrated promising results for food and inhalant allergies. Vaccine modifications, such as T cell epitopes or the use of viral-like particles as an adjuvant, have been shown to provide sustained clinical benefits after a relatively short course of treatment compared to the currently available AIT treatments, SLIT and SCIT. These newer approaches may increase the utilization and adherence to AIT because the multi-year treatment requirement of currently available AIT is a likely deterrent for

  19. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds.

    Science.gov (United States)

    Zhang, Jinhui; Li, Li; Jiang, Cheng; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2012-12-01

    Korean Angelica gigas Nakai (AGN) is a major medicinal herb used in Asian countries such as Korea and China. Traditionally, its dried root has been used to treat anemia, pain, infection and articular rheumatism in Korea, most often through boiling in water to prepare the dosage forms. The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major chemical components in the alcoholic extracts of the root of AGN. The in vitro anti-tumor activities of decursin and/or DA against prostate cancer, lung cancer, breast cancer, colon cancer, bladder cancer, sarcoma, myeloma and leukemia have been increasingly reported in the past decade whereas the in vivo efficacy in mouse models was established only for a few organ sites. Preliminary pharmacokinetic studies by us and others in rodent models indicated that decursinol (DOH), which has much less in vitro direct anticancer activities by itself, is the major and rapid in vivo hydrolysis metabolite of both decursin and DA. Besides decursin, DA and DOH, other chemical components in AGN such as polysaccharides and polyacetylenes have been reported to exert anti-cancer and anti-inflammation activities as well. We systematically reviewed the published literature on the anti-cancer and other bio-activities effects of AGN extract and decursin, DA and DOH, as well as other chemicals identified from AGN. Although a number of areas are identified that merit further investigation, one critical need is first-in-human studies of the pharmacokinetics of decursin/DA to determine whether humans differ from rodents in absorption and metabolism of these compounds.

  20. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    specificity of the interaction of dendrimers with CD4+ T cell, we hypothesize that regulatory activity may signal through a specific receptor that remains to be indentified. Therefore phosphonate-capped dendrimers constitute not only tools for the ex-vivo expansion of NK cells in immunotherapy of cancers but their mode of action could also lead to further medical applications where T cell activation and proliferation need to be dampened.

  1. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  2. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  3. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years. PMID:19031451

  4. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. PMID:17935130

  5. 在线固相萃取-高效液相色谱系统在高抗癌活性化合物TEB-415药代动力学中的应用%Application of On-line SPE-HPLC System in Pharmacokinetic Study of Highly Active Anti-Cancer Compound TEB-415

    Institute of Scientific and Technical Information of China (English)

    王曼; 温亚彬; 刘康宁; 司戈; 刘磊; 尹正; 卢亚欣

    2014-01-01

    应用在线固相萃取( SPE)-高效液相色谱( HPLC)方法研究TEB-415在小鼠体内的药代动力学。通过在线SPE-HPLC方法结合Ultimate3000系统测定TEB-415血药浓度,使用 Venusil MP C18分析柱(150 mm ×4.6 mm,5μm),乙腈-5mmol/L磷酸盐缓冲液(pH 3.5)为流动相,流速1.0 mL/min,等度洗脱; Capcell MF Ph-1为在线SPE柱(10 mm×4 mm,5μm),水为淋洗液,洗脱剂为水-乙腈,检测波长262 nm。采用WinNonlin5.2软件计算药代动力学参数。血浆中 TEB-415测定的线性范围为100~20000μg/L,定量限( S/N≥10)为20.0μg/L,提取回收率为90.5%~94.6%,日内与日间精密度RSD均小于3.5%,短期稳定性、冻融稳定性及长期稳定性准确度为91.49%~101.96%。 TEB-415口服给药后,在小鼠体内平均达峰时间tmax为5.29 h,平均药峰浓度Cmax为3403μg/L, TEB-415的0~t时间段药时曲线下面积AUC值为AUC0-t=24600μg/L·h,平均半衰期t1/2=3.84 h,体内平均滞留时间MRT =6.56 h,呈现吸收速度适中、吸收程度较高、体内消除速度适中的药代动力学特点。%An on-line solid phase extraction-high performance liquid chromatography ( SPE-HPLC ) system was applied in the plasma pharmacokinetic study of highly active anti-cancer compound tyrosine kinase inhibitors (TEB-415) in mouse. The on-line SPE-HPLC method associated with Ultimate3000 system which was applied to the determination of the blood drug level of TEB-415 in mouse plasma. C18 column ( Venusil MP, 150 mm × 4. 6 mm, 5μm) was used as analytical column and the mobile phase consisted of acetonitrile-5 mmol/L monopotassium phosphate buffer ( pH 3 . 5 ) at a flow rate of 1 . 0 mL/min was used as the isocratic elution. An MF Ph-1 column (10 mm×4 mm, 5 μm) was used as on-line SPE column, and water and water-acetonitrile were used as the washing solvent and elution solvent respectively. The detection wavelength was set at 262 nm. The pharmacokinetic parameters were calculated by WinNonlin 5. 2 software

  6. Immunotherapy for B-Cell Lymphoma: Current Status and Prospective Advances

    OpenAIRE

    Hollander, Nurit

    2012-01-01

    Therapy for non-Hodgkin’s lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of r...

  7. Adherence to Sublingual Immunotherapy.

    Science.gov (United States)

    Incorvaia, Cristoforo; Mauro, Marina; Leo, Gualtiero; Ridolo, Erminia

    2016-02-01

    Adherence is a major issue in any medical treatment. Allergen immunotherapy (AIT) is particularly affected by a poor adherence because a flawed application prevents the immunological effects that underlie the clinical outcome of the treatment. Sublingual immunotherapy (SLIT) was introduced in the 1990s, and the early studies suggested that adherence and compliance to such a route of administration was better than the traditional subcutaneous route. However, the recent data from manufacturers revealed that only 13% of patients treated with SLIT reach the recommended 3-year duration. Therefore, improved adherence to SLIT is an unmet need that may be achieved by various approaches. The utility of patient education and accurate monitoring during the treatment was demonstrated by specific studies, while the success of technology-based tools, including online platforms, social media, e-mail, and a short message service by phone, is currently considered to improve the adherence. This goal is of pivotal importance to fulfill the object of SLIT that is to modify the natural history of allergy, ensuring a long-lasting clinical benefit, and a consequent pharmaco-economic advantage, when patients complete at least a 3-year course of treatment. PMID:26758865

  8. Double layered hydroxides as potential anti-cancer drug delivery agents.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  9. Double layered hydroxides as potential anti-cancer drug delivery agents.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed. PMID:23170959

  10. The critical roles of miR-21 in anti-cancer effects of curcumin.

    Science.gov (United States)

    Chen, Jiezhong; Xu, Tiefeng; Chen, Chen

    2015-12-01

    Curcumin is a well-known phytochemical that has various anti-cancer effects. Although it has been demonstrated that curcumin can inhibit multiple signalling pathways, the exact mechanisms for its demonstrated anti-cancer effects are not fully understood. Recent studies have revealed that curcumin may affect cancer initiation and progression through regulating microRNAs (miRs). In this review, we focus on the roles of microRNA-21 (miR-21) in the anti-cancer effects of curcumin and regulatory mechanisms for the effects of curcumin on miR-21. MiR-21 mediates various effects of curcumin on cancer cells including proliferation, apoptosis, metastasis and anti-cancer drug resistance. Several downstream pathways of miR-21 have been identified including phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death protein 4 (PDCD4) and NF-κB pathways. Curcumin decreases miR-21 levels through both increasing miR-21 exosome exclusion from the cells and inhibiting the transcription of the miR-21 gene in the cells by binding to its promoter. PMID:26734640

  11. Targeting anti-cancer drug resistance in mouse models of breast cancer

    NARCIS (Netherlands)

    Jaspers, J.E.

    2013-01-01

    Resistance to anti-cancer drugs is one of the biggest challenges in clinical oncology. In contrast to the success of local therapy (e.g. surgery or radiotherapy), the treatment of disseminated cancers using classical DNA-damaging chemotherapeutic agents and novel specific inhibitors frequently fails

  12. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens.

    Science.gov (United States)

    Valenta, Rudolf; Linhart, B; Swoboda, I; Niederberger, V

    2011-06-01

    The broad applicability of allergen-specific immunotherapy for the treatment and eventually prevention of IgE-mediated allergy is limited by the poor quality and allergenic activity of natural allergen extracts that are used for the production of current allergy vaccines. Today, the genetic code of the most important allergens has been deciphered; recombinant allergens equalling their natural counterparts have been produced for diagnosis and immunotherapy, and a large panel of genetically modified allergens with reduced allergenic activity has been characterized to improve safety of immunotherapy and explore allergen-specific prevention strategies. Successful immunotherapy studies have been performed with recombinant allergens and hypoallergenic allergen derivatives and will lead to the registration of the first recombinant allergen-based vaccines in the near future. There is no doubt that recombinant allergen-based vaccination strategies will be generally applicable to most allergen sources, including respiratory, food and venom allergens and allow to produce safe allergy vaccines for the treatment of the most common forms of IgE-mediated allergies.

  13. Inmunoterapia local Local immunotherapy

    Directory of Open Access Journals (Sweden)

    E. Lasa

    2003-01-01

    Full Text Available La inmunoterapia específica, junto con la evitación del alergeno y el tratamiento sintomático, forma parte del tratamiento de la patología alérgica. La modalidad más antigua, más conocida y mejor estudiada es la inmunoterapia subcutánea (ITSC, cuya eficacia tanto a corto como a largo plazo, ha sido ampliamente demostrada en numerosos estudios. Sin embargo, a pesar de haberse demostrado segura, no está exenta de efectos adversos y precisa ser administrada bajo supervisión de personal médico. Esto ha animado a buscar nuevas vías de administración de eficacia similar, con un buen perfil de seguridad, y de buena cumplimentación por parte del paciente. De las distintas alternativas estudiadas la más relevante es la inmunoterapia sublingual (ITSL. En ésta, se administra el antígeno en forma de gotas debajo de la lengua. Existen diferentes pautas de administración en función del alergeno implicado. La dosis óptima de tratamiento está aún sin determinar, hallándose en este momento en un rango amplio de dosis respecto a la inmunoterapia subcutánea. Su mecanismo de acción es poco conocido aunque en diversos estudios se han observado cambios inmunológicos. La ITSL ha mostrado un buen perfil de seguridad con escasos efectos secundarios, habitualmente de carácter local. Asimismo se han realizado distintos ensayos clínicos en los que se ha demostrado su eficacia en el tratamiento de la alergia respiratoria tanto en niños como en adultos. Por ello, aunque aún existen datos sin resolver respecto a esta vía de administración de inmunoterapia, ha sido propuesta por la OMS como una alternativa válida a la ITSC.Specific immunotherapy, together with avoidance of the allergen and symptomatic treatment, forms part of the treatment of allergic pathology. The oldest, best known and most studied form is subcutaneous immunotherapy (SCIT, whose efficacy, both in the short and the long term, has been widely demonstrated in numerous studies

  14. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Sørensen, Tine Thurison;

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u...... using mouse monoclonal antibodies (mAbs) against mouse uPA or uPAR. These reagents will target uPA and uPAR in both stromal cells and cancer cells, and their therapeutic potential can now be assessed in syngenic mouse cancer models.......Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...

  15. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy?

    Science.gov (United States)

    Gonda, Tamas A; Varro, Andrea; Wang, Timothy C; Tycko, Benjamin

    2010-02-01

    It is increasingly recognized that the non-neoplastic stromal compartment in most solid cancers plays an active role in tumor proliferation, invasion and metastasis. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in the tumor stroma, and these cells are pro-tumorigenic. Evidence that CAFs are epigenetically and possibly also genetically distinct from normal fibroblasts is beginning to define these cells as potential targets of anti-cancer therapy. Here, we review the cell-of-origin and molecular biology of CAFs, arguing that such knowledge provides a rational basis for designing therapeutic strategies to coordinately and synergistically target both the stromal and malignant epithelial component of human cancers.

  16. Cancer immunotherapy and immune-related response assessment: The role of radiologists in the new arena of cancer treatment.

    Science.gov (United States)

    Nishino, Mizuki; Tirumani, Sree H; Ramaiya, Nikhil H; Hodi, F Stephen

    2015-07-01

    The recent advances in the clinical application of anti-cancer immunotherapeutic agents have opened a new arena for the treatment of advanced cancers. Cancer immunotherapy is associated with a variety of important radiographic features in the assessments of tumor response and immune-related adverse events, which calls for radiologists' awareness and in-depth knowledge on the topic. This article will provide the state-of-the art review and perspectives of cancer immunotherapy, including its molecular mechanisms, the strategies for immune-related response assessment on imaging and their pitfalls, and the emerging knowledge of radiologic manifestations of immune-related adverse events. The cutting edge clinical and radiologic investigations are presented to provide future directions.

  17. Active immunotherapy of allergic asthma with a recombinant human interleukin-5 protein as vaccine in a murine model

    Institute of Scientific and Technical Information of China (English)

    TAN Guang-hong; WANG Cai-chun; HUANG Feng-ying; WANG Hua; HUANG Yong-hao; LIN Ying-ying

    2007-01-01

    Background Eosinophils are highly related to allergic asthma inflammation. Interleukin (IL)-5 is the major chemokine of eosinophils, inhibition of the activity of IL-5 thus seems to be a potential approach to asthma therapy. The current study was performed to determine whether a recombinant human IL-5 protein as a xenogeneic vaccine has the capability of inducing anti-asthma activities.Methods Recombinant human IL-5 was used as a protein vaccine. Mouse asthma model was established to observe the anti-asthma activities. Lung histology was observed; eosinophils in blood and bronchoalveolar lavage were stained and counted. Airway hyperresponsiveness was determined by whole body plethysmograph. Antibody characters and cytokines were detected with enzyme linked immunosorbent assay (ELISA) and Western blot assay.Results Vaccination with recombinant human IL-5 protein as vaccine significantly reduced airway inflammation and airway hyperresponsiveness, and shifted the cytokine production from Th2 (IL-4) to Th1 (INF-γ) in mice allergic-asthma model. Immunization with recombinant human IL-5 protein vaccine bypassed the immunological tolerance and induced production of polyclonal antibodies that were cross-reactive with murine IL-5.Conclusions Active immunization with xenogeneic homologous IL-5 may be a possible therapeutic approach to the treatment of asthma and potentially of other eosinophilic disorders.

  18. Modified immunotherapy for alopecia areata.

    Science.gov (United States)

    Yoshimasu, Takashi; Furukawa, Fukumi

    2016-07-01

    Squaric acid dibutylester (SADBE) is a commonly used contact sensitizer in immunotherapy for alopecia areata (AA). Severe contact dermatitis is induced by the currently high recommended sensitization dose of 1%-2% SADBE, often decreasing patient compliance. We assessed a modified immunotherapy for AA using SADBE at a starting concentration of 0.01% without sensitization. After one or two weeks of initial 0.01% SADBE application, the concentration of SADBE was increased gradually to 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1% and 2% until the patients felt itching or erythema at the AA lesion site. The modified immunotherapy showed a response rate of 69.4% (25/36), equivalent to conventional immunotherapy using SADBE starting at 1%-2% sensitization. Furthermore, we investigated the combination therapy of SADBE and multiple courses of steroid pulses for AA. The response rate for combination therapy was 73.7% (28/38); however, the group receiving combination therapy showed a significant prevalence of severe AA compared with the group receiving modified immunotherapy only. We reviewed the efficacy and safety of modified immunotherapy without initial sensitization and combination therapy with immunotherapy and multiple courses of pulses for AA. PMID:26932732

  19. Modified immunotherapy for alopecia areata.

    Science.gov (United States)

    Yoshimasu, Takashi; Furukawa, Fukumi

    2016-07-01

    Squaric acid dibutylester (SADBE) is a commonly used contact sensitizer in immunotherapy for alopecia areata (AA). Severe contact dermatitis is induced by the currently high recommended sensitization dose of 1%-2% SADBE, often decreasing patient compliance. We assessed a modified immunotherapy for AA using SADBE at a starting concentration of 0.01% without sensitization. After one or two weeks of initial 0.01% SADBE application, the concentration of SADBE was increased gradually to 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1% and 2% until the patients felt itching or erythema at the AA lesion site. The modified immunotherapy showed a response rate of 69.4% (25/36), equivalent to conventional immunotherapy using SADBE starting at 1%-2% sensitization. Furthermore, we investigated the combination therapy of SADBE and multiple courses of steroid pulses for AA. The response rate for combination therapy was 73.7% (28/38); however, the group receiving combination therapy showed a significant prevalence of severe AA compared with the group receiving modified immunotherapy only. We reviewed the efficacy and safety of modified immunotherapy without initial sensitization and combination therapy with immunotherapy and multiple courses of pulses for AA.

  20. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zheng Wei Lee

    Full Text Available The slow-releasing hydrogen sulfide (H₂S donor, GYY4137, caused concentration-dependent killing of seven different human cancer cell lines (HeLa, HCT-116, Hep G2, HL-60, MCF-7, MV4-11 and U2OS but did not affect survival of normal human lung fibroblasts (IMR90, WI-38 as determined by trypan blue exclusion. Sodium hydrosulfide (NaHS was less potent and not active in all cell lines. A structural analogue of GYY4137 (ZYJ1122 lacking sulfur and thence not able to release H₂S was inactive. Similar results were obtained using a clonogenic assay. Incubation of GYY4137 (400 µM in culture medium led to the generation of low (<20 µM concentrations of H₂S sustained over 7 days. In contrast, incubation of NaHS (400 µM in the same way led to much higher (up to 400 µM concentrations of H₂S which persisted for only 1 hour. Mechanistic studies revealed that GYY4137 (400 µM incubated for 5 days with MCF-7 but not IMR90 cells caused the generation of cleaved PARP and cleaved caspase 9, indicative of a pro-apoptotic effect. GYY4137 (but not ZYJ1122 also caused partial G₂/M arrest of these cells. Mice xenograft studies using HL-60 and MV4-11 cells showed that GYY4137 (100-300 mg/kg/day for 14 days significantly reduced tumor growth. We conclude that GYY4137 exhibits anti-cancer activity by releasing H₂S over a period of days. We also propose that a combination of apoptosis and cell cycle arrest contributes to this effect and that H₂S donors should be investigated further as potential anti-cancer agents.

  1. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  2. Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma

    Indian Academy of Sciences (India)

    Anuradha Rai; Ashim K Chakravarty

    2007-12-01

    Natural killer (NK) cells are spontaneously cytotoxic against tumour target cells. Their number was found to be four times more in the spleen of tumour-bearing Swiss albino mice. After activation with recombinant interleukin-2 (rIL-2), NK cells were tested and found to seek out the tumour site when injected intravenously in tumour-bearing mice. Their potential for fighting tumours in vivo was further seen following adoptive transfer of rIL-2 activated NK (A-NK) cells in tumour-bearing mice. After surgical removal of tumour load, adoptive transfer of A-NK cells inhibited tumour recurrence in 92.3% cases, thereby suggesting the use of this protocol for therapeutic purposes to obtain a better outcome.

  3. Study of Immunotherapy with Endogenous Opiod (Met-Enkephalin Activated TILs in Fibrosarcoma Induced Balb/C Mice

    Directory of Open Access Journals (Sweden)

    Abbas Ali Amini

    2010-01-01

    Full Text Available Objective: In this study the effects of met-enkephalin on tumor infiltrating lymphocytesfor cancer treatment in fibrosarcoma bearing mice was evaluated.Materials and Methods: Initially, to obtain the most effective dose and treating time forthe inductionof CD25, splenocytes were cultured with several doses of met-enkephalin.Flowcytometry was used to evaluate CD25 expression. The best dose and treatingtime were used to stimulate tumor infiltrating lymphocytes (TILs. To obtain pure CD4+and CD8+ cells, TILs were taken from tumors by enzymatic tissue disaggregation andpurified by magnet bead cell separation. After TILs stimulation they were re-injectedinto three groups of other fibrosarcoma bearing mice. The first group received onlyCD4+ TILs, the second group received only CD8+ TILs, and the third group receivedboth CD4+ and CD8+ TILs. A fourth group that served as the control group receivedonly phosphate buffered saline (PBS. The effect of this treatment on tumor volume,mice survival, effector cells, regulatory T cells and serum level Bcl-2were evaluated.To analyze data in both the experimental and control groups one way ANOVA wasused followed by the Tukey test. P value <0.05 was considered significant.Results: Treatment with met-enkephalin at a dose of 10-10 M for 6 hours was most effectivein CD25 induction on the splenocytes of Balb/C mice. There were a significantdecrease in tumors growth in both the CD8+ and CD4+ activated TILs injected groups(p<0.044 and p<0.017, respectively. The result of the CD4+ plus CD8+ activated TILsinjected group was not significantly different from control group (p<0.661. There wasan improvement in survival amongst the mice in all treated groups (p<0.001 for allthree groups. FoxP3 levels in all groups were significantly low (p<0.001, p<0.002and p<0.001 for the CD4+, CD8+ and CD4+ plus CD8+ activated TILs injected groups,respectively. CD25 and Bcl-2 expressions were higher in the treated groups, but onlythe CD4

  4. Molecular biomarkers for grass pollen immunotherapy.

    Science.gov (United States)

    Popescu, Florin-Dan

    2014-03-26

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines.

  5. Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mochizuki Hidetaka

    2001-08-01

    Full Text Available Abstract Background The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. Methods LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. Results The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. Conclusions These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes.

  6. Conference Scene: novelties in immunotherapy.

    Science.gov (United States)

    Mitsias, Dimitris I; Kalogiros, Lampros A; Papadopoulos, Nikolaos G

    2013-10-01

    The only method aiming to permanently cure allergic disorders is allergen immunotherapy. Over the last 20 years there has been great progress in understanding the mechanisms that govern allergen immunotherapy in order to meet three basic prerequisites: safety, effectiveness and compliance. In the present summary report from the European Academy of Allergology and Clinical Immunology-World Allergy Organization Congress held last June in Milan, we review key points concerning the main axes as diagnosis, novel modalities, routes and protocols, as well as two important immunotherapy fields: food and insect venom allergy. PMID:24088073

  7. Immunotherapy for nasopharyngeal cancer-a review.

    Science.gov (United States)

    Jain, Amit; Chia, Whay Kuang; Toh, Han Chong

    2016-04-01

    Nasopharyngeal carcinoma (NPC) is associated with the Epstein-Barr virus (EBV) and characterized by peritumoral immune infiltrate. Advanced NPC has high lethality. Immunotherapy directed against EBV antigen targets has been previously explored in clinical trials, and is likely to be validated as an important target in NPC as randomized data emerges in the future. Cancer vaccines and adoptive T cell therapy have been explored in the clinic, with the latter showing the greatest success. Recent advances in gene sequencing technology now allow personalized tumor epitope mapping, whilst the advent of immune checkpoint inhibitors targeting the PD-1/PD-L1 axis offers the opportunity to activate adaptive T cell response in vivo. Anti-PD1 antibodies have shown promising activity in early phase clinical trials, and randomized studies against chemotherapy are underway. As immunotherapy is incorporated into standard treatment paradigms, issues of optimal combinations with targeting agents, immune adjuvants, and sequence with chemotherapy and radiation therapy will need to be addressed. Effective strategies to increase tumor antigenicity, improve immunological memory and reduce immune escape, will need to be developed to improve treatment outcomes. Here we present a brief history of the evolution of immunotherapy in NPC, and highlight key concepts relevant to its further development in the clinic. PMID:27121882

  8. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies.

    Science.gov (United States)

    Puigvert, Jordi Carreras; Sanjiv, Kumar; Helleday, Thomas

    2016-01-01

    Anti-cancer therapies targeting and damaging the DNA have been extensively used in the last 50 years since the discovery of nitrogen mustards, antimetabolites and platin agents. The use of these drugs is often limited by dose-limiting side effects related to their poor specificity. In recent years, much effort has been put on the discovery and development of compounds that would exploit defects in DNA repair in cancer cells such as Wee1, Chk1 or PARP1 inhibitors. However, not all cancers respond to these inhibitors. Recently, new developments towards specifically targeting broader characteristics of cancer such as replication stress (RS) and lost redox homeostasis have emerged. Oncogenes induce proliferation signals, which also result in replication-associated DNA damage, i.e. RS. Our knowledge into overall causes of RS, lesions produced and how these are signalled in cells to activate cell cycle checkpoints is evolving. Inhibition of ATR, which would normally keep non-deleterious levels of RS, induces intolerable RS levels for cancer cells. Interestingly, links between replication and transcription appear to underlie RS along with a reduction of the dNTP pool. Remarkably, sanitization of the dNTP pool by MutT homologue 1, impeding incorporation of oxidized dNTPs into the DNA, seems to be crucial for cancer cell survival. In this minireview we present an overview of current and novel strategies to target DNA repair and exploit DNA damage to treat cancer. We present the current models for cancer-associated RS as well as cancer phenotypic lethality. Both strategies are poised to better target cancer cells and reduce side effects. PMID:26507796

  9. The Study on Acute and Subacute Toxicity and Anti-Cancer Effects of cultivated wild ginseng Herbal acupuncture

    Directory of Open Access Journals (Sweden)

    Ki-Rok, Kwon

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate acute and subacute toxicity and sarcoma-180 anti-cancer effects of herbal acupuncture with cultivated wild ginseng (distilled in mice and rats. Methods : Balb/c mice were injected intravenous with cultivated wild ginseng herbal acupuncture for LD50 and acute toxicity test. Sprague-Dawley rats were injected intravenous with cultivated wild ginseng herbal acupuncture for subacute toxicity test. The cultivated wild ginseng herbal-acupuncture was injected at the tail vein of mice. Results : 1. In acute LD50 toxicity test, there was no mortality thus unable to attain the value. 2. Examining the toxic response in the acute toxicity test, there was no sign of toxication. 3. In acute toxic test, running biochemical serum test couldn't yield any differences between the control and experiment groups. 4. In subacute toxicity test, there was no sign of toxication in the experimental groups and didn't show any changes in weight compared to the normal group. 5. In subacute toxicity test, biochemical serum test showed significant increase of Total albumin, Albumin, and Glucose in the experimental group I compared with the control group. Significant decrease of GOT, ALP, GPT, and Triglyceride were shown. In experiment group II, only Glucose showed significant increase compared with the control group. 6. Measuring survival rate for anti-cancer effects of Sarcoma-180 cancer cell line, all the experimental groups showed significant increase in survival rate. 7. Measuring NK cell activity rate, no significant difference was shown throughout the groups. 8. Measuring Interleukin-2 productivity rate, all the experimental groups didn't show significant difference. 9. For manifestation of cytokine mRNA, significant decrease of interleukin-10 was witnessed in the experimental group compared to the control group. Conclusion : According to the results, we can conclude cultivated wild ginseng herbal acupuncture

  10. Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer

    Directory of Open Access Journals (Sweden)

    McDougall Gordon

    2007-01-01

    Full Text Available Abstract Background There is a probable association between consumption of fruit and vegetables and reduced risk of cancer, particularly cancer of the digestive tract. This anti-cancer activity has been attributed in part to anti-oxidants present in these foods. Raspberries in particular are a rich source of the anti-oxidant compounds, such as polyphenols, anthocyanins and ellagitannins. Methods A "colon-available" raspberry extract (CARE was prepared that contained phytochemicals surviving a digestion procedure that mimicked the physiochemical conditions of the upper gastrointestinal tract. The polyphenolic-rich extract was assessed for anti-cancer properties in a series of in vitro systems that model important stages of colon carcinogenesis, initiation, promotion and invasion. Results The phytochemical composition of CARE was monitored using liquid chromatography mass spectrometry. The colon-available raspberry extract was reduced in anthocyanins and ellagitannins compared to the original raspberry juice but enriched in other polyphenols and polyphenol breakdown products that were more stable to gastrointestinal digestion. Initiation – CARE caused significant protective effects against DNA damage induced by hydrogen peroxide in HT29 colon cancer cells measured using single cell microgelelectrophoresis. Promotion – CARE significantly decreased the population of HT29 cells in the G1 phase of the cell cycle, effectively reducing the number of cells entering the cell cycle. However, CARE had no effect on epithelial integrity (barrier function assessed by recording the trans-epithelial resistance (TER of CACO-2 cell monolayers. Invasion – CARE caused significant inhibition of HT115 colon cancer cell invasion using the matrigel invasion assay. Conclusion The results indicate that raspberry phytochemicals likely to reach the colon are capable of inhibiting several important stages in colon carcinogenesis in vitro.

  11. An Evaluation Of Anti Cancer Potential Of Annona Muricata Linn (Durian Belanda) Tea Product

    International Nuclear Information System (INIS)

    Though the number of cancer survivors continues to increase due to the improvements in early detection, cancer incidence and deaths still escalating each year. Even though there are major advancement in medicine technology such as chemotherapy, radiotherapy and nuclear medicine, people in developing countries especially in Asian countries are looking towards natural product as an alternative medicine especially in cancer treatment and prevention; primarily because of the general belief that herbal drugs are without any side effects besides being cheap and locally available. One of them is the leaves of Annona Muricata L. from the Annonaceae family is well known for their anti cancer activity by the local people in Malaysia and is commonly known as Soursoup or in local name of Durian Belanda. In the local market the most of the product of Annona Muricata L. is in the form of tea bag. This present study was aimed to evaluate the anti cancer potential of the extract of Annona Muricata L. The tea bag of Annona Muricata L. was obtain from a local market and was physically identified and confirmed by botanist as the leaves of Annona Muricata L. Sequential extraction was done using hexane, chloroform, methanol and hot aqueous. All of these extracts will be screen for alkaloid, saponin, cardiac glucoside and flavonoid. Then quantitative estimation of phenolics adn flavonoid content was conducted. These extract are also being tested on MDPA-MB-435S (human breast carcinoma cells) and HTB-43 (head and neck cancer) by MTT assay. These extract was also evaluated for their reducing power and DPPH radical scavenging assay. The parameters obtained from the test was IC50 values, a value that produce inhibitory cancer cells by 50 % and a value that produce radical scavenging at 50 % for both MTT assay and DPPH assay. Results revealed that the IC50 of hexane, chloroform, methanol and aqueous extract for MDA-MB-435S (human breast carcinoma cells) was 35.1μg/ml, 26.8 μg/ml, 19.1

  12. Immunotherapy in Lung Cancer.

    Science.gov (United States)

    Castellanos, Emily H; Horn, Leora

    2016-01-01

    Lung cancer has not traditionally been viewed as an immune-responsive tumor. However, it is becoming evident that tumor-induced immune suppression is vital to malignant progression. Immunotherapies act by enhancing the patient's innate immune response and hold promise for inducing long-term responses in select patients with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Immune checkpoint inhibitors, in particular, inhibitors to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have shown promise in early studies and are currently in clinical trials in both small cell lung cancer and non-small cell lung cancer patients. Two large randomized phase III trials recently demonstrated superior overall survival (OS) in patients treated with anti-PD-1 therapy compared to chemotherapy in the second-line setting.

  13. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells

    NARCIS (Netherlands)

    Eggermont, L.J.; Paulis, L.E.M.; Tel, J.; Figdor, C.G.

    2014-01-01

    Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artif

  14. Genomic determinants of cancer immunotherapy.

    Science.gov (United States)

    Miao, Diana; Van Allen, Eliezer M

    2016-08-01

    Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology.

  15. Targeted immunotherapy in Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin

    2015-01-01

    In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13.......In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13....

  16. Immunotherapy for lung cancer: advances and prospects.

    Science.gov (United States)

    Yang, Li; Wang, Liping; Zhang, Yi

    2016-01-01

    Lung cancer is the most commonly diagnosed cancer as well as the leading cause of cancer-related deaths worldwide. To date, surgery is the first choice treatment, but most clinically diagnosed cases are inoperable. While chemotherapy and/or radiotherapy are the next considered options for such cases, these treatment modalities have adverse effects and are sometimes lethal to patients. Thus, new effective strategies with minimal side effects are urgently needed. Cancer immunotherapy provides either active or passive immunity to target tumors. Multiple immunotherapy agents have been proposed and tested for potential therapeutic benefit against lung cancer, and some pose fewer side effects as compared to conventional chemotherapy and radiotherapy. In this article, we discuss studies focusing on interactions between lung cancer and the immune system, and we place an emphasis on outcome evidence in order to create a knowledge base well-grounded in clinical reality. Overall, this review highlights the need for new lung cancer treatment options, with much ground to be paved for future advances in the field. We believe that immunotherapy agents alone or with other forms of treatment can be recognized as next modality of lung cancer treatment. PMID:27168951

  17. Generation and Characterization of a Human/Mouse Chimeric GD2-Mimicking Anti-Idiotype Antibody Ganglidiximab for Active Immunotherapy against Neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Christin Eger

    Full Text Available Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH and light chains (VL were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18-zeta was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2

  18. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy.

    Science.gov (United States)

    Anguille, Sébastien; Smits, Evelien L; Bryant, Christian; Van Acker, Heleen H; Goossens, Herman; Lion, Eva; Fromm, Phillip D; Hart, Derek N; Van Tendeloo, Viggo F; Berneman, Zwi N

    2015-10-01

    Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.

  19. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate

    OpenAIRE

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H.; Pedersen, Peter L.; Goffeau, Andre; Ułaszewski, Stanisław

    2016-01-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of y...

  20. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    Science.gov (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  1. Controlled release of an anti-cancer drug from DNA structured nano-films

    Science.gov (United States)

    Cho, Younghyun; Lee, Jong Bum; Hong, Jinkee

    2014-02-01

    We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with peptide via layer-by-layer (LbL) deposition method. The key to the successful application of these nanofilms requires a novel approach of the influence of DNA architecture for the drug release from functional nano-sized surface. Herein, we have taken first steps in building and controlling the drug incorporated DNA origami based multilayered nanostructure. Our finding highlights the novel and unique drug release character of LbL systems in serum condition taken full advantages of DNA origami structure. This multilayer thin film dramatically affects not only the release profiles but also the structure stability in protein rich serum condition.

  2. Translational approaches targeting the p53 pathway for anti-cancer therapy

    OpenAIRE

    Essmann, Frank; Schulze-Osthoff, Klaus

    2012-01-01

    The p53 tumour suppressor blocks cancer development by triggering apoptosis or cellular senescence in response to oncogenic stress or DNA damage. Consequently, the p53 signalling pathway is virtually always inactivated in human cancer cells. This unifying feature has commenced tremendous efforts to develop p53-based anti-cancer therapies. Different strategies exist that are adapted to the mechanisms of p53 inactivation. In p53-mutated tumours, delivery of wild-type p53 by adenovirus-based gen...

  3. Human synthetic lethal inference as potential anti-cancer target gene detection

    Directory of Open Access Journals (Sweden)

    Solé Ricard V

    2009-12-01

    Full Text Available Abstract Background Two genes are called synthetic lethal (SL if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases as well as on existent approved drugs (DrugBank database supports our selection of cancer-therapy candidates. Conclusions Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

  4. Immunotherapy for malignant glioma

    Directory of Open Access Journals (Sweden)

    Carter M Suryadevara

    2015-01-01

    Full Text Available Malignant gliomas (MG are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM, the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.

  5. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy

    OpenAIRE

    Wrzesinski, Claudia; Restifo, Nicholas P

    2005-01-01

    Adoptive T-cell immunotherapy combined with non-myeloablative lymphodepletion has emerged as the most effective immunotherapy treatment for patients with metastatic melanoma (objective response rates of 50%). The mechanisms underlying this major advance in the field of immunotherapy include the elimination of regulatory elements and increased access to activating cytokines. This results in the activation of low-affinity T cells, enabling them to destroy tumors. We propose that a more complete...

  6. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2015-07-01

    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  7. Anti-cancer and anti-oxidant efficacies of wild ginseng and cultivated wild ginseng of Korea and China

    Directory of Open Access Journals (Sweden)

    Young-Min,Ahn

    2007-02-01

    Full Text Available Objectives : The aim of this study was to verify anti-cancer and anti-oxidant efficacies of Korean wild ginseng and cultivated wild ginseng of Korea and China. Methods : For the measurement of anti-oxidation, SOD-like activity was evaluated using xanthine oxidase reduction method under in vitro environment. Subcutaneous and abdominal cancer were induced using CT-26 human colon cancer cells for the measurement of growth inhibition of cancer cells and differences in survival rate. Results : 1. Measurement of anti-oxidant activity of ginseng, Chinese and Korean cultivated wild ginseng, and natural wild ginseng samples showed concentration dependent anti-oxidant activity in HX/XOD system. Anti-oxidant activity showed drastic increase at 1mg/ml in all samples. 2. For the evaluation of growth inhibition of cancer cells after hypodermic implantation of CT-26 cancer cells in the peritoneal cavity of mice, Chinese and Korean cultivated wild ginseng and natural wild ginseng groups showed significant inhibition of tumor growth from the 12th day compared to the control group. Similar inhibitory effects were also shown on the 15th and 18th days. But there was no significant difference between the experiment groups. 3. For the observation of increase in survival rate of the natural wild ginseng group, CT-26 cancer cells were implanted in the peritoneal cavity of mice.

  8. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  9. Emerging nanotechnologies for cancer immunotherapy.

    Science.gov (United States)

    Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Founded on the growing insight into the complex cancer-immune system interactions, adjuvant immunotherapies are rapidly emerging and being adapted for the treatment of various human malignancies. Immune checkpoint inhibitors, for example, have already shown clinical success. Nevertheless, many approaches are not optimized, require frequent administration, are associated with systemic toxicities and only show modest efficacy as monotherapies. Nanotechnology can potentially enhance the efficacy of such immunotherapies by improving the delivery, retention and release of immunostimulatory agents and biologicals in targeted cell populations and tissues. This review presents the current status and emerging trends in such nanotechnology-based cancer immunotherapies including the role of nanoparticles as carriers of immunomodulators, nanoparticles-based cancer vaccines, and depots for sustained immunostimulation. Also highlighted are key translational challenges and opportunities in this rapidly growing field.

  10. ADAM10 as a target for anti-cancer therapy.

    Science.gov (United States)

    Moss, Marcia L; Stoeck, Alexander; Yan, Wenbo; Dempsey, Peter J

    2008-02-01

    There is a great unmet medical need in the area of cancer treatment. A potential therapeutic target for intervention in cancer is ADAM10. ADAM10 is a disintegrin-metalloproteinase that processes membrane bound proteins from the cell surface to yield soluble forms. Pharmaceutical companies are actively seeking out inhibitors of ADAM10 for treatments in cancer as the enzyme is known to release the ErbB receptor, HER2/ErbB2 from the cell membrane, an event that is necessary for HER2 positive tumor cells to proliferate. ADAM10 is also capable of processing betacellulin indicating that an inhibitor could be used against EGFR/ErbB1 and/or HER4/ErbB4 receptor positive tumor cells that are betacellulin-dependent. ADAM10 is the principle sheddase for several other molecules associated with cancer proliferation, differentiation, adhesion and migration such as Notch, E-cadherin, CD44 and L1 adhesion molecule indicating that targeting ADAM10 with specific inhibitors could be beneficial. PMID:18289051

  11. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ram Kumar, Ram Mohan, E-mail: rkumar@research.balgrist.ch; Fuchs, Bruno [Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008 (Switzerland)

    2015-05-13

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.

  12. Human recombinant RNASET2: A potential anti-cancer drug

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  13. Hypoallergenic molecules for subcutaneous immunotherapy.

    Science.gov (United States)

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field. PMID:26558320

  14. Hypoallergenic molecules for subcutaneous immunotherapy

    DEFF Research Database (Denmark)

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus...... on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field....

  15. Hypoallergenic molecules for subcutaneous immunotherapy.

    Science.gov (United States)

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field.

  16. Characterization of a novel anti-cancer compound for astrocytomas.

    Directory of Open Access Journals (Sweden)

    Sang Y Lee

    Full Text Available The standard chemotherapy for brain tumors is temozolomide (TMZ, however, as many as 50% of brain tumors are reportedly TMZ resistant leaving patients without a chemotherapeutic option. We performed serial screening of TMZ resistant astrocytoma cell lines, and identified compounds that are cytotoxic to these cells. The most cytotoxic compound was an analog of thiobarbituric acid that we refer to as CC-I. There is a dose-dependent cytotoxic effect of CC-I in TMZ resistant astrocytoma cells. Cell death appears to occur via apoptosis. Following CC-I exposure, there was an increase in astrocytoma cells in the S and G2/M phases. In in vivo athymic (nu/nu nude mice subcutaneous and intracranial tumor models, CC-I completely inhibited tumor growth without liver or kidney toxicity. Molecular modeling and enzyme activity assays indicate that CC-I selectively inhibits topoisomerase IIα similar to other drugs in its class, but its cytotoxic effects on astrocytoma cells are stronger than these compounds. The cytotoxic effect of CC-I is stronger in cells expressing unmethylated O6-methylguanine methyltransferase (MGMT but is still toxic to cells with methylated MGMT. CC-I can also enhance the toxic effect of TMZ on astrocytoma when the two compounds are combined. In conclusion, we have identified a compound that is effective against astrocytomas including TMZ resistant astrocytomas in both cell culture and in vivo brain tumor models. The enhanced cytotoxicity of CC-I and the safety profile of this family of drugs could provide an interesting tool for broader evaluation against brain tumors.

  17. Molecular network profiling of U373MG human glioblastoma cells following induction of apoptosis by novel marine-derived anti-cancer 1,2,3,4-tetrahydroisoquinoline alkaloids

    OpenAIRE

    Tabunoki Hiroko; Saito Naoki; Suwanborirux Khanit; Charupant Kornvika; Satoh Jun-ichi

    2012-01-01

    Abstract Background Glioblastoma is the most aggressive form of brain tumors showing resistance to treatment with various chemotherapeutic agents. The most effective way to eradicate glioblastoma requires the concurrent inhibition of multiple signaling pathways and target molecules involved in the progression of glioblastoma. Recently, we obtained a series of 1,2,3,4-tetrahydroisoquinoline alkaloids with potent anti-cancer activities, including ecteinascidin-770 (ET-770; the compound 1a) and ...

  18. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    Science.gov (United States)

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound m

  19. Immunotherapy and immunoescape in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNy in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.

  20. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André;

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  1. Lesson Learned from Nature for the Development of Novel Anti-Cancer Agents: Implication of Isoflavone, Curcumin, and their Synthetic Analogs

    OpenAIRE

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Padhye, Subhash

    2010-01-01

    In recent years, naturally occurring dietary compounds have received greater attention in the field of cancer prevention and treatment research. Among them, isoflavone genistein and curcumin are very promising anti-cancer agents because of their non-toxic and potent anti-cancer properties. However, it is important to note that the low water solubility, poor in vivo bioavailability and unacceptable pharmacokinetic profile of these natural compounds limit their efficacy as anti-cancer agents fo...

  2. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    Science.gov (United States)

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media. PMID:27220801

  3. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    Science.gov (United States)

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  4. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Michael G. Morash

    2011-09-01

    The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 μg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 μg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 μM; ∼64 μg/ml and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf embryos immediately after exposure to 1 μM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 μM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours with higher lethal doses (≥5 μM. Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer-selective agents

  5. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent

    Science.gov (United States)

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    Aim: The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Background: Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. Patients and methods: In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. Results: A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. Conclusion: According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport. PMID:27458512

  6. Blockade of the B7-H1/PD-1 Pathway for Cancer Immunotherapy

    Science.gov (United States)

    Flies, Dallas B.; Sandler, Britt J.; Sznol, Mario; Chen, Lieping

    2011-01-01

    The aim of cancer immunotherapy is to treat malignant disease by inducing or enhancing cancer specific immune responses. With the identification of tumor-associated antigens (TAAs) in the 1990s, cancer immunotherapy research largely focused on inducing immune responses against TAAs but achieved limited success. More recently, the underlying mechanisms and molecular pathways that cancers manipulate to subvert immune-mediated destruction have been identified, including a set of molecules with potent coinhibitory functions. Coinhibitory molecules are expressed on the surface of immune cells, cancer cells, and stromal cells and negatively regulate immune responses to cancer. In particular, one of these ligand-receptor coinhibitory interactions, B7-H1/PD-1, is critical for modulating immune responses to cancer. This knowledge led to the design of revolutionary new immunotherapeutics based on the manipulation of these molecular pathways. Monoclonal antibodies (mAbs) are the primary immunotherapeutic modality used to promote immune function via antagonism or agonism of inhibitory or stimulatory molecular pathways, respectively. Here, we review current knowledge on the function of the B7-H1/PD-1 pathway in mice and humans, its role in the subversion of immune responses in cancer, and clinical evidence that mAb targeting of this pathway results in profound immune anti-cancer effects. PMID:22180678

  7. Engineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy

    Science.gov (United States)

    Lee, Bo-Ram; Ko, Ho Kyung; Ryu, Ju Hee; Ahn, Keum Young; Lee, Young-Ho; Oh, Se Jin; Na, Jin Hee; Kim, Tae Woo; Byun, Youngro; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Jeewon

    2016-01-01

    Efficient delivery of tumor-specific antigens (TSAs) to lymph nodes (LNs) is essential to eliciting robust immune response for cancer immunotherapy but still remains unsolved. Herein, we evaluated the direct LN-targeting performance of four different protein nanoparticles with different size, shape, and origin [Escherichia coli DNA binding protein (DPS), Thermoplasma acidophilum proteasome (PTS), hepatitis B virus capsid (HBVC), and human ferritin heavy chain (hFTN)] in live mice, using an optical fluorescence imaging system. Based on the imaging results, hFTN that shows rapid LN targeting and prolonged retention in LNs was chosen as a carrier of the model TSA [red fluorescence protein (RFP)], and the flexible surface architecture of hFTN was engineered to densely present RFPs on the hFTN surface through genetic modification of subunit protein of hFTN. The RFP-modified hFTN rapidly targeted LNs, sufficiently exposed RFPs to LN immune cells during prolonged period of retention in LNs, induced strong RFP-specific cytotoxic CD8+ T cell response, and notably inhibited RFP-expressing melanoma tumor growth in live mice. This suggests that the strategy using protein nanoparticles as both TSA-carrying scaffold and anti-cancer vaccine holds promise for clinically effective immunotherapy of cancer. PMID:27725782

  8. Stable polymer micelle systems as anti-cancer drug delivery carriers

    Science.gov (United States)

    Zeng, Yi

    2005-07-01

    Several temporarily stable polymer micelle systems that might be used as ultrasonic-activated drug delivery carriers were synthesized and investigated. These polymeric micelle systems were PlurogelRTM, Tetronic RTM, poly(ethylene oxide)-b-poly(N-isopropylacrylamide) and poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n). In previous work in our lab, Pruitt et al. developed a stabilized drug carrier named PlurogelRTM [5, 6]. Unfortunately, the rate of the successful PlurogelRTM synthesis was only about 30% by simply following Pruitt's process. In this work, this rate was improved to 60% by combining the process of adding 0.15 M NaCl and/or 10 mul/ml n-butanol and by preheating the solution before polymerization. TetronicsRTM were proved not to be good candidates to form temporarily stable polymeric micelle system by polymerizing interpenetrating networks inside their micelle cores. Tetronic micelle systems treated by this process still were not stable at concentrations below their critical micelle concentration (CMC). Poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-N,N-bis(acryloyl)cystamine micelle-like nanoparticles were developed and characterized. When the N,N-bis(acryloyl)cystamine (BAC) was from 0.2 wt% to 0.75 wt% of the mass of poly(N-isopropylacrylamide), diameters of the nanoparticles at 40°C were less than 150 nm. The cores of the nanoparticles were hydrophobic enough to sequester 1,6-diphenylhexatriene (DPH) and the anti-cancer drug doxorubicin (DOX). Nanoparticles with 0.5 wt% BAC stored at room temperature in 0.002 mg/ml solutions were stable for up to two weeks. Poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n) micelle systems were synthesized and characterized. The degree of polymerization of lactate side group, n, was 3 or 5. The copolymers with N-isopropylacrylamide:2-hydroxyethyl methacrylate-lactate3: poly(ethylene oxide) (NIPAAm:HEMA-lactate 3:PEO) ratios of

  9. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology.

    Science.gov (United States)

    Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei

    2016-01-01

    Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin's molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718

  10. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology

    Science.gov (United States)

    Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei

    2016-01-01

    Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718

  11. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    Science.gov (United States)

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy. PMID:26469159

  12. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    Science.gov (United States)

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy.

  13. Possibility as an anti-cancer drug of astemizole: Evaluation of arrhythmogenicity by the chronic atrioventricular block canine model.

    Science.gov (United States)

    Izumi-Nakaseko, Hiroko; Nakamura, Yuji; Cao, Xin; Wada, Takeshi; Ando, Kentaro; Sugiyama, Atsushi

    2016-06-01

    Since astemizole in an oral dose of 50 mg/kg/day was recently reported to exert anti-cancer effect in mice, we evaluated its proarrhythmic potential using the atrioventricular block dogs in order to clarify its cardiac safety profile. An oral dose of 3 mg/kg prolonged the QT interval without affecting the QTc (n = 4), whereas that of 30 mg/kg increased the short-term variability of repolarization and induced premature ventricular contractions in each animal, resulting in the onset of torsade de pointes in 1 animal (n = 4). Thus, proarrhythmic dose of astemizole would be lower than anti-cancer one, limiting its re-profiling as an anti-cancer drug. PMID:27262902

  14. Immunotherapy Treatments of Warm Autoimmune Hemolytic Anemia

    Directory of Open Access Journals (Sweden)

    Bainan Liu

    2013-01-01

    Full Text Available Warm autoimmune hemolytic anemia (WAIHA is one of four clinical types of autoimmune hemolytic anemia (AIHA, with the characteristics of autoantibodies maximally active at body temperature. It produces a variable anemia—sometimes mild and sometimes severe. With respect to the absence or presence of an underlying condition, WAIHA is either idiopathic (primary or secondary, which determines the treatment strategies in practice. Conventional treatments include immune suppression with corticosteroids and, in some cases, splenectomy. In recent years, the number of clinical studies with monoclonal antibodies and immunosuppressants in the treatment of WAIHA increased as the knowledge of autoimmunity mechanisms extended. This thread of developing new tools of treating WAIHA is well exemplified with the success in using anti-CD20 monoclonal antibody, Rituximab. Following this success, other treatment methods based on the immune mechanisms of WAIHA have emerged. We reviewed these newly developed immunotherapy treatments here in order to provide the clinicians with more options in selecting the best therapy for patients with WAIHA, hoping to stimulate researchers to find more novel immunotherapy strategies.

  15. 含黄酮类中药的抗癌抗肿瘤作用研究概况%The General Research on Effects of Flavonoids Ingredients of Chinese Herbs on Anti-cancer

    Institute of Scientific and Technical Information of China (English)

    王博

    2012-01-01

    黄酮类化合物是自然界中广泛存在的一大类化合物,具有多种多样的生物学活性,其抗癌抗肿瘤作用是目前的研究热点,它在中草药中分布,引来国内外学者对中草药中黄酮类成分的研究兴趣,发现其抗癌抗肿瘤作用与抗氧化、抗自由基、抑制癌细胞生长、抗致癌因子、调节免等作用相关.中草药中白花蛇舌草、陈皮、黄芩、夏枯草、半枝莲等含有较高的黄酮类成分,本文将对中草药中黄酮类成分的抗癌抗肿瘤作用进介绍.%Flavonoids is widespread compounds with various biological activities, its anti-cancer effects are the research hot-spot recently. It also has been greatly impressed by considerable domestic and foreign scientists due to the bioactivities of Flavonoids ingredients of Chinese herbs on anti-cancer. Its anti-cancer effect relates to antioxidation, inhibiting proliferation, anti-cancerigenic factor, mediated immune. Flavonoids distribute in many Chinese herbs, such as Hedyotis diffusa, Citrus, Scutellaria, Common Selfheal Fruit-Spike, Sculellaria barbata. This article introduces the effects of Flavonoids ingredients of Chinese herbs on anti-cancer.

  16. [Cancer immunotherapy by immuno-checkpoint blockade].

    Science.gov (United States)

    Kawakami, Yutaka

    2015-10-01

    As cancer immunotherapies utilizing anti-tumor T-cell responses, immuno-checkpoint blockade and adoptive T-cell immunotherapy have recently achieved durable responses even in advanced cancer patients with metastases. Administration of antibodies on the T-cell surface, CTLA-4 and PD-1 (or PD-1 ligand PD-L1), resulted in tumor regression of not only melanoma and renal cell cancer which were known to be relatively sensitive to immunotherapy, but also various malignancies including lung, bladder, ovarian, gastric, and head and neck cancers, as well as hematological malignancies such as Hodgkin and B-cell malignant lymphomas. These findings have changed the status of immunotherapy in the development of cancer treatments. Currently, development of combinations employing cancer immunotherapy with immuno-checkpoint blockade, as well as personalized cancer immunotherapy based on the evaluation of pretreatment immune status, are in progress.

  17. Experimental studies of tumor immunotherapy. II. Tumor immunotherapy following tumor extirpation

    Directory of Open Access Journals (Sweden)

    Hayashi,Shigeo

    1976-06-01

    Full Text Available In order to approach human cancer immunotherapy, the author carried out the immunotherapy with BCG on mice having homotransplanted cancer, observed the posttransplantation results with lapse of time, conduced daily macrophage inhibition test (MI test and found the immunotherapy to be effective. At the same time the MI test proved to be a useful criterion in determining the course of cancer progress and effectiveness of the immunotherapy.

  18. Interleukin-2 based immunotherapy in patients with metastatic renal cell carcinoma

    DEFF Research Database (Denmark)

    Donskov, Frede

    2007-01-01

    - or intermediate dose IL-2 based immunotherapy in an outpatient setting. As monitoring of the Danish patients, 443 serial blood samples and 225 serial tumor core biopsies were obtained. The regimen of outpatient low-dose subcutaneous IL-2 and IFN-alpha in mRCC is safe and active. In the Danish patients...... were harmful for the outcome of IL-2 based immunotherapy. In progressing patients, the leukocyte subsets in blood and tumor tissue remained unaffected by cytokine therapy. The fate of a patient with mRCC prior to IL-2 and IFN-alpha based immunotherapy cannot be determined by measuring baseline tumor...

  19. Lentiviral vectors in cancer immunotherapy.

    Science.gov (United States)

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  20. Emerging immunotherapy in pediatric lymphoma.

    Science.gov (United States)

    Erker, Craig; Harker-Murray, Paul; Burke, Michael J

    2016-01-01

    Hodgkin and non-Hodgkin lymphoma collectively are the third most common cancer diagnosed in children each year. For children who relapse or have refractory disease, outcomes remain poor. Immunotherapy has recently emerged as a novel approach to treat hematologic malignancies. The field has been rapidly expanding over the past few years broadening its armamentarium which now includes monoclonal antibodies, antibody-drug conjugates and cellular therapies including bispecific T-cell engagers and chimeric antigen receptor-engineered T cells. Many of these agents are in their infancy stages and only beginning to make their mark on lymphoma treatment while others have begun to show promising efficacy in relapsed disease. In this review, the authors provide an overview of current and emerging immunotherapies in the field of pediatric lymphoma. PMID:26616565

  1. Defining the critical hurdles in cancer immunotherapy

    DEFF Research Database (Denmark)

    Fox, Bernard A; Schendel, Dolores J; Butterfield, Lisa H;

    2011-01-01

    immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation...... of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical...

  2. New routes for allergen immunotherapy

    OpenAIRE

    Johansen, Pål; von Moos, Seraina; Mohanan, Deepa; Kündig, Thomas M.; Senti, Gabriela

    2012-01-01

    IgE-mediated allergy is a highly prevalent disease in the industrialized world. Allergen-specific immunotherapy (SIT) should be the preferred treatment, as it has long lasting protective effects and can stop the progression of the disease. However, few allergic patients choose to undergo SIT, due to the long treatment time and potential allergic adverse events. Since the beneficial effects of SIT are mediated by antigen presenting cells inducing Th1, Treg and antibody responses, whereas the a...

  3. New strategies for allergen immunotherapy.

    Science.gov (United States)

    Carnés, Jerónimo; Robinson, Douglas S

    2008-06-01

    Specific allergen immunotherapy, consisting in the administration of increasing amounts of offending allergens into sensitive patients was first used nearly one hundred years ago and remains in use worldwide for treatment of allergic rhinitis and asthma. It has been recognised as the only effective treatment for type I allergic diseases when the appropriate quantities of allergens are used. The immunological mechanisms by which specific immunotherapy is effective include the modulation of T cells and the response of B-cells and is accompanied by significant decreases of specific IgE and increases in allergen specific IgG antibodies, mainly IgG4. While specific allergen injection immunotherapy is highly effective and the most common way of administration other routes such as oral or intranasal ways have been considered as and alternative to subcutaneous injections. During the last century, allergenic vaccines have been prepared using individual allergens adsorbed to different adjuvant substances. These vaccines have demonstrated efficacy and good results in different clinical trials. However, many novel approaches to allergen immunotherapy have been developed in the last years in order to increase the safety and efficacy of allergenic vaccines. In that way, different and modern vaccines have been prepared including more purified products such as depigmented allergen extracts; allergoids, consisting on big molecules of thousands of kDa, which contain all the individual allergens and show a significant decrease in severe adverse reactions; peptides or small aminoacid sequences; recombinant allergens; hypoallergenic vaccines where the IgE binding sites have been modified; or allergen-CpG fusion molecules. New presentations are under study and new treatments will be developed in the near future with the objective that the prevention of allergic disease may become a reality. The review article also discuss recent patent related to the field. PMID:19075996

  4. Immunotherapy for metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Ellebaek, Eva; Andersen, Mads Hald; Svane, Inge Marie;

    2012-01-01

    presents the most interesting strategies investigated so far: cancer vaccination including antigen-defined vaccination and dendritic cell vaccination, chemo-immunotherapy, and adoptive cell transfer. Future treatment options as well as the possibility of combining existing therapies will be discussed along......Although no immunotherapeutic treatment is approved for colorectal cancer (CRC) patients, promising results from clinical trials suggest that several immunotherapeutic strategies may prove efficacious and applicable to this group of patients. This review describes the immunogenicity of CRC and...

  5. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  6. Novel immunotherapies in lymphoid malignancies.

    Science.gov (United States)

    Batlevi, Connie Lee; Matsuki, Eri; Brentjens, Renier J; Younes, Anas

    2016-01-01

    The success of the anti-CD20 monoclonal antibody rituximab in the treatment of lymphoid malignancies provided proof-of-principle for exploiting the immune system therapeutically. Since the FDA approval of rituximab in 1997, several novel strategies that harness the ability of T cells to target cancer cells have emerged. Reflecting on the promising clinical efficacy of these novel immunotherapy approaches, the FDA has recently granted 'breakthrough' designation to three novel treatments with distinct mechanisms. First, chimeric antigen receptor (CAR)-T-cell therapy is promising for the treatment of adult and paediatric relapsed and/or refractory acute lymphoblastic leukaemia (ALL). Second, blinatumomab, a bispecific T-cell engager (BiTE(®)) antibody, is now approved for the treatment of adults with Philadelphia-chromosome-negative relapsed and/or refractory B-precursor ALL. Finally, the monoclonal antibody nivolumab, which targets the PD-1 immune-checkpoint receptor with high affinity, is used for the treatment of Hodgkin lymphoma following treatment failure with autologous-stem-cell transplantation and brentuximab vedotin. Herein, we review the background and development of these three distinct immunotherapy platforms, address the scientific advances in understanding the mechanism of action of each therapy, and assess the current clinical knowledge of their efficacy and safety. We also discuss future strategies to improve these immunotherapies through enhanced engineering, biomarker selection, and mechanism-based combination regimens. PMID:26525683

  7. Immunotherapy of Head and Neck Cancer: Current and Future Considerations

    Directory of Open Access Journals (Sweden)

    Alexander D. Rapidis

    2009-01-01

    Full Text Available Patients with head and neck squamous cell carcinoma (HNSCC are at considerable risk for death, with 5-year relative survival rates of approximately 60%. The profound multifaceted deficiencies in cell-mediated immunity that persist in most patients after treatment may be related to the high rates of treatment failure and second primary malignancies. Radiotherapy and chemoradiotherapy commonly have severe acute and long-term side effects on immune responses. The development of immunotherapies reflects growing awareness that certain immune system deficiencies specific to HNSCC and some other cancers may contribute to the poor long-term outcomes. Systemic cell-mediated immunotherapy is intended to activate the entire immune system and mount a systemic and/or locoregional antitumor response. The delivery of cytokines, either by single cytokines, for example, interleukin-2, interleukin-12, interferon-, interferon-, or by a biologic mix of multiple cytokines, such as IRX-2, may result in tumor rejection and durable immune responses. Targeted immunotherapy makes use of monoclonal antibodies or vaccines. All immunotherapies for HNSCC except cetuximab remain investigational, but a number of agents whose efficacy and tolerability are promising have entered phase 2 or phase 3 development.

  8. Dendritic-tumor fusion cells in cancer immunotherapy.

    Science.gov (United States)

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  9. Cancer immunotherapy: the beginning of the end of cancer?

    Science.gov (United States)

    Farkona, Sofia; Diamandis, Eleftherios P; Blasutig, Ivan M

    2016-05-05

    These are exciting times for cancer immunotherapy. After many years of disappointing results, the tide has finally changed and immunotherapy has become a clinically validated treatment for many cancers. Immunotherapeutic strategies include cancer vaccines, oncolytic viruses, adoptive transfer of ex vivo activated T and natural killer cells, and administration of antibodies or recombinant proteins that either costimulate cells or block the so-called immune checkpoint pathways. The recent success of several immunotherapeutic regimes, such as monoclonal antibody blocking of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD1), has boosted the development of this treatment modality, with the consequence that new therapeutic targets and schemes which combine various immunological agents are now being described at a breathtaking pace. In this review, we outline some of the main strategies in cancer immunotherapy (cancer vaccines, adoptive cellular immunotherapy, immune checkpoint blockade, and oncolytic viruses) and discuss the progress in the synergistic design of immune-targeting combination therapies.

  10. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

    Science.gov (United States)

    Swift, Stephanie L.; Stojdl, David F.

    2016-01-01

    Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system. PMID:26861383

  11. Biologic Therapy (Immunotherapy) for Kidney Cancer

    Science.gov (United States)

    ... for kidney cancer Targeted therapies for kidney cancer Biologic therapy (immunotherapy) for kidney cancer Chemotherapy for kidney cancer Pain control for kidney cancer Treatment choices by stage for ...

  12. Anti-Cancer Effect of Angelica Sinensis on Women’s Reproductive Cancer

    Directory of Open Access Journals (Sweden)

    Hong-Hong Zhu

    2012-06-01

    Full Text Available Objective: Danggui, the root of Angelica Sinensis, has traditionally been used for the treatment of women’s reproductive disorders in China for thousands of years. This study was to determine whether Danggui have potential anti-cancer effect on women’s cancer and its potential mechanism. Methods: Danggui was extracted by ethanol. The Cell Titer 96® Aqueous Non-Radioactive Cell Proliferation Assay was used to compare the effects of Danggui on human breast (MCF-7 and 7368 and cervical (CaSki and SiHa cancer cells with its effects on normal fibroblasts (HTB-125. A revised Ames test was used to test for antimutagenicity. The standard strains of Salmonella typhimarium (TA 100 and 102 were used in the test. Methyl methane sulfonate (MMS and UV light were used as positive mutagen controls and ethanol and double distilled water (DDW as controls. The SAS statistical software was used to analyze the data. Results: Danggui was found to be much more toxic to all cancer cell lines tested than to normal fibroblasts. There was a significant negative dose-effect relationship between Danggui and cancer cell viability. Average viability of MCF-7 was 69.5%, 18.4%, 5.7%, 5.7%, and 5.0% of control for Danggui doses 0.07, 0.14, 0.21, 0.32, and 0.64 ug/ul, respectively, with a Ptrend < 0.0001. Half maximal inhibitory dose (ID50 of Danggui for cancer cell lines MCF-7, CaSki, SiHa and CRL-7368 was 0.10, 0.09, 0.10 and 0.07 ug/ul, Functional Foods in Health and Disease 2012, 2(6:242-250respectively. For the normal fibroblasts, ID50 was 0.58 ug/ul. At a dose of 0.32 ug/ul, Danggui killed over 90% of the cells in each cancer cell line, but at the same dose, only 12.3 % of the normal HTB-125 cells were killed. Revertants per plate of TA 100 decreased with the introduction of increasing doses of Danggui extracts with a Ptrend < 0.0001 when UV light was used as a mutagen. There was no difference in revertants per plate between ethanol and DDW control groups. Conclusions

  13. Immunotherapy for B-cell lymphoma: current status and prospective advances.

    Science.gov (United States)

    Hollander, Nurit

    2012-01-01

    Therapy for non-Hodgkin's lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radio labeled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect. PMID:22566889

  14. Immunotherapy for B-cell lymphoma: current status and prospective advances

    Directory of Open Access Journals (Sweden)

    Nurit eHollander

    2012-01-01

    Full Text Available Therapy for non-Hodgkin's lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radiolabelled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect.

  15. Development of a Novel Anti-HIF-1α Screening System Coupled with Biochemical and Biological Validation for Rapidly Selecting Potent Anti-Cancer Compounds.

    Science.gov (United States)

    Lu, Yi; Madu, Chikezie; Masters, Jordan; Lu, Andrew; Li, Liyuan

    2014-01-01

    Breast cancer (BCa) is the most diagnosed cancer and the second leading cause of cancer death in the American women. Adaptation to the hypoxic environment seen in solid tumors is critical for tumor cell survival and growth. The activation of hypoxia inducible factor-1 alpha (HIF-1α), an important master transcriptional factor that is induced and stabilized by intratumoral hypoxia, stimulates a group of HIF-1α-regulated genes including vascular endothelial growth factor (VEGF), leading tumor cells towards malignant progression. Therefore, a promising therapeutic approach to cancer treatment is to target HIF-1α. The goal of this project was to develop and validate a screening system coupled with secondary screen/validation process that has the capability to screen large numbers of potential anti-cancer small-molecule compounds based on their anti-HIF-1α activities. Breast cancer MDA-231 cells were used as the model to select potent anti-HIF-1α compounds by their abilities to inhibit transactivation of a VEGF promoter fused to a luciferase reporter gene under hypoxia. Positive compounds were then validated by a series of assays that confirm compounds' anti-HIF-1α activities including measurement of HIF-1α downstream VEGF gene expression and angiogenic ability of BCa cells. Results of our pilot screening demonstrate that this prototype screening coupled with validation system can effectively select highly potent anti-HIF-1α agents from the compound library, suggesting that this prototype screen system has the potential to be developed into a high-throughput screen (HTS) coupled with automated validation process for the screening and identification of novel and effective anti-cancer drugs based on anti-HIF-1α mechanism.

  16. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    Science.gov (United States)

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  17. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    Science.gov (United States)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  18. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  19. Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Ganesh Radhakrishnan

    2012-09-01

    Full Text Available Abstract Background Arachidonic acid metabolite, generated by cyclooxygenase (COX, is implicated in the colorectal cancer (CRC pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX pathway. Cancer cell viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2. Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if this process antagonizes the anti-cancer effect in colorectal cancer cells. Methods Three colorectal cancer cell lines (HCA7, HT-29 & LoVo expressing 5-LOX and different levels of COX-2 expression were used. The effects of aspirin (a non-selective COX inhibitor and rofecoxib (COX-2 selective on prostaglandin E2 (PGE2 and leukotriene B4 (LTB4 secretion were quantified by ELISA. Proliferation and viability were studied by quantifying double-stranded DNA (dsDNA content and metabolic activity. Apoptosis was determined by annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent substrate assay. Results COX inhibitors suppressed PGE2 production but enhanced LTB4 secretion in COX-2 expressing cell lines (P  Conclusions This study provides evidence of shunting between COX and 5-LOX pathways in the presence of unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors.

  20. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice

    Institute of Scientific and Technical Information of China (English)

    Pornprom Yoysungnoen; Ponthip Wirachwong; Chatchawan Changtam; Apichart Suksamrarn; Suthiluk Patumraj

    2008-01-01

    AIM: To determine the effect of tetrahydrocurcumin (THC) on tumor angiogenesis compared with curcumin (CUR) by using both in vitro and in vivo models of human hepatocellular carcinoma cell line (HepG2).METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay was used for testing the anti-proliferating activities of CUR and THC. In male BALB/c nude mice, 2 x 106 human HepG2 cells were inoculated onto a dorsal skin-fold chamber. One day after HepG2 inoculation, the experimental groups were fed oral daily with CUR or THC (300 mg/kg or 3000 mg/kg). On d 7, 14 and 21, the tumor microvasculature was observed using fluorescence videomicroscopy and capillary vascularity (CV) was measured.RESULTS: Pathological angiogenic features including microvascular dilatation, tortuosity, and hyper-permeability were observed. CUR and THC could attenuate these pathologic features. In HepG2-groups, the CV were significantly increased on d 7 (52.43%), 14 (69.17%), and 21 (74.08%), as compared to controls (33.04%,P < 0.001). Treatment with CUR and THC resulted in significant decrease in the CV (P < 0.005 and P < 0.001, respectively). In particular, the anti-angiogenic effects of CUR and THC were dose-dependent manner. However, the beneficial effect of THC treatment than CUR was observed, in particular, from the 21 d CV (44.96% and 52.86%, P < 0.05).CONCLUSION: THC expressed its anti-angiogenesis without any cytotoxic activities to HepG2 cells even at the highest doses. It is suggested that anti-angiogenic properties of CUR and THC represent a common potential mechanism for their anti-cancer actions.

  1. Immunotherapy of hematological malignancies using dendritic cells.

    Science.gov (United States)

    Van de Velde, Ann L R; Berneman, Zwi N; Van Tendeloo, Viggo F I

    2008-03-01

    The arsenal of therapeutic weapons against hematological malignancies is constantly growing. Unravelling the secrets of tumor immunobiology has allowed researchers to manipulate the immune system in order to stimulate tumor immunity or to bypass tumor-induced immunosuppression. An area of great interest is active specific immunotherapy where dendritic cell (DC)-based therapeutic vaccines for cancer have definitely grabbed the spotlight. DC are intensively investigated as cellular adjuvants to harness the immune system to fight off cancer by augmenting the number and effector functions of tumor-specific CD8+ cytotoxic T lymphocytes. In the present review we present a comprehensive synopsis and an update of the use of DC in hematological malignancies. In the future, more basic research as well as more clinical trials are warranted to fully establish the value of DC vaccination as an adjuvant therapy for modern hematological oncology. PMID:18390412

  2. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein;

    2014-01-01

    cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline...

  3. Nanochemistry-based immunotherapy for HIV-1.

    Science.gov (United States)

    Lori, F; Calarota, S A; Lisziewicz, J

    2007-01-01

    Highly active antiretroviral treatment (HAART), i.e. the combination of three or more drugs against human immunodeficiency virus type 1 (HIV-1), has greatly improved the clinical outcome of HIV-1-infected individuals. However, HAART is unable to reconstitute HIV-specific immunity and eradicate the virus. Several observations in primate models and in humans support the notion that cell-mediated immunity can control viral replication and slow disease progression. Thus, besides drugs, an immunotherapy that induces long-lasting HIV-specific T-cell responses could play a role in the treatment of HIV/AIDS. To induce such immune responses, DermaVir Patch has been developed. DermaVir consists of an HIV-1 antigen-encoding plasmid DNA that is chemically formulated in a nanoparticle. DermaVir is administered under a patch after a skin preparation that supports the delivery of the nanoparticle to Langerhans cells (LC). Epidermal LC trap and transport the nanomedicine to draining lymph nodes. While in transit, LC mature into dendritic cells (DC), which can efficiently present the DNA-encoded antigens to naïve T-cells for the induction of cellular immunity. Pre-clinical studies and Phase I clinical testing of DermaVir in HIV-1-infected individuals have demonstrated the safety and tolerability of DermaVir Patch. To further modulate cellular immunity, molecular adjuvants might be added into the nanoparticle. DermaVir Patch represents a new nanomedicine platform for immunotherapy of HIV/AIDS. In this review, the antiviral activity of DermaVir-induced cellular immunity is discussed. Furthermore, the action of some cytokines currently being tested as adjuvants are highlighted and the adjuvant effect of cytokine plasmid DNA included in the DermaVir nanoparticle is reviewed.

  4. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy.

    Science.gov (United States)

    Spranger, Stefani; Sivan, Ayelet; Corrales, Leticia; Gajewski, Thomas F

    2016-01-01

    Despite recent clinical advances in immunotherapy, a fraction of cancer patients fails to respond to these interventions. Evidence from preclinical mouse models as well as clinical samples has provided evidence that the extent of activated T cell infiltration within the tumor microenvironment is associated with clinical response to immunotherapies including checkpoint blockade. Therefore, understanding the molecular mechanisms mediating the lack of T cell infiltration into the tumor microenvironment will be instrumental for the development of new therapeutic strategies to render those patients immunotherapy responsive. Recent data have suggested that major sources of intersubject heterogeneity include differences in somatic mutations in specific oncogene pathways between cancers of individual subjects and also environmental factors including commensal microbial composition. Successful identification of such causal factors should lead to new therapeutic approaches that may facilitate T cell entry into noninflamed tumors and expand the fraction of patients capable of responding to novel immunotherapies.

  5. Preparation of RGD-modified Long Circulating Liposome Loading Matrine, and its in vitro Anti-cancer Effects

    Directory of Open Access Journals (Sweden)

    Xiao-yan Liu, Li-ming Ruan, Wei-wei Mao, Jin-Qiang Wang, You-qing Shen, Mei-hua Sui

    2010-01-01

    Full Text Available Aim: To prepare RGD-modified long circulating liposome (LCL loading matrine (RGD-M-LCL to improve the tumor-targeting and efficacy of matrine. Methods: LCL which was prepared with HSPC, cholesterol, DSPE-PEG2000 and DSPE-PEG-MAL was modified with an RGD motif confirmed by high performance liquid chromatography (HPLC. The encapsulation efficiency of RGD-M-LCL was also detected by HPLC. MTT assay was used to examine the effects of RGD-M-LCL on the proliferation of Bcap-37, HT-29 and A375 cells. The percentage of apoptotic cells and morphological changes in Bcap-37 cells treated with RGD-M-LCL were detected by Annexin-V-FITC/PI affinity assay and observed under light microscope, respectively. Results: Spherical or oval single-chamber particles of uniform sizes with little agglutination or adhesion were observed under transmission electronic microscope. The RGD motif was successfully coupled to the DSPE-PEG-MAL on liposomes, as confirmed by HPLC. An encapsulation efficiency of 83.13% was obtained when the drug-lipid molar ratio was 0.1, and the encapsulation efficiency was negatively related to the drug-lipid ratio in the range of 0.1~0.4, and to the duration of storage. We found that, compared with free matrine, RGD-M-LCL had much stronger in vitro activity, leading to anti-proliferative and pro-apoptotic effects against cancer cells (P<0.01. Conclusion: RGD-M-LCL, a novel delivery system for anti-cancer drugs, was successfully prepared, and we demonstrated that the use of this material could augment the effects of matrine on cancer cells in vitro.

  6. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation.

    Science.gov (United States)

    Pandey, Harshita; Pandey, Pallavi; Singh, Sailendra; Gupta, Ruby; Banerjee, Suchitra

    2015-03-01

    Betulinic acid (BA), a pentacyclic triterpenoid, is gaining unmatched attention owing to its unique anti-cancer activity with selective melanoma growth inhibition without damaging normal cells. It is also well-known for its multifaceted pharmacokinetics, entailing antibacterial, antimalarial, anti-HIV and antioxidant merits. Considering the escalating demand with diminishing bioresource of this molecule, the present study was undertaken that revealed the untapped potentials of Ocimum calli, contrasting to that in the in vitro derived leaves, as effective production alternative of BA in three out of four tested species (i.e. Ocimum basilicum, Ocimum kilimandscharicum, Ocimum sanctum excluding Ocimum grattisimum). Callus inductions were obtained in all the four species with different 2,4-dichlorophenoxyacetic acid (2,4-D)/α-naphthaleneacetic acid (NAA) concentrations with kinetin. Notably, 2,4-D favoured maximum callus growth in all whereas NAA proved beneficial for the highest metabolite yield in the calli of each BA-producing species. The O. basilicum calli demonstrated the maximum growth (growth index (GI) 678.7 ± 24.47) and BA yield (2.59 ± 0.55 % dry weight [DW]), whereas those in O. kilimandscharicum (GI 533.33 ± 15.87; BA 1.87 ± 0.6 % DW) and O. sanctum (GI 448 ± 16.07; BA 0.39 ± 0.12 % DW) followed a descending order. The O. gratissimum calli revealed minimum growth (GI 159 ± 13.25) with no BA accumulation. Elicitation with methyl jasmonate at 200-μM concentration after 48-h exposure doubled the BA yield (5.10 ± 0.18 % DW) in NAA-grown O. basilicum calli compared to that in the untreated counterpart (2.61 ± 0.19 % DW), which further enthused its future application. PMID:25308098

  7. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  8. Overview of Cellular Immunotherapy for Patients with Glioblastoma

    Directory of Open Access Journals (Sweden)

    Elodie Vauleon

    2010-01-01

    Full Text Available High grade gliomas (HGG including glioblastomas (GBM are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.

  9. THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 5, NO. 2, pp. 88-91, May, 2015 Isolation of an Anti-Cancer Asperuloside from Hedyotis corymbosa L.

    OpenAIRE

    Nina Artanti; Muhammad Hanafi; Rina Andriyani; Vienna Saraswati; Zalinar Udin; Puspa D. Lotulung; Ken Ichi Fujita; Yoshinosuke Usuki

    2015-01-01

    Hedyotis corymbosa L., with local name rumput mutiara, is an anti-inflammatory, anti-cancer and hepatoprotective traditional medicine. The ethanol extract of H. corymbosa L. shows inhibitory activity to humanYMB-1 breast cancer cell line with an IC50 of 6.51 μg/mL. The methylene chloride fraction shows a potential cytotoxic activity with an IC50 of 2.75 μg/mL. To obtain a lead compound, the extract was further purified by column chromatography. A pure compound is obtained which shows inhibito...

  10. 用抗独特型疫苗主动免疫治疗鼻咽癌病人的临床研究%A clinical trial of active immunotherapy with anti-idiotypic vaccine in nasopharyngeal carcinoma patients

    Institute of Scientific and Technical Information of China (English)

    李官成; 谢鹭; 周国华; 孙去病; 符红普; 周建华

    2002-01-01

    Objective To investigate the effect of active immunotherapy with anti-idiotypic vaccine in patients with nasopharyngeal carcinoma (NPC). Methods Anti-idiotypic antibodies (2H4/5D3) bearing the internal image of the NPC antigen were used in active immunotherapy in NPC patients receiving radiotherapy. Antibodies and cytokine levels in patient sera were determined using ELISA before and after active immunotherapy. IL-2 mRNA expression in the peripheral blood mononuclear cells (PBMC) was measured by in situ hybridization. Results Nineteen patients with NPC at stage Ⅳ were treated with alum-precipitated 2H4 or 5D3. Neither hypersensitivity nor adverse side effects were observed. The levels of anti-anti-idiotypic antibodies (Ab3) and anti-NPC antibodies (Ab1') were increased. Human anti-mouse antibodies (HAMA) were seen in 19 patients of the experimental group; the levels of Ab1' did not increse in the control group. Serum IL-2, IFN-γ and TNF-α levels were increased in most patients in the experimental group, while no differences were observed in Ab1' and cytokine levels between pre- and post-therapy in the control group. In addition, IL-2 mRNA expression in PBMCs from NPC patients was closely related to serum IL-2 (r=+0.8829) levels by in situ hybridization. Conclusions Anti-idiotype vaccine is safe for clinical active immunotherapy. Anti-idiotypic vaccine might be able to enhance humoral and/or cellular immunity in NPC patients receiving radiotherapy.%目的探讨抗独特型疫苗主动免疫治疗鼻咽癌病人的抗肿瘤效应.方法用两株具有鼻咽癌相关抗原内影像的抗独特型单克隆抗体2H4、5D3,经氢氧化铝凝胶沉淀法制备成抗独特型疫苗Alum-2H4、Alum-5D3,对19例晚期鼻咽癌放疗病人作主动免疫治疗,9例放疗加生理盐水注射为对照组.用ELISA检测治疗前后病人血清抗体和细胞因子水平.用原位Northern杂交检测外周血单个核细胞(PBMC)IL-2 mRNA的表达.结果接受Alum-2H4

  11. Cancer immunotherapy and immunological memory.

    Science.gov (United States)

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

      Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy. PMID:27181230

  12. Cancer immunotherapy and immunological memory.

    Science.gov (United States)

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

      Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  13. Allergen specific immunotherapy in nasobronchial allergy.

    Directory of Open Access Journals (Sweden)

    Joshi S

    2003-12-01

    Full Text Available BACKGROUND: More than one antigen has been used for immunotherapy of allergic disorders. So far less than five antigens have been employed with variable results. AIM: To evaluate effect of multiple antigens up to six in the immunotherapy of nasobronchial allergy. SETTING AND DESIGN: Based on clinical history, symptoms present for at least 3 years with set criteria of immunomodulation for asthma and rhinitis: documented IgE mediated asthma and rhinitis, failure in allergen avoidance and moderate to severe clinical manifestations. MATERIAL AND METHODS: Five hundred cases of various allergic disorders attending allergy clinic of Bombay hospital were screened. Allergen specific immunotherapy was initiated in 131 subjects (56 -rhinitis and 75 asthma with prior consent. Patients suffering from allergic disorders secondary to diseases or drug therapy were excluded. Multiple allergen immunotherapy was given at specific intervals up to a period of one year. Allergen extracts were prepared as per standard technique. For statistical analysis "students′t test" was used. RESULTS AND CONCLUSIONS: Significant improvement in PEFR, reduction in skin sensitivity to allergens used in immunotherapy formulation and symptomatic relief without any untoward reaction show that multiple allergen immunotherapy is as effective as monoallergen immunotherapy in nasobronchial allergy.

  14. Novel Approaches to Pediatric Cancer: Immunotherapy

    Directory of Open Access Journals (Sweden)

    Payal A. Shah

    2015-06-01

    Full Text Available From the early 20th century, immunotherapy has been studied as a treatment modality for cancers, including in children. Since then, developments in monoclonal antibodies and vaccine therapies have helped to usher in a new era of cancer immunotherapeutics. However, efficacy of these types of therapies has been limited, mostly in part due to low tumor immunogenicity, cancer escape pathways, and toxicities. As researchers investigate the cellular and molecular components of immunotherapies, mechanisms to improve tumor specificity and overcome immune escape have been identified. The goal of immunotherapy now has been to modulate tumor escape pathways while amplifying the immune response by combining innate and adaptive arms of the immune system. Although several limiting factors have been identified, these recent advances in immunotherapy remain at the forefront of pediatric oncologic therapeutic trials. Immunotherapy is now coming to the forefront of precision treatment for a variety of cancers, with evidence that agents targeting immunosuppressive mechanisms for cancer progression can be effective therapy [1-3]. In this review, we review various types of immunotherapy, including the cellular biology, limitations, recent novel therapeutics, and the application of immunotherapy to pediatric oncology.

  15. H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S?

    Directory of Open Access Journals (Sweden)

    Kaium Ma

    Full Text Available BACKGROUND: S-propargyl-cysteine (SPRC, an H(2S donor, is a structural analogue of S-allycysteine (SAC. It was investigated for its potential anti-cancer effect on SGC-7901 gastric cancer cells and the possible mechanisms that may be involved. METHODS AND FINDINGS: SPRC treatment significantly decreased cell viability, suppressed the proliferation and migration of SPRC-7901 gastric cancer cells, was pro-apoptotic as well as caused cell cycle arrest at the G(1/S phase. In an in vivo study, intra-peritoneal injection of 50 mg/kg and 100 mg/kg of SPRC significantly reduced tumor weights and tumor volumes of gastric cancer implants in nude mice, with a tumor growth inhibition rate of 40-75%. SPRC also induced a pro-apoptotic effect in cancer tissues and elevated the expressions of p53 and Bax in tumors and cells. SPRC treatment also increased protein expression of cystathione-γ-lyase (CSE in cells and tumors, and elevated H(2S levels in cell culture media, plasma and tumoral CSE activity of gastric cancer-induced nude mice by 2, 2.3 and 1.4 fold, respectively. Most of the anti-cancer functions of SPRC on cells and tumors were significantly suppressed by PAG, an inhibitor of CSE activity. CONCLUSIONS: Taken together, the results of our study provide insights into a novel anti-cancer effect of H(2S as well as of SPRC on gastric cancer through inducing the activity of a new target, CSE.

  16. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.

    Science.gov (United States)

    Tran, Thanh-Huyen; Mattheolabakis, George; Aldawsari, Hibah; Amiji, Mansoor

    2015-09-01

    Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery.

  17. Immunotherapy of Metastases Enhances Subsequent Chemotherapy

    Science.gov (United States)

    Hanna, Michael G.; Key, Marc E.

    1982-07-01

    In many multimodal therapies of cancer, postsurgical chemotherapy is administered before immunotherapy for treatment of micrometastatic disease. This sequence may not be the most efficacious. Experiments in which strain 2 guinea pigs bearing syngeneic L10 hepatocarcinomas were given immunotherapy showed that infiltrating immune effector cells not only were tumoricidal but disrupted the characteristically compact structure of metastatic foci. When cytotoxic drugs were administered at the peak of this inflammatory response, the survival rate of the guinea pigs increased significantly. We conclude that postsurgical immunotherapy can enhance the effect of cytotoxic drugs administered subsequently.

  18. PMA-SiO2 catalyzed synthesis of indolo[2,3-c]quinolines as potent anti cancer agents.

    Science.gov (United States)

    Srihari, P; Padmabhavani, B; Ramesh, S; Bharath Kumar, Y; Singh, Ashita; Ummanni, R

    2015-06-01

    PMA-SiO2 catalyzed Pictet-Spengler reaction of aryl amine linked to C-3 of the indole and the aryl aldehydes was achieved. In the series of the synthesized compounds, 6b, 10b and 12b were found to be cytotoxic against prostate, lung, breast and cervical cancer cell lines selectively with no significant effect on the growth of the control fibroblast cell line NIH3T3. Further determining their cytotoxic potential we found that 10b and 12b show cell cycle arrest in DU145 prostate cancer cells indicating a role in cell cycle progression. Both the molecules showed effect on decreased phosphorylation of NF-κB on serine 536 residue which is strongly implicated in many different types of cancers. Taken together, the series of indoloquinolines elicit potent anti-cancer potential providing a mean for developing novel indoloquinoline based anti-cancer agents. PMID:25933593

  19. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  20. Allergen immunotherapy for allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dhami, Sangeeta; Nurmatov, Ulugbek; Roberts, Graham;

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Management of Allergic Rhinoconjunctivitis. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT...... in the management of allergic rhinoconjunctivitis. METHODS: We will undertake a systematic review, which will involve searching international biomedical databases for published, in progress and unpublished evidence. Studies will be independently screened against pre-defined eligibility criteria and critically...... appraised using established instruments. Data will be descriptively and, if possible and appropriate, quantitatively synthesised. CONCLUSION: The findings from this review will be used to inform the development of recommendations for EAACI's Guidelines on AIT....

  1. Targeting neoantigens for cancer immunotherapy.

    Science.gov (United States)

    Lu, Yong-Chen; Robbins, Paul F

    2016-07-01

    Studies first carried out in the 1980s have demonstrated murine T cells can recognize mutated gene products, known as neoantigens, and that these T cells are capable of mediating tumor rejection. The first human tumor antigens isolated in the early 1990s were the products of non-mutated genes expressed in a tissue-specific manner; subsequent studies have indicated that tumor-infiltrating lymphocytes that are cultured in vitro frequently recognize mutated gene products. In addition, correlative studies indicate that clinical responses to therapies involving the use of antibodies directed against checkpoint inhibitors such as CTLA-4 and PD-1 may be associated with mutational burden, providing indirect evidence that these responses may primarily be mediated by neoantigen-reactive T cells. The importance of neoantigen-reactive T cells may be elucidated by the results of ongoing and future studies aimed at leveraging information gained from mutational profiling to enhance the potency of immunotherapies.

  2. Advances in individual markers of interferon in anti-cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Chi Pan; Chenjing Zhang; Jianjin Huang

    2013-01-01

    Interferon (IFN) is a cytokine with various biological functions, including antivirus, immunoregulation and anti-tumor. It has been wildly used in many anti-cancer therapies, including malignant melanoma, hepatocellular carcinoma, ad-vanced renal-cell carcinoma, non-Hodgkin's lymphoma, chronic myelogenous leukemia and AIDS-related Kaposi's sarcoma. However, its effective dose is always very high, which may bring some serious side effects, nevertheless, not all patients can benefit from the IFN therapy. So a problem we have faced is that how to improve the efficiency and sensitivity of IFN? To solve this problem, many studies have been launched to find the effective prognostic factors and individual biomarkers for guiding the treatment better. In addition, further clarifying the anti-tumor mechanisms of IFN is benefit for explaining how the biomark-ers predict prognosis of patients. In recent studies, many IFN associated genes and proteins predicting sensitivity of IFN therapy have been found, which may associate with the progression of cancer, such as IFN regulatory factor (IRF), IFNAR2 mRNA, microRNA, IFITM-1. Some factors in peripheral blood are easier to detect and have the potential to been popularized in clinical practice, such as CD8high CD57+ lymphocyte levels in malignant melanoma, serum IFNAR2 mRNA in mCRC. This review briefly summarized the advances of antitumorally individual markers of IFN.

  3. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues

    Directory of Open Access Journals (Sweden)

    MunJu eKim

    2013-11-01

    Full Text Available Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  4. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    Science.gov (United States)

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications.

  5. Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea

    Directory of Open Access Journals (Sweden)

    Jin-Yi Wu

    2011-01-01

    Full Text Available Calvatia lilacina (CL, Pleurotus ostreatus (PO and Volvariella volvacea (VV are widely distributed worldwide and commonly eaten as mushrooms. In this study, cell viabilities were evaluated for a human colorectal adenocarcinoma cell line (SW480 cells and a human monocytic leukemia cell line (THP-1 cells. Apoptotic mechanisms induced by the protein extracts of PO and VV were evaluated for SW480 cells. The viabilities of THP-1 and SW480 cells decreased in a concentration-dependent manner after 24 h of treatment with the protein extracts of CL, PO or VV. Apoptosis analysis revealed that the percentage of SW480 cells in the SubG1 phase (a marker of apoptosis was increased upon PO and VV protein-extract treatments, indicating that oligonucleosomal DNA fragmentation existed concomitantly with cellular death. The PO and VV protein extracts induced reactive oxygen species (ROS production, glutathione (GSH depletion and mitochondrial transmembrane potential (ΔΨm loss in SW480 cells. Pretreatment with N-acetylcysteine, GSH or cyclosporine A partially prevented the apoptosis induced by PO protein extracts, but not that induced by VV extracts, in SW480 cells. The protein extracts of CL, PO and VV exhibited therapeutic efficacy against human colorectal adenocarcinoma cells and human monocytic leukemia cells. The PO protein extracts induced apoptosis in SW480 cells partially through ROS production, GSH depletion and mitochondrial dysfunction. Therefore, the protein extracts of these mushrooms could be considered an important source of new anti-cancer drugs.

  6. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates

    Science.gov (United States)

    Li, Fei; Zhou, Xiaofei; Zhou, Hongyu; Jia, Jianbo; Li, Liwen; Zhai, Shumei; Yan, Bing

    2016-01-01

    Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance. PMID:27467397

  7. RAS GTPase AS THE DRUG TARGET FOR ANTI-CANCER DESIGNING OF DRUG FROM TEMPLATE

    Directory of Open Access Journals (Sweden)

    A.S. Krishnapriya and P.K. Krishnan Namboori*

    2013-11-01

    Full Text Available Ras proteins in association with GTP and GDP act as a bio-molecular switch for signaling cell growth, cell survival and signal transduction. The presence of mutated Ras proteins is found to vary in different cancer types and the highest occurrence of about 90% is observed in pancreatic cancer. The Ras GTPase binding site is mainly involved in signal cell proliferation. Hence, this binding site has been considered as a major target. At the same time, targeting a specific protein and designing the drug molecule with respect to that is practically of no use as the target proteins are fast mutating. In this scenario, designing the template from the hot spot of proteins and fitting the template for all the target protein molecules seem to be a promising technique. The templates are initially screened on the basis of pharmacokinetic and pharmacodynamic requirements. Six templates are found to be satisfying conditions like IC50, lipophilic efficiency, ligand efficiency etc. and their efficiencies are compared with standard reference molecules. The computed enrichment factors support these templates to be leads for effective anti-cancer drugs subject to further in vitro and in vivo evaluation.

  8. Assessment of antimicrobial (host defense) peptides as anti-cancer agents.

    Science.gov (United States)

    Douglas, Susan; Hoskin, David W; Hilchie, Ashley L

    2014-01-01

    Cationic antimicrobial (host defense) peptides (CAPs) are able to kill microorganisms and cancer cells, leading to their consideration as novel candidate therapeutic agents in human medicine. CAPs can physically associate with anionic membrane structures, such as those found on cancer cells, causing pore formation, intracellular disturbances, and leakage of cell contents. In contrast, normal cells are less negatively-charged and are typically not susceptible to CAP-mediated cell death. Because the interaction of CAPs with cells is based on charge properties rather than cell proliferation, both rapidly dividing and quiescent cancer cells, as well as multidrug-resistant cancer cells, are targeted by CAPs, making CAPS potentially valuable as anti-cancer agents. CAPs often exist as families of peptides with slightly different amino acid sequences. In addition, libraries of synthetic peptide variants based on naturally occurring CAP templates can be generated in order to improve upon their action. High-throughput screens are needed to quickly and efficiently assess the suitability of each CAP variant. Here we present the methods for assessing CAP-mediated cytotoxicity against cancer cells (suspension and adherent) and untransformed cells (measured using the tritiated thymidine-release or MTT assay), and for discriminating between cell death caused by necrosis (measured using lactate dehydrogenase- or (51)Cr-release assays), or apoptosis and necrosis (single-stranded DNA content measured by flow cytometry). In addition the clonogenic assay, which assesses the ability of single transformed cells to multiply and produce colonies, is described.

  9. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    Institute of Scientific and Technical Information of China (English)

    Alex Matter

    2015-01-01

    This review starts with a brief history of drug discovery&development, and the place of Asia in this worldwide effort discussed. hTe conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. hTe importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. hTe most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. hTe factors to consider before starting a new drug discovery&development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials.

  10. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates.

    Science.gov (United States)

    Li, Fei; Zhou, Xiaofei; Zhou, Hongyu; Jia, Jianbo; Li, Liwen; Zhai, Shumei; Yan, Bing

    2016-01-01

    Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance. PMID:27467397

  11. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents.

    Science.gov (United States)

    Matter, Alex

    2015-12-01

    This review starts with a brief history of drug discovery & development, and the place of Asia in this worldwide effort discussed. The conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. The importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. The most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. The factors to consider before starting a new drug discovery & development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials. PMID:26779369

  12. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    Science.gov (United States)

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications. PMID:27561520

  13. Spectral and structural studies of the anti-cancer drug Flutamide by density functional theoretical method

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.

    2014-01-01

    A comprehensive screening of the more recent DFT theoretical approach to structural analysis is presented in this section of theoretical structural analysis. The chemical name of 2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide is usually called as Flutamide (In the present study it is abbreviated as FLT) and is an important and efficacious drug in the treatment of anti-cancer resistant. The molecular geometry, vibrational spectra, electronic and NMR spectral interpretation of Flutamide have been studied with the aid of density functional theory method (DFT). The vibrational assignments of the normal modes were performed on the basis of the PED calculations using the VEDA 4 program. Comparison of computational results with X-ray diffraction results of Flutamide allowed the evaluation of structure predictions and confirmed B3LYP/6-31G(d,p) as accurate for structure determination. Application of scaling factors for IR and Raman frequency predictions showed good agreement with experimental values. This is supported the assignment of the major contributors of the vibration modes of the title compound. Stability of the molecule arising from hyperconjugative interactions leading to its bioactivity, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. NMR chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The comparison of measured FTIR, FT-Raman, and UV-Visible data to calculated values allowed assignment of major spectral features of the title molecule. Besides, Frontier molecular orbital analyze was also investigated using theoretical calculations.

  14. Extraction and purification of giant salamander skin mucous glycoprotein and study its anti-cancer activity of lung cancer%大鲵皮肤黏液糖蛋白的提取纯化及抗肺癌活性研究

    Institute of Scientific and Technical Information of China (English)

    徐伟良; 陈德经; 刘宇; 魏泓; 刘青

    2015-01-01

    目的:研究大鲵皮肤黏液糖蛋白提取纯化工艺以及体外对人肺癌细胞A549活性的影响。方法利用碱提取和DEAE-52离子交换层析与Sephadex G-100凝胶层析分离纯化大鲵黏液糖蛋白;并采用MTT比色法体外检测大鲵黏液糖蛋白对人肺癌细胞A549的抑制率。结果黏液糖蛋白中的总糖含量为4.23%,经SDS-PAGE电泳检测,糖蛋白的分子量在30 kDa左右,为单一纯品。随糖蛋白纯品浓度从1、10、20、40μg/mL逐渐增加,糖蛋白对A549细胞的抑制率逐渐增大;当糖蛋白浓度为40μg/mL,作用24 h时,对A549细胞的抑制率可达85.66%,作用48 h时,可达92.32%。与阳性对照紫杉醇相比,大鲵皮肤黏液糖蛋白对人肺癌细胞A549有显著的抑制作用。结论大鲵黏液糖蛋白对人肺癌细胞具有明显的抑制作用,可为抗肺癌药物的开发提供理论依据。%Objective To study the appearance of skin mucous glycoprotein in vitro on the activity of human lung cancer cells A549. Methods Used alkali extraction and DEAE-52 ion exchange chromatography and Sephadex G-100 gel chromatography purification salamander mucous glycoprotein; Salamander mucous glycoprotein inhibition of human lung cancer cells A549 was detected by MTT colorimetric method in vitro.ResuIts It showed that the total sugar content in the appearance of mucus was 4.23%, the relatively pure glycoprotein component, by SDS protein electrophoresis tests, it contained a single glycoprotein component, its molecular weight was about 30 kDa.With glycoprotein pure concentration increased from 1,10, 20,40μg/mL, the glycoprotein inhibition rate of A549 cells increased; when the glycoprotein concentration was 40 μg/mL, for 24 h action, the inhibition rate of A549 cells was up to 85.66 %, while the role of 48 h, the inhibition rate of A549 cells was up to 92.32%.Inhibition effect of mucus glycoprotein on A549 cell compared with positive control

  15. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models

    OpenAIRE

    HogenEsch, Harm; Yu Nikitin, Alexander

    2012-01-01

    Experiments with cultures of human tumor cell lines, xenografts of human tumors into immunodeficient mice, and mouse models of human cancer are important tools in the development and testing of anti-cancer drugs. Tumors are complex structures composed of genetically and phenotypically heterogeneous cancer cells that interact in a reciprocal manner with the stromal microenvironment and the immune system. Modeling the complexity of human cancers in cell culture and in mouse models for preclinic...

  16. Glucagon-like peptide-2 (GLP-2) response to enteral intake in children during anti-cancer treatment

    DEFF Research Database (Denmark)

    Andreassen, B U; Paerregaard, A; Schmiegelow, K;

    2005-01-01

    BACKGROUND: Intestinal dysfunction is frequent in cancer and during anti-cancer treatment. Glucagon-like peptide-2 (GLP-2) is secreted in a nutrition-dependent manner from the intestinal enteroendocrine L-cells. It accelerates crypt cell proliferation and nutrient absorption, inhibits enterocyte...... if the enteral energy intake is sufficient. Insufficient GLP-2 secretion could influence the gastrointestinal problems seen in the children with a low enteral energy intake....

  17. A New Approach to Reduce Toxicities and to Improve Bioavailabilities of Platinum-Containing Anti-Cancer Nanodrugs

    OpenAIRE

    Liu, Li; Ye, Qing; Lu, Maggie; Lo, Ya-Chin; Hsu, Yuan-Hung; Wei, Ming-Cheng; Chen, Yu-Hsiang; Lo, Shen-Chuan; Wang, Shian-Jy; Bain, Daniel J.; Ho, Chien

    2015-01-01

    Platinum (Pt) drugs are the most potent and commonly used anti-cancer chemotherapeutics. Nanoformulation of Pt drugs has the potential to improve the delivery to tumors and reduce toxic side effects. A major challenge for translating nanodrugs to clinical settings is their rapid clearance by the reticuloendothelial system (RES), hence increasing toxicities on off-target organs and reducing efficacy. We are reporting that an FDA approved parenteral nutrition source, Intralipid 20%, can help th...

  18. DNA-inorganic hybrid nanovaccine for cancer immunotherapy

    Science.gov (United States)

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-01

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit

  19. New types of immunotherapy in children.

    Science.gov (United States)

    Rodríguez-Pérez, Noel; Penagos, Martin; Portnoy, Jay M

    2008-11-01

    Injection immunotherapy has been shown to be particularly beneficial in treating allergic rhinitis, mild to moderate asthma, and anaphylaxis caused by bee and wasp venom. It also produces a long-term, antigen-specific, protective immune effect and is the only treatment that offers the possibility of reducing the risk of asthma development in children with allergic rhinitis. Nonetheless, the potentially severe side effects associated with this form of immunotherapy limit its widespread use. Diverse preparations are being developed to increase its safety and improve its efficacy. These include alternative routes of administration, particularly the sublingual route; use of novel adjuvants, such as CpG oligonucleotides and mycobacterial vaccines; and other approaches, such as peptide immunotherapy, recombinant allergens, DNA vaccination, and combined therapy. Some of these immunotherapy forms have been evaluated in children.

  20. Allergen-specific immunotherapy in atopic eczema.

    Science.gov (United States)

    Darsow, Ulf; Forer, Ingeborg; Ring, Johannes

    2011-08-01

    Aeroallergens are relevant eliciting factors of allergic rhinoconjunctivitis and bronchial asthma but also of atopic eczema. The use of allergen-specific immunotherapy as in respiratory atopic diseases is controversial in patients with atopic eczema, but refined diagnostic methods to characterize subgroups of patients with relevant allergies and the results of smaller controlled studies give rise to new approaches in this field. This article reviews the theoretical problems and practical results associated with allergen-specific immunotherapy in atopic eczema. PMID:21461718

  1. Defining the critical hurdles in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2011-12-01

    Full Text Available Abstract Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC, convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer.

  2. New visions in specific immunotherapy in children

    DEFF Research Database (Denmark)

    Halken, Susanne; Lau, Susanne; Valovirta, Erkka

    2008-01-01

    Specific immunotherapy is indicated for confirmed immunoglobulin E-mediated airway diseases using standardized allergen products with documented clinical efficacy and safety. For decades the subcutaneous route of administration (SCIT) has been the gold standard. Recently, the sublingual immunothe...... both with SCIT and SLIT. This review was initiated by iPAC (international Pediatric Allergy and Asthma Consortium) and aims to review current knowledge related to specific immunotherapy in childhood, and to identify needs for future research in this field....

  3. Love life, scientific anti-cancer, better life%关爱生命,科学防癌,让生活更美好

    Institute of Scientific and Technical Information of China (English)

    Yi Cheng

    2010-01-01

    @@ The Chinese Anti-cancer Association launched the16th National Tumor Prophylaxis and Treatment Week in April, 2010. In order to highlight the week's spirit of "Love life, scientific anti-cancer, better life", the Tongji Cancer Center and Thoracic Surgery Department held lectures and advisory services in the outpatient lobby of Cancer Center on April 20th, 2010. The content of lec-tures involves the prophylaxis, diagnosis and treatment of lung cancer.

  4. Is immunotherapy an opportunity for effective treatment of drug addiction?

    Science.gov (United States)

    Zalewska-Kaszubska, Jadwiga

    2015-11-27

    Immunotherapy has a great potential of becoming a new therapeutic strategy in the treatment of addiction to psychoactive drugs. It may be used to treat addiction but also to prevent neurotoxic complications of drug overdose. In preclinical studies two immunological methods have been tested; active immunization, which relies on the administration of vaccines and passive immunization, which relies on the administration of monoclonal antibodies. Until now researchers have succeeded in developing vaccines and/or antibodies against addiction to heroin, cocaine, methamphetamine, nicotine and phencyclidine. Their effectiveness has been confirmed in preclinical studies. At present, clinical studies are being conducted for vaccines against nicotine and cocaine and also anti-methamphetamine monoclonal antibody. These preclinical and clinical studies suggest that immunotherapy may be useful in the treatment of addiction and drug overdose. However, there are a few problems to be solved. One of them is controlling the level of antibodies due to variability between subjects. But even obtaining a suitable antibody titer does not guarantee the effectiveness of the vaccine. Additionally, there is a risk of intentional or unintentional overdose. As vaccines prevent passing of drugs through the blood/brain barrier and thereby prevent their positive reinforcement, some addicted patients may erroneously seek higher doses of psychoactive substances to get "high". Consequently, vaccination should be targeted at persons who have a strong motivation to free themselves from drug dependency. It seems that immunotherapy may be an opportunity for effective treatment of drug addiction if directed to adequate candidates for treatment. For other addicts, immunotherapy may be a very important element supporting psycho- and pharmacotherapy. PMID:26432911

  5. Immunotherapy in prostate cancer: review of the current evidence.

    Science.gov (United States)

    Fernández-García, E M; Vera-Badillo, F E; Perez-Valderrama, B; Matos-Pita, A S; Duran, I

    2015-05-01

    Prostate cancer is the most common male malignancy in the Western world. Once it metastasizes, it is incurable. The current gold standard for metastatic disease is the combined docetaxel/prednisone regimen. Prostate cancer shows several characteristics that make it a suitable candidate for immunotherapy, as recently exemplified by the approval of sipuleucel-T, the first vaccine to treat any malignancy. Here, we review different tumor-associated antigen immunotherapy strategies currently being investigated, from a humanized radiolabeled monoclonal antibody (J-591) that targets radiation into tumor cells, moving on to vaccines and through to immunomodulator agents such as anti-CPLA-4 and anti-PD-1 monoclonal antibodies that activate T-cell responses via immune checkpoint inhibition. We explore different opinions on the best approach to integrate immunotherapy into existing standard therapies, such as androgen-deprivation therapy, radiotherapy or chemotherapy, and review different combination sequences, patient types and time points during the course of the disease to achieve a lasting immune response. We present data from recent phase III clinical trials that call for a change in trial endpoint design with immunotherapy agents, from the traditional tumor progression to overall survival and how such trials should include immune response measurements as secondary or intermediate endpoints to help identify patient clinical benefit in the earlier phases of treatment. Finally, we join in the recent questioning on the validity of RECIST criteria to measure response to immunotherapeutic agents, as initial increases in the size of tumors/lymph nodes, which are part of a normal immune response, could be categorized as disease progression under RECIST.

  6. Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy.

    Science.gov (United States)

    Pilon-Thomas, Shari; Kodumudi, Krithika N; El-Kenawi, Asmaa E; Russell, Shonagh; Weber, Amy M; Luddy, Kimberly; Damaghi, Mehdi; Wojtkowiak, Jonathan W; Mulé, James J; Ibrahim-Hashim, Arig; Gillies, Robert J

    2016-03-15

    Cancer immunotherapies, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of antitumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy of immunotherapy. An acidic pH environment blocked T-cell activation and limited glycolysis in vitro. IFNγ release blocked by acidic pH did not occur at the level of steady-state mRNA, implying that the effect of acidity was posttranslational. Acidification did not affect cytoplasmic pH, suggesting that signals transduced by external acidity were likely mediated by specific acid-sensing receptors, four of which are expressed by T cells. Notably, neutralizing tumor acidity with bicarbonate monotherapy impaired the growth of some cancer types in mice where it was associated with increased T-cell infiltration. Furthermore, combining bicarbonate therapy with anti-CTLA-4, anti-PD1, or adoptive T-cell transfer improved antitumor responses in multiple models, including cures in some subjects. Overall, our findings show how raising intratumoral pH through oral buffers therapy can improve responses to immunotherapy, with the potential for immediate clinical translation. PMID:26719539

  7. Mathematical Model Creation for Cancer Chemo-Immunotherapy

    Directory of Open Access Journals (Sweden)

    Lisette de Pillis

    2009-01-01

    Full Text Available One of the most challenging tasks in constructing a mathematical model of cancer treatment is the calculation of biological parameters from empirical data. This task becomes increasingly difficult if a model involves several cell populations and treatment modalities. A sophisticated model constructed by de Pillis et al., Mixed immunotherapy and chemotherapy of tumours: Modelling, applications and biological interpretations, J. Theor. Biol. 238 (2006, pp. 841–862; involves tumour cells, specific and non-specific immune cells (natural killer (NK cells, CD8+T cells and other lymphocytes and employs chemotherapy and two types of immunotherapy (IL-2 supplementation and CD8+T-cell infusion as treatment modalities. Despite the overall success of the aforementioned model, the problem of illustrating the effects of IL-2 on a growing tumour remains open. In this paper, we update the model of de Pillis et al. and then carefully identify appropriate values for the parameters of the new model according to recent empirical data. We determine new NK and tumour antigen-activated CD8+T-cell count equilibrium values; we complete IL-2 dynamics; and we modify the model in de Pillis et al. to allow for endogenous IL-2 production, IL-2-stimulated NK cell proliferation and IL-2-dependent CD8+T-cell self-regulations. Finally, we show that the potential patient-specific efficacy of immunotherapy may be dependent on experimentally determinable parameters.

  8. Adoptive immunotherapy via CD4+ versus CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Vy Phan-Lai

    2016-04-01

    Full Text Available The goal of cancer immunotherapy is to induce specific and durable antitumor immunity. Adoptive T cell therapy (ACT has garnered wide interest, particularly in regard to strategies to improve T cell efficacy in trials. There are many types of T cells (and subsets which can be selected for use in ACT. CD4+ T cells are critical for the regulation, activation and aid of host defense mechanisms and, importantly, for enhancing the function of tumor-specific CD8+ T cells. To date, much research in cancer immunotherapy has focused on CD8+ T cells, in melanoma and other cancers. Both CD4+ T cells and CD8+ T cells have been evaluated as ACT in mice and humans, and both are effective at eliciting antitumor responses. IL-17 producing CD4+ T cells are a new subset of CD4+ T cells to be evaluated in ACT models. This review discusses the benefits of adoptive immunotherapy mediated by CD8+ and CD4+ cells. It also discusses the various type of T cells, source of T cells, and ex vivo cytokine growth factors for augmenting clinical efficacy of ACT. [Biomed Res Ther 2016; 3(4.000: 588-595

  9. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  10. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  11. Synthesis of Thiophene and NO-Curcuminoids for Antiinflammatory and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Kim Drummond Rainsford

    2013-01-01

    Full Text Available In search of better NSAIDs four novel nitric oxide donating derivatives of curcumin (compounds 9a–d, and four thiophene curcuminoids (compounds 10a–c, 11 have been synthesised. The cytotoxic effects of these compounds along with the lead compound curcumin (7 and their effect on the production of the reactive oxygen species nitric oxide and pro-inflammatory cytokines IL-1β, TNF-α and chemokine CXCL-8 were evaluated using human monocytic THP-1 and colon adenocarcinoma CACO-2 cell lines. All of the nitric oxide donating curcuminoids 9a–d and the thiophene curcuminoids 10a–c and 11 were non-cytotoxic to THP-1 cells over a concentration range of 10-100 μM and compared with curcumin compounds 10b and 10c, were more toxic. In CACO-2 cells, 10b and 11 appeared to be non-toxic at 10 to 50 μM, whereas 10a and 10c were non-cytotoxic at 10 μM only. These results clearly indicate that the introduction of a nitroxybutyl moiety to curcumin and replacement of phenyl rings with thiophene units reduces the cytotoxic effect of the parent curcumin, whereas a methyl substituted thiophene increases the cytotoxic effects. In THP-1 cells, drugs 10a and 11 significantly decreased IL-1-β production at their non-cytotoxic concentrations, whereas, they did not decrease TNF-α production in CACO-2 cells. Compound 11 showed a significant decrease in CXCL-8 production.

  12. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    International Nuclear Information System (INIS)

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa). (paper)

  13. Aptamers: A Feasible Technology in Cancer Immunotherapy

    Science.gov (United States)

    Villanueva, H.; Pastor, F.

    2016-01-01

    Aptamers are single-chained RNA or DNA oligonucleotides (ODNs) with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy. PMID:27413756

  14. Aptamers: A Feasible Technology in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    M. M. Soldevilla

    2016-01-01

    Full Text Available Aptamers are single-chained RNA or DNA oligonucleotides (ODNs with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  15. Aptamers: A Feasible Technology in Cancer Immunotherapy.

    Science.gov (United States)

    Soldevilla, M M; Villanueva, H; Pastor, F

    2016-01-01

    Aptamers are single-chained RNA or DNA oligonucleotides (ODNs) with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  16. [The reaction of the T-immunity system in patients with malignant skin melanoma and stomach cancer to active nonspecific immunotherapy].

    Science.gov (United States)

    Glinkina, L S; Bruvere, R Zh

    1992-01-01

    Changes in E-receptor-bearing T-lymphocyte level (total and that of active T-lymphocytes) were studied in peripheral blood and resected material obtained from skin malignant melanoma and gastric cancer patients treated with rigvir, an original immunomodulator of the viral origin. Injection of rigvir into peripheral blood was followed by an increase in active T-lymphocyte level and stimulated their migration into tumor. The latter was determined by stage and rate of tumor advancement. PMID:1300766

  17. Cancer immunotherapy out of the gate: the 22nd annual Cancer Research Institute International Immunotherapy Symposium.

    Science.gov (United States)

    Tontonoz, Matthew; Gee, Connie E

    2015-05-01

    The 22nd annual Cancer Research Institute (CRI) International Immunotherapy Symposium was held from October 5-8, 2014, in New York City. Titled "Cancer Immunotherapy: Out of the Gate," the symposium began with a Cancer Immunotherapy Consortium satellite meeting focused on issues in immunotherapy drug development, followed by five speaker sessions and a poster session devoted to basic and clinical cancer immunology research. The second annual William B. Coley lecture was delivered by Lieping Chen, one of the four recipients of the 2014 William B. Coley Award for Distinguished Research in Tumor Immunology; the other three recipients were Gordon Freeman, Tasuku Honjo, and Arlene Sharpe. Prominent themes of the conference were the use of genomic technologies to identify neoantigens and the emergence of new immune modulatory molecules, beyond CTLA-4 and PD-1/PD-L1, as new therapeutic targets for immunotherapy. PMID:25941356

  18. Cancer immunotherapy out of the gate: the 22nd annual Cancer Research Institute International Immunotherapy Symposium.

    Science.gov (United States)

    Tontonoz, Matthew; Gee, Connie E

    2015-05-01

    The 22nd annual Cancer Research Institute (CRI) International Immunotherapy Symposium was held from October 5-8, 2014, in New York City. Titled "Cancer Immunotherapy: Out of the Gate," the symposium began with a Cancer Immunotherapy Consortium satellite meeting focused on issues in immunotherapy drug development, followed by five speaker sessions and a poster session devoted to basic and clinical cancer immunology research. The second annual William B. Coley lecture was delivered by Lieping Chen, one of the four recipients of the 2014 William B. Coley Award for Distinguished Research in Tumor Immunology; the other three recipients were Gordon Freeman, Tasuku Honjo, and Arlene Sharpe. Prominent themes of the conference were the use of genomic technologies to identify neoantigens and the emergence of new immune modulatory molecules, beyond CTLA-4 and PD-1/PD-L1, as new therapeutic targets for immunotherapy.

  19. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  20. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  1. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  2. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  3. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers.

    Science.gov (United States)

    Bao, Bin; Azmi, Asfar S; Ali, Shadan; Zaiem, Feras; Sarkar, Fazlul H

    2014-06-01

    Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers. PMID:25333034

  4. Oncolytic viruses: a step into cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  5. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    OpenAIRE

    Sabine eKuhn; Jianping eYang; F eRonchese

    2015-01-01

    Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendr...

  6. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    OpenAIRE

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expans...

  7. Mechanisms of subcutaneous allergen immunotherapy.

    Science.gov (United States)

    Soyer, Ozge U; Akdis, Mubeccel; Akdis, Cezmi A

    2011-05-01

    Allergen-specific immunotherapy (SIT) is the only curative approach in the treatment of allergic diseases defined up-to-date. Peripheral T-cell tolerance to allergens, the goal of successful allergen-SIT, is the primary mechanism in healthy immune responses to allergens. By repeated administration of increased doses of the causative allergen, allergen-SIT induces a state of immune tolerance to allergens through the constitution of T regulatory (Treg) cells, including allergen-specific interleukin (IL)-10-secreting Treg type 1 cells and CD4(+)CD25(+)Treg cells; induction of suppressive cytokines, such as IL-10 and transforming growth factor β; suppression of allergen-specific IgE and induction of IgG4 and IgA; and suppression of mast cells, basophils, eosinophils, and inflammatory dendritic cells. This review summarizes the current knowledge on the mechanisms of allergen-SIT with emphasis on the roles of Treg cells in allergen-SIT. PMID:21530813

  8. New routes for allergen immunotherapy.

    Science.gov (United States)

    Johansen, Pål; von Moos, Seraina; Mohanan, Deepa; Kündig, Thomas M; Senti, Gabriela

    2012-10-01

    IgE-mediated allergy is a highly prevalent disease in the industrialized world. Allergen-specific immunotherapy (SIT) should be the preferred treatment, as it has long lasting protective effects and can stop the progression of the disease. However, few allergic patients choose to undergo SIT, due to the long treatment time and potential allergic adverse events. Since the beneficial effects of SIT are mediated by antigen presenting cells inducing Th1, Treg and antibody responses, whereas the adverse events are caused by mast cells and basophils, the therapeutic window of SIT may be widened by targeting tissues rich in antigen presenting cells. Lymph nodes and the epidermis contain high density of dendritic cells and low numbers of mast cells and basophils. The epidermis has the added benefit of not being vascularised thereby reducing the chances of anaphylactic shock due to leakage of allergen. Hence, both these tissues represent highly promising routes for SIT and are the focus of discussion in this review. PMID:23095873

  9. Melanoma immunotherapy dominates the field.

    Science.gov (United States)

    Diamantopoulos, Panagiotis; Gogas, Helen

    2016-07-01

    The incidence of melanoma is increasing worldwide and despite early detection and intervention, the number of patients dying from metastatic disease continues to rise. The prognosis of advanced melanoma remains poor, with median survival between 6 and 9 months. Over the past 30 years and despite extensive clinical research, the treatment options for metastatic disease were limited and melanoma is still considered as one of the most therapy-resistant malignancies. Single-agent and combination chemotherapy, hormonal therapy, biochemotherapy, immunotherapy, targeted agent therapy and combination regimens failed to show a significant improvement in overall survival (OS). Recent advances and in-depth understanding of the biology of melanoma, have contributed to the development of new agents. Based on the molecular and immunological background of the disease, these new drugs have shown benefit in overall and progression-free survival (PFS). As the picture of the disease begins to change, oncologists need to alter their approach to melanoma treatment and consider disease biology together with targeted individualized treatment. In this review the authors attempt to offer an insight in the present and past melanoma treatment options, with a focus on the recently approved immunotherapeutic agents and the clinical perspectives of these new weapons against metastatic melanoma. PMID:27563656

  10. Immunotherapy in renal cell carcinoma.

    Science.gov (United States)

    Bukowski, R M

    1999-06-01

    Patients with metastatic renal cell carcinoma continue to present a therapeutic challenge. Current therapeutic approaches involve surgery and various types of immunotherapy. The rationale for this latter form of therapy include the observations of spontaneous tumor regression, the presence of a T-cell-mediated immune response, and the tumor responses observed in patients receiving cytokine therapy. Analysis of prognostic factors in these patients demonstrates that clinical responses occur most frequently in individuals with good performance status. The cytokines interleukin-2 (IL-2, aldesleukin [Proleukin], interferon-alfa (Intron A, Roferon-A), or the combination produce responses in 15% to 20% of patients. Randomized trials suggest that administration of interferon-alfa may result in a modest improvement in median survival. Investigation of the molecular genetics of renal cell carcinoma and the presence of T-lymphocyte immune dysregulation have suggested new therapeutic strategies. Further preclinical and clinical studies investigating inhibitors of angiogenesis or pharmacologic methods to reverse immune dysregulation are ongoing. Therapeutic results in patients with renal cell carcinoma remain limited, and investigational approaches are warranted. PMID:10378218

  11. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  12. Anti-Cancer Effect of Metabotropic Glutamate Receptor 1 Inhibition in Human Glioma U87 Cells: Involvement of PI3K/Akt/mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-01-01

    Full Text Available Background: Metabotropic glutamate receptors (mGluRs are G-protein-coupled receptors that mediate neuronal excitability and synaptic plasticity in the central nervous system, and emerging evidence suggests a role of mGluRs in the biology of cancer. Previous studies showed that mGluR1 was a potential therapeutic target for the treatment of breast cancer and melanoma, but its role in human glioma has not been determined. Methods: In the present study, we investigated the effects of mGluR1 inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA or selective antagonists Riluzole and BAY36-7620. The anti-cancer effects of mGluR1 inhibition were measured by cell viability, lactate dehydrogenase (LDH release, TUNEL staining, cell cycle assay, cell invasion and migration assays in vitro, and also examined in a U87 xenograft model in vivo. Results: Inhibition of mGluR1 significantly decreased the cell viability but increased the LDH release in a dose-dependent fashion in U87 cells. These effects were accompanied with the induction of caspase-dependent apoptosis and G0/G1 cell cycle arrest. In addition, the results of Matrigel invasion and cell tracking assays showed that inhibition of mGluR1 apparently attenuated cell invasion and migration in U87 cells. All these anti-cancer effects were ablated by the mGluR1 agonist L-quisqualic acid. The results of western blot analysis showed that mGluR1 inhibition overtly decreased the phosphorylation of PI3K, Akt, mTOR and P70S6K, indicating the mitigated activation of PI3K/Akt/mTOR pathway. Moreover, the anti-tumor activity of mGluR1 inhibition in vivo was also demonstrated in a U87 xenograft glioma model in athymic nude mice. Conclusion: The remarkable efficiency of mGluR1 inhibition to induce cell death in U87 cells may find therapeutic application for the treatment of glioma patients.

  13. Sublingual immunotherapy: World Allergy Organization position paper 2013 update

    NARCIS (Netherlands)

    G.W. Canonica (Giorgio Walter); L. Cox (Linda); R. Pawankar (Ruby); C.E. Baena-Cagnani (Carlos); M.S. Blaiss (Michael); S. Bonini (Sergio); J. Bousquet (Jean); M. Calderon (Moises); E. Compalati (Enrico); S.R. Durham (Stephen); R. Gerth van Wijk (Roy); D. Larenas-Linnemann (Désirée); H. Nelson (Harold); G. Passalacqua (Giovanni); O. Pfaar (Oliver); K. Rosario (Karyna); D. Ryan (Dermot); L. Rosenwasser (Lanny); P. Schmid-Grendelmeier (Peter); G.E. Senna (Gianenrico); E. Valovirta (Erkka); H.P. van Bever (Hugo); P. Vichyanond (Pakit); U. Wahn (Ulrich); O.M. Yusuf (Osman)

    2014-01-01

    textabstractWe have prepared this document, "Sublingual Immunotherapy: World Allergy Organization Position Paper 2013 Update", according to the evidence-based criteria, revising and updating chapters of the originally published paper, "Sublingual Immunotherapy: World Allergy Organization Position Pa

  14. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  15. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  16. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90

  17. Current Studies of Immunotherapy on Glioblastoma.

    Science.gov (United States)

    Agrawal, Neena Stephanie; Miller, Rickey; Lal, Richa; Mahanti, Harshini; Dixon-Mah, Yaenette N; DeCandio, Michele L; Vandergrift, W Alex; Varma, Abhay K; Patel, Sunil J; Banik, Naren L; Lindhorst, Scott M; Giglio, Pierre; Das, Arabinda

    2014-04-01

    Glioblastoma is a form of brain tumor with a very high morbidity and mortality. Despite decades of research, the best treatments currently in clinical practice only extend survival by a number of months. A promising alternative to conventional treatment for glioblastomas is immunotherapy. Although proposed over a century ago, the field of cancer immunotherapy has historically struggled to translate it into effective clinical treatments. Better understanding is needed of the various regulatory and co-stimulatory factors in the glioblastoma patient for more efficient immunotherapy treatments. The tumor microenvironment is anatomically shielded from normal immune-surveillance by the blood-brain barrier, irregular lymphatic drainage system, and it's in a potently immunosuppressive environment. Immunotherapy can potentially manipulate these forces effectively to enhance anti-tumor immune response and clinical benefit. New treatments utilizing the immune system show promise in terms of targeting and efficacy. This review article attempts to discuss current practices in glioblastoma treatment, the theory behind immunotherapy, and current research into various clinical trials. PMID:25346943

  18. New Concepts in Tumor Antigens: Their Significance in Future Immunotherapies for Tumors

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Xiao-Feng Yang

    2005-01-01

    The identification and molecular characterization of self-antigens expressed by human malignancies that are capable of elicitation of anti-tumor immune responses in patients have been an active field in tumor immunology.More than 2,000 tumor antigens have been identified, and most of these antigens are self-antigens. These significant progresses have led to the renaissance of tumor immunology and studies on anti-tumor immunotherapy.However, despite of the progress in the identification of self-tumor antigens, current antigen-specific immunotherapies for tumors are far less satisfied than expected, which reflects the urgent need to improve our understanding on self-tumor antigens. In order to develop more effective antigen specific anti-tumor immunotherapies and to monitor the responses to these immunotherapies in patients with tumors, many important fundamental questions need to be addressed. We propose for the first time that the studies in addressing the characteristics of self-tumor antigens and autoantigens are grouped as a new subject termed "antigenology". In this brief review, we would outline the progress in the identification of tumor antigens in solid tumors and hematologic malignancies, and overview the new concepts and principles of antigenology and their significance for future immunotherapies to these malignancies. Cellular & Molecular Immunology.

  19. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

    Science.gov (United States)

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-03-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP. PMID:26862728

  20. Traf2- and Nck-interacting kinase (TNIK) is involved in the anti-cancer mechanism of dovitinib in human multiple myeloma IM-9 cells.

    Science.gov (United States)

    Chon, Hae Jung; Lee, Yura; Bae, Kyoung Jun; Byun, Byung Jin; Kim, Soon Ae; Kim, Jiyeon

    2016-07-01

    Traf2- and Nck-interacting kinase (TNIK) is a member of the germinal center kinase family. TNIK was first identified as a kinase that is involved in regulating cytoskeletal organization in many types of cells, and it was recently proposed as a novel therapeutic target in several types of human cancers. Although previous studies suggest that TNIK plays a pivotal role in cancer cell survival and prognosis, its function in hematological cancer cell survival has not been investigated. Here we investigated the relationship between TNIK function and cell viability in multiple myeloma IM-9 cells using TNIK small interfering RNA (siRNA) transfection and dovitinib treatment. Treatment of IM-9 cells with TNIK siRNA and dovitinib treatment reduced cell proliferation. The ATP competing kinase assay and western blot analysis showed that dovitinib strongly inhibited both the interaction of TNIK with ATP (K i, 13 nM) and the activation of Wnt signaling effectors such as β-catenin and TCF4. Dovitinib also induced caspase-dependent apoptosis in IM-9 cells without significant cytotoxicity in PBMCs. Our results provide new evidence that TNIK may be involved in the proliferation of multiple myeloma IM-9 cells and in the anti-cancer activity of dovitinib via inhibition of the endogenous Wnt signaling pathway. PMID:26995282

  1. Traf2- and Nck-interacting kinase (TNIK) is involved in the anti-cancer mechanism of dovitinib in human multiple myeloma IM-9 cells.

    Science.gov (United States)

    Chon, Hae Jung; Lee, Yura; Bae, Kyoung Jun; Byun, Byung Jin; Kim, Soon Ae; Kim, Jiyeon

    2016-07-01

    Traf2- and Nck-interacting kinase (TNIK) is a member of the germinal center kinase family. TNIK was first identified as a kinase that is involved in regulating cytoskeletal organization in many types of cells, and it was recently proposed as a novel therapeutic target in several types of human cancers. Although previous studies suggest that TNIK plays a pivotal role in cancer cell survival and prognosis, its function in hematological cancer cell survival has not been investigated. Here we investigated the relationship between TNIK function and cell viability in multiple myeloma IM-9 cells using TNIK small interfering RNA (siRNA) transfection and dovitinib treatment. Treatment of IM-9 cells with TNIK siRNA and dovitinib treatment reduced cell proliferation. The ATP competing kinase assay and western blot analysis showed that dovitinib strongly inhibited both the interaction of TNIK with ATP (K i, 13 nM) and the activation of Wnt signaling effectors such as β-catenin and TCF4. Dovitinib also induced caspase-dependent apoptosis in IM-9 cells without significant cytotoxicity in PBMCs. Our results provide new evidence that TNIK may be involved in the proliferation of multiple myeloma IM-9 cells and in the anti-cancer activity of dovitinib via inhibition of the endogenous Wnt signaling pathway.

  2. Dynamic modeling of bone metastasis, microenvironment and therapy: Integrating parathyroid hormone (PTH) effect, anti-resorptive and anti-cancer therapy.

    Science.gov (United States)

    Coelho, Rui Moura; Lemos, João Miranda; Alho, Irina; Valério, Duarte; Ferreira, Arlindo R; Costa, Luís; Vinga, Susana

    2016-02-21

    Bone is a common site for the development of metastasis, as its microenvironment provides the necessary conditions for the growth and proliferation of cancer cells. Several mathematical models to describe the bone remodeling process and how osteoclasts and osteoblasts coupled action ensures bone homeostasis have been proposed and further extended to include the effect of cancer cells. The model proposed here includes the influence of the parathyroid hormone (PTH) as capable of triggering and regulating the bone remodeling cycle. It also considers the secretion of PTH-related protein (PTHrP) by cancer cells, which stimulates the production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts that activates osteoclasts, increasing bone resorption and the subsequent release of growth factors entrapped in the bone matrix, which induce tumor growth, giving rise to a self-perpetuating cycle known as the vicious cycle of bone metastases. The model additionally describes how the presence of metastases contributes to the decoupling between bone resorption and formation. Moreover, the effects of anti-cancer and anti-resorptive treatments, through chemotherapy and the administration of bisphosphonates or denosumab, are also included, along with their corresponding pharmacokinetics (PK) and pharmacodynamics (PD). The simulated models, available at http://sels.tecnico.ulisboa.pt/software/, are able to describe bone remodeling cycles, the growth of bone metastases and how treatment can effectively reduce tumor burden on bone and prevent loss of bone strength. PMID:26657065

  3. Natural product Celastrol destabilizes tubulin heterodimer and facilitates mitotic cell death triggered by microtubule-targeting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Hakryul Jo

    Full Text Available BACKGROUND: Microtubule drugs are effective anti-cancer agents, primarily due to their ability to induce mitotic arrest and subsequent cell death. However, some cancer cells are intrinsically resistant or acquire a resistance. Lack of apoptosis following mitotic arrest is thought to contribute to drug resistance that limits the efficacy of the microtubule-targeting anti-cancer drugs. Genetic or pharmacological agents that selectively facilitate the apoptosis of mitotic arrested cells present opportunities to strengthen the therapeutic efficacy. METHODOLOGY AND PRINCIPAL FINDINGS: We report a natural product Celastrol targets tubulin and facilitates mitotic cell death caused by microtubule drugs. First, in a small molecule screening effort, we identify Celastrol as an inhibitor of neutrophil chemotaxis. Subsequent time-lapse imaging analyses reveal that inhibition of microtubule-mediated cellular processes, including cell migration and mitotic chromosome alignment, is the earliest events affected by Celastrol. Disorganization, not depolymerization, of mitotic spindles appears responsible for mitotic defects. Celastrol directly affects the biochemical properties of tubulin heterodimer in vitro and reduces its protein level in vivo. At the cellular level, Celastrol induces a synergistic apoptosis when combined with conventional microtubule-targeting drugs and manifests an efficacy toward Taxol-resistant cancer cells. Finally, by time-lapse imaging and tracking of microtubule drug-treated cells, we show that Celastrol preferentially induces apoptosis of mitotic arrested cells in a caspase-dependent manner. This selective effect is not due to inhibition of general cell survival pathways or mitotic kinases that have been shown to enhance microtubule drug-induced cell death. CONCLUSIONS AND SIGNIFICANCE: We provide evidence for new cellular pathways that, when perturbed, selectively induce the apoptosis of mitotic arrested cancer cells, identifying a

  4. Simultaneous determination of the novel thiosemicarbazone anti-cancer agent, Bp4eT, and its main phase I metabolites in plasma: application to a pilot pharmacokinetic study in rats.

    Science.gov (United States)

    Stariat, Ján; Suprunová, Vlasta; Roh, Jaroslav; Šesták, Vít; Eisner, Tomáš; Filipský, Tomáš; Mladěnka, Přemysl; Nobilis, Milan; Šimůnek, Tomáš; Klimeš, Jiří; Kalinowski, Danuta S; Richardson, Des R; Kovaříková, Petra

    2014-05-01

    Novel thiosemicarbazone metal chelators are extensively studied anti-cancer agents with marked and selective activity against a wide variety of cancer cells, as well as human tumor xenografts in mice. This study describes the first validated LC-MS/MS method for the simultaneous quantification of 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and its main metabolites (E/Z isomers of the semicarbazone structure, M1-E and M1-Z, and the amidrazone metabolite, M2) in plasma. Separation was achieved using a C18 column with ammonium formate/acetonitrile mixture as the mobile phase. Plasma samples were treated using solid-phase extraction on 96-well plates. This method was validated over the concentration range of 0.18-2.80 μM for Bp4eT, 0.02-0.37 μM for both M1-E and M1-Z, and 0.10-1.60 μM for M2. This methodology was applied to the analysis of samples from in vivo experiments, allowing for the concentration-time profile to be simultaneously assessed for the parent drug and its metabolites. The current study addresses the lack of knowledge regarding the quantitative analysis of thiosemicarbazone anti-cancer drugs and their metabolites in plasma and provides the first pharmacokinetic data on a lead compound of this class. PMID:24254882

  5. Development of Novel Immunotherapies for Multiple Myeloma.

    Science.gov (United States)

    Al-Hujaily, Ensaf M; Oldham, Robyn A A; Hari, Parameswaran; Medin, Jeffrey A

    2016-01-01

    Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM. PMID:27618026

  6. Development of Novel Immunotherapies for Multiple Myeloma

    Science.gov (United States)

    Al-Hujaily, Ensaf M.; Oldham, Robyn A. A.; Hari, Parameswaran; Medin, Jeffrey A.

    2016-01-01

    Multiple myeloma (MM) is a disorder of terminally differentiated plasma cells characterized by clonal expansion in the bone marrow (BM). It is the second-most common hematologic malignancy. Despite significant advances in therapeutic strategies, MM remains a predominantly incurable disease emphasizing the need for the development of new treatment regimens. Immunotherapy is a promising treatment modality to circumvent challenges in the management of MM. Many novel immunotherapy strategies, such as adoptive cell therapy and monoclonal antibodies, are currently under investigation in clinical trials, with some already demonstrating a positive impact on patient survival. In this review, we will summarize the current standards of care and discuss major new approaches in immunotherapy for MM. PMID:27618026

  7. Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types

    Directory of Open Access Journals (Sweden)

    Marc eDALOD

    2014-10-01

    Full Text Available Type I interferons (IFN-I were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote antiviral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic antiviral immunity. Second, IFN-I orchestrate innate and adaptive antiviral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1 infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including i the subtypes and dose of IFN-I produced, ii the cell types affected by IFN-I and iii the source and timing of IFN-I production. Finally we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.

  8. Immunotherapy of murine sarcomas using lymphokine activated killer cells: optimization of the schedule and route of administration of recombinant interleukin-2

    International Nuclear Information System (INIS)

    Interleukin-2 (IL-2) at high doses or at low doses in concert with lymphokine-activated killer (LAK) cells can produce regression of established pulmonary and hepatic metastases from a variety of tumors in mice. IL-2 appears to mediate its antitumor effect through the generation of LAK cells in vivo from endogenous lymphocytes and by the stimulation of host and transferred LAK cell proliferation in tissues. In this paper we have investigated different strategies for IL-2 administration to determine which regimen produced maximal in vivo proliferation and optimal immunotherapeutic efficacy of LAK cells. Tissue expansion of lymphoid cells was assessed using an assay of in vivo labeling of dividing cells by the thymidine analogue, 5-[125I]iododeoxyuridine. The therapeutic effect of the different IL-2 administration protocols was determined by evaluating their efficacy in the treatment of established, 3-day pulmonary metastases from sarcomas in mice. The selection of IL-2 injection regimens for evaluation was based upon pharmacokinetic studies of IL-2 in mice. A single i.v. or i.p. dose yielded high peak IL-2 levels that could be measured for only a few hours after injection, while IL-2 given i.p. thrice daily produced titers that were detectable throughout the study periods (greater than or equal to 6 units/ml of serum after 100,000 units of IL-2 i.p. thrice daily). Using the proliferation and therapy models, we tested the same cumulative daily doses of IL-2 administered by i.v. or i.p. once daily, or i.p. thrice daily regimens. The i.p. thrice daily protocol stimulated greater lymphoid cell proliferation in the lungs, for example, than did the other regimens

  9. CD70: An emerging target in cancer immunotherapy.

    Science.gov (United States)

    Jacobs, J; Deschoolmeester, V; Zwaenepoel, K; Rolfo, C; Silence, K; Rottey, S; Lardon, F; Smits, E; Pauwels, P

    2015-11-01

    Over the last decades, advances in the knowledge of immunology have led to the identification of immune checkpoints, reinvigorating cancer immunotherapy. Although normally restricted to activated T and B cells, constitutive expression of CD70 in tumor cells has been described. Moreover, CD70 is implicated in tumor cell and regulatory T cell survival through interaction with its ligand, CD27. In this review, we summarize the targetable expression patterns of CD70 in a wide range of malignancies and the promising mechanism of anti-CD70 therapy in stimulating the anti-tumor immune response. In addition, we will discuss clinical data and future combination strategies.

  10. Strategies of mucosal immunotherapy for allergic diseases

    Institute of Scientific and Technical Information of China (English)

    Yi-Ling Ye; Ya-Hui Chuang; Bor-Luen Chiang

    2011-01-01

    Incidences of allergic disease have recently increased worldwide.Allergen-specific immunotherapy (SIT) has long been a controversial treatment for allergic diseases.Although beneficial effects on clinically relevant outcomes have been demonstrated in clinical trials by subcutaneous immunotherapy (SCIT),there remains a risk of severe and sometimes fatal anaphylaxis.Mucosal immunotherapy is one advantageous choice because of its non-injection routes of administration and lower side-effect profile.This study reviews recent progress in mucosal immunotherapy for allergic diseases.Administration routes,antigen quality and quantity,and adjuvants used are major considerations in this field.Also,direct uses of unique probiotics,or specific cytokines,have been discussed.Furthermore,some researchers have reported new therapeutic ideas that combine two or more strategies.The most important strategy for development of mucosal therapies for allergic diseases is the improvement of antigen formulation,which includes continuous searching for efficient adjuvants,collecting more information about dominant T-cell epitopes of allergens,and having the proper combination of each.In clinics,when compared to other mucosal routes,sublingual immunotherapy (SLIT) is a preferred choice for therapeutic administration,although local and systemic side effects have been reported.Additionally,not every allergen has the same beneficial effect.Further studies are needed to determine the benefits of mucosal immunotherapy for different allergic diseases after comparison of the different administration routes in children and adults.Data collected from large,well-designed,double-blind,placebo-controlled,and randomized trials,with post-treatment follow-up,can provide robust substantiation of current evidence.

  11. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey Schlom

    2012-12-01

    Full Text Available Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  12. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  13. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  14. 1H NMR detection of mobile lipids as a marker for apoptosis: The case of anti-cancer drug-loaded liposomes and polymeric micelles

    Science.gov (United States)

    Musacchio, T.; Toniutti, M.; Kautz, R.; Torchilin, V.P.

    2009-01-01

    Cultured cancer cells undergoing apoptosis show an increase in the NMR signal at a chemical shift of 1.3 ppm (-CH2-) corresponding to the so-called “mobile lipids” (ML) originating from the mobile acyl chains in triacylglycerides. A single NMR spectrum can provide an overview of the cellular metabolic changes caused by anticancer drugs providing qualitative and quantitative information on cellular metabolites. With this in mind, we studied the appearance of ML resonance in BT-20 and MCF-7 human breast cancer cells after their exposure to paclitaxel-loaded liposomes and polymeric micelles as a method to follow the apoptotic activity initiated by drug-loaded pharmaceutical nanocarriers. BT-20 and MCF-7 cells were incubated with 1.5 μg/mL paclitaxel–loaded liposomes or micelles for 24, 48 and 72 hrs in DMEM medium. Empty liposomes and micelles and untreated cells were used as controls. The progression of apoptosis induced in cancer cells by drug-loaded nanocarriers was readily detectable by NMR with a markedly increased area of the ML peak at 1.3 ppm. The presence of liposome- and micelle-forming materials did not induce or interfere with the increase in ML signals. Thus, the use of NMR for the detection of ML as a marker of apoptosis can be successfully applied to the study of pharmacological effects of anti-cancer drugs loaded into pharmaceutical nanocarriers. PMID:19737025

  15. Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties.

    Science.gov (United States)

    Kothari, Damini; Goyal, Arun

    2015-02-01

    Gentio-oligosaccharides (GnOS) were synthesized by the acceptor reaction of dextransucrase from Leuconostoc mesenteroides NRRL B-1426 with gentiobiose and sucrose. GnOS were purified by gel permeation chromatography using a Bio-Gel P-2 column and identified by mass spectrometry. The purified GnOS (degree of polymerization ≥3) were investigated for their in vitro prebiotic and cytotoxic activity. GnOS exhibited a significantly lower degree of digestibility of 18.1% by simulated human gastric juice (pH 1.0) and 7.1% by human α-amylase (pH 7.0) after 6 h, whereas inulin, a standard prebiotic, showed 39.7% and 12.8% of digestibility, respectively. The prebiotic score showed that GnOS significantly supported the growth of probiotics such as Bifidobacterium infantis and Lactobacillus acidophilus and was comparable to that of inulin. The selective inhibitory effect of GnOS on human colon carcinoma (HT-29) cells revealed its potential as an anti-cancer agent that can serve as a functional food additive for the benefit of human health. PMID:25524369

  16. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery. PMID:21133071

  17. Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics.

    Science.gov (United States)

    Griffith, Darren; Parker, James P; Marmion, Celine J

    2010-06-01

    Historically, DNA has been the target for many metal-based anti-cancer drugs, but drawbacks of prevailing therapies have stimulated the search for new molecular targets which may present unique opportunities for therapeutic exploitation. Enzyme inhibition has recently been identified as an alternative and significant target. The pursuit of novel metallodrug candidates that selectively target enzymes is now the subject of intense investigation in medicinal bioinorganic chemistry and chemical biology. In the field of drug design, it is recognised by many that exploiting the structural and chemical diversity of metal ions for the identification of potential hit and lead candidates can dramatically increase the number of possible drug candidates that may be added to the already abundant armoury of chemotherapeutic agents. This review will focus on recent key advancements in enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. The enormous clinical success of classical platinum drugs, amongst others, coupled with the wealth of knowledge accumulated in recent years on enzyme structure and function, has undoubtedly been the impetus behind the development of new metallodrug candidates with enzyme inhibitory properties. Recent trends in this field will be reviewed with a particular emphasis on metal complexes that inhibit protein and lipid kinases, matrix metalloproteases, telomerases, topoisomerases, glutathione-S-transferases, and histone deacetylases.

  18. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Chris P. Reutelingsperger

    2013-05-01

    Full Text Available Evaluation of efficacy of anti-cancer therapy is currently performed by anatomical imaging (e.g., MRI, CT. Structural changes, if present, become apparent 1–2 months after start of therapy. Cancer patients thus bear the risk to receive an ineffective treatment, whilst clinical trials take a long time to prove therapy response. Both patient and pharmaceutical industry could therefore profit from an early assessment of efficacy of therapy. Diagnostic methods providing information on a functional level, rather than a structural, could present the solution. Recent technological advances in molecular imaging enable in vivo imaging of biological processes. Since most anti-cancer therapies combat tumors by inducing apoptosis, imaging of apoptosis could offer an early assessment of efficacy of therapy. This review focuses on principles of and clinical experience with molecular imaging of apoptosis using Annexin A5, a widely accepted marker for apoptosis detection in vitro and in vivo in animal models. 99mTc-HYNIC-Annexin A5 in combination with SPECT has been probed in clinical studies to assess efficacy of chemo- and radiotherapy within 1–4 days after start of therapy. Annexin A5-based functional imaging of apoptosis shows promise to offer a personalized medicine approach, now primarily used in genome-based medicine, applicable to all cancer patients.

  19. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy.

    Science.gov (United States)

    Park, Soyeun

    2016-06-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.

  20. THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 5, NO. 2, pp. 88-91, May, 2015 Isolation of an Anti-Cancer Asperuloside from Hedyotis corymbosa L.

    Directory of Open Access Journals (Sweden)

    Nina Artanti

    2015-05-01

    Full Text Available Hedyotis corymbosa L., with local name rumput mutiara, is an anti-inflammatory, anti-cancer and hepatoprotective traditional medicine. The ethanol extract of H. corymbosa L. shows inhibitory activity to humanYMB-1 breast cancer cell line with an IC50 of 6.51 μg/mL. The methylene chloride fraction shows a potential cytotoxic activity with an IC50 of 2.75 μg/mL. To obtain a lead compound, the extract was further purified by column chromatography. A pure compound is obtained which shows inhibitory activities against YMB-1, HL60 and KB human cell lines with IC50 values of 0.7; 11.0 and 104.2 μg/mL, respectively. Based on the 1D and 2D FT-NMR data, the isolated compound is an asperuloside.

  1. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco;

    2013-01-01

    Monocyte-derived dendritic cells (DCs) used for immunotherapy e.g. against cancer are commonly matured by pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and prostaglandin E2 although the absence of Toll-like receptor mediated activation prevents secretion of IL-12 from DCs and subsequent efficie...

  2. Topical immunotherapy with diphenylcyclopropenone-induced vitiligo.

    Science.gov (United States)

    Kutlubay, Zekayi; Engin, Burhan; Songur, Abdullah; Serdaroglu, Server; Tuzun, Yalcin

    2016-08-01

    Topical immunotherapy made by diphenylcyclopropenone (DPCP) is an alternative treatment that can be used safely and efficaciously in recalcitrant alopecia areata patients. DPCP-induced vitiligo is a rare, but documented, unwanted side effect. The real mechanism of DPCP-induced vitiligo is not well known. PMID:26963903

  3. Role of IL-2 in cancer immunotherapy.

    Science.gov (United States)

    Jiang, Tao; Zhou, Caicun; Ren, Shengxiang

    2016-06-01

    Interleukin-2 (IL-2) is one of the key cytokines with pleiotropic effects on immune system. It has been approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. Recent progress has been made in our understanding of IL-2 in regulating lymphocytes that has led to exciting new directions for cancer immunotherapy. While improved IL-2 formulations might be used as monotherapies, their combination with other anticancer immunotherapies, such as adoptive cell transfer regimens, antigen-specific vaccination, and blockade of immune checkpoint inhibitory molecules, for example cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) mono-antibodies, would held the promise of treating metastatic cancer. Despite the comprehensive studies of IL-2 on immune system have established the application of IL-2 for cancer immunotherapy, a number of poignant obstacles remain for future research. In the present review, we will focus on the key biological features of IL-2, current applications, limitations, and future directions of IL-2 in cancer immunotherapy. PMID:27471638

  4. Steroids vs immunotherapy for allergic rhinitis

    DEFF Research Database (Denmark)

    Aasbjerg, Kristian; Backer, Vibeke

    2014-01-01

    Treatment for seasonal allergic rhinitis induced by airborne allergens can be divided into two major groups: symptom-dampening drugs, such as antihistamines and corticosteroids, and disease-modifying drugs in the form of immunotherapy. It has been speculated that depot-injection corticosteroids g...

  5. Particulate based vaccines for cancer immunotherapy

    NARCIS (Netherlands)

    Rosalia, Rodney Alexander

    2014-01-01

    In this thesis we describe our studies aimed at optimizing the efficacy of synthetic long peptide (SLP) vaccines via the encapsulation in Poly-(lactic-co-glycolic acid) (PLGA)particles. Immunotherapy based on SLP-vaccines has resulted in strong tumor specific immune response and importantly, impro

  6. Specific immunotherapy for renal cell carcinoma

    NARCIS (Netherlands)

    Bleumer, I.

    2006-01-01

    Despite the fact that evaluation of cytokine-based therapies for mRCC shows that a subset of patients react favourable to immunotherapy, significant side effects do occur. With the increased knowledge of tumor-immunology, the recognition of immunogenic tumor proteins and antibodies, new treatment op

  7. Role of IL-2 in cancer immunotherapy.

    Science.gov (United States)

    Jiang, Tao; Zhou, Caicun; Ren, Shengxiang

    2016-06-01

    Interleukin-2 (IL-2) is one of the key cytokines with pleiotropic effects on immune system. It has been approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. Recent progress has been made in our understanding of IL-2 in regulating lymphocytes that has led to exciting new directions for cancer immunotherapy. While improved IL-2 formulations might be used as monotherapies, their combination with other anticancer immunotherapies, such as adoptive cell transfer regimens, antigen-specific vaccination, and blockade of immune checkpoint inhibitory molecules, for example cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) mono-antibodies, would held the promise of treating metastatic cancer. Despite the comprehensive studies of IL-2 on immune system have established the application of IL-2 for cancer immunotherapy, a number of poignant obstacles remain for future research. In the present review, we will focus on the key biological features of IL-2, current applications, limitations, and future directions of IL-2 in cancer immunotherapy.

  8. Cancer immunotherapy : insights from transgenic animal models

    NARCIS (Netherlands)

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the differ

  9. Improved endpoints for cancer immunotherapy trials

    NARCIS (Netherlands)

    A. Hoos (Axel); A.M.M. Eggermont (Alexander); S. Janetzki (Sylvia); F.S. Hodi (Stephen); R. Ibrahim (Ramy); A. Anderson (Aparna); R. Humphrey (Rachel); B. Blumenstein (Brent); L. Old (Lloyd); J. Wolchok (Jedd)

    2010-01-01

    textabstractUnlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluat

  10. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    Science.gov (United States)

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  11. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs

    Directory of Open Access Journals (Sweden)

    Patrick Denis R

    2004-10-01

    Full Text Available Abstract Background As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog, fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog. Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the Aurora kinase family. Results Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor. Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the ATP-binding active site, only three were variant and all were specific to Aurora-A. Conclusions In

  12. Role of Local Radiation Therapy in Cancer Immunotherapy.

    Science.gov (United States)

    Demaria, Sandra; Golden, Encouse B; Formenti, Silvia C

    2015-12-01

    The recent success of cancer immunotherapy has demonstrated the power of the immune system to clear tumors, generating renewed enthusiasm for identifying ways to induce antitumor immune responses in patients. Natural antitumor immune responses are detectable in a fraction of patients across multiple malignant neoplasms and can be reactivated by targeting rate-limiting immunosuppressive mechanisms. In most patients, however, interventions to induce a de novo antitumor immune response are necessary. We review growing evidence that radiation therapy targeted to the tumor can convert it into an in situ tumor vaccine by inducing release of antigens during cancer cell death in association with proinflammatory signals that trigger the innate immune system to activate tumor-specific T cells. In addition, radiation's effects on the tumor microenvironment enhance infiltration of activated T cells and can overcome some of the barriers to tumor rejection. Thus, the complementary effects of radiation on priming and effector phases of antitumor immunity make it an appealing strategy to generate immunity against a patient's own individual tumor, that through immunological memory, can result in long-lasting systemic responses. Several anecdotal cases have demonstrated the efficacy of combining radiation with available immunotherapies, and results of prospective trials are forthcoming.

  13. Advances in immunotherapy for non-small cell lung cancer.

    Science.gov (United States)

    Reckamp, Karen L

    2015-12-01

    In most patients, lung cancer presents as advanced disease with metastases to lymph nodes and/or distant organs, and survival is poor. Lung cancer is also a highly immune-suppressing malignancy with numerous methods to evade antitumor immune responses, including deficiencies in antigen processing and presentation, release of immunomodulatory cytokines, and inhibition of T-cell activation. Advances in understanding the complex interactions of the immune system and cancer have led to novel therapies that promote T-cell activation at the tumor site, resulting in prolonged clinical benefit. Immune checkpoint inhibitors, specifically programmed death receptor 1 pathway antibodies, have demonstrated impressively durable responses and improved survival in patients with non-small cell lung cancer. This article will review the recent progress made in immunotherapy for lung cancer with data from trials evaluating programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 monoclonal antibodies in addition to cancer vaccines. The review will focus on studies that have been published and the latest randomized trials exploring immune therapy in lung cancer. These results form the framework for a new direction in the treatment of lung cancer toward immunotherapy. PMID:27058851

  14. [Psychological aspects of immunotherapies in the treatment of malignant melanoma].

    Science.gov (United States)

    Kovács, Péter; Pánczél, Gitta; Melegh, Krisztina; Balatoni, Tímea; Pörneczy, Edit; Lõrincz, Lenke; Czirbesz, Kata; Gorka, Eszter; Liszkay, Gabriella

    2016-03-01

    Psychological problems may arise in connection with oncomedical treatments in three ways: 1. acute and/or 2. chronic ways, as well as 3. co-morbid psychiatric diseases that already exist must also be taken into account. Immunotherapies have the most common and also clinically relevant psychological side effects. Fatigue, anhedonia, social isolation, psychomotor slowness is reported during treatment. Anti-CTLA-4 antibody (ipilimumab) immunotherapy can present one of the most modern opportunities for adequate treatment for patients having distant metastasis or unresectable tumour. In relation to immunotherapies, acute psychological side effects (acute stress) emerging during treatments develop in a way that can mostly be linked to environmental factors, e.g. notification of diagnosis, hospitalisation, progression, deterioration in quality of life, imminent dates of control. Crisis is a temporary and threatening condition that endangers psychological balance. In such conditions, enhanced psychological vulnerability must be taken into account and doctors play a key role in the rapid recognition of the condition. Chronic psychological problems, which may arise from the depressogenic effect of the applied treatment or originated from a pre-melanoma psychiatric condition, may exceed the diagnostic and psychotherapeutic competences of a clinical psychologist. Even in case of a well-defined depressogenic biological mechanism such as the activation of the pro-inflammatory cytokine pathway, positive environmental effects can reduce symptoms and thus increase compliance. Side effects can be treated successfully using psychotherapeutic methods and/or psychiatric medicines. The application of routinely used complex psychosocial screening packages can provide the easiest method to identify worsening psychological condition during immunotherapy and give rapid feedback to the oncologist and the patient. Team work is of particular importance in a situation like this as it requires

  15. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites.

    Directory of Open Access Journals (Sweden)

    Eliška Potůčková

    Full Text Available Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT, demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma, non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1 promote the redox cycling of iron; (2 bind and mobilize iron from labile intracellular pools; and (3 prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.

  16. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites.

    Science.gov (United States)

    Potůčková, Eliška; Roh, Jaroslav; Macháček, Miloslav; Sahni, Sumit; Stariat, Ján; Šesták, Vít; Jansová, Hana; Hašková, Pavlína; Jirkovská, Anna; Vávrová, Kateřina; Kovaříková, Petra; Kalinowski, Danuta S; Richardson, Des R; Šimůnek, Tomáš

    2015-01-01

    Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents. PMID:26460540

  17. Workshop on immunotherapy combinations. Society for immunotherapy of cancer annual meeting Bethesda, November 3, 2011

    Directory of Open Access Journals (Sweden)

    Forero Ivan

    2012-05-01

    Full Text Available Abstract Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1 the most promising combinations found in the laboratory; 2 early success of combination immunotherapy in clinical trials; 3 industry perspectives on combination approaches, and 4 relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and “perceived” business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer

  18. Workshop on immunotherapy combinations. Society for Immunotherapy of Cancer annual meeting Bethesda, November 3, 2011.

    Science.gov (United States)

    Martinez Forero, Ivan; Okada, Hideho; Topalian, Suzanne L; Gajewski, Thomas F; Korman, Alan J; Melero, Ignacio

    2012-01-01

    Although recent FDA approvals on ipilimumab and sipuleucel-T represent major milestones, the ultimate success of immunotherapy approaches will likely benefit from appropriate combinations with other immunotherapeutic and/or non-immunotherapeutic approaches. However, implementation of ideal combinations in the clinic may still face formidable challenges in regulatory, drug-availability and intellectual property aspects. The 2011 SITC annual meeting hosted a workshop on combination immunotherapy to discuss: 1) the most promising combinations found in the laboratory; 2) early success of combination immunotherapy in clinical trials; 3) industry perspectives on combination approaches, and 4) relevant regulatory issues. The integrated theme was how to accelerate the implementation of efficacious combined immunotherapies for cancer patients. Rodent animal models are providing many examples of synergistic combinations that typically include more than two agents. However, mouse and human immunology differ in a significant number of mechanisms and hence we might be missing opportunities peculiar to humans. Nonetheless, incisive animal experimentation with deep mechanistic insight remains the best compass that we can use to guide our paths in combinatorial immunotherapy. Combination immunotherapy clinical trials are already in progress and preliminary results are extremely promising. As a key to translate promising combinations into clinic, real and "perceived" business and regulatory hurdles were debated. A formidable step forward would be to be able to test combinations of investigational agents prior to individual approval. Taking together the FDA and the industrial perspective on combinatorial immunotherapy, the audience was left with the clear message that this is by no means an impossible task. The general perception is that the road ahead of us is full of combination clinical trials which hopefully will bring clinical benefit to our cancer patients at a fast pace. PMID

  19. Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Kim, Jinkyoung; Lee, Jiyun; Kim, Chungyeul; Choi, Jinhyuk; Kim, Aeree

    2016-05-01

    Development of new therapeutic strategies is becoming increasingly important to overcome tamoxifen resistance. Recently, much interest has been focused on anti-tumor effects of metformin commonly used to treat type II diabetes. Increased protein expression and signaling of epidermal growth factor receptor (EGFR) family is a possible mechanism involved in tamoxifen resistance. Since HER2/HER3 heterodimers are able to induce strong downstream signaling and activate various biological responses such as cellular proliferation and growth, we investigated the anti-cancer effect of metformin by inhibition of signaling pathway via downregulation of HER2 and HER3 using tamoxifen-resistant MCF-7 (TR MCF-7) cells. Compared to MCF-7 cells, TR MCF-7 cells showed increased expression of EGFR, HER2, and HER3, and metformin inhibited the expression of these proteins in a dose- and time-dependent manner. Metformin inhibited activation of HER2 (Tyr1248)/HER3 (Tyr1289)/Akt (Ser473) as well as cell proliferation and colony formation by estrogenic promotion in MCF-7 and TR MCF-7 cells. Known as a HER3 ligand, heregulin (HRG)-β1-induced phosphorylation of HER2, HER3 and Akt, and protein interaction of HER2/HER3 and colony formation were inhibited by metformin in both cells. Consistent with the results in the two cell lines, we identified that metformin inhibited HER2/HER3/Akt signaling axis activated by HRG-β1 using the HER2 and HER3-overexpressing breast cancer cell line SK-BR-3. Lastly, lapatinib-induced HER3 upregulation was significantly inhibited by treatment of metformin in HER3 siRNA-transfected TR MCF-7 cells. These data suggest that metformin might overcome tamoxifen resistance through the inhibition of expression and signaling of receptor tyrosine kinase HER2 and HER3. PMID:26581908

  20. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells.

    Science.gov (United States)

    Alrifai, Doraid; Sarker, Debashis; Maher, John

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) engineered T-cells is emerging as a powerful new approach to cancer immunotherapy. CARs are fusion molecules that couple the antibody-like binding of a native cell surface target to the delivery of a bespoke T-cell activating signal. Recent studies undertaken by several centers have demonstrated highly compelling efficacy in patients with acute and chronic B-cell malignancies. However, comparable therapeutic activity has not been achieved in solid tumors. Modern management of pancreatic ductal adenocarcinoma (PDAC) remains ineffective, reflected in the virtual equivalence of annual incidence and mortality statistics for this tumor type. Increasing evidence indicates that these tumors are recognized by the immune system, but deploy powerful evasion strategies that limit natural immune surveillance and render efforts at immunotherapy challenging. Here, we review preclinical and clinical studies that have been initiated or completed in an effort to develop CAR-based immunotherapy for PDAC. We also consider the hurdles to the effective clinical development of this exciting new therapeutic modality.

  1. Inmunoterapias para las adicciones a las drogas Immunotherapies for Drug Addictions

    Science.gov (United States)

    Montoya, Iván D.

    2008-01-01

    Immunotherapies in the form of vaccines (active immunization) or monoclonal antibodies (passive immunization) appear safe and a promising treatment approaches for some substance-related disorders. The mechanism of action of the antibody therapy is by preventing the rapid entry of drugs of abuse into the central nervous system. In theory, immunotherapies could have several clinical applications. Monoclonal antibodies may be useful to treat drug overdoses and prevent the neurotoxic effects of drugs by blocking the access of drugs to the brain. Vaccines may help to prevent the development of addiction, initiate drug abstinence in those already addicted to drugs, or prevent drug use relapse by reducing the pharmacological effects and rewarding properties of the drugs of abuse on the brain. Passive immunization with monoclonal antibodies has been investigated for cocaine, methamphetamine, nicotine, and phencyclidine (PCP). Active immunization with vaccines has been studied for cocaine, heroin, methamphetamine, and nicotine. These immunotherapies seem promising therapeutic tools and are at different stages in their development before they can be approved by regulatory agencies for the treatment of substance-related disorders. The purpose of this article is to review the current immunotherapy approaches with emphasis on the risks and benefits for the treatment of these disorders. PMID:18551223

  2. Immunotherapy for Lung Cancer: Has it finally arrived?

    Directory of Open Access Journals (Sweden)

    Ahmed A. Mostafa

    2014-10-01

    Full Text Available The possible link between infection/inflammation/immune activation and a cancer patient’s outcome from both a causative and outcome point of view has long been postulated. Substantial progress in the understanding of tumour associated antigens/epitopes, immune cellular subpopulations, cytokine pathways/expression, the tumour microenvironment, and the balance between tumour immune suppression and stimulation have been made over the past decade. This knowledge has heralded a new era of tumor immunotherapy utilizing vaccines, immune checkpoint inhibition and oncolytic viruses. Despite significant progress in the molecular era now with targeted therapeutics such as EGFR tyrosine kinase inhibitors and ALK fusion protein inhibitors that have significantly improved the outcome of these specific lung cancer subpopulations, the overall 5 year survival for all non-small cell lung carcinoma (NSCLC is still less than 20%. Unlike malignancies such as malignant melanoma, renal cell carcinoma and neuroblastoma given their documented spontaneous remission rates lung cancer historically has been felt to be resistant to immune approaches likely related to an immunosuppressive tumour microenvironment and/or lack of immune recognition. Defining responding populations, understanding the mechanism(s underlying durable immune responses and the role of chemotherapy, radiation, oncolytic viruses and other tumour disrupting agents in augmenting immune responses have led to improved optimization of immune therapeutic strategies. The purpose of this mini review is to focus on the recent advances in lung immunotherapy with an emphasis on recent clinical trials in the last 5 years in NSCLC.

  3. Irradiation and immunotherapy: From concept to the clinic.

    Science.gov (United States)

    Salama, April K S; Postow, Michael A; Salama, Joseph K

    2016-06-01

    In recent years, an increased understanding of T-cell-regulatory mechanisms has led to the development of a novel class of immune-checkpoint inhibitors that have robust clinical activity against a broad array of malignancies-even those that historically were not believed to be sensitive to immune therapy. With this, there has been renewed interest in the potential for synergy with more traditional forms of anticancer therapy like radiation therapy (RT). The role of RT in palliation or as definitive treatment for certain malignancies has been well established. Yet, in recent years, the concept has come to light that RT could be an attractive partner for use in combination with other immunotherapies. The effects of RT include not only control of an irradiated tumor but also multiple immunomodulatory effects on both the tumor and the microenvironment, priming tumors for an immune-mediated response. Herein, the authors summarize relevant preclinical data and rationale supporting the synergy of combined RT and immunotherapy and highlight recent clinical work on promising combination strategies. Cancer 2016;122:1659-71. © 2016 American Cancer Society.

  4. Can calcium signaling be harnessed for cancer immunotherapy?

    Science.gov (United States)

    Rooke, Ronald

    2014-10-01

    Experimental evidence shows the importance of the immune system in controlling tumor appearance and growth. Immunotherapy is defined as the treatment of a disease by inducing, enhancing or suppressing an immune response. In the context of cancer treatment, it involves breaking tolerance to a cancer-specific self-antigen and/or enhancing the existing anti-tumor immune response, be it specific or not. Part of the complexity in developing such treatment is that cancers are selected to escape adaptive or innate immune responses. These escape mechanisms are numerous and they may cumulate in one cancer. Moreover, different cancers of a same type may present different combinations of escape mechanisms. The limited success of immunotherapeutics in the clinic as stand-alone products may in part be explained by the fact that most of them only activate one facet of the immune response. It is important to identify novel methods to broaden the efficacy of immunotherapeutics. Calcium signaling is central to numerous cellular processes, leading to immune responses, cancer growth and apoptosis induced by cancer treatments. Calcium signaling in cancer therapy and control will be integrated to current cancer immunotherapy approaches. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

  5. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga;

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate kno...... and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread....

  6. Advances of Immunotherapy in Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jingjing LIU

    2014-06-01

    Full Text Available Small cell lung cancer (SCLC is complex heterogeneous due to unclear biological characteristics in terms of cell origin, pathogenesis and driver genes etc. Diagnosis and treatment of SCLC has been slowly improved and few breakthroughs have been discovered up to now. Therefore new strategies are urgently needed to improve the efficacy of SCLC treatment. Tumor immunotherapy has potential to restore and trigger the immune system to recognize and eliminate tumor cells, notably it has only minimal adverse impact on normal tissue. Cancer vaccine, adoptive immunotherapy, cytokines and checkpoint inhibitors have now been launched for clinical treatment of SCLC. Ipilimumab is the most promising medicine of immunotherapy. Immunotherapy is expected to bring new vision to the treatment of SCLC. And further researches are needed on such problems affecting efficacy of immunotherapy as the heterogeneity of SCLC, the uncertainty of target for immunotherapy, the immune tolerance, etc.

  7. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

    International Nuclear Information System (INIS)

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 μM) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca2+ efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP+ transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: → We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. → GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. → These actions could be

  8. Preclinical Assessment of Vernonia amygdalina Leaf Extracts as DNA Damaging Anti-cancer Agent in the Management of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ernest Izevbigie

    2008-12-01

    Full Text Available Breast cancer is the leading cause of death among women between 40 and 55 years of age and is the second overall cause of death among women. Fortunately, the mortality rate from breast cancer has decreased in recent years due to an increased emphasis on early detection and more effective treatments. Despite early detection, conventional and chemotherapeutic methods of treatment, about 7% of women still died every year. Hence, the aim of the present study was to assess the therapeutic efficacy of Vernonia amygdalina (VA leaf extracts as anti-cancer agent against human breast cancer in vitro using the MTT [3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet assays, respectively. In this experiment, human breast adenocarcinoma (MCF-7 cells were treated with different doses of VA leaf extracts for 48 hours. Data obtained from the MTT assay showed that VA significantly ((P < 0.05 reduced the viability of MCF-7 cells in a dose-dependent manner upon 48 hours of exposure. Data generated from the comet assay also indicated a slight dose-dependent increase in DNA damage in MCF-7 cells associated with VA treatment. We observed a slight increase in comet tail-length, tail arm and tail moment, as well as in percentages of DNA cleavage at all doses tested, showing an evidence that VA-induced minimal genotoxic damage in MCF-7 cells. Taken together, our findings suggest that VA treatment moderately (P < 0.05 reduces cellular viability and induces minimal DNA damage in MCF-7 cells. These findings provide evidence that VA extracts represent a DNA-damaging anti-cancer agent against breast cancer and its mechanisms of action functions, at least in part, through minimal DNA damage and moderate toxicity in tumors cells.

  9. Screening of Drug Metabolizing Enzymes for the Ginsenoside Compound K In Vitro: An Efficient Anti-Cancer Substance Originating from Panax Ginseng.

    Directory of Open Access Journals (Sweden)

    Jian Xiao

    Full Text Available Ginsenoside compound K (CK, a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.

  10. Development of PROSTVAC immunotherapy in prostate cancer.

    Science.gov (United States)

    Singh, Parminder; Pal, Sumanta K; Alex, Anitha; Agarwal, Neeraj

    2015-01-01

    PROSTVAC immunotherapy is a heterologous prime-boost regimen of two different recombinant pox-virus vectors; vaccinia as the primary immunotherapy, followed by boosters employing fowlpox, to provoke immune responses against prostate-specific antigen. Both vectors contain transgenes for prostate-specific antigen and a triad of T-cell costimulatory molecules (TRICOM). In a placebo-controlled Phase II trial of men with minimally symptomatic, chemotherapy-naive metastatic castration-resistant prostate cancer, PROSTVAC was well tolerated and associated with a 44% reduction in death. With a novel mechanism of action, and excellent tolerability, PROSTVAC has the potential to dramatically alter the treatment landscape of prostate cancer, not only as a monotherapy, but also in combination with other novel agents, such as immune check point inhibitors and novel androgen receptor blockers. A Phase III trial recently completed accrual. PMID:26235179

  11. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  12. Era of cancer immunotherapy has come.

    Science.gov (United States)

    Nakatsura, Tetsuya

    2016-01-01

      The dramatic and long durable anti-tumor effect of immune checkpoint blockade, such as anti-CTLA-4 Ab, anti-PD-1 Ab, and anti-PD-L1 Ab was surprised the world. In addition, CAR-T cell therapy that target the CD19 indicates a very high response rate to the CD19-positive hematologic malignancies. Now, no one doubts the presence of immunity against cancer.  Further, accordingly, tumor-specific neoantigen are attention now, the clinical trials of individualized peptide vaccination that target patient individual neoantigens has begun in the Western. On the other hand, the peptide vaccine therapy that target common self-antigen is not yet been approved in Japan, the development is struggling.  In this paper, I overview the cancer immunotherapy and neoantigen and introduce some development of cancer immunotherapy in Japan.

  13. RNA-Based Vaccines in Cancer Immunotherapy.

    Science.gov (United States)

    McNamara, Megan A; Nair, Smita K; Holl, Eda K

    2015-01-01

    RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  14. Improvement of QOL and Immunological Function With Lentinula Edodes Mycelia in Patients Undergoing Cancer Immunotherapy: An Open Pilot Study.

    Science.gov (United States)

    Tanigawa, Keishi; Itoh, Yusuke; Kobayashi, Yasunobu

    2016-07-01

    Context • Combined treatment with an extract of Lentinula edodes mycelia (LEM) and chemotherapy has been reported to improve quality of life (QOL) and immunological function in cancer patients. However, those effects have not been elucidated for patients receiving cancer immunotherapy. Objective • The present study intended to investigate the effects of oral LEM on QOL and immunological function in cancer patients receiving immunotherapy. Design • The research team designed an open-label, single-armed pilot study. Setting • The study took place at Bio-Thera Clinic, a facility associated with Tokyo Women's Medical University in Tokyo, Japan. Participants • The participants were 10 cancer patients undergoing cancer immunotherapy at Bio-Thera Clinic. Intervention • The participants received either dendritic cell (DC)-based cancer vaccine therapy or CD3-activated T-lymphocyte (CAT) therapy as immunotherapy. They received the immunotherapy only for the first 4 wk of the study, and then oral LEM (1800 mg/d) was added for the next 4 wk. Outcome Measures • Preintervention and at 4 and 8 wk after the start of the study, participants completed a QOL survey, and immunological parameters were measured. Results • Participants' QOL symptom scores increased (ie, worsened) by 5.1 ± 1.7 during the first 4 wk of treatment when they were receiving immunotherapy only, but it decreased (ie, improved) by -2.5 ± 1.6 during the next 4 wk when the immunotherapy was combined with the LEM, P < .05. The measurement of the immunological parameters during the 4 wk of immunotherapy combined with LEM showed that the amount of interferon-γ (IFN-γ) produced in the peripheral blood tended to increase as compared with that during the first 4 wk of immunotherapy only. The rise in IFN-γ was correlated with changes in several regulatory T cells (Tregs) (ie, forkhead box P3 [FOXP3]+/cluster of differentiation 4 [CD4]+ and transforming growth factor beta [TGF-β]). Conclusions • The

  15. ATMPs for Cancer Immunotherapy: A Regulatory Overview.

    Science.gov (United States)

    Galli, Maria Cristina

    2016-01-01

    This chapter discusses European regulatory requirements for development of advanced therapy medicinal products (ATMP) for cancer immunotherapy approaches, describing the framework for clinical trials and for marketing authorization.Regulatory critical issues and challenges for developing ATMP are also discussed, with focus on potency determination, long-term follow-up, comparability, and insertional mutagenesis issues. Some of the most critical features of GMP application to ATMP are also described.

  16. Local immunotherapy in experimental murine lung inflammation

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Caroline Uebel, Sonja Koch, Anja Maier, Nina Sopel, Anna Graser, Stephanie Mousset & Susetta Finotto ### Abstract Innovative local immunotherapy for severe lung diseases such as asthma, chronic obstructive pulmonary disease or lung cancer requires a successful delivery to access the desired cellular target in the lung. An important route is the direct instillation into the airways in contrast to delivery through the digestive tract. This protocol details a method to deliv...

  17. Adoptive immunotherapy for cancer: building on success

    OpenAIRE

    Gattinoni, Luca; Powell, Daniel J.; Rosenberg, Steven A.; Restifo, Nicholas P

    2006-01-01

    Adoptive cell transfer after host preconditioning by lymphodepletion represents an important advance in cancer immunotherapy. Here, we describe how a lymphopaenic environment enables tumour-reactive T cells to destroy large burdens of metastatic tumour and how the state of differentiation of the adoptively transferred T cells can affect the outcome of treatment. We also discuss how the translation of these new findings might further improve the efficacy of adoptive cell transfer through the u...

  18. Prostate cancer immunotherapy: beyond immunity to curability.

    Science.gov (United States)

    Simons, Jonathan W

    2014-11-01

    Metastatic prostate cancer is the second leading cause of death from cancer in the United States. It is the first prevalent cancer in which overall survival in advanced disease is modestly, but objectively, improved with outpatient delivered dendritic cell-based immunotherapy. More prostate cancer patients have enrolled through Facebook and trusted-site Internet searches in clinical trials for prostate cancer vaccine-based immunotherapy than in immunotherapy trials for lung, breast, colon, pancreas, ovarian, and bladder cancer combined in the past 7 years. Exceptional responses to anti-CTLA-4 treatment have been documented in clinics, and prostate cancer neoantigen characterization and T-cell clonotyping are in their research ascendancy. The prostate is an accessory organ; it is not required for fertility, erectile function, or urinary continence. The true evolutionary advantage of having a prostate for male mammalian physiology is a topic of speculation in seminar rooms and on bar stools, but it remains unknown. Hundreds of prostate lineage-unique proteins (PLUP) exist among the >37,000 normal human prostate lineage-unique open reading frames that can be targeted for immunologic ablation of PLUP(+) prostate cancer cells by prostate-specific autoimmunity. This bioengineered graft-versus-prostate disease is a powerful strategy that can eliminate deaths from prostate cancer. Immunologic tolerance to prostate cancer can be overcome at every clinical stage of presentation. This Cancer Immunology at the Crossroads article aims to present advances in the past two decades of basic, translational, and clinical research in prostate cancer, including bioengineering B-cell and T-cell responses, and ongoing prostate cancer immunotherapy trials. PMID:25367978

  19. ATMPs for Cancer Immunotherapy: A Regulatory Overview.

    Science.gov (United States)

    Galli, Maria Cristina

    2016-01-01

    This chapter discusses European regulatory requirements for development of advanced therapy medicinal products (ATMP) for cancer immunotherapy approaches, describing the framework for clinical trials and for marketing authorization.Regulatory critical issues and challenges for developing ATMP are also discussed, with focus on potency determination, long-term follow-up, comparability, and insertional mutagenesis issues. Some of the most critical features of GMP application to ATMP are also described. PMID:27033211

  20. Immunotherapy with the storage mite lepidoglyphus destructor.

    Science.gov (United States)

    Armentia-Medina, A; Tapias, J A; Martín, J F; Ventas, P; Fernández, A

    1995-01-01

    We carried out a double-blind clinical trial of immunotherapy on 35 patients sensitized to the storage mite Lepidoglyphus destructor (Ld). Before and after 12 months of specific hyposensitization (Abelló Lab., Spain) we performed in vivo (skin tests with Ld, methacholine and challenge tests), and in vitro tests (specific IgE, IgG, IgG1 and IgG4 to Ld and specific IgE, IgG, IgG1 and IgG4 to their major allergen Lep dI). We also monitored the efficacy and safety of the immunotherapy with clinical and analytical controls (symptoms and medication score, detection of immune complexes). After therapy we found a significant decrease in specific skin reactivity, dose of positive challenge tests, and hyperresponsiveness to methacholine. Sputum eosinophilia decreased. Specific IgE to Ld was increased and we also observed an increase in specific IgG1 and IgG4 to Ld and Lep DI. The placebo group showed no changes in these variables. There were no severe secondary reactions after treatment with the extract. Patients-self-evaluation was favourable and their labour absence decreased. No development of circulating immune complexes was associated with this immunotherapy. PMID:8526179