WorldWideScience

Sample records for active anti-cancer immunotherapy

  1. The promising alliance of anti-cancer electrochemotherapy with immunotherapy.

    Science.gov (United States)

    Calvet, Christophe Y; Mir, Lluis M

    2016-06-01

    Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects.

  2. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  3. Geldanamycin and its anti-cancer activities.

    Science.gov (United States)

    Fukuyo, Yayoi; Hunt, Clayton R; Horikoshi, Nobuo

    2010-04-01

    Geldanamycin is a benzoquinone ansamycin antibiotic that manifests anti-cancer activity through the inhibition of HSP90-chaperone function. The HSP90 molecular chaperone is expressed at high levels in a wide variety of human cancers including melanoma, leukemia, and cancers in colon, prostate, lung, and breast. In cancer cells dependent upon mutated and/or over-expressed oncogene proteins, HSP90 is thought to have a critical role in regulating the stability, folding, and activity of HSP90-associated proteins, so-called "client proteins". These client proteins include the growth-stimulating proteins and kinases that support malignant transformation. Recently, oncogenic activating BRAF mutants have been identified in variety of cancers where constitutive activation of the MEK/ERK MAPK signaling pathway is the key for tumorigenesis, and they have been shown to be client proteins for HSP90. Accordingly, HSP90 inhibition can suppress certain cancer-causing client proteins and therefore represents an important therapeutic target. The molecular mechanism underlying the anti-cancer effect of HSP90 inhibition is complicated. Geldanamycin and its derivatives have been shown to induce the depletion of mutationally-activated BRAF through several mechanisms. In this review, we will describe the HSP90-inhibitory mechanism, focusing on recent progress in understanding HSP90 chaperone structure-function relationships, the identification of new HSP90 client proteins and the development of HSP90 inhibitors for clinical applications.

  4. Potential Anti-cancer Activity of Furanodiene

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhen Ba; Yan-ping Zheng; Hui Zhang; Xiu-yan Sun; Dong-hai Lin

    2009-01-01

    Objective: To study the anti-tumor activities of furanodiene (C15H20O), a primary sesquiterpene compound isolated from the essential oil of the rhizome of Curcuma wenyujin YH Chen et C. Ling(Wen Ezhu), in vitro and in vivo.Methods: In vitro MTT assay was used to further study the effects of time and dosage on anti-proliferation of furanodiene against the sensitive Hela, Hep-2,HL-60, U251 cells, based on the cytotoxic effects of furanodiene on 12 human malignant tumor cell lines with the essential oil of Wen Ezhu as control., and the half-inhibitory concentration (IC50) was observed. In vivo uterine cervix (U14) tumor cell was selected and the conventional assay method of anti-tumor activity was employed. Furanodiene liposome was administered intraperitoneally, and tumor-inhibitory rate, thymus and spleen indexes were observed.Results: The inhibitive effects on cell proliferation were shown in all of the twelve cell lines and the cytotoxic effects of furanodiene against Hela, Hep-2, HL-60, U251 cells were observed after 12 h of administration, the effect could last for at least 48 h in a dose dependent manner, and the IC50 values were 0.6, 1.7, 1.8, 7.0 μg/ml, respectively. Furanodiene was also found to show inhibitive effects on the proliferation of uterine cervix (U14) tumor induced in mice. The tumor inhibition rates were 36.09% (40 mg/kg), 41.55% (60 mg/kg), 58.29% (80 mg/kg), respectively.Conclusion: Furanodiene is one of primary anti-cancer active components in the essential oil of Wen Ezhu, and also a very effective agent against uterine cervix cancer, and has protection effect on the immune function.

  5. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil

    2010-09-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  6. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Sung-Hoon Kim

    2012-10-01

    Full Text Available Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese, a well-known herb in Traditional Chinese Medicine (TCM. Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones.

  7. The anti-cancer activity of noscapine: a review.

    Science.gov (United States)

    Mahmoudian, Massoud; Rahimi-Moghaddam, Parvaneh

    2009-01-01

    Noscapine is an isoqiunoline alkaloid found in opium latex. Unlike most other alkaloids obtained from opium latex, noscapine is not sedative and has been used as antitussive drug in various countries. Recently, it has been introduced as an anti-mitotic agent. This drug can be used orally. When the resistance to other anti-cancer drugs such as paclitaxel manifests, noscapine might be effective. Therefore, noscapine and its analogs have great potential as novel anti-cancer agents.

  8. Diverging Novobiocin Anti-Cancer Activity from Neuroprotective Activity through Modification of the Amide Tail.

    Science.gov (United States)

    Ghosh, Suman; Liu, Yang; Garg, Gaurav; Anyika, Mercy; McPherson, Nolan T; Ma, Jiacheng; Dobrowsky, Rick T; Blagg, Brian S J

    2016-08-11

    Novobiocin is a natural product that binds the Hsp90 C-terminus and manifests Hsp90 inhibitory activity. Structural investigations on novobiocin led to the development of both anti-cancer and neuroprotective agents. The varied pharmacological activity manifested by these novobiocin analogs prompted the investigation of structure-function studies to identify these contradictory effects, which revealed that modifications to the amide side chain produce either anti-cancer or neuroprotective activity. Compounds that exhibit neuroprotective activity contain a short alkyl or cycloalkyl amide side chain. In contrast, anti-cancer agents contain five or more carbons, disrupt interactions between Hsp90α and Aha1, and induce the degradation of Hsp90-dependent client proteins.

  9. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities.

    Science.gov (United States)

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M; Wu, Erxi

    2013-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.

  10. Active Immunotherapy of Cancer.

    Science.gov (United States)

    Chodon, Thinle; Koya, Richard C; Odunsi, Kunle

    2015-01-01

    Clinical progress in the field of cancer immunotherapy has been slow for many years but within the last 5 years, breakthrough successes have brought immunotherapy to the forefront in cancer therapy. Promising results have been observed in a variety of cancers including solid tumors and hematological malignancies with adoptive cell therapy using natural host tumor infiltrating lymphocytes, host cells that have been genetically engineered with antitumor T-cell receptors or chimeric antigen receptors, immune checkpoint inhibitors like anti-CTLA-4, anti-PD-1 or PD-L1 monoclonal antibodies and oncolytic virus-based immunotherapy. However, most treatment modalities have shown limited efficacy with single therapy. The complex nature of cancer with intra- and inter-tumor antigen and genomic heterogeneity coupled with the immune suppressive microenvironment emphasizes the prospect of personalized targeted immunotherapy to manipulate the patient's own immune system against cancer. For successful, robust and long-lasting cure of cancer, a multi-modal approach is essential, combining anti-tumor cell therapy with manipulation of multiple pathways in the tumor microenvironment to ameliorate tumor-induced immunosuppression.

  11. Plant derived substances with anti-cancer activity: from folklore to practice.

    Science.gov (United States)

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  12. Anti-cancer efficacy of silybin derivatives -- a structure-activity relationship.

    Directory of Open Access Journals (Sweden)

    Chapla Agarwal

    Full Text Available Silybin or silibinin, a flavonolignan isolated from Milk thistle seeds, is one of the popular dietary supplements and has been extensively studied for its antioxidant, hepatoprotective and anti-cancer properties. We have envisioned that potency of silybin could be further enhanced through suitable modification/s in its chemical structure. Accordingly, here, we synthesized and characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS, 7-O-methylsilybin (7OM, 7-O-galloylsilybin (7OG, 7,23-disulphatesilybin (DSS, 7-O-palmitoylsilybin (7OP, and 23-O-palmitoylsilybin (23OP; and compared their anti-cancer efficacy using human bladder cancer HTB9, colon cancer HCT116 and prostate carcinoma PC3 cells. In all the 3 cell lines, DHS, 7OM and 7OG demonstrated better growth inhibitory effects and compared to silybin, while other silybin derivatives showed lesser or no efficacy. Next, we prepared the optical isomers (A and B of silybin, DHS, 7OM and 7OG, and compared their anti-cancer efficacy. Isomers of these three silybin derivatives also showed better efficacy compared with respective silybin isomers, but in each, there was no clear cut silybin A versus B isomer activity preference. Further studies in HTB cells found that DHS, 7OM and 7OG exert better apoptotic activity than silibinin. Clonogenic assays in HTB9 cells further confirmed that both the racemic mixtures as well as pure optical isomers of DHS, 7OM and 7OG were more effective than silybin. Overall, these results clearly suggest that the anti-cancer efficacy of silybin could be significantly enhanced through structural modifications, and identify strong anti-cancer efficacy of silybin derivatives, namely DHS, 7OM, and 7OG, signifying that their efficacy and toxicity should be evaluated in relevant pre-clinical cancer models in rodents.

  13. Anti-cancer Activities of Ginseng Extract Fermented with Phellinus linteus.

    Science.gov (United States)

    Lee, Jong-Jin; Kwon, Ho-Kyun; Jung, In-Ho; Cho, Yong-Baik; Kim, Kyu-Joong; Kim, Jong-Lae

    2009-03-01

    In the present study, the anti-cancer effects of ginseng fermented with Phellinus linteus (GFPL) extract were examined through in vitro and in vivo assays. GFPL was produced by co-cultivating ginseng and Phellinus linteus together. Ginsenoside Rg3, Rh1 and Rh2 are important mediators of anti-angiogenesis and their levels in GFPL were enriched 24, 19 and 16 times, respectively, more than that of ginseng itself through the fermentation. GFPL exhibited distinct anti-cancer effects, including growth inhibition of the human lung carcinoma cell line A549, and promotion of immune activation by stimulating nitric oxide (NO) production in Raw 264.7 cells. Further evidence supporting anti-cancer effects of GFPL was its significant prolongment of the survival of B16F10 cancer cell-implanted mice. These results suggest that the GFPL may be a candidate for cancer prevention and treatment through immune activation and anti-angiogenic effects by enriching Rg3, Rh1 and Rh2.

  14. NOVEL HYDROXAMIC ACIDS HAVING HISTONE DEACETYLASE INHIBITING ACTIVITY AND ANTI-CANCER COMPOSITION COMPRISING THE SAME AS AN ACTIVE INGREDIENT

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows cyto...... cytotoxicity to a variety of cancer cells, being useful in strong anti-cancer drug....

  15. Thymus mastichina: chemical constituents and their anti-cancer activity.

    Science.gov (United States)

    Gordo, Joana; Máximo, Patrícia; Cabrita, Eurico; Lourenço, Ana; Oliva, Abel; Almeida, Joana; Filipe, Mariana; Cruz, Pedro; Barcia, Rita; Santos, Miguel; Cruz, Helder

    2012-11-01

    The cytotoxicity-guided study of the dichloromethane and ethanol extracts of Thymus mastichina L. using the HCT colon cancer cell line allowed the identification of nine compounds, sakuranetin (1), sterubin (2), oleanolic acid (3), ursolic acid (4), lutein (5), beta-sitosterol (6), rosmarinic acid (7), 6-hydroxyluteolin-7-O-beta-glucopyranoside (8), and 6-hydroxyapigenin-7-O-beta-glucopyranoside (9). All compounds were tested for their cytotoxicity against the HCT colon cancer cell line. Compound 4 showed cytotoxicity with GI50 value of 6.8 microg/mL. A fraction composed of a mixture (1:1) of triterpenoid acids 3 and 4 displayed improved cytotoxicity with a GI50 of 2.8 microg/mL suggesting a synergistic behavior. This is the first report on the chemical constituents of Thymus mastichina L. based on structural assignments by spectroscopic analysis. The presence of these constituents identified by colon cancer cytotoxicity-guided activity indicates that extracts of T. mastichina L. may have a protective effect against colon cancers.

  16. Personalized approaches to active immunotherapy in cancer.

    Science.gov (United States)

    Ophir, Eran; Bobisse, Sara; Coukos, George; Harari, Alexandre; Kandalaft, Lana E

    2016-01-01

    Immunotherapy is emerging as a promising anti-cancer curative modality. However, in contrast to recent advances obtained employing checkpoint blockade agents and T cell therapies, clinical efficacy of therapeutic cancer vaccines is still limited. Most vaccination attempts in the clinic represent "off-the shelf" approaches since they target common "self" tumor antigens, shared among different patients. In contrast, personalized approaches of vaccination are tailor-made for each patient and in spite being laborious, hold great potential. Recent technical advancement enabled the first steps in the clinic of personalized vaccines that target patient-specific mutated neo-antigens. Such vaccines could induce enhanced tumor-specific immune response since neo-antigens are mutation-derived antigens that can be recognized by high affinity T cells, not limited by central tolerance. Alternatively, the use of personalized vaccines based on whole autologous tumor cells, overcome the need for the identification of specific tumor antigens. Whole autologous tumor cells could be administered alone, pulsed on dendritic cells as lysate, DNA, RNA or delivered to dendritic cells in-vivo through encapsulation in nanoparticle vehicles. Such vaccines may provide a source for the full repertoire of the patient-specific tumor antigens, including its private neo-antigens. Furthermore, combining next-generation personalized vaccination with other immunotherapy modalities might be the key for achieving significant therapeutic outcome.

  17. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib

    Directory of Open Access Journals (Sweden)

    Wang Xia

    2009-07-01

    Full Text Available Abstract The proteasome inhibitor and anti-cancer drug bortezomib was tested for in vitro activity against bloodstream forms of Trypanosoma brucei. The concentrations of bortezomib required to reduce the growth rate by 50% and to kill all trypanosomes were 3.3 nM and 10 nM, respectively. In addition, bortezomib was 10 times more toxic to trypanosomes than to human HL-60 cells. Moreover, exposure of trypanosomes to 10 nM bortezomib for 16 h was enough to kill 90% of the parasites following incubation in fresh medium. However, proteasomal peptidase activities of trypanosomes exposed to bortezomib were only inhibited by 10% and 30% indicating that the proteasome is not the main target of the drug. The results suggest that bortezomib may be useful as drug for the treatment of human African trypanosomiasis.

  18. AKTIVITAS ANTI KANKER SENYAWA-SENYAWA KITOOLIGOMER [Anti Cancer Activity of Chitooligomers

    Directory of Open Access Journals (Sweden)

    Dahrul Syah2

    2006-04-01

    Full Text Available The chitin obtained from the crab industries can be used as a source for production of chitooligomers which has an important biological activity. The aims of this research was to evaluate anti cancer activity of the chitooligomers obtained from enzymatic hydrolysis using chitosanase from thermophilic bacterium Bacillus licheniformis MB2 isolated from Tompaso Manado. Media for producing the enzyme contained colloidal chitosan 1% and the enzyme was harvested after seven days of incubation at 550C. The heat stable protein enzyme was coagulated with 80% saturated ammonium sulphate and purificated using hydrophobic interaction chromatography with butyl sepharose gel. Enzyme of 0.005, 0.0085, 0.10 dan 0,17 IU/mg chitosan on soluble chitosan 1% substrate with 85% degree of deacylation were used to produce chitooligomers through incubation for one and three hours. The reaction products were analyzed (and fractionated using HPLC. The effect of this samples on cancer cells was evaluated using K562 cells (chronic myelogenous leukemia and investigated after being treated with MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide. In general, hydrolysates and fractionated chitooligomers showed better anti cancer activity than the 2- Bromo deoxy uridine used as positive control at similiar concentration (17 ?g/ml. Both of hydrolysates and fractionated chitooligomers (trimer to hexamer inhibited proliferation of human K562 cancer cells line in vitro about 20.57% and 15.68% respectively.The apoptosis phenomena was found on K562 cells treated with chitooligomer hydrolysate which can be examined by Hoechts staining fluorescent method. Chitooligomers hydrolysate showed anti metastatic potential, the chitooligomers were found also as potent protease inhibitor.

  19. Basics of cancer immunotherapy.

    Science.gov (United States)

    Fujioka, Yuki; Nishikawa, Hiroyoshi

    The immune system is the body's defense against infectious organisms and other invaders including cancer cells. Cancer immunotherapy, which employs our own immune systems to attack cancer cells, is now emerging as a promising modality of cancer treatment based upon the clinical successes of immune checkpoint blockade and adoptive T cell transfer. In hematologic malignancies, clinical application of anti-PD-1 mAb and CAR (chimeric antigen receptor) T therapy is now being extensively tested in Hodgkin's disease, multiple myeloma, and CD19(+) acute lymphocytic leukemia. In sharp contrast to conventional anti-cancer reagents which directly kill cancer cells, cancer immunotherapy activates various types of immune effector cells to attack cancer cells. However, more than half of the treated patients showed no activation of anti-tumor CD8(+) killer T cells and CD4(+) helper T cells and failed to respond to immune therapies such as immune checkpoint blockade, even when administered in combination regimens. Thus, development of novel immunotherapies to achieve more effective activation of anti-cancer immunity and immuno-monitoring of biomarkers, allowing proper evaluation of immune responses in cancer patients in order to detect responders, are urgent issues. Additionally, we must pay attention to characteristic immunological side effects not observed following treatment with conventional anti-cancer reagents. Herein, we present a summary outline and discuss the future direction of cancer immunotherapy.

  20. Phytochemical characterization, anti-cancer and antimicrobial activity of isolated fractions of Alysicarpus vaginalis

    Directory of Open Access Journals (Sweden)

    Ganesh Tapadiya

    2017-03-01

    Full Text Available The methanolic extract of Alysicarpus vaginalis was selected for fractionation due to its known reported biological activity. The four fractions were separated and subjected for in vitro antimitotic and anti-proliferative assays along with anti-cancer activity on two human cancers cell lines (SK-MEL-2 and Hep-G2. The antimicrobial potential of fractions had been evaluated against bacteria and fungi. From all fractions, acetone and n-butanol fractions were effective against the cell lines. They show strong inhibitory action with mitotic index 6.2 and 8.4 mg/mL and IC50 values of anti-proliferative assay in between 19.7 to 14.2 mg/mL respectively, which was found to be comparable to the standard methothrexate 5.9 mg/mL and 13.2 mg/mL respectively. In antimicrobial activity, the zone of inhibition had been observed in the range of 12-27 mm and MIC value was found in the range of 0.2-0.1 mg/mL. The acetone fraction was found to be most active against fungi, and E. coli whereas chloroform and n-butanol fractions were more effective against S. aureus and B. subtilis. The phytochemical characterization by HPLC analysis indicated the presence of important polyphenolic and steroidal compounds.

  1. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety

    Directory of Open Access Journals (Sweden)

    Murat Bingul

    2016-07-01

    Full Text Available Identification of the novel (E-N′-((2-chloro-7-methoxyquinolin-3-ylmethylene-3-(phenylthiopropanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19–26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G1 cell cycle arrest, as well as upregulation of the p27kip1 cell cycle regulating protein.

  2. Anti-cancer activity of novel dibenzo[b,f]azepine tethered isoxazoline derivatives

    Directory of Open Access Journals (Sweden)

    Sadashiva Maralinganadoddi

    2012-10-01

    Full Text Available Background Dibenzoazepine (DB derivatives are important and valuable compounds in medicinal chemistry. The synthesis and chemotherapeutic properties of naturally occurring DBs and different heterocyclic moiety tethered DBs are reported. Herein, we report the DB-fused hybrid structure that containing isoxazolines (DBIs and their anti-cancer activity, which could throw light on the structural and functional features of new molecules. Results and Conclusion The synthesis and characterization of novel ring DB tethered isoxazoline derivatives (DBIs were carried out. After the detailed structural characterization using 2D-NMR experiments, the compounds were identified as 5-substituted isoxazolines. The effect of newly synthesized DBIs against the invasion of murine osteosarcoma (LM8G7 cells was studied. Among the tested molecules, compound 4g (5-[−3-(4-chlorophenyl-4,5-dihydroisoxazol-5-yl-methyl]-5 H-dibenzo[b,f]azepine, was found to inhibit the invasion of LM8G7 cells strongly, when compared to other structurally related compounds. Cumulatively, the compound 4g inhibited the invasion MDA-MB-231 cells completely at 10 μM. In addition to anti-invasion property the compound 4g also inhibited the migration of LM8G7 and human ovarian cancer cells (OVSAHO dose-dependently. Compound 4g inhibited the proliferation of LM8G7, OVSAHO, human breast cancer cells (MCF-7 and human melphalan-resistant multiple myeloma (RPMI8226-LR5 cells that are comparable to cisplatin and suramin.

  3. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity.

    Science.gov (United States)

    Petiwala, Sakina M; Johnson, Jeremy J

    2015-10-28

    Recently, rosemary extracts standardized to diterpenes (e.g. carnosic acid and carnosol) have been approved by the European Union (EU) and given a GRAS (Generally Recognized as Safe) status in the United States by the Food and Drug Administration (FDA). Incorporation of rosemary into our food system and through dietary selection (e.g. Mediterranean Diet) has increased the likelihood of exposure to diterpenes in rosemary. In consideration of this, a more thorough understanding of rosemary diterpenes is needed to understand its potential for a positive impact on human health. Three agents in particular have received the most attention that includes carnosic acid, carnosol, and rosmanol with promising results of anti-cancer activity. These studies have provided evidence of diterpenes to modulate deregulated signaling pathways in different solid and blood cancers. Rosemary extracts and the phytochemicals therein appear to be well tolerated in different animal models as evidenced by the extensive studies performed for approval by the EU and the FDA as an antioxidant food preservative. This mini-review reports on the pre-clinical studies performed with carnosic acid, carnosol, and rosmanol describing their mechanism of action in different cancers.

  4. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Science.gov (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  5. Immunotherapy

    Science.gov (United States)

    ... that will trigger an immune response. What's more, cancer cells may also suppress immunity, which may contribute to the immune system's failure to recognize cancer cells as foreign invaders. Immunotherapy is based on ...

  6. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  7. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer...... drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms...

  8. Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product inCarica papaya L.

    Institute of Scientific and Technical Information of China (English)

    Ze-You Li; Yong Wang; Wen-Tao Shen; Peng Zhou

    2012-01-01

    Objective:To determine the content of benzyl glucosinolate(BG)in the pulp and the seed and investigate the anti-cancer activity of its hydrolysis product inCarica papaya L.Methods:Determination ofBG was performed on an HypersilBDS C18 column at the wavelength of214 nm with0.1% trifluoroacetic acid (TFA)aqueous solution (A) and 0.1%TFA acetonitrile (B)as the mobile phase. In vitro activity test was adopted with cultured human lung cancerH69 cellin vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanate(BITC)againstH69 cell.Results: The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured, while the seed containsBG at every stage. Activity test demonstrated that the a higher concentration ofBITC would have better inhibition rate of cell proliferation onH69 cell, and the IC50 was6.5 μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured. The hydrolysis product ofBG has certain cancer-prevention anti-cancer activities for human.

  9. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    Science.gov (United States)

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity.

  10. The Toxicity and Anti-cancer Activity of the Hexane Layer of Melia azedarach L. var. japonica Makino's Bark Extract.

    Science.gov (United States)

    Kim, Hyun Woo; Kang, Se Chan

    2012-03-01

    In this study, the 4-week oral toxicity and anti-cancer activity of the hexane layer of Melia azedarach L. var. japonica Makino's bark extract were investigated. We carried out a hollow fiber (HF) assay and 28- day repeated toxicity study to confirm the anti-cancer effect and safety of the hexane layer. The HF assay was carried out using an A549 human adenocarcinoma cell via intraperitoneal (IP) site with or without cisplatin. In the result, the 200 mg/kg b.w of hexane layer with 4 mg/kg b.w of cisplatin treated group, showed the highest cytotoxicity aginst A549 carcinoma cells. For the 28-day repeated toxicity study, 6 groups of 10 male and female mice were given by gavage 200, 100, or 50 mg/kg b.w hexane layer with or without 4 mg/kg b.w of cisplatin against body weight, and were then sacrificed for blood and tissue sampling. The subacute oral toxicity study in mice with doses of 200, 100, and 50 mg/kg b.w hexane layer showed no significant changes in body weight gain and general behavior. The cisplatin-treated group significantly decreased in body weight compared to the control group but regained weight with 100 and 200 mg/kg b.w of hexane layer. The biochemical analysis showed significant increase in several parameters (ALT, total billirubin, AST, creatinine, and BUN) in cisplatin-treated groups. However, in the group given a co-treatment of hexane layer (200 mg/kg b.w), levels of these parameters decreased. In hematological analysis, cisplatin induced the reduction of WBCs and neutrophils but co-treatment with hexane layer (100 and 200 mg/kg b.w) improved these toxicities caused by cisplatin. The histological profile of the livers showed eosinophilic cell foci in central vein and portal triad in cisplatin treated mice. These results show that hexane layer might have an anti-cancer activity and could improve the toxicity of cisplatin.

  11. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Aeyung Kim

    Full Text Available Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90% compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  12. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Science.gov (United States)

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  13. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  14. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis.

    Science.gov (United States)

    Lu, Jie; Chen, Zheng-wang

    2010-01-01

    We report herein the isolation and characterization of a novel glycine-rich antimicrobial peptide purified from the larvae of Drosophila virilis. A range of chromatographic methods was used for isolation and its antibacterial activity against Bacillus subtilis was employed to screen for the most active fractions. The peptide, termed SK84 due to its N-terminal serine, C-terminal lysine and a total of 84 residues, was completed sequenced using RT-PCR cDNA cloning. SK84 contains a high level of glycine (15.5%) and a hexaglycine cluster motif in the N-terminal part. SK84 displayed antibacterial activity against the tested Gram-positive bacteria (B. subtilis, Bacillus thuringiensis and Staphylococcus aureus), but had no effect on Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli) and fungi (Saccharomyces cerevisiae, Candida albicans). SK84 had specific inhibitory effects on the proliferation of several cancer cell lines (Human leukemia THP-1, liver cancer HepG2, and breast cancer MCF-7 cells), but no hemolytic activity. The results from scanning electron microscopy observations revealed that SK84 killed THP-1 cells by destroying the cell membranes. Alignment results show that SK84 is a mature protein processed from the pseudoprotein GJ19999 from D. virilis, and is very similar to several pseudoproteins from different Drosophila species. Our results show that SK84 represents a novel glycine-rich peptide family in Drosophila species with antimicrobial and anti-cancer cell activities.

  15. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    Science.gov (United States)

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  16. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen)

    Science.gov (United States)

    Gao, Hongwei; Sun, Wen; Zhao, Jianping; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping; Xu, Qiong-Ming; Khan, Ikhlas A.; Yang, Shilin

    2016-09-01

    Four novel compounds (1–4) as well as fourteen reported compounds (5–18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-κB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role.

  17. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins

    Science.gov (United States)

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A.

    2014-01-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceteddisease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute anew family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of “mechanism-effect” and “effect-mechanism” relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins. PMID:25324469

  18. Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity.

    Science.gov (United States)

    Kaur, Baljinder; Kaur, Rajinder

    2016-09-01

    The arginine deiminase (ADI, E.C 3.5.3.6) - a key enzyme of ADI pathway of Enterococcus faecium GR7 was purified to homogeneity. A sequential purification strategy involving ammonium sulfate fractionation, molecular sieve followed by Sephadex G-100 gel filtration was applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified with a fold of 16.92 and showed a final specific activity of 76.65IU/mg with a 49.17% yield. The dimeric ADI has a molecular mass of about 94,364.929Da, and comprises of hetrodimers of 49.1kDa and 46.5kDa as determined by MALDI-TOF and PAGE analysis. To assess anti-cancerous activity of ADI by MTT assay was carried out against cancer cell lines (MCF-7, Sp2/0-Ag14 and Hep-G2). Purified ADI exhibited the most profound antiproliferative activity against Hep-G2 cells; with half-maximal inhibitory concentration (IC50) of 1.95μg/ml. Purified ADI from E. faecium GR7 was observed to induce apoptosis in the Hep-G2 cells by DNA fragmentation assay. Our findings suggest the possibility of a future use of ADI from E. faecium GR7 as a potential anticancer drug.

  19. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    Science.gov (United States)

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives.

  20. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities.

    Science.gov (United States)

    Hoshyar, Reyhane; Khayati, Gholam Reza; Poorgholami, Maliheh; Kaykhaii, Massoud

    2016-06-01

    Functionalized nanoparticles are specifically designed to deliver drugs at tumor cells and can potentially enhance anticancer activity of drugs such as crocin. In the present study, we have applied antioxidant crocin as a reducing agent for one pot green synthesis of controlled size gold nanoparticles (AuNPs). Spherical, stable and uniform AuNPs were synthesized using crocin. These AuNPs are characterized by UV-Vis, TEM and XRD techniques. The prepared AuNPs showed surface plasm on resonance centered at 520nm with the average particle size of about 4-10nm. The anti-cancer effect of AuNPs was determined using MTT and LDH tests. The cellular data showed that these AuNPs significantly decreased cancerous cells' growth after 24 and 48hours in a time- and dose-dependent manner (P<0.05). The results suggest that such AuNPs can be synthesized simply and quickly with invaluable clinical as well as pharmaceutical activities which can help to treat human breast cancer.

  1. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  2. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Directory of Open Access Journals (Sweden)

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  3. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    OpenAIRE

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study...

  4. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  5. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Adams, Tina S; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  6. Anti cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads.

    Science.gov (United States)

    Paul, Jeno; Gnanam, R; Jayadeepa, R M; Arul, L

    2013-01-01

    Nature is the world's best chemist: Many naturally occurring compounds have very complicated structures that present great challenges to chemists wishing to determine their structures or replicate them. The plant derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. Their high ligand binding affinity to the target introduce the prospect of their use in chemo preventive applications; in addition they are freely available natural compounds that can be safely used to prevent various ailments. Plants became the basis of traditional medicine system throughout the world for thousands of years and continue to provide mankind with new remedies. Here, we present a research study on a medicinal plant, Graviola, a native of North America but rarely grown in India. It has a wide potent anticancerous agents coined as Acetogenins which play a key role towards many varieties of cancer, Acetogenins are potent inhibitors of NADH oxidase of the plasma membranes of cancer cells. Potent leads were taken for the study through literature survey, major types of cancer targets were identified, the natureceuticals and the cancer protein were subjected to docking analysis, further with the help of the dock score and other descriptor properties top ranked molecules were collected, commercial drug was also selected and identified as a Test compound for the study. Later, the phytochemicals were subjected to toxicity analysis. Those screened compounds were then considered for active site analysis and to find the best binding site for the study. R Programming library was used to find the best leads. Phytochemicals such as Anonaine, Friedelin, Isolaureline, Annonamine, Anomurine, Kaempferol, Asimilobine, Quercetin, Xylopine were clustered and the highly clustered compounds such as Annonamine , Kaempferol termed to be a potential lead for the study. Further study on experimental analysis may prove the potentiality of these compounds. In the

  7. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Marilene B

    2011-02-01

    Full Text Available Abstract Curcumin (diferuloylmethane is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis and metastasis. Curcumin has shown anti-proliferative effect in multiple cancers, and is an inhibitor of the transcription factor NF-κB and downstream gene products (including c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF-α, interleukins and MMP-9. In addition, curcumin affects a variety of growth factor receptors and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis. Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer worldwide and treatment protocols include disfiguring surgery, platinum-based chemotherapy and radiation, all of which may result in tremendous patient morbidity. As a result, there is significant interest in developing adjuvant chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo data supporting its therapeutic activity in head and neck cancer as well as some of the challenges concerning its development as an adjuvant chemotherapeutic agent.

  8. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain

    Science.gov (United States)

    Rao, Chennu Maruthi Malya Prasada; Yejella, Rajendra Prasad; Rehman, Rehman Shaik Abdul; Basha, Syed Hussain

    2015-01-01

    Epidermal growth factor receptors (EGFR) are critical for the growth of many tumors and expressed at high levels in about one third of epithelial cancers. Hence, blockade of the binding sites for EGFR has been hypothesized as an effective anti-cancer therapy. Chalcone derivative compounds have been shown to be highly effective anti-cancer agents, however there are still so many novel derivatives possible, one of which might get us the best targeted EGFR inhibitor. In this effort directed towards the discovery of novel, potent anti-tumor agents for the treatment of cancer, in the present study a library of novel chalcone series of compounds has been designed and evaluated for their anti-cancer activity targeting EGFR kinase domain using various computational approaches. Among the twenty five novel designed chalcone series of compounds, all of them have found to be successfully docking inside the active binding domain of EGFR receptor target with a binding energy in a range of -6.10 to -9.25 Kcal/mol with predicted IC50 value range of 33.50 micor molar to 164.66 nano molar respectively. On the other hand, calculated 2DQSAR molecular descriptor properties of the compounds showed promising ADME parameters and found to be well in compliance with Lipinski׳s rule of five. Among all the twenty five compounds tested, compound 21 ((2E)-3-(anthracen-9-yl)-1-phenylprop-2-2n-1- one) was found to be the best lead like molecule with a binding energy of -9.25 kcal/mol with predicted IC50 value of 164.66 nano molar. Conclusively, novel designed compound 21 of the present study have shown promising anti-cancer potential worth considering for further evaluations. PMID:26339147

  9. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity.

    Science.gov (United States)

    Linnewiel-Hermoni, Karin; Khanin, Marina; Danilenko, Michael; Zango, Gabriel; Amosi, Yaara; Levy, Joseph; Sharoni, Yoav

    2015-04-15

    Epidemiological studies have consistently shown that regular consumption of fruits and vegetables is strongly associated with reduced risk of developing chronic diseases, such as cancer. It is now accepted that the actions of any specific phytonutrient alone do not explain the observed health benefits of diets rich in fruits and vegetables as nutrients that were taken alone in clinical trials did not show consistent preventive effects. The considerable cost and complexity of such clinical trials requires prudent selection of combinations of ingredients rather than single compounds. Indeed, synergistic inhibition of prostate and mammary cancer cell growth was evident when using combinations of low concentrations of various carotenoids or carotenoids with retinoic acid and the active metabolite of vitamin-D. In this study we aimed to develop simple and sensitive in vitro methods which provide information on potent combinations suitable for inclusion in clinical studies for cancer prevention. We, thus, used reporter gene assays of the transcriptional activity of the androgen receptor in hormone-dependent prostate cancer cells and of the electrophile/antioxidant response element (EpRE/ARE) transcription system. We found that combinations of several carotenoids (e.g., lycopene, phytoene and phytofluene), or carotenoids and polyphenols (e.g., carnosic acid and curcumin) and/or other compounds (e.g., vitamin E) synergistically inhibit the androgen receptor activity and activate the EpRE/ARE system. The activation of EpRE/ARE was up to four fold higher than the sum of the activities of the single ingredients, a robust hallmark of synergy. Such combinations can further be tested in the more complex in vivo models and human studies.

  10. Synthesis and anti-cancer activity of naturally occurring 2,5-diketopiperazines.

    Science.gov (United States)

    Mollica, Adriano; Costante, Roberto; Fiorito, Serena; Genovese, Salvatore; Stefanucci, Azzurra; Mathieu, Veronique; Kiss, Robert; Epifano, Francesco

    2014-10-01

    Three naturally occurring oxyprenylated diketopiperazines were synthesized and preliminarily tested as growth inhibitory agents in vitro against various cancer cell lines. The compounds were tested on six human cancer cell lines with different sensitivity to proapoptotic stimuli using the MTT colorimetric assay. The data revealed that of the chemicals under study only deoxymicelianamide (11) displayed the highest activity, recording mean IC50 growth inhibitory values ranging from 2 to 23 μM. A comparative study with the non-geranylated saturated derivative of (11) revealed the importance of the presence of the geranyloxy side chain and the exocyclic 2,5-DPK double bond moiety for the observed activity.

  11. Anti-cancer activities of pH- or heat-modified pectin

    Directory of Open Access Journals (Sweden)

    Lionel eLeclere

    2013-10-01

    Full Text Available Despite enormous efforts that have been made in the search for novel drugs and treatments, cancer continues to be a major public health problem. Moreover, the emergence of resistance to cancer chemotherapy often prevents complete remission. Researchers have thus turned to natural products mainly from plant origin to circumvent resistance. Pectin and pH- or heat-modified pectin have demonstrated chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The focus of this review is to describe how pectin and modified pectin display these activities and what are the possible underlying mechanisms. The failure of conventional chemotherapy to reduce mortality as well as serious side effects makes natural products, such as pectin-derived products, ideal candidates for exerting synergism in combination with conventional anticancer drugs.

  12. The Anti-Cancer Potency and Mechanism of a Novel Tumor-Activated Fused Toxin, DLM

    Directory of Open Access Journals (Sweden)

    Dejun Sun

    2015-02-01

    Full Text Available Melittin, which acts as a membrane-disrupting lytic peptide, is not only cytotoxic to tumors, but also vital to normal cells. Melittin had low toxicity when coupled with target peptides. Despite significant research development with the fused toxin, a new fused toxin is needed which has a cleavable linker such that the fused toxin can release melittin after protease cleavage on the tumor cell surface. We describe a novel fused toxin, composed of disintegrin, uPA (urokinase-type plasminogen activator-cleavable linker, and melittin. Disintegrin is a single strand peptide (73 aa isolated from Gloydius Ussuriensis venom. The RGD (Arg-Gly-Asp site of disintegrin dominates its interaction with integrins on the surface of the tumor cells. uPA is over-expressed and plays an important role in tumor cell invasiveness and metastatic progression. The DLM (disintegrin-linker-melittin linker is uPA-cleavable, enabling DLM to release melittin. We compared binding activity of our synthesized disintegrin with native disintegrin and report that DLM had less binding activity than the native form. uPA-cleavage was evaluated in vitro and the uPA-cleavable linker released melittin. Treating tumors expressing uPA with DLM enhanced tumor cell killing as well as reduced toxicity to erythrocytes and other non-cancerous normal cells. The mechanism behind DLM tumor cell killing was tested using a DNA ladder assay, fluorescent microscopy, flow cytometry, and transmission electron microscopy. Data revealed tumor cell necrosis as the mechanism of cell death, and the fused DLM toxin with an uPA-cleavable linker enhanced tumor selectivity and killing ability.

  13. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen;

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti...... with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier...

  14. The in Vitro Structure-Related Anti-Cancer Activity of Ginsenosides and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2011-12-01

    Full Text Available Panax ginseng has long been used in Asia as a herbal medicine for the prevention and treatment of various diseases, including cancer. The current study evaluated the cytotoxic potency against a variety of cancer cells by using ginseng ethanol extracts (RSE, protopanaxadiol (PPD-type, protopanaxatriol (PPT-type ginsenosides fractions, and their hydrolysates, which were prepared by stepwise hydrolysis of the sugar moieties of the ginsenosides. The results showed that the cytotoxic potency of the hydrolysates of RSE and total PPD-type or PPT-type ginsenoside fractions was much stronger than the original RSE and ginsenosides; especially the hydrolysate of PPD-type ginsenoside fractions. Subsequently, two derivatives of protopanaxadiol (1, compounds 2 and 3, were synthesized via hydrogenation and dehydration reactions of compound 1. Using those two derivatives and the original ginsenosides, a comparative study on various cancer cell lines was conducted; the results demonstrated that the cytotoxic potency was generally in the descending order of compound 3 > 20(S-dihydroprotopanaxadiol (2 > PPD (1 > 20(S-Rh2 > 20(R-Rh2 ≈ 20(R-Rg3 ≈ 20(S-Rg3. The results clearly indicate the structure-related activities in which the compound with less polar chemical structures possesses higher cytotoxic activity towards cancer cells.

  15. Antigen-specific active immunotherapy for ovarian cancer

    NARCIS (Netherlands)

    Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H. M.; Cohlen, B. J.; Melief, Cornelis; Nijman, H. W.

    2010-01-01

    BACKGROUND: Despite advances in chemotherapy, prognosis of ovarian cancer remains poor. Antigen-specific active immunotherapy aims to induce a tumour-antigen-specific anti-tumour immune responses as an alternative treatment for ovarian cancer. OBJECTIVES: To assess feasibility of antigen-specific ac

  16. Combination of axitinib and dasatinib for anti-cancer activities in two prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Nai-Xiong Peng

    2016-03-01

    Full Text Available Prostate cancer is major cause of cancer related deaths worldwide in men. There are new treatment methods and drugs are being developed with promising results in two of the prostate cancer cell lines (PPC-1 and TSU-Pr1. These two cells were treated with 20 uM of axitinib combined with dasatinib for 6-72 hours. The cell viability assessed by the cytotoxicity assay. Various regulatory genes such as c-KIT, cell cycle and apoptosis and angiogenic factors were also studied. The enzyme activity of apoptosis efector caspase-3 was colorimetrically determined. Axitinib and dasatinib combination lowered the survival rate of PPC-1 cells but enhanced the survival rate of TSU-Pr1 cells. The protein expression levels in apoptosis and angiogenesis factors were also found to be in contrast between the two cell lines. PPC-1 and TSU-Pr1 cells displayed a different response to axitinib with dasatinib, which explains different expression levels of regulators of cell-cycle, apoptosis and angiogenesis.

  17. In vitro anti-cancer activity of ethanolic extract of Momordica charantia on cervical and breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    C R Shobha

    2015-01-01

    Full Text Available Objectives: To estimate the total phenol content (TPC of the ethanolic extract of Momordica charantia (EEMC whole fruit and to study the cytotoxic activity of this extract against cell lines representing carcinomas of cervix and breast. Materials and Methods: Cervical and breast carcinoma cell lines (HeLa and MCF-7 were procured from National Center for Cell Sciences, Pune, and cultured in Dulbecco's modified eagle medium (DMEM supplemented with 10% fetal bovine serum (FBS and 1 mM L-glutamine. EEMC was prepared by graded ethanol fractionation method and the TPC determined using Folin–Ciocalteu assay. For cytotoxicity studies, 5000 cells/well in 100 μl DMEM-10% FBS medium were seeded in a 96 well plate; and treated with increasing concentration of EEMC. Efficacy of EEMC was determined by measuring the cell number using sulforhodamine B assay. Percentage inhibition was calculated using dimethyl sulfoxide vehicle control. The IC (50 value was calculated from the plot of inhibition (% in dose- and time-dependent manner using GraphPad PRISM software. Results: The total phenolic content of EEMC decreased with increasing ethanol concentration from 50% to 100%. Cytotoxicity studies identified 50% ethanolic extract as the most active fraction. A time- and dose-dependent increase in the efficacy of 50% ethanolic extract for inhibiting cervical and breast carcinoma cell growth was noticed. The IC (50 dose was 12.31 μg/ml and 0.769 μg/ml for 50% EEMC at 48 h incubation for HeLa and MCF-7 cell lines, respectively. Conclusion: The presence of high total phenolic acid content in 50% ethanolic extract indicates that the anti-cancer activity of Momordica charantia could be due to the secondary metabolites. Based on the IC (50 value we conclude that the 50% EEMC is more potent against breast cancer cell lines. Further studies are required to know the exact cause for the increase in cell inhibition at 48 h incubation than in 72 h.

  18. Immunotherapy of tumor by targeting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HOU Jianmei; TIAN Ling; WEI Yuquan

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.

  19. Advances in identification and application of tumor antigen inducing anti-cancer responses

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Tumor antigen is one of the important bases of tumor immunotherapy[1]. With the discovery of novel tumor antigens, interest in specific immunotherapy for treatment of malignancies has increased substantially. Nowadays more and more scientists paid close attention to various tumor antigens with their roles or/and applications in anti-cancer immune responses, immune tolerance, tumor markers, tumor immunotherapy and so on. Here we discussed the classification of tumor antigens and summarized the technologies of identification and application of tumor antigens.

  20. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell....../2 phosphorylation are also important for the anti-cancer properties of VPA....

  1. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  2. Are isothiocyanates potential anti-cancer drugs?

    Institute of Scientific and Technical Information of China (English)

    Xiang WU; Qing-hua ZHOU; Ke XU

    2009-01-01

    Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anticarcinogenic activity because they reduce activation of carcinogens and increase their detoxification. Recent studies show that they exhibit anti-tumor activity by affecting multiple pathways including apoptosis, MAPK signaling, oxidative stress, and cell cycle progression. This review summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

  3. Enhancing Cancer Immunotherapy Via Activation of Innate Immunity.

    Science.gov (United States)

    Goldberg, Jacob L; Sondel, Paul M

    2015-08-01

    Given recent technological advances and advances in our understanding of cancer, immunotherapy of cancer is being used with clear clinical benefit. The immunosuppression accompanying cancer itself, as well as with current cancer treatment with radiation or chemotherapy, impairs adaptive immune effectors to a greater extent than innate effector cells. In addition to being less suppressed, innate immune cells are capable of being enhanced via immune-stimulatory regimens. Most strategies being investigated to promote innate immune responses against cancer do not require complex, patient-specific, ex vivo cellular or molecular creation of therapeutic agents; thus they can, generally, be used as "off the shelf" therapeutics that could be administered by most cancer clinics. Successful applications of innate immunotherapy in the clinic have effectively targeted components of the innate immune response. Preclinical data demonstrate how initiation of innate immune responses can lead to subsequent adaptive long-term cancer immunity. We hypothesize that integration of innate immune activation strategies into combination therapies for cancer treatment will lead to more effective and long-term clinical benefit.

  4. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells.

    Science.gov (United States)

    Duff, Brian; Thangella, Venkat Reddy; Creaven, Bernadette S; Walsh, Maureen; Egan, Denise A

    2012-08-15

    This study determined the cytotoxic, cyto-selective and mutagenic potential of novel quinolinone Schiff base ligands and their corresponding copper(II) complexes in human-derived hepatic carcinoma cells (Hep-G2) and non-malignant human-derived hepatic cells (Chang). Results indicated that complexation of quinolinone Schiff bases with copper served to significantly enhance cytotoxicity. Here, the complex of (7E)-7-(3-ethoxy-2-hydroxybenzylideamino)-4-methylquinolin-2(1H)-one (TV117-FM) exhibited the lowest IC(50) value (17.9 μM) following 96 h continuous exposure, which was comparable to cisplatin (15.0 μM). However, results revealed that TV117-FM lacked cytoselectivity over non-malignant cells. Additionally, the complex was minimally effluxed from cells via Pglycoprotein (P-gp) and was shown to be non-mutagenic in the Standard Ames test. Furthermore, BrdU incorporation assays showed that it was capable of inhibiting DNA synthesis in a concentrationand time-dependent manner. However, inhibition was not as a consequence of DNA intercalation, as illustrated in electrophoretic mobility shift assays. Interestingly, it was shown that the ligand was capable of inhibiting the action of topoisomerase II, but this was lost following complexation. This indicated that the mechanism of action of the novel copper(II) complex was different from that of the parent ligand and suggests that TV117-FM may have a therapeutic role to play in the treatment of hepatocellular carcinoma. Studies are currently underway to elucidate the exact in vitro mechanism of action of this novel, metal-based anti-cancer agent.

  5. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L

    Institute of Scientific and Technical Information of China (English)

    Chong ZHANG; Shuang-shuang ZHOU; Lin-yi FENG; Da-yong ZHANG; Neng-ming LIN; Li-huang ZHANG; Jian-ping PAN; Jun-bo WANG; Jie LI

    2013-01-01

    Aim: To examine the anti-cancer effects of chamaejasmenin B and neochamaejasmin C,two biflavonones isolated from the root of Stellera chamaejasme L (known as the traditional Chinese herb Rui Xiang Lang Du) in vitro.Methods: Human liver carcinoma cell lines (HepG2 and SMMC-7721),a human non-small cell lung cancer cell line (A549),human osteosarcoma cell lines (MG63,U2OS,and KHOS),a human colon cancer cell line (HCT-116) and a human cervical cancer cell line (HeLa) were used.The anti-proliferative effects of the compounds were measured using SRB cytotoxicity assay.DNA damage was detected by immunofluorescence and Western blotting.Apoptosis and cell cycle distribution were assessed using flow cytometry analysis.The expression of the related proteins was examined with Western blotting analysis.Results: Both chamaejasmenin B and neochamaejasmin C exerted potent anti-proliferative effects in the 8 human solid tumor cell lines.Chamaejasmenin B (the IC50 values ranged from 1.08 to 10.8 μmol/L) was slightly more potent than neochamaejasmin C (the IC50 values ranged from 3.07 to 15.97 μmol/L).In the most sensitive A549 and KHOS cells,the mechanisms underlyingthe anti-proliferative effects were characterized.The two compounds induced prominent expression of the DNA damage marker γ-H2AX as well as apoptosis.Furthermore,treatment of the cells with the two compounds caused prominent G0/G1 phase arrest.Conclusion: Chamaejasmenin B and neochamaejasmin C are potential anti-proliferative agents in 8 human solid tumor cell lines in vitro via inducing cell cycle arrest,apoptosis and DNA damage.

  6. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhu, Hong; Yang, Wei; He, Ling-juan; Ding, Wan-jing; Zheng, Lin; Liao, Si-da; Huang, Ping; Lu, Wei; He, Qiao-jun; Yang, Bo

    2012-01-01

    The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  7. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available The human hepatocellular carcinoma (HCC represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  8. From T cell "exhaustion" to anti-cancer immunity.

    Science.gov (United States)

    Verdeil, Grégory; Fuertes Marraco, Silvia A; Murray, Timothy; Speiser, Daniel E

    2016-01-01

    The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

  9. [Current Approaches in Cancer Immunotherapy].

    Science.gov (United States)

    Otáhal, P; Trněný, M

    2015-01-01

    Methods of cancer immunotherapy have finally entered clinical medicine after years of preclinical research. Currently, there are several methods, which have proven to be very effective even in cases of incurable cancer. Antitumor monoclonal antibodies are among major therapeutic anti-cancer drugs and have been successfully used for many ears. Novel group of antibodies are immunomodulatory antibodies which can break tumor -specific immune tolerance and induce regression of tumors by nonspecific activation of immune system. Bispecific antibodies represent a novel class of anticancer agents which can induce expansion of T cells in vivo, blinatumomab is an example of such agents and is currently available for the treatment of acute B -cell leukemia. Cellular immunotherapy is also very effective, especially the use of Chimeric receptor modified T-cells for the therapy of B- cell lymphoproliferative diseases. Although it is a very complicated and expensive method, it is highly effective approach which can induce remission even in previously hopeless conditions. The goal of this article is to explain the basic principles of cancer immunotherapy and summarize the newest findings in this field.

  10. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways

    Science.gov (United States)

    Huang, Ning; Zhong, Yueling; Zeng, Ting; Wei, Rong; Wu, Zhongjun; Xiao, Cui; Cao, Xiaohua; Li, Minhui; Li, Limei; Han, Bin; Yu, Xiaoping; Li, Hua; Zou, Qiang

    2017-01-01

    Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM. PMID:27418139

  11. Anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in human hepatocellular carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Zhi-ming WU; Gang CHEN; Chun DAI; Ying HUANG; Cui-fang ZHENG; Qiong-zhu DONG; Guan WANG; Xiao-wen LI; Xiao-fei ZHANG; Bin LI

    2011-01-01

    Aim: To investigate the anti-cancer effects of p21WAF1/CIP1 transcriptional activation induced by dsRNAs in hepatocellular carcinoma (HCC) cell lines.Methods: HCC cell lines BEL7402, SMMC-7721, MHCC97L, MHCC97H, and MHCCLM3 were used. HCC ceils were treated with dsP21322 (50 nmol/L), dsControl (50 nmol/L), siP21 (50 nmol/L), or mock transfection. The expression of p21 was detected using quantitative PCR and Western blot. The effects of RNA activation on HCC cells were determined using cell viability assays, apoptosis analyses and clonogenic survival assays. Western blot was also conducted to detect the expression of Bcl-xL, survivin, cleaved caspase-3,cleaved caspase-9 and cleaved PARP.Results: At 72 to 120 h following the transfection, dsP21-322 markedly inhibited the viability of HCC cells and clone formation. At the same times, dsP21-322 caused a significant increase in HCC cell apoptosis, as demonstrated with cytometric analysis. The phenomena were correlated with decreased expression levels of the anti-apoptotic proteins Bcl-xL, surviving, and increased expression of cleaved caspase-3, cleaved caspase-9 and cleaved PARP.Conclusion: RNA-induced activation of p21 gene expression may have significant therapeutic potential for the treatment of hepatocellular carcinoma and other cancers.

  12. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-05-12

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

  13. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum).

    Science.gov (United States)

    Majdalawieh, Amin F; Carr, Ronald I

    2010-04-01

    Although the immunomodulatory effects of many herbs have been extensively studied, research related to possible immunomodulatory effects of various spices is relatively scarce. Here, the potential immunomodulatory effects of black pepper and cardamom are investigated. Our data show that black pepper and cardamom aqueous extracts significantly enhance splenocyte proliferation in a dose-dependent, synergistic fashion. Enzyme-linked immunosorbent assay experiments reveal that black pepper and cardamom significantly enhance and suppress, respectively, T helper (Th)1 cytokine release by splenocytes. Conversely, Th2 cytokine release by splenocytes is significantly suppressed and enhanced by black pepper and cardamom, respectively. Experimental evidence suggests that black pepper and cardamom extracts exert pro-inflammatory and anti-inflammatory roles, respectively. Consistently, nitric oxide production by macrophages is significantly augmented and reduced by black pepper and cardamom, respectively. Remarkably, it is evident that black pepper and cardamom extracts significantly enhance the cytotoxic activity of natural killer cells, indicating their potential anti-cancer effects. Our findings strongly suggest that black pepper and cardamom exert immunomodulatory roles and antitumor activities, and hence they manifest themselves as natural agents that can promote the maintenance of a healthy immune system. We anticipate that black pepper and cardamom constituents can be used as potential therapeutic tools to regulate inflammatory responses and prevent/attenuate carcinogenesis.

  14. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma

    OpenAIRE

    Hu-Lieskovan, Siwen; Mok, Stephen; Moreno, Blanca Homet; Tsoi, Jennifer; Faja, Lidia Robert; Goedert, Lucas; Pinheiro, Elaine M.; Koya, Richard C; Graeber, Thomas; Comin-Anduix, Begoña; Ribas, Antoni

    2015-01-01

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA-4 antibody ipilimumab was terminated early due to substantial liver toxicities. MEK inhibitors can potentiate the MAPK inhibition in BRAF mutant cells, while potentially alleviating the unwanted para...

  15. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity.

    Science.gov (United States)

    Chinthala, Yakaiah; Thakur, Sneha; Tirunagari, Shalini; Chinde, Srinivas; Domatti, Anand Kumar; Arigari, Niranjana Kumar; K V N S, Srinivas; Alam, Sarfaraz; Jonnala, Kotesh Kumar; Khan, Feroz; Tiwari, Ashok; Grover, Paramjit

    2015-03-26

    A series of novel chalcone-triazole derivatives were synthesized and screened for in vitro anticancer activity on the human cancer cell lines IMR32 (neuroblastoma), HepG2 (hepatoma) and MCF-7 (breast adenocarcinoma), DU-145 (prostate carcinoma), and A549 (lung adenocarcinoma). Among the tested compounds, 4r showed the most promising anticancer activity in all the cell lines whereas, compounds 4c (IC50 65.86 μM), 4e (IC50 66.28 μM), 4o (IC50 35.81 μM), 4q (IC50 50.82 μM) and 4s (IC50 48.63 μM) showed better activity than the standard doxorubicin (IC50 69.33 μM) in A549 cell line alone. Rat intestinal α-glucosidase inhibitory activity of the synthesized derivatives showed 4m (IC50 67.77 μM), 4p (IC50 74.94 in μM) and 4s (IC50 102.10 μM) as most active compared to others. The in silico docking of synthesized derivatives 4a-4t with DNA topoisomerase IIα revealed the LibDock score in the range of 71.2623-118.29 whereas, compounds 4h, 4m, 4p and 4s with docking target α-glucosidase were in the range of 100.372-107.784.

  16. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV and anti-cancer activities.

    Directory of Open Access Journals (Sweden)

    Ran He

    Full Text Available We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4 are significantly more potent in inhibiting human cytomegalovirus (CMV replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574, lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound.

  17. Glucocorticoid-independent modulation of GR activity: Implications for immunotherapy.

    Science.gov (United States)

    Hapgood, Janet P; Avenant, Chanel; Moliki, Johnson M

    2016-09-01

    Pharmacological doses of glucocorticoids (GCs), acting via the glucocorticoid receptor (GR) to repress inflammation and immune function, remain the most effective therapy in the treatment of inflammatory and immune diseases. Since many patients on GC therapy exhibit GC resistance and severe side-effects, much research is focused on developing more selective GCs and combination therapies, with greater anti-inflammatory potency. GCs mediate their classical genomic transcriptional effects by binding to the cytoplasmic GR, followed by nuclear translocation and modulation of transcription of target genes by direct DNA binding of the GR or its tethering to other transcription factors. Recent evidence suggests, however, that the responses mediated by the GR are much more complex and involve multiple parallel mechanisms integrating simultaneous signals from other receptors, both in the absence and presence of GCs, to shift the sensitivity of a target cell to GCs. The level of cellular stress, immune activation status, or the cell cycle phase may be crucial for determining GC sensitivity and GC responsiveness as well as subcellular localization of the GR and GR levels. Central to the development of new drugs that target GR signaling alone or as add-on therapies, is an in-depth understanding of the molecular mechanisms of GC-independent GR desensitization, priming and activation of the unliganded GR, as well as synergy and cross-talk with other signaling pathways. This review will discuss the information currently available on these topics and their relevance to immunotherapy, as well as identify unanswered questions and future areas of research.

  18. Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

    Directory of Open Access Journals (Sweden)

    Jayeeta Das

    2016-03-01

    Full Text Available Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA and its poly (lactide- co-glycolide (PLGA nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA + benzo]undefined[a]pyrene (BaP]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA were determined by using transmission electron microscopy (TEM, and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA as a target were analyzed by using conventional circular dichroism (CD and melting temperature (Tm profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA; the ability of NdBA to cross the blood-brain barrier (BBB was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater

  19. Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level.

    Science.gov (United States)

    Flasiński, Michał; Hąc-Wydro, Katarzyna; Wydro, Paweł; Dynarowicz-Łątka, Patrycja

    2014-06-01

    Three structurally related but differing in biological activities single-chained ether phospholipids (PAF (platelet-activating factor) and lyso-PAF) and an anti-cancer drug (edelfosine (ED)) were investigated in Langmuir monolayers imitating natural membranes. The aim of the undertaken experiments was to study the influence of these lipids on monolayers mimicking plasma membranes of cell lines differing in susceptibility to the anti-cancer activity of ED, i.e. promyelocytic leukaemia cells (HL-60) and promyeloblastic leukaemia cells (K-562). As these cells differ essentially in the cholesterol/phospholipid ratio and plasmalogen concentration in the membrane, we have carried out systematic investigations in artificial systems of various compositions. The results for model leukaemia cell membrane were compared with data acquired for systems imitating normal leucocytes. Our results show that the level of plasmalogens significantly modulates the influence of the single-chained phospholipids on the investigated systems. The experiments confirmed also that the interactions of ether lipids with a model membrane of HL-60 cells (in biological tests sensitive to ED) have opposite character when compared with K-562, being resistant to ED. Moreover, the values of the parameters characterizing monolayers serving as membrane models (strength of interactions, monolayers fluidity and morphology) proved both sensitivity of these cells to ED and lack of their susceptibility towards PAF. Interestingly, it has been found that lyso-PAF, which is usually described as an inactive precursor of PAF, displays a stronger effect on HL-60 model membranes than ED.

  20. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity.

    Science.gov (United States)

    Batrakova, E V; Dorodnych, T Y; Klinskii, E Y; Kliushnenkova, E N; Shemchukova, O B; Goncharova, O N; Arjakov, S A; Alakhov, V Y; Kabanov, A V

    1996-11-01

    The chemosensitising effects of poly(ethylene oxide)-poly(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronic) in multidrug-resistant cancer cells has been described recently (Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV 1996, Biocon. Chem., 7, 209). This paper presents initial studies on in vivo evaluation of Pluronic copolymers in the treatment of cancer. The anti-tumour activity of epirubicin (EPI) and doxorubicin (DOX), solubilised in micelles of Pluronic L61, P85 and F108, was investigated using murine leukaemia P388 and daunorubicin-sensitive Sp2/0 and -resistant Sp2/0(DNR) myeloma cells grown subcutaneously (s.c.). The study revealed that the lifespan of the animals and inhibition of tumour growth were considerably increased in mice treated with drug/copolymer compositions compared with animals treated with the free drugs. The anti-tumour activity of the drug/copolymer compositions depends on the concentration of the copolymer and its hydrophobicity, as determined by the ratio of the lengths of hydrophilic PEO and hydrophobic PPO segments. The data suggest that higher activity is associated with more hydrophobic copolymers. In particular, a significant increase in lifespan (T/C> 150%) and tumour growth inhibition (> 90%) was observed in animals with Sp2/0 tumours with EPI/P85 and DOX/L61 compositions. The effective doses of these compositions caused inhibition of Sp2/0 tumour growth and complete disappearance of tumour in 33-50% of animals. Future studies will focus on the evaluation of the activity of Pluronic-based compositions against human drug-resistant tumours.

  1. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups

    Indian Academy of Sciences (India)

    Afsar Ali; Deepak Bansal; Nagendra K Kaushik; Neha Kaushik; Neha Kaushik; Eun Ha Choi; Rajeev Gupta

    2014-07-01

    Several pyridine-amide compounds appended with phenol/catechol groups are synthesized. These compounds consist of protected or deprotected phenol/catechol groups and offer pyridine, amide, and phenol/catechol functional groups. All compounds have been well-characterized by various spectroscopic methods, elemental analysis, thermal studies, and crystallography. The biological activities of all compounds were investigated while a few compounds significantly decreased the metabolic viability, growth and clonogenicity of T98G cells in dose dependent manner. Accumulation of ROS was observed in T98G cells, which displayed a compromised redox status as evident from increased cellular Caspase 3/7 activity and formation of micronuclei. The in silico pharmacokinetic studies suggest that all compounds have good bioavailability, water solubility and other drug-like parameters. A few compounds were identified as the lead molecules for future investigation due to their: (a) high activity against T98G brain, H-460 lung, and SNU-80 thyroid cancer cells; (b) low cytotoxicity in non-malignant HEK and MRC-5 cells; (c) low toxic risks based on in silico evaluation; (d) good theoretical oral bioavailability according to Lipinski ‘rule of five’ pharmacokinetic parameters; and (e) better drug-likeness and drug-score values.

  2. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs.

    Science.gov (United States)

    Wang, Hao-Meng; Zhang, Li; Liu, Jiang; Yang, Zhao-Liang; Zhao, Hong-Ye; Yang, Yao; Shen, Di; Lu, Kui; Fan, Zhen-Chuan; Yao, Qing-Wei; Zhang, Yong-Min; Teng, Yu-Ou; Peng, Yu

    2015-03-06

    Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 μM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis.

  3. Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor

    Directory of Open Access Journals (Sweden)

    Laetitia Nivelle

    2017-03-01

    Full Text Available In the present study, resveratrol and various oligomeric derivatives were obtained from a 14 L bioreactor culture of elicited grapevine cell suspensions (Vitis labrusca L.. The crude ethyl acetate stilbene extract obtained from the culture medium was fractionated by centrifugal partition chromatography (CPC using a gradient elution method and the major stilbenes contained in the fractions were subsequently identified by using a 13C-NMR-based dereplication procedure and further 2D NMR analyses including HSQC, HMBC, and COSY. Beside δ-viniferin (2, leachianol F (4 and G (4′, four stilbenes (resveratrol (1, ε-viniferin (5, pallidol (3 and a newly characterized dimer (6 were recovered as pure compounds in sufficient amounts to allow assessment of their biological activity on the cell growth of three different cell lines, including two human skin malignant melanoma cancer cell lines (HT-144 and SKMEL-28 and a healthy human dermal fibroblast HDF line. Among the dimers obtained in this study, the newly characterized resveratrol dimer (6 has never been described in nature and its biological potential was evaluated here for the first time. ε-viniferin as well as dimer (6 showed IC50 values on the three tested cell lines lower than the ones exerted by resveratrol and pallidol. However, activities of the first two compounds were significantly decreased in the presence of fetal bovine serum although that of resveratrol and pallidol was not. The differential tumor activity exerted by resveratrol on healthy and cancer lines was also discussed.

  4. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells.

    Science.gov (United States)

    Rastogi, Namrata; Duggal, Shivali; Singh, Shailendra Kumar; Porwal, Konica; Srivastava, Vikas Kumar; Maurya, Rakesh; Bhatt, M L B; Mishra, Durga Prasad

    2015-12-22

    Human papilloma virus (HPV) expressing E6 and E7 oncoproteins, is known to inactivate the tumor suppressor p53 through proteasomal degradation in cervical cancers. Therefore, use of small molecules for inhibition of proteasome function and induction of p53 reactivation is a promising strategy for induction of apoptosis in cervical cancer cells. The polyphenolic alkanone, 6-Gingerol (6G), present in the pungent extracts of ginger (Zingiber officinale Roscoe) has shown potent anti-tumorigenic and pro-apoptotic activities against a variety of cancers. In this study we explored the molecular mechanism of action of 6G in human cervical cancer cells in vitro and in vivo. 6G potently inhibited proliferation of the HPV positive cervical cancer cells. 6G was found to: (i) inhibit the chymotrypsin activity of proteasomes, (ii) induce reactivation of p53, (iii) increase levels of p21, (iv) induce DNA damage and G2/M cell cycle arrest, (v) alter expression levels of p53-associated apoptotic markers like, cleaved caspase-3 and PARP, and (vi) potentiate the cytotoxicity of cisplatin. 6G treatment induced significant reduction of tumor volume, tumor weight, proteasome inhibition and p53 accumulation in HeLa xenograft tumor cells in vivo. The 6G treatment was devoid of toxic effects as it did not affect body weights, hematological and osteogenic parameters. Taken together, our data underscores the therapeutic and chemosensitizing effects of 6G in the management and treatment of cervical cancer.

  5. Functional nanoemulsion-hybrid lipid nanocarriers enhance the bioavailability and anti-cancer activity of lipophilic diferuloylmethane

    Science.gov (United States)

    Sun, Lili; Wan, Kun; Hu, Xueyuan; Zhang, Yonghong; Yan, Zijun; Feng, Jiao; Zhang, Jingqing

    2016-02-01

    The purpose of this study was to assess the enhanced physicochemical characteristics, in vitro release behavior, anti-lung cancer activity, gastrointestinal absorption, in vivo bioavailability and bioequivalence of functional nanoemulsion-hybrid lipid nanocarriers containing diferuloylmethane (DNHLNs). The DNHLNs were first fabricated by loading water-in-oil nanoemulsions into hybrid lipid nanosystems using nanoemulsion-thin film-sonication dispersion technologies. The in situ absorption and in vitro and in vivo kinetic features of DNHLNs were measured using an in situ unidirectional perfusion method, a dynamic dialysis method and a plasma concentration-time profile-based method, respectively. The cytotoxic effects of DNHLNs in lung adenocarcinoma A549 cells were examined using MTT colorimetric analysis. The absorptive constants and permeabilities of DNHLNs in four gastrointestinal sections increased by 1.43-3.23 times and by 3.10-7.76 times that of diferuloylmethane (DIF), respectively. The relative bioavailability of DNHLNs to free DIF was 855.02%. DNHLNs inhibited cancer cell growth in a time- and dose-dependent manner. DNHLNs markedly improved the absorption and bioavailability of DIF after oral administration. DNHLNs had stronger inhibitory effects on the viability of A549 cells than that of free DIF. DNHLNs might be potentially promising nanocarriers for DIF delivery via the oral route to address unmet clinical needs.

  6. Activation of matrix metalloproteinases following anti-Aβ immunotherapy; implications for microhemorrhage occurrence

    Directory of Open Access Journals (Sweden)

    Ridnour Lisa A

    2011-09-01

    Full Text Available Abstract Background Anti-Aβ immunotherapy is a promising approach to the prevention and treatment of Alzheimer's disease (AD currently in clinical trials. There is extensive evidence, both in mice and humans that a significant adverse event is the occurrence of microhemorrhages. Also, vasogenic edema was reported in phase 2 of a passive immunization clinical trial. In order to overcome these vascular adverse effects it is critical that we understand the mechanism(s by which they occur. Methods We have examined the matrix metalloproteinase (MMP protein degradation system in two previously published anti-Aβ immunotherapy studies. The first was a passive immunization study in which we examined 22 month old APPSw mice that had received anti-Aβ antibodies for 1, 2 or 3 months. The second is an active vaccination study in which we examined 16 month old APPSw/NOS2-/- mice treated with Aβ vaccination for 4 months. Results There is a significant activation of the MMP2 and MMP9 proteinase degradation systems by anti-Aβ immunotherapy, regardless of whether this is delivered through active vaccination or passive immunization. We have characterized this activation by gene expression, protein expression and zymography assessment of MMP activity. Conclusions Since the MMP2 and MMP9 systems are heavily implicated in the pathophysiology of intracerbral hemorrhage, these data may provide a potential mechanism of microhemorrhage due to immunotherapy. Increased activity of the MMP system, therefore, is likely to be a major factor in increased microhemorrhage occurrence.

  7. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways.

    Directory of Open Access Journals (Sweden)

    Fang Cheng Wong

    Full Text Available Breast cancer is currently the leading cause of cancer-related deaths among women globally. Notably, medicinal plant extracts may be a potential source for treatments of breast cancer. Vernonia amygdalina (VA is a woody shrub reported to have not only diverse therapeutic effects but also anti-cancer properties. However, current research about the mechanisms of the anti-cancer potential of VA has been limited. This study aimed to investigate the mechanisms of action of VA that underlie its anti-cancer effects in human breast cancer cell lines (MCF-7 and MDA-MB-231 cells. Results from MTT assay revealed that VA inhibits the proliferation of MCF-7 and MDA-MB-231, in a time- and dose-dependent manner. The underlying mechanism of this growth inhibition involved the stimulation of cell-type specific G1/S phase cell cycle arrest in only MCF-7 cells, and not in MDA-MB-231 cells. While the growth arrest was associated with increased levels of p53 and p21, and a concomitant decrease in the levels of cyclin D1 and cyclin E, it was shown that VA causes cell cycle arrest through a p53-independent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Furthermore, this study revealed that VA induces apoptosis in the two cell lines, as indicated by the increase in Annexin V-positive cells and sub-G1 population, and that this VA-induced apoptosis occurred through both extrinsic and intrinsic apoptotic pathways. The apoptosis in MCF-7 cells was also likely to be caspase-dependent and not p53 transcriptional-dependent. Given that approximately 70% of diagnosed breast cancers express ER-α, a crucial finding was that VA inhibits the expression of ER-α and its downstream player, Akt, highlighting the potential clinical significance of VA. Moreover, VA exhibits synergism when combined with doxorubicin, suggesting that it can complement current chemotherapy. Overall, this study demonstrates the potential applications of VA as an anti-cancer drug for breast

  8. Advancement in research of anti-cancer effects of toad venom (ChanSu) and perspectives

    Institute of Scientific and Technical Information of China (English)

    Miao Liu; Li-Xing Feng; Li-Hong Hu; Xuan Liu; De-An Guo

    2015-01-01

    Toad venom, called as ChanSu in China, is a widely used traditional Chinese medicine (TCM) whose active components are mainly bufadienolides. ChanSu could exhibit cardiotonic, anti-microbial, anti-inflammatory and, most importantly, anti-cancer effects. In the present review, reports about the in vitro, in vivo and clinical anti-cancer effects of ChanSu or its representative component, bufalin, were summarized. And, reported anti-cancer mechanisms of cardenolides, structure analogues of bufadienolides, were also introduced. Based on the results got from research of ChanSu/bufalin and the results from cardenolides, possible signal network related to the anti-cancer effects of ChanSu/bufalin was predicted. Furthermore, future potential use of ChanSu in anti-cancer therapy was discussed.

  9. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role\\'as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic\\'drugs

  10. Anti-cancer, Anti-radiation Activity of Three Kiwi Polyphenol Crude Extracts%三种猕猴桃多酚粗提物的抗癌、抗辐射活性

    Institute of Scientific and Technical Information of China (English)

    左丽丽; 王振宇; 樊梓鸾; 田双起

    2011-01-01

    The three kiwi fruit polyphenol extract with 60 % ethanol, measured the polyphenol content and the total reduction capacity of crude extracts, and its anti-cancer, anti-radiation activity. The results showed that Actinidia kolomikta and Actinidia arguta have good reduction capacity, in the crude extract, Actinidia kolomikta contains the highest polyphenol content and has the best radiation resistance. But better Actinidia arguta has better anti-cancer ability, which may be related to previously reported selenium compounds in kiwifruit, Actinidia arguta may contain more selenium compounds.%用60%的乙醇对3种猕猴桃多酚进行提取,测定粗提物的多酚含量及总还原能力,并对其抗癌、抗辐射能力进行研究。结果表明,狗枣和软枣猕猴桃都有很好的还原能力,粗提物中,狗枣猕猴桃含有最高的多酚含量且具有最好的抗辐射能力。但是软枣猕猴桃有更好的抗癌能力,这可能是与以前报道的猕猴桃中富含硒类化合物有关,软枣猕猴桃可能含有更多的硒类化合物。

  11. Synergistic anti-cancer effect of phenformin and oxamate.

    Directory of Open Access Journals (Sweden)

    W Keith Miskimins

    Full Text Available Phenformin (phenethylbiguanide; an anti-diabetic agent plus oxamate [lactate dehydrogenase (LDH inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS. Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18F-fluorodeoxyglucose (FDG uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.

  12. Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity

    Science.gov (United States)

    Lahiani, Mohamed H.; Eassa, Souzan; Parnell, Charlette; Nima, Zeid; Ghosh, Anindya; Biris, Alexandru S.; Khodakovskaya, Mariya V.

    2017-01-01

    A major benefit to nanomaterial based-medicine is the ability to provide nanosized vehicles for sporadic metabolites. Here, we describe how the conjugation of valuable ginseng secondary metabolites (ginsenoside Rb1 or Rg1) with carbon nanotubes (CNT) can enhance their anti-proliferative and anti-cancer effects. Ginsenoside-CNT conjugate (Rb-CNT or Rg-CNT) permitted the ginsenosides to be used at a low dose, yet achieve a higher incidence of cancer killing. We were able to demonstrate that the ginsenoside-CNT conjugate can decrease cell viability up to 62% in breast cancer cells (MCF-7) and enhance antiproliferation of drug-resistant pancreatic cancer cells (PANC-1) by 61%. The interaction of the ginsenoside-CNT conjugate with breast cancer cells was studied using Raman Spectroscopy mapping. Total transcriptome profiling (Affymetrix platform) of MCF-7 cells treated with the ginsenoside-CNT conjugate shows that a number of cellular, apoptotic and response to stimulus processes were affected. Therefore, our data confirmed the potential use of CNT as a drug delivery system.

  13. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    2013-01-01

    Full Text Available Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as cell cycle modifications in MDA-MB-231 and MCF-7 cells. FE enhanced apoptosis in cancer cells that responded to treatment with three chemotherapeutic drugs with downregulation of the anti-apoptotic proteins Bcl-xL and Mcl-1. The combination treatments led to an obvious decrease in the phosphorylation of ERK and Akt in MDA-MB-231 cells, but increased the phosphorylation of ERK in MCF-7 cells. In addition, we observed that combination treatments enhanced intracellular ROS levels and reduced glutathione (GSH levels in breast cancer cells, suggesting that induction of oxidative stress was an important event in the cell death induced by the combination treatments.

  14. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma

    Science.gov (United States)

    Hu-Lieskovan, Siwen; Mok, Stephen; Moreno, Blanca Homet; Tsoi, Jennifer; Faja, Lidia Robert; Goedert, Lucas; Pinheiro, Elaine M.; Koya, Richard C.; Graeber, Thomas; Comin-Anduix, Begoña; Ribas, Antoni

    2016-01-01

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA-4 antibody ipilimumab was terminated early due to substantial liver toxicities. MEK inhibitors can potentiate the MAPK inhibition in BRAF mutant cells, while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAFV600E driven melanoma, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors and improved in vivo cytotoxicity. Single agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and MHC expression, and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested combination of dabrafenib, trametinib with anti-PD1 therapy in SM1 tumors, and observed superior anti-tumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAFV600E mutant metastatic melanoma. PMID:25787767

  15. Optimizing complement-activating antibody-based cancer immunotherapy: a feasible strategy?

    Directory of Open Access Journals (Sweden)

    Maio Michele

    2004-06-01

    Full Text Available Abstract Passive immunotherapy with monoclonal antibodies (mAb targeted to specific tumor-associated antigens is amongst the most rapidly expanding approaches to biological therapy of cancer. However, until now a limited number of therapeutic mAb has demonstrated clinical efficacy in selected neoplasia. Results emerging from basic research point to a deeper characterization of specific biological features of neoplastic cells as crucial to optimize the clinical potential of therapeutic mAb, and to identify cancer patients who represent the best candidates to antibody-based immunotherapy. Focus on the tissue distribution and on the functional role of membrane complement-regulatory proteins such as Protectin (CD59, which under physiologic conditions protects tissues from Complement (C-damage, might help to optimize the efficacy of immunotherapeutic strategies based on C-activating mAb.

  16. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    Science.gov (United States)

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  17. PEGylation in anti-cancer therapy: An overview

    Directory of Open Access Journals (Sweden)

    Prajna Mishra

    2016-06-01

    Full Text Available Advanced drug delivery systems using poly(ethylene glycol (PEG is an important development in anti-cancer therapy. PEGylation has the ability to enhance the retention time of the therapeutics like proteins, enzymes small molecular drugs, liposomes and nanoparticles by protecting them against various degrading mechanisms active inside a tissue or cell, which consequently improves their therapeutic potential. PEGylation effectively alters the pharmacokinetics (PK of a variety of drugs and dramatically improves the pharmaceutical values; recent development of which includes fabrication of stimuli-sensitive polymers/smart polymers and polymeric micelles to cope of with the pathophysiological environment of targeted site with less toxic effects and more effectiveness. This overview discusses PEGylation involving proteins, enzymes, low molecular weight drugs, liposomes and nanoparticles that has been developed, clinically tried for anti-cancer therapy during the last decade.

  18. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    Science.gov (United States)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  19. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  20. Sipuleucel-T (Provenge): active cellular immunotherapy for advanced prostate cancer.

    Science.gov (United States)

    McKarney, I

    2007-09-01

    (1) Sipuleucel-T (Provenge) is an active cellular immunotherapy (therapeutic vaccine) that is designed to stimulate the patient's T-cells to recognize and attack prostate cancer cells that express prostatic acid phosphatase (PAP) antigen. (2) Sipuleucel-T demonstrated a survival benefit in men with advanced androgen-independent prostate cancer (AIPC), although this preliminary finding requires confirmation in larger trials. (3) Mild to moderate myalgia, chills, fever, and tremor are the most commonly reported adverse events for patients receiving sipuleucel-T. These events generally resolve quickly. (4) More studies are needed to evaluate sipuleucel-T in the earlier stages of prostate cancer and in combination with conventional therapies.

  1. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property [v1; ref status: indexed, http://f1000r.es/15s

    Directory of Open Access Journals (Sweden)

    Asfar S Azmi

    2013-06-01

    Full Text Available “Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  2. Methods for predicting anti-cancer response

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to methods for predicting response of a cancer in a subject to anti-cancer therapies based upon a determination and analysis of a chromosomal aberration score, such as the number of allelic imbalance or the number of telomeric allelic imbalance in the chromosomes...

  3. Cancer Immunotherapy

    Science.gov (United States)

    Immunotherapy is a cancer treatment that helps your immune system fight cancer. It is a type of biological therapy. Biological therapy uses substances ... t yet use immunotherapy as often as other cancer treatments, such as surgery, chemotherapy, and radiation therapy. ...

  4. The application of the fibroblast activation protein α-targeted immunotherapy strategy.

    Science.gov (United States)

    Jiang, Guan-Min; Xu, Wei; Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-05-31

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.

  5. Research of Active Immunotherapy on Unexplained Recurrent Spontaneous Abortion(URSA)

    Institute of Scientific and Technical Information of China (English)

    Hong-chu BAO; Na LV; Cui-fang HAO

    2006-01-01

    Objective To investigate the effect of active immunotherapy on unexplained recurrent spontaneous abortion (URSA ) during the process of gestation and delivery period.Methods We collected the data of the women with URSA and their offsprings. The women were treated by immunization with paternal lymphocytes and then had a successful pregnancy. The fore mentioned group of women were compared with those who had a normal pregnancy and then delivered in the same period.Results The incidences of premature rupture of membranes, adherent placenta, and residual cauls in the group of URSA patients were statistically higher than those in the normal group.Correspondingly, gestational age at delivery and birth weight of the newborns of the group of URSA patients were lower,but there were no significant differences between the two groups.Conclusion These results indicate that paternal lymphocyte immunotherapy is effective on the maintenance of pregnancy in women with URSA, and has no deleterious effects on the fetus or newborns. However,in case of the higher incidence of premature rupture of membranes, adherent placenta, and residual cauls, more attention should be paid to the treated patients to avoid intrauterine growth retardation and postpartum hemorrhage.

  6. 22种常见抗肿瘤中草药的抗氧化活性研究%Antioxidant Activity of 22 Chinese Herbal Medicines for Anti-cancer

    Institute of Scientific and Technical Information of China (English)

    张新国; 刘英娟; 曹心张; 张春生; 匡彦蓓

    2015-01-01

    Objective:In this study ,22 Chinese herbal medicines for anti -cancer were developed for the study of its an-tioxidant activity .Methods:The antioxidant activities of samples were evaluated by DPPH method;phenols , flavonoids contents and total reducing power were estimated by using the Folin -Ciocalteu reagent , aluminum salt colorimetric method and ferric-reducing antioxidant power assay ( FRAP) .Results:The results confirmed that 90 .09%of the medi-cine had characterized the antioxidant activity with more than 50%, which included eight kinds of plant materials such as Rhizoma Curcumae , Rhizoma Polygoni Cuspidati , Wild Skullcaps , Radix Paeoniae Alba , Fern , Salviamiltiorrhiza , Radix Dipsaci Asperoidis , Curcuma longa demonstrated better antioxidant activity ( activity >90%) .Wild Skullcaps demonstrated the best antioxidant activity with the lowest IC 50 value of 0.05g/L, the highest phenolic and flavonoid con-tents of 5240μg/L and 83210μg/L.Conclusion:Each sample for anti -cancer has a strong antioxidant activity except for the Coix seed and Poria , which confirms natural antioxidant and antitumor effect has a certain correlation , but its mechanism needs further research .In this study , it is possible to find antioxidants and antioxidant -based anticancer drugs develop from broad anti -tumor natural resources providing an experimental basis .%目的:本研究以常见的22种具有抗肿瘤活性的中药材为对象,对其抗氧化活性进行研究。方法:以DPPH自由基清除率为指标,测定各试样的抗氧化活性;通过FRAP法,Folin-Ciocaheu法以及铝盐显色法,比较其总还原力,总酚含量以及黄酮含量。结果:抗氧化活性大于50%的药材占到了90.09%,其中莪术、虎杖、野生黄芩、白芍、凤尾草、丹参、川断、姜黄等8种药材DPPH的清除作用均超过了90%,显示了较强的抗氧化作用,且野生黄芩的IC50最低(IC50=0.05g/L),抗氧化能力

  7. Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy

    NARCIS (Netherlands)

    Bidad, Katayoon; Nawijn, Martijn C.; van Oosterhout, Antoon J. M.; van der Heide, Sicco; Oude Elberink, Joanne N. G.

    2014-01-01

    Background There is need for an accurate diagnostic test in mastocytosis patients with wasp venom allergy (WVA) and monitoring of these patients during immunotherapy (IT). In this study, we aimed to evaluate sensitivity and specificity of the Basophil Activation Test (BAT) as a diagnostic and monito

  8. Anti-cancer chalcones: Structural and molecular target perspectives.

    Science.gov (United States)

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-06-15

    Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.

  9. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle T.S. Ying.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The quality of traditional Chinese herbal medicine, which plays a very important role in the health system of China, is determined by the active substances produced by the plants. The type, content, and proportion of these substances may vary depending on ecological factors in areas where the plants are grown. Sinopodophyllum hexandrum (Royle T.S. Ying, an endangered plant species with great medical value, was investigated in eight production locations representative of its natural geographical distribution range in China. The correlation between the contents of the active ingredients extracted from the roots and rhizomes of S. hexandrum and the ecological factors were evaluated step-by-step using a series of computational biology methodologies. The results showed that ecological factors had significant effects on the contents but not on the types of the active ingredients in eight production locations. The primary ecological factors influencing the active substances included the annual average precipitation, July mean temperature, frost-free period, sunshine duration, soil pH, soil organic matter, and rapidly available potassium in the soil. The annual average precipitation was the most important determinant factor and was significantly and negatively correlated with the active ingredient contents (P < 0.001. In contrast, organic matter was the most important limiting factor and was significantly and positively correlated with the active substances. These ecological factors caused 98.13% of the total geographical variation of the active ingredient contents. The climate factors contributed more to the active ingredient contents than did the soil factors. It was concluded that from the view of the contents of the secondary metabolites and ecological factors of each growing location, in Jingyuan, Ningxia Province, and Yongdeng, Gansu Province, conditions were favorable to the production of podophyllotoxin and lignans, whereas in Shangri-La, Yunnan

  10. What Is Cancer Immunotherapy?

    Science.gov (United States)

    ... and Side Effects Treatment Types Immunotherapy What is cancer immunotherapy? Immunotherapy is treatment that uses certain parts of ... so that it will destroy them. Types of cancer immunotherapy The main types of immunotherapy now being used ...

  11. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L.

    Science.gov (United States)

    Khlifi, Daycem; Sghaier, Rabiaa Manel; Amouri, Sameh; Laouini, Dhafer; Hamdi, Mokhtar; Bouajila, Jalloul

    2013-05-01

    In this study, biological activities of methanolic extracts from Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. plants, collected in Centre of Tunisia, were investigated. Results showed an important phenolic composition of Artemisia herba-alba (123.95±4.3g GAE/kg of dry mass). The extract of this plant showed, using different antioxidant assays (DPPH, ABTS and AAPH/linoleic acid methods) and an IFN-γ/LPS induced RAW 264.7 murine macrophages' assay, the highest antioxidant (IC50 (DPPH assay) 20.64±0.84mg/L) and anti-inflammatory (72% inhibition at 150mg/L) activities, respectively. Excepting Peganum harmala L. extract, the two other extracts showed a high anticancer activity against several cell lines (human bladder carcinoma RT112, human laryngeal carcinoma Hep2 and human myelogenous leukemia K562), for A. herba-laba IC50=81.59±4.4, 59.05±3.66 and 90.96mg/L respectively, but not on normal peripheral blood mononuclear cells. All these biological activities are well correlated with the phenolic contents of these extracts. These findings demonstrate the remarkable potential of these plants as valuable source of antioxidants with exhibit original and interesting anti-inflammatory and anticancer capacities.

  12. Profound activity of the anti-cancer drug bortezomib against Echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes.

    Directory of Open Access Journals (Sweden)

    Britta Stadelmann

    2014-12-01

    Full Text Available A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ, a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

  13. Profound activity of the anti-cancer drug bortezomib against Echinococcus multilocularis metacestodes identifies the proteasome as a novel drug target for cestodes.

    Science.gov (United States)

    Stadelmann, Britta; Aeschbacher, Denise; Huber, Cristina; Spiliotis, Markus; Müller, Joachim; Hemphill, Andrew

    2014-12-01

    A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.

  14. Research advance of the anti-cancer activity of chalcone compounds%查尔酮类化合物的抗癌活性研究进展

    Institute of Scientific and Technical Information of China (English)

    王永波; 木合布力·阿布力孜

    2015-01-01

    Objective To screen the lead compounds of anti‐cancer with the characteristics of novel structure ,strong biological activ‐ity ,safe and effective from the traditional natural medicines .Methods Varieties of heterocyclic structure and its anticancer mecha‐nism of chalcone were analyzed and discussed .Results In the structure of chalcone ,the biological activity of chalcone compounds can be improved by the introduction of different groups ,changing the structure of relative configuration and so on .Conclusion Heterocyclic chalcones have strong anti‐cancer biological activity .According to its structure‐activitity relationship ,lead com‐pounds of anti‐cancer ,which have novel structure ,strong biological activity ,safe and effective ,could be selected from the tradi‐tional natural medicines .%目的:从传统天然药物中筛选出结构新颖、生物活性较强、安全有效的抗癌先导化合物。方法通过比较多种含杂环结构查尔酮类化合物及其抗癌机制来进行分析论证。结果在查尔酮结构中,引入不同的基团、改变结构相对构型等使所得化合物的抗癌活性有所提高。结论杂环查尔酮类化合物显示出较强的抗癌生物活性,根据其构型关系,从传统天然药物筛选出结构新颖、生物活性较强、安全有效的抗癌先导化合物。

  15. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Hung-Yu Yang

    Full Text Available Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX, derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L. Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs. BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.

  16. Anti-cancer activity of an osthole derivative, NBM-T-BMX-OS01: targeting vascular endothelial growth factor receptor signaling and angiogenesis.

    Science.gov (United States)

    Yang, Hung-Yu; Hsu, Ya-Fen; Chiu, Pei-Ting; Ho, Shiau-Jing; Wang, Chi-Han; Chi, Chih-Chin; Huang, Yu-Han; Lee, Cheng-Feng; Li, Ying-Shiuan; Ou, George; Hsu, Ming-Jen

    2013-01-01

    Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.

  17. Antioxidant Activities and Anti-Cancer Cell Proliferation Properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and Blueberry Cultivars

    Science.gov (United States)

    Tsuda, Hirotoshi; Kunitake, Hisato; Kawasaki-Takaki, Ryoko; Nishiyama, Kazuo; Yamasaki, Masao; Komatsu, Haruki; Yukizaki, Chizuko

    2013-01-01

    Antioxidants are abundant in blueberries, and while there are many studies concerning the bioactive compound of fruit, it is only recently that the wild Vaccinium species has attracted attention for their diverse and abundant chemical components. The aim of this study was to investigate the bioactive compounds of blueberry cultivars and wild species found in Japan. Among the five extracts of the Vaccinium species, Natsuhaze (Vaccinium oldhamii Miq.) was found to be the most effective at inhibiting the growth of HL-60 human leukemia cells in vitro. Although all ethanol extracts showed a growth inhibitory effect on HL-60 cells, the degree of the effects differed among the species. The extract of Natsuhaze induced apoptotic bodies and nucleosomal DNA fragmentation in the HL-60 cells. Of the extracts tested, that of Natsuhaze contained the largest amount of total polyphenols and showed the greatest antioxidant activity, but the anthocyanin content of Natsuhaze was similar to that of rabbiteye blueberry (V. virgatum Ait.). The results showed that total polyphenols contributed to the high antioxidant activity and growth inhibitory effect on HL-60 human leukemia cells of Natsuhaze extract. PMID:27137366

  18. Antioxidant Activities and Anti-Cancer Cell Proliferation Properties of Natsuhaze (Vaccinium oldhamii Miq., Shashanbo (V. bracteatum Thunb. and Blueberry Cultivars

    Directory of Open Access Journals (Sweden)

    Hirotoshi Tsuda

    2013-02-01

    Full Text Available Antioxidants are abundant in blueberries, and while there are many studies concerning the bioactive compound of fruit, it is only recently that the wild Vaccinium species has attracted attention for their diverse and abundant chemical components. The aim of this study was to investigate the bioactive compounds of blueberry cultivars and wild species found in Japan. Among the five extracts of the Vaccinium species, Natsuhaze (Vaccinium oldhamii Miq. was found to be the most effective at inhibiting the growth of HL-60 human leukemia cells in vitro. Although all ethanol extracts showed a growth inhibitory effect on HL-60 cells, the degree of the effects differed among the species. The extract of Natsuhaze induced apoptotic bodies and nucleosomal DNA fragmentation in the HL-60 cells. Of the extracts tested, that of Natsuhaze contained the largest amount of total polyphenols and showed the greatest antioxidant activity, but the anthocyanin content of Natsuhaze was similar to that of rabbiteye blueberry (V. virgatum Ait.. The results showed that total polyphenols contributed to the high antioxidant activity and growth inhibitory effect on HL-60 human leukemia cells of Natsuhaze extract.

  19. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy.

    Science.gov (United States)

    Hussain, Muzammal; Shah, Zahir; Abbas, Nasir; Javeed, Aqeel; Mukhtar, Muhammad Mahmood; Zhang, Jiancun

    2016-01-01

    Despite the tremendous progress in last few years, the cancer immunotherapy has not yet improved disease-free because of the tumor-associated immune suppression being a major barrier. Novel trends to enhance cancer immunotherapy aims at harnessing the therapeutic manipulation of signaling pathways mediating the tumor-associated immune suppression, with the general aims of: (a) reversing the tumor immune suppression; (b) enhancing the innate and adaptive components of anti-tumor immunosurveillance, and (c) protecting immune cells from the suppressive effects of T regulatory cells (Tregs) and the tumor-derived immunoinhibitory mediators. A particular striking example in this context is the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A type I (PKAI) pathway. Oncogenic cAMP/PKAI signaling has long been implicated in the initiation and progression of several human cancers. Emerging data indicate that cAMP/PKAI signaling also contributes to tumor- and Tregs-derived suppression of innate and adaptive arms of anti-tumor immunosurveillance. Therapeutically, selective PKAI inhibitors have been developed which have shown promising anti-cancer activity in pre-clinical and clinical settings. Rp-8-Br-cAMPS is a selective PKAI antagonist that is widely used as a biochemical tool in signal transduction research. Collateral data indicate that Rp-8-Br-cAMPS has shown immune-rescuing potential in terms of enhancing the innate and adaptive anti-tumor immunity, as well as protecting adaptive T cells from the suppressive effects of Tregs. Therefore, this proposal specifically implicates that combining selective PKAI antagonists/inhibitors with cancer immunotherapy may have multifaceted benefits, such as rescuing the endogenous anti-tumor immunity, enhancing the efficacy of cancer immunotherapy, and direct anti-cancer effects.

  20. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole

    Indian Academy of Sciences (India)

    I Rama; R Selvameena

    2015-04-01

    A new bidentate Schiff base ligand (HL1), containing O,N donors was prepared by the reaction of sulfamethoxazole with 5-nitrosalicylaldehyde and characterized by elemental analysis, FT-IR, 1H and 13C NMR. The copper complex of this ligand was synthesised by treating DMF-ethanolic mixture solution of the ligand of two equivalents with one equivalent of copper acetate. The complex was characterized on the basis of UV, FT-IR, molar conductance, EPR, magnetic moment and single crystal X-ray diffraction. Interestingly, the crystal structure of the octahedral complex showed two solvent molecules (DMF) as ligands at their axial positions. The molar conductance data revealed that the complex is a non-electrolyte. The Schiff base and its copper complex have been investigated as anti-bacterial and anti-fungal agents against various microorganisms. The in vitro cytotoxicity tests of the ligand and its copper complex were carried out in two different human tumour cell lines, HCT-116 and MDA – MB - 231. The cytotoxicity studies showed that the complex exhibited higher activity than cisplatin and carboplatin towards MDA – MB – 231.

  1. α-Tomatine-mediated anti-cancer activity in vitro and in vivo through cell cycle- and caspase-independent pathways.

    Directory of Open Access Journals (Sweden)

    Min-Wu Chao

    Full Text Available α-Tomatine, a tomato glycoalkaloid, has been reported to possess antibiotic properties against human pathogens. However, the mechanism of its action against leukemia remains unclear. In this study, the therapeutic potential of α-tomatine against leukemic cells was evaluated in vitro and in vivo. Cell viability experiments showed that α-tomatine had significant cytotoxic effects on the human leukemia cancer cell lines HL60 and K562, and the cells were found to be in the Annexin V-positive/propidium iodide-negative phase of cell death. In addition, α-tomatine induced both HL60 and K562 cell apoptosis in a cell cycle- and caspase-independent manner. α-Tomatine exposure led to a loss of the mitochrondrial membrane potential, and this finding was consistent with that observed on activation of the Bak and Mcl-1 short form (Mcl-1s proteins. Exposure to α-tomatine also triggered the release of the apoptosis-inducing factor (AIF from the mitochondria into the nucleus and down-regulated survivin expression. Furthermore, α-tomatine significantly inhibited HL60 xenograft tumor growth without causing loss of body weight in severe combined immunodeficiency (SCID mice. Immunohistochemical test showed that the reduced tumor growth in the α-tomatine-treated mice was a result of increased apoptosis, which was associated with increased translocation of AIF in the nucleus and decreased survivin expression ex vivo. These results suggest that α-tomatine may be a candidate for leukemia treatment.

  2. Anti-Cancer Activity of Solanum nigrum (AESN through Suppression of Mitochondrial Function and Epithelial-Mesenchymal Transition (EMT in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ying-Jang Lai

    2016-04-01

    Full Text Available Chemotherapy is the main approach for treating advanced and recurrent carcinoma, but the clinical performance of chemotherapy is limited by relatively low response rates, drug resistance, and adverse effects that severely affect the quality of life of patients. An association between epithelial-mesenchymal transition (EMT and chemotherapy resistance has been investigated in recent studies. Our recent studies have found that the aqueous extract of Solanum nigrum (AESN is a crucial ingredient in some traditional Chinese medicine formulas for treating various types of cancer patients and exhibits antitumor effects. We evaluated the suppression of EMT in MCF-7 breast cancer cells treated with AESN. The mitochondrial morphology was investigated using Mitotracker Deep-Red FM stain. Our results indicated that AESN markedly inhibited cell viability of MCF-7 breast cancer cells through apoptosis induction and cell cycle arrest mediated by activation of caspase-3 and production of reactive oxygen species. Furthermore, mitochondrial fission was observed in MCF-7 breast cancer cells treated with AESN. In addition to elevation of E-cadherin, downregulations of ZEB1, N-cadherin, and vimentin were found in AESN-treated MCF-7 breast cancer cells. These results suggested that AESN could inhibit EMT of MCF-7 breast cancer cells mediated by attenuation of mitochondrial function. AESN could be potentially beneficial in treating breast cancer cells, and may be of interest for future studies in developing integrative cancer therapy against proliferation, metastasis, and migration of breast cancer cells.

  3. Eugenia jambolana (Java Plum) Fruit Extract Exhibits Anti-Cancer Activity against Early Stage Human HCT-116 Colon Cancer Cells and Colon Cancer Stem Cells.

    Science.gov (United States)

    Charepalli, Venkata; Reddivari, Lavanya; Vadde, Ramakrishna; Walia, Suresh; Radhakrishnan, Sridhar; Vanamala, Jairam K P

    2016-02-26

    The World Health Organization predicts over a 70% increase in cancer incidents in developing nations over the next decade. Although these nations have limited access to novel therapeutics, they do have access to foods that contain chemopreventive bioactive compounds such as anthocyanins, and as such, consumption of these foods can be encouraged to combat cancer. We and others have previously characterized the anti-colon cancer properties of dietary anthocyanins from different sources. Eugenia jambolana (Java plum) is a tropical medicinal fruit rich in anthocyanins, however, its anti-colon cancer properties are not well characterized. Furthermore, recent evidence suggests that colon cancer stem cells (colon CSCs) promote resistance to chemotherapy, relapse of tumors and contribute to poor prognosis. The objectives of this study were to 1) characterize the anthocyanin profile of Java plum using HPLC-MS; and 2) determine the anti-proliferative (cell counting and MTT) and pro-apoptotic (TUNEL and caspase 3/7 glo assay) properties of Java plum fruit extract (JPE) using HCT-116 colon cancer cell line and colon CSCs (positive for CD 44, CD 133 and ALDH1b1 markers). HPLC-MS analysis showed that JPE contains a variety of anthocyanins including glucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. JPE anthocyanins suppressed (p cancer activity of JPE, and its molecular mechanisms using pre-clinical models of colon cancer.

  4. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity.

    Science.gov (United States)

    Mobasseri, Rezvan; Karimi, Mahdi; Tian, Lingling; Naderi-Manesh, Hossein; Ramakrishna, Seeram

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca(2+), Zn(2+) or Mg(2+)). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl2) facilitated the formation of bare (100.3±0.80nm) and drug-loaded nanoparticles (134.3±1.3nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was -16.8±0.47mV and its entrapment and loading efficiency were 76.74±1.73% and 47.36±1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy.

  5. Pro-inflammatory effect of a traditional Chinese medicine formula with potent anti-cancer activity in vitro impedes tumor inhibitory potential in vivo

    Science.gov (United States)

    Xia, Lei; Plachynta, Maksym; Liu, Tangjingjun; Xiao, Xiao; Song, Jialei; Li, Xiaogang; Zhang, Mu; Yao, Yao; Luo, Heng; Hao, Xiaojiang; Ben-David, Yaacov

    2016-01-01

    Medicinal formulas are a part of the complex discipline of traditional Chinese medicine that has been used for centuries in China and East Asia. These formulas predominantly consist of the extracts isolated from herbal plants, animal parts and medicinal minerals. The present study aimed to investigate the impact of 150 formulas, used as non-prescription drugs in China, on the treatment of cancer. A formula was identified, C54, commonly used to treat sore throats, which exhibited marked growth inhibition in vitro, associated with cell cycle arrest and apoptosis. Cytotoxicity was, in part, due to the ability of C54 to inhibit the expression and function of the transcription factor, Fli-1, leading to marked inhibition of leukemic cell growth in tissue culture. However, when injected into a model of leukemia initiated by Fli-1 activation, C54 only exhibited a limited tumor inhibition. C54 also did not suppress xenograft growth of the breast cancer cell line, MDA-MB-231, orthopedically transplanted into the mammary fat pad of severe combined immunodeficiency (SCID) mice. Notably, splenomegaly and accumulation of inflammatory CD11b+/Gr1+ monocytes were observed in the tumors and spleens of C54-treated mice. As inflammation is known to accelerate tumor progression, this immune response may counteract the cell-autonomous effect of C54, and account for its limited tumor inhibitory effect in vivo. Combining C54 with an anti-inflammatory drug may improve the potency of C54 for treatment of certain cancers. The present study has highlighted the complexity of Chinese medicinal compounds and the need to thoroughly analyze their systemic effects at high concentrations in vivo.

  6. Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin's lymphoma xenografts.

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    Full Text Available BACKGROUND: Although multimodality treatment can induce high rate of remission in many subtypes of non-Hodgkin's lymphoma (NHL, significant proportions of patients relapse with incurable disease. The effect of human bone marrow (BM mesenchymal stem cells (MSC on tumor cell growth is controversial, and no specific information is available on the effect of BM-MSC on NHL. METHODOLOGY/PRINCIPAL FINDINGS: The effect of BM-MSC was analyzed in two in vivo models of disseminated non-Hodgkin's lymphomas with an indolent (EBV(- Burkitt-type BJAB, median survival = 46 days and an aggressive (EBV(+ B lymphoblastoid SKW6.4, median survival = 27 days behavior in nude-SCID mice. Intra-peritoneal (i.p. injection of MSC (4 days after i.p. injection of lymphoma cells significantly increased the overall survival at an optimal MSC:lymphoma ratio of 1:10 in both xenograft models (BJAB+MSC, median survival = 58.5 days; SKW6.4+MSC, median survival = 40 days. Upon MSC injection, i.p. tumor masses developed more slowly and, at the histopathological observation, exhibited a massive stromal infiltration coupled to extensive intra-tumor necrosis. In in vitro experiments, we found that: i MSC/lymphoma co-cultures modestly affected lymphoma cell survival and were characterized by increased release of pro-angiogenic cytokines with respect to the MSC, or lymphoma, cultures; ii MSC induce the migration of endothelial cells in transwell assays, but promoted endothelial cell apoptosis in direct MSC/endothelial cell co-cultures. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that BM-MSC exhibit anti-lymphoma activity in two distinct xenograft SCID mouse models of disseminated NHL.

  7. The in vitro and in vivo anti-cancer activities of a standardized quassinoids composition from Eurycoma longifolia on LNCaP human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Kind Leng Tong

    composition from E. longifolia promotes anti-prostate cancer activities in LNCaP human prostate cancer cells.

  8. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives

    Science.gov (United States)

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs. PMID:27445824

  9. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives.

    Science.gov (United States)

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.

  10. T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity

    Directory of Open Access Journals (Sweden)

    Verhoef Adrienne

    2005-01-01

    Full Text Available Background Synthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils. Methods and Findings In this study we address the mechanism of action of peptide immunotherapy (PIT in cat-allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface phenotyping, and cytokine measurements were used to investigate immunomodulation in peripheral blood mononuclear cells (PBMCs after therapy. Proliferative responses of PBMCs to allergen extract were significantly reduced after PIT. This was associated with modified cytokine profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5 production. CD4+ cells isolated after PIT were able to actively suppress allergen-specific proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was associated with a significant increase in surface expression of CD5 on both CD4+ and CD8+ PBMCs. Conclusion This study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen.

  11. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma.

    Science.gov (United States)

    Hu-Lieskovan, Siwen; Mok, Stephen; Homet Moreno, Blanca; Tsoi, Jennifer; Robert, Lidia; Goedert, Lucas; Pinheiro, Elaine M; Koya, Richard C; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2015-03-18

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAF(V600E)-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAF(V600E) mutant metastatic melanoma.

  12. Anti-Cancer Effects of Xanthones from Pericarps of Mangosteen

    Directory of Open Access Journals (Sweden)

    Yoshinori Nozawa

    2008-03-01

    Full Text Available Mangosteen, Garcinia mangostana Linn, is a tree found in South East Asia, and its pericarps have been used as traditional medicine. Phytochemical studies have shown that they contain a variety of secondary metabolites, such as oxygenated and prenylated xanthones. Recent studies revealed that these xanthones exhibited a variety of biological activities containing anti-inflammatory, anti-bacterial, and anti-cancer effects. We previously investigated the anti-proliferative effects of four prenylated xanthones from the pericarps; α-mangostin, β-mangostin, γ-mangostin, and methoxy-β-mangostin in various human cancer cells. These xanthones are different in the number of hydroxyl and methoxy groups. Except for methoxy-β-mangostin, the other three xanthones strongly inhibited cell growth at low concentrations from 5 to 20 μM in human colon cancer DLD-1 cells. Our recent study focused on the mechanism of α-mangostin-induced growth inhibition in DLD-1 cells. It was shown that the anti-proliferative effects of the xanthones were associated with cell-cycle arrest by affecting the expression of cyclins, cdc2, and p27; G1 arrest by α- mangostin and β-mangostin, and S arrest by γ-mangostin. α-Mangostin found to induce apoptosis through the activation of intrinsic pathway following the down-regulation of signaling cascades involving MAP kinases and the serine/threonine kinase Akt. Synergistic effects by the combined treatment of α-mangostin and anti-cancer drug 5-FU was to be noted. α-Mangostin was found to have a cancer preventive effect in rat carcinogenesis bioassay and the extract from pericarps, which contains mainly α-mangostin and γ- mangostin, exhibited an enhancement of NK cell activity in a mouse model. These findings could provide a relevant basis for the development of xanthones as an agent for cancer prevention and the combination therapy with

  13. Anti-cancer effects of traditional Korean wild vegetables in complementary and alternative medicine.

    Science.gov (United States)

    Ju, Hyun-Mok; Yu, Kwang-Won; Cho, Sung-Dae; Cheong, Sun Hee; Kwon, Ki Han

    2016-02-01

    This research study explored the anti-cancer effects of natural materials in South Korea. Although South Korea has a long history of traditional medicine, many natural materials of South Korea have not yet been introduced to the rest of the world because of language barriers and inconsistent study conditions. In the past 3 years, 56 papers introducing 56 natural materials, which have anti-cancer effects, have been published by scientists in South Korea. Further, these studies have introduced five kinds of natural materials presented in research papers that were written in Korean and are therefore virtually unknown overseas. The anti-cancer effects were confirmed by 2-3 cancer markers in the majority of the studies, with the most common targets being breast cancer cells and gastric cancer cells. These cancers have the greatest incidence in South Korea. The natural materials studied not only exhibit anti-cancer activity but also display anti-inflammatory, anti-oxidative stress, and anti-diabetic activities. They have not yet been used for the direct treatment of disease but have potential as medicinal materials for alternative and complementary medicine for the treatment of many modern diseases. Many natural materials of South Korea are already known all over the world, and with this study, we hope to further future research to learn more about these natural medicines.

  14. Cancer immunotherapy

    DEFF Research Database (Denmark)

    Cairns, Linda; Aspeslagh, Sandrine; Anichini, Andrea

    2016-01-01

    This report covers the Immunotherapy sessions of the 2016 Organisation of European Cancer Institutes (OECI) Oncology Days meeting, which was held on 15th-17th June 2016 in Brussels, Belgium. Immunotherapy is a potential cancer treatment that uses an individual's immune system to fight the tumour....... In recent years significant advances have been made in this field in the treatment of several advanced cancers. Cancer immunotherapies include monoclonal antibodies that are designed to attack a very specific part of the cancer cell and immune checkpoint inhibitors which are molecules that stimulate...... or block the inhibition of the immune system. Other cancer immunotherapies include vaccines and T cell infusions. This report will summarise some of the research that is going on in this field and will give us an update on where we are at present....

  15. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    Directory of Open Access Journals (Sweden)

    Sergey Dobretsov

    2016-05-01

    Full Text Available Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies.

  16. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u......Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...... up-regulated during cancer progression and is primarily confined to the tumor-associated stromal compartment. Furthermore, both uPAR and uPA have proven to be prognostic markers in several types of cancer; high levels indicating poor survival. The cleaved forms of uPAR are also prognostic markers...

  17. Immunotherapy in gastric cancer.

    Science.gov (United States)

    Matsueda, Satoko; Graham, David Y

    2014-02-21

    Gastric cancer is the second most common of cancer-related deaths worldwide. In the majority of cases gastric cancer is advanced at diagnosis and although medical and surgical treatments have improved, survival rates remain poor. Cancer immunotherapy has emerged as a powerful and promising clinical approach for treatment of cancer and has shown major success in breast cancer, prostate cancer and melanoma. Here, we provide an overview of concepts of modern cancer immunotherapy including the theory, current approaches, remaining hurdles to be overcome, and the future prospect of cancer immunotherapy in the treatment of gastric cancer. Adaptive cell therapies, cancer vaccines, gene therapies, monoclonal antibody therapies have all been used with some initial successes in gastric cancer. However, to date the results in gastric cancer have been disappointing as current approaches often do not stimulate immunity efficiently allowing tumors continue to grow despite the presence of a measurable immune response. Here, we discuss the identification of targets for immunotherapy and the role of biomarkers in prospectively identifying appropriate subjects or immunotherapy. We also discuss the molecular mechanisms by which tumor cells escape host immunosurveillance and produce an immunosuppressive tumor microenvironment. We show how advances have provided tools for overcoming the mechanisms of immunosuppression including the use of monoclonal antibodies to block negative regulators normally expressed on the surface of T cells which limit activation and proliferation of cytotoxic T cells. Immunotherapy has greatly improved and is becoming an important factor in such fields as medical care and welfare for human being. Progress has been rapid ensuring that the future of immunotherapy for gastric cancer is bright.

  18. Inmunoterapia activa en el tratamiento de neoplasias hematológicas Active immunotherapy in the treatment of haematological neoplasias

    Directory of Open Access Journals (Sweden)

    S. Inogés

    2004-04-01

    Full Text Available La continua búsqueda de abordajes terapéuticos que mejoren los tratamientos convencionales de las enfermedades neoplásicas junto con el mejor conocimiento del sistema inmunitario ha llevado en los últimos años al desarrollo de la inmunoterapia. Básicamente se pueden distinguir dos formas de inmunoterapia: la inmunoterapia pasiva, que consiste en la transferencia de anticuerpos o células previamente generados in vitro que se dirigen contra el tumor, y la inmunoterapia activa, que pretende activar in vivo el sistema inmunitario e inducirlo a elaborar una respuesta específica contra los antígenos tumorales. Las neoplasias hematológicas, concretamente algunos linfomas B, expresan en su membrana una inmunoglobulina que se considera un verdadero antígeno específico de tumor; por eso estas enfermedades se han convertido en la diana ideal de los tratamientos de inmunoterapia. Las alternativas son muchas, desde las vacunas proteicas que ya han demostrado beneficios clínicos, hasta las de segunda generación, que aprovechan las nuevas técnicas de biología molecular para aumentar la eficacia de las vacunas y conseguir su producción de forma más rápida y menos costosa, pero con las que todavía no hay resultados clínicos definitivos.The continuous search for therapeutic approaches that improve the conventional treatments of neoplasms, together with an improved understanding of the immune system, has led in recent years to the development of Immunotherapy. Basically, a distinction can be made between two forms of immunotherapy: passive immunotherapy, which consists in the transfer of antibodies or cells previously generated in vitro that are directed against the tumour, and active immunotherapy, which attempts to activate in vivo the immune system and induce it to elaborate a specific response against the tumor antibodies. Hematological neoplasms, specifically some B lymphomas, express in their membrane an immunoglobulin that is considered

  19. Allergy immunotherapy across the life cycle to promote active and healthy ageing

    DEFF Research Database (Denmark)

    Calderon, M A; Demoly, P; Casale, T

    2016-01-01

    Allergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a working g...

  20. Allergy immunotherapy across the life cycle to promote active and healthy ageing: From research to policies

    NARCIS (Netherlands)

    M. Calderon (Moises); P. Demoly; T.B. Casale (Thomas); C.A. Akdis; C. Bachert (Claus); Bewick, M.; Bilò, B.M.; B. Bohle (B.); S. Bonini (Sergio); A. Bush (Andrew); Caimmi, D.P.; G. Canonica (Gwalter); D. Cardona (Doris); A.M. Chiriac (A.); L. Cox (Linda); A. Custovic; F. de Blay; Devillier, P.; Didier, A.; Di Lorenzo, G.; G. Du Toit (George); S.R. Durham (Stephen); C. Eng (Charis); A. Fiocchi (Alessandro); Fox, A.T.; R.G. van Wijk (Roy Gerth); Gomez, R.M.; Haathela, T.; S. Halken (Susanne); P.W. Hellings (P.); L. Jacobsen; P.M. Just; Tanno, L.K.; J. Kleine-Tebbe (Jörg); L. Klimek (Ludger); E.F. Knol (Edward Frank); P. Kuna; D. Larenas-Linnemann (Désirée); A. Linneberg (Allan); Matricardi, M.; H.-J. Malling; Moesges, R.; Mullol, J.; Muraro, A.; N. Papadopoulos; G. Passalacqua (Giovanni); Pastorello, E.; O. Pfaar (Oliver); D. Price (David); P.R. Del Rio (P. Rodriguez); Ruëff, R.; Samolinski, B.; G.K. Scadding; Senti, G.; Shamji, M.H.; A. Sheikh (Aziz); J.C. Sisul (J.); D. Solé (D.); G.J. Sturm; Tabar, A.; R. Van Ree; Ventura, M.T.; C. Vidal (Carmen); E.M. Varga; M. Worm (M.); T. Zuberbier (Torsten); J. Bousquet (Jean)

    2016-01-01

    textabstractAllergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a

  1. Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Joris D. Veltman

    2010-01-01

    Full Text Available Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.

  2. Regulatory T cells as immunotherapy

    Directory of Open Access Journals (Sweden)

    Benjamin David Singer

    2014-02-01

    Full Text Available Regulatory T cells (Tregs suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes—autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation—may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease.

  3. Immunotherapy with Allergen Peptides

    Directory of Open Access Journals (Sweden)

    Larché Mark

    2007-06-01

    Full Text Available Specific allergen immunotherapy (SIT is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases.

  4. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents.

    Science.gov (United States)

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan

    2010-04-01

    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  5. A Journey Under the Sea: The Quest for Marine Anti-Cancer Alkaloids

    Directory of Open Access Journals (Sweden)

    Nadine Darwiche

    2011-11-01

    Full Text Available The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action.

  6. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    OpenAIRE

    Sergey Dobretsov; Yahya Tamimi; Al-Kindi, Mohamed A.; Ikram Burney

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December ...

  7. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Abdulrahman Khazim Al-Asmari

    Full Text Available In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90% in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for

  8. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  9. Sarcoma Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gouw, Launce G., E-mail: launce.gouw@hsc.utah.edu [Departments of Oncology, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Jones, Kevin B. [Departments of Orthopaedic Surgery, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Sharma, Sunil [Departments of Oncology, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States); Randall, R. Lor [Departments of Orthopaedic Surgery, Huntsman Cancer Institute at the University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112 (United States)

    2011-11-10

    Much of our knowledge regarding cancer immunotherapy has been derived from sarcoma models. However, translation of preclinical findings to bedside success has been limited in this disease, though several intriguing clinical studies hint at the potential efficacy of this treatment modality. The rarity and heterogeneity of tumors of mesenchymal origin continues to be a challenge from a therapeutic standpoint. Nonetheless, sarcomas remain attractive targets for immunotherapy, as they can be characterized by specific epitopes, either from their mesenchymal origins or specific alterations in gene products. To date, standard vaccine trials have proven disappointing, likely due to mechanisms by which tumors equilibrate with and ultimately escape immune surveillance. More sophisticated approaches will likely require multimodal techniques, both by enhancing immunity, but also geared towards overcoming innate mechanisms of immunosuppression that favor tumorigenesis.

  10. Melanoma immunotherapy.

    Science.gov (United States)

    Sivendran, Shanthi; Glodny, Bradley; Pan, Michael; Merad, Miriam; Saenger, Yvonne

    2010-01-01

    Melanoma immunotherapy has been an area of intense research for decades, and this work is now yielding more tangible results for patients. Work has focused on 4 main areas: cytokine therapy, administration of immune-modulating antibodies, adoptive T-cell therapy, and vaccines. Cytokine therapy is an established treatment for advanced melanoma, and immune-modulating antibodies have recently emerged as an exciting new area of drug development with efficacy now established in a phase III trial. Adoptive T-cell therapy provides the proof of principle that T cells can attack and eliminate tumors. It has been challenging, however, to adapt this treatment for widespread use. Vaccines have generally yielded poor results, but intratumor pathogen-based strategies have shown encouraging results in recent trials, perhaps due to stronger immune stimulation. A review of the field of melanoma immunotherapy is provided here, with emphasis on those agents that have reached clinical testing. Novel strategies to induce the immune system to attack melanomas are reviewed. In the future, it is envisioned that immunotherapy will have further application in combination with cytotoxic and targeted therapies.

  11. Molecular mechanisms of anti-cancer action of garlic compounds in neuroblastoma.

    Science.gov (United States)

    Karmakar, Surajit; Choudhury, Subhasree Roy; Banik, Naren L; Ray, Swapan K

    2011-05-01

    The medicinal properties of garlic (Allium sativum) have been well known and widely used since historical times. Garlic compounds have received increasing attention during the last few years due to their cancer chemopreventive properties. The anti-cancer activity of garlic-derived organosulfur compounds (OSCs) are extensively reported in many cancers but only a few in the pediatric tumor neuroblastoma, which warrants exploration of new therapy for its management. There are some recent reports suggesting that garlic-derived OSCs cause cell cycle arrest, generate reactive oxygen species (ROS), activate stress kinases, and also stimulate the mitochondrial pathway for apoptosis in malignant neuroblastoma. The comprehensive mechanisms of anti-cancer action of OSCs still remain unclear and require more studies in neuroblastoma. This review is designed to highlight the molecular mechanisms of anti-cancer actions of garlic-derived OSCs in neuroblastoma and as well as in several other cancers. Further studies should be conducted to establish the clinical expediency of garlic-derived OSCs for treatment of malignant neuroblastoma in humans.

  12. Cancer Immunotherapy of Targeting Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    JianmeiHou; LingTian; YuquanWei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  13. The New Era of Cancer Immunotherapy: Manipulating T-Cell Activity to Overcome Malignancy.

    Science.gov (United States)

    Khalil, Danny N; Budhu, Sadna; Gasmi, Billel; Zappasodi, Roberta; Hirschhorn-Cymerman, Daniel; Plitt, Tamar; De Henau, Olivier; Zamarin, Dmitriy; Holmgaard, Rikke B; Murphy, Judith T; Wolchok, Jedd D; Merghoub, Taha

    2015-01-01

    Using the immune system to control cancer has been investigated for over a century. Yet it is only over the last several years that therapeutic agents acting directly on the immune system have demonstrated improved overall survival for cancer patients in phase III clinical trials. Furthermore, it appears that some patients treated with such agents have been cured of metastatic cancer. This has led to increased interest and acceleration in the rate of progress in cancer immunotherapy. Most of the current immunotherapeutic success in cancer treatment is based on the use of immune-modulating antibodies targeting critical checkpoints (CTLA-4 and PD-1/PD-L1). Several other immune-modulating molecules targeting inhibitory or stimulatory pathways are being developed. The combined use of these medicines is the subject of intense investigation and holds important promise. Combination regimens include those that incorporate targeted therapies that act on growth signaling pathways, as well as standard chemotherapy and radiation therapy. In fact, these standard therapies have intrinsic immune-modulating properties that can support antitumor immunity. In the years ahead, adoptive T-cell therapy will also be an important part of treatment for some cancer patients. Other areas which are regaining interest are the use of oncolytic viruses that immunize patients against their own tumors and the use of vaccines against tumor antigens. Immunotherapy has demonstrated unprecedented durability in controlling multiple types of cancer and we expect its use to continue expanding rapidly.

  14. Immunotherapy in high-risk chemotherapy-resistant patients with metastatic solid tumors and hematological malignancies using intentionally mismatched donor lymphocytes activated with rIL-2: a phase I study.

    Science.gov (United States)

    Slavin, Shimon; Ackerstein, Aliza; Or, Reuven; Shapira, Michael Y; Gesundheit, Benjamin; Askenasy, Nadir; Morecki, Shoshana

    2010-10-01

    The feasibility and safety of immunotherapy mediated by intentionally mismatched rIL-2 activated killer lymphocytes (IMAK) with no prior stem cell engraftment was investigated in patients with advanced chemotherapy-resistant hematological malignancies and metastatic solid tumors. Our goals were to maximize anti-cancer activity by using intentionally mismatched donor lymphocytes; amplify killing of target cancer cells by rIL-2 activation of killer cells in vitro and in vivo, and avoid the risk of graft-versus-host disease (GVHD) by anticipated rejection of alloreactive donor lymphocytes. Conditioning consisted of 5 days of fludarabine 25 mg/m(2) or a single dose of cyclophosphamide 1,000 mg/m(2), 2 subcutaneous injections of alpha interferon (IFN) 3 x 10(6) and COX2 inhibitors, followed by administration of IMAK (65 +/- 5 CD3(+)CD56(-); 17 +/- 5 CD3(-)CD56(+)) in conjunction with low dose subcutaneous rIL-2 (6 x 10(6) IU/m(2)/day) for 5 days for continuous activation of alloreactive donor lymphocytes prior to their anticipated rejection. Here, we present our phase 1 clinical study data in a cohort of 40 high-risk patients with metastatic solid tumors and hematological malignancies. Treatment was accompanied by some malaise and occasional self-limited fever but otherwise well tolerated on an outpatient basis. Transient engraftment of donor cells was documented in two patients and only one developed self-limited grade 1 GVHD. Among patients with chemotherapy-resistant disease, long-term progression-free survival was recorded in 5 of 21 evaluable patients with metastatic solid tumors and in four of five patients with hematological malignancies. We conclude that the proposed procedure is feasible, safe, and potentially effective, with some otherwise resistant cancer patients long-term disease-free, thus justifying larger Phase II studies in patients with hematological malignancies and metastatic solid tumors, preferably at a stage of minimal residual disease with the

  15. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  16. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  17. Liquid Chromatography - Triple Quadrupole Mass Spectrometry : The gold standard for quantitative bioanalysis of anti-cancer agents

    NARCIS (Netherlands)

    Vainchtein, L.D.

    2008-01-01

    To understand the pharmacologic mechanisms of action, efficacy and toxicity of any anti-cancer drug it is important to know how the compound is transformed in the body: either into active metabolites or inactive and toxic (degradation) products. This information may lead to the success or failure of

  18. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    Science.gov (United States)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    microgravitation of an HFB do not need to maintain the same surface forces as in normal Earth gravitation, they can divert more energy sources to growth and differentiation and, perhaps, to biosynthesis of greater quantities of desired medicinal compounds. Because one can adjust the HFB to vary effective gravitation, one can also test the effects of intermediate levels of gravitation on biosynthesis of various products. The potential utility of this methodology for producing drugs was demonstrated in experiments in which sandalwood and Madagascar periwinkle cells were grown in an HFB. The conditions in the HFB were chosen to induce the cells to form into aggregate cultures that produced anti-cancer indole alkaloids in amounts greater than do comparable numbers of cells of the same species cultured according to previously known methodologies. The observations made in these experiments were interpreted as suggesting that the aggregation of the cells might be responsible for the enhancement of production of alkaloids.

  19. Personalizing Anti-Cancer Treatment from Genetic and Pharmacokinetic Perspective

    NARCIS (Netherlands)

    S. Bins (Sander)

    2017-01-01

    markdownabstractOnly recently, systemic anti-cancer treatment consisted of little more than chemotherapy, targeting mitosis in rapidly dividing cells such as cancer cells. Increasing biological insight has led to the development of more biology driven treatments, e.g. tyrosine kinase inhibitors and

  20. Mitochondrial chaperones may be targets for anti-cancer drugs

    Science.gov (United States)

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  1. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille.

    Science.gov (United States)

    Hyun, Tae Kyung; Kim, Myeong-ok; Lee, Hyunkyoung; Kim, Younjoo; Kim, Euikyung; Kim, Ju-Sung

    2013-12-01

    Dendropanax morbifera Léveille, an endemic species in Korea, is best known as a tree that produces a resinous sap. Although D. morbifera is used in folk medicine, its biological activities are poorly understood. In this study, the methanolic extracts of D. morbifera branches, debarked stems, bark, and two different stages of leaves were evaluated for anti-oxidant activity and anti-cancer potential. The debarked stem extract exhibited strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and reducing power compared with other samples. In addition, the cytotoxic activities of these extracts were investigated in human tumour cell lines. The results suggested that the extracts of debarked stems, green leaves, and yellow leaves were the potent source of anti-cancer compounds, particularly in Huh-7 cells. Furthermore, treatment with the extracts of debarked stems, green leaves, and yellow leaves caused an increase of apoptotic or senescent cells in Huh-7 cells. Twenty-four hour treatment with debarked stems extract resulted in the strong induction of p53 and p16, whereas both leaf extracts inhibited the activation of ERK. The debarked stems and green leaf extracts reduced Akt levels in Huh-7 cells, indicating that D. morbifera extracts caused the activation of p16 and p53 pathways. This, together with the inhibition of Akt or ERK signalling, resulted in suppression of Huh-7 cell proliferation. These results suggest that methanolic leaf and debarked stems extracts are a source of anti-oxidant and anti-cancer compounds, and could be developed as a botanical drug.

  2. Expansion and activation of natural killer cells from PBMC for immunotherapy of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Bao-Gang Peng; Li-Jian Liang; Qiang He; Jie-Fu Huang; Ming-De Lu

    2004-01-01

    AIM: To induce efficient expansion of natural killer (NK) cells from peripheral blood mononuclear cells (PBMCs) using a culture of anchorage-dependent Wilms tumor cell lines, and to provide a reliable supply for adoptive immunotherapy of hepatocellular carcinoma.METHODS: Culture expansion of NK cells was achieved using PBMCs cultured with Wilms tumor cells. Cytotoxicity was measured using a standard 51Cr release assay and crystal violet staining technique. The proportions of CD3+, CD4+, CD8+,CD16+, and CD56+ cells were determined by flow cytometry.RESULTS: After PBMCs from healthy donors and hepatocellular carcinoma (HCC) were cultured with irradiated HFWT cells for 10-21 d, CD56+ CD16+ cells shared more than 50% of the cell population, and more than 80% of fresh HFWT cells were killed at an effector/target ratio of 2 over 24 h. NK-enriched lymphocyte population from HCC patients killed HCC-1 and 2 cells with sensitivities comparable to fresh TKB-17RGB cells. HCC cells proliferated 196-fold with the irradiated HFWT cells at 18 d. Stimulation by HFWT cells required intimate cell-cell interaction with PBMC. However, neither the soluble factors released from HFWT cells nor the fixed HFWT cells were effective for NK expansion. The lymphocytes expanded with IL-2 killed fresh HFWT target cells more effectively than the lymphocytes expanded with the 4-cytokine cocktail (IL-1 β, IL-2, IL-4 and IL-6). IL-2 was the sole cytokine required for NK expansion.CONCLUSION: Wilms tumor is sensitive to human NK cells and is highly efficient for selective expansion of NK cells from PBMCs.

  3. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  4. [Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis].

    Science.gov (United States)

    Song, Qi; Jiao, Shunchang; Li, Fang

    2016-08-20

    Brain metastasis, a common complication of non-small cell lung cancer (NSCLC) with an incidence rate of 30%-50%, significantly affects the patients' quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approach. The combination of targeted therapy and immunotherapy can greatly benefit patients in clinical work.

  5. Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Qi SONG

    2016-08-01

    Full Text Available Brain metastasis, a common complication of non-small cell lung cancer (NSCLC with an incidence rate of 30%-50%, significantly affects the patients’ quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approach. The combination of targeted therapy and immunotherapy can greatly benefit patients in clinical work.

  6. Telomere and telomerase as targets for anti-cancer and regeneration therapies

    Institute of Scientific and Technical Information of China (English)

    Yi-hsin HSU; Jing-jer LIN

    2005-01-01

    Telomerase is a ribonucleoprotein that directs the synthesis of telomeric sequence.It is detected in majority of malignant tumors, but not in most normal somatic cells.Because telomerase plays a critical role in cell immortality and tumor formation, it has been one of the targets for anti-cancer and regeneration drug development. In this review, we will discuss therapeutic approaches based mainly on small molecules that have been developed to inhibit telomerase activity, modulate telomerase expression, and telomerase directed gene therapy.

  7. Potential anti-cancer drugs commonly used for other indications.

    Science.gov (United States)

    Hanusova, Veronika; Skalova, Lenka; Kralova, Vera; Matouskova, Petra

    2015-01-01

    An increasing resistance of mammalian tumor cells to chemotherapy along with the severe side effects of commonly used cytostatics has raised the urgency in the search for new anti-cancer agents. Several drugs originally approved for indications other than cancer treatment have recently been found to have a cytostatic effect on cancer cells. These drugs could be expediently repurposed as anti-cancer agents, since they have already been tested for toxicity in humans and animals. The groups of newly recognized potential cytostatics discussed in this review include benzimidazole anthelmintics (albendazole, mebendazole, flubendazole), anti-hypertensive drugs (doxazosin, propranolol), psychopharmaceuticals (chlorpromazine, clomipramine) and antidiabetic drugs (metformin, pioglitazone). All these drugs have a definite potential to be used especially in combinations with other cytostatics; the chemotherapy targeting of multiple sites now represents a promising approach in cancer treatment. The present review summarizes recent information about the anti-cancer effects of selected drugs commonly used for other medical indications. Our aim is not to collect all the reported results, but to present an overview of various possibilities. Advantages, disadvantages and further perspectives regarding individual drugs are discussed and evaluated.

  8. Microfluidics: Emerging prospects for anti-cancer drug screening.

    Science.gov (United States)

    Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2010-11-10

    Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines.

  9. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms.

    Science.gov (United States)

    Gupta, Parul; Wright, Stephen E; Kim, Sung-Hoon; Srivastava, Sanjay K

    2014-12-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.

  10. Autophagy inhibits cell death induced by the anti-cancer drug morusin

    Science.gov (United States)

    Cho, Sang Woo; Na, Wooju; Choi, Minji; Kang, Shin Jung; Lee, Seok-Geun; Choi, Cheol Yong

    2017-01-01

    Autophagy is a cellular process by which damaged organelles and dysfunctional proteins are degraded. Morusin is an anti-cancer drug isolated from the root bark of Morus alba. Morusin induces apoptosis in human prostate cancer cells by reducing STAT3 activity. In this study, we examined whether morusin induces autophagy and also examined the effects of autophagy on the morusin-induced apoptosis. Morusin induces LC3-II accumulation and ULK1 activation in HeLa cells. In addition, we found that induction of ULK1 Ser317 phosphorylation and reduction of ULK1 Ser757 phosphorylation occurred simultaneously during morusin-induced autophagy. Consistently, morusin induces autophagy by activation of AMPK and inhibition of mTOR activity. Next, we investigated the role of autophagy in morusin-induced apoptosis. Inhibition of autophagy by treating cells with the 3-methyladenine (3-MA) autophagic inhibitor induces high levels of morusin-mediated apoptosis, while treatment of cells with morusin alone induces moderate levels of apoptosis. Cell survival was greatly reduced when cells were treated with morusin and 3-MA. Taken together, morusin induces autophagy, which is an impediment for morusin-induced apoptosis, suggesting combined treatment of morusin with an autophagic inhibitor would increase the efficacy of morusin as an anti-cancer drug.

  11. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS from Sea Cucumber Cucumaria frondosa

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Liu

    2016-05-01

    Full Text Available The low-molecular-weight fucosylated chondroitin sulfate (LFCS was prepared from native fucosylated chondroitin sulfate (FCS, which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF, increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and downregulated the matrix metalloproteinases (MMPs level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  12. Logical design of an anti-cancer agent targeting the plant homeodomain in Pygopus2.

    Science.gov (United States)

    Ali, Ferdausi; Yamaguchi, Keiichi; Fukuoka, Mayuko; Elhelaly, Abdelazim Elsayed; Kuwata, Kazuo

    2016-09-01

    Pygopus2 (Pygo2) is a component of the Wnt signaling pathway, which is required for β-catenin mediated transcription. Plant homeodomain (PHD) finger in Pygo2 intercalates the methylated histone 3 (H3K4me) tail and HD1 domain of BCL9 that binds to β-catenin. Thus, PHD finger may be a potential target for the logical design of an anti-cancer drug. Here, we found that Spiro[2H-naphthol[1,2-b]pyran-2,4'-piperidine]-1'ethanol,3,4-dihydro-4-hydroxy-α-(6-methyl-1H-indol-3-yl)) termed JBC117 interacts with D339, A348, R356, V376 and A378 in PHD corresponding to the binding sites with H3K4me and/or HD1, and has strong anti-cancer effects. For colon (HCT116) and lung (A549) cancer cell lines, IC50 values were 2.6 ± 0.16 and 3.3 ± 0.14 μM, respectively, while 33.80 ± 0.15 μM for the normal human fibroblast cells. JBC117 potently antagonized the cellular effects of β-catenin-dependent activity and also inhibited the migration and invasion of cancer cells. In vivo studies showed that the survival time of mice was significantly prolonged by the subcutaneous injection of JBC117 (10 mg/kg/day). In conclusion, JBC117 is a novel anti-cancer lead compound targeting the PHD finger of Pygo2 and has a therapeutic effect against colon and lung cancer.

  13. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Malformin C, a fungal cyclic pentapeptide, has been claimed to have anti-cancer potential, but no in vivo study was available to substantiate this property. Therefore, we conducted in vitro and in vivo experiments to investigate its anti-cancer effects and toxicity. Our studies showed Malformin C inhibited Colon 38 and HCT 116 cell growth dose-dependently with an IC50 of 0.27±0.07μM and 0.18±0.023μM respectively. This inhibition was explicated by Malformin C's effect on G2/M arrest. Moreover, we observed up-regulated expression of phospho-histone H2A.X, p53, cleaved CASPASE 3 and LC3 after Malformin C treatment, while the apoptosis assay indicated an increased population of necrotic and late apoptotic cells. In vivo, the pathological study exhibited the acute toxicity of Malformin C at lethal dosage in BDF1 mice might be caused by an acute yet subtle inflammatory response, consistent with elevated IL-6 in the plasma cytokine assay. Further anti-tumor and toxicity experiments proved that 0.3mg/kg injected weekly was the best therapeutic dosage of Malformin C in Colon 38 xenografted BDF1 mice, whereas 0.1mg/kg every other day showed no effect with higher resistance, and 0.9mg/kg per week either led to fatal toxicity in seven-week old mice or displayed no advantage over 0.3mg/kg group in nine-week old mice. Overall, we conclude that Malformin C arrests Colon 38 cells in G2/M phase and induces multiple forms of cell death through necrosis, apoptosis and autophagy. Malformin C has potent cell growth inhibition activity, but the therapeutic index is too low to be an anti-cancer drug.

  14. Immunotherapy of Genitourinary Malignancies

    Directory of Open Access Journals (Sweden)

    Teruo Inamoto

    2012-01-01

    Full Text Available Most cancer patients are treated with some combination of surgery, radiation, and chemotherapy. Despite recent advances in local therapy with curative intent, chemotherapeutic treatments for metastatic disease often remain unsatisfying due to severe side effects and incomplete long-term remission. Therefore, the evaluation of novel therapeutic options is of great interest. Conventional, along with newer treatment strategies target the immune system that suppresses genitourinary (GU malignancies. Metastatic renal cell carcinoma and non-muscle-invasive bladder caner represent the most immune-responsive types of all human cancer. This review examines the rationale and emerging evidence supporting the anticancer activity of immunotherapy, against GU malignancies.

  15. CD40 ligand immunotherapy in cancer: an efficient approach.

    Science.gov (United States)

    Kuwashima, N; Kageyama, S; Eto, Y; Urashima, M

    2001-01-01

    Cancer cells do not elicit a clinically sufficient anti-tumor immune response that results in tumor rejection. Recently, many investigators have been trying to enhance anti-tumor immunity and encouraging results have been reported. This review will discuss current anti-cancer immunotherapy; interleukin-2 therapy, tumor vaccine secreting Granulocyte macrophage-colony stimulating factor, dendritic cells fused with tumor cells, and CD40 ligand immunotherapy. Moreover, we introduce our two kinds of CD40 ligand immuno-genetherapy; (1) oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium (published in BLOOD 2000), (2) cancer vaccine transfected with CD40 ligand ex vivo for neuroblastoma (unpublished). Both approaches resulted in a high degree of protection against the tumor progression and they are simple and safe in the murine system.

  16. Ion channels and anti-cancer immunity.

    Science.gov (United States)

    Panyi, Gyorgy; Beeton, Christine; Felipe, Antonio

    2014-03-19

    The outcome of a malignant disease depends on the efficacy of the immune system to destroy cancer cells. Key steps in this process, for example the generation of a proper Ca(2+) signal induced by recognition of a specific antigen, are regulated by various ion channel including voltage-gated Kv1.3 and Ca(2+)-activated KCa3.1 K(+) channels, and the interplay between Orai and STIM to produce the Ca(2+)-release-activated Ca(2+) (CRAC) current required for T-cell proliferation and function. Understanding the immune cell subset-specific expression of ion channels along with their particular function in a given cell type, and the role of cancer tissue-dependent factors in the regulation of operation of these ion channels are emerging questions to be addressed in the fight against cancer disease. Answering these questions might lead to a better understanding of the immunosuppression phenomenon in cancer tissue and the development of drugs aimed at skewing the distribution of immune cell types towards killing of the tumour cells.

  17. 以VEGF及VEGFR2为靶位的抗肿瘤血管生成主动免疫治疗的研究进展%Research Progress of Active Immunotherapies against Tumor Angiogenisis Targeting on VEGF and VEGFR2

    Institute of Scientific and Technical Information of China (English)

    王伟; 殷小涛; 田仁礼; 阎瑾琦; 高江平; 于继云

    2013-01-01

    Tumor cells stimulate angiogenesis to meet increasing nutrient and oxygen demands. Therefore, the dependence of growing tumors on new blood vessel formation has made anti-angiogenesis become one of the most appealing strategy in cancer research and therapeutics of clinical oncology. Among all of the factors stimulating angiogenesis, vascular endothelial growth factor (VEGF) and its receptor VEGFR2 (also called fetal liver kinse-1 [Flk-1] in mice, kinase-containing domain receptor [KDR] in humans) are critically important to the angiogenesis associated with tumor growth, metastasis and relapse. In addition, active anti-tumor immunotherapy has provided a novel strategy through interrupting tumor-mediated immune escape and suppression. By combining the two strategies, active anti-angiogenic immunotherapy might offer the possibility to more robustly inhibit tumor angiogenesis. This combination application of immunotherapy and anti-angiogenic treatment might represent a promising avenue for future research. This review summarized latest researches of active immunotherapy targeting tumor angiogenesis through interrupting the signal passway of VEGF/VEGFR2. This paper discussed three different types of vaccines utilized as anti-cancer therapeutics-cell vaccines, protein/peptide vaccines and gene/DNA vaccines-with a specific focus on angiogenesis suppression. And future research directions for this field are also outlined.%肿瘤细胞通过刺激新生血管生成来满足对营养及供氧的不断增长的需求,因此,肿瘤组织生长对于新生血管形成的依赖性使得抗血肿瘤管生成已经成为肿瘤学基础研究与临床治疗领域中最吸引人的策略之一.在众多的促血管生成因子中,血管内皮生长因子(VEGF)及其受体VEGFR2(鼠和人中也分别称为Flk-1和KDR)对于与肿瘤生长、转移及复发相关的血管生成是至关重要的.此外,通过打破肿瘤组织自身介导的免疫耐受与逃避,主动免疫治疗已

  18. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis

    OpenAIRE

    Lee, Hwan Hee; Lee, Seulki; Lee, Kanghyo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun

    2015-01-01

    Background Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. Methods RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h an...

  19. Design, Synthesis and Biological Evaluation of Novel Rapamycin Benzothiazole Hybrids as mTOR Targeted Anti-cancer Agents.

    Science.gov (United States)

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-01-01

    The immunosuppressant drug rapamycin, was firstly identified as a mammalian target of rapamycin (mTOR) allosteric inhibitor, and its derivatives have been successfully developed as anti-cancer drugs. Therefore, finding rapamycin derivatives with better anti-cancer activity has been proved to be an effective way to discover new targeted anti-cancer drugs. In this paper, structure modification was performed at the C-43 position of rapamycin using bioisosterism and a hybrid approach: a series of novel rapamycin-benzothiazole hybrids 4a-e, 5a-c, and 9a, b have been designed, synthesized and evaluated for their anti-cancer activity against Caski, CNE-2, SGC-7901, PC-3, SK-NEP-1 and A-375 human cancer cell lines. Some of these compounds (4a-e, 9a, b) displayed good to excellent potency against the Caski and SK-NEP-1 cell line as compared with rapamycin. Compound 9b as the most active compound showed IC50 values of 8.3 (Caski) and 9.6 μM (SK-NEP-1), respectively. In addition, research on the mechanism showed that 9b was able to cause G1 phase arrest and induce apoptosis in the Caski cell line. Most importantly, it significantly decreased the phosphorylation of S6 ribosomal protein, p70S6K1 and 4EBP1, which indicated that 9b inhibited the cancer cell growth by blocking the mTOR pathway and may have the potential to become a new mTOR inhibitor.

  20. Activation of endothelium by immunotherapy with interleukin-2 in patients with malignant disorders.

    Science.gov (United States)

    Locker, G J; Kapiotis, S; Veitl, M; Mader, R M; Stoiser, B; Kofler, J; Sieder, A E; Rainer, H; Steger, G G; Mannhalter, C; Wagner, O F

    1999-06-01

    Treatment with intravenous recombinant human interleukin-2 (rh IL-2) is frequently accompanied by the capillary leak syndrome and disturbances of the coagulation system. Although the exact mechanisms are still not fully understood, the involvement of the endothelium is proven. This investigation aimed to elucidate more precisely the role of the endothelium in the generation of IL-2-based side-effects. In nine tumour patients receiving intravenous rh IL-2, parameters characterizing endothelial cell activation as well as activation of the coagulation system were evaluated. A significant increase of the circulating endothelial leucocyte adhesion molecule-1 (cELAM-1) and the vasoconstrictor peptide endothelin-1 (ET-1) was observed (P<0.05), indicating activation of endothelial cells. The simultaneous increase of tissue-plasminogen activator and plasminogen activator inhibitor type-1 during therapy (P<0.05) corroborated this observation. A decrease in platelet count parallelled by an increase of fibrin degradation products, the prolongation of partial thromboplastin time, and the decrease of fibrinogen (P<0.05) suggested the development of disseminated intravascular coagulation (DIC), induced by activated endothelium and intensified by transient hepatic failure. We concluded that activation of the endothelium mediated by IL-2 was accompanied by a loss of endothelial integrity and capillary leak. The activated endothelium can trigger DIC via activation of the coagulation cascade. The increased ET-1 might act as an endogenous counter-regulator of the disadvantageous haemodynamic side-effects induced by IL-2.

  1. Imidazoles and benzimidazoles as tubulin-modulators for anti-cancer therapy.

    Science.gov (United States)

    Torres, Fernando C; García-Rubiño, M Eugenia; Lozano-López, César; Kawano, Daniel F; Eifler-Lima, Vera L; von Poser, Gilsane L; Campos, Joaquín M

    2015-01-01

    Imidazoles and benzimidazoles are privileged heterocyclic bioactive compounds used with success in the clinical practice of innumerous diseases. Although there are many advancements in cancer therapy, microtubules remain as one of the few macromolecular targets validated for planning active anti-cancer compounds, and the design of drugs that modulate microtubule dynamics in unknown sites of tubulin is one of the goals of the medicinal chemistry. The discussion of the role of new and commercially available imidazole and benzimidazole derivatives as tubulin modulators is scattered throughout scientific literature, and indicates that these compounds have a tubulin modulation mechanism different from that of tubulin modulators clinically available, such as paclitaxel, docetaxel, vincristine and vinblastine. In fact, recent literature indicates that these derivatives inhibit microtubule formation binding to the colchicine site, present good pharmacokinetic properties and are capable of overcoming multidrug resistance in many cell lines. The understanding of the mechanisms involved in the imidazoles/benzimidazoles modulation of microtubule dynamics is very important to develop new strategies to overcome the resistance to anti-cancer drugs and to discover new biomarkers and targets for cancer chemotherapy.

  2. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Han

    2014-01-01

    Full Text Available Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC 50 value of 36.2 μg/ml. MEKS at 25 μg/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose polymerase (PARP. Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer.

  3. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  4. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  5. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    Science.gov (United States)

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design.

  6. Triterpenoids of Marine Origin as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Yong-Xin Li

    2013-07-01

    Full Text Available Triterpenoids are the most abundant secondary metabolites present in marine organisms, such as marine sponges, sea cucumbers, marine algae and marine-derived fungi. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells, as well as anticancer efficacy in preclinical animal models. In this review efforts have been taken to review the structural features and the potential use of triterpenoids of marine origin to be used in the pharmaceutical industry as potential anti-cancer drug leads.

  7. Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro.

    Science.gov (United States)

    Zhong, Zhang-Feng; Qiang, Wen-An; Wang, Chun-Ming; Tan, Wen; Wang, Yi-Tao

    2016-03-05

    Furanodiene is a natural product isolated from Rhizoma curcumae, and exhibits broad-spectrum anti-cancer activities in vitro and in vivo. Our previous study proved that furanodiene could increase growth inhibition of steroidal agent in ERα-positive breast cancer cells, but whether furanodiene can influence ER status is not clear. In this study, we confirmed that furanodiene down-regulated the ERα protein expression level and inhibited E2-induced estrogen response element (ERE)-driven reporter plasmid activity in ERα-positive MCF-7 cells. Actually, ERα-knockdown cells were more sensitive than ERα positive cells to furanodiene on the cytotoxicity effect. So the anti-cancer effects of furanodiene and non-steroidal agent in breast cancer cells still requires further investigation. Our results showed that furanodiene exposure could enhance growth inhibitory effects of doxorubicin in ERα-negative MDA-MB-231 cells and ERα-low expression 4T1 cells. However, furanodiene did not increase the cytotoxicity of doxorubicin in ERα-positive breast cancer cells, non-tumorigenic breast epithelial cells, macrophage cells, hepatocytes cells, pheochromocytoma cells and cardiac myoblasts cells. Furanodiene enhances the anti-cancer effects of doxorubicin in ERα-negative breast cancer cells through suppressing cell viability via inducing apoptosis in mitochondria-caspases-dependent and reactive oxygen species-independent manners. These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future.

  8. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase.

    Science.gov (United States)

    Merlot, Angelica M; Shafie, Nurul H; Yu, Yu; Richardson, Vera; Jansson, Patric J; Sahni, Sumit; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Richardson, Des R

    2016-06-01

    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.

  9. Immunotherapy for Lung Cancers

    Directory of Open Access Journals (Sweden)

    Ming-Yi Ho

    2011-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Although treatment methods in surgery, irradiation, and chemotherapy have improved, prognosis remains unsatisfactory and developing new therapeutic strategies is still an urgent demand. Immunotherapy is a novel therapeutic approach wherein activated immune cells can specifically kill tumor cells by recognition of tumor-associated antigens without damage to normal cells. Several lung cancer vaccines have demonstrated prolonged survival time in phase II and phase III trials, and several clinical trials are under investigation. However, many clinical trials involving cancer vaccination with defined tumor antigens work in only a small number of patients. Cancer immunotherapy is not completely effective in eradicating tumor cells because tumor cells escape from host immune scrutiny. Understanding of the mechanism of immune evasion regulated by tumor cells is required for the development of more effective immunotherapeutic approaches against lung cancer. This paper discusses the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer.

  10. Multifunctional liposomes for enhanced anti-cancer therapy

    Science.gov (United States)

    Falcao, Claudio Borges

    2011-12-01

    with half of the concentration needed for G3139 alone in CL to reduce the cell viability by 40%. Also, it was found greater apoptotic signal in cells treated with CLs containing D-(KLAKLAK)2/G3139 complexes than CLs with G3139 only. In vivo, D-(KLAKLAK) 2/G3139 complexes in CL significantly inhibited tumor growth compared to the saline treated group, through apoptosis induction. However, the mechanism involved in cell death by apoptosis seems to be independent of reduction of bcl-2 protein levels. PEG2000 at 1% mol could significantly reduce activity of PCL formulation towards B16(F10) cells compared to CLs. After pre-incubation at pH 7.4, PCL and pH-PCL had decreased activity compared to CL towards B16(F10) cells. After pre-incubation at pH 5.0, while CL and PCL had the same activity with the cells as in neutral pH, pH-PCL formulation had its PEG cleaved and its cytotoxicity was restored against the melanoma cells. Thus, D-(KLAKLAK)2/G3139 complexes in CL had enhanced anti-cancer therapy, through apoptosis, than G3139 alone in CL in vitro and in vivo. In vitro, PCL and pH-PCL particles obtained can have a prolonged blood residence time, and, once a tumor tissue is reached, pH-PCL can have its cytotoxicity restored because of hydrolysis of cleavable PEG at a lowered pH.

  11. IgE immunotherapy: a novel concept with promise for the treatment of cancer.

    Science.gov (United States)

    Josephs, Debra H; Spicer, James F; Karagiannis, Panagiotis; Gould, Hannah J; Karagiannis, Sophia N

    2014-01-01

    The importance of antibodies in activating immune responses against tumors is now better appreciated with the emergence of checkpoint blockade antibodies and with engineered antibody Fc domains featuring enhanced capacity to focus potent effector cells against cancer cells. Antibodies designed with Fc regions of the IgE class can confer natural, potent, long-lived immune surveillance in tissues through tenacious engagement of high-affinity cognate Fc receptors on distinct, often tumor-resident immune effector cells, and through ability to activate these cells under tumor-induced Th2-biased conditions. Here, we review the properties that make IgE a contributor to the allergic response and a critical player in the protection against parasites, which also support IgE as a novel anti-cancer modality. We discuss IgE-based active and passive immunotherapeutic approaches in disparate in vitro and in vivo model systems, collectively suggesting the potential of IgE immunotherapies in oncology. Translation toward clinical application is now in progress.

  12. Immunotherapy for lung cancer.

    Science.gov (United States)

    Steven, Antonius; Fisher, Scott A; Robinson, Bruce W

    2016-07-01

    Treatment of lung cancer remains a challenge, and lung cancer is still the leading cause of cancer-related mortality. Immunotherapy has previously failed in lung cancer but has recently emerged as a very effective new therapy, and there is now growing worldwide enthusiasm in cancer immunotherapy. We summarize why immune checkpoint blockade therapies have generated efficacious and durable responses in clinical trials and why this has reignited interest in this field. Cancer vaccines have also been explored in the past with marginal success. Identification of optimal candidate neoantigens may improve cancer vaccine efficacy and may pave the way to personalized immunotherapy, alone or in combination with other immunotherapy such as immune checkpoint blockade. Understanding the steps in immune recognition and eradication of cancer cells is vital to understanding why previous immunotherapies failed and how current therapies can be used optimally. We hold an optimistic view for the future prospect in lung cancer immunotherapy.

  13. From "magic bullets" to specific cancer immunotherapy.

    Science.gov (United States)

    Riether, Carsten; Schürch, Christian; Ochsenbein, Adrian F

    2013-01-23

    The immune system is able to specifically target antigen-expressing cancer cells. The promise of immunotherapy was to eliminate cancer cells without harming normal tissue and, therefore, with no or very few side effects. Immunotherapy approaches have, for several decades, been tested against several tumours, most often against malignant melanoma. However, although detectable immune responses have regularly been induced, the clinical outcome has often been disappointing. The development of molecular methods and an improved understanding of tumour immunosurveillance led to novel immunotherapy approaches in the last few years. First randomised phase III trials proved that immunotherapy can prolong survival of patients with metastatic melanoma or prostate cancer. The development in the field is very rapid and various molecules (mainly monoclonal antibodies) that activate the immune system are currently being tested in clinical trials and will possibly change our treatment of cancer. The ultimate goal of any cancer therapy and also immunotherapy is to cure cancer. However, this depends on the elimination of the disease originating cancer stem cells. Unfortunately, cancer stem cells seem resistant to most available treatment options. Recent developments in immunotherapy may allow targeting these cancer stem cells specifically in the future. In this review, we summarise the current state of immunotherapy in clinical routine and the expected developments in the near future.

  14. Paraptosis in the anti-cancer arsenal of natural products.

    Science.gov (United States)

    Lee, Dongjoo; Kim, In Young; Saha, Sharmistha; Choi, Kyeong Sook

    2016-06-01

    Given the problems with malignant cancer cells showing innate and acquired resistance to apoptosis, we need alternative means to induce cell death in cancer. Paraptosis is a type of programmed cell death that is characterized by dilation of the endoplasmic reticulum (ER) and/or mitochondria. Although relatively little is known regarding the molecular basis of paraptosis, the underlying mechanism clearly differs from that of apoptosis. Recent studies have shown that various natural products, including curcumin, celastrol, 15d-PGJ2, ophiobolin A, and paclitaxel, demonstrate anti-cancer effects by inducing the paraptosis-associated cell death, which was commonly characterized by vacuolation derived from the ER. Perturbation of cellular proteostasis due to proteasomal inhibition and disruption of sulfhydryl homeostasis, generation of reactive oxygen species, and/or imbalanced homeostasis of ions (e.g., Ca(2+) and K(+)) appear to contribute to the accumulation of misfolded protein and proteotoxicity in this process. Given the pathophysiological importance of paraptosis and the debate regarding the importance of apoptosis in solid tumor, we need to collect the available knowledge regarding paraptosis and suggest future directions in the field. Here, we review the morphological and biochemical features of paraptosis, the natural products that induce paraptosis-associated cell death, their proposed mechanisms, and the significance of paraptosis as a potential anti-cancer strategy. Such work and future clarifications should enable the development of new strategies for preventing cancer and/or combating malignant cancer.

  15. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    JuhuaZhou; YinZhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy, radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future. Cellular & Molecular Immunology.

  16. Breast Cancer Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Juhua Zhou; Yin Zhong

    2004-01-01

    Breast cancer is a leading cause of cancer-related deaths in women worldwide. Although tumorectomy,radiotherapy, chemotherapy and hormone replacement therapy have been used for the treatment of breast cancer, there is no effective therapy for patients with invasive and metastatic breast cancer. Immunotherapy may be proved effective in treating patients with advanced breast cancer. Breast cancer immunotherapy includes antibody based immunotherapy, cancer vaccine immunotherapy, adoptive T cell transfer immunotherapy and T cell receptor gene transfer immunotherapy. Antibody based immunotherapy such as the monoclonal antibody against HER-2/neu (trastuzumab) is successfully used in the treatment of breast cancer patients with over-expressed HER-2/neu, however, HER-2/neu is over-expressed only in 25-30% of breast cancer patients. Cancer vaccine immunotherapy is a promising method to treat cancer patients. Cancer vaccines can be used to induce specific anti-tumor immunity in breast cancer patients, but cannot induce objective tumor regression. Adoptive T cell transfer immunotherapy is an effective method in the treatment of melanoma patients. Recent advances in anti-tumor T cell generation ex vivo and limited clinical trial data have made the feasibility of adoptive T cell transfer immunotherapy in the treatment of breast cancer patients. T cell receptor gene transfer can redirect the specificity of T cells. Chimeric receptor, scFv(anti-HER-2/neu)/zeta receptor, was successfully used to redirect cytotoxic T lymphocyte hybridoma cells to obtain anti-HER-2/neu positive tumor cells, suggesting the feasibility of treatment of breast cancer patients with T cell receptor gene transfer immunotherapy. Clinical trials will approve that immunotherapy is an effective method to cure breast cancer disease in the near future.

  17. Immunotherapy for tuberculosis: future prospects

    Directory of Open Access Journals (Sweden)

    Abate G

    2016-04-01

    Full Text Available Getahun Abate,1 Daniel F Hoft1,2 1Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, 2Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA Abstract: Tuberculosis (TB is still a major global health problem. A third of the world's population is infected with Mycobacterium tuberculosis. Only ~10% of infected individuals develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of TB require at least 6 months of treatment with multiple drugs. The management of latent TB infection and TB has become more challenging because of the spread of multidrug-resistant and extremely drug-resistant TB. Intensified efforts to find new TB drugs and immunotherapies are needed. Immunotherapies could modulate the immune system in patients with latent TB infection or active disease, enabling better control of M. tuberculosis replication. This review describes several types of potential immunotherapies with a focus on those which have been tested in humans. Keywords: tuberculosis, HDT, immunotherapy, treatment

  18. Engineering opportunities in cancer immunotherapy.

    Science.gov (United States)

    Jeanbart, Laura; Swartz, Melody A

    2015-11-24

    Immunotherapy has great potential to treat cancer and prevent future relapse by activating the immune system to recognize and kill cancer cells. A variety of strategies are continuing to evolve in the laboratory and in the clinic, including therapeutic noncellular (vector-based or subunit) cancer vaccines, dendritic cell vaccines, engineered T cells, and immune checkpoint blockade. Despite their promise, much more research is needed to understand how and why certain cancers fail to respond to immunotherapy and to predict which therapeutic strategies, or combinations thereof, are most appropriate for each patient. Underlying these challenges are technological needs, including methods to rapidly and thoroughly characterize the immune microenvironment of tumors, predictive tools to screen potential therapies in patient-specific ways, and sensitive, information-rich assays that allow patient monitoring of immune responses, tumor regression, and tumor dissemination during and after therapy. The newly emerging field of immunoengineering is addressing some of these challenges, and there is ample opportunity for engineers to contribute their approaches and tools to further facilitate the clinical translation of immunotherapy. Here we highlight recent technological advances in the diagnosis, therapy, and monitoring of cancer in the context of immunotherapy, as well as ongoing challenges.

  19. Research progress of the anti-cancer,anti-inflammatory activities of chalcone as bioactive plant constituents%查尔酮的结构修饰及抗癌、抗炎活性研究进展

    Institute of Scientific and Technical Information of China (English)

    李湘洲; 郭远良; 旷春桃; 贺义昌

    2011-01-01

    Chalcone, which are abundant in plants as a class of flavonoids, are confirmed to possess a diverse array of pharmacological activities and considered as a promising template for drug design. The studying progress on anticancer, anti-inflammatory activities of chalcone, and the structure-activity relationship(SAR)was summarized. The findings indicate that chalcone has widely pharmacology activity, safety, simple structure, preparation convenient,and is a kind of good primer for drug development.%查尔酮类化合物是广泛存在于自然界中一种黄酮类化合物,具有抗癌、抗炎症、抗菌、抗寄生虫、抗病毒等生物活性,是一类很具有前途的药物模板.重点阐述了近年来杳尔酮类化合物的抗癌、抗炎症活性以及构效关系研究进展.结果表明查尔酮类化合物药理活性广泛、安全、结构简单且制备方便,是一个良好的药物开发先导物.

  20. 乙酰基-11-酮-β-乳香酸抗肿瘤活性的研究进展%Research progress of acetyl-11-keto-β-boswellic acid on its anti-cancer activity

    Institute of Scientific and Technical Information of China (English)

    陆益彬; 何明芳

    2012-01-01

    Acetyl-11-keto-β-boswellic acid (AKBA) is one of the triterpenes in the gum resin of the Boswellia serrata and Boswellia carterii,also known as Salai guggal or Indian frankincense.There has been growing interst in anti-tumor activity of AKBA.This review will summarize the latest advances of AKBA on anti-tumor activity for the better understanding of this compound and its further applications.%乳香中三萜类成分乙酰基-11-酮-β-乳香酸(AKBA)具有非常强的抗肿瘤作用,是乳香中抗肿瘤活性成分研究的焦点.对AKBA的各类抗肿瘤活性的机制研究的最新进展进行综述,以期为乳香和AKBA的临床研究开发提供参考.

  1. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Yanyan Shao

    2016-05-01

    Full Text Available Ganoderma triterpenes (GTs are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1, 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2, 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3, ganotropic acid (4, 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5 and (3β,7α-dihydroxy-lanosta-8,24-dien- 11-one (6. (4E,8E-N-d-2′-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7, and stigmasta-7,22-dien-3β,5α,6α-triol (8 were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN. In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE and gene ontology (GO enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5 and cyclin-dependent kinase-2 (CDK2, respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel

  2. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum.

    Science.gov (United States)

    Shao, Yanyan; Qiao, Liansheng; Wu, Lingfang; Sun, Xuefei; Zhu, Dan; Yang, Guanghui; Zhang, Xiaoxue; Mao, Xin; Chen, Wenjing; Liang, Wenyi; Zhang, Yanling; Zhang, Lanzhen

    2016-05-21

    Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5) and (3β,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3β,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds.

  3. Development and Validation of a Fast and Optimized Screening Method for Enhanced Production of Secondary Metabolites Using the Marine Scopulariopsis brevicaulis Strain LF580 Producing Anti-Cancer Active Scopularide A and B

    OpenAIRE

    Kramer, Annemarie; Paun, Linda; Imhoff, Johannes F.; Kempken, Frank; Labes, Antje

    2014-01-01

    Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF...

  4. MAGE-A Antigens and Cancer Immunotherapy

    Science.gov (United States)

    Zajac, Paul; Schultz-Thater, Elke; Tornillo, Luigi; Sadowski, Charlotte; Trella, Emanuele; Mengus, Chantal; Iezzi, Giandomenica; Spagnoli, Giulio C.

    2017-01-01

    MAGE-A antigens are expressed in a variety of cancers of diverse histological origin and germinal cells. Due to their relatively high tumor specificity, they represent attractive targets for active specific and adoptive cancer immunotherapies. Here, we (i) review past and ongoing clinical studies targeting these antigens, (ii) analyze advantages and disadvantages of different therapeutic approaches, and (iii) discuss possible improvements in MAGE-A-specific immunotherapies. PMID:28337438

  5. Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response.

    Science.gov (United States)

    Yoon, Jin-Soo; Kim, Hwa-Mi; Yadunandam, Anandam Kasin; Kim, Nan-Hee; Jung, Hyun-Ah; Choi, Jae-Sue; Kim, Chi-Yeon; Kim, Gun-Do

    2013-08-15

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignant diseases and is highly resistant to conventional chemotherapy. Neferine, a major bisbenzylisoquinoline alkaloid derived from the embryos of Nelumbo nucifera, has been reported a few physiological activities. However, the mechanisms of anticancer effects are not well understood and its detailed activities on Hep3B cells have not been determined. Our results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. In addition, consistent with the induction of G1/S phase cell population in flow cytometry, downregulation of c-Myc, cyclin D1, D3, CDK4, E2F-1, as well as dephosphorlyation of cdc2 by western blot analysis, as evidenced by the appearance of cell cycle arrest, were observed in Hep3B cells treated with neferine. Our results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment. Overexpression of GFP-LC3B by neferine resulted in a diffuse cytosolic GFP fluorescence and the strong fluorescent spots, representing autophagosomes. The significant reduction of the migration in Hep3B cells and the capillary tube-like formation of HUVECs by neferine were also determined. These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes.

  6. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  7. Cancer immunotherapy targeting neoantigens.

    Science.gov (United States)

    Lu, Yong-Chen; Robbins, Paul F

    2016-02-01

    Neoantigens are antigens encoded by tumor-specific mutated genes. Studies in the past few years have suggested a key role for neoantigens in cancer immunotherapy. Here we review the discoveries of neoantigens in the past two decades and the current advances in neoantigen identification. We also discuss the potential benefits and obstacles to the development of effective cancer immunotherapies targeting neoantigens.

  8. Awareness and understanding of cancer immunotherapy in Europe.

    Science.gov (United States)

    Mellstedt, Håkan; Gaudernack, Gustav; Gerritsen, Winald R; Huber, Christoph; Melero, Ignacio; Parmiani, Giorgio; Scholl, Suzy; Thatcher, Nicholas; Wagstaff, John; Zielinski, Christoph

    2014-01-01

    The use of immunotherapy in the management of cancer is growing, and a range of new immunotherapeutic strategies is becoming available. It is important that people involved in the care of cancer understand how cancer immunotherapies differ from conventional chemotherapy and apply this knowledge to their clinical practice. Therefore, from August-September 2011 we undertook a survey of awareness, attitudes, and perceptions of cancer immunotherapy among 426 healthcare professionals (HCPs) in Europe with the aim of identifying and prioritizing educational needs. Nearly all (98%) HCPs were aware of cancer immunotherapy. While 68% of HCPs indicated a high level of interest in cancer immunotherapies, only 24% of the HCPs had direct experience with them. Overall perceptions of cancer immunotherapy among HCPs were largely positive (60%) and rarely negative (3%). The key advantages of cancer immunotherapy were perceived to be good safety and tolerability (75%), a targeted mechanism of action (61%) and good efficacy (48%). The leading barriers to use of immunotherapies were costs of treatment (58%), past clinical trial failures (45%), and access/formulary restrictions (44%). The results indicate that, among the respondents, awareness of cancer immunotherapy was high but that knowledge levels varied and direct experience with their use was limited. There appears to be a need for educational activities on cancer immunotherapy, as well as generation and communication of clinical data on long-term efficacy and safety.

  9. 超级黑糯玉米芯色素的抗肿瘤和体外抗氧化作用%Anti-Cancer Effect and Antioxidant Activity of Super Black Glutinous Corncob Pigment

    Institute of Scientific and Technical Information of China (English)

    冉颖霞; 宫坤; 周杨; 张庭廷

    2012-01-01

    In order to research the inhibitory effect on cancer cell and in vitro antioxidant activity of super black glutinous corncob pigment (SBCP). The growth inhibition of SBCP on human hepatocellular carcinoma cell line BEL-7402 and gastric cancer cell line SGC- 7901 in vitro were measured by MTT assay. In vitro chemical simulated systems, the abilities of SBCP to scavenge DPPH radical, hydroxyl radical, superoxide anion radical as well as reducing power were tested using colorimetric methods, and compared with ascorbic acid (Vc). Results showed that SBCP had significant inhibitory effect on proliferation of the BEL-7402 cells and SGC-7901 cells, and the inhibition increasing with the increase of SBCP concentration. IC50 of SBCP BEL - 7402 and SGC- 7901 were respective 4. 13mg/mL and 3. 83mg/mL. SBCP also had obviously antioxidant effect. Compared with the effects of Vc, the abilities to scavenge hydroxyl radical, superoxide anion radical as well as reducing power of SBCP were 1. 40, 1. 23 and 1. 77 times than that of Vc respectivily, only the ability of scavenge DPPH radical was lower than Vc. Conclusions SBCP has potentially application value in cancer prevent and therapy as well as health food. SBCP has good antioxidant activity in vitro.%为研究超级黑糯玉米芯色素(super black glutinous corncob pigment,SBCP)对肿瘤细胞的增殖抑制效应和体外抗氧化活性.采用MTT法检测了SBCP对人肝癌细胞系BEL-7402以及胃癌细胞系SGC-7901增殖的影响;在体外化学模拟的条件下,通过建立DPPH自由基、羟基自由基、超氧阴离子自由基、还原力试验,采用比色法测定对比了SBCP和抗坏血酸(Vc)对DPPH自由基、羟基自由基和超氧阴离子的清除作用以及还原能力.结果表明SBCP对BEL-7402细胞和SGC--7901细胞增殖有明显的抑制作用,且随药物浓度的增大而增强;SBCP对两种肿瘤细胞的半数抑制浓度(IC50)分别为4.13 mg/mL和3.83 mg/mL.SBCP还具有较好的抗氧化

  10. Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B.

    Directory of Open Access Journals (Sweden)

    Annemarie Kramer

    Full Text Available Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF580 was optimized by random mutagenesis employing UV radiation. For a fast and reliable detection of the intracellular secondary metabolite production level, a miniaturized bioactivity-independent screening method was developed, as the random mutagenesis yielded a large number of mutants to be analysed quantitatively and none of the existing hyphenated bioassay-dependent screening systems could be applied. The method includes decreased cultivation volume, a fast extraction procedure as well as an optimized LC-MS analysis. We show that deviation could be specifically reduced at each step of the process: The measuring deviation during the analysis could be minimized to 5% and technical deviation occurring in the downstream part to 10-15%. Biological variation during the cultivation process still has the major influence on the overall variation. However, the approach led to a 10-fold reduction of time and similar effects on costs and effort compared to standard reference screening methods. The method was applied to screen the UV-mutants library of Scopulariopsis brevicaulis LF580. For validation purposes, the occurring variations in the miniaturized scale were compared to those in the classical Erlenmeyer flask scale. This proof of concept was performed using the wild type strain and 23 randomly selected mutant strains. One specific mutant strain with an enhanced production behavior could be obtained.

  11. Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B.

    Science.gov (United States)

    Kramer, Annemarie; Paun, Linda; Imhoff, Johannes F; Kempken, Frank; Labes, Antje

    2014-01-01

    Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF580 was optimized by random mutagenesis employing UV radiation. For a fast and reliable detection of the intracellular secondary metabolite production level, a miniaturized bioactivity-independent screening method was developed, as the random mutagenesis yielded a large number of mutants to be analysed quantitatively and none of the existing hyphenated bioassay-dependent screening systems could be applied. The method includes decreased cultivation volume, a fast extraction procedure as well as an optimized LC-MS analysis. We show that deviation could be specifically reduced at each step of the process: The measuring deviation during the analysis could be minimized to 5% and technical deviation occurring in the downstream part to 10-15%. Biological variation during the cultivation process still has the major influence on the overall variation. However, the approach led to a 10-fold reduction of time and similar effects on costs and effort compared to standard reference screening methods. The method was applied to screen the UV-mutants library of Scopulariopsis brevicaulis LF580. For validation purposes, the occurring variations in the miniaturized scale were compared to those in the classical Erlenmeyer flask scale. This proof of concept was performed using the wild type strain and 23 randomly selected mutant strains. One specific mutant strain with an enhanced production behavior could be obtained.

  12. Allergen Specific Immunotherapy

    Directory of Open Access Journals (Sweden)

    Şükrü Çekiç

    2015-04-01

    Full Text Available Allergen specific immunotherapy (SIT is the only treatment that can provide a cure for allergic disorders. This treatment is based on development of immune tolerance by exposure to allergen in repetitive and increasing doses. It is tertiary to avoidance of allergen and pharmacotherapy. Allergens used for immunotherapy, must be confirmed by skin prick test or specific IgE and must be applied in supervision of allergy specialists. Studies show that immunotherapy, improve asthma symptoms, decreases drug consumption, prevent development of asthma in rhinitis patients and reduce new sensitizations. Common side effects diminished with the usage of standardized allergen solutions. It is contraindicated in severe asthma. Though it is recommended to avoid immunotherapy in patients using beta blockers and ACE inhibitors, immunotherapy can be considered in mandatory situations regarding possible benefits and harms. Most common ways of administration are subcutaneous and sublingual; new methods such as epicutaneous and intralymphatic injections are currently being studied.

  13. Method Established for Evaluation of Anti-Cancer Stem Cell Drug Activity in vitro%抗肿瘤干细胞药物体外活性评价方法

    Institute of Scientific and Technical Information of China (English)

    陈晨; 王珊珊; 郭万军; 王骏; 袁守军

    2013-01-01

    Objective To establish an simple in vitro anticancer drug activity evaluation method against cancer stem cells by creating a model based on breast cancer MCF-7 cell line-derived cancer stem cells and salino-mycin sodium exposure. Methods The MCF-7 cell growth and sphere-forming ability of stem cells in a serum-free DMEM/F12 medium were observed. The CD44 VCD24 " cell marker ratio of MCF-7 cells cultured at different conditions was detected through flow cytometry. We implanted serum-free cultured and enriched MCF-7 stem cells of different numbers subcutaneously in the flank of Nu/Nu nude mice, observed and checked the ability of tumorige-nicity, and evaluated the inhibitive effect of salinomycin sodium on suspended sphere-like cancer stem cells with the CCK-8 method. Results MCF-7 cells cultured in serum-free medium grew more slowly and formed suspended spheres. MCF-7 cells cultured in RPMI1640 contained (12. 8 ±0.6)% CD44+/CD24- cell marker while the ratio in serum-free medium was(97. 1 ±2. 4)%. In the subcutaneous transplantation mouse model, about 100 MCF-7 stem cells cultured and enriched in serum-free medium led to a solid tumor formation. Salinomycin sodium was more toxic against MCF-7 stem cells cultured in serum-free medium. Conclusion CD44+ /CD24- cells possess breast cancer stem cell properties. The environment of ultra-low adhesion plates and serum-free medium can promote and maintain the formation of sphere-like cancer stem cells. CCK-8 method is a well-established activity evaluation method for targeting to cancer stem cell drugs in vitro.%目的 以乳腺癌MCF-7细胞和盐霉素钠为例,建立体外抗癌干细胞药物活性评价的简单方法.方法 无血清、含有生长因子的DMEM/F12培养基培养MCF-7细胞,观察细胞的生长及体外干细胞球形成能力;流式细胞仪检测CD44+/CD24-细胞含量;将无血清培养的、富集的MCF-7干细胞以不同的数量接种到Nu/Nu裸鼠皮下,观察并检验致瘤能力;CCK-8

  14. Heat shock proteins and immunotherapy

    Institute of Scientific and Technical Information of China (English)

    XinZHAO; XueMeiXU; GuoxingSONG

    2005-01-01

    Being one of the most abundant intracellular proteins,heat shock proteins(HSPs) have many housekeeping functions which are crucial for the survival of organisms.In addition,some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity.They could activate CD8+ and CD4+ lymphocytes,induce innate immune response including natural killer(NK) cell activation and cytokine secretion,and induce maturation of dendritic cells(DCs).These characteristics have been used for immunotherapy of various types of cancers and infectious disenses.This review focuses on the main HSP families——HSP70 and 90 families.The mechanism of HSPs’ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details.At the end of this review,authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.

  15. A constant threat for HIV: Fc-engineering to enhance broadly neutralizing antibody activity for immunotherapy of the acquired immunodeficiency syndrome.

    Science.gov (United States)

    Nimmerjahn, Falk

    2015-08-01

    Passive immunotherapy with polyclonal or hyperimmune serum immunoglobulin G (IgG) preparations provides an efficient means of protecting immunocompromised patients from microbial infections. More recently, the use of passive immunotherapy to prevent or to treat established infections with the human immunodeficiency virus (HIV) has gained much attention, due to promising preclinical data obtained in monkey and humanized mouse in vivo model systems, demonstrating that the transfer of HIV-specific antibodies can not only prevent HIV infection, but also diminish virus load during chronic infection. Furthermore, an array of broadly neutralizing HIV-specific antibodies has become available and the importance of the IgG constant region as a critical modulator of broadly neutralizing activity has been demonstrated. The aim of this review is to summarize the most recent findings with regard to the molecular and cellular mechanisms responsible for antibody-mediated clearance of HIV infection, and to discuss how this may help to improve HIV therapy via optimizing Fcγ-receptor-dependent activities of HIV-specific antibodies.

  16. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    Science.gov (United States)

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  17. Gaojushen:a novel anti-cancer drug prepared from SEC superantigen

    Institute of Scientific and Technical Information of China (English)

    陈廷祚

    2005-01-01

    @@ 1 Clinical observations Gaojushen is a novel anti-cancer drug developed by Xiehe Bio-pharmaceutical Company,Shenyang, China. It is prepared and processed from the filtrate of Staphylococcus aureus culture. The active component contained in it has been shown to be a SEC superantigen that is a metabolite of the culture.This superantigen is marked by its ability to stimulate T cells at a high frequency, thereby giving rise to potent cell-mediated immunological responses and producing a large variety of cytokines with the final rsult of apoptosis of tumor cells. The drug was approved for trial prodoction in 1994 by the Center of the State Evaluation and Review of New Drugs,China,and was licenced for marketing by 1996 after finishing the phase III clinical trial.

  18. Anti-cancer potential of banana flower extract: An in vitro study

    Directory of Open Access Journals (Sweden)

    Varalakshmi Kilingar Nadumane

    2014-12-01

    Full Text Available Banana (Musa paradisiaca flower is rich in phytochemicals (vitamins, flavonoids, proteins and has antioxidant properties. The anti-cancer activity of banana flower extract has been evaluated on the cervical cancer cell line HeLa. The antiproliferative effects were evaluated by MTT assay. The extract was further purified by TLC and characterized by LC-MS method. The ethanol extract had significant cytotoxicity to HeLa cells with an IC50 of 20 µg/mL. By thin layer chromatography we could isolate three fractions out of which fraction 2 had exhibited maximum anti-proliferative effects with an IC50 value of <10 µg/mL. By LC-MS analysis, bioactive fraction was found to have an m/z value of 224.2 indicating it as a novel one.

  19. Association Between hTERT rs2736100 Polymorphism and Sensitivity to Anti-cancer Agents

    Directory of Open Access Journals (Sweden)

    Julie eKim

    2013-08-01

    Full Text Available Background: The rs2736100 single nucleotide polymorphism (SNP is located in the intron 2 of human telomerase reverse transcriptase (hTERT gene. Recent genome-wide association studies (GWAS have consistently supported the strong association between this SNP and risk for multiple cancers. Given the important role of the hTERT gene and this SNP in cancer biology, we hypothesize that rs2736100 may also confer susceptibility to anti-cancer drug sensitivity. In this study we aim to investigate the correlation between the rs2736100 genotype and the responsiveness to anti-cancer agents in the NCI-60 cancer cell panel. Methods and Materials: The hTERT rs2736100 was genotyped in the NCI-60 cancer cell lines. The relative telomere length of each cell line was quantified using real-time PCR. The genotype was then correlated with publically available drug sensitivity data of two agents with telomerase-inhibition activity: Geldanamycin (HSP90 inhibitor and RHPS4/BRACO19 (G-quadruplex stabilizer as well as additional 110 commonly used agents with established mechanism of action. The association between rs2736100 and mutation status of TP53 gene was also tested.Results: The C allele of the SNP was significantly correlated with increased sensitivity to RHPS4/BRACO19 with an additive effect (r=-0.35, p=0.009 but not with Geldanamycin. The same allele was also significantly associated with sensitivity to antimitotic agents compared to other agents (p=0.003. The highest correlation was observed between the SNP and paclitaxel (r=-0.36, p=0.005. The telomere length was neither associated with rs2736100 nor with sensitivity to anti-cancer agents. The C allele of rs2736100 was significantly associated with increased mutation rate in TP53 gene (p=0.004.Conclusion: Our data suggested that the cancer risk allele of hTERT rs2736100 polymorphism may also affect the cancer cell response to both TERT inhibitor and anti-mitotic agents, which might be attributed to the elevated

  20. Biological Activities of Fusarochromanone: a Potent Anti-cancer Agent

    Science.gov (United States)

    2014-09-03

    dependent endothelial cell proli- feration at all doses beginning at 10 nM (Figure 10). Discussion FC101 is a small molecule fungal metabolite that has very...purity (>98%) was confirmed by 1H-NMR, 13C-NMR, and UV –vis spectroscopy. Cell lines and culture Seven human tumor cell lines were used in this study... secondary anti- bodies. The following primary antibodies were used: p38, phospho-p38 (Thr180/Tyr182), PARP, Bcl-2, Mcl-1, surviving, (all from Santa

  1. Advances in personalized cancer immunotherapy.

    Science.gov (United States)

    Kakimi, Kazuhiro; Karasaki, Takahiro; Matsushita, Hirokazu; Sugie, Tomoharu

    2017-01-01

    There are currently three major approaches to T cell-based cancer immunotherapy, namely, active vaccination, adoptive cell transfer therapy and immune checkpoint blockade. Recently, this latter approach has demonstrated remarkable clinical benefits, putting cancer immunotherapy under the spotlight. Better understanding of the dynamics of anti-tumor immune responses (the "Cancer-Immunity Cycle") is crucial for the further development of this form of treatment. Tumors employ multiple strategies to escape from anti-tumor immunity, some of which result from the selection of cancer cells with immunosuppressive activity by the process of cancer immunoediting. Apart from this selective process, anti-tumor immune responses can also be inhibited in multiple different ways which vary from patient to patient. This implies that cancer immunotherapy must be personalized to (1) identify the rate-limiting steps in any given patient, (2) identify and combine strategies to overcome these hurdles, and (3) proceed with the next round of the "Cancer-Immunity Cycle". Cancer cells have genetic alterations which can provide the immune system with targets by which to recognize and eradicate the tumor. Mutated proteins expressed exclusively in cancer cells and recognizable by the immune system are known as neoantigens. The development of next-generation sequencing technology has made it possible to determine the genetic landscape of human cancer and facilitated the utilization of genomic information to identify such candidate neoantigens in individual cancers. Future immunotherapies will need to be personalized in terms of the identification of both patient-specific immunosuppressive mechanisms and target neoantigens.

  2. Strategic development on generic anti-cancer drugs Bevacizumab and Erlotinib Hydrochloride for Harbin Pharmaceutical Group

    Institute of Scientific and Technical Information of China (English)

    Cheung Fat Ping

    2011-01-01

    @@ With improved economy, changing life styles, aging population and health care reform, China had a very potential anti-cancer drug market.The patents of popular anti-cancer drugs Avastin and Tarceva would expire in few years.Generic versions of Avastin and Tarceva were Bevacizumab and Erlotinib Hydrochloride respectively.Harbin Pharmaceutical Group was proposed to develop strategically both generic medicines to enter the high-end anti-cancer drug market for targeted cancer therapies.The vital to success of developing the generic drugs were discussed.

  3. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  4. Development of cancer immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeon Sook; Chung, H. Y.; Yi, S. Y.; Kim, K. W.; Kim, B. K.; Chung, I. S.; Park, J. Y

    1999-04-01

    To increase the curative rate of cancer patients, we developed ideal biological response modifier from medicinal plants: Ginsan, KC68IId-8, KC-8Ala, KG-30. Ginsan activated natural killer cell activity of spleen cells more than 5.4 times than lentinan, 1.4 times than picibanil. Radioprotective activity of Ginsan is stronger than WR2721, glucan, and selenium. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of MOPC tumor cells was augmented by treatment with IL-10 antisense oligonucleotide and by transfection with VEGF sense-, antisense gene. The immunogenicity of A20 tumor cells was also augmented by transfection with B7.1 gene. The immunosuppression of gamma-irradiation was due to the reduction of Th1 sytokine gene expression through STAT pathway. These research will devote to develop new cancer immunotherapy and to reduce side effect of cancer radiotherapy and chemotherapy.

  5. Cancer immunotherapy in children

    Science.gov (United States)

    More often than not, cancer immunotherapies that work in adults are used in modified ways in children. Seldom are new therapies developed just for children, primarily because of the small number of pediatric patients relative to the adult cancer patient

  6. Immunotherapy for Cervical Cancer

    Science.gov (United States)

    In an early phase NCI clinical trial, two patients with metastatic cervical cancer had a complete disappearance of their tumors after receiving treatment with a form of immunotherapy called adoptive cell transfer.

  7. Sublingual allergen immunotherapy

    DEFF Research Database (Denmark)

    Calderón, M A; Simons, F E R; Malling, Hans-Jørgen;

    2012-01-01

    To cite this article: Calderón MA, Simons FER, Malling H-J, Lockey RF, Moingeon P, Demoly P. Sublingual allergen immunotherapy: mode of action and its relationship with the safety profile. Allergy 2012; 67: 302-311. ABSTRACT: Allergen immunotherapy reorients inappropriate immune responses...... in allergic patients. Sublingual allergen immunotherapy (SLIT) has been approved, notably in the European Union, as an effective alternative to subcutaneous allergen immunotherapy (SCIT) for allergic rhinitis patients. Compared with SCIT, SLIT has a better safety profile. This is possibly because oral antigen...... cells and eosinophils (mostly located in submucosal areas) and, in comparison with subcutaneous tissue, are less likely to give rise to anaphylactic reactions. SLIT-associated immune responses include the induction of circulating, allergen-specific Th1 and regulatory CD4+ T cells, leading to clinical...

  8. Cancer Immunotherapy: A Review

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2016-04-01

    Full Text Available BACKGROUND: The goals of treating patients with cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. Therefore, stimulating immune reactions to tumors can be an attractive therapeutic and prevention strategy. CONTENT: During immune surveillance, the host provides defense against foreign antigens, while ensuring it limits activation against self antigens. By targeting surface antigens expressed on tumor cells, monoclonal antibodies have demonstrated efficacy as cancer therapeutics. Recent successful antibody-based strategies have focused on enhancing antitumor immune responses by targeting immune cells, irrespective of tumor antigens. The use of antibodies to block pathways inhibiting the endogenous immune response to cancer, known as checkpoint blockade therapy, has stirred up a great deal of excitement among scientists, physicians, and patients alike. Clinical trials evaluating the safety and efficacy of antibodies that block the T cell inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4 and programmed cell death 1 (PD-1 have reported success in treating subsets of patients. Adoptive cell transfer (ACT is a highly personalized cancer therapy that involve administration to the cancer-bearing host of immune cells with direct anticancer activity. In addition, the ability to genetically engineer lymphocytes to express conventional T cell receptors or chimeric antigen receptors has further extended the successful application of ACT for cancer treatment. SUMMARY: For cancer treatment, 2011 marked the beginning of a new era. The underlying basis of cancer immunotherapy is to activate a patient’s own T cells so that they can kill their tumors. Reports of amazing recoveries abound, where patients remain cancer-free many years after receiving the therapy. The idea of harnessing immune cells to fight cancer is

  9. Immunotherapy with Allergen Peptides

    OpenAIRE

    Larché Mark

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cro...

  10. Selective anti-cancer agents as anti-aging drugs.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  11. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    Min Li; Lujun Song; Xinyu Qin

    2010-12-01

    Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell–cell and cell–extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.

  12. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    Science.gov (United States)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  13. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

    Energy Technology Data Exchange (ETDEWEB)

    Milacic, Marija; Haw, Robin, E-mail: robin.haw@oicr.on.ca; Rothfels, Karen; Wu, Guanming [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada); Croft, David; Hermjakob, Henning [European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD (United Kingdom); D’Eustachio, Peter [Department of Biochemistry, NYU School of Medicine, New York, NY 10016 (United States); Stein, Lincoln [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada)

    2012-11-08

    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.

  14. Cancer immunology - development of novel anti-cancer therapies.

    Science.gov (United States)

    Rothschild, Sacha I; Thommen, Daniela S; Moersig, Wolfgang; Müller, Philipp; Zippelius, Alfred

    2015-01-01

    The vast majority of tumours are characterised by high frequencies of genetic and epigenetic alterations resulting in tumour-specific antigens, which may, in principle, be recognised by cytotoxic T cells. Though early clinical immunotherapy trials have yielded mixed results with ambiguous clinical benefit, cancer immunotherapy is now attracting increasing attention as a viable therapeutic option, mainly in melanoma and lung cancer, but increasingly also in other malignancies. In particular, recent therapeutic efforts targeting inhibitory receptors on T cells to overcome tumour-induced immune dysfunction have the potential to reshape current treatment standards in oncology. The clinical development has been pioneered by the antibody ipilimumab, which blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and has demonstrated survival benefit in two randomised landmark trials in melanoma. Capitalising on this success, the research on the clinical implication of T cell checkpoint inhibition has been boosted. Early clinical trials have demonstrated meaningful response rates, sustained clinical benefits with encouraging survival rates and good tolerability of next-generation checkpoint inhibitors, including programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors, across multiple cancer types. Attractive perspectives include the concurrent blockade of immunological (non-redundant) checkpoints, which has recently been demonstrated using combinations of immune checkpoint modulators themselves or with other therapies, such as chemotherapy, targeted therapy or radiotherapy. This article summarises the mechanism of action and subsequent clinical studies of immune checkpoint antibodies in oncology with a particular focus on melanoma and lung cancer.

  15. Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis

    OpenAIRE

    Song, Qi; Jiao, Shunchang; Li, Fang

    2016-01-01

    Brain metastasis, a common complication of non-small cell lung cancer (NSCLC) with an incidence rate of 30%-50%, significantly affects the patients’ quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approa...

  16. Reciprocal regulation of activating and inhibitory Fcγ receptors by TLR7/8 activation: Implications for tumor immunotherapy

    Science.gov (United States)

    Butchar, Jonathan P.; Mehta, Payal; Justiniano, Steven E.; Guenterberg, Kristan D.; Kondadasula, Sri-Vidya; Mo, Xiaokui; Chemudupati, Mahesh; Kanneganti, Thirumala-Devi; Amer, Amal; Muthusamy, Natarajan; Jarjoura, David; Marsh, Clay B.; Carson, William E.; Byrd, John C.; Tridandapani, Susheela

    2010-01-01

    Purpose Activation of Toll-like Receptors (TLR) 7 and 8 by engineered agonists has been shown to aid in combating viruses and tumors. Here, we wished to test the effect of TLR7/8 activation on monocyte Fcγ receptor (FcγR) function, as they are critical mediators of antibody therapy. Experimental Design The effect of the TLR7/8 agonist R-848 on cytokine production and antibody-dependent cellular cytotoxicity (ADCC) by human peripheral blood monocytes (PBM) was tested. Affymetrix microarrays were done to examine genomewide transcriptional responses of monocytes to R-848, and Western blots were done to measure protein levels of FcγR. Murine bone marrow-derived macrophages (BMM) from wild-type and knockout mice were examined to determine the downstream pathway involved with regulating FcγR expression. The efficacy of R-848 as an adjuvant for antibody therapy was tested using a CT26-HER2/neu solid tumor model. Results Overnight incubation with R-848 increased FcγR-mediated cytokine production and ADCC in human PBM. Expression of FcγRI, FcγRIIa and the common γ-subunit was increased. Surprisingly, expression of the inhibitory FcγRIIb was almost completely abolished. In BMM, this required TLR7 and MyD88, as R-848 did not increase expression of the γ-subunit in TLR7−/− nor MyD88−/− cells. In a mouse solid tumor model, R-848 treatment superadditively enhanced the effects of antitumor antibody. Conclusions These results demonstrate an as-yet undiscovered regulatory and functional link between the TLR7/8 and FcγR pathways. This suggests that TLR7/8 agonists may be especially beneficial during antibody therapy. PMID:20332325

  17. Immunotherapy for Drug Abuse

    Science.gov (United States)

    Shen, Xiaoyun; Kosten, Thomas R.

    2013-01-01

    Substance use disorders continue to be major medical and social problems worldwide. Current medications for substance use disorders have many limitations such as cost, availability, medication compliance, dependence, diversion of some to illicit use and relapse to addiction after discontinuing their use. Immunotherapies using either passive monoclonal antibodies or active vaccines have distinctly different mechanisms and therapeutic utility from small molecule approaches to treatment. They have great potential to help the patient achieve and sustain abstinence and have fewer of the above limitations. This review covers the cocaine vaccine development in detail and provides an overview of directions for developing anti-addiction vaccines against the abuse of other substances. The notable success of the first placebo-controlled clinical trial of a cocaine vaccine, TA-CD, has led to an ongoing multi-site, Phase IIb clinical trial in 300 subjects. The results from these trials are encouarging further development of the cocaine vacine as one of the first anti-addiction vaccines to go forward to the U.S. Food and Drug Administration for review and approval for human use. PMID:22229313

  18. Listeria monocytogenes as a vector for anti-cancer therapies.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    The intracellular pathogen Listeria monocytogenes represents a promising therapeutic vector for the delivery of DNA, RNA or protein to cancer cells or to prime immune responses against tumour-specific antigens. A number of biological properties make L. monocytogenes a promising platform for development as a vector for either gene therapy or as an anti-cancer vaccine vector. L. monocytogenes is particularly efficient in mediating internalization into host cells. Once inside cells, the bacterium produces specific virulence factors which lyse the vaculolar membrane and allow escape into the cytoplasm. Once in the cytosol, L. monocytogenes is capable of actin-based motility and cell-to-cell spread without an extracellular phase. The cytoplasmic location of L. monocytogenes is significant as this potentiates entry of antigens into the MHC Class I antigen processing pathway leading to priming of specific CD8(+) T cell responses. The cytoplasmic location is also beneficial for the delivery of DNA (bactofection) by L. monocytogenes whilst cell-to-cell spread may facilitate access of the vector to cells throughout the tumour. Several preclinical studies have demonstrated the ability of L. monocytogenes for intracellular gene or protein delivery in vitro and in vivo, and this vector has also displayed safety and efficacy in clinical trial. Here, we review the features of the L. monocytogenes host-pathogen interaction that make this bacterium such an attractive candidate with which to induce appropriate therapeutic responses. We focus primarily upon work that has led to attenuation of the pathogen, demonstrated DNA, RNA or protein delivery to tumour cells as well as research that shows the efficacy of L. monocytogenes as a vector for tumour-specific vaccine delivery.

  19. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp

    2015-05-15

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.

  20. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells.

    Science.gov (United States)

    Ren, Kewei; Zhang, Wenzhe; Wu, Gang; Ren, Jianzhuang; Lu, Huibin; Li, Zongming; Han, Xinwei

    2016-12-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-cancer and antioxidative properties. Berberine, a major component of Berberis vulgaris extract, exhibits potent anti-cancer activities through distinct molecular mechanisms. However, the anticancer effect of galangin in combination with berberine is still unknown. In the present study, we demonstrated that the combination of galangin with berberine synergistically resulted in cell growth inhibition, apoptosis and cell cycle arrest at G2/M phase with the increased intracellular reactive oxygen species (ROS) levels in oesophageal carcinoma cells. Pretreatment with ROS scavenger promoted the apoptosis dramatically induced by co-treatment with galangin and berberine. Treatment with galangin and berberine alone caused the decreased expressions of Wnt3a and β-catenin. Interestingly, combination of galangin with berberine could further suppress Wnt3a and β-catenin expression and induce apoptosis in cancer cells. Additionally, in nude mice with xenograft tumors, the combinational treatment of galangin and berberine significantly inhibited the tumor growth without obvious toxicity. Overall, galangin in combination with berberine presented outstanding synergistic anticancer role in vitro and in vivo, indicating that the beneficial combination of galangin and berberine might provide a promising treatment for patients with oesophageal carcinoma.

  1. A PRELIMINARY STUDY OF THE ANTI-CANCER EFFECT OF TANSHINONE ON HEPATIC CANCER AND ITS MECHANISM OF ACTION IN MICE

    Institute of Scientific and Technical Information of China (English)

    Wang Xiujie; Yuan Shulan; Wang Chaojun; Huang Renmin; Li Yuqiong

    1998-01-01

    Objective: There were some experimental researches in vitro, which showed that tanshinonoe (Tan)had cytotoxic activities against some cancer cell lines. But there was no report of anti-cancer activity of Tan in vivo.This experimental study was performed to confirm the anti-cancer activity of Tan in vivo. Methods: Hepatic carcinoma H22 bearing mice were treated with DMSO, 5-Fu, and Tan, at the end of experiment, the mice were sacrificed, tumor tissues were separated and weighed, and the tumor inhibitory rate was calculated, 3 times of the same experiments were performed. The proliferating kinetics of hepatic carcinoma H22 cells in mice was measured by bromodeoxyuridine labeling in vivo and immunohistochemical staining of the proliferating cell nuclear antigen (PCNA) in tumor tissues. Results: The tumor inhibitory rates of Tan were 50.0%, 38.5%, and 40.6% in 3 experiments, respectively, compared with those of the DMSO-treated control groups, the differences were significant statistically (P<0.01). The Brdu labeling and PCNA positive cells were 51.8± 7.9 and 451.1± 26.1, respectively, which were significantly lower than those of controls (84.4± 24.3, 694.8±117.1) (P<0.01). Conclusion:Tan had anti-cancer effect on hepatic carcinoma in vivo;The mechanisms of action might be associated with inhibition of DNA synthesis, PCNA expression and DNA polymerase δ activity of tumor cells.

  2. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa.

    Science.gov (United States)

    Shafiq, Hammad; Ahmad, Asif; Masud, Tariq; Kaleem, Muhammad

    2014-12-01

    Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  3. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Hammad Shafiq

    2015-12-01

    Full Text Available Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  4. Maturation of dendritic cells by pullulan promotes anti-cancer effect

    Science.gov (United States)

    Xu, Li; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    Previous studies have demonstrated that pullulan, a polysaccharide purified from Aureobasidium pullulans, has immune-stimulatory effects on T and B cells. Moreover, pullulan has been used as a carrier in the delivery of the antigen (Ag) peptide to lymphoid tissues. However, the in vivo effect of pullulan on dendritic cells (DC) has not been well characterized. In this study, we assessed the effect of pullulan on DC activation and anti-cancer immunity. The results showed that the pullulan treatment up-regulated co-stimulatory molecule expression and enhanced pro-inflammatory cytokine production in bone marrow-derived DCs (BMDC) in vitro and in spleen DCs in vivo. Moreover, the combination of ovalbumin (OVA) and pullulan induced OVA antigen-specific T cell activations in vivo. In tumor-bearing mice, pullulan induced the maturation of DCs in spleen and tumor draining lymph node (drLN), and promoted the OVA-specific T cell activation and migration of the T cells into the tumor. In addition, the combination of OVA and pullulan inhibited B16-OVA tumor growth and liver metastasis. The combination of tyrosinase-related protein 2 (TRP2) peptide and pullulan treatment also suppressed B16 melanoma growth. Thus, the results demonstrated that pullulan enhanced DC maturation and function, and it acted as an adjuvant in promoting Ag-specific immune responses in mice. Thus, pullulan could be a new and useful adjuvant for use in therapeutic cancer vaccines. PMID:27341129

  5. Immunotherapy for Gastroesophageal Cancer

    Science.gov (United States)

    Goode, Emily F.; Smyth, Elizabeth C.

    2016-01-01

    Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell lung cancer and urothelial cancers. In this review, we assess the early evidence for efficacy of immunotherapy in patients with gastroesophageal cancer in addition to considering biomarkers associated with response to these treatments. Early results of Anti- Programmed Cell Death Protein-1 (anti-PD-1), anti-PD-L1 and anti-Cytotoxic T-lymphocyte assosciated protein-4 (anti-CTLA4) trials are examined, and we conclude with a discussion on the future direction for immunotherapy for gastroesophageal cancer patients. PMID:27669318

  6. Immunotherapy for Gastroesophageal Cancer

    Directory of Open Access Journals (Sweden)

    Emily F. Goode

    2016-09-01

    Full Text Available Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell lung cancer and urothelial cancers. In this review, we assess the early evidence for efficacy of immunotherapy in patients with gastroesophageal cancer in addition to considering biomarkers associated with response to these treatments. Early results of Anti- Programmed Cell Death Protein-1 (anti-PD-1, anti-PD-L1 and anti-Cytotoxic T-lymphocyte assosciated protein-4 (anti-CTLA4 trials are examined, and we conclude with a discussion on the future direction for immunotherapy for gastroesophageal cancer patients.

  7. Anti-CD40-mediated cancer immunotherapy

    DEFF Research Database (Denmark)

    Hassan, Sufia Butt; Sørensen, Jesper Freddie; Olsen, Barbara Nicola

    2014-01-01

    activation and thus enhancement of immune responses. Treatment with anti-CD40 monoclonal antibodies has been exploited in several cancer immunotherapy studies in mice and led to the development of anti-CD40 antibodies for clinical use. Here, Dacetuzumab and Lucatumumab are in the most advanced stage...... with other cancer immunotherapies, in particular interleukin (IL)-2. An in-depth analysis of this immunotherapy is provided elsewhere. In the present review, we provide an update of the most recent clinical trials with anti-CD40 antibodies. We present and discuss recent and ongoing clinical trials...... in this field, including clinical studies which combine anti-CD40 treatment with other cancer-treatments, such as Rituximab and Tremelimumab....

  8. Immunotherapy advances in uro-genital malignancies.

    Science.gov (United States)

    Ratta, Raffaele; Zappasodi, Roberta; Raggi, Daniele; Grassi, Paolo; Verzoni, Elena; Necchi, Andrea; Di Nicola, Massimo; Salvioni, Roberto; de Braud, Filippo; Procopio, Giuseppe

    2016-09-01

    Immunotherapy for the treatment of cancer has made significant progresses over the last 20 years. Multiple efforts have been attempted to restore immune-mediated tumor elimination, leading to the development of several targeted immunotherapies. Data from recent clinical trials suggest that these agents might improve the prognosis of patients with advanced genito-urinary (GU) malignancies. Nivolumab has been the first immune checkpoint-inhibitor approved for pre-treated patients with metastatic renal cell carcinoma. Pembrolizumab and atezolizumab have shown promising results in both phase I and II trials in urothelial carcinoma. Brentuximab vedotin has demonstrated early signals of clinical activity and immunomodulatory effects in highly pre-treated patients with testicular germ cell tumors. In this review, we have summarized the major clinical achievements of immunotherapy in GU cancers, focusing on immune checkpoint blockade as well as the new immunomodulatory monoclonal antibodies (mAbs) under clinical evaluation for these malignancies.

  9. Improving cancer immunotherapy with DNA methyltransferase inhibitors.

    Science.gov (United States)

    Saleh, Mohammad H; Wang, Lei; Goldberg, Michael S

    2016-07-01

    Immunotherapy confers durable clinical benefit to melanoma, lung, and kidney cancer patients. Challengingly, most other solid tumors, including ovarian carcinoma, are not particularly responsive to immunotherapy, so combination with a complementary therapy may be beneficial. Recent findings suggest that epigenetic modifying drugs can prime antitumor immunity by increasing expression of tumor-associated antigens, chemokines, and activating ligands by cancer cells as well as cytokines by immune cells. This review, drawing from both preclinical and clinical data, describes some of the mechanisms of action that enable DNA methyltransferase inhibitors to facilitate the establishment of antitumor immunity.

  10. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  11. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jianquan; Zeng, Fang, E-mail: mcfzeng@scut.edu.cn; Xu, Jiangsheng; Wu, Shuizhu, E-mail: shzhwu@scut.edu.cn [South China University of Technology, College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-09-15

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of {approx}100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  12. Comparative Proteomic Analysis of Anti-Cancer Mechanism by Periplocin Treatment in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zejun Lu

    2014-03-01

    Full Text Available Background: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined. Methods: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS. Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING. Results: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN, Rho GDP-dissociation inhibitor 1 (ARHGDIA, eukaryotic translation initiation factor 5A-1 (EIF5A and Profilin-1(PFN1, and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8,10 kDa heat shock protein (HSPE1, and Cofilin-1(CFL-1 were identified. Among them, GTP-binding nuclear protein Ran (RAN and Rho GDP-dissociation inhibitor 1 (ARHGDIA were the most significantly changed (over tenfold. The proteasome subunit beta type-6 (PSMB6, ATP synthase ecto-α-subunit (ATP5A1, Aldehyde dehydrogenase 1 (ALDH1 and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis. Conclusion: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of

  13. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    Thor Straten, Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell ...

  14. An epitope common to gangliosides O-acetyl-GD3 and GD3 recognized by antibodies in melanoma patients after active specific immunotherapy.

    Science.gov (United States)

    Ravindranath, M H; Morton, D L; Irie, R F

    1989-07-15

    GD3 is a major ganglioside of human melanoma and was shown to be an effective target for passive immunotherapy with murine monoclonal antibodies. It was noted earlier that GD3 neither purified nor in melanoma cell vaccine (MCV), could elicit an antibody response in melanoma patients. In this study, we demonstrate that melanoma patients who received MCV had autoantibodies against a derivative of GD3, O-acetylated GD3 (O-AcGD3), a minor ganglioside expressed on human melanoma cells, and that the antibodies cross-reacted with GD3. Thin layer chromatographic immunostaining revealed that all of the sera containing antibodies against O-AcGD3 also reacted to GD3. None of the other sera responded only to GD3, although the MCV contained 7- to 12-fold higher GD3 than O-AcGD3. Furthermore, the antibody activity was completely abolished by absorption with animal erythrocytes expressing either O-acetyl disialogangliosides or GD3, indicating that the antibodies recognize an epitope commonly shared by GD3 and O-AcGD3. The antibodies bound only to the sialyloligosaccharide moiety but not to the ceramide portion of GD3 after endoglycosylceramidase treatment. The antibodies failed to bind to GD3 after neuraminidase treatment. These results indicate that the sialyloligosaccharides of the gangliosides are important components of the epitope. Periodate oxidation abolished reactivity of the antibodies to GD3 but not that to O-AcGD3, revealing that the glycerol side chain of the sialic acids in both GD3s was an important structure of the epitope. The binding of the antibodies to melanoma cell surface gangliosides was confirmed by an absorption with a GD3- and O-AcGD3-positive melanoma cell line. These results in the light of previous reports on the inability of GD3 to elicit immune response in humans suggest that anti-GD3 antibodies found in the melanoma patients were induced by immunization with O-AcGD3 and O-AcGD3 present in the MCV would serve as an antigen source for GD3-targeted

  15. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+· and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+· can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4-. with a rate constant of 1.76×109 dm3·mol-1.s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  16. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  17. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Sangeetha Ravi Kumar

    2013-12-01

    Full Text Available Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing influence via different molecules and pathways including the Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45, and several other molecules that are involved in either cell cycle arrest, apoptosis, or metastasis. Thus, in addition to decreasing the frequency of occurrence and growth of tumours, fucoxanthin has a cytotoxic effect on cancer cells. Some studies show that this effect is selective, i.e., fucoxanthin has the capability to target cancer cells only, leaving normal physiological cells unaffected/less affected. Hence, fucoxanthin and its metabolites show great promise as chemotherapeutic agents in cancer.

  18. Structural characterization of a broccoli polysaccharide and evaluation of anti-cancer cell proliferation effects.

    Science.gov (United States)

    Xu, Lishan; Cao, Jingjing; Chen, Wenrong

    2015-08-01

    Broccoli is a widely consumed vegetable with abundant amount of nutrients, which bring numerous beneficial effects on human health. The structural information of water-soluble polysaccharides in broccoli was eludicated for the first time in this work. A purified polysaccharide fraction (BPCa) was obtained by column chromatography. It comprised of arabinose (Ara), galactose (Gal), rhamnose (Rha) with a molar ratio of 5.3:0.8:1.0. Nuclear magnetic resonnance spectra data revealed that α-L-1,5-Araf and α-L-1,3,5-Araf are present in the backbone, while α-L-Araf terminal was attended in side chain. α-L-1,2-Rhap was found to be linked to α-L-1,5-Araf in heteronuclear multiple bond correlation spectra. The presences of β-D-1,4-Galp and α-D-1,4-GalpA were also detected. Furthermore, BPCa showed significant anti-cancer cell proliferation activities against HepG2, Siha and MDA-MB-231 carcinoma cell lines. The results indicated that BPCa had a good potential to be applied as functional food additives.

  19. Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Directory of Open Access Journals (Sweden)

    Wun-Jae Kim

    2011-11-01

    Full Text Available Pectenotoxin-2 (PTX-2, which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-receptor 1/receptor 2 (DR4/DR5; and (iii mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades.

  20. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy.

    Science.gov (United States)

    Yang, Guozi; Kong, Qingyu; Wang, Guanjun; Jin, Haofan; Zhou, Lei; Yu, Dehai; Niu, Chao; Han, Wei; Li, Wei; Cui, Jiuwei

    2014-12-01

    Recent evidence indicates that limited availability and cytotoxicity have restricted the development of natural killer (NK) cells in adoptive cellular immunotherapy (ACI). While it has been reported that low-dose ionizing radiation (LDIR) could enhance the immune response in animal studies, the influence of LDIR at the cellular level has been less well defined. In this study, the authors aim to investigate the direct effects of LDIR on NK cells and the potential mechanism, and explore the application of activation and expansion of NK cells by LDIR in ACI. The authors found that expansion and cytotoxicity of NK cells were markedly augmented by LDIR. The levels of IFN-γ and TNF-α in the supernatants of cultured NK cells were significantly increased after LDIR. Additionally, the effect of the P38 inhibitor (SB203580) significantly decreased the expanded NK cell cytotoxicity, cytokine levels, and expression levels of FasL and perforin. These findings indicate that LDIR induces a direct expansion and activation of NK cells through possibly the P38-MAPK pathway, which provides a potential mechanism for stimulation of NK cells by LDIR and a novel but simplified approach for ACI.

  1. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate.

    Directory of Open Access Journals (Sweden)

    Xiaohua Song

    Full Text Available Ingenol-3-angelate (I3A is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A's effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP's C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin's lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.

  2. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment.

    Science.gov (United States)

    Gommans, Willemijn M; McLaughlin, Pamela M J; Lindhout, Beatrice I; Segal, David J; Wiegman, D J; Haisma, Hidde J; van der Zaal, Bert J; Rots, Marianne G

    2007-05-01

    Zinc finger protein transcription factors (ZFP-TFs) are emerging as powerful novel tools for the treatment of many different diseases. ZFPs are DNA-binding motifs and consist of modular zinc finger domains. Each domain can be engineered to recognize a specific DNA triplet, and stitching six domains together results in the recognition of a gene-specific sequence. Inhibition of gene expression can be achieved by fusing a repressor domain to these DNA-binding motifs. In this study, we engineered ZFP-TFs to downregulate the activity of the epithelial glycoprotein-2 (EGP-2) promoter. The protein EGP-2 is overexpressed in a wide variety of cancer types and EGP-2 downregulation has been shown to result in a decreased oncogenic potential of tumor cells. Therefore, downregulation of EGP-2 expression by ZFP-TFs provides a novel anti-cancer therapeutic. Using a straightforward strategy, we engineered a 3-ZFP that could bind a 9 bp sequence within the EGP-2 promoter. After the addition of a repressor domain, this 3-ZFP-TF could efficiently downregulate EGP-2 promoter activity by 60%. To demonstrate the flexibility of this technology, we coupled an activation domain to the engineered ZFP, resulting in a nearly 200% increase in EGP-2 promoter activity. To inhibit the endogenous EGP-2 promoter, we engineered 6-ZFP-TFs. Although none of the constructed ZFP-TFs could convincingly modulate the endogenous promoter, efficient and specific inhibition of the exogenous promoter was observed. Overall, ZFP-TFs are versatile bi-directional modulators of gene expression and downregulation of EGP-2 promoter activity using ZFP-TFs can ultimately result in a novel anti-cancer treatment.

  3. The anti-cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells In vitro.

    Science.gov (United States)

    Brown, Amy C; Reitzenstein, Jonathan E; Liu, Jessie; Jadus, Martin R

    2005-09-01

    Hawaiians tend to have lower incidence rates of colorectal cancer and it was hypothesized that this may be due to ethnic differences in diet, specifically, their consumption of poi, a starchy paste made from the taro (Colocasia esulenta L.) plant corm. Soluble extracts of poi were incubated at 100 mg/mL in vitro for antiproliferative activity against the rat YYT colon cancer cell line. (3)H-thymidine incorporation studies were conducted to demonstrate that the poi inhibited the proliferation of these cancer cells in a dose-dependent manner. The greatest suppression of YYT colon cancer growth occurred when 25% concentration was used. When poi was incubated with the YYT cells after 2 days, the YYT cells underwent apoptotic changes as evidenced by a positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) stain. Poi enhanced the proliferation of normal mouse splenocyte control cells, suggesting that poi is not simply toxic to all cells but even has a positive immunostimulatory role. By flow cytometry, T cells (CD4+ and CD8+) were predominantly activated by the poi. Although numerous factors can contribute to the risk of colon cancer, perhaps poi consumption may contribute to the lower colon cancer rates among Hawaiians by two distinct mechanisms. First, by inducing apoptosis within colon cancer cells; second, by non-specifically activating lymphocytes, which in turn can lyse cancerous cells. Our results suggest for the first time that poi may have novel tumor specific anti-cancer activities and future research is suggested with animal studies and human clinical trials.

  4. Immunotherapy: Disrupting the Cancer Treatment World

    Science.gov (United States)

    ... to create the best and most far-reaching cancer immunotherapy treatments. THE BASICS : The human immune system is ... none, abound these days – and point to why cancer immunotherapies matter. Immunotherapy is “providing options for people out ...

  5. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds.

    Science.gov (United States)

    Zhang, Jinhui; Li, Li; Jiang, Cheng; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2012-12-01

    Korean Angelica gigas Nakai (AGN) is a major medicinal herb used in Asian countries such as Korea and China. Traditionally, its dried root has been used to treat anemia, pain, infection and articular rheumatism in Korea, most often through boiling in water to prepare the dosage forms. The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major chemical components in the alcoholic extracts of the root of AGN. The in vitro anti-tumor activities of decursin and/or DA against prostate cancer, lung cancer, breast cancer, colon cancer, bladder cancer, sarcoma, myeloma and leukemia have been increasingly reported in the past decade whereas the in vivo efficacy in mouse models was established only for a few organ sites. Preliminary pharmacokinetic studies by us and others in rodent models indicated that decursinol (DOH), which has much less in vitro direct anticancer activities by itself, is the major and rapid in vivo hydrolysis metabolite of both decursin and DA. Besides decursin, DA and DOH, other chemical components in AGN such as polysaccharides and polyacetylenes have been reported to exert anti-cancer and anti-inflammation activities as well. We systematically reviewed the published literature on the anti-cancer and other bio-activities effects of AGN extract and decursin, DA and DOH, as well as other chemicals identified from AGN. Although a number of areas are identified that merit further investigation, one critical need is first-in-human studies of the pharmacokinetics of decursin/DA to determine whether humans differ from rodents in absorption and metabolism of these compounds.

  6. Immunotherapy for tularemia.

    Science.gov (United States)

    Skyberg, Jerod A

    2013-11-15

    Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (> 30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.

  7. Immunotherapy for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Weihua Wang; Liangfeng Fan; De'en Xu; Zhongmin Wen; Rong Yu; Quanhong Ma

    2012-01-01

    Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) plaques consisted primarily of aggregated Aβ proteins and neurofibrillary tangles formed by hyperphosphorylated tau protein.Both Aβ and hyperphosphorylated tau are toxic both in vivo and in vitro.Immunotherapy targeting Aβ seems to provide a promising approach to reduce the toxic species in the brain.However,there is little evidence from clinical trials so far indicating the efficacy of Aβ immunotherapy in cognitive improvement.Immunization with tau peptides or anti-tau antibodies could remove the tau aggregates and improve the cognitive function in preclinical study,which provides a novel strategy of AD therapy.In this article,we will summarize the immunotherapeutic strategies targeting either Aβ or tau.

  8. Cancer immunotherapy with surgery

    Directory of Open Access Journals (Sweden)

    Orita,Kunzo

    1977-08-01

    Full Text Available With the recent advances in the immunological surveillance system, an understanding of the role of host immunity has become essential to the management of carcinogenesis, tumor proliferation, recurrence and metastasis. Although it is important to continue chemical and surgical treatment of cancer, support of the anti-tumor immune system of the host should also be considered. Long term remission has been reported in leukemia by treating with BCG after chemotherapy whereas surgical treatment is usually more effective in preventing cancer recurrence in digestive organ cancer. The first step is extirpating the tumor as thoroughly as possible and the second step is chemo-immunotherapy. Cancer immunity, however weak, constitutes the basis for other treatments in selectively attacking cancer cells remaining after surgery, chemotherapy or irradiation. Immunotherapy should thus not replace chemotherapy or radiotherapy, but these methods should be employed in combination to attain more favorable results.

  9. Current progress in immunotherapy for pancreatic cancer.

    Science.gov (United States)

    Foley, Kelly; Kim, Victoria; Jaffee, Elizabeth; Zheng, Lei

    2016-10-10

    Pancreatic cancer remains one of the most lethal cancers with few treatment options. Immune-based strategies to treat pancreatic cancer, such as immune checkpoint inhibitors, therapeutic vaccines, and combination immunotherapies, are showing promise where other approaches have failed. Immune checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, are effective as single agents in immune sensitive cancers like melanoma, but lack efficacy in immune insensitive cancers including pancreatic cancer. However, these inhibitors are showing clinical activity, even in traditionally non-immunogenic cancers, when combined with other interventions, including chemotherapy, radiation therapy, and therapeutic vaccines. Therapeutic vaccines given together with immune modulating agents are of particular interest because vaccines are the most efficient way to induce effective anti-tumor T cell responses, which is required for immunotherapies to be effective. In pancreatic cancer, early studies suggest that vaccines can induce T cells that have the potential to recognize and kill pancreatic cancer cells, but the tumor microenvironment inhibits effective T cell trafficking and function. While progress has been made in the development of immunotherapies for pancreatic cancer over the last several years, additional trials are needed to better understand the signals within the tumor microenvironment that are formidable barriers to T cell infiltration and function. Additionally, as more pancreatic specific antigens are identified, immunotherapies will continue to be refined to provide the most significant clinical benefit.

  10. Immunotherapy for Gastroesophageal Cancer

    OpenAIRE

    Emily F. Goode; Smyth, Elizabeth C.

    2016-01-01

    Survival for patients with advanced oesophageal and stomach cancer is poor; together these cancers are responsible for more than a million deaths per year globally. As chemotherapy and targeted therapies such as trastuzumab and ramucirumab result in modest improvements in survival but not long-term cure for such patients, development of alternative treatment approaches is warranted. Novel immunotherapy drugs such as checkpoint inhibitors have been paradigm changing in melanoma, non-small cell...

  11. Immunotherapy of cancer in 2012.

    Science.gov (United States)

    Kirkwood, John M; Butterfield, Lisa H; Tarhini, Ahmad A; Zarour, Hassane; Kalinski, Pawel; Ferrone, Soldano

    2012-01-01

    The immunotherapy of cancer has made significant strides in the past few years due to improved understanding of the underlying principles of tumor biology and immunology. These principles have been critical in the development of immunotherapy in the laboratory and in the implementation of immunotherapy in the clinic. This improved understanding of immunotherapy, enhanced by increased insights into the mechanism of tumor immune response and its evasion by tumors, now permits manipulation of this interaction and elucidates the therapeutic role of immunity in cancer. Also important, this improved understanding of immunotherapy and the mechanisms underlying immunity in cancer has fueled an expanding array of new therapeutic agents for a variety of cancers. Pegylated interferon-α2b as an adjuvant therapy and ipilimumab as therapy for advanced disease, both of which were approved by the United States Food and Drug Administration for melanoma in March 2011, are 2 prime examples of how an increased understanding of the principles of tumor biology and immunology have been translated successfully from the laboratory to the clinical setting. Principles that guide the development and application of immunotherapy include antibodies, cytokines, vaccines, and cellular therapies. The identification and further elucidation of the role of immunotherapy in different tumor types, and the development of strategies for combining immunotherapy with cytotoxic and molecularly targeted agents for future multimodal therapy for cancer will enable even greater progress and ultimately lead to improved outcomes for patients receiving cancer immunotherapy.

  12. Allergen-specific immunotherapy

    Directory of Open Access Journals (Sweden)

    Moote William

    2011-11-01

    Full Text Available Abstract Allergen-specific immunotherapy is a potentially disease-modifying therapy that is effective for the treatment of allergic rhinitis/conjunctivitis, allergic asthma and stinging insect hypersensitivity. However, despite its proven efficacy in these conditions, it is frequently underutilized in Canada. The decision to proceed with allergen-specific immunotherapy should be made on a case-by-case basis, taking into account individual patient factors such as the degree to which symptoms can be reduced by avoidance measures and pharmacological therapy, the amount and type of medication required to control symptoms, the adverse effects of pharmacological treatment, and patient preferences. Since this form of therapy carries the risk of anaphylactic reactions, it should only be prescribed by physicians who are adequately trained in the treatment of allergy. Furthermore, injections must be given under medical supervision in clinics that are equipped to manage anaphylaxis. In this article, the authors review the indications and contraindications, patient selection criteria, and the administration, safety and efficacy of allergen-specific immunotherapy.

  13. Cancer immunotherapy and immune-related response assessment: The role of radiologists in the new arena of cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki, E-mail: Mizuki_Nishino@DFCI.HARVARD.EDU [Department of Radiology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 (United States); Tirumani, Sree H.; Ramaiya, Nikhil H. [Department of Radiology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 (United States); Hodi, F. Stephen [Department of Medical Oncology and Department of Medicine, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, 450 Brookline Ave., Boston, MA 02215 (United States)

    2015-07-15

    Highlights: • The successful clinical application of cancer immunotherapy has opened a new arena for the treatment of advanced cancers. • Cancer immunotherapy is associated with a variety of important radiographic features in the assessments of tumor response and immune-related adverse events. • The state-of-the art knowledge of immunotherapy and the related radiologic manifestations are essential for radiologists. - Abstract: The recent advances in the clinical application of anti-cancer immunotherapeutic agents have opened a new arena for the treatment of advanced cancers. Cancer immunotherapy is associated with a variety of important radiographic features in the assessments of tumor response and immune-related adverse events, which calls for radiologists’ awareness and in-depth knowledge on the topic. This article will provide the state-of-the art review and perspectives of cancer immunotherapy, including its molecular mechanisms, the strategies for immune-related response assessment on imaging and their pitfalls, and the emerging knowledge of radiologic manifestations of immune-related adverse events. The cutting edge clinical and radiologic investigations are presented to provide future directions.

  14. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective

    NARCIS (Netherlands)

    Hare, J.I.; Lammers, T.G.G.M.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T.

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient strat

  15. Double layered hydroxides as potential anti-cancer drug delivery agents.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  16. Inhibition of autophagic flux by salinomycin results in anti-cancer effect in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Johannes Klose

    Full Text Available Salinomycin raised hope to be effective in anti-cancer therapies due to its capability to overcome apoptosis-resistance in several types of cancer cells. Recently, its effectiveness against human hepatocellular carcinoma (HCC cells both in vitro and in vivo was demonstrated. However, the mechanism of action remained unclear. Latest studies implicated interference with the degradation pathway of autophagy. This study aimed to determine the impact of Salinomycin on HCC-autophagy and whether primary human hepatocytes (PHH likewise are affected. Following exposure of HCC cell lines HepG2 and Huh7 to varying concentrations of Salinomycin (0-10 µM, comprehensive analysis of autophagic activity using western-blotting and flow-cytometry was performed. Drug effects were analyzed in the settings of autophagy stimulation by starvation or PP242-treatment and correlated with cell viability, proliferation, apoptosis induction, mitochondrial mass accumulation and reactive oxygen species (ROS formation. Impact on apoptosis induction and cell function of PHH was analyzed. Constitutive and stimulated autophagic activities both were effectively suppressed in HCC by Salinomycin. This inhibition was associated with dysfunctional mitochondria accumulation, increased apoptosis and decreased proliferation and cell viability. Effects of Salinomycin were dose and time dependent and could readily be replicated by pharmacological and genetic inhibition of HCC-autophagy alone. Salinomycin exposure to PHH resulted in transient impairment of synthesis function and cell viability without apoptosis induction. In conclusion, our data suggest that Salinomycin suppresses late stages of HCC-autophagy, leading to impaired recycling and accumulation of dysfunctional mitochondria with increased ROS-production all of which are associated with induction of apoptosis.

  17. Inhibition of autophagic flux by salinomycin results in anti-cancer effect in hepatocellular carcinoma cells.

    Science.gov (United States)

    Klose, Johannes; Stankov, Metodi V; Kleine, Moritz; Ramackers, Wolf; Panayotova-Dimitrova, Diana; Jäger, Mark D; Klempnauer, Jürgen; Winkler, Michael; Bektas, Hüseyin; Behrens, Georg M N; Vondran, Florian W R

    2014-01-01

    Salinomycin raised hope to be effective in anti-cancer therapies due to its capability to overcome apoptosis-resistance in several types of cancer cells. Recently, its effectiveness against human hepatocellular carcinoma (HCC) cells both in vitro and in vivo was demonstrated. However, the mechanism of action remained unclear. Latest studies implicated interference with the degradation pathway of autophagy. This study aimed to determine the impact of Salinomycin on HCC-autophagy and whether primary human hepatocytes (PHH) likewise are affected. Following exposure of HCC cell lines HepG2 and Huh7 to varying concentrations of Salinomycin (0-10 µM), comprehensive analysis of autophagic activity using western-blotting and flow-cytometry was performed. Drug effects were analyzed in the settings of autophagy stimulation by starvation or PP242-treatment and correlated with cell viability, proliferation, apoptosis induction, mitochondrial mass accumulation and reactive oxygen species (ROS) formation. Impact on apoptosis induction and cell function of PHH was analyzed. Constitutive and stimulated autophagic activities both were effectively suppressed in HCC by Salinomycin. This inhibition was associated with dysfunctional mitochondria accumulation, increased apoptosis and decreased proliferation and cell viability. Effects of Salinomycin were dose and time dependent and could readily be replicated by pharmacological and genetic inhibition of HCC-autophagy alone. Salinomycin exposure to PHH resulted in transient impairment of synthesis function and cell viability without apoptosis induction. In conclusion, our data suggest that Salinomycin suppresses late stages of HCC-autophagy, leading to impaired recycling and accumulation of dysfunctional mitochondria with increased ROS-production all of which are associated with induction of apoptosis.

  18. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  19. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.

    2017-01-01

    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  20. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy.

    Science.gov (United States)

    Jiang, Q-L; Zhang, S; Tian, M; Zhang, S-Y; Xie, T; Chen, D-Y; Chen, Y-J; He, J; Liu, J; Ouyang, L; Jiang, X

    2015-02-01

    Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.

  1. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Sørensen, Tine Thurison

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u......Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...... up-regulated during cancer progression and is primarily confined to the tumor-associated stromal compartment. Furthermore, both uPAR and uPA have proven to be prognostic markers in several types of cancer; high levels indicating poor survival. The cleaved forms of uPAR are also prognostic markers...

  2. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy?

    Science.gov (United States)

    Gonda, Tamas A; Varro, Andrea; Wang, Timothy C; Tycko, Benjamin

    2010-02-01

    It is increasingly recognized that the non-neoplastic stromal compartment in most solid cancers plays an active role in tumor proliferation, invasion and metastasis. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in the tumor stroma, and these cells are pro-tumorigenic. Evidence that CAFs are epigenetically and possibly also genetically distinct from normal fibroblasts is beginning to define these cells as potential targets of anti-cancer therapy. Here, we review the cell-of-origin and molecular biology of CAFs, arguing that such knowledge provides a rational basis for designing therapeutic strategies to coordinately and synergistically target both the stromal and malignant epithelial component of human cancers.

  3. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin)

    Science.gov (United States)

    Naik, Pradeep K.; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N.; Joshi, Harish C.

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group—a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (Δ G bind) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant ( K d value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC50 in the range of 15-40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC50 in the range of 0.3-1.5 μM).

  4. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  5. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zheng Wei Lee

    Full Text Available The slow-releasing hydrogen sulfide (H₂S donor, GYY4137, caused concentration-dependent killing of seven different human cancer cell lines (HeLa, HCT-116, Hep G2, HL-60, MCF-7, MV4-11 and U2OS but did not affect survival of normal human lung fibroblasts (IMR90, WI-38 as determined by trypan blue exclusion. Sodium hydrosulfide (NaHS was less potent and not active in all cell lines. A structural analogue of GYY4137 (ZYJ1122 lacking sulfur and thence not able to release H₂S was inactive. Similar results were obtained using a clonogenic assay. Incubation of GYY4137 (400 µM in culture medium led to the generation of low (<20 µM concentrations of H₂S sustained over 7 days. In contrast, incubation of NaHS (400 µM in the same way led to much higher (up to 400 µM concentrations of H₂S which persisted for only 1 hour. Mechanistic studies revealed that GYY4137 (400 µM incubated for 5 days with MCF-7 but not IMR90 cells caused the generation of cleaved PARP and cleaved caspase 9, indicative of a pro-apoptotic effect. GYY4137 (but not ZYJ1122 also caused partial G₂/M arrest of these cells. Mice xenograft studies using HL-60 and MV4-11 cells showed that GYY4137 (100-300 mg/kg/day for 14 days significantly reduced tumor growth. We conclude that GYY4137 exhibits anti-cancer activity by releasing H₂S over a period of days. We also propose that a combination of apoptosis and cell cycle arrest contributes to this effect and that H₂S donors should be investigated further as potential anti-cancer agents.

  6. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin).

    Science.gov (United States)

    Naik, Pradeep K; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N; Joshi, Harish C

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group-a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (ΔG (bind)) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant (K (d) value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC(50) in the range of 15-40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC(50) in the range of 0.3-1.5 μM).

  7. Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mochizuki Hidetaka

    2001-08-01

    Full Text Available Abstract Background The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. Methods LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. Results The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. Conclusions These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes.

  8. New Horizons in Allergen Immunotherapy

    DEFF Research Database (Denmark)

    Backer, Vibeke

    2016-01-01

    of active SLITcomparedwith placebo,with hazard ratios of0.69 (95%CI,0.49-0.96) for the 6 SQ-HDM group and 0.66 (95% CI, 0.47 -0.93) for the 12 SQHDM group. The absolute risk for first exacerbation was 26% (n = 62) for the 6 SQ-HDM group, 24% (n = 59) for the 12 SQHDM group, and 32% (n = 83) for the placebo...... is this outcome.Canthese results truly benefit similar patients encountered in clinical practice? Addressing these questions requires consideration ofnotjust theprimaryendpointbut alsothesecondaryoutcomesandpotentialstudylimitations.With regardtosecondaryoutcomes,thereweresignificantdifferences favoring...... treatmentwith ICS. The authors’ choice of a primary end point based on exacerbations during ICS reduction is also unique to immunotherapy trials,with previous trials ofHDMimmunotherapy focusing onmedication requirements, symptomsscores, or lung function as primary end points. Furthermore, the inclusion...

  9. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    specificity of the interaction of dendrimers with CD4+ T cell, we hypothesize that regulatory activity may signal through a specific receptor that remains to be indentified. Therefore phosphonate-capped dendrimers constitute not only tools for the ex-vivo expansion of NK cells in immunotherapy of cancers but their mode of action could also lead to further medical applications where T cell activation and proliferation need to be dampened.

  10. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  11. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients.

  12. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  13. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years.

  14. Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer

    Directory of Open Access Journals (Sweden)

    McDougall Gordon

    2007-01-01

    Full Text Available Abstract Background There is a probable association between consumption of fruit and vegetables and reduced risk of cancer, particularly cancer of the digestive tract. This anti-cancer activity has been attributed in part to anti-oxidants present in these foods. Raspberries in particular are a rich source of the anti-oxidant compounds, such as polyphenols, anthocyanins and ellagitannins. Methods A "colon-available" raspberry extract (CARE was prepared that contained phytochemicals surviving a digestion procedure that mimicked the physiochemical conditions of the upper gastrointestinal tract. The polyphenolic-rich extract was assessed for anti-cancer properties in a series of in vitro systems that model important stages of colon carcinogenesis, initiation, promotion and invasion. Results The phytochemical composition of CARE was monitored using liquid chromatography mass spectrometry. The colon-available raspberry extract was reduced in anthocyanins and ellagitannins compared to the original raspberry juice but enriched in other polyphenols and polyphenol breakdown products that were more stable to gastrointestinal digestion. Initiation – CARE caused significant protective effects against DNA damage induced by hydrogen peroxide in HT29 colon cancer cells measured using single cell microgelelectrophoresis. Promotion – CARE significantly decreased the population of HT29 cells in the G1 phase of the cell cycle, effectively reducing the number of cells entering the cell cycle. However, CARE had no effect on epithelial integrity (barrier function assessed by recording the trans-epithelial resistance (TER of CACO-2 cell monolayers. Invasion – CARE caused significant inhibition of HT115 colon cancer cell invasion using the matrigel invasion assay. Conclusion The results indicate that raspberry phytochemicals likely to reach the colon are capable of inhibiting several important stages in colon carcinogenesis in vitro.

  15. The Study on Acute and Subacute Toxicity and Anti-Cancer Effects of cultivated wild ginseng Herbal acupuncture

    Directory of Open Access Journals (Sweden)

    Ki-Rok, Kwon

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate acute and subacute toxicity and sarcoma-180 anti-cancer effects of herbal acupuncture with cultivated wild ginseng (distilled in mice and rats. Methods : Balb/c mice were injected intravenous with cultivated wild ginseng herbal acupuncture for LD50 and acute toxicity test. Sprague-Dawley rats were injected intravenous with cultivated wild ginseng herbal acupuncture for subacute toxicity test. The cultivated wild ginseng herbal-acupuncture was injected at the tail vein of mice. Results : 1. In acute LD50 toxicity test, there was no mortality thus unable to attain the value. 2. Examining the toxic response in the acute toxicity test, there was no sign of toxication. 3. In acute toxic test, running biochemical serum test couldn't yield any differences between the control and experiment groups. 4. In subacute toxicity test, there was no sign of toxication in the experimental groups and didn't show any changes in weight compared to the normal group. 5. In subacute toxicity test, biochemical serum test showed significant increase of Total albumin, Albumin, and Glucose in the experimental group I compared with the control group. Significant decrease of GOT, ALP, GPT, and Triglyceride were shown. In experiment group II, only Glucose showed significant increase compared with the control group. 6. Measuring survival rate for anti-cancer effects of Sarcoma-180 cancer cell line, all the experimental groups showed significant increase in survival rate. 7. Measuring NK cell activity rate, no significant difference was shown throughout the groups. 8. Measuring Interleukin-2 productivity rate, all the experimental groups didn't show significant difference. 9. For manifestation of cytokine mRNA, significant decrease of interleukin-10 was witnessed in the experimental group compared to the control group. Conclusion : According to the results, we can conclude cultivated wild ginseng herbal acupuncture

  16. New directions in immunotherapy.

    Science.gov (United States)

    Cox, Linda; Compalati, Enrico; Kundig, Thomas; Larche, Mark

    2013-04-01

    Allergen immunotherapy (AIT) is effective in reducing the clinical symptoms associated with allergic rhinitis, asthma and venom-induced anaphylaxis. Subcutaneous (SCIT) and sublingual immunotherapy (SLIT) with unmodified allergen extracts are the most widely prescribed AIT regimens. The efficacy of these 2 routes appears comparable, but the safety profile with SLIT is more favorable allowing for home administration and requiring less patient time. However, both require that the treatment is taken regularly over several years, e.g., monthly in a supervised medical setting with SCIT and daily at home with SLIT. Despite the difference in treatment settings, poor adherence has been reported with both routes. Emerging evidence suggests that AIT may be effective in other allergic conditions such as atopic dermatitis, venom sting-induced large local reactions, and food allergy. Research with oral immunotherapy (OIT) for food allergies suggest that many patients can be desensitized during treatment, but questions remain about whether this can produce long term tolerance. Further studies are needed to identify appropriate patients and treatment regimens with these conditions. Efforts to develop safer and more effective AIT for inhalant allergies have led to investigations with modified allergens and alternate routes. Intralymphatic (ILIT) has been shown to produce long-lasting clinical benefits after three injections comparable to a 3-year course of SCIT. Epicutaneous (EPIT) has demonstrated promising results for food and inhalant allergies. Vaccine modifications, such as T cell epitopes or the use of viral-like particles as an adjuvant, have been shown to provide sustained clinical benefits after a relatively short course of treatment compared to the currently available AIT treatments, SLIT and SCIT. These newer approaches may increase the utilization and adherence to AIT because the multi-year treatment requirement of currently available AIT is a likely deterrent for

  17. Cancer immunotherapy and immune-related response assessment: The role of radiologists in the new arena of cancer treatment.

    Science.gov (United States)

    Nishino, Mizuki; Tirumani, Sree H; Ramaiya, Nikhil H; Hodi, F Stephen

    2015-07-01

    The recent advances in the clinical application of anti-cancer immunotherapeutic agents have opened a new arena for the treatment of advanced cancers. Cancer immunotherapy is associated with a variety of important radiographic features in the assessments of tumor response and immune-related adverse events, which calls for radiologists' awareness and in-depth knowledge on the topic. This article will provide the state-of-the art review and perspectives of cancer immunotherapy, including its molecular mechanisms, the strategies for immune-related response assessment on imaging and their pitfalls, and the emerging knowledge of radiologic manifestations of immune-related adverse events. The cutting edge clinical and radiologic investigations are presented to provide future directions.

  18. CCL21 Cancer Immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuanlin@mednet.ucla.edu [Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); UCLA Head and Neck Cancer Program, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Sharma, Sherven [Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, 37-131 CHS, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Veterans’ Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073 (United States); John, Maie St. [Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); UCLA Head and Neck Cancer Program, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States); Clinical and Translational Science Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 (United States)

    2014-05-07

    Cancer, a major health problem, affects 12 million people worldwide every year. With surgery and chemo-radiation the long term survival rate for the majority of cancer patients is dismal. Thus novel treatments are urgently needed. Immunotherapy, the harnessing of the immune system to destroy cancer cells is an attractive option with potential for long term anti-tumor benefit. Cytokines are biological response modifiers that stimulate anti-tumor immune responses. In this review, we discuss the anti-tumor efficacy of the chemotactic cytokine CCL21 and its pre-clinical and clinical application in cancer.

  19. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens.

    Science.gov (United States)

    Valenta, Rudolf; Linhart, B; Swoboda, I; Niederberger, V

    2011-06-01

    The broad applicability of allergen-specific immunotherapy for the treatment and eventually prevention of IgE-mediated allergy is limited by the poor quality and allergenic activity of natural allergen extracts that are used for the production of current allergy vaccines. Today, the genetic code of the most important allergens has been deciphered; recombinant allergens equalling their natural counterparts have been produced for diagnosis and immunotherapy, and a large panel of genetically modified allergens with reduced allergenic activity has been characterized to improve safety of immunotherapy and explore allergen-specific prevention strategies. Successful immunotherapy studies have been performed with recombinant allergens and hypoallergenic allergen derivatives and will lead to the registration of the first recombinant allergen-based vaccines in the near future. There is no doubt that recombinant allergen-based vaccination strategies will be generally applicable to most allergen sources, including respiratory, food and venom allergens and allow to produce safe allergy vaccines for the treatment of the most common forms of IgE-mediated allergies.

  20. Active immunotherapy of allergic asthma with a recombinant human interleukin-5 protein as vaccine in a murine model

    Institute of Scientific and Technical Information of China (English)

    TAN Guang-hong; WANG Cai-chun; HUANG Feng-ying; WANG Hua; HUANG Yong-hao; LIN Ying-ying

    2007-01-01

    Background Eosinophils are highly related to allergic asthma inflammation. Interleukin (IL)-5 is the major chemokine of eosinophils, inhibition of the activity of IL-5 thus seems to be a potential approach to asthma therapy. The current study was performed to determine whether a recombinant human IL-5 protein as a xenogeneic vaccine has the capability of inducing anti-asthma activities.Methods Recombinant human IL-5 was used as a protein vaccine. Mouse asthma model was established to observe the anti-asthma activities. Lung histology was observed; eosinophils in blood and bronchoalveolar lavage were stained and counted. Airway hyperresponsiveness was determined by whole body plethysmograph. Antibody characters and cytokines were detected with enzyme linked immunosorbent assay (ELISA) and Western blot assay.Results Vaccination with recombinant human IL-5 protein as vaccine significantly reduced airway inflammation and airway hyperresponsiveness, and shifted the cytokine production from Th2 (IL-4) to Th1 (INF-γ) in mice allergic-asthma model. Immunization with recombinant human IL-5 protein vaccine bypassed the immunological tolerance and induced production of polyclonal antibodies that were cross-reactive with murine IL-5.Conclusions Active immunization with xenogeneic homologous IL-5 may be a possible therapeutic approach to the treatment of asthma and potentially of other eosinophilic disorders.

  1. Homing of radiolabelled recombinant interleukin-2 activated natural killer cells and their efficacy in adoptive immunotherapy against murine fibrosarcoma

    Indian Academy of Sciences (India)

    Anuradha Rai; Ashim K Chakravarty

    2007-12-01

    Natural killer (NK) cells are spontaneously cytotoxic against tumour target cells. Their number was found to be four times more in the spleen of tumour-bearing Swiss albino mice. After activation with recombinant interleukin-2 (rIL-2), NK cells were tested and found to seek out the tumour site when injected intravenously in tumour-bearing mice. Their potential for fighting tumours in vivo was further seen following adoptive transfer of rIL-2 activated NK (A-NK) cells in tumour-bearing mice. After surgical removal of tumour load, adoptive transfer of A-NK cells inhibited tumour recurrence in 92.3% cases, thereby suggesting the use of this protocol for therapeutic purposes to obtain a better outcome.

  2. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells

    NARCIS (Netherlands)

    Eggermont, L.J.; Paulis, L.E.M.; Tel, J.; Figdor, C.G.

    2014-01-01

    Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artif

  3. Inmunoterapia local Local immunotherapy

    Directory of Open Access Journals (Sweden)

    E. Lasa

    2003-01-01

    Full Text Available La inmunoterapia específica, junto con la evitación del alergeno y el tratamiento sintomático, forma parte del tratamiento de la patología alérgica. La modalidad más antigua, más conocida y mejor estudiada es la inmunoterapia subcutánea (ITSC, cuya eficacia tanto a corto como a largo plazo, ha sido ampliamente demostrada en numerosos estudios. Sin embargo, a pesar de haberse demostrado segura, no está exenta de efectos adversos y precisa ser administrada bajo supervisión de personal médico. Esto ha animado a buscar nuevas vías de administración de eficacia similar, con un buen perfil de seguridad, y de buena cumplimentación por parte del paciente. De las distintas alternativas estudiadas la más relevante es la inmunoterapia sublingual (ITSL. En ésta, se administra el antígeno en forma de gotas debajo de la lengua. Existen diferentes pautas de administración en función del alergeno implicado. La dosis óptima de tratamiento está aún sin determinar, hallándose en este momento en un rango amplio de dosis respecto a la inmunoterapia subcutánea. Su mecanismo de acción es poco conocido aunque en diversos estudios se han observado cambios inmunológicos. La ITSL ha mostrado un buen perfil de seguridad con escasos efectos secundarios, habitualmente de carácter local. Asimismo se han realizado distintos ensayos clínicos en los que se ha demostrado su eficacia en el tratamiento de la alergia respiratoria tanto en niños como en adultos. Por ello, aunque aún existen datos sin resolver respecto a esta vía de administración de inmunoterapia, ha sido propuesta por la OMS como una alternativa válida a la ITSC.Specific immunotherapy, together with avoidance of the allergen and symptomatic treatment, forms part of the treatment of allergic pathology. The oldest, best known and most studied form is subcutaneous immunotherapy (SCIT, whose efficacy, both in the short and the long term, has been widely demonstrated in numerous studies

  4. Study of Immunotherapy with Endogenous Opiod (Met-Enkephalin Activated TILs in Fibrosarcoma Induced Balb/C Mice

    Directory of Open Access Journals (Sweden)

    Abbas Ali Amini

    2010-01-01

    Full Text Available Objective: In this study the effects of met-enkephalin on tumor infiltrating lymphocytesfor cancer treatment in fibrosarcoma bearing mice was evaluated.Materials and Methods: Initially, to obtain the most effective dose and treating time forthe inductionof CD25, splenocytes were cultured with several doses of met-enkephalin.Flowcytometry was used to evaluate CD25 expression. The best dose and treatingtime were used to stimulate tumor infiltrating lymphocytes (TILs. To obtain pure CD4+and CD8+ cells, TILs were taken from tumors by enzymatic tissue disaggregation andpurified by magnet bead cell separation. After TILs stimulation they were re-injectedinto three groups of other fibrosarcoma bearing mice. The first group received onlyCD4+ TILs, the second group received only CD8+ TILs, and the third group receivedboth CD4+ and CD8+ TILs. A fourth group that served as the control group receivedonly phosphate buffered saline (PBS. The effect of this treatment on tumor volume,mice survival, effector cells, regulatory T cells and serum level Bcl-2were evaluated.To analyze data in both the experimental and control groups one way ANOVA wasused followed by the Tukey test. P value <0.05 was considered significant.Results: Treatment with met-enkephalin at a dose of 10-10 M for 6 hours was most effectivein CD25 induction on the splenocytes of Balb/C mice. There were a significantdecrease in tumors growth in both the CD8+ and CD4+ activated TILs injected groups(p<0.044 and p<0.017, respectively. The result of the CD4+ plus CD8+ activated TILsinjected group was not significantly different from control group (p<0.661. There wasan improvement in survival amongst the mice in all treated groups (p<0.001 for allthree groups. FoxP3 levels in all groups were significantly low (p<0.001, p<0.002and p<0.001 for the CD4+, CD8+ and CD4+ plus CD8+ activated TILs injected groups,respectively. CD25 and Bcl-2 expressions were higher in the treated groups, but onlythe CD4

  5. Modified immunotherapy for alopecia areata.

    Science.gov (United States)

    Yoshimasu, Takashi; Furukawa, Fukumi

    2016-07-01

    Squaric acid dibutylester (SADBE) is a commonly used contact sensitizer in immunotherapy for alopecia areata (AA). Severe contact dermatitis is induced by the currently high recommended sensitization dose of 1%-2% SADBE, often decreasing patient compliance. We assessed a modified immunotherapy for AA using SADBE at a starting concentration of 0.01% without sensitization. After one or two weeks of initial 0.01% SADBE application, the concentration of SADBE was increased gradually to 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1% and 2% until the patients felt itching or erythema at the AA lesion site. The modified immunotherapy showed a response rate of 69.4% (25/36), equivalent to conventional immunotherapy using SADBE starting at 1%-2% sensitization. Furthermore, we investigated the combination therapy of SADBE and multiple courses of steroid pulses for AA. The response rate for combination therapy was 73.7% (28/38); however, the group receiving combination therapy showed a significant prevalence of severe AA compared with the group receiving modified immunotherapy only. We reviewed the efficacy and safety of modified immunotherapy without initial sensitization and combination therapy with immunotherapy and multiple courses of pulses for AA.

  6. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    Science.gov (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  7. Molecular biomarkers for grass pollen immunotherapy.

    Science.gov (United States)

    Popescu, Florin-Dan

    2014-03-26

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines.

  8. Immunotherapy for gastric premalignant lesions and cancer.

    Science.gov (United States)

    Zorzetto, Valerio; Maddalo, Gemma; Basso, Daniela; Farinati, Fabio

    2012-06-01

    Chronic atrophic gastritis, a precancerous change for gastric cancer, shows a loss of appropriate glands, Helicobacter pylori infection and autoimmune gastritis being the two main etiologic factors. While H. pylori eradication is the mandatory treatment for the former, no etiologic treatment is available for the latter, in which a Th1-type response, modulated by Tregs and Th17 cells, is involved. H. pylori-related atrophic gastritis is a risk factor for gastric adenocarcinoma, while autoimmune atrophic gastritis is also linked to a substantial risk of gastric type I carcinoid, related to the chronic stimulus exerted by hypergastrinemia on enterochromaffin-like cells. Several studies have been published on gastric cancer treatment through an active specific immunotherapy, aimed at improving the immunoregulatory response and increasing the circulating tumor-specific T cells. No study on immunotherapy of carcinoids is available but, in our experience, the administration of an antigastrin 17 vaccine induced carcinoid regression in two out of three patients treated.

  9. Preclinical activity of anti-CCR7 immunotherapy in patients with high-risk chronic lymphocytic leukemia.

    Science.gov (United States)

    Cuesta-Mateos, Carlos; Loscertales, Javier; Kreutzman, Anna; Colom-Fernández, Beatriz; Portero-Sáinz, Itxaso; Pérez-Villar, Juan José; Terrón, Fernando; Muñoz-Calleja, Cecilia

    2015-06-01

    Chronic lymphocytic leukemia (CLL) with deletions of the p53 locus on chromosome 17 and/or refractory to fludarabine chemoimmunotherapy remains a major clinical problem with few therapeutic options. Currently, these types of CLL are treated with approaches that do not target the p53 pathway, such as small molecules and monoclonal antibodies (mAb). We have previously postulated anti-CCR7 mAb therapy as a novel CLL treatment. In the present study, we evaluated the in vitro efficacy of anti-CCR7 mAb as a single agent in CLL patients with high-risk cytogenetics and/or refractory to fludarabine, by measuring CCR7 surface expression and complement-dependent cytotoxicity. Our results demonstrate that CCR7 is highly expressed in challenging and heavily treated CLL patients. In addition, the complement-mediated mechanism of action of this mAb effectively eradicates CLL cells while sparing subsets of T cells in these patients. Moreover, this mAb outperformed the activity of alemtuzumab, the mAb with the highest efficacy in these groups. Finally, in vitro activity was also demonstrated in patients with a disease refractory to both fludarabine and alemtuzumab, and patients harboring 11q22 deletion. Our results propose that anti-CCR7 mAb is an effective and promising future treatment in high-risk CLL.

  10. Immunotherapy for nasopharyngeal cancer-a review.

    Science.gov (United States)

    Jain, Amit; Chia, Whay Kuang; Toh, Han Chong

    2016-04-01

    Nasopharyngeal carcinoma (NPC) is associated with the Epstein-Barr virus (EBV) and characterized by peritumoral immune infiltrate. Advanced NPC has high lethality. Immunotherapy directed against EBV antigen targets has been previously explored in clinical trials, and is likely to be validated as an important target in NPC as randomized data emerges in the future. Cancer vaccines and adoptive T cell therapy have been explored in the clinic, with the latter showing the greatest success. Recent advances in gene sequencing technology now allow personalized tumor epitope mapping, whilst the advent of immune checkpoint inhibitors targeting the PD-1/PD-L1 axis offers the opportunity to activate adaptive T cell response in vivo. Anti-PD1 antibodies have shown promising activity in early phase clinical trials, and randomized studies against chemotherapy are underway. As immunotherapy is incorporated into standard treatment paradigms, issues of optimal combinations with targeting agents, immune adjuvants, and sequence with chemotherapy and radiation therapy will need to be addressed. Effective strategies to increase tumor antigenicity, improve immunological memory and reduce immune escape, will need to be developed to improve treatment outcomes. Here we present a brief history of the evolution of immunotherapy in NPC, and highlight key concepts relevant to its further development in the clinic.

  11. Controlled release of an anti-cancer drug from DNA structured nano-films

    Science.gov (United States)

    Cho, Younghyun; Lee, Jong Bum; Hong, Jinkee

    2014-02-01

    We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with peptide via layer-by-layer (LbL) deposition method. The key to the successful application of these nanofilms requires a novel approach of the influence of DNA architecture for the drug release from functional nano-sized surface. Herein, we have taken first steps in building and controlling the drug incorporated DNA origami based multilayered nanostructure. Our finding highlights the novel and unique drug release character of LbL systems in serum condition taken full advantages of DNA origami structure. This multilayer thin film dramatically affects not only the release profiles but also the structure stability in protein rich serum condition.

  12. Translational approaches targeting the p53 pathway for anti-cancer therapy

    OpenAIRE

    2012-01-01

    The p53 tumour suppressor blocks cancer development by triggering apoptosis or cellular senescence in response to oncogenic stress or DNA damage. Consequently, the p53 signalling pathway is virtually always inactivated in human cancer cells. This unifying feature has commenced tremendous efforts to develop p53-based anti-cancer therapies. Different strategies exist that are adapted to the mechanisms of p53 inactivation. In p53-mutated tumours, delivery of wild-type p53 by adenovirus-based gen...

  13. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation.

    Science.gov (United States)

    Wu, Shangquan; Liu, Xiaoli; Zhou, Xiarong; Liang, Xin M; Gao, Dayong; Liu, Hong; Zhao, Gang; Zhang, Qingchuan; Wu, Xiaoping

    2016-03-15

    Cancer is a serious threat to human health. Although numerous anti-cancer drugs are available clinically, many have shown toxic side effects due to poor tumor-selectivity, and reduced effectiveness due to cancers rapid development of resistance to treatment. The development of new highly efficient and practical methods to quantify cell viability and its change under drug treatment is thus of significant importance in both understanding of anti-cancer mechanism and anti-cancer drug screening. Here, we present an approach of utilizing a nanomechanical fluctuation based highly sensitive microcantilever sensor, which is capable of characterizing the viability of cells and quantitatively screening (within tens of minutes) their responses to a drug with the obvious advantages of a rapid, label-free, quantitative, noninvasive, real-time and in-situ assay. The microcantilever sensor operated in fluctuation mode was used in evaluating the paclitaxel effectiveness on breast cancer cell line MCF-7. This study demonstrated that the nanomechanical fluctuations of the microcantilever sensor are sensitive enough to detect the dynamic variation in cellular force which is provided by the cytoskeleton, using cell metabolism as its energy source, and the dynamic instability of microtubules plays an important role in the generation of the force. We propose that cell viability consists of two parts: biological viability and mechanical viability. Our experimental results suggest that paclitaxel has little effect on biological viability, but has a significant effect on mechanical viability. This new method provides a new concept and strategy for the evaluation of cell viability and the screening of anti-cancer drugs.

  14. Active immunotherapy combined with blockade of a coinhibitory pathway achieves regression of large tumor masses in cancer-prone mice.

    Science.gov (United States)

    Lasaro, Marcio O; Sazanovich, Marina; Giles-Davis, Wynetta; Mrass, Paulus; Bunte, Ralph M; Sewell, Duane A; Hussain, S Farzana; Fu, Yang-Xin; Weninger, Wolfgang; Paterson, Yvonne; Ertl, Hildegund Cj

    2011-09-01

    Vaccines that aim to expand tumor-specific CD8(+) T cells have yielded disappointing results in cancer patients although they showed efficacy in transplantable tumor mouse models. Using a system that more faithfully mimics a progressing cancer and its immunoinhibitory microenvironment, we here show that in transgenic mice, which gradually develop adenocarcinomas due to expression of HPV-16 E7 within their thyroid, a highly immunogenic vaccine expressing E7 only induces low E7-specific CD8(+) T-cell responses, which fail to affect the size of the tumors. In contrast, the same type of vaccine expressing E7 fused to herpes simplex virus (HSV)-1 glycoprotein D (gD), an antagonist of the coinhibitory B- and T-lymphocyte attenuator (BTLA)/CD160-herpes virus entry mediator (HVEM) pathways, stimulates potent E7-specific CD8(+) T-cell responses, which can be augmented by repeated vaccination, resulting in initial regression of even large tumor masses in all mice with sustained regression in more than half of them. These results indicate that active immunization concomitantly with blockade of the immunoinhibitory HVEM-BTLA/CD160 pathways through HSV-1 gD may result in sustained tumor regression.

  15. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination.

  16. Nanosuspension for the delivery of a poorly soluble anti-cancer kinase inhibitor.

    Science.gov (United States)

    Danhier, Fabienne; Ucakar, Bernard; Vanderhaegen, Marie-Lyse; Brewster, Marcus E; Arien, Tina; Préat, Véronique

    2014-09-01

    We hypothesized that nanosuspensions could be promising for the delivery of the poorly water soluble anti-cancer multi-targeted kinase inhibitor, MTKi-327. Hence, the aims of this work were (i) to evaluate the MTKi-327 nanosuspension for parenteral and oral administrations and (ii) to compare this nanosuspension with other nanocarriers in terms of anti-cancer efficacy and pharmacokinetics. Therefore, four formulations of MTKi-327 were studied: (i) PEGylated PLGA-based nanoparticles, (ii) self-assembling PEG₇₅₀-p-(CL-co-TMC) polymeric micelles, (iii) nanosuspensions of MTKi-327; and (iv) Captisol solution (pH=3.5). All the nano-formulations presented a size below 200 nm. Injections of the highest possible dose of the three nano-formulations did not induce any side effects in mice. In contrast, the maximum tolerated dose of the control Captisol solution was 20-fold lower than its highest possible dose. The highest regrowth delay of A-431-tumor-bearing nude mice was obtained with MTKi-327 nanosuspension, administered intravenously, at a dose of 650 mg/kg. After intravenous and oral administration, the AUC₀₋∞ of MTKi-327 nanosuspension was 2.4-fold greater than that of the Captisol solution. Nanosuspension may be considered as an effective anti-cancer MTKi-327 delivery method due to (i) the higher MTKi-327 maximum tolerated dose, (ii) the possible intravenous injection of MTKi-327, (iii) its ability to enhance the administered dose and (iv) its higher efficacy.

  17. Readability Comparison of Pro- and Anti-Cancer Screening Online Messages in Japan

    Science.gov (United States)

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2016-12-01

    Background: Cancer screening rates are lower in Japan than those in western countries. Health professionals publish procancer screening messages on the internet to encourage audiences to undergo cancer screening. However, the information provided is often difficult to read for lay persons. Further, anti-cancer screening activists warn against cancer screening with messages on the Internet. We aimed to assess and compare the readability of pro- and anti-cancer screening online messages in Japan using a measure of readability. Methods: We conducted web searches at the beginning of September 2016 using two major Japanese search engines (Google.jp and Yahoo!.jp). The included websites were classified as “anti”, “pro”, or “neutral” depending on the claims, and “health professional” or “non-health professional” depending on the writers. Readability was determined using a validated measure of Japanese readability. Statistical analysis was conducted using two-way ANOVA. Results: In the total 159 websites analyzed, anti-cancer screening online messages were generally easier to read than pro-cancer screening online messages, Messages written by health professionals were more difficult to read than those written by non-health professionals. Claim × writer interaction was not significant. Conclusion: When health professionals prepare pro-cancer screening materials for publication online, we recommend they check for readability using readability assessment tools and improve text for easy comprehension when necessary.

  18. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.

    Science.gov (United States)

    Brück, Thomas B; Brück, Dieter W

    2011-02-01

    Mitoxantrone (MH(2)X), an anthraquinone-type anti-cancer agent used clinically in the treatment of human malignancies, is oxidatively activated by the peroxidase/H(2)O(2) enzyme system. In contrast to the enzymatic mechanisms of drug oxidation, the chemical transformations of MH(2)X are not well described. In this study, MH(2)X metabolites, produced by the horseradish, lacto- or lignin peroxidase (respectively HRP, LPO and LIP)/H(2)O(2) system, were investigated by steady-state spectrokinetic and HPLC-MS methods. At an equimolar mitoxantrone/H(2)O(2) ratio, the efficacy of the enzyme-catalyzed oxidation of mitoxantrone decreased in the following order: LPO > HRP > LIP, which accorded with the decreasing size of the substrate access channel in the enzyme panel examined. In all cases, the central drug oxidation product was the redox-active cyclic metabolite, hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione (MH(2)), previously identified in the urine of mitoxantrone-treated patients. As the reaction progressed, data gathered in this study suggests that further oxidation of the MH(2) side-chains occurred, yielding the mono- and dicarboxylic acid derivatives respectively. Based on the available data a further MH(2) derivative is proposed, in which the amino-alkyl side-chain(s) are cyclised. With increasing H(2)O(2) concentrations, these novel MH(2) derivatives were oxidised to additional metabolites, whose spectral properties and MS data indicated a stepwise destruction of the MH(2) chromophore due to an oxidative cleavage of the 9,10-anthracenedione moiety. The novel metabolites extend the known sequence of peroxidase-induced mitoxantrone metabolism, and may contribute to the cytotoxic effects of the drug in vivo. Based on the structural features of the proposed MH(2) oxidation products we elaborate on various biochemical mechanisms, which extend the understanding of mitoxantrone's pharmaceutical action and its clinical effectiveness with a particular focus on

  19. Immunotherapy in Lung Cancer.

    Science.gov (United States)

    Castellanos, Emily H; Horn, Leora

    2016-01-01

    Lung cancer has not traditionally been viewed as an immune-responsive tumor. However, it is becoming evident that tumor-induced immune suppression is vital to malignant progression. Immunotherapies act by enhancing the patient's innate immune response and hold promise for inducing long-term responses in select patients with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Immune checkpoint inhibitors, in particular, inhibitors to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have shown promise in early studies and are currently in clinical trials in both small cell lung cancer and non-small cell lung cancer patients. Two large randomized phase III trials recently demonstrated superior overall survival (OS) in patients treated with anti-PD-1 therapy compared to chemotherapy in the second-line setting.

  20. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2015-07-01

    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  1. Checkpoint Blockade in Cancer Immunotherapy

    Science.gov (United States)

    Korman, Alan J.; Peggs, Karl S.; Allison, James P.

    2007-01-01

    The progression of a productive immune response requires that a number of immunological checkpoints be passed. Passage may require the presence of excitatory costimulatory signals or the avoidance of negative or coinhibitory signals, which act to dampen or terminate immune activity. The immunoglobulin superfamily occupies a central importance in this coordination of immune responses, and the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA-4):B7.1/B7.2 receptor/ligand grouping represents the archetypal example of these immune regulators. In part the role of these checkpoints is to guard against the possibility of unwanted and harmful self-directed activities. While this is a necessary function, aiding in the prevention of autoimmunity, it may act as a barrier to successful immunotherapies aimed at targeting malignant self-cells that largely display the same array of surface molecules as the cells from which they derive. Therapies aimed at overcoming these mechanisms of peripheral tolerance, in particular by blocking the inhibitory checkpoints, offer the potential to generate antitumor activity, either as monotherapies or in synergism with other therapies that directly or indirectly enhance presentation of tumor epitopes to the immune system. Such immunological molecular adjuvants are showing promise in early clinical trials. This review focuses on the results of the archetypal example of checkpoint blockade, anti-CTLA-4, in preclinical tumor models and clinical trials, while also highlighting other possible targets for immunological checkpoint blockade. PMID:16730267

  2. Genomic determinants of cancer immunotherapy.

    Science.gov (United States)

    Miao, Diana; Van Allen, Eliezer M

    2016-08-01

    Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology.

  3. Immunotherapy for Bone and Soft Tissue Sarcomas

    Directory of Open Access Journals (Sweden)

    Takenori Uehara

    2015-01-01

    Full Text Available Although multimodal therapies including surgery, chemotherapy, and radiotherapy have improved clinical outcomes of patients with bone and soft tissue sarcomas, the prognosis of patients has plateaued over these 20 years. Immunotherapies have shown the effectiveness for several types of advanced tumors. Immunotherapies, such as cytokine therapies, vaccinations, and adoptive cell transfers, have also been investigated for bone and soft tissue sarcomas. Cytokine therapies with interleukin-2 or interferons have limited efficacy because of their cytotoxicities. Liposomal muramyl tripeptide phosphatidylethanolamine (L-MTP-PE, an activator of the innate immune system, has been approved as adjuvant therapeutics in combination with conventional chemotherapy in Europe, which has improved the 5-year overall survival of patients. Vaccinations and transfer of T cells transduced to express chimeric antigen receptors have shown some efficacy for sarcomas. Ipilimumab and nivolumab are monoclonal antibodies designed to inhibit immune checkpoint mechanisms. These antibodies have recently been shown to be effective for patients with melanoma and also investigated for patients with sarcomas. In this review, we provide an overview of various trials of immunotherapies for bone and soft tissue sarcomas, and discuss their potential as adjuvant therapies in combination with conventional therapies.

  4. DC-based immunotherapy for hematological malignancies.

    Science.gov (United States)

    Kitawaki, Toshio

    2014-02-01

    Great advances have been made in the treatment of hematological malignancies, but achieving a definitive cure remains an elusive goal for the majority of patients. Antigen-specific tumor immunotherapy has the potential to improve clinical outcome in patients with such diseases by eradicating chemotherapy-resistant tumor cell clones without damaging normal tissues. Dendritic cells (DCs) serve as an essential link between the innate and the adaptive immune systems, acting as key controllers of antigen-specific T cell responses. Molecular identification of tumor-specific antigens recognized by T lymphocytes and technical advances in ex vivo generation of human DCs has enabled us to develop DC-based tumor immunotherapies (also called "DC vaccines"). To date, a large number of clinical trials of DC vaccines have been conducted for a variety of tumors, including hematological malignancies. Overall, these trials have demonstrated that DC vaccines have excellent safety profiles, moderate immunological activity, and mild clinical efficacy. To establish a role for DC vaccines in the treatment of hematological malignancies, we need both to define patient populations that can obtain clinical benefit from DC vaccines and to develop combination therapies that augment clinical efficacy of DC vaccines. In this review, I will describe current status of DC-based immunotherapy for hematological malignancies, and discuss future perspectives in this field.

  5. Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Giulia Pinton

    Full Text Available BACKGROUND: PI3K/AKT signalling pathway is aberrantly active and plays a critical role for cell cycle progression of human malignant pleural mesothelioma (MMe cells. AKT is one of the important cellular targets of perifosine, a novel bio-available alkylphospholipid that has displayed significant anti-proliferative activity in vitro and in vivo in several human tumour model systems and is currently being tested in clinical trials. METHODS: We tested Perifosine activity on human mesothelial cells and different mesothelioma cell lines, in order to provide evidence of its efficacy as single agent and combined therapy. RESULTS: We demonstrate here that perifosine, currently being evaluated as an anti-cancer agent in phase 1 and 2 clinical trials, caused a dose-dependent reduction of AKT activation, at concentrations causing MMe cell growth arrest. In this study we firstly describe that MMe cells express aside from AKT1 also AKT3 and that either the myristoylated, constitutively active, forms of the two proteins, abrogated perifosine-mediated cell growth inhibition. Moreover, we describe here a novel mechanism of perifosine that interferes, upstream of AKT, affecting EGFR and MET phosphorylation. Finally, we demonstrate a significant increase in cell toxicity when MMe cells were treated with perifosine in combination with cisplatin. CONCLUSIONS: This study provides a novel mechanism of action of perifosine, directly inhibiting EGFR/MET-AKT1/3 axis, providing a rationale for a novel translational approach to the treatment of MMe.

  6. Targeted immunotherapy in Hodgkin lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin

    2015-01-01

    In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13.......In this issue of Blood, Rothe et al introduce a new principle of targeted Hodgkin lymphoma (HL) immunotherapy in their report from a phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13....

  7. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy.

    Science.gov (United States)

    Anguille, Sébastien; Smits, Evelien L; Bryant, Christian; Van Acker, Heleen H; Goossens, Herman; Lion, Eva; Fromm, Phillip D; Hart, Derek N; Van Tendeloo, Viggo F; Berneman, Zwi N

    2015-10-01

    Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.

  8. Anti-cancer and anti-oxidant efficacies of wild ginseng and cultivated wild ginseng of Korea and China

    Directory of Open Access Journals (Sweden)

    Young-Min,Ahn

    2007-02-01

    Full Text Available Objectives : The aim of this study was to verify anti-cancer and anti-oxidant efficacies of Korean wild ginseng and cultivated wild ginseng of Korea and China. Methods : For the measurement of anti-oxidation, SOD-like activity was evaluated using xanthine oxidase reduction method under in vitro environment. Subcutaneous and abdominal cancer were induced using CT-26 human colon cancer cells for the measurement of growth inhibition of cancer cells and differences in survival rate. Results : 1. Measurement of anti-oxidant activity of ginseng, Chinese and Korean cultivated wild ginseng, and natural wild ginseng samples showed concentration dependent anti-oxidant activity in HX/XOD system. Anti-oxidant activity showed drastic increase at 1mg/ml in all samples. 2. For the evaluation of growth inhibition of cancer cells after hypodermic implantation of CT-26 cancer cells in the peritoneal cavity of mice, Chinese and Korean cultivated wild ginseng and natural wild ginseng groups showed significant inhibition of tumor growth from the 12th day compared to the control group. Similar inhibitory effects were also shown on the 15th and 18th days. But there was no significant difference between the experiment groups. 3. For the observation of increase in survival rate of the natural wild ginseng group, CT-26 cancer cells were implanted in the peritoneal cavity of mice.

  9. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel

    2017-01-01

    could be a way to improve cancer treatment either in the form of a vaccine with co-formulated antigen or as an immunotherapeutic vector to boost monocyte and DC activity in combination with other treatment protocols such as chemotherapy or radiotherapy. Cancer immunotherapy is a powerful new tool...

  10. Human recombinant RNASET2: A potential anti-cancer drug

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  11. Human recombinant RNASET2: A potential anti-cancer drug.

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate.

  12. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ram Kumar, Ram Mohan, E-mail: rkumar@research.balgrist.ch; Fuchs, Bruno [Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008 (Switzerland)

    2015-05-13

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.

  13. Folate receptor targeted liposomes encapsulating anti-cancer drugs.

    Science.gov (United States)

    Chaudhury, Anumita; Das, Surajit

    2015-01-01

    Among all available lipid based nanoparticulate systems, the success of liposomal drug delivery system is evident by the number of liposomal products available in the market or under advanced stages of preclinical and clinical trials. Liposome has the ability to deliver chemotherapeutic agents to the targeted tissues or even inside the cancerous cells by enhanced intracellular penetration or improved tumour targeting. In the last decade, folate receptor mediated tumour targeting has emerged as an attractive alternative method of active targeting of cancer cells through liposomes due to its numerous advantages over other targeting methods. Folate receptors, also known as folate binding proteins, allow the binding and internalization of folate or folic acid into the cells by a method called folate receptor mediated endocytosis. They have restricted presence in normal cells and are mostly expressed during malignant transformation. In this review article, folate receptor targeting capability of liposomes has been described. This review article has focussed on the different cancer drugs which have been encapsulated in folate receptor targeted liposomes and their in vitro as well as in vivo efficacies in several tumour models.

  14. HDAC Inhibitors as Novel Anti-Cancer Therapeutics.

    Science.gov (United States)

    De Souza, Cristabelle; Chatterji, Biswa Prasun

    2015-01-01

    Malignant growth of cells is a condition characterized by unchecked cellular proliferation, genetic instability and epigenetic dysregulation. Up-regulated HDAC (Histone Deacetylase) enzyme activity is associated with a closed chromatin assembly and subsequent gene repression, forming a characteristic feature of malignantly transformed cells. Novel therapeutics are now targeting the zinc containing HDAC enzymes for treating various types of cancers. Recently, a spate of drugs acting via HDAC inhibition have been undergoing clinical trials and several patents present exciting molecules like PCI-24781 (Abexinostat), ITF- 2357 (Givinostat); MS-275 (Entinostat), MGCD 0103 (Mocetinostat), LBH-589 (Panobinostat), FK228 (Romidepsin), PXD-101 (Belinostat) and Valproic Acid to be used as alternatives or adjuvants to traditional chemotherapeutics. However, only three HDAC inhibitors have acquired FDA approval till date. Recently, PXD-101 obtained FDA approval for the treatment of Refractory or Relapsed Peripheral T cell lymphoma. The current article reviews patents that have introduced novel molecules that are HDAC isoform specific, superior to first generation HDAC inhibitors like SAHA (Suberoylanilide Hydroxamic Acid) and TSA (Trichostatin A) and can be modified structurally to reduce toxic side effects and increase specificity. These molecules can combine the best characteristics of an ideal HDAC inhibiting drug either as monotherapy or in combinatorial therapy for cancer treatment thus, indicating promise to be included in the next generation of target specific HDAC inhibiting drugs.

  15. Characterization of a novel anti-cancer compound for astrocytomas.

    Directory of Open Access Journals (Sweden)

    Sang Y Lee

    Full Text Available The standard chemotherapy for brain tumors is temozolomide (TMZ, however, as many as 50% of brain tumors are reportedly TMZ resistant leaving patients without a chemotherapeutic option. We performed serial screening of TMZ resistant astrocytoma cell lines, and identified compounds that are cytotoxic to these cells. The most cytotoxic compound was an analog of thiobarbituric acid that we refer to as CC-I. There is a dose-dependent cytotoxic effect of CC-I in TMZ resistant astrocytoma cells. Cell death appears to occur via apoptosis. Following CC-I exposure, there was an increase in astrocytoma cells in the S and G2/M phases. In in vivo athymic (nu/nu nude mice subcutaneous and intracranial tumor models, CC-I completely inhibited tumor growth without liver or kidney toxicity. Molecular modeling and enzyme activity assays indicate that CC-I selectively inhibits topoisomerase IIα similar to other drugs in its class, but its cytotoxic effects on astrocytoma cells are stronger than these compounds. The cytotoxic effect of CC-I is stronger in cells expressing unmethylated O6-methylguanine methyltransferase (MGMT but is still toxic to cells with methylated MGMT. CC-I can also enhance the toxic effect of TMZ on astrocytoma when the two compounds are combined. In conclusion, we have identified a compound that is effective against astrocytomas including TMZ resistant astrocytomas in both cell culture and in vivo brain tumor models. The enhanced cytotoxicity of CC-I and the safety profile of this family of drugs could provide an interesting tool for broader evaluation against brain tumors.

  16. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer.

    Science.gov (United States)

    Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang

    2017-01-05

    The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy.

  17. Therapeutic Response in Patients with Advanced Malignancies Treated with Combined Dendritic Cell–Activated T Cell Based Immunotherapy and Intensity–Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hasumi, Kenichiro; Aoki, Yukimasa; Watanabe, Ryuko [Hasumi International Research Foundation, Tokyo Research Center, 1-44-6 Asagaya-kita, Suginami- ku, Tokyo 166-0001 (Japan); Hankey, Kim G.; Mann, Dean L., E-mail: dmann001@umaryland.edu [Department of Pathology, University of Maryland School of Medicine, MSTF Room 700, 10 South Pine Street, Baltimore, Maryland 21040 (United States)

    2011-04-28

    Successful cancer immunotherapy is confounded by the magnitude of the tumor burden and the presence of immunoregulatory elements that suppress an immune response. To approach these issues, 26 patients with advanced treatment refractory cancer were enrolled in a safety/feasibility study wherein a conventional treatment modality, intensity modulated radiotherapy (IMRT), was combined with dendritic cell-based immunotherapy. We hypothesized that radiation would lower the tumor burdens, decrease the number/function of regulatory cells in the tumor environment, and release products of tumor cells that could be acquired by intratumoral injected immature dendritic cells (iDC). Metastatic lesions identified by CT (computed tomography) were injected with autologous iDC combined with a cytokine-based adjuvant and KLH (keyhole limpet hemocyanin), followed 24 h later by IV-infused T-cells expanded with anti-CD3 and IL-2 (AT). After three to five days, each of the injected lesions was treated with fractionated doses of IMRT followed by another injection of intratumoral iDC and IV-infused AT. No toxicity was observed with cell infusion while radiation-related toxicity was observed in seven patients. Five patients had progressive disease, eight demonstrated complete resolution at treated sites but developed recurrent disease at other sites, and 13 showed complete response at various follow-up times with an overall estimated Kaplan-Meier disease-free survival of 345 days. Most patients developed KLH antibodies supporting our hypothesis that the co-injected iDC are functional with the capacity to acquire antigens from their environment and generate an adaptive immune response. These results demonstrate the safety and effectiveness of this multimodality strategy combining immunotherapy and IMRT in patients with advanced malignancies.

  18. Past, present and future targets for immunotherapy in ovarian cancer.

    Science.gov (United States)

    Schwab, Carlton L; English, Diana P; Roque, Dana M; Pasternak, Monica; Santin, Alessandro D

    2014-01-01

    Ovarian cancer is the leading cause of death from gynecologic malignancy in the US. Treatments have improved with conventional cytotoxic chemotherapy and advanced surgical techniques but disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. Ovarian cancer immunotherapy is targeting tumors through active, passive and adoptive approaches. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the different immunotherapies available for ovarian cancer as well as current ongoing studies and potential future directions.

  19. Th1 cytokine-based immunotherapy for cancer

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Xu

    2014-01-01

    Cytokine-based immunotherapy is executed by harnessing cytokines to activate the immune system to suppress tumors. Th1-type cytokines including IL-1, IL-2, IL-12 and granulocyte-macrophage colony-stimulating factor are potent stimulators of Th1 differentiation and Th1-based antitumor response. Many preclinical studies demonstrated the antitumor effects of Th1 cytokines but their clinical efficacy is limited. Multiple factors influence the efficacy of immunotherapy for tumors. For instance immunosuppressive cells in the tumor microenvironment can produce inhibitory cytokines which suppress antitumor immune response. Most studies on cytokine immunotherapy focused on how to boost Th1 response; many studies combined cytokine-based therapy with other treatments to reverse immunosuppression in tumor microenvironment. In addition, cytokines have pleiotropic functions and some cytokines show paradoxical activities under different settings. Better understanding the physiological and pathological functions of cytokines helps clinicians to design Th1-based cancer therapy in clinical practice.

  20. Recombinant allergens for pollen immunotherapy.

    Science.gov (United States)

    Wallner, Michael; Pichler, Ulrike; Ferreira, Fatima

    2013-12-01

    Specific immunotherapy (IT) represents the only potentially curative therapeutic intervention of allergic diseases capable of suppressing allergy-associated symptoms not only during treatment, but also after its cessation. Presently, IT is performed with allergen extracts, which represent a heterogeneous mixture of allergenic, as well as nonallergenic, compounds of a given allergen source. To overcome many of the problems associated with extract-based IT, strategies based on the use of recombinant allergens or derivatives thereof have been developed. This review focuses on recombinant technologies to produce allergy therapeuticals, especially for allergies caused by tree, grass and weed pollen, as they are among the most prevalent allergic disorders affecting the population of industrialized societies. The reduction of IgE-binding of recombinant allergen derivatives appears to be mandatory to increase the safety profile of vaccine candidates. Moreover, increased immunogenicity is expected to reduce the dosage regimes of the presently cumbersome treatment. In this regard, it has been convincingly demonstrated in animal models that hypoallergenic molecules can be engineered to harbor inherent antiallergenic immunologic properties. Thus, strategies to modulate the allergenic and immunogenic properties of recombinant allergens will be discussed in detail. In recent years, several successful clinical studies using recombinant wild-type or hypoallergens as active ingredients have been published and, currently, novel treatment forms with higher safety and efficacy profiles are under investigation in clinical trials. These recent developments are summarized and discussed.

  1. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    Science.gov (United States)

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound m

  2. Biologic Therapy (Immunotherapy) for Kidney Cancer

    Science.gov (United States)

    ... Stage for Kidney Cancer Kidney Cancer Treating Kidney Cancer Biologic Therapy (Immunotherapy) for Kidney Cancer The goal of biologic therapy ... Therapy for Kidney Cancer Targeted Therapies for Kidney Cancer Biologic Therapy (Immunotherapy) for Kidney Cancer Chemotherapy for Kidney Cancer Pain ...

  3. Sublingual Immunotherapy: Recent Advances

    Directory of Open Access Journals (Sweden)

    Enrico Compalati

    2013-01-01

    Full Text Available The practice of administering sublingual immunotherapy for respiratory allergy is gaining more and more diffusion worldwide as a consequence of the robust demonstration of clinical efficacy and safety provided by recent high-powered and well-designed studies, confirming for individual seasonal allergens the results of previous metanalyses in adult and pediatric populations. Preliminary evidence derives from recent rigorous trials on perennial allergens, like house dust mites, and specifically designed studies addressed the benefits on asthma. Emerging research suggests that SLIT may have a future role in other allergic conditions such as atopic dermatitis, food, latex and venom allergy. Efforts to develop a safer and more effective SLIT for inhalant allergens have led to the development of allergoids, recombinant allergens and formulations with adjuvants and substances targeting antigens to dendritic cells that possess a crucial role in initiating immune responses. The high degree of variation in the evaluation of clinical effects and immunological changes requires further studies to identify the candidate patients to SLIT and biomarkers of short and long term efficacy. Appropriate management strategies are urgently needed to overcome the barriers to SLIT compliance.

  4. Immunotherapy for malignant glioma

    Directory of Open Access Journals (Sweden)

    Carter M Suryadevara

    2015-01-01

    Full Text Available Malignant gliomas (MG are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM, the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.

  5. Detecting the effect of targeted anti-cancer medicines on single cancer cells using a poly-silicon wire ion sensor integrated with a confined sensitive window.

    Science.gov (United States)

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Lin, Jing-Jenn

    2012-10-01

    A mold-cast polydimethylsiloxane (PDMS) confined window was integrated with a poly-silicon wire (PSW) ion sensor. The PSW sensor surface inside the confined window was coated with a 3-aminopropyltriethoxysilane (γ-APTES) sensitive layer which allowed a single living cell to be cultivated. The change in the microenvironment due to the extracellular acidification of the single cell could then be determined by measuring the current flowing through the PSW channel. Based on this, the PSW sensor integrated with a confined sensitive window was used to detect the apoptosis as well as the effect of anti-cancer medicines on the single living non-small-lung-cancer (NSLC) cells including lung adenocarcinoma cancer cells A549 and H1299, and lung squamous-cell carcinoma CH27 cultivated inside the confined window. Single human normal cells including lung fibroblast cells WI38, lung fibroblast cells MRC5, and bronchial epithelium cell Beas-2B were tested for comparison. Two targeted anti-NSCLC cancer medicines, Iressa and Staurosporine, were used in the present study. It was found that the PSW sensor can be used to accurately detect the apoptosis of single cancer cells after the anti-cancer medicines were added. It was also found that Staurosporine is more effective than Iressa in activating the apoptosis of cancer cells.

  6. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    Science.gov (United States)

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  7. Innovative Strategies for Breast Cancer Immunotherapy

    Science.gov (United States)

    2014-09-01

    AWARD NUMBER: W81XWH-12-1-0223 TITLE: Innovative Strategies for Breast Cancer Immunotherapy ...studies (2). A promising approach in cancer treatment is adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells to redirect...multiple tissues. DISCUSSION Adoptive immunotherapy is a promising approach for the treatment of cancer , and observations from preclinical and

  8. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent

    Science.gov (United States)

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    Aim: The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Background: Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. Patients and methods: In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. Results: A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. Conclusion: According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport. PMID:27458512

  9. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  10. Emerging nanotechnologies for cancer immunotherapy.

    Science.gov (United States)

    Shukla, Sourabh; Steinmetz, Nicole F

    2016-05-01

    Founded on the growing insight into the complex cancer-immune system interactions, adjuvant immunotherapies are rapidly emerging and being adapted for the treatment of various human malignancies. Immune checkpoint inhibitors, for example, have already shown clinical success. Nevertheless, many approaches are not optimized, require frequent administration, are associated with systemic toxicities and only show modest efficacy as monotherapies. Nanotechnology can potentially enhance the efficacy of such immunotherapies by improving the delivery, retention and release of immunostimulatory agents and biologicals in targeted cell populations and tissues. This review presents the current status and emerging trends in such nanotechnology-based cancer immunotherapies including the role of nanoparticles as carriers of immunomodulators, nanoparticles-based cancer vaccines, and depots for sustained immunostimulation. Also highlighted are key translational challenges and opportunities in this rapidly growing field.

  11. Immunotherapy of distant metastatic disease

    DEFF Research Database (Denmark)

    Schadendorf, D; Algarra, S M; Bastholt, L

    2009-01-01

    Immunotherapy of metastatic melanoma consists of various approaches leading to specific or non-specific immunomodulation. The use of FDA-approved interleukin (IL)-2 alone, in combination with interferon alpha, and/or with various chemotherapeutic agents (biochemotherapy) is associated with signif......Immunotherapy of metastatic melanoma consists of various approaches leading to specific or non-specific immunomodulation. The use of FDA-approved interleukin (IL)-2 alone, in combination with interferon alpha, and/or with various chemotherapeutic agents (biochemotherapy) is associated...... antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA-4) or CD137 are discussed. Recent advances of intratumour gene transfer technologies and adoptive immunotherapy, which represents a promising although technically challenging direction, are also discussed....

  12. Current status of cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Kono K

    2014-04-01

    Full Text Available To prove clinical benefits of cancer vaccine is currently difficult, except for one phase III trial has documented improved overall survival with the vaccine, Sipuleucel‑T, although induction of anti-tumor immune responses through cancer vaccine is theoretically promising and would be straightforward. In contrast, immune checkpoint blockade with anti-CTLA4 mAb and anti-PD‑1 mAb has demonstrated clear evidence of objective responses including improved overall survival and tumor shrinkage, driving renewed enthusiasm for cancer immunotherapy in multi­ple cancer types. In addition, there is a promising novel cancer immunotherapy, CAR therapy—a personalized treatment that involves genetically modifying a patient’s T- cells to make them target tumor cells. We are now facing new era of cancer immunotherapy.

  13. Immunotherapy for Urothelial Carcinoma: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Taiji Tsukamoto

    2011-07-01

    Full Text Available Intravesical instillation of bacillus Calmette Guérin (BCG for the treatment of urothelial carcinoma (UC of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8+ T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.

  14. Advances in Immunotherapies for Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuan HE

    2014-03-01

    Full Text Available Globally, Lung cancer is the leading cause of cancer-related death of high morbidity and mortality with poor prognosis, which needs some more effective and less toxic therapies. The immunotherapies offer a novel approach for the treatment of patients with non-small cell lung cancer (NSCLC in both the adjuvant and palliative disease settings. A number of promising immunotherapies based on different mechanism have now been evaluated showing an increasing response rate. Moreover, further phase II/III clinical trials will be indicated to explore its value. These include checkpoint inhibitors (anti-CTLA4 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, active vaccination (L-BLP25 liposome vaccine, Belagenpumatucel-L vaccine, MAGE-A3 protein vaccine and adoptive vaccination (CIK cells. The purpose of this paper will draw a summary on the theory, clinical trials, toxicity and problems to be solved of the immunotherapies in NSCLC.

  15. Immunotherapy for Urothelial Carcinoma: Current Status and Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Hiroshi, E-mail: hkitamu@sapmed.ac.jp; Tsukamoto, Taiji [Department of Urology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8543 (Japan)

    2011-07-29

    Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8{sup +} T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.

  16. How can nanotechnology help membrane vesicle-based cancer immunotherapy development?

    Science.gov (United States)

    Tian, Xin; Zhu, Motao; Nie, Guangjun

    2013-01-01

    Exosomes are nanosized vesicles originating from endosomal compartments and secreted by most living cells. In the past decade, exosomes have emerged as potent tools for cancer immunotherapy due to their important roles in modulation of immune responses, and promising results have been achieved in exosome-based immunotherapy. The recent rapid progress of nanotechnology, especially on tailored design of nanocarriers for drug delivery based on both passive and active targeting strategies, sheds light on re-engineering native membrane vesicles for enhanced immune regulation and therapy. Applications of nanotechnology toolkits might provide new opportunity not only for value-added therapeutic or diagnostic strategies based on exosomes in cancer immunotherapy, but also new insights for biogenesis and biological relevance of membrane vesicles. This commentary focuses on the recent development and limitations of using exosomes in cancer immunotherapy and our perspectives on how nanomaterials with potential immune regulatory effects could be introduced into exosome-based immunotherapy.

  17. Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds.

    Science.gov (United States)

    Cerella, Claudia; Dicato, Mario; Jacob, Claus; Diederich, Marc

    2011-03-01

    Organic sulfur compounds (OSCs) derived from plants, fungi or bacteria can serve as chemopreventive and/or chemotherapeutic agents and have been attracting medical and research interest as a promising source for novel anti-cancer agents. Garlic, which has long been used as a medicinal plant in different cultures due to its multiple beneficial effects, contains a consistent number of OSCs, the majority of which are currently under investigation for their biological activities. Experimental animal and laboratory studies have shown strong evidence that garlic OSCs may affect cancer cells by promoting early mitotic arrest followed by apoptotic cell death without affecting healthy cells. The ability of OSCs to hinder cancer cell proliferation and viability tightly correlates with the length of the sulfur chain. Current data support a mechanism of mitotic arrest of cancer cells due to the alteration of the microtubule network, possibly as a consequence of the high reactivity of sulfur atoms against the thiol groups of different cellular macromolecules controlling crucial regulatory functions. Taken together, these findings indicate a promising potential for the use of garlic-derived sulfur compounds in chemoprevention and chemotherapy.

  18. Cancer immunotherapy using tumor cryoablation.

    Science.gov (United States)

    Sidana, Abhinav

    2014-01-01

    Cryoablation is increasingly being used as a primary treatment for localized cancers and as a salvage therapy for metastatic cancers. Anecdotal clinical reports and animal experiments have confirmed an induction of systemic antitumor immune response by tumor cryoablation. To capitalize on the stimulatory effects of cryoablation for cancer immunotherapy, this response must be intensified using other immunomodulatory agents. This article reviews the preclinical and clinical evidence and discusses the mechanism of the antitumor immune response generated by cryoablation. The rationale and evidence behind several immunotherapy approaches that can be combined with cryoablation to devise a cryoimmunotherapeutic strategy with a potential to impact the progression of metastatic disease are described.

  19. Hypoallergenic molecules for subcutaneous immunotherapy.

    Science.gov (United States)

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focus on the recent advances in a proof of concept study in food allergy, FAST (Food allergy specific immunotherapy), which may increase interest within the biomolecular and pharmaceutical industry to embark on similar projects of immunology driven precision medicine within the allergy field.

  20. Stable polymer micelle systems as anti-cancer drug delivery carriers

    Science.gov (United States)

    Zeng, Yi

    2005-07-01

    Several temporarily stable polymer micelle systems that might be used as ultrasonic-activated drug delivery carriers were synthesized and investigated. These polymeric micelle systems were PlurogelRTM, Tetronic RTM, poly(ethylene oxide)-b-poly(N-isopropylacrylamide) and poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n). In previous work in our lab, Pruitt et al. developed a stabilized drug carrier named PlurogelRTM [5, 6]. Unfortunately, the rate of the successful PlurogelRTM synthesis was only about 30% by simply following Pruitt's process. In this work, this rate was improved to 60% by combining the process of adding 0.15 M NaCl and/or 10 mul/ml n-butanol and by preheating the solution before polymerization. TetronicsRTM were proved not to be good candidates to form temporarily stable polymeric micelle system by polymerizing interpenetrating networks inside their micelle cores. Tetronic micelle systems treated by this process still were not stable at concentrations below their critical micelle concentration (CMC). Poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-N,N-bis(acryloyl)cystamine micelle-like nanoparticles were developed and characterized. When the N,N-bis(acryloyl)cystamine (BAC) was from 0.2 wt% to 0.75 wt% of the mass of poly(N-isopropylacrylamide), diameters of the nanoparticles at 40°C were less than 150 nm. The cores of the nanoparticles were hydrophobic enough to sequester 1,6-diphenylhexatriene (DPH) and the anti-cancer drug doxorubicin (DOX). Nanoparticles with 0.5 wt% BAC stored at room temperature in 0.002 mg/ml solutions were stable for up to two weeks. Poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n) micelle systems were synthesized and characterized. The degree of polymerization of lactate side group, n, was 3 or 5. The copolymers with N-isopropylacrylamide:2-hydroxyethyl methacrylate-lactate3: poly(ethylene oxide) (NIPAAm:HEMA-lactate 3:PEO) ratios of

  1. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology

    Science.gov (United States)

    Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei

    2016-01-01

    Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718

  2. 含黄酮类中药的抗癌抗肿瘤作用研究概况%The General Research on Effects of Flavonoids Ingredients of Chinese Herbs on Anti-cancer

    Institute of Scientific and Technical Information of China (English)

    王博

    2012-01-01

    黄酮类化合物是自然界中广泛存在的一大类化合物,具有多种多样的生物学活性,其抗癌抗肿瘤作用是目前的研究热点,它在中草药中分布,引来国内外学者对中草药中黄酮类成分的研究兴趣,发现其抗癌抗肿瘤作用与抗氧化、抗自由基、抑制癌细胞生长、抗致癌因子、调节免等作用相关.中草药中白花蛇舌草、陈皮、黄芩、夏枯草、半枝莲等含有较高的黄酮类成分,本文将对中草药中黄酮类成分的抗癌抗肿瘤作用进介绍.%Flavonoids is widespread compounds with various biological activities, its anti-cancer effects are the research hot-spot recently. It also has been greatly impressed by considerable domestic and foreign scientists due to the bioactivities of Flavonoids ingredients of Chinese herbs on anti-cancer. Its anti-cancer effect relates to antioxidation, inhibiting proliferation, anti-cancerigenic factor, mediated immune. Flavonoids distribute in many Chinese herbs, such as Hedyotis diffusa, Citrus, Scutellaria, Common Selfheal Fruit-Spike, Sculellaria barbata. This article introduces the effects of Flavonoids ingredients of Chinese herbs on anti-cancer.

  3. Glucagon-like peptide-2 (GLP-2) response to enteral intake in children during anti-cancer treatment

    DEFF Research Database (Denmark)

    Andreassen, B U; Paerregaard, A; Schmiegelow, K

    2005-01-01

    BACKGROUND: Intestinal dysfunction is frequent in cancer and during anti-cancer treatment. Glucagon-like peptide-2 (GLP-2) is secreted in a nutrition-dependent manner from the intestinal enteroendocrine L-cells. It accelerates crypt cell proliferation and nutrient absorption, inhibits enterocyte...... apoptosis and decreases mucosal permeability. Lack of GLP-2 may increase the risk of malabsorption and intestinal bacterial translocation. The aim of this study is to evaluate meal stimulated secretion of GLP-2 in children with cancer undergoing anti-cancer treatment. METHODS: Plasma-GLP-2 analysis after...... an overnight fast and 1 hour after intake of a mixed test meal. Data on gastrointestinal toxicity, blood neutrophile counts and food records were included in the analysis. RESULTS: Forty-four meal stimulation tests were performed in 25 children (median age, 6.0 years; range, 2.5-19) during anti-cancer...

  4. Immunotherapy and immunoescape in colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Immunotherapy encompasses a variety of interventions and techniques with the common goal of eliciting tumor cell destructive immune responses. Colorectal carcinoma often presents as metastatic disease that impedes curative surgery. Novel strategies such as active immunization with dendritic cells (DCs), gene transfer of cytokines into tumor cells or administration of immunostimulatory monoclonal antibodies (such as anti-CD137 or anti-CTLA-4) have been assessed in preclinical studies and are at an early clinical development stage. Importantly, there is accumulating evidence that chemotherapy and immunotherapy can be combined in the treatment of some cases with colorectal cancer, with synergistic potentiation as a result of antigens cross-presented by dendritic cells and/or elimination of competitor or suppressive T lymphocyte populations (regulatory T-cells). However, genetic and epigenetic unstable carcinoma cells frequently evolve mechanisms of immunoevasion that are the result of either loss of antigen presentation, or an active expression of immunosuppressive substances. Some of these actively immunosuppressive mechanisms are inducible by cytokines that signify the arrival of an effector immune response. For example, induction of 2, 3 indoleamine dioxygenase (IDO) by IFNy in colorectal carcinoma cells. Combinational and balanced strategies fostering antigen presentation, T-cell costimulation and interference with immune regulatory mechanisms will probably take the stage in translational research in the treatment of colorectal carcinoma.

  5. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  6. Cancer immunotherapy: sipuleucel-T and beyond.

    Science.gov (United States)

    Hammerstrom, Aimee E; Cauley, Diana H; Atkinson, Bradley J; Sharma, Padmanee

    2011-08-01

    In April 2010, sipuleucel-T became the first anticancer vaccine approved by the United States Food and Drug Administration. Different from the traditional chemotherapy agents that produce widespread cytotoxicity to kill tumor cells, anticancer vaccines and immunotherapies focus on empowering the immune system to overcome the tumor. The immune system consists of innate and adaptive components. The CD4(+) and CD8(+) T cells are the most crucial components of the adaptive arm of the immune system that act to mediate antitumor responses. However, T-cell responses are regulated by intrinsic and extrinsic mechanisms, which may interfere with effective antitumor responses. Many anticancer immunotherapies use tumor-associated antigens as vaccines in order to stimulate an immune response against tumor cells. Sipuleucel-T is composed of autologous mononuclear cells incubated with a fusion protein consisting of a common prostate cancer antigen (prostatic acid phosphatase) linked to an adjuvant (granulocyte-macrophage colony-stimulating factor). It is postulated that when the vaccine is infused into the patient, the activated antigen-presenting cells displaying the fusion protein will induce an immune response against the tumor antigen. In a recent randomized, double-blind, placebo-controlled, phase III clinical trial, sipuleucel-T significantly improved median overall survival by 4.1 months in men with metastatic castration-resistant prostate cancer compared with placebo. Although overall survival was improved, none of the three phase III clinical trials found a significant difference in time to disease progression. This, along with cost and logistic issues, has led to an active discussion. Although sipuleucel-T was studied in the metastatic setting, its ideal place in therapy is unknown, and clinical trials are being conducted in patients at different stages of disease and in combination with radiation therapy, antiandrogen therapy, and chemotherapy. Various other anticancer

  7. Immunotherapy and gene therapy.

    Science.gov (United States)

    Simpson, Elizabeth

    2004-02-01

    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  8. Hypoallergenic molecules for subcutaneous immunotherapy

    DEFF Research Database (Denmark)

    Jongejan, Laurian; van Ree, Ronald; Poulsen, Lars K

    2016-01-01

    Although a large part of the population suffers from allergies, a cure is not yet available. Allergen-specific immunotherapy (AIT) offers promise for these patients. AIT has proven successful in insect and venom allergies; however, for food allergy this is still unclear. In this editorial we focu...

  9. Integrated Immunotherapy for Breast Cancer

    Science.gov (United States)

    2013-09-01

    CSF. J Clin Invest 117, 1902 (Jul, 2007). 32. H. Yamaguchi et al., Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus . J Leukoc Biol 83, 1300 (May, 2008). ...comprehensive and systematic manner is the underlying principle of my goal to develop ’rational combination immunotherapy’ for breast cancer, one

  10. Allergen immunotherapy for allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dhami, Sangeeta; Nurmatov, Ulugbek; Roberts, Graham;

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Management of Allergic Rhinoconjunctivitis. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT...

  11. Engineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy

    Science.gov (United States)

    Lee, Bo-Ram; Ko, Ho Kyung; Ryu, Ju Hee; Ahn, Keum Young; Lee, Young-Ho; Oh, Se Jin; Na, Jin Hee; Kim, Tae Woo; Byun, Youngro; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Jeewon

    2016-01-01

    Efficient delivery of tumor-specific antigens (TSAs) to lymph nodes (LNs) is essential to eliciting robust immune response for cancer immunotherapy but still remains unsolved. Herein, we evaluated the direct LN-targeting performance of four different protein nanoparticles with different size, shape, and origin [Escherichia coli DNA binding protein (DPS), Thermoplasma acidophilum proteasome (PTS), hepatitis B virus capsid (HBVC), and human ferritin heavy chain (hFTN)] in live mice, using an optical fluorescence imaging system. Based on the imaging results, hFTN that shows rapid LN targeting and prolonged retention in LNs was chosen as a carrier of the model TSA [red fluorescence protein (RFP)], and the flexible surface architecture of hFTN was engineered to densely present RFPs on the hFTN surface through genetic modification of subunit protein of hFTN. The RFP-modified hFTN rapidly targeted LNs, sufficiently exposed RFPs to LN immune cells during prolonged period of retention in LNs, induced strong RFP-specific cytotoxic CD8+ T cell response, and notably inhibited RFP-expressing melanoma tumor growth in live mice. This suggests that the strategy using protein nanoparticles as both TSA-carrying scaffold and anti-cancer vaccine holds promise for clinically effective immunotherapy of cancer. PMID:27725782

  12. Anti-Cancer Effect of Angelica Sinensis on Women’s Reproductive Cancer

    Directory of Open Access Journals (Sweden)

    Hong-Hong Zhu

    2012-06-01

    Full Text Available Objective: Danggui, the root of Angelica Sinensis, has traditionally been used for the treatment of women’s reproductive disorders in China for thousands of years. This study was to determine whether Danggui have potential anti-cancer effect on women’s cancer and its potential mechanism. Methods: Danggui was extracted by ethanol. The Cell Titer 96® Aqueous Non-Radioactive Cell Proliferation Assay was used to compare the effects of Danggui on human breast (MCF-7 and 7368 and cervical (CaSki and SiHa cancer cells with its effects on normal fibroblasts (HTB-125. A revised Ames test was used to test for antimutagenicity. The standard strains of Salmonella typhimarium (TA 100 and 102 were used in the test. Methyl methane sulfonate (MMS and UV light were used as positive mutagen controls and ethanol and double distilled water (DDW as controls. The SAS statistical software was used to analyze the data. Results: Danggui was found to be much more toxic to all cancer cell lines tested than to normal fibroblasts. There was a significant negative dose-effect relationship between Danggui and cancer cell viability. Average viability of MCF-7 was 69.5%, 18.4%, 5.7%, 5.7%, and 5.0% of control for Danggui doses 0.07, 0.14, 0.21, 0.32, and 0.64 ug/ul, respectively, with a Ptrend < 0.0001. Half maximal inhibitory dose (ID50 of Danggui for cancer cell lines MCF-7, CaSki, SiHa and CRL-7368 was 0.10, 0.09, 0.10 and 0.07 ug/ul, Functional Foods in Health and Disease 2012, 2(6:242-250respectively. For the normal fibroblasts, ID50 was 0.58 ug/ul. At a dose of 0.32 ug/ul, Danggui killed over 90% of the cells in each cancer cell line, but at the same dose, only 12.3 % of the normal HTB-125 cells were killed. Revertants per plate of TA 100 decreased with the introduction of increasing doses of Danggui extracts with a Ptrend < 0.0001 when UV light was used as a mutagen. There was no difference in revertants per plate between ethanol and DDW control groups. Conclusions

  13. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    Science.gov (United States)

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy.

  14. Development of a Novel Anti-HIF-1α Screening System Coupled with Biochemical and Biological Validation for Rapidly Selecting Potent Anti-Cancer Compounds.

    Science.gov (United States)

    Lu, Yi; Madu, Chikezie; Masters, Jordan; Lu, Andrew; Li, Liyuan

    2014-01-01

    Breast cancer (BCa) is the most diagnosed cancer and the second leading cause of cancer death in the American women. Adaptation to the hypoxic environment seen in solid tumors is critical for tumor cell survival and growth. The activation of hypoxia inducible factor-1 alpha (HIF-1α), an important master transcriptional factor that is induced and stabilized by intratumoral hypoxia, stimulates a group of HIF-1α-regulated genes including vascular endothelial growth factor (VEGF), leading tumor cells towards malignant progression. Therefore, a promising therapeutic approach to cancer treatment is to target HIF-1α. The goal of this project was to develop and validate a screening system coupled with secondary screen/validation process that has the capability to screen large numbers of potential anti-cancer small-molecule compounds based on their anti-HIF-1α activities. Breast cancer MDA-231 cells were used as the model to select potent anti-HIF-1α compounds by their abilities to inhibit transactivation of a VEGF promoter fused to a luciferase reporter gene under hypoxia. Positive compounds were then validated by a series of assays that confirm compounds' anti-HIF-1α activities including measurement of HIF-1α downstream VEGF gene expression and angiogenic ability of BCa cells. Results of our pilot screening demonstrate that this prototype screening coupled with validation system can effectively select highly potent anti-HIF-1α agents from the compound library, suggesting that this prototype screen system has the potential to be developed into a high-throughput screen (HTS) coupled with automated validation process for the screening and identification of novel and effective anti-cancer drugs based on anti-HIF-1α mechanism.

  15. Immunotherapy Treatments of Warm Autoimmune Hemolytic Anemia

    Directory of Open Access Journals (Sweden)

    Bainan Liu

    2013-01-01

    Full Text Available Warm autoimmune hemolytic anemia (WAIHA is one of four clinical types of autoimmune hemolytic anemia (AIHA, with the characteristics of autoantibodies maximally active at body temperature. It produces a variable anemia—sometimes mild and sometimes severe. With respect to the absence or presence of an underlying condition, WAIHA is either idiopathic (primary or secondary, which determines the treatment strategies in practice. Conventional treatments include immune suppression with corticosteroids and, in some cases, splenectomy. In recent years, the number of clinical studies with monoclonal antibodies and immunosuppressants in the treatment of WAIHA increased as the knowledge of autoimmunity mechanisms extended. This thread of developing new tools of treating WAIHA is well exemplified with the success in using anti-CD20 monoclonal antibody, Rituximab. Following this success, other treatment methods based on the immune mechanisms of WAIHA have emerged. We reviewed these newly developed immunotherapy treatments here in order to provide the clinicians with more options in selecting the best therapy for patients with WAIHA, hoping to stimulate researchers to find more novel immunotherapy strategies.

  16. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    Science.gov (United States)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  17. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    Science.gov (United States)

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  18. The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation

    DEFF Research Database (Denmark)

    Groizeleau, Julie; Rybtke, Morten; Andersen, Jens Bo

    2016-01-01

    for their potential c-di-GMP-lowering effect using a recently developed c-di-GMP biosensor strain. Our screen identified the anti-cancerous drug doxorubicin as a potent c-di-GMP inhibitor. In addition, the drug decreased the transcription of many biofilm-related genes. However, despite its effect on the c...

  19. Application of nanostructured drug delivery systems in immunotherapy of cancer: a review.

    Science.gov (United States)

    Asadi, Nahideh; Davaran, Soodabeh; Panahi, Yunes; Hasanzadeh, Arash; Malakootikhah, Javad; Fallah Moafi, Hadi; Akbarzadeh, Abolfazl

    2017-02-01

    The cancer immunotherapy method uses the specificity of the immune system to provide a more effective than more conventional treatments, such as chemotherapy and radiotherapy. Immunotherapy has two main strategies (passive or active) to organize the immune system. Passive strategies use advantage of tumor-hyperpermeable cells, which have enhanced permeability and retention effects. Nanoparticles due to their better accumulation within tissues and cells of the immune system are well suitable for delivery of immune therapies such as vaccines or adjuvants. In this review, we explained application of nanotechnology in immunotherapy of cancer.

  20. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice

    Institute of Scientific and Technical Information of China (English)

    Pornprom Yoysungnoen; Ponthip Wirachwong; Chatchawan Changtam; Apichart Suksamrarn; Suthiluk Patumraj

    2008-01-01

    AIM: To determine the effect of tetrahydrocurcumin (THC) on tumor angiogenesis compared with curcumin (CUR) by using both in vitro and in vivo models of human hepatocellular carcinoma cell line (HepG2).METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay was used for testing the anti-proliferating activities of CUR and THC. In male BALB/c nude mice, 2 x 106 human HepG2 cells were inoculated onto a dorsal skin-fold chamber. One day after HepG2 inoculation, the experimental groups were fed oral daily with CUR or THC (300 mg/kg or 3000 mg/kg). On d 7, 14 and 21, the tumor microvasculature was observed using fluorescence videomicroscopy and capillary vascularity (CV) was measured.RESULTS: Pathological angiogenic features including microvascular dilatation, tortuosity, and hyper-permeability were observed. CUR and THC could attenuate these pathologic features. In HepG2-groups, the CV were significantly increased on d 7 (52.43%), 14 (69.17%), and 21 (74.08%), as compared to controls (33.04%,P < 0.001). Treatment with CUR and THC resulted in significant decrease in the CV (P < 0.005 and P < 0.001, respectively). In particular, the anti-angiogenic effects of CUR and THC were dose-dependent manner. However, the beneficial effect of THC treatment than CUR was observed, in particular, from the 21 d CV (44.96% and 52.86%, P < 0.05).CONCLUSION: THC expressed its anti-angiogenesis without any cytotoxic activities to HepG2 cells even at the highest doses. It is suggested that anti-angiogenic properties of CUR and THC represent a common potential mechanism for their anti-cancer actions.

  1. Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Ganesh Radhakrishnan

    2012-09-01

    Full Text Available Abstract Background Arachidonic acid metabolite, generated by cyclooxygenase (COX, is implicated in the colorectal cancer (CRC pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX pathway. Cancer cell viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2. Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if this process antagonizes the anti-cancer effect in colorectal cancer cells. Methods Three colorectal cancer cell lines (HCA7, HT-29 & LoVo expressing 5-LOX and different levels of COX-2 expression were used. The effects of aspirin (a non-selective COX inhibitor and rofecoxib (COX-2 selective on prostaglandin E2 (PGE2 and leukotriene B4 (LTB4 secretion were quantified by ELISA. Proliferation and viability were studied by quantifying double-stranded DNA (dsDNA content and metabolic activity. Apoptosis was determined by annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent substrate assay. Results COX inhibitors suppressed PGE2 production but enhanced LTB4 secretion in COX-2 expressing cell lines (P  Conclusions This study provides evidence of shunting between COX and 5-LOX pathways in the presence of unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors.

  2. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  3. Experimental studies of tumor immunotherapy. II. Tumor immunotherapy following tumor extirpation

    Directory of Open Access Journals (Sweden)

    Hayashi,Shigeo

    1976-06-01

    Full Text Available In order to approach human cancer immunotherapy, the author carried out the immunotherapy with BCG on mice having homotransplanted cancer, observed the posttransplantation results with lapse of time, conduced daily macrophage inhibition test (MI test and found the immunotherapy to be effective. At the same time the MI test proved to be a useful criterion in determining the course of cancer progress and effectiveness of the immunotherapy.

  4. [Cancer immunotherapy by immuno-checkpoint blockade].

    Science.gov (United States)

    Kawakami, Yutaka

    2015-10-01

    As cancer immunotherapies utilizing anti-tumor T-cell responses, immuno-checkpoint blockade and adoptive T-cell immunotherapy have recently achieved durable responses even in advanced cancer patients with metastases. Administration of antibodies on the T-cell surface, CTLA-4 and PD-1 (or PD-1 ligand PD-L1), resulted in tumor regression of not only melanoma and renal cell cancer which were known to be relatively sensitive to immunotherapy, but also various malignancies including lung, bladder, ovarian, gastric, and head and neck cancers, as well as hematological malignancies such as Hodgkin and B-cell malignant lymphomas. These findings have changed the status of immunotherapy in the development of cancer treatments. Currently, development of combinations employing cancer immunotherapy with immuno-checkpoint blockade, as well as personalized cancer immunotherapy based on the evaluation of pretreatment immune status, are in progress.

  5. Lentiviral vectors in cancer immunotherapy.

    Science.gov (United States)

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  6. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy

    Science.gov (United States)

    Swift, Stephanie L.; Stojdl, David F.

    2016-01-01

    Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system. PMID:26861383

  7. Immunotherapy of Head and Neck Cancer: Current and Future Considerations

    Directory of Open Access Journals (Sweden)

    Alexander D. Rapidis

    2009-01-01

    Full Text Available Patients with head and neck squamous cell carcinoma (HNSCC are at considerable risk for death, with 5-year relative survival rates of approximately 60%. The profound multifaceted deficiencies in cell-mediated immunity that persist in most patients after treatment may be related to the high rates of treatment failure and second primary malignancies. Radiotherapy and chemoradiotherapy commonly have severe acute and long-term side effects on immune responses. The development of immunotherapies reflects growing awareness that certain immune system deficiencies specific to HNSCC and some other cancers may contribute to the poor long-term outcomes. Systemic cell-mediated immunotherapy is intended to activate the entire immune system and mount a systemic and/or locoregional antitumor response. The delivery of cytokines, either by single cytokines, for example, interleukin-2, interleukin-12, interferon-, interferon-, or by a biologic mix of multiple cytokines, such as IRX-2, may result in tumor rejection and durable immune responses. Targeted immunotherapy makes use of monoclonal antibodies or vaccines. All immunotherapies for HNSCC except cetuximab remain investigational, but a number of agents whose efficacy and tolerability are promising have entered phase 2 or phase 3 development.

  8. Cancer immunotherapy: the beginning of the end of cancer?

    Science.gov (United States)

    Farkona, Sofia; Diamandis, Eleftherios P; Blasutig, Ivan M

    2016-05-05

    These are exciting times for cancer immunotherapy. After many years of disappointing results, the tide has finally changed and immunotherapy has become a clinically validated treatment for many cancers. Immunotherapeutic strategies include cancer vaccines, oncolytic viruses, adoptive transfer of ex vivo activated T and natural killer cells, and administration of antibodies or recombinant proteins that either costimulate cells or block the so-called immune checkpoint pathways. The recent success of several immunotherapeutic regimes, such as monoclonal antibody blocking of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD1), has boosted the development of this treatment modality, with the consequence that new therapeutic targets and schemes which combine various immunological agents are now being described at a breathtaking pace. In this review, we outline some of the main strategies in cancer immunotherapy (cancer vaccines, adoptive cellular immunotherapy, immune checkpoint blockade, and oncolytic viruses) and discuss the progress in the synergistic design of immune-targeting combination therapies.

  9. Dendritic-tumor fusion cells in cancer immunotherapy.

    Science.gov (United States)

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  10. [Scleroderma related to specific immunotherapy. A report of a case].

    Science.gov (United States)

    Morfín Maciel, Blanca María; Castillo Morfín, Blanca María

    2009-01-01

    It has been described two main phenotypes of helper T cells. On activation, the immune system develops the most effective Th response. Whereas Th1 cells promote cell-mediate immunity against intracellular pathogens and an over expression could favor autoimmune diseases; Th2 cells develop humoral immunity against extracellular pathogens promoting allergic response. Normally, the two profiles coexist in the same individual with different grades of expression. Recently, it has been described a new subset: Th17, which is related to tissue injury in autoimmune diseases. Then, allergic and autoimmune diseases result from an unbalanced response of the immune system. Allergen-specific immunotherapy is the only curative treatment of a specific allergy, which leads to a life-long tolerance against allergens. There are no controlled studies about the effectiveness or risks associated with allergen-specific immunotherapy in patients with autoimmune disorders. On the other hand, scleroderma is an autoimmune chronic systemic disorder of unknown etiology characterized by excess collagen deposition in the skin and viscera, along with vascular injury. We report a girl with allergic asthma and with a second degree family history of systemic sclerosis who developed localized scleroderma during allergen specific immunotherapy. Because allergy vaccination alter the balance between effector and regulatory T-cell populations, which regulate immune tolerance, a positive family history of autoimmunity in first or second degree, could be a contraindication for allergen-specific immunotherapy.

  11. Design, synthesis and in vitro evaluation of novel anti-cancer compounds

    OpenAIRE

    McCormack, Emmet Martin

    2003-01-01

    The purpose of this thesis was the design, synthesis and in vitro appraisal of a novel class of ITP/APN dual inhibitory compounds. Additionally, a class of novel biaryls, which were synthesised within the research group, were assayed to evaluate their ability to inhibit tubulin polymerisation (ITP). The introductory chapter commences with brief overview of the history of cancer and role of natural products in conventional chemotherapeutic regimes and adjuvant immunotherapies. Subsequently, th...

  12. Melanoma immunotherapy: dendritic cell vaccines

    OpenAIRE

    Lozada-Requena, Ivan; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Núñez, César; Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Aguilar, José Luis; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú.

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy.Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion oftumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diversetypes of cancer in humans and animal models. However, given the low efficiency they have shown, we must implementstrateg...

  13. Immunotherapy for metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Ellebaek, Eva; Andersen, Mads Hald; Svane, Inge Marie

    2012-01-01

    and presents the most interesting strategies investigated so far: cancer vaccination including antigen-defined vaccination and dendritic cell vaccination, chemo-immunotherapy, and adoptive cell transfer. Future treatment options as well as the possibility of combining existing therapies will be discussed along......Although no immunotherapeutic treatment is approved for colorectal cancer (CRC) patients, promising results from clinical trials suggest that several immunotherapeutic strategies may prove efficacious and applicable to this group of patients. This review describes the immunogenicity of CRC...

  14. Novel Approaches and Perspectives in Allergen Immunotherapy

    DEFF Research Database (Denmark)

    Hoffmann, Hans Jürgen; Valovirta, Erkka; Pfaar, Oliver;

    2017-01-01

    In this review we report on relevant current topics in allergen immunotherapy (AIT) which were broadly discussed during the 1(st) Aarhus Immunotherapy Symposium (Aarhus, Denmark) in December, 2015 by leading clinicians, scientists and industry representatives in the field. The aim of this symposium...... have substantiated proof of effectiveness of this disease-modifying therapeutic option. Novel treatments like peptide immunotherapy, intralymphatic immunotherapy and use of recombinant allergens herald a new age in which AIT may address treatment of allergy as a public health issue by reaching a large...

  15. Preparation of RGD-modified Long Circulating Liposome Loading Matrine, and its in vitro Anti-cancer Effects

    Directory of Open Access Journals (Sweden)

    Xiao-yan Liu, Li-ming Ruan, Wei-wei Mao, Jin-Qiang Wang, You-qing Shen, Mei-hua Sui

    2010-01-01

    Full Text Available Aim: To prepare RGD-modified long circulating liposome (LCL loading matrine (RGD-M-LCL to improve the tumor-targeting and efficacy of matrine. Methods: LCL which was prepared with HSPC, cholesterol, DSPE-PEG2000 and DSPE-PEG-MAL was modified with an RGD motif confirmed by high performance liquid chromatography (HPLC. The encapsulation efficiency of RGD-M-LCL was also detected by HPLC. MTT assay was used to examine the effects of RGD-M-LCL on the proliferation of Bcap-37, HT-29 and A375 cells. The percentage of apoptotic cells and morphological changes in Bcap-37 cells treated with RGD-M-LCL were detected by Annexin-V-FITC/PI affinity assay and observed under light microscope, respectively. Results: Spherical or oval single-chamber particles of uniform sizes with little agglutination or adhesion were observed under transmission electronic microscope. The RGD motif was successfully coupled to the DSPE-PEG-MAL on liposomes, as confirmed by HPLC. An encapsulation efficiency of 83.13% was obtained when the drug-lipid molar ratio was 0.1, and the encapsulation efficiency was negatively related to the drug-lipid ratio in the range of 0.1~0.4, and to the duration of storage. We found that, compared with free matrine, RGD-M-LCL had much stronger in vitro activity, leading to anti-proliferative and pro-apoptotic effects against cancer cells (P<0.01. Conclusion: RGD-M-LCL, a novel delivery system for anti-cancer drugs, was successfully prepared, and we demonstrated that the use of this material could augment the effects of matrine on cancer cells in vitro.

  16. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation.

    Science.gov (United States)

    Pandey, Harshita; Pandey, Pallavi; Singh, Sailendra; Gupta, Ruby; Banerjee, Suchitra

    2015-03-01

    Betulinic acid (BA), a pentacyclic triterpenoid, is gaining unmatched attention owing to its unique anti-cancer activity with selective melanoma growth inhibition without damaging normal cells. It is also well-known for its multifaceted pharmacokinetics, entailing antibacterial, antimalarial, anti-HIV and antioxidant merits. Considering the escalating demand with diminishing bioresource of this molecule, the present study was undertaken that revealed the untapped potentials of Ocimum calli, contrasting to that in the in vitro derived leaves, as effective production alternative of BA in three out of four tested species (i.e. Ocimum basilicum, Ocimum kilimandscharicum, Ocimum sanctum excluding Ocimum grattisimum). Callus inductions were obtained in all the four species with different 2,4-dichlorophenoxyacetic acid (2,4-D)/α-naphthaleneacetic acid (NAA) concentrations with kinetin. Notably, 2,4-D favoured maximum callus growth in all whereas NAA proved beneficial for the highest metabolite yield in the calli of each BA-producing species. The O. basilicum calli demonstrated the maximum growth (growth index (GI) 678.7 ± 24.47) and BA yield (2.59 ± 0.55 % dry weight [DW]), whereas those in O. kilimandscharicum (GI 533.33 ± 15.87; BA 1.87 ± 0.6 % DW) and O. sanctum (GI 448 ± 16.07; BA 0.39 ± 0.12 % DW) followed a descending order. The O. gratissimum calli revealed minimum growth (GI 159 ± 13.25) with no BA accumulation. Elicitation with methyl jasmonate at 200-μM concentration after 48-h exposure doubled the BA yield (5.10 ± 0.18 % DW) in NAA-grown O. basilicum calli compared to that in the untreated counterpart (2.61 ± 0.19 % DW), which further enthused its future application.

  17. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  18. Immunotherapy for B-cell lymphoma: current status and prospective advances

    Directory of Open Access Journals (Sweden)

    Nurit eHollander

    2012-01-01

    Full Text Available Therapy for non-Hodgkin's lymphoma has progressed significantly over the last decades. However, the majority of patients remain incurable, and novel therapies are needed. Because immunotherapy ideally offers target selectivity, an ever increasing number of immunotherapies, both passive and active, are undergoing development. The champion of passive immunotherapy to date is the anti-CD20 monoclonal antibody rituximab that revolutionized the standard of care for lymphoma. The great success of rituximab catalyzed the development of new passive immunotherapy strategies that are currently undergoing clinical evaluation. These include improvement of rituximab efficacy, newer generation anti-CD20 antibodies, drug-conjugated and radiolabelled anti-CD20 antibodies, monoclonal antibodies targeting non-CD20 lymphoma antigens, and bispecific antibodies. Active immunotherapy aims at inducing long-lasting antitumor immunity, thereby limiting the likelihood of relapse. Current clinical studies of active immunotherapy for lymphoma consist largely of vaccination and immune checkpoint blockade. A variety of protein- and cell-based vaccines are being tested in ongoing clinical studies. Recently completed phase III clinical trials of an idiotype protein vaccine suggest that the vaccine may have clinical activity in a subset of patients. Efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation of vaccines and modulation of the immune system toward counteracting immunosuppression, using antibodies against immune regulatory checkpoints. This article discusses results of the various immunotherapy approaches applied to date for B-cell lymphoma and the ongoing trials to improve their effect.

  19. Eradication of intractable malignant ascites by abdominocentesis, reinfusion of concentrated ascites, and adoptive immunotherapy with dendritic cells and activated killer cells in a patient with recurrent lung cancer: a case report

    Directory of Open Access Journals (Sweden)

    Kimura Hideki

    2008-12-01

    Full Text Available Abstract Introduction Malignant ascites is often a sign of a terminal stage in several malignant diseases. To control ascites, drainage and intra-abdominal chemotherapy are often used in those patients but eradication of ascites is difficult and prognosis is poor. Case presentation A 55-year-old woman was admitted to our hospital on 26 January 2007 with dyspnea, abdominal distention and oliguria. Abdominocentesis revealed peritoneal carcinomatosis resulting from abdominal recurrence from lung cancer. To alleviate the dyspnea and abdominal distention, we drained the ascites aseptically and infused them intravenously back into the patient after removal of tumor cells by centrifugation, and then concentration by apheresis. After the drainage of ascites, we intraperitoneally infused activated killer cells and dendritic cells from the patient's tumor-draining lymph nodes, together with 4.5 × 105U interleukin-2 in 50 ml saline by 2.1 ml/hour infuser balloon. Drastic decreases in the tumor cell count and in ascite retention were observed after several courses of ascites drainage, intravenous infusion and intraperitoneal immunotherapy. The plasma protein level was maintained during the treatment notwithstanding the repeated drainage of ascites. Cell surface marker analysis, cytotoxic activities against autologous tumor cells and interferon-gamma examination of ascites suggested the possibility that these effects were mediated by immunological responses of activated killer cells and dendritic cells infused intraperitoneally. Conclusion Combination of local administration of immune cells and infusion of concentrated cell free ascites may be applicable for patients afflicted with refractory ascites.

  20. The influence of p53 mutation status on the anti-cancer effect of cisplatin in oral squamous cell carcinoma cell lines

    Science.gov (United States)

    2016-01-01

    Objectives The purpose of this study was to evaluate the anti-cancer activity of cisplatin by studying its effects on cell viability and identifying the mechanisms underlying the induction of cell cycle arrest and apoptosis on oral squamous cell carcinoma (OSCC) cell lines with varying p53 mutation status. Materials and Methods Three OSCC cell lines, YD-8 (p53 point mutation), YD-9 (p53 wild type), and YD-38 (p53 deletion) were used. To determine the cytotoxic effect of cisplatin, MTS assay was performed. The cell cycle alteration and apoptosis were analyzed using flow cytometry. Western blot analysis was used to detect the expression of cell cycle alteration- or apoptosis-related proteins as well as p53. Results Cisplatin showed a time- and dose-dependent anti-proliferative effect in all cell lines. Cisplatin induced G2/M cell accumulation in the three cell lines after treatment with 0.5 and 1.0 µg/mL of cisplatin for 48 hours. The proportion of annexin V-FITC-stained cells increased following treatment with cisplatin. The apoptotic proportion was lower in the YD-38 cell line than in the YD-9 or YD-8 cell lines. Also, immunoblotting analysis indicated that p53 and p21 were detected only in YD-8 and YD-9 cell lines after cisplatin treatment. Conclusion In this study, cisplatin showed anti-cancer effects via G2/M phase arrest and apoptosis, with some difference among OSCC cell lines. The mutation status of p53 might have influenced the difference observed among cell lines. Further studies on p53 mutation status are needed to understand the biological behavior and characteristics of OSCCs and to establish appropriate treatment. PMID:28053903

  1. Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro.

    Science.gov (United States)

    Ahmed, Hanaa H; Abd-Rabou, Ahmed A; Hassan, Amal Z; Kotob, Soheir E

    2015-01-01

    presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1- hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with IC50 values equal 1.58 and 5.82 μg/mL at 48 h, respectively which were comparable to doxorubicin with an IC50 equal 4.68 μg/mL at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with IC50 values equal 0.12 and 6.59 μg/mL at 48 h, respectively which were comparable to 5-fluorouracil with an IC50 equal 3.43 μg/ mL at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

  2. 主动免疫治疗加用地屈孕酮治疗复发性流产的临床观察%Clinical Observation on Curative Effect of Active Immunotherapy Combined with Dydrogesterone on Recurrent Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    张娟; 方小玲; 贺艳坤; 谭小军; 黄向红

    2012-01-01

    Objective To explore the clinical efficacy of lymphocytes active immunotherapy combined with dydrogesterone on treating recurrent spontaneous abortion. Methods Seventy patients with recurrent spontaneous abortion were randomly divided into two groups (each n= 35). The patients in observation group were given active immunotherapy combined with dydrogesterone, while the patients in control group received dydrogesterone. Serum E2, P, and HCG levels of the patients of two groups were detected to evaluate the treatment outcomes. The pregnancy results were recorded and then analyzed statistically. Results There was no statistically significant difference in age, pregnancies, parity, and spontaneous abortion time between the two groups (P >0.05). And no statistically significant difference was found in serum E2, P, and HCG levels before 8 weeks or between 8 to 12 weeks (P>0.05). Among 35 patients of observation group, 34 (97.1%) succeeded in giving full - term birth. Among 35 patients of control group, 27 (77.1 % ) succeeded in giving full - term birth. There were statistically significant differences between the two groups (P<0.05). Conclusions Lymphocytes active immunotherapy combined with dydrogesterone can significantly improve the ongoing pregnancy rate in patients with recurrent spontaneous abortion.%目的 探讨淋巴细胞主动免疫治疗加用地屈孕酮治疗复发性流产的临床疗效观察.方法 2008年3月-2011年3年将70例有复发性流产患者被随机分为两组,35名要求接受淋巴细胞主动免疫治疗和地屈孕酮的患者为观察组,35名接受地屈孕酮的患者为对照组;检测两组患者血清E2、P和HCG水平,以评估治疗结果,记录妊娠结果进行统计学分析.结果 两组在年龄、孕次、产次、前次自然流产时间方面差异无统计学意义(P>0.05);两组在血清E2、P和HCG的水平在8周前及8~12周差异均无统计学意义(P>0.05).妊娠情况:淋巴细胞主

  3. Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development.

    Science.gov (United States)

    Aguilar, Laura K; Guzik, Brian W; Aguilar-Cordova, Estuardo

    2011-08-01

    Traditional therapies for cancer include surgery, chemotherapy, and radiation. Chemotherapy has widespread systemic cytotoxic effects against tumor cells but also affects normal cells. Radiation has more targeted local cytotoxicity but is limited to killing cells in the radiation field. Immunotherapy has the potential for systemic, specific killing of tumor cells. However, if the immune response is specific to a single antigen, tumor evasion can occur by down-regulation of that antigen. An immunotherapy approach that induces polyvalent immunity to autologous tumor antigens can provide a personalized vaccine with less potential for immunologic escape. A cytotoxic immunotherapy strategy creates such a tumor vaccine in situ. Immunogenic tumor cell death provides tumor antigen targets for the adaptive immune response and stimulates innate immunity. Attraction and activation of antigen presenting cells such as dendritic cells is important to process and present tumor antigens to T cells. These include cytotoxic T cells that kill tumor cells and T cells which positively and negatively regulate immunity. Tipping the balance in favor of anti-tumor immunity is an important aspect of an effective strategy. Clinically, immunotherapies may be most effective when combined with standard therapies in a complimentary way. An example is gene-mediated cytotoxic immunotherapy (GMCI) which uses an adenoviral vector, AdV-tk, to deliver a cytotoxic and immunostimulatory gene to tumor cells in vivo in combination with standard therapies creating an immunostimulatory milieu. This approach, studied extensively in animal models and early stage clinical trials, is now entering a definitive Phase 3 trial for prostate cancer.

  4. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  5. H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S?

    Directory of Open Access Journals (Sweden)

    Kaium Ma

    Full Text Available BACKGROUND: S-propargyl-cysteine (SPRC, an H(2S donor, is a structural analogue of S-allycysteine (SAC. It was investigated for its potential anti-cancer effect on SGC-7901 gastric cancer cells and the possible mechanisms that may be involved. METHODS AND FINDINGS: SPRC treatment significantly decreased cell viability, suppressed the proliferation and migration of SPRC-7901 gastric cancer cells, was pro-apoptotic as well as caused cell cycle arrest at the G(1/S phase. In an in vivo study, intra-peritoneal injection of 50 mg/kg and 100 mg/kg of SPRC significantly reduced tumor weights and tumor volumes of gastric cancer implants in nude mice, with a tumor growth inhibition rate of 40-75%. SPRC also induced a pro-apoptotic effect in cancer tissues and elevated the expressions of p53 and Bax in tumors and cells. SPRC treatment also increased protein expression of cystathione-γ-lyase (CSE in cells and tumors, and elevated H(2S levels in cell culture media, plasma and tumoral CSE activity of gastric cancer-induced nude mice by 2, 2.3 and 1.4 fold, respectively. Most of the anti-cancer functions of SPRC on cells and tumors were significantly suppressed by PAG, an inhibitor of CSE activity. CONCLUSIONS: Taken together, the results of our study provide insights into a novel anti-cancer effect of H(2S as well as of SPRC on gastric cancer through inducing the activity of a new target, CSE.

  6. Nanochemistry-based immunotherapy for HIV-1.

    Science.gov (United States)

    Lori, F; Calarota, S A; Lisziewicz, J

    2007-01-01

    Highly active antiretroviral treatment (HAART), i.e. the combination of three or more drugs against human immunodeficiency virus type 1 (HIV-1), has greatly improved the clinical outcome of HIV-1-infected individuals. However, HAART is unable to reconstitute HIV-specific immunity and eradicate the virus. Several observations in primate models and in humans support the notion that cell-mediated immunity can control viral replication and slow disease progression. Thus, besides drugs, an immunotherapy that induces long-lasting HIV-specific T-cell responses could play a role in the treatment of HIV/AIDS. To induce such immune responses, DermaVir Patch has been developed. DermaVir consists of an HIV-1 antigen-encoding plasmid DNA that is chemically formulated in a nanoparticle. DermaVir is administered under a patch after a skin preparation that supports the delivery of the nanoparticle to Langerhans cells (LC). Epidermal LC trap and transport the nanomedicine to draining lymph nodes. While in transit, LC mature into dendritic cells (DC), which can efficiently present the DNA-encoded antigens to naïve T-cells for the induction of cellular immunity. Pre-clinical studies and Phase I clinical testing of DermaVir in HIV-1-infected individuals have demonstrated the safety and tolerability of DermaVir Patch. To further modulate cellular immunity, molecular adjuvants might be added into the nanoparticle. DermaVir Patch represents a new nanomedicine platform for immunotherapy of HIV/AIDS. In this review, the antiviral activity of DermaVir-induced cellular immunity is discussed. Furthermore, the action of some cytokines currently being tested as adjuvants are highlighted and the adjuvant effect of cytokine plasmid DNA included in the DermaVir nanoparticle is reviewed.

  7. ErbB-targeted CAR T-cell immunotherapy of cancer.

    Science.gov (United States)

    Whilding, Lynsey M; Maher, John

    2015-01-01

    Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.

  8. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy.

    Science.gov (United States)

    Spranger, Stefani; Sivan, Ayelet; Corrales, Leticia; Gajewski, Thomas F

    2016-01-01

    Despite recent clinical advances in immunotherapy, a fraction of cancer patients fails to respond to these interventions. Evidence from preclinical mouse models as well as clinical samples has provided evidence that the extent of activated T cell infiltration within the tumor microenvironment is associated with clinical response to immunotherapies including checkpoint blockade. Therefore, understanding the molecular mechanisms mediating the lack of T cell infiltration into the tumor microenvironment will be instrumental for the development of new therapeutic strategies to render those patients immunotherapy responsive. Recent data have suggested that major sources of intersubject heterogeneity include differences in somatic mutations in specific oncogene pathways between cancers of individual subjects and also environmental factors including commensal microbial composition. Successful identification of such causal factors should lead to new therapeutic approaches that may facilitate T cell entry into noninflamed tumors and expand the fraction of patients capable of responding to novel immunotherapies.

  9. Polymeric particulate systems for immunotherapy of cancer

    NARCIS (Netherlands)

    Rahimian, S.

    2015-01-01

    Immunotherapy has been established as a groundbreaking approach to treat cancer. It involves modulation of the host’s immune response to fight cancer. This is achieved by either enhancing tumor-specific T cell responses or inhibition of the tumor-induced immune suppression. Immunotherapy, however fa

  10. Overview of Cellular Immunotherapy for Patients with Glioblastoma

    Directory of Open Access Journals (Sweden)

    Elodie Vauleon

    2010-01-01

    Full Text Available High grade gliomas (HGG including glioblastomas (GBM are the most common and devastating primary brain tumours. Despite important progresses in GBM treatment that currently includes surgery combined to radio- and chemotherapy, GBM patients' prognosis remains very poor. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach could also maintain long term antitumour responses without inducing neurologic defects. Since the past 25 years, adoptive and active immunotherapies using lymphokine-activated killer cells, cytotoxic T cells, tumour-infiltrating lymphocytes, autologous tumour cells, and dendritic cells have been tested in phase I/II clinical trials with HGG patients. This paper inventories these cellular immunotherapeutic strategies and discusses their efficacy, limits, and future perspectives for optimizing the treatment to achieve clinical benefits for GBM patients.

  11. 用抗独特型疫苗主动免疫治疗鼻咽癌病人的临床研究%A clinical trial of active immunotherapy with anti-idiotypic vaccine in nasopharyngeal carcinoma patients

    Institute of Scientific and Technical Information of China (English)

    李官成; 谢鹭; 周国华; 孙去病; 符红普; 周建华

    2002-01-01

    Objective To investigate the effect of active immunotherapy with anti-idiotypic vaccine in patients with nasopharyngeal carcinoma (NPC). Methods Anti-idiotypic antibodies (2H4/5D3) bearing the internal image of the NPC antigen were used in active immunotherapy in NPC patients receiving radiotherapy. Antibodies and cytokine levels in patient sera were determined using ELISA before and after active immunotherapy. IL-2 mRNA expression in the peripheral blood mononuclear cells (PBMC) was measured by in situ hybridization. Results Nineteen patients with NPC at stage Ⅳ were treated with alum-precipitated 2H4 or 5D3. Neither hypersensitivity nor adverse side effects were observed. The levels of anti-anti-idiotypic antibodies (Ab3) and anti-NPC antibodies (Ab1') were increased. Human anti-mouse antibodies (HAMA) were seen in 19 patients of the experimental group; the levels of Ab1' did not increse in the control group. Serum IL-2, IFN-γ and TNF-α levels were increased in most patients in the experimental group, while no differences were observed in Ab1' and cytokine levels between pre- and post-therapy in the control group. In addition, IL-2 mRNA expression in PBMCs from NPC patients was closely related to serum IL-2 (r=+0.8829) levels by in situ hybridization. Conclusions Anti-idiotype vaccine is safe for clinical active immunotherapy. Anti-idiotypic vaccine might be able to enhance humoral and/or cellular immunity in NPC patients receiving radiotherapy.%目的探讨抗独特型疫苗主动免疫治疗鼻咽癌病人的抗肿瘤效应.方法用两株具有鼻咽癌相关抗原内影像的抗独特型单克隆抗体2H4、5D3,经氢氧化铝凝胶沉淀法制备成抗独特型疫苗Alum-2H4、Alum-5D3,对19例晚期鼻咽癌放疗病人作主动免疫治疗,9例放疗加生理盐水注射为对照组.用ELISA检测治疗前后病人血清抗体和细胞因子水平.用原位Northern杂交检测外周血单个核细胞(PBMC)IL-2 mRNA的表达.结果接受Alum-2H4

  12. Cancer immunotherapy products: Regulatory aspects in the European Union

    OpenAIRE

    2012-01-01

    Active immunotherapy products (widely known as “cancer vaccines”) are products intended to stimulate an immune response to mediate tumor destruction or reduce the progression of disease in patients where cancer has been diagnosed. Some quality attributes of these products are very difficult to characterize or present a high variability (especially if they are for autologous use), further complicating the interpretation of some of the clinical data. Furthermore, questions arise in the evaluati...

  13. Assessing T-cell responses in anticancer immunotherapy

    Science.gov (United States)

    Escors, David; Liechtenstein, Therese; Perez-Janices, Noemi; Schwarze, Julia; Dufait, Ines; Goyvaerts, Cleo; Lanna, Alessio; Arce, Frederick; Blanco-Luquin, Idoia; Kochan, Grazyna; Guerrero-Setas, David; Breckpot, Karine

    2013-01-01

    Since dendritic cells operate as professional antigen-presenting cells (APCs) and hence are capable of jumpstarting the immune system, they have been exploited to develop a variety of immunotherapeutic regimens against cancer. In the few past years, myeloid-derived suppressor cells (MDSCs) have been shown to mediate robust immunosuppressive functions, thereby inhibiting tumor-targeting immune responses. Thus, we propose that the immunomodulatory activity of MDSCs should be carefully considered for the development of efficient anticancer immunotherapies. PMID:24244902

  14. Immunotherapies for Targeting Ancient Retrovirus during Breast Cancer

    Science.gov (United States)

    2014-03-01

    nature of virus activity in the cancer cell and its involvement in cancer prognosis. Melanoma forms 80% of all skin cancer and about 10% of all... CDK4 pathways in melanoma cells. Cancer investigation 28, 1031-1037 (2010). 7.Hahn, S., et al. Serological response to human endogenous retrovirus K...Award Number: W81XWH-11-1-0002 TITLE: Immunotherapies for Targeting Ancient Retrovirus during Breast Cancer

  15. Extraction and purification of giant salamander skin mucous glycoprotein and study its anti-cancer activity of lung cancer%大鲵皮肤黏液糖蛋白的提取纯化及抗肺癌活性研究

    Institute of Scientific and Technical Information of China (English)

    徐伟良; 陈德经; 刘宇; 魏泓; 刘青

    2015-01-01

    目的:研究大鲵皮肤黏液糖蛋白提取纯化工艺以及体外对人肺癌细胞A549活性的影响。方法利用碱提取和DEAE-52离子交换层析与Sephadex G-100凝胶层析分离纯化大鲵黏液糖蛋白;并采用MTT比色法体外检测大鲵黏液糖蛋白对人肺癌细胞A549的抑制率。结果黏液糖蛋白中的总糖含量为4.23%,经SDS-PAGE电泳检测,糖蛋白的分子量在30 kDa左右,为单一纯品。随糖蛋白纯品浓度从1、10、20、40μg/mL逐渐增加,糖蛋白对A549细胞的抑制率逐渐增大;当糖蛋白浓度为40μg/mL,作用24 h时,对A549细胞的抑制率可达85.66%,作用48 h时,可达92.32%。与阳性对照紫杉醇相比,大鲵皮肤黏液糖蛋白对人肺癌细胞A549有显著的抑制作用。结论大鲵黏液糖蛋白对人肺癌细胞具有明显的抑制作用,可为抗肺癌药物的开发提供理论依据。%Objective To study the appearance of skin mucous glycoprotein in vitro on the activity of human lung cancer cells A549. Methods Used alkali extraction and DEAE-52 ion exchange chromatography and Sephadex G-100 gel chromatography purification salamander mucous glycoprotein; Salamander mucous glycoprotein inhibition of human lung cancer cells A549 was detected by MTT colorimetric method in vitro.ResuIts It showed that the total sugar content in the appearance of mucus was 4.23%, the relatively pure glycoprotein component, by SDS protein electrophoresis tests, it contained a single glycoprotein component, its molecular weight was about 30 kDa.With glycoprotein pure concentration increased from 1,10, 20,40μg/mL, the glycoprotein inhibition rate of A549 cells increased; when the glycoprotein concentration was 40 μg/mL, for 24 h action, the inhibition rate of A549 cells was up to 85.66 %, while the role of 48 h, the inhibition rate of A549 cells was up to 92.32%.Inhibition effect of mucus glycoprotein on A549 cell compared with positive control

  16. Reverse screening approach to identify potential anti-cancer targets of dipyridamole

    Science.gov (United States)

    Ge, Shu-Min; Zhan, Dong-Ling; Zhang, Shu-Hua; Song, Li-Qiang; Han, Wei-Wei

    2016-01-01

    Dipyridamole (DIP) inhibits thrombus formation when given chronically, and causes vasodilation over a short time. To date, DIP can increase the anticancer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer. The inhibition of DIP may result in increased 5-fluorouracil efficacy and diminish the drug side effects. But the actual molecular targets remain unknown. In this study, reverse protein-ligands docking, and quantum mechanics were used to search for the potential molecular targets of DIP. The quantum mechanics calculation was performed by using Gaussian 03 program package. Reverse pharmacophore mapping was used to search for potential molecular target candidates for a given small molecule. The docking study was used for exploring the potential anti-cancer targets of dipyridamole. The two predicted binders with the statistically significant prediction are dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1GTE) and human spindle checkpoint kinase Bub1 (PDB Id: 3E7E). Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction. In conclusion, these results generate a tractable set of anticancer proteins. The exploration of polypharmacology will provide us new opportunities in treating systematic diseases, such as the cancers. The results would generate a tractable set of anticancer target proteins for future experimental validations. PMID:28077994

  17. Advances in individual markers of interferon in anti-cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Chi Pan; Chenjing Zhang; Jianjin Huang

    2013-01-01

    Interferon (IFN) is a cytokine with various biological functions, including antivirus, immunoregulation and anti-tumor. It has been wildly used in many anti-cancer therapies, including malignant melanoma, hepatocellular carcinoma, ad-vanced renal-cell carcinoma, non-Hodgkin's lymphoma, chronic myelogenous leukemia and AIDS-related Kaposi's sarcoma. However, its effective dose is always very high, which may bring some serious side effects, nevertheless, not all patients can benefit from the IFN therapy. So a problem we have faced is that how to improve the efficiency and sensitivity of IFN? To solve this problem, many studies have been launched to find the effective prognostic factors and individual biomarkers for guiding the treatment better. In addition, further clarifying the anti-tumor mechanisms of IFN is benefit for explaining how the biomark-ers predict prognosis of patients. In recent studies, many IFN associated genes and proteins predicting sensitivity of IFN therapy have been found, which may associate with the progression of cancer, such as IFN regulatory factor (IRF), IFNAR2 mRNA, microRNA, IFITM-1. Some factors in peripheral blood are easier to detect and have the potential to been popularized in clinical practice, such as CD8high CD57+ lymphocyte levels in malignant melanoma, serum IFNAR2 mRNA in mCRC. This review briefly summarized the advances of antitumorally individual markers of IFN.

  18. Perspectives in Engineered Mesenchymal Stem/Stromal Cells Based Anti- Cancer Drug Delivery Systems.

    Science.gov (United States)

    Ackova, Darinka Gjorgieva; Kanjevac, Tatjana; Rimondini, Lia; Bosnakovski, Darko

    2016-01-01

    Understanding and apprehension of the characteristics and circumstances in which mesenchymal stem cells (MSCs) affect and make alterations (enhance or reduce) to the growth of tumors and metastasis spread is pivotal, not only for reaching the possibility to employ MSCs as drug delivery systems, but also for making forward movement in the existing knowledge of involvement of major factors (tumor microenvironment, soluble signaling molecules, etc.) in the process of carcinogenesis. This capability is reliable because MSCs present a great basis for engineering and constructions of new systems to target cancers, intended to secrete therapeutic proteins in the tumor region, or for delivering of oncolytic viruses' directly at the tumor site (targeted chemotherapy with enzyme prodrug conversion or induction of tumor cell apoptosis). MSCs as a crucial segment of the tumor surroundings and their confirmed tumor tropism, are assumed to be an open gateway for the design of promising drug delivery systems. The presented paper reviews current publications in this fieldwork, searches out the most recent patents that were published after 2012 (WO2014066122, US20140017787, WO2015100268, US20150086515), and tries to present the current progress and future prospective on the design and development in anti-cancer drug delivery systems based on MSCs.

  19. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    Science.gov (United States)

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer.

  20. Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea

    Directory of Open Access Journals (Sweden)

    Jin-Yi Wu

    2011-01-01

    Full Text Available Calvatia lilacina (CL, Pleurotus ostreatus (PO and Volvariella volvacea (VV are widely distributed worldwide and commonly eaten as mushrooms. In this study, cell viabilities were evaluated for a human colorectal adenocarcinoma cell line (SW480 cells and a human monocytic leukemia cell line (THP-1 cells. Apoptotic mechanisms induced by the protein extracts of PO and VV were evaluated for SW480 cells. The viabilities of THP-1 and SW480 cells decreased in a concentration-dependent manner after 24 h of treatment with the protein extracts of CL, PO or VV. Apoptosis analysis revealed that the percentage of SW480 cells in the SubG1 phase (a marker of apoptosis was increased upon PO and VV protein-extract treatments, indicating that oligonucleosomal DNA fragmentation existed concomitantly with cellular death. The PO and VV protein extracts induced reactive oxygen species (ROS production, glutathione (GSH depletion and mitochondrial transmembrane potential (ΔΨm loss in SW480 cells. Pretreatment with N-acetylcysteine, GSH or cyclosporine A partially prevented the apoptosis induced by PO protein extracts, but not that induced by VV extracts, in SW480 cells. The protein extracts of CL, PO and VV exhibited therapeutic efficacy against human colorectal adenocarcinoma cells and human monocytic leukemia cells. The PO protein extracts induced apoptosis in SW480 cells partially through ROS production, GSH depletion and mitochondrial dysfunction. Therefore, the protein extracts of these mushrooms could be considered an important source of new anti-cancer drugs.

  1. Assessment of antimicrobial (host defense) peptides as anti-cancer agents.

    Science.gov (United States)

    Douglas, Susan; Hoskin, David W; Hilchie, Ashley L

    2014-01-01

    Cationic antimicrobial (host defense) peptides (CAPs) are able to kill microorganisms and cancer cells, leading to their consideration as novel candidate therapeutic agents in human medicine. CAPs can physically associate with anionic membrane structures, such as those found on cancer cells, causing pore formation, intracellular disturbances, and leakage of cell contents. In contrast, normal cells are less negatively-charged and are typically not susceptible to CAP-mediated cell death. Because the interaction of CAPs with cells is based on charge properties rather than cell proliferation, both rapidly dividing and quiescent cancer cells, as well as multidrug-resistant cancer cells, are targeted by CAPs, making CAPS potentially valuable as anti-cancer agents. CAPs often exist as families of peptides with slightly different amino acid sequences. In addition, libraries of synthetic peptide variants based on naturally occurring CAP templates can be generated in order to improve upon their action. High-throughput screens are needed to quickly and efficiently assess the suitability of each CAP variant. Here we present the methods for assessing CAP-mediated cytotoxicity against cancer cells (suspension and adherent) and untransformed cells (measured using the tritiated thymidine-release or MTT assay), and for discriminating between cell death caused by necrosis (measured using lactate dehydrogenase- or (51)Cr-release assays), or apoptosis and necrosis (single-stranded DNA content measured by flow cytometry). In addition the clonogenic assay, which assesses the ability of single transformed cells to multiply and produce colonies, is described.

  2. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    Institute of Scientific and Technical Information of China (English)

    Alex Matter

    2015-01-01

    This review starts with a brief history of drug discovery&development, and the place of Asia in this worldwide effort discussed. hTe conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. hTe importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. hTe most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. hTe factors to consider before starting a new drug discovery&development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials.

  3. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues

    Directory of Open Access Journals (Sweden)

    MunJu eKim

    2013-11-01

    Full Text Available Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  4. The anti-cancer drug-induced pica in rats is related to their clinical emetogenic potential.

    Science.gov (United States)

    Yamamoto, Kouichi; Nakai, Miho; Nohara, Kyoko; Yamatodani, Atsushi

    2007-01-05

    Cancer chemotherapy is frequently accompanied by severe emesis. The anti-cancer drugs are classified according to their clinical emetogenic potential. We have already found that kaolin ingestion behavior "pica" is analogous to emesis in rats. The aim of this study was to examine the effects of the clinical emetogenic potential of anti-cancer drugs on the induction of the pica in rats. Rats were housed in individual cages with free access to food and kaolin pellets and the daily food and kaolin intakes were measured for 3 days after the intraperitoneal administration of anti-cancer drugs (cisplatin, cyclophosphamide, actinomycin D, 5-fluorouracil and vincristine). The drugs with high potential for inducing emesis, such as cisplatin and cyclophosphamide, induced pica in all animals on the day of administration and the behavior lasted during the observation period. The drugs with moderate emetogenic potential, i.e. actinomycin D and 5-fluorouracil, also induced pica on the first and second day after the drug administration but the kaolin intake was less than that of the drugs with high potential. Vincristine, a drug with low emetogenic potential, slightly increased the kaolin intake in rats on the only first day of the administration. Cyclophosphamide, actinomycin D and vincristine induced anorexia and decreased their body weight during the observation period. These results suggested that the both amounts of kaolin intake and duration of behavior in the anti-cancer drug-induced pica are related to the clinical emetogenic potential of the drugs and the incidence of the anorexia is not related to their emetogenic potential.

  5. [Development of anti-cancer drugs under new renewed GCP--from the viewpoint of drug development company developer].

    Science.gov (United States)

    Ueno, T; Kobayashi, T; Inoue, K; Yanagi, Y; Yamada, Y

    1998-04-01

    During the past 7 years since the enforcement of Japan's first GCP in October 1990, various standards and guidelines have been introduced in Japan. On the other hand, the harmonization of GCP has been the subject of major discussion at ICH in order to allow the mutual acceptance of clinical data from different countries. In order to further improve the reliability and consistency of clinical data and the ethics of clinical trials in Japan, the new GCP was enforced in April 1997. A clinical study is conducted by the sponsor, but will only be successful with the collaboration of trial subjects, medical institutions, heads of medical institutions, investigators, subinvestigators, pharmacists, nurses, laboratory technicians, and other assisting staff. Before the full enforcement of the new GCP, we, as sponsors of clinical trials, carried out a survey of the current status of clinical trials centering on the reactions of medical institutions to the new GCP, future of clinical trials on anti-cancer drugs in Japan, and differences in time from clinical trials to registration in Japan, the United State and Europe. We sent a questionnaire by facsimile to 21 pharmaceutical companies which have developed or are developing anti-cancer drugs and obtained replies from 20 companies (95%) from August 25 to 30, 1997. This paper reports issues concerning clinical trials on anti-cancer drugs based on the results of our survey.

  6. Love life, scientific anti-cancer, better life%关爱生命,科学防癌,让生活更美好

    Institute of Scientific and Technical Information of China (English)

    Yi Cheng

    2010-01-01

    @@ The Chinese Anti-cancer Association launched the16th National Tumor Prophylaxis and Treatment Week in April, 2010. In order to highlight the week's spirit of "Love life, scientific anti-cancer, better life", the Tongji Cancer Center and Thoracic Surgery Department held lectures and advisory services in the outpatient lobby of Cancer Center on April 20th, 2010. The content of lec-tures involves the prophylaxis, diagnosis and treatment of lung cancer.

  7. Novel Immunotherapies for Autoimmune Hepatitis.

    Science.gov (United States)

    Cassim, Shamir; Bilodeau, Marc; Vincent, Catherine; Lapierre, Pascal

    2017-01-01

    Autoimmune hepatitis (AIH) is a multifactorial autoimmune disease of unknown pathogenesis, characterized by a loss of immunological tolerance against liver autoantigens resulting in the progressive destruction of the hepatic parenchyma. Current treatments are based on non-specific immunosuppressive drugs. Although tremendous progress has been made using specific biological agents in other inflammatory diseases, progress has been slow to come for AIH patients. While current treatments are successful in the majority of patients, treatment discontinuation is difficult to achieve, and relapses are frequent. Lifelong immunosuppression is not without risks, especially in the pediatric population; 4% of patient with type 1 AIH will eventually develop hepatocellular carcinoma with a 2.9% probability after 10 years of treatment. Therefore, future treatments should aim to restore tolerance to hepatic autoantigens and induce long-term remission. Promising new immunotherapies have been tested in experimental models of AIH including T and B cell depletion and regulatory CD4(+) T cells infusion. Clinical studies on limited numbers of patients have also shown encouraging results using B-cell-depleting (rituximab) and anti-TNF-α (infliximab) antibodies. A better understanding of key molecular targets in AIH combined with effective site-specific immunotherapies could lead to long-term remission without blanket immunosuppression and with minimal deleterious side effects.

  8. Cancer immunotherapy and immunological memory.

    Science.gov (United States)

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

      Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  9. Novel Immunotherapies for Autoimmune Hepatitis

    Science.gov (United States)

    Cassim, Shamir; Bilodeau, Marc; Vincent, Catherine; Lapierre, Pascal

    2017-01-01

    Autoimmune hepatitis (AIH) is a multifactorial autoimmune disease of unknown pathogenesis, characterized by a loss of immunological tolerance against liver autoantigens resulting in the progressive destruction of the hepatic parenchyma. Current treatments are based on non-specific immunosuppressive drugs. Although tremendous progress has been made using specific biological agents in other inflammatory diseases, progress has been slow to come for AIH patients. While current treatments are successful in the majority of patients, treatment discontinuation is difficult to achieve, and relapses are frequent. Lifelong immunosuppression is not without risks, especially in the pediatric population; 4% of patient with type 1 AIH will eventually develop hepatocellular carcinoma with a 2.9% probability after 10 years of treatment. Therefore, future treatments should aim to restore tolerance to hepatic autoantigens and induce long-term remission. Promising new immunotherapies have been tested in experimental models of AIH including T and B cell depletion and regulatory CD4+ T cells infusion. Clinical studies on limited numbers of patients have also shown encouraging results using B-cell-depleting (rituximab) and anti-TNF-α (infliximab) antibodies. A better understanding of key molecular targets in AIH combined with effective site-specific immunotherapies could lead to long-term remission without blanket immunosuppression and with minimal deleterious side effects. PMID:28184367

  10. Cancer immunotherapy with levamisole

    Directory of Open Access Journals (Sweden)

    Miwa,Hiroaki

    1978-07-01

    Full Text Available Levamisole, an agent acting upon depressed cellular immunity, enhancing and normalizing it and consequently showing antitumor activity in the cancer-bearing body, was administered to patients with gastrointestinal cancer at a daily dose of 150 mg for three consecutive days every other week, starting as a rule, three days before operation. The patients were evaluated for survival. Of the 143 patients (66 with curative resection, 40 with noncurative resection and 37 without resection who received levamisole therapy for one month or more, 57 survived postoperatively six months and of 44 treated 37 survived one year. In this study, 185 patients with gastrointestinal cancer were used for comparison purposes. The six-month survival rate was 100% (23/23 in the levamisole treated group and 95.3% (102/107 in the control group after curative resection (p greater than 0.5, 100% (23/23 and 90.5% (49/54 after noncurative resection (p less than 0.01, and 72.5% (8/11 and 33.3% (9/24, respectively, in non-resectable patients (p less than 0.01. The one-year survival rate was 100% (21/21 and 95.3% (102/107 after curative resection (p greater than 0.5, 77.8% (14/18 and 59.3% (32/54 after noncurative resection (0.05 less than p less than 0.1, and 40% (2/5 and 8.3% (2/24 in non-resectable patients (0.05 less than p than 0.1 in the levamisole group and in the control group, respectively. The difference in survival in survival rates between levamisole-treated and control groups was most prominent in the non-resectable patients followed by those undergoing noncurative resection and curative resection.

  11. Perenosins: a new class of anion transporter with anti-cancer activity.

    Science.gov (United States)

    Van Rossom, Wim; Asby, Daniel J; Tavassoli, Ali; Gale, Philip A

    2016-03-07

    A new class of anion transporter named 'perenosins' consisting of a pyrrole linked through an imine to either an indole, benzimidazole or indazole is reported. The indole containing members of the perenosin family function as effective transmembrane Cl(-)/NO3(-) antiporters and HCl cotransporters in a manner similar to the prodigiosenes. The compounds reduce the viability of MDA-MB-231 and MCF-7.

  12. A SIMPLE METHOD FOR ISOLATION OF SOME BACILLUS STRAINS WITH AN EXPRESSED ANTI-CANCER ACTIVITY

    Directory of Open Access Journals (Sweden)

    Francesco Marotta

    2006-02-01

    Full Text Available ABSTRACT:There is now increasing evidence that probiotic bacteria can provide health benefits to humans. In many areas of medicine (gastroenterology, urology, allergology, oncology and others, these sanative microorganisms may be considered as possible and viable alternatives applicable to patient care. Particularly, we have found that oral administration of Bacillus oligonitrophilus KU-1 cells can be used for treatment and prevention of some tumors. Here we present a simple method for isolation of bacteria with anticancer properties from soil.RESUMEN:Está aumentando la evidencia de que hay bacterias probióticas que pueden proporcionar beneficios saludables a los seres humanos. En muchas áreas de la medicina (gastroenterología, urología, alergología, oncología y otras, estos microorganismos pueden considerarse como alternativas posibles y viables aplicables al cuidado del paciente. Particularmente, nosotros hemos encontrado que la administración oral de células KU-1 Bacillus oligonitrophilus puede ser utilizada para el tratamiento y la prevención de algunos tumores. Aquí presentamos un método simple para aislamiento de suelos, de bacterias con características anticáncer.

  13. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  14. ANTI CANCER ACTIVITY OF PHYLLANTHUS AMARUS IN AZASERINE INDUCED PANCREATIC CANCER OF WISTAR RATS

    OpenAIRE

    Ankit Prajapati; Sunant Raval; TapanVaria

    2015-01-01

    Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The most common type of pancreatic cancer is adeno-carcinoma. The present experiment was carried out to study histopathological changes occur in pancreas in different groups of azaserine induced pancreatic cancer in Wistar rats with and without the treatment of aqueous and alcoholic extract of Phyllanthus amarus at different doses. Histopathological examination of ...

  15. ANTI CANCER ACTIVITY OF PHYLLANTHUS AMARUS IN AZASERINE INDUCED PANCREATIC CANCER OF WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Ankit Prajapati

    2015-06-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The most common type of pancreatic cancer is adeno-carcinoma. The present experiment was carried out to study histopathological changes occur in pancreas in different groups of azaserine induced pancreatic cancer in Wistar rats with and without the treatment of aqueous and alcoholic extract of Phyllanthus amarus at different doses. Histopathological examination of pancreas of untreated group of rats showed hyperplasia of pancreatic duct, necrosis, fatty changes, haemorrhages between pancreatic cells. The rats treated with Phyllanthus amarus extracts showed no pathological lesions.

  16. Novel Approaches to Pediatric Cancer: Immunotherapy

    Directory of Open Access Journals (Sweden)

    Payal A. Shah

    2015-06-01

    Full Text Available From the early 20th century, immunotherapy has been studied as a treatment modality for cancers, including in children. Since then, developments in monoclonal antibodies and vaccine therapies have helped to usher in a new era of cancer immunotherapeutics. However, efficacy of these types of therapies has been limited, mostly in part due to low tumor immunogenicity, cancer escape pathways, and toxicities. As researchers investigate the cellular and molecular components of immunotherapies, mechanisms to improve tumor specificity and overcome immune escape have been identified. The goal of immunotherapy now has been to modulate tumor escape pathways while amplifying the immune response by combining innate and adaptive arms of the immune system. Although several limiting factors have been identified, these recent advances in immunotherapy remain at the forefront of pediatric oncologic therapeutic trials. Immunotherapy is now coming to the forefront of precision treatment for a variety of cancers, with evidence that agents targeting immunosuppressive mechanisms for cancer progression can be effective therapy [1-3]. In this review, we review various types of immunotherapy, including the cellular biology, limitations, recent novel therapeutics, and the application of immunotherapy to pediatric oncology.

  17. Allergen specific immunotherapy in nasobronchial allergy.

    Directory of Open Access Journals (Sweden)

    Joshi S

    2003-12-01

    Full Text Available BACKGROUND: More than one antigen has been used for immunotherapy of allergic disorders. So far less than five antigens have been employed with variable results. AIM: To evaluate effect of multiple antigens up to six in the immunotherapy of nasobronchial allergy. SETTING AND DESIGN: Based on clinical history, symptoms present for at least 3 years with set criteria of immunomodulation for asthma and rhinitis: documented IgE mediated asthma and rhinitis, failure in allergen avoidance and moderate to severe clinical manifestations. MATERIAL AND METHODS: Five hundred cases of various allergic disorders attending allergy clinic of Bombay hospital were screened. Allergen specific immunotherapy was initiated in 131 subjects (56 -rhinitis and 75 asthma with prior consent. Patients suffering from allergic disorders secondary to diseases or drug therapy were excluded. Multiple allergen immunotherapy was given at specific intervals up to a period of one year. Allergen extracts were prepared as per standard technique. For statistical analysis "students′t test" was used. RESULTS AND CONCLUSIONS: Significant improvement in PEFR, reduction in skin sensitivity to allergens used in immunotherapy formulation and symptomatic relief without any untoward reaction show that multiple allergen immunotherapy is as effective as monoallergen immunotherapy in nasobronchial allergy.

  18. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.

    Science.gov (United States)

    Tran, Thanh-Huyen; Mattheolabakis, George; Aldawsari, Hibah; Amiji, Mansoor

    2015-09-01

    Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery.

  19. IL-13 receptor-directed cancer vaccines and immunotherapy.

    Science.gov (United States)

    Nakashima, Hideyuki; Husain, Syed R; Puri, Raj K

    2012-04-01

    Many immunotherapy approaches including therapeutic cancer vaccines targeting specific tumor-associated antigens are at various stages of development. Although the significance of overexpression of (IL-13Rα2) in cancer is being actively investigated, we have reported that IL-13Rα2 is a novel tumor-associated antigen. The IL-13Rα2-directed cancer vaccine is one of the most promising approaches to tumor immunotherapy, because of the selective expression of IL-13Rα2 in various solid tumor types but not in normal tissues. In this article, we will summarize its present status and potential strategies to improve IL-13Rα2-directed cancer vaccines for an optimal therapy of cancer.

  20. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein

    2014-01-01

    The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic...... cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline...

  1. The IL-2 cytokine family in cancer immunotherapy.

    Science.gov (United States)

    Sim, Geok Choo; Radvanyi, Laszlo

    2014-08-01

    The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.

  2. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Directory of Open Access Journals (Sweden)

    Anna Boss

    2016-08-01

    Full Text Available The traditional Mediterranean diet (MD is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  3. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications

    Directory of Open Access Journals (Sweden)

    Phong Tran

    2008-10-01

    Full Text Available Phong Tran1, Thomas J Webster21Physics Department; 2Division of Engineering and Department of Orthopedics, Brown University, Providence, USAAbstract: Metallic bone implants possess numerous problems limiting their long-term efficacy, such as poor prolonged osseointegration, stress shielding, and corrosion under in vivo environments. Such problems are compounded for bone cancer patients since numerous patients receive orthopedic implants after cancerous bone resection. Unfortunately, current orthopedic materials were not originally developed to simultaneously increase healthy bone growth (as in traditional orthopedic implant applications while inhibiting cancerous bone growth. The long-term objective of the present research is to investigate the use of nano-rough selenium to prevent bone cancer from re-occurring while promoting healthy bone growth for this select group of cancer patients. Selenium is a well known anti-cancer chemical. However, what is not known is how healthy bone cells interact with selenium. To determine this, selenium, spherical or semispherical shots, were pressed into cylindrical compacts and these compacts were then etched using 1N NaOH to obtain various surface structures ranging from the micron, submicron to nano scales. Changes in surface chemistry were also analyzed. Through these etching techniques, results of this study showed that biologically inspired surface roughness values were created on selenium compacts to match that of natural bone roughness. Moreover, results showed that healthy bone cell adhesion increased with greater nanometer selenium roughness (more closely matching that of titanium. In this manner, this study suggests that nano-rough selenium should be further tested for orthopedic applications involving bone cancer treatment.Keywords: selenium, nano-rough, osteoblast, cancer, chemopreventive

  4. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  5. DNA-inorganic hybrid nanovaccine for cancer immunotherapy

    Science.gov (United States)

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-01

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit

  6. Innovation in Bladder Cancer Immunotherapy.

    Science.gov (United States)

    Grossman, H Barton; Lamm, Donald L; Kamat, Ashish M; Keefe, Stephen; Taylor, John A; Ingersoll, Molly A

    2016-10-01

    Bladder cancer is understudied despite its high prevalence and its remarkable response to immunotherapy. Indeed, funding for studies to explore mechanisms of tumor immunity and novel new therapeutics is disproportionately lower for bladder cancer in comparison with malignancies of the breast, prostate, or lung. However, the recent successes of checkpoint blockade therapy suggest that new therapeutic strategies are on the horizon for bladder cancer. Here, we give a perspective into the evolution of bladder cancer therapy, focusing on strategies to treat high-risk nonmuscle invasive disease, followed by a discussion of recent advances in the treatment of muscle invasive bladder cancer and their potential applicability to lower stage disease. Finally, we explore immunotherapeutic strategies, which have been demonstrated to be successful in the treatment of other malignancies, for their potential to treat and cure patients with nonmuscle and muscle invasive bladder cancer.

  7. Targeting neoantigens for cancer immunotherapy.

    Science.gov (United States)

    Lu, Yong-Chen; Robbins, Paul F

    2016-07-01

    Studies first carried out in the 1980s have demonstrated murine T cells can recognize mutated gene products, known as neoantigens, and that these T cells are capable of mediating tumor rejection. The first human tumor antigens isolated in the early 1990s were the products of non-mutated genes expressed in a tissue-specific manner; subsequent studies have indicated that tumor-infiltrating lymphocytes that are cultured in vitro frequently recognize mutated gene products. In addition, correlative studies indicate that clinical responses to therapies involving the use of antibodies directed against checkpoint inhibitors such as CTLA-4 and PD-1 may be associated with mutational burden, providing indirect evidence that these responses may primarily be mediated by neoantigen-reactive T cells. The importance of neoantigen-reactive T cells may be elucidated by the results of ongoing and future studies aimed at leveraging information gained from mutational profiling to enhance the potency of immunotherapies.

  8. IMUNODIAGNOSTIC AND IMMUNOTHERAPY OF AUTISM

    Directory of Open Access Journals (Sweden)

    Vladimir TRAJKOVSKI

    2000-06-01

    Full Text Available Infantile autism is one of the most disabling illnesses of neurological, emotional and intellectual development. The cause of autism remains unknown. However, recent investigations suggest that this disorder shares several features of established autoimmune disorders.The aim of this article is to describe the news of imunodiagnostic and immunotherapy in autism. Interpretation of data is made by conceptual and methodological differences between studies. The autoimmune response is most likely directed against the brain myelin, perhaps secondary to a viral infection. The idea that autism is an autoimmune disorder is further strengthened by the fact that autistic patients respond well to treatment with immune modulating drugs. Immune interventions can produce immune modulation-state of suppression or stimulation. Immune therapy should always be done in consultation with physicians.

  9. Allergen immunotherapy for allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dhami, Sangeeta; Nurmatov, Ulugbek; Roberts, Graham;

    2016-01-01

    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for the Management of Allergic Rhinoconjunctivitis. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT...... in the management of allergic rhinoconjunctivitis. METHODS: We will undertake a systematic review, which will involve searching international biomedical databases for published, in progress and unpublished evidence. Studies will be independently screened against pre-defined eligibility criteria and critically...... appraised using established instruments. Data will be descriptively and, if possible and appropriate, quantitatively synthesised. CONCLUSION: The findings from this review will be used to inform the development of recommendations for EAACI's Guidelines on AIT....

  10. Isolation and Characterisation of a Proanthocyanidin With Antioxidative, Antibacterial and Anti-Cancer Properties from Fern Blechnum orientale

    Science.gov (United States)

    Lai, How-Yee; Lim, Yau-Yan; Kim, Kah-Hwi

    2017-01-01

    Background: Blechnum orientale Linn. (Blechnaceae), a fern, is traditionally used in the treatment of various ailments, such as skin diseases, stomach pain, urinary bladder complaints, and also as a female contraceptive. Previously, we reported a strong radical scavenging activity, antibacterial activity and cytotoxicity against HT29 colon cancer cells by aqueous extract of B. orientale. Objective: In this study, we attempted to isolate and identify the active compound from the aqueous extract of B. orientale. Materials and Methods: Aqueous extract of B. orientale was subjected to repeated MCI gel chromatography, Sephadex-LH-20, Chromatorex C18 and semi-preparative high performance liquid chromatography and was characterized using nuclear magnetic resonance and electrospray ionization mass-spectrometry spectroscopic methods. Antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay. Antibacterial assays were conducted using disc diffusion whereas the minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined using the broth microdilution assay. Cytotoxicity was assessed using thiazolylblue tetrazoliumbromide. Results: A polymeric proanthocyanidin consisting of 2-12 epicatechin extension units and epigallocathecin terminal units linked at C4-C8 was elucidated. Bioactivity studies showed strong radical scavenging activity (IC50 = 5.6 ± 0.1 µg/mL), antibacterial activity (MIC = 31.3-62.5 µg/mL) against five gram-positive bacteria and selective cytotoxicity against HT29 colon cancer cells (IC50 = 7.0 ± 0.3 µg/mL). Conclusion: According to our results, the proanthocyanidin of B. orientale demonstrated its potential as a natural source of antioxidant with antibacterial and anti-cancer properties. SUMMARY A bioactive proanthocyanidin was isolated from the aqueous extract of medicinal fern Blechnum orientale Linn and the structure was elucidated using NMR and ESI-MS spectral studies

  11. Local Nasal Specific Immunotherapy for Allergic Rhinitis

    Directory of Open Access Journals (Sweden)

    Passalacqua Giovanni

    2006-09-01

    Full Text Available Abstract The possibility of producing local hyposensitization by administering allergens via mucosal routes was envisaged at the beginning of 1900, and local nasal immunotherapy has been extensively studied since the 1970s. Presently, there are 21 randomized controlled trials being conducted with the most common allergens, consistently showing the clinical efficacy of local nasal immunotherapy for rhinitis. Other advantages are that it has an optimal safety profile and can be self-administered at home by the patient. Moreover, there are several data from animal models and from humans that confirm the immunomodulatory effect of intranasally administered antigens. On the other hand, local nasal immunotherapy seems to be effective only on rhinitis symptoms and requires a particular technique of administration. For these reasons, its clinical use is progressively declining in favour of the sublingual route although nasal immunotherapy is validated in official documents and remains a viable alternative to injection.

  12. New visions in specific immunotherapy in children

    DEFF Research Database (Denmark)

    Halken, Susanne; Lau, Susanne; Valovirta, Erkka

    2008-01-01

    Specific immunotherapy is indicated for confirmed immunoglobulin E-mediated airway diseases using standardized allergen products with documented clinical efficacy and safety. For decades the subcutaneous route of administration (SCIT) has been the gold standard. Recently, the sublingual...

  13. Allergen immunotherapy for the prevention of allergy

    DEFF Research Database (Denmark)

    Kristiansen, Maria; Dhami, Sangeeta; Netuveli, Gopal

    2017-01-01

    Background: There is a need to establish the effectiveness, cost-effectiveness and safety of allergen immunotherapy (AIT) for the prevention of allergic disease. Methods:Two reviewers independently screened nine international biomedical databases. Studies were quantitatively synthesized using ran...

  14. New types of immunotherapy in children.

    Science.gov (United States)

    Rodríguez-Pérez, Noel; Penagos, Martin; Portnoy, Jay M

    2008-11-01

    Injection immunotherapy has been shown to be particularly beneficial in treating allergic rhinitis, mild to moderate asthma, and anaphylaxis caused by bee and wasp venom. It also produces a long-term, antigen-specific, protective immune effect and is the only treatment that offers the possibility of reducing the risk of asthma development in children with allergic rhinitis. Nonetheless, the potentially severe side effects associated with this form of immunotherapy limit its widespread use. Diverse preparations are being developed to increase its safety and improve its efficacy. These include alternative routes of administration, particularly the sublingual route; use of novel adjuvants, such as CpG oligonucleotides and mycobacterial vaccines; and other approaches, such as peptide immunotherapy, recombinant allergens, DNA vaccination, and combined therapy. Some of these immunotherapy forms have been evaluated in children.

  15. Who Will Benefit from Cancer Immunotherapy?

    Science.gov (United States)

    Researchers have identified a “genetic signature” in the tumors of patients with advanced melanoma who responded to a form of immunotherapy called checkpoint blockade. The results could be the basis for a test that identifies likely responders.

  16. PROSTVAC® targeted immunotherapy candidate for prostate cancer.

    Science.gov (United States)

    Shore, Neal D

    2014-01-01

    Targeted immunotherapies represent a valid strategy for the treatment of metastatic castrate-resistant prostate cancer. A randomized, double-blind, Phase II clinical trial of PROSTVAC® demonstrated a statistically significant improvement in overall survival and a large, global, Phase III trial with overall survival as the primary end point is ongoing. PROSTVAC immunotherapy contains the transgenes for prostate-specific antigen and three costimulatory molecules (designated TRICOM). Research suggests that PROSTVAC not only targets prostate-specific antigen, but also other tumor antigens via antigen cascade. PROSTVAC is well tolerated and has been safely combined with other cancer therapies, including hormonal therapy, radiotherapy, another immunotherapy and chemotherapy. Even greater benefits of PROSTVAC may be recognized in earlier-stage disease and low-disease burden settings where immunotherapy can trigger a long-lasting immune response.

  17. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms.

  18. Mathematical Model Creation for Cancer Chemo-Immunotherapy

    Directory of Open Access Journals (Sweden)

    Lisette de Pillis

    2009-01-01

    Full Text Available One of the most challenging tasks in constructing a mathematical model of cancer treatment is the calculation of biological parameters from empirical data. This task becomes increasingly difficult if a model involves several cell populations and treatment modalities. A sophisticated model constructed by de Pillis et al., Mixed immunotherapy and chemotherapy of tumours: Modelling, applications and biological interpretations, J. Theor. Biol. 238 (2006, pp. 841–862; involves tumour cells, specific and non-specific immune cells (natural killer (NK cells, CD8+T cells and other lymphocytes and employs chemotherapy and two types of immunotherapy (IL-2 supplementation and CD8+T-cell infusion as treatment modalities. Despite the overall success of the aforementioned model, the problem of illustrating the effects of IL-2 on a growing tumour remains open. In this paper, we update the model of de Pillis et al. and then carefully identify appropriate values for the parameters of the new model according to recent empirical data. We determine new NK and tumour antigen-activated CD8+T-cell count equilibrium values; we complete IL-2 dynamics; and we modify the model in de Pillis et al. to allow for endogenous IL-2 production, IL-2-stimulated NK cell proliferation and IL-2-dependent CD8+T-cell self-regulations. Finally, we show that the potential patient-specific efficacy of immunotherapy may be dependent on experimentally determinable parameters.

  19. Adoptive immunotherapy via CD4+ versus CD8+ T cells

    Directory of Open Access Journals (Sweden)

    Vy Phan-Lai

    2016-04-01

    Full Text Available The goal of cancer immunotherapy is to induce specific and durable antitumor immunity. Adoptive T cell therapy (ACT has garnered wide interest, particularly in regard to strategies to improve T cell efficacy in trials. There are many types of T cells (and subsets which can be selected for use in ACT. CD4+ T cells are critical for the regulation, activation and aid of host defense mechanisms and, importantly, for enhancing the function of tumor-specific CD8+ T cells. To date, much research in cancer immunotherapy has focused on CD8+ T cells, in melanoma and other cancers. Both CD4+ T cells and CD8+ T cells have been evaluated as ACT in mice and humans, and both are effective at eliciting antitumor responses. IL-17 producing CD4+ T cells are a new subset of CD4+ T cells to be evaluated in ACT models. This review discusses the benefits of adoptive immunotherapy mediated by CD8+ and CD4+ cells. It also discusses the various type of T cells, source of T cells, and ex vivo cytokine growth factors for augmenting clinical efficacy of ACT. [Biomed Res Ther 2016; 3(4.000: 588-595

  20. Therapeutic cancer vaccines and combination immunotherapies involving vaccination

    Directory of Open Access Journals (Sweden)

    Nguyen T

    2014-10-01

    Full Text Available Trang Nguyen,1 Julie Urban,1 Pawel Kalinski1–5 1Department of Surgery, 2Department of Immunology, 3Department of Microbiology and Infectious Disease, 4Department of Bioengineering, University of Pittsburgh, 5University of Pittsburgh Cancer Institute, Pittsburgh, PA, USAAbstract: Recent US Food and Drug Administration approvals of Provenge® (sipuleucel-T as the first cell-based cancer therapeutic factor and ipilimumab (Yervoy®/anticytotoxic T-lymphocyte antigen-4 as the first “checkpoint blocker” highlight recent advances in cancer immunotherapy. Positive results of the clinical trials evaluating additional checkpoint blocking agents (blockade of programmed death [PD]-1, and its ligands, PD-1 ligand 1 and 2 and of several types of cancer vaccines suggest that cancer immunotherapy may soon enter the center stage of comprehensive cancer care, supplementing surgery, radiation, and chemotherapy. This review discusses the current status of the clinical evaluation of different classes of therapeutic cancer vaccines and possible avenues for future development, focusing on enhancing the magnitude and quality of cancer-specific immunity by either the functional reprogramming of patients' endogenous dendritic cells or the use of ex vivo-manipulated dendritic cells as autologous cellular transplants. This review further discusses the available strategies aimed at promoting the entry of vaccination-induced T-cells into tumor tissues and prolonging their local antitumor activity. Finally, the recent improvements to the above three modalities for cancer immunotherapy (inducing tumor-specific T-cells, prolonging their persistence and functionality, and enhancing tumor homing of effector T-cells and rationale for their combined application in order to achieve clinically effective anticancer responses are addressed.Keywords: immunotherapy, cancer, vaccines

  1. Immunotherapy in prostate cancer: review of the current evidence.

    Science.gov (United States)

    Fernández-García, E M; Vera-Badillo, F E; Perez-Valderrama, B; Matos-Pita, A S; Duran, I

    2015-05-01

    Prostate cancer is the most common male malignancy in the Western world. Once it metastasizes, it is incurable. The current gold standard for metastatic disease is the combined docetaxel/prednisone regimen. Prostate cancer shows several characteristics that make it a suitable candidate for immunotherapy, as recently exemplified by the approval of sipuleucel-T, the first vaccine to treat any malignancy. Here, we review different tumor-associated antigen immunotherapy strategies currently being investigated, from a humanized radiolabeled monoclonal antibody (J-591) that targets radiation into tumor cells, moving on to vaccines and through to immunomodulator agents such as anti-CPLA-4 and anti-PD-1 monoclonal antibodies that activate T-cell responses via immune checkpoint inhibition. We explore different opinions on the best approach to integrate immunotherapy into existing standard therapies, such as androgen-deprivation therapy, radiotherapy or chemotherapy, and review different combination sequences, patient types and time points during the course of the disease to achieve a lasting immune response. We present data from recent phase III clinical trials that call for a change in trial endpoint design with immunotherapy agents, from the traditional tumor progression to overall survival and how such trials should include immune response measurements as secondary or intermediate endpoints to help identify patient clinical benefit in the earlier phases of treatment. Finally, we join in the recent questioning on the validity of RECIST criteria to measure response to immunotherapeutic agents, as initial increases in the size of tumors/lymph nodes, which are part of a normal immune response, could be categorized as disease progression under RECIST.

  2. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  3. Anti-Cancer Effect of Metabotropic Glutamate Receptor 1 Inhibition in Human Glioma U87 Cells: Involvement of PI3K/Akt/mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2015-01-01

    Full Text Available Background: Metabotropic glutamate receptors (mGluRs are G-protein-coupled receptors that mediate neuronal excitability and synaptic plasticity in the central nervous system, and emerging evidence suggests a role of mGluRs in the biology of cancer. Previous studies showed that mGluR1 was a potential therapeutic target for the treatment of breast cancer and melanoma, but its role in human glioma has not been determined. Methods: In the present study, we investigated the effects of mGluR1 inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA or selective antagonists Riluzole and BAY36-7620. The anti-cancer effects of mGluR1 inhibition were measured by cell viability, lactate dehydrogenase (LDH release, TUNEL staining, cell cycle assay, cell invasion and migration assays in vitro, and also examined in a U87 xenograft model in vivo. Results: Inhibition of mGluR1 significantly decreased the cell viability but increased the LDH release in a dose-dependent fashion in U87 cells. These effects were accompanied with the induction of caspase-dependent apoptosis and G0/G1 cell cycle arrest. In addition, the results of Matrigel invasion and cell tracking assays showed that inhibition of mGluR1 apparently attenuated cell invasion and migration in U87 cells. All these anti-cancer effects were ablated by the mGluR1 agonist L-quisqualic acid. The results of western blot analysis showed that mGluR1 inhibition overtly decreased the phosphorylation of PI3K, Akt, mTOR and P70S6K, indicating the mitigated activation of PI3K/Akt/mTOR pathway. Moreover, the anti-tumor activity of mGluR1 inhibition in vivo was also demonstrated in a U87 xenograft glioma model in athymic nude mice. Conclusion: The remarkable efficiency of mGluR1 inhibition to induce cell death in U87 cells may find therapeutic application for the treatment of glioma patients.

  4. Defining the critical hurdles in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2011-12-01

    Full Text Available Abstract Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC, convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators; others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet if overcome, have the potential to improve outcomes of patients with cancer.

  5. A Novel Immunomodulatory Hemocyanin from the Limpet Fissurella latimarginata Promotes Potent Anti-Tumor Activity in Melanoma

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C.; Manubens, Augusto; De Ioannes, Alfredo E.; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy. PMID

  6. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  7. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  8. Immunotherapy for food allergies in children.

    Science.gov (United States)

    Martinolli, Francesco; Carraro, Silvia; Berardi, Mariangela; Ferraro, Valentina; Baraldi, Eugenio; Zanconato, Stefania

    2014-01-01

    Food allergy is an increasingly prevalent problem all over the world and especially in westernized countries, and there is an unmet medical need for an effective form of therapy. During childhood natural tolerance development is frequent, but some children with cow's milk or hen's egg allergy and the majority of children with peanut allergy will remain allergic until adulthood, limiting not only the diet of patients but also their quality of life. Within the last several years, the usefulness of immunotherapy for food allergies has been investigated in food allergic patients. Several food immunotherapies are being developed; these involve oral, sublingual, epicutaneous, or subcutaneous administration of small amounts of native or modified allergens to induce immune tolerance. The approach generally follows the same principles as immunotherapy of other allergic disorders and involves administering small increasing doses of food during an induction phase followed by a maintenance phase with regular intake of a maximum tolerated amount of food. Oral immunotherapy seems to be a promising approach for food allergic patients based on results from small uncontrolled and controlled studies. Diet containing heated milk and egg may represent an alternative approach to oral immunomodulation for cow's milk and egg allergic subjects. However, oral food immunotherapy remains an investigational treatment to be further studied before advancing into clinical practice. Additional bigger, multicentric and hopefully randomized-controlled studies must answer multiple questions including optimal dose, ideal duration of immunotherapy, degree of protection, efficacy for different ages, severity and type of food allergy responsive to treatment.

  9. Aptamers: A Feasible Technology in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    M. M. Soldevilla

    2016-01-01

    Full Text Available Aptamers are single-chained RNA or DNA oligonucleotides (ODNs with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  10. Aptamers: A Feasible Technology in Cancer Immunotherapy.

    Science.gov (United States)

    Soldevilla, M M; Villanueva, H; Pastor, F

    2016-01-01

    Aptamers are single-chained RNA or DNA oligonucleotides (ODNs) with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.

  11. Traf2- and Nck-interacting kinase (TNIK) is involved in the anti-cancer mechanism of dovitinib in human multiple myeloma IM-9 cells.

    Science.gov (United States)

    Chon, Hae Jung; Lee, Yura; Bae, Kyoung Jun; Byun, Byung Jin; Kim, Soon Ae; Kim, Jiyeon

    2016-07-01

    Traf2- and Nck-interacting kinase (TNIK) is a member of the germinal center kinase family. TNIK was first identified as a kinase that is involved in regulating cytoskeletal organization in many types of cells, and it was recently proposed as a novel therapeutic target in several types of human cancers. Although previous studies suggest that TNIK plays a pivotal role in cancer cell survival and prognosis, its function in hematological cancer cell survival has not been investigated. Here we investigated the relationship between TNIK function and cell viability in multiple myeloma IM-9 cells using TNIK small interfering RNA (siRNA) transfection and dovitinib treatment. Treatment of IM-9 cells with TNIK siRNA and dovitinib treatment reduced cell proliferation. The ATP competing kinase assay and western blot analysis showed that dovitinib strongly inhibited both the interaction of TNIK with ATP (K i, 13 nM) and the activation of Wnt signaling effectors such as β-catenin and TCF4. Dovitinib also induced caspase-dependent apoptosis in IM-9 cells without significant cytotoxicity in PBMCs. Our results provide new evidence that TNIK may be involved in the proliferation of multiple myeloma IM-9 cells and in the anti-cancer activity of dovitinib via inhibition of the endogenous Wnt signaling pathway.

  12. Recent progress on anti-cancer effect of cardiac glycosides%强心苷类抗癌作用研究进展

    Institute of Scientific and Technical Information of China (English)

    陈大朋; 唐泽耀; 熊永建; 林原

    2011-01-01

    Cardiac glycosides include exogenous cardiac glyco-sides and endogenous cardiac glycosides. This article focuses on anti-cancer mechanism of cardiac glycosides, including the inhibition of Na , K + -ATPase activity, of hypoxia inducible factor -1, of fibroblast growth factor, nuclear factor and of the activity of topoisomerase, blockade of estrogen receptors, induction of ap-optosis and cytotoxicity. The effects of cardiac glycosides onbreast cancer, prostate cancer, and other cancers and the possible relationship between endogenous cardiac glycosides and cancer are also discussed.%强心苷类物质可分为外源性强心苷类和内源性强心苷类.该文主要阐述了强心苷类的抗癌作用机制与其抑制Na+,K+-ATP酶、缺氧诱导因子-1、成纤维细胞生长因子、核转录因子及拓扑异构酶的活性,阻断雌激素受体,诱导细胞凋亡以及细胞毒作用相关;简要阐述了强心苷类对乳腺癌及前列腺癌等恶性肿瘤的作用效果以及内源性强心苷类与癌症的可能关系.

  13. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

    Science.gov (United States)

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-03-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.

  14. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor

    Science.gov (United States)

    Alevizopoulos, Konstantinos; Dimas, Konstantinos; Papadopoulou, Natalia; Schmidt, Eva-Maria; Tsapara, Anna; Alkahtani, Saad; Honisch, Sabina; Prousis, Kyriakos C.; Alarifi, Saud; Calogeropoulou, Theodora

    2016-01-01

    Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development. PMID:27027435

  15. Immunological comparison of allergen immunotherapy tablet treatment and subcutaneous immunotherapy against grass allergy

    DEFF Research Database (Denmark)

    Aasbjerg, K; Backer, V; Lund, G;

    2014-01-01

    BACKGROUND: IgE-mediated allergic rhinitis to grass pollen can successfully be treated with either allergen immunotherapy tablets (SLIT tablet) or SQ-standardized subcutaneous immunotherapy (SCIT). The efficacy of these two treatment modalities for grass allergy is comparable, but the immunological...

  16. Natural product Celastrol destabilizes tubulin heterodimer and facilitates mitotic cell death triggered by microtubule-targeting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Hakryul Jo

    Full Text Available BACKGROUND: Microtubule drugs are effective anti-cancer agents, primarily due to their ability to induce mitotic arrest and subsequent cell death. However, some cancer cells are intrinsically resistant or acquire a resistance. Lack of apoptosis following mitotic arrest is thought to contribute to drug resistance that limits the efficacy of the microtubule-targeting anti-cancer drugs. Genetic or pharmacological agents that selectively facilitate the apoptosis of mitotic arrested cells present opportunities to strengthen the therapeutic efficacy. METHODOLOGY AND PRINCIPAL FINDINGS: We report a natural product Celastrol targets tubulin and facilitates mitotic cell death caused by microtubule drugs. First, in a small molecule screening effort, we identify Celastrol as an inhibitor of neutrophil chemotaxis. Subsequent time-lapse imaging analyses reveal that inhibition of microtubule-mediated cellular processes, including cell migration and mitotic chromosome alignment, is the earliest events affected by Celastrol. Disorganization, not depolymerization, of mitotic spindles appears responsible for mitotic defects. Celastrol directly affects the biochemical properties of tubulin heterodimer in vitro and reduces its protein level in vivo. At the cellular level, Celastrol induces a synergistic apoptosis when combined with conventional microtubule-targeting drugs and manifests an efficacy toward Taxol-resistant cancer cells. Finally, by time-lapse imaging and tracking of microtubule drug-treated cells, we show that Celastrol preferentially induces apoptosis of mitotic arrested cells in a caspase-dependent manner. This selective effect is not due to inhibition of general cell survival pathways or mitotic kinases that have been shown to enhance microtubule drug-induced cell death. CONCLUSIONS AND SIGNIFICANCE: We provide evidence for new cellular pathways that, when perturbed, selectively induce the apoptosis of mitotic arrested cancer cells, identifying a

  17. Enhancing the Efficacy of Prostate Cancer Immunotherapy by Manipulating T-Cell Receptor Signaling in Order to Alter Peripheral Regulatory T-Cell Activity

    Science.gov (United States)

    2011-07-01

    Splenocytes were treated for twenty four hours with mPSCA83-91 and IL-2, with Brefeldin-A being added in the last six hours in order to arrest the Golgi ... apparatus of the cells, thus allowing detectable levels of IFNγ to build up in the cytoplasm of activated T cells. Splenocytes were washed and

  18. The blocking activity of birch pollen-specific immunotherapy-induced IgG4 is not qualitatively superior to that of other IgG subclasses

    DEFF Research Database (Denmark)

    Ejrnaes, Anne M; Bødtger, Uffe; Larsen, Jørgen N;

    2004-01-01

    blocking activity was found in the purified IgG4 fraction. There was no significant difference in the binding avidities (1/K(d)) measured in the two IgG fractions. Thus, it appears that SIT-induced specific IgG4 contributes to the IgG blocking of allergen binding to IgE in a simple quantitative manner...

  19. Cancer immunotherapy out of the gate: the 22nd annual Cancer Research Institute International Immunotherapy Symposium.

    Science.gov (United States)

    Tontonoz, Matthew; Gee, Connie E

    2015-05-01

    The 22nd annual Cancer Research Institute (CRI) International Immunotherapy Symposium was held from October 5-8, 2014, in New York City. Titled "Cancer Immunotherapy: Out of the Gate," the symposium began with a Cancer Immunotherapy Consortium satellite meeting focused on issues in immunotherapy drug development, followed by five speaker sessions and a poster session devoted to basic and clinical cancer immunology research. The second annual William B. Coley lecture was delivered by Lieping Chen, one of the four recipients of the 2014 William B. Coley Award for Distinguished Research in Tumor Immunology; the other three recipients were Gordon Freeman, Tasuku Honjo, and Arlene Sharpe. Prominent themes of the conference were the use of genomic technologies to identify neoantigens and the emergence of new immune modulatory molecules, beyond CTLA-4 and PD-1/PD-L1, as new therapeutic targets for immunotherapy.

  20. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  1. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90.

  2. Sarcoma Immunotherapy: Past Approaches and Future Directions

    Directory of Open Access Journals (Sweden)

    S. P. D'Angelo

    2014-01-01

    Full Text Available Sarcomas are heterogeneous malignant tumors of mesenchymal origin characterized by more than 100 distinct subtypes. Unfortunately, 25–50% of patients treated with initial curative intent will develop metastatic disease. In the metastatic setting, chemotherapy rarely leads to complete and durable responses; therefore, there is a dire need for more effective therapies. Exploring immunotherapeutic strategies may be warranted. In the past, agents that stimulate the immune system such as interferon and interleukin-2 have been explored and there has been evidence of some clinical activity in selected patients. In addition, many cancer vaccines have been explored with suggestion of benefit in some patients. Building on the advancements made in other solid tumors as well as a better understanding of cancer immunology provides hope for the development of new and exciting therapies in the treatment of sarcoma. There remains promise with immunologic checkpoint blockade antibodies. Further, building on the success of autologous cell transfer in hematologic malignancies, designing chimeric antigen receptors that target antigens that are over-expressed in sarcoma provides a great deal of optimism. Exploring these avenues has the potential to make immunotherapy a real therapeutic option in this orphan disease.

  3. siRNA and cancer immunotherapy.

    Science.gov (United States)

    Ghafouri-Fard, Soudeh; Ghafouri-Fard, Somayyeh

    2012-09-01

    Immunotherapeutic approaches have been gaining attention in the field of cancer treatment because of their possible ability to eradicate cancer cells as well as metastases by recruiting the host immune system. On the other hand, RNA-based therapeutics with the ability to silence expression of specific targets are currently under clinical investigation for various disorders including cancer. As the mechanisms of tumor evasion from the host immune system are versatile, different molecules have the capacity to be targeted by RNAi technology in order to enhance the immune response against tumors. This technology has been used to silence specific targets in tumor cells, as well as immune cells in cancer cell lines, animal models and clinical trials. siRNAs can also stimulate innate immune responses through activation of Toll-like receptors. Although currently clinical trials of the application of siRNA in cancer immunotherapy are few, it is predicted that in future this technology will be used broadly in cancer treatment.

  4. Oncolytic viruses: a step into cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Pol JG

    2011-12-01

    Full Text Available Jonathan G Pol, Julien Rességuier, Brian D LichtyMcMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, CanadaAbstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials for approval as a new cancer treatment. Oncolytic viruses (OVs selectively infect, replicate in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the direct viral oncolysis (virocentric view. The host immune system was considered as a brake that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has changed over the past few years with the discovery that OV therapy was also inducing indirect oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection appeared to be a key factor for an efficient therapeutic activity (immunocentric view. Indeed, tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, which are summarized in this manuscript, have been developed to enhance the efficacy of OV therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and combination with existing cancer treatments. Several are currently being evaluated in human patients and already display promising efficacy.Keywords: oncolytic virus, cancer immunotherapy, tumor antigen, cancer vaccine, combination strategies

  5. CdO-NPs; synthesis from 1D new nano Cd coordination polymer, characterization and application as anti-cancer drug for reducing the viability of cancer cells

    Science.gov (United States)

    Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid

    2017-04-01

    The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.

  6. Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties.

    Science.gov (United States)

    Kothari, Damini; Goyal, Arun

    2015-02-01

    Gentio-oligosaccharides (GnOS) were synthesized by the acceptor reaction of dextransucrase from Leuconostoc mesenteroides NRRL B-1426 with gentiobiose and sucrose. GnOS were purified by gel permeation chromatography using a Bio-Gel P-2 column and identified by mass spectrometry. The purified GnOS (degree of polymerization ≥3) were investigated for their in vitro prebiotic and cytotoxic activity. GnOS exhibited a significantly lower degree of digestibility of 18.1% by simulated human gastric juice (pH 1.0) and 7.1% by human α-amylase (pH 7.0) after 6 h, whereas inulin, a standard prebiotic, showed 39.7% and 12.8% of digestibility, respectively. The prebiotic score showed that GnOS significantly supported the growth of probiotics such as Bifidobacterium infantis and Lactobacillus acidophilus and was comparable to that of inulin. The selective inhibitory effect of GnOS on human colon carcinoma (HT-29) cells revealed its potential as an anti-cancer agent that can serve as a functional food additive for the benefit of human health.

  7. Research on Immunotherapy: Using the Immune System to Treat Cancer

    Science.gov (United States)

    ... cells that suppress immune responses. These advances in cancer immunotherapy are the result of long-term investments in ... Engineering Patients’ Immune Cells to Treat Their Cancers Cancer immunotherapy in children: How does it differ from approaches ...

  8. Sublingual immunotherapy: World Allergy Organization position paper 2013 update

    NARCIS (Netherlands)

    G.W. Canonica (Giorgio Walter); L. Cox (Linda); R. Pawankar (Ruby); C.E. Baena-Cagnani (Carlos); M.S. Blaiss (Michael); S. Bonini (Sergio); J. Bousquet (Jean); M. Calderon (Moises); E. Compalati (Enrico); S.R. Durham (Stephen); R. Gerth van Wijk (Roy); D. Larenas-Linnemann (Désirée); H. Nelson (Harold); G. Passalacqua (Giovanni); O. Pfaar (Oliver); K. Rosario (Karyna); D. Ryan (Dermot); L. Rosenwasser (Lanny); P. Schmid-Grendelmeier (Peter); G.E. Senna (Gianenrico); E. Valovirta (Erkka); H.P. van Bever (Hugo); P. Vichyanond (Pakit); U. Wahn (Ulrich); O.M. Yusuf (Osman)

    2014-01-01

    textabstractWe have prepared this document, "Sublingual Immunotherapy: World Allergy Organization Position Paper 2013 Update", according to the evidence-based criteria, revising and updating chapters of the originally published paper, "Sublingual Immunotherapy: World Allergy Organization Position Pa

  9. THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 5, NO. 2, pp. 88-91, May, 2015 Isolation of an Anti-Cancer Asperuloside from Hedyotis corymbosa L.

    Directory of Open Access Journals (Sweden)

    Nina Artanti

    2015-05-01

    Full Text Available Hedyotis corymbosa L., with local name rumput mutiara, is an anti-inflammatory, anti-cancer and hepatoprotective traditional medicine. The ethanol extract of H. corymbosa L. shows inhibitory activity to humanYMB-1 breast cancer cell line with an IC50 of 6.51 μg/mL. The methylene chloride fraction shows a potential cytotoxic activity with an IC50 of 2.75 μg/mL. To obtain a lead compound, the extract was further purified by column chromatography. A pure compound is obtained which shows inhibitory activities against YMB-1, HL60 and KB human cell lines with IC50 values of 0.7; 11.0 and 104.2 μg/mL, respectively. Based on the 1D and 2D FT-NMR data, the isolated compound is an asperuloside.

  10. Facile synthesis of 2-D Cu doped WO3 nanoplates with structural, optical and differential anti cancer characteristics

    Science.gov (United States)

    Mehmood, Faisal; Iqbal, Javed; Gul, Asma; Ahmed, Waqqar; Ismail, M.

    2017-04-01

    Simple chemical co-precipitation method has been employed to synthesize two dimensional copper (Cu) doped tungsten oxide (WO3) nanoplates. A numbers of characterization techniques have been used to investigate their structural, optical and biocompatible anti cancer properties. The XRD results have confirmed the monoclinic crystal structure of WO3 nanoplates, and also successful doping of Cu ions into the WO3 crystal lattice. The presence of functional groups and chemical bonding have been verified through FTIR and Raman spectroscopy. The SEM images demonstrate that both undoped and Cu doped WO3 samples have squares plate like morphology. The EDX spectra confirm the presence of Cu, W and O ions. Diffuse reflectance spectroscopy (DRS) analysis has revealed a substantial red-shift in the absorption edge and a decrease in the band gap energy of nanoplates with Cu doping. Photoluminescence spectroscopy has been used to study the presence of defects like oxygen vacancies. Furthermore, the differential cytotoxic properties of Cu doped WO3 samples have been evaluated against human breast (MCF-7) and liver (Hep-2) cancer cells with ectocervical epithelial (HECE) healthy cells. The present findings confirm that the Cu doped WO3 nanoplates can be used as an efficient biocompatible anti cancer agent.

  11. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery.

  12. Technology whitespaces India should focus: a comparative anti-cancer patent rational analysis of Indian and international public funded universities.

    Science.gov (United States)

    Dara, Ajay; Sangamwar, Abhay T

    2015-01-01

    The article reported an in-depth comparative technology analysis of 1708 Anti-cancer patents from top 20 international universities and leading 10 Indian public funded organization and research institutes. The study segregated pioneer universities vs. technologies used in the field of Anticancer research at a level of drug discovery, development, diagnosis and treatment, which are illustrated in the form of novel substantive patent landscape maps. The reported competitive intelligent maps identified genetics, composition and synthetic compounds as dominating technologies; followed by natural extracts, combination and drug delivery systems as upcoming technologies. The least number of patents were reported by surgical apparatus, targeted therapy and animal models. In addition, the study analysed the key technologies followed by Indian universities in comparison to the international universities, to identify the overlooked technologies by the Indian public funded institutes. In an ever changing competitive world, it is essential for every university to have their own research plan and thrust areas; but at the same time, it is equally important for any organisation to have an idea of their competitor's research plan as well. So, the article suggested Indian institutes to focus on the latest emerging Anti-cancer technology trends, which are in practice by the international universities. Concurrently, this study may be a landmark indication for Indian public funded universities and institutes, calling for a U-turn from their traditional approaches.

  13. Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics.

    Science.gov (United States)

    Griffith, Darren; Parker, James P; Marmion, Celine J

    2010-06-01

    Historically, DNA has been the target for many metal-based anti-cancer drugs, but drawbacks of prevailing therapies have stimulated the search for new molecular targets which may present unique opportunities for therapeutic exploitation. Enzyme inhibition has recently been identified as an alternative and significant target. The pursuit of novel metallodrug candidates that selectively target enzymes is now the subject of intense investigation in medicinal bioinorganic chemistry and chemical biology. In the field of drug design, it is recognised by many that exploiting the structural and chemical diversity of metal ions for the identification of potential hit and lead candidates can dramatically increase the number of possible drug candidates that may be added to the already abundant armoury of chemotherapeutic agents. This review will focus on recent key advancements in enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. The enormous clinical success of classical platinum drugs, amongst others, coupled with the wealth of knowledge accumulated in recent years on enzyme structure and function, has undoubtedly been the impetus behind the development of new metallodrug candidates with enzyme inhibitory properties. Recent trends in this field will be reviewed with a particular emphasis on metal complexes that inhibit protein and lipid kinases, matrix metalloproteases, telomerases, topoisomerases, glutathione-S-transferases, and histone deacetylases.

  14. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Chris P. Reutelingsperger

    2013-05-01

    Full Text Available Evaluation of efficacy of anti-cancer therapy is currently performed by anatomical imaging (e.g., MRI, CT. Structural changes, if present, become apparent 1–2 months after start of therapy. Cancer patients thus bear the risk to receive an ineffective treatment, whilst clinical trials take a long time to prove therapy response. Both patient and pharmaceutical industry could therefore profit from an early assessment of efficacy of therapy. Diagnostic methods providing information on a functional level, rather than a structural, could present the solution. Recent technological advances in molecular imaging enable in vivo imaging of biological processes. Since most anti-cancer therapies combat tumors by inducing apoptosis, imaging of apoptosis could offer an early assessment of efficacy of therapy. This review focuses on principles of and clinical experience with molecular imaging of apoptosis using Annexin A5, a widely accepted marker for apoptosis detection in vitro and in vivo in animal models. 99mTc-HYNIC-Annexin A5 in combination with SPECT has been probed in clinical studies to assess efficacy of chemo- and radiotherapy within 1–4 days after start of therapy. Annexin A5-based functional imaging of apoptosis shows promise to offer a personalized medicine approach, now primarily used in genome-based medicine, applicable to all cancer patients.

  15. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy.

    Science.gov (United States)

    Park, Soyeun

    2016-06-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.

  16. Advances in the understanding of cancer immunotherapy.

    Science.gov (United States)

    Shore, Neal D

    2015-09-01

    The principal role of the immune system is to prevent and eradicate pathogens and infections. The key characteristics or features of an effective immune response include specificity, trafficking, antigen spread and durability (memory). The immune system is recognised to have a critical role in controlling cancer through a dynamic relationship with tumour cells. Normally, at the early stages of tumour development, the immune system is capable of eliminating tumour cells or keeping tumour growth abated; however, tumour cells may evolve multiple pathways over time to evade immune control. Immunotherapy may be viewed as a treatment designed to boost or restore the ability of the immune system to fight cancer, infections and other diseases. Immunotherapy manifests differently from traditional cancer treatments, eliciting delayed response kinetics and thus may be more effective in patients with lower tumour burden, in whom disease progression may be less rapid, thereby allowing ample time for the immunotherapy to evolve. Because immunotherapies may have a different mechanism of action from traditional cytotoxic or targeted biological agents, immunotherapy techniques have the potential to combine synergistically with traditional therapies.

  17. New Concepts in Tumor Antigens: Their Significance in Future Immunotherapies for Tumors

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Xiao-Feng Yang

    2005-01-01

    The identification and molecular characterization of self-antigens expressed by human malignancies that are capable of elicitation of anti-tumor immune responses in patients have been an active field in tumor immunology.More than 2,000 tumor antigens have been identified, and most of these antigens are self-antigens. These significant progresses have led to the renaissance of tumor immunology and studies on anti-tumor immunotherapy.However, despite of the progress in the identification of self-tumor antigens, current antigen-specific immunotherapies for tumors are far less satisfied than expected, which reflects the urgent need to improve our understanding on self-tumor antigens. In order to develop more effective antigen specific anti-tumor immunotherapies and to monitor the responses to these immunotherapies in patients with tumors, many important fundamental questions need to be addressed. We propose for the first time that the studies in addressing the characteristics of self-tumor antigens and autoantigens are grouped as a new subject termed "antigenology". In this brief review, we would outline the progress in the identification of tumor antigens in solid tumors and hematologic malignancies, and overview the new concepts and principles of antigenology and their significance for future immunotherapies to these malignancies. Cellular & Molecular Immunology.

  18. Toward immunotherapy with redirected T cells in a large animal model: ex vivo activation, expansion, and genetic modification of canine T cells.

    Science.gov (United States)

    Mata, Melinda; Vera, Juan F; Gerken, Claudia; Rooney, Cliona M; Miller, Tasha; Pfent, Catherine; Wang, Lisa L; Wilson-Robles, Heather M; Gottschalk, Stephen

    2014-10-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising antitumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells, we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells, we targeted HER2(+) OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2(+) canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR, we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy before conducting studies in humans.

  19. Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types

    Directory of Open Access Journals (Sweden)

    Marc eDALOD

    2014-10-01

    Full Text Available Type I interferons (IFN-I were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote antiviral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic antiviral immunity. Second, IFN-I orchestrate innate and adaptive antiviral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1 infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including i the subtypes and dose of IFN-I produced, ii the cell types affected by IFN-I and iii the source and timing of IFN-I production. Finally we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.

  20. Harnessing Mechanistic Knowledge on Beneficial Versus Deleterious IFN-I Effects to Design Innovative Immunotherapies Targeting Cytokine Activity to Specific Cell Types.

    Science.gov (United States)

    Tomasello, Elena; Pollet, Emeline; Vu Manh, Thien-Phong; Uzé, Gilles; Dalod, Marc

    2014-01-01

    Type I interferons (IFN-I) were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote anti-viral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic anti-viral immunity. Second, IFN-I orchestrate innate and adaptive anti-viral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1) infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV) infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including (i) the subtypes and dose of IFN-I produced, (ii) the cell types affected by IFN-I, and (iii) the source and timing of IFN-I production. Finally, we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.